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ABSTRACT 

 

A family of numerical methods is developed for the solution of special 

nonlinear sixth-order boundary-value problems. Methods with second-, 

fourth-, sixth- and eighth-order convergence are contained in the family. 

Global extrapolation procedures on two and three grids, which increase the 

order of convergence, are outlined. 

 A second-order convergent method is discussed for the numerical 
solution of general nonlinear sixth-order boundary-value problems. This 
method, with modifications where necessary, is applied to the sixth-order 
eigenvalue problems associated with the onset of instability in a Bénard 

layer. Numerical results are compared with asymptotic estimates appearing 

in the literature. 
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1.  INTRODUCTION 

 

Many mathematical models concerning a Bénard layer assume a uniform steady- 

state temperature profile and an adiabatic gradient which is constant. 

Associated calculations reveal that, when a destabilizing temperature 

gradient exceeds the adiabatic gradient, the whole layer becomes unstable 

simultaneously (Baldwin, 1987a). Models which assume a non-uniform 

destabilizing steady-state temperature profile, further assume that 

convection sets in at a level where the local temperature gradient 

sufficiently exceeds the adiabatic gradient for the restraining effects of 

thermal conduction to be controlled. Baldwin (1987b) notes that, if this 

level is not at a boundary, the motion may be modelled by the sixth order 

eigenvalue problem 

 
d/dxD,0)w(x)x(1RAw(x))A(D 22322 ≡=−+−    (1.1) 

 

with 

 
.xas0w(x) ∞±→→    (1.2) 

 

 In this problem, x is a dimensionless boundary layer coordinate, 

w = w(x) is a dimensionless vertical velocity, R is a Rayleigh number and A 

is a horizontal wave number. Such problems have applications in astro-

physics, as A-type stars are believed to have narrow convecting layers 

bounded by stable layers (Toomre et al. , 1976). Glatzmaier (1985) also 

notes that dynamo action in some stars may be related to a narrow 

convecting layer at the base of the convection zone in the critical region 

between the stable interior and turbulent convection regions. The smallest 

eigenvalue, , of (1.1) includes the minimum Rayleigh number R for the 

onset of stability and the corresponding wave number A. A similar 

eigenvalue problem discussed by Baldwin (1987a) replaces  by x in the 

differential equaiton (1.1). 
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 Baldwin (1987a) notes that asymptotic expansions for the solution of 

sixth order boundary-value problems are difficult to obtain. In a later 
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paper Baldwin (1987b) expresses the solutions arising as Laplace integrals, 

the integrands of which involve a function satisfying a second order 

equation with six transition points. W.K.B. approximations to this 

function, valid in regions associated with each transition point, are 

related by using global phase-integral methods. Baldwin then estimates 

solutions of the sixth-order problem using steepest descent techniques, 

leading to an eigenvalue condition. The eigenvalue estimates are used for 

an accurate computation based on the compound matrix method. 

 The numerical analysis literature on the solution of sixth-order 

boundary-value problems is sparse. Such problems are contained implicitly 

in the work of Chawla and Katti (1979), although those authors concentrated 

on numerical methods for fourth-order boundary-value problems. The book by 

Agarwal (1986) contains theorems which list the conditions for existence 

and uniqueness of solutions of sixth-order boundary-value problems, though 

no numerical methods are contained therein. A low-order numerical method 

is outlined in Twizell (1988). 

 Experience in solving second- and fourth-order boundary-value problems 

has shown that considerable insight may be obtained by solving the special 

problem first of all, followed by the general problem and the associated 

eigenvalue problem. To this end, special sixth-order boundary-value 

probems will be solved in §2 by finite difference methods of orders two, 

four, six and eight. Global extrapolations on two- and three-grids to 

increase order of convergence will be given. The general sixth-order 

boundary-value problem is discussed in §3 and in §4 the sixth-order eigen- 

value problem (1.1) is solved. The free-free and rigid-rigid cases of the 

problem discussed by Baldwin (1987a), in which 2x1− in (1.1) is replaced by 

1-x, are also solved. 
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2. THE SPECIAL BOONDAY-VALUE PROBLEM 
 

2.1 A family of numerical methods 
 
Consider the special nonlinear sixth-order boundary-value problem 
 

D6w(x)=f(x,w),a <x <b; a,b,x∈R,w(x)∈C15[a,b],  (2.1) 
 

w(a) = A0 , D2w(a) = A2  , D4w(a) = A4 , 
(2.2) 

w(b) = B0 , D2w(b) = B2  , D4w(b) = B4 . 
 

It is assumed that f(x,w) ∈ C9[a,b] is real and that A0, A2, A4, B0, B2 and 

BB4 are real finite constants. 

 Conside now the mesh G1 obtained by discretizing the interval a ≤ x ≤ b 

into N+l subintervals each of width h = (b-a)/(N+l) where N≥5 is an integer. 

The solution w(x) will be computed at the points xn(1) = a+nh (n = 1,2,...,N) 

of G1 and the notation  will be used to denote the solution of an (1)
nw

approximating difference scheme at the grid point xn(1). Clearly w0(1) = A0 

and . 0
(1)

1N Bw =+

A general family of symmetric numerical methods is given by 
 

  (2.3) ( )

,0]αfβfγf

f2γ2β2α1γfβffα[h
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where ( ) ( ) ( )( )1
n

1
n

1
n w,xff =  and α, β, γ are parameters chosen to ensure consis- 

tency as a minimum requirement. The local truncation error  at the  ( )1
nt

point  is then given by ( )1
nx

 
( ) ( )( ) ( )( ) ( )( ) ( )( ) ;.....xwhcxwhcxwhcxwhct n

x10
10n

ix9
9n

viii8
8n

vii7
7

1
n ++++=  

 (2.4) 

in (2.4) the Ci (i = 7,8,9….) are constants with C7 = C9 = ... = 0  

because of symmetry. 
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 Equation (2.3) is applicable only to the N-4 mesh points  ( ) =n(x 1
n

3,4,…,N-3,N-2) of G1. In order to be able to implement the global  

extrapolation procedures to be discussed in §§2.2, 2.3 special formulae are 

needed for the other mesh points of G1. These formulae will be assumed to  

be consistent and to have the forms 
 

( )vi
0

6
1

iv
0

4
10

2
101

(1)
4

(1)
3

(1)
2

(1)
1 whdwhdwhbwaw6w14w14w −−′′−−−+−  
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81
(1)
71

(1)
61

(1)
51

(1)
41

(1)
31

(1)
21

(1)
11

6 =++++++++  

 (2.5) 
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( ) 0αfβffγfδfεfθfψfτh (1)
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and 
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( ) 0fαfβfγfδfεfθfψfτh (1)
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The  and  are  iiiiiiiiiii ψ,θ,ε,δ,γ,β,α,d,c,b,a ( 2,1iτi = )

parameters which must be chosen so that the local truncation errors of  

(2.5)-(2.8) are identical with (2.3) to the order required in §2.2, 2.3. 

 Clearly, the family of numerical methods is described by the set of  

equations {(2.5),(2.6),(2.3),(2.7),(2.8)} and the solution vector 
( ) ( ) ( ) ( ) T,]w,....,w,[ww T1

N
1
2

1
1

1 =
 denoting transpose, is obtained by solving  

a nonlinear algebraic system of order N which has the form 

 



 
(5) 

 
 ( ) ( ) ( )( ) ( ) 0bwx,fMhwJ 111

1
613

1 =−+  (2.9) 
 
In (2.9)  is the cube of the familiar matrix J3

1J 1 of order N given by 
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for which ( ) /81NJ 21

1 +=−  (the norm referred to throughout the paper is 

the norm). (The choice of coefficients in the terms in w in {(2.5) - 

(2.8)} was motivated by the convenience of using  in (2.9).) Also 
in (2.9) the matrix M

∞L
3
1J

1 , of order N, is given by 
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in which . The vector f2γ2β2α1 −−−=∑ (1) of order N has  the  form 

( ) ( ) ( ) ( ) ,]f,....,f,[ff T1
N

1
1

1
1

1 = the constant vector b(1)  is given by
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and 0 is the column zero-vector of order N. 

 The vector ( ) ( )( ) ( )( ) ( )( )[ ]T1
N

1
2

1
1

1 xw,....,xw,xww =  satisfies 

 
 ( ) ( ) ( )( ) ( ) ( ) 0tbwx,fMhwJ 1111

1
613

1 =−−+                   (2.13) 

 

Where  is the vector of local truncation ( ) ( ) ( ) ( )[ T1
N

1
2

1
1

1 t,....,t,tt = ]
errors and a conventional convergence analysis shows that the norm of the  

vector 

 

 ( ) ( ) ( )111 wz W−=   (2.14) 

 

Satisfies 

 

 ( ) ( )
( )

{ }....vhchc
FMab512

ab
z 10

4
108

2
8**

1
6

6
1 ++

−−
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≤ v  

 
where ( ) 1

*iimax
bxai Mm1,2,....,ifor/dxxwdV === ≤≤  and F 

* =  

( ),xΓ/dwmax
bxa ∂≤≤  provided the parameters in (2-5) - (2.8) are chosen to  

ensure that C7 = C9 = 0. The order of convergence of the numerical method  

is, thus, p it Cp+6, is the first non-vanishing constant on the right hand 

side of (2.4) and F* < 512/[ (b-a)6M*]. 

 



 

(7) 

2.2    Global   extrapolation on two grids 

Suppose, now, that the interval bxa ≤≤  is subdivided into 2N+2 sub-

intervals each of width h
2

1
 giving a finer grid G2 of interior points named 

( ) ( ) ( ) .x,....,x,x 2
12N

2
2

2
1 +  Clearly the points ( )2

2ix  of the fine grid G2 coincidewith 

the points  of the coarse grid G (i =1,2,...,N). ( )1
ix

The finite difference formulae {(2.5),(2.6),(2.3),(2.7),(2.8)} are 

modified for use on G2 by replacing h with h
2
1

. They may be written in 

matrix-vector form as 
 

 ( ) ( ) ( )( ) 0wx,fM
2
h

wJ 22
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6
2

2 =−⎟
⎠
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⎜
⎝
⎛+ (2)b  (2.16) 

 

in which J2 and M2 are matrices of order 2N+1 which may be written down  

immediately from (2.10) and (2.11). All vectors in (2.16) have 2N+1     

elements; b(2) is obtained from b(1) and  t(2) from t(1) by replacing h        

with h
2
1

, w(2) and f(2) follow in an obvious way from w(1) and f(1), as do        

w(2) from w(1) and w(1) from z(1). 

In the convergence analysis on G2, w(2) satisfies 
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( )( )*12 MMMnote;2.15from == . Introduce, now, an extrapolation 

 vector z(E) of order N defined by 

 
  ,)1()2( )1(

2
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where h

h
2

1I  is a fine-to-coarse grid restriction operator with 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( T2

2N
2
4

2
2

2h

h
2

1
T2

2N
2
4

2
2

2h

h
2

1 ]w,....,w,[wwIand]z,....,z,[zzI == ) . 

 

Defining h

h
2

1I  to be unity, it follows that 

 
 ( ) ( ) ( ) ( )12E zq1zqz ++≤  



 





and that 
 

(8) 
 

( ) ( )2pE h0z +=  

 
provided 
 1),/(22q pp −=    (2.18) 
 
where p is the order of convergence of the numerical method. The global 
extrapolation vector 
 

( ) ( ) ( )12h

h
2

1
E q)w(1wqIw −+=      (2.19) 

 
is thus of order p+2 also. 

2.3 Global extrapolation on three grids 
Consider, next, a third grid G3 of step size 1/3h. The interval bxa ≤≤  is 
thus divided into 3N+3 subintervals and the interior points of G3 are named 

( ) ( ) ( ) .x,....,x,x 3
13N

3
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3
1 +  Clearly, the points ( )3
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the points  of G( )1
ix 1 (i=l,2,...,N). 

The solution vector ( ) ( ) ( ) ( ) T3
23N

3
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from the nonlinear algebraic system 
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in which J3, M3, f(3) and b(3) are obtained in an obvious way as in §2.2.  
In the convergence analysis on G3, z(3)) satisfies 
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3 = . The extrapolation formula 
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in which the fine-to-coarse grid restriction operator h

h31
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Provided 
 
    (2.22) ).23/(52Sand)23/(53r 5p3p5p5p3p3p ++++++ −+−=−+=
 

and, thus, 1-r-s = 5/(5+3p+3 -2p+5). 

 The global extrapolation algorithm 
 
  ( ) ( ) ( ) ( )12h

h
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h
E s)wr(1wsIwrIw

2
1

3
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is thus of order p+4 also, where p is the order of convergence of the  
numerical method, provided r and s take the values indicated by (2.22). 
 

 2.4 Second order methods 

Method A Writing  α= β = γ = o in (2.3) gives 
 

  
945
2

c,
240
1

c,
4
1

c 12108 −=−=−=     (2.24) 

 

in (2.4), so that (2.3) is a second order method (Twizell, 1988). To allow 

global extrapolation on three grids the parameters in the special end - point 
formulae (2.5)-(2.8) must be chosen so that C7 = C9 = 0 in (2.4) and so 

that C8 and C10 in (2.4), with n = 1,2,N-1 or N, agree with (2.24). The 

method of undetermined coefficients reveals that this is achieved provided 
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6
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c,2b,5a 222111 =−=−==−==      (2.25) 

together with 

 

d1 =   717926/d ,   d2   =   0 , 

α1 =   4026944/d ,   α2  = -51467/d , 

β1 =   -439716/d ,   β2  =  3733148/d , 

γ 1 =   218144/d ,   γ 2  =   -105222/d , 

δ1 =   -43286/d ,   δ2   =  52868/d , 

ε2  =   -10607/d , 
 

 
 
 







(10) 
 
where 
 

d = 3628800 = 10! 
 

The parameters ε1, θ1, φ1, τ1, θ2, φ2, τ2 may then be arbitrarily assigned 

the value zero. 

 

This set of 24 parameter values gives C11 as the first non-zero 

constant, in (2.4). Global extrapolation on two grids, with p=2 in (2.18), 

and, on three grids, with p=2 in (2.22), gives the numerical emthods 
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1
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and 
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E W
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WI
40
81
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which are, respectively, 0(h4) and 0(h5) convergent. 

Method B Global extrapolation on three grids gives 0(h6) convergence if 

the parameters in (2.5)-(2.8) are chosen to give C7 = C9 = C11 = 0 as well 

as C8 and C10 having the values in (2.24). This is achived at minimal cost 

by the parameters a1, b1, c1, a2, b2, c2 as given in (2.25) with, now, 

d1 = 17590730/d,  d2 = 239881/d , 

α1 = 98456332/d,  α 2 = 70270/d , 

β1 = -32046202/d,  β2 = 79714751/d , 

γ1 = 31580488/d,  γ2  = 115316/d , 

δ1= -18751822/d,  δ2 = -67699/d , 

ε1 = 6205228/d,   ε2 = 22222/d , 

θ1= -881774/d,   θ2 = -3139/d , 

and where, now, 

    d = 79833600. 

The parameters φ1, τ1, φ2, τ2 may then be arbitrarily assigned the value 

zero. The parameters of Method B are such that C12 also agrees with (2.24) 

for all n = 1,2,...,N on grid G1. 

The global extrapolation formulae (2.26) and (2.27) are therefore 0(h4) 
 
 



(11) 
 
and 0(h6) convergent methods. 
 

 
2.5    Fourth order methods 

 
Method C Equation (2.3) becomes a fourth order method by choosing 

α = β = 0 as before and by writing γ = 
4

1
. The constants in (2.4) then 

become 
 

   
30240
43

C,
120
1

C,0C 12108 −=−==    (2.28) 

 

with C7 = C9 = C11 = ... =0 because of symmetry. Choosing the parameters 

a1, b1, c1, a2, b2, c2 given in (2.25) with 

  d1 = -1624722/d ,   d2 = 118371/d , 

α1 = 26624444/d ,   α2 = 10004918/d , 

β1 = 569404/d ,   β2 = 19922518/d , 

γ1 = 6972504/d ,    γ2 = 10005468/d , 

δ1 = -2762606/d ,   δ2 = -10307/d , 

ε1 = 457292/d ,    ε2 = 1694/d , 

where 

d = 39916800 = 11! , 

 

ensures that C7 = C8 = C9 = C11 = 0 and that C10 = -1/120 as in (2.28); 

the parameters θ1, ψ 1, τ1, θ2,ψ 2 and τ2 can then be arbitrarily assigned 

the value zero. 

The constant C12, however, is different from that in (2.28) and 

Method C can only be extrapolated on two grids. Writing p=4 in (2.18) 

leads to the numerical method 
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h
2

1
(E) W
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1

W(2)I
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(from (2.19)) which is 0(h6) convergent. 

Method D It is possible to extrapolate on three grids if C12 = -43/30240 

for all n = 1,2,...,N. This is achieved for α = β = 0 and γ = 1/4 if ai,   

bi, ci (i = 1,2) are given the values in (2.25) while the other parameters 
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in (2.5)-(2.8) are given the values 

d1 = -19679504/d ,   d2  = 3156504/d , 

α1 = 838715358/d ,    α2  = 260639067/d , 

β1 = -390245752/d ,    β2  = 516574292/d , 

γ1 = 799053554/d ,    γ2  = 262290093/d , 

δ1 = -632200396/d ,    δ2  = -2211872/d , 

ε1 = 313772290/d ,   ε2  = 1087957/d , 

θ1 = -89164504/d ,    θ2  = -307164/d , 

ψ 1 = 11100206/d ,    ψ 2  = 38051/d , 

where 

 

d = 1037836800 ; 
 
t1 and t2 may then be arbitrarily assigned the value zero. 
 

Equation (2.29) gives the extrapolation of  the 0(h4)  convergent 
Method D on two grids to 0(h6) convergence, while putting p=4 in (2.22) 
gives the numerical method 
 

  (1)(2)h

h
2

1
(3)h

1/3h
(E) W

336
1

WI
105
32

WI
560
729

W +−=    (2.30) 

 

(from (2.23) which is 0(h8) convergent. This higher order convergence is  

obtained at the cost of increasing the number of non-zero diagonals in the  

matrix M1 given by (2.11). 
 

2.6 Sixth order methods 
 
Method E Equation (2.3) attains sixth order by writing α = 0 as before and 

then by choosing .
20
11

2γ1thatso,
60
13

γand
120
1

β =−−== 2β  The con- 

stants in (2.4) become 
 

  
1209600

11
C,

30240
1

C,0CC 1412108 =−===    (2.31) 

 

with C7= C9= C9= C13 =...- 0 because of symmetry. Choosing the 

parameters. a1, b1, c1, a2, b2, c2 as given in (2.25) with 



 

(13) 

 

d1 = -54274064/d ,   d2 = -5492136/d , 

α1 = 648445278/d ,   α2 = 226044507/d , 

β1 = 59483528/d ,    β2 = 568466132/d , 

γ1 = 202297394/d ,   γ2 = 227695533/d , 

δ1 = -147957056/d ,    δ2 = 6436768/d , 

ε1 = 71610370/d ,    ε2 = 1087957/d , 

      θ1 = -19975384/d ,    θ2 = -307164/d , 

ψ 1 = 2451566/d ,     ψ  2 = 38051/d , 

where, now, 

 

d = 1037836800 , 

ensures that C12 = 
30240
1

−  is the first non-zero constant in  given by )1(
nt

(2.4) and that C13 = 0 also (for all n = 1,2,...,N). The parameters T1 and 

T2 may then be assigned the value zero. The constant C14 does not, 

however, have the value given in (2.31) for n = 1,2,N-1,N and the global  

extrapolation of Method E can consequently be carried out on two grids 

only. 

Writing p=6 in (2.18) leads to the numerical method 

 

    (1)(2)h

h
2

1
(E) W

63
1

WI
63
64

W −=     (2.32) 

 

(from (2.19)) which is 0(h8) convergent. 

Method F Ninth order convergence may be obtained by extrapolation on 

three grids by increasing the number of non-zero diagonals in M1 given by  

(2.11). This is achieved for the same values of α, β, γ used in Method E, 

and for the values of ai, bi, ci (i = 1,2) given in (2.25), by changing the  

remaining parameters in (2.5)-(2.8) to the following values: 
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  d1 = -5473830536/d ,    d2 = -572925812/d , 

α1 = 69886323662/d ,   α2 = 23764660979/d , 

β1 = -52722712/d ,    β2 = 59583986756/d , 

γ1 = 33838212674/d ,   γ2 = 24117945173/d , 

δ1 = -31281723760/d ,   δ2 = 413467880/d , 

ε1 = 20116075154/d ,   ε2 = 324149693/d , 

θ1 = -0395908472/d ,    θ2 = -137209324/d , 

φ1 = 2056983902/d ,    φ2 = 33983099/d , 

τ1  = 224946184/d ,   τ2 = -3748468/d , 

where 

    d = 108972864000 . 

Equation (2.32) gives the extrapolation of Method F from 0(h6) to 0(h8) 

convergence, while putting p=6 in (2.22) gives the numerical method 

 

  (1)(2)h

h
2

1
(3)h

1/3h
(E) W

3528
1

WI
2205
256

WI
1960
2187

W +−=   (2.33) 

 (from (2.23)) which is 0(h9) convergent. 

 

2.7 An eight order method 

Method G writing ,
10080
2189

γand
5040
41

β,
30240
1

α ===  so that 

1 - 2α - 2β - 2γ = 
7560
4153

, gives the unique eighth order method of the family 

(2.3) for n =3,4,…,N-2.  The constants in (2.4) become 

 

   
57600
1

C,0CCC 1412108 ====     (2.34) 

 

with C7 = C9 = C11 = C13 = C15 = ... = 0 because of symmetry. 

The same values of Ci (i = 7,8,...,14) can be attained for the end 

points n= 1,2,N-1,N by choosing ai, bi, ci (i = 1,2) as given by (2.25) 

and by choosing the following values of the remaining parameters in 

(2.5)-(2.8): 
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d1 = -5495452136/d ,   d2 = -583736612/d , 

α1 = 69727765262/d ,   α2 = 23688985379/d , 

β1 = 455384888/d ,   β2 = 59814617156/d , 

γ1 = 32908483874/d ,    γ2 = 23717945573/d , 

δ1 = -30218661760/d ,   δ2 = 845899880/d ,  

ε1 = 19337697554/d ,   ε2 = 25050893/d , 

θ1 = -8039152072/d ,   θ2 = -7479724/d , 

φ1 = 1963290302/d ,   φ2 = 1550699/d , 

τ1  = -214135384/d ,   τ2 = -144868/d , 

where 

d = 108972864000 . 

These parameter values give C15 #  0  for n = 1,2,N-1,N  and  so 

extrapolation of Method G can be carried out on two grids only. Writing 

p=8 in (2.18) leads, from (2.19), to the numerical method 

 

   W(1)
255
1

W(2)I
255
256

W h

h
2

1
(E) −=     (2.35) 

 

which is 0(h9) convergent. 

Equation (2.3) does not yield a numerical method of order higher than 
Method G. 

 

2.8 Numerical results 

The numerical methods outlined in §§2.4-2.8 were tested on the following 
problem. 

Problem 2.1 

 

    1x0,x)40(136w(x)20exp[w(x)D 66 <<+−−= −

 

With boundary conditions 

 

16
1

w(1)D,
24
1

w(1)Dn2,
6
1

w(1)1,w(0)D,
6
1

w(0)D0,w(0) 4242 −===−=−== λ  

for which the theoretical solution is 
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     x)n(1
6
1

w(x) += λ . 

The interval 0  1 was divided into N+l equal subintervals each of ≤≤ x

width h = 2-m with m = 3,4,5 so that N = 7,15,31 respectively. 

The value of Ww − , where W is some numerical solution, was computed 

for each value of N. The results for all second, fourth, fifth, sixth, 

eighth and ninth order methods are given in Tables 2.1, 2.2, 2.3, 2.4, 2.5 

and 2.6, respectively. These tables include results for the global extra- 

polation algorithms (the notation EXT(A,2,5) is used, for example, to 

denote the extrapolation of Method A which is second order convergent to 

achieve fifth order convergence) as well as for Methods A-G. 

  

Tables 2.1-2.6 here 

 

The two second order methods give very similar results and, as Method B 

has more non-zero off-diagonal elements in the matrix M1, it is more 
expensive to implement than Method A. It does however give a higher order 

of convergence than Method A when extrapolated using three grids. 

The global extrapolation of Method A on two grids (equation (2.26)),  
which gives fourth order convergence, gives slightly more accurate results  

than the similar extrapolation of Method B. Each gives better results than 

Method C which, in turn, gives higher accuracy than Method D. Methods C 
and D, however, are cheaper to implement than the two extrapolation  
formulations, especially Method C which has fewer non-zero off-diagonal  
elements in matrix M1 (see (2.11)) than Method D. 

The global extrapolation of Method A on three grids (equation(2.27)) 
is the only method with fifth order convergence. Generally, as is 
expected, results relating to it are intermediate to those of fourth and 

sixth order methods. 

No sixth order method is significantly better than any other sixth  

order method though Method F did give better results on the two fine grids. 



                            (17) 

 

Also in its favour, Method F is cheaper to implement than any of the extra-
polation methods, especially the extrapolation of Method B on three grids 

which gives poor results for small values of h. 

Similar observations can be made regarding the four eighth-order  
methods tested, though on the finest grid (N=31) Method G gave better 
results, at significantly less cost, than any of the three extrapolation  
algorithms. 

The global extrapolation on three grids of Method F (formula (2.33)),  

using the smallest values of h, gave more accurate results than the extra- 

polation on two grids (formula (2.35)) of Method G. However, the former is 

the more expensive of the two ninth-order methods and, to the engineer or 
scientist, the gain in accuracy may not warrant the extra cost. 

Overall, there is evidence in Tables 2.1 - 2.6 that decreasing the grid 

size does not necessarily produce the desired effect of a considerable  
improvement in accuracy when using the higher order methods. This is due 
to the small value of h, raised to a large power, having little bearing on 
the calculation. This observation is also applicable to the extrapolation 
procedures which use fine grids. 

 

3.   THE GENERAL BOTWDARY-VALUE PROBLEM 

The general nonlinear sixth-order boundary-value problem consists of a 
differential equation of the form 

 

bxa,)w,w,w,w,ww,g(x,w(x)D (v)(iv)'""'6 <<=      (3.1) 

 

with given associated boundary conditions.  The book by Agarwal (1986) 

gives theorems on existence and uniqueness relating to this problem. 

    A particular form of the differential equation (3.1) is given by 

 

 -(D2-A2)3w(x) – RA2(1-x2)w(x) + f(x,w(x))=0, 0 < x < x,     (3.2) 

 

with the boundary conditions 
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w(0) – A0 , D2W(0) = A2 , D4 w(0) = A4 , 

(3.3)  

w(X) = B0 , D2w(X) = B2 , D4w(X) = B4 

 

specified; it is assumed that w ∈ C10[0,X] and that A0, A2, A4, B0, B2, B4 

are real finite constants. Other forms of boundary conditions will be 
considered in §§4.2, 4.4. The physical situation associated with (3.2) was  

discussed in §1. 

The interval 0 < x < X will be divided into N+l subintervals (N 5) each  ≥

of width h, so that (N+1)h = X, giving a grid G of points xn = nh 

(n = 0,1,.... ,N,N+1) including the boundary points x0 = 0 and xN+1 = X. The  

notations introduced in §2.1 may thus be used. However, as extrapolation 

will not be considered in this section, the superscripts will not be used. 

In order to use powers of the matrix J1 (see (2.10)) in the convergence  

analysis, the derivatives in (3.2) will be approximated by the finite 

difference replacements 

 

),o(hw6w15w20w15w6w(wh)(xw 2
3n2n1nn1n2n3n

6
n

(vi) ++−+−+−= +++−−−
−  (3.4) 

 

),o(h)w4w6w4w(wh)(xw 2
2n1nn1n2n

4
n

(iv) ++−+−= ++−−
−   (3.5)   

and 

)0(h)w2w(wh)(xw 2
1nn1n

2
n

" ++−= +−
−      (3.6)   

 

Substituting (3.4), (3.5) and (3.6) into (3.2) leads to the numerical 

method 
 

1n
4422

n
262664422

1n
4422

2n
22

3n

)whAh4A3(5)]wx(1hRAhAh6Ah18A[20

)whAh4A3(5whA3(2w

+

−−−

++−−−+++=

++−+=−
 

 
 0    (3.7)   fhw)wh3(2 n

6
3n2n

22 =+−+= ++Λ
 (Twizell, 1988) which has local truncation error given by 
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 ).0(h)](xwA)(xwA)(xw[ht 10
n

(iv)4
n

(vi)2
n

(viii)8
n +−+−= 4

1
2
1

4
1   (3.8)  

 

It is noted that, when A=0, the differential equation (3.2) becomes the  

differential equation (2.1), the method (3.7) becomes Method A of §2.4, and 

tn in (3.8) becomes tn,(1) associated with Method A. 

The numerical method (3.7) may be applied for n = 3,...,N-2 only; for 

n = 1,2,N-1 and N special approximations to w(vi)(xn), and for n=l and N 

special approximations to w(iv)(xn), must be used. Assume they are of the 

forms 

 
  5544332211

6
1

(vi) wαwαwαwαw(αh)(xw ++++=− −

 
       (3.9) (vi)

0
6

8
(iv)
0

4
3
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02

2
01 whγwhγwγhwγ −−−−

 
,whγwhγwhγwγw4w(5wh)(xw (vi)6

8
(iv)4

7
"2

605321
4

1
(iv)

000
+++++−= −  (3.10) 

 

5544332211
6

2
(vi) wβwβwβwβw(βh)(xw ++++=− −  

 
      (3.11) ,whδwhδwhδwδ (vi)

o
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4
3
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2
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),whδwhδwhδwδw4w6w4w(h)(xw (vi)

0
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8
(iv)
0

4
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2
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N11N22N33N44N5
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−
−  

  
   ,whδwhδwhδwδ (vi)

1N
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4
(iv)

1N
4

31N"
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21N1 ++++ −−−−   (3.13) 
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              (3.14)  

  

N11N22N33N44N5
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n
(vi) wαwαwαwαw(αh)(xw ++++=− −−−−

−  

  
   )whγwhγwhγwγ (vi)

1N
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1N
4

3
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1N
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21N1 ++++ −−−−   (3.15) 
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And 
 

),whγwhγwhγwγ5w4w(wh)(xw (vi)
1N

6
8

(iv)
1N

4
7

"
1N

2
61n5N1N2n

4
N

(iv)
++++−−

− +++++−= (3.16)  

 

then (3.9)-(3.16) are substituted into (3.2) to give finite difference 

methods for n = 1,2,N-1,N. 

The 26 parameters αi , βi (i = 1,2,…,5), and γi, δi (i = 1,2,...,8), 

which have different values to those in §2, are chosen to give local 

truncation error 

 )0(h)](xwA)(xwA)(xwht 9
n

(iv)4
n

(vi)2
n

(vii)8
n 4

1
2
1[ +−+−=

4
1       (3.17) 

 

for n = 1,2,N-1,N. To achieve (3.8) for n = 1,2,N-1,N also, requires more  

parameters and consequently produces a method which is more expensive to  

implement.  The method of undetermined coefficients gives 

α1 = 14 - 10500/d ,   β1 = -14 - 42/d , 

α2 = -14 + 12000/d ,   β2 = 20 + 48/d , 

α3 = 6 - 6750/d ,     β3 = -15 - 27/d , 

α4 = -1 + 2000/d ,   β4 = 6 + 8/d , 

α5,= -250/d ,    β5 = -1 - 1/d , 

 

γ1 = 5-3500/d ,    γ5  = -2   , 

γ2 = -2 + 1250/d ,   γ6  = 1 , 
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where d = 15619 (writing the parameter values in the above forms is 

motivated by the convenience of using powers of the matrix J1). 

 

After substitution of (3.6) and (3.9)-(3.16) with (3.18) into (3.2), 

and using (3.7), it is seen that the solution vector W may be found by 

solving the nonlinear algebraic system 

 

 bw)f(x,hG)whRAIhAJh3AJh3A(J 66266
1

442
1

22 =+−+++  (3.19) 

 

in which J1 is given in (2.11), I is the identity matrix of order N, 

G = G(x) = diag{(l-
n
2

X )}, f = [f1,f2,...,fn]T, and b = [b1, b2,...,bN]T with 
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b3 = A0 ,          (3.22) 
 
bN-2 = B0 ,          (3.23) 
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and bn = 0 for n = 4,5,...,N-3. The matrix J is given by 
 

PJJ 3
1 +=  (3.26) 

where 
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Now, the matrix P can also be written in the form 
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So that 
 

    
15619
750

QQ ==∗      (3.30) 

 
A standard convergence analysis then verifies that (3.19) is second- 

order convergent if 
 

512512QFXGXRAXAX24AX192A **6*66664422 <+++++  (3.31) 
 
where ( ) .xwf/maxFandx1max

nG xx0
*2

n
* ∂∂=−= ≤≤  
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4. SIXTH-ORDER EIGENVALUE PROBLEMS 

The numerical methods developed in §3 for the boundary value problem  
{(3.2),(3.3)} may be adopted to solve the following Bénard layer boundary  

value problems in Baldwin (1987a,1987b). 

Problem 4.1 Baldwin considers the integration of the differential 

equation (1.1) over the interval [0,10], that is to say 

 

10,x00,)w(x)x(1RAw(x))A(D 22322 <<=−+−  (4.1) 

 

with the even-mode boundary conditions 

 

 w(0)=D2 w(0)=D4 w(0)=0,  

  (4.2) 

 w(10)=D2 w(10)=D4 w(10)=0. 
 

The eigenvalue problem {(4.1),(4.2)} is obtained from (3.2) with f = 0  

and X = 10, and from (3.3) with A0 = A2 = A4 = BB0 = B2B  = B4 = 0.  
Therefore, f = 0 and b = 0 in (3.19) and the eigenvalues, RA2, of {(4.1),  

(4.2)} may be obtained from the algebraic eigenvalue problem 

 
 (4.3) RWI)WhAJh3Ap(JGhA 662

1
223

1
162 =+++−−−

 

in which the matrices J1, G and P are defined in §§2.1,3. 

Taking h = 0.02 (N=499), the eigenvalues were obtained using the NAG  

(Numerical Algorithms Group) library package F02AFF in an iterative  

technique. First of all, two values of A, say A(1) and A(2) are chosen arb- 

itrarily and corresponding values of R, say R = R(A(1)) and R = R(A(2)),  

are determined from (4.3); let R(Ā), be the smaller of R(1) and R(2).Next,  

choose a small number ε >0 and find the value of R = R(Ā+ε)corresponding  

to the use of A = Ā+ε in (4.3);  if R(Ā+ε) is smaller than R(Ā) then  

refine ε and iterate again, otherwise compare R with R(Ā-ε), refine ε, and  

iterate again. This procedure, which is used to find the eigenvalue-pairs  

required, is repeated until the sequence of iterates converges. 

The first three even-mode critical values of R and A are given in 
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Table 4.1, which includes the equivalent results of Baldwin (1987b, p.303).  

The results of Table 4.1 show that the computed results are smaller than  

the results of Baldwin, indicating lower minimum values of R and A for the  

onset of instability in a Bénard layer. Further experiments with smaller  

and larger values of h produce computed results which approach and recede  

from, respectively, the results of Baldwin (1987b). Refining the grid, and  

thus increasing N, is an expensive adjustment which could only be justified  

in situations demanding accuracy to the high number of significant figures  
claimed for the results in Baldwin (1987b). 

 

Table 4.1 here 

 

 

Proble 4.2 This eigenvalue problem consists of the differential equation  

(4.1) and the odd-mode boundary conditions 
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for which the method of §3 requires modification. 

The finite difference method (3.7) may be applied for n = 4,5,...,N-3  

but, in (4.1), special approximations to w"(x1), w "(xN), w(iv)(xn),  

n=1,2,N-1,N and w(Vi) (x1), n = 1,2,3,N-2 ,N-1 ,N utilizing (4.4) instead  

of (3.2) / (4.2) must be determined. They are assumed to have the forms 
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and 
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The 46 parameters αi (i = 1,...,15), βi (i = 1,...,11), γi (i = 1,...,6),
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δi (i = 1,…,5), εi (i = 1,….,6) and θi (i = 1,2,3) are chosen to give  

local truncation error (3.17) for n=1,2,3,N-2,N-1,N. The metod of 
undetermined coefficients givens 
 

 α1=14-751920/d1,   β1=-14+49220/d2, 

 α2=-14+735065/d1,  β2=20-42150/d2, 

 α3=6-336860/d1,   β3=-15+21925/d2, 

 α4=-1+24870/d1,   β4=6-7918/d2, 

 α5=-1+24870/d1,   β5=-1+1753/d2, 

 α6=715/d1,    β6=-178/d2, 

  

 α7=5-5896/d3,   β7=-4+616/d4, 

 α8=-4+7888/d3,  β8=6-428/d4, 

 α9=-1-3593/d3,   β9=-4+208/d4, 

 α10=996/d3,    β10=1-61/d4, 

 α11=-125/d3,    β11=8/d4, 

  

 α12=2-48/d5,    γ1=15540/d1, 

 α13=1+36/d5,    γ2=-16600/d1, 

 α14=-16/d5,    γ3=34352/d1, 

 α15=-3/d5,    γ4=240/d3, 

       γ5=-936/d3, 

 δ1= -6720/d2,   γ6=12/d5, 

 δ2= 6380/d2,   

 δ3= -118/d2,    ε1=6-60480/d6, 

 δ4= -180/d4,    ε2=15+41985/d6, 

 δ5= -16/d4,    ε3=20-21760/d6, 

  

 θ1=18060/d6,   ε4=-15+7830/d6, 

 θ2=-1800/d6,   ε5=6-1728/d6, 

 θ3=-216/d6,    ε6=-1+175/d6,  (4.17) 



 
 

(27) 
 where 

 d1 = 56630, d2 = 5663, d3 = 1715, d4 = 343, d5,= 25, d6 = 33978 , (4.18) 

and it follows that the eigenvalues of {(4.1),(4.4)} are obtained by 

solving the algebraic eigenvalue problem 
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It is seen from (4.5)-(4.18) that the matrices P1, P2 and P3 of order N 

are given by 
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(28) 
 

where d7 = 169890, and G = diag{(l-xn2)} as in Problem 4.1. 
 

Taking h = 0.02 as, before, the routine, outlined for Problem 4.1 was 

used to obtain the eigenvalues. The first three odd-mode critical values 

of R and A are given in Table 4.2, which includes the equivalent results of 

Baldwin (1987b, p.303). The computed results are lower than those of 

Baldwin (1987b): choosing a smaller value of h would narrow the gaps 

between the two sets of results. 

 
 

Table 4.2 here 
 

 
 
Problem 4.3 The differential equation here is given by 
 
 (D2-A2)3 w(x)+RA2 (1-x)w(x)=0, 0 < x < 10   (4.20) 
 
with the free-free boundary conditions (4.2) (Baldwin, 1987a). 
 

This eigenvalue problem is very similar to that of Problem 4.1 and 

clearly (4.3) may be used to obtained the eigenvalues: in (4.3), now, 

G = diag{(l-xn)}. 

 
Taking h = 0.02 once again and using the computational routine outlined 

for Problem 4.1, yields the critical values of R and A, the first four of 

which are given in Table 4.3. This table includes the equivalent results of 

Baldwin (1987a, p. 152). The difference between the results may again be 

explained by the use of a low-order numerical method: the numerical 

results; reported are, again, lower than the estimates of Baldwin (1987a). 

 
 

Table 4.3 here 
 

 
Problem 4.4 The differential equation in this eigenvalue problem is that 

in (4.20) while the boundary conditions are given by 

 
w(0) = Dw(0) = w(10) = Dw(10) = 0 ,       (4.21) 



 
(29) 

 
(D2-A2)2w(0) = (D2-A2)2w(10) = 0 ,   (4.22) 

 
(the rigid-rigid boundary conditions, Baldwin (1987a)). 
 

These boundary conditions do not permit the use of the numerical method 

Developed in §3. Instead the following second-order "splitting" approach, 

on the same discretizaiton of the interval 0  <  X  < 10 is proposed. 
 

   Introduce an "intermediate function" v(x) defined by 
 
v(x) = (D2-A2)2w(x) .     (4.23) 

 
Then, from (4.22), 
 

v(0) = v(10) = 0     (4.24) 
 

and w(x) may be determined by solving the fourth-order boundary-value 
problem {(4.23),(4.21)}. To this end, the second-order approximants to        

D4w(x) and D2w(x), given by (3.5) and (3.6), are used to replace the derivatives 

in (4.23) at the general mesh point xn = nh (n = 2,3,... ,N-1).

This gives, from (4.23) 
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for which the local truncation error is 
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In order to use the matrix  , special formulae, which use the elements 
2
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of the first and last rows o ust be constructed.  To achieve this, f , m

equation (4.23) is approximated by the equation 
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for n=l and by the equation 
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for n N, where a, α, β, γ, δ, ε, φ and ψ are parameters (with different values 

to those jn earlier sections of the paper). 

The method of undetermined coefficients verifies that, choosing the 
values 
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achieves the aim of involving  and ensures that t2

1J 1, and tN ,the local  
truncation errors at x1 and xN, have principal parts as indicatedin

(4.26). 

   Equations. (4.27), (4.25), (4.28) maybe written  in matrix-vector form      

as 
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and b Θ  0 from 4.21)). Equation 4.30) then gives 

 
.W)MIAhJhA2

Returning now to equations 4.20) and (4.23) it follows that 
J(hV 44

1
222

1
4 −++= −            (4.32) 

 
 (D2 –∧ 2)v(x) + RA2(l-x)w(x) = 0 ,  0 < x < 10    (4.33) 

 
 

    
 



 
 
 (31) 

 
and the boundary value problem {(4.33),(4.24)} may be solved using the 
second order method 
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in which n = 1,2,...,N (note v0, = vN+1 = 0 from (4.24)). The local trunc-
ation error tn at the point x = xn,(n = 1,2,...,N) is given by  
     

   )h(0)x(vh
12
1

t 4
n

n2
n +=         (4.35) 

Written in matrix-vector form, equation (4.34) becomes 
 
   -(J1+A2h2I)v + RA2GW = 0 ,    (4.36) 
 
in which G = diag{(l-xn)} as in Problem 4.3. Substituting for the 
intermediate vector V from (4.32), equation (4.36) becomes  
 
  [ ] WRAWM)IhAJ()IhAJ(Gh 2222

1
22

1
16 =−++−−   (4.37) 

 
and it follows that the eigenvalues of the boundary-value problem {(4.20), 
(4.21),(4.22)} coincide with the eigenvalues of the matrix  
 
  ].M)IhAJ)[(IhAJ(Gh 22

1
22

1
16 −++−−    (4.38) 

 
Writing (4.37) as 
 
    (4.39) RWW]M)IhAJ)[(IhAJ(GhA 22

1
22

1
162 =−++−−−

 
the computational routine outlined for Problem 4.1, using h = 0.02 once   more, 
gives the critical values of R and A. The first four of these pairs   are given 
in Table 4.4 which also contains the corresponding values   calculated by 
Baldwin (1987a, p.153) . 

 
Table 4.4 here 

 
 



 
 





(32) 
As in Problems 4.1, 4.2 and 4.3 the results yielded by the numerical 

method are all lower than the corresponding values of Baldwin (1987a). The 

numerical methods therefore predict that the onset of instability in a   Bénard 

layer occurs for lower minimum values of the Rayleigh number, R, and associated 

horizontal wave number, A, than is predicted by the global     phase-integral 

methods used by Baldwin (1987a,1987b). The use of a finer discretization does, 

however, increase the predictions of the numerical method, nearer to those of 

Baldwin (1987a,1987b). 
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Table 2.1    Error norms for second-order methods 
 

 
N 
 

 
Method A 

 
Method B 

7 0.432E-3 0.435E-3 
15 0.105E-3 0.105E-3 
31 0.259E-4 0.259E-3 

 
 
 (The theoretical solution is in the interval 0 ≤≤ x  0.116 approximately        
for .1xo ≤≤  
 
 
Table 2.2    Error norms for fourth-order methods 
 

 
N 
 

 
Method C 

 

 
Method D 

 
EXT(A,2,4) 

 
EXT(B,2,4) 

7 0.844E-5 0.997E-5 0.448E-5 0.550E-5 
15 0.625E-6 0.651E-6 0.332E-6 0.357E-6 
31 0.393E-7 0.394E-7 0.196E-7 0.206E-7 

 

 

 

 
Table 2.3    Error norms for the fifth order extrapolation of Method A 

 
 
N 
 

 
EXT(A,2,5) 

7 0.947E-7 
15 0.369E-8 
31 0.522E-7 

 
 
Table 2.4    Error norms for sixth-order methods 
 
 
N 
 

 
Method E

 

 
Method F 

 
EXT(B,2,6) 

 
EXT(C,4,6) 

 
EXT(D,4,6) 

7 0.241E-6 0.496E-5 0.251E-7 0.105E-6 0.296E-7 
15 0.756E-9 0.135E-10 0.808E-9 0.906E-9 0.566E-9 
31 0.225E-7 0.123E-10 0.152E-7 0.439E-8 0.176E-8 
 



 
 





(34) 
 
Table 2.5  Error norms  for eight-order methods 
 
   

N 
 

 
Method G 

 

 
EXT(D,4,8)

 
EXT(E,6,8) 

 
EXT(F,6,8)  

 
    
 7 0.463E-5 0.273E-8 

 
0.306E-8 

 
0.787E-7 

15 0.720E-9 0.219E-6 0.349E-10 0.123E-10 
31 0.975E-11 0.238E-8 0.613E-8 0.113E-10 

 
 
 
 
 
 
Table 2.6 Error norms for ninth-order methods 
    

 
N 
 

 
EXT(F,6,9) 

 
EXT(G,8,9) 

 
7 

 
0.135E-8 

 
0.174E-7 

15 0.572E-9  0.126E-10 
31 0.171E-7 0.924E-9 
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Table 4.1 First three even-mode (n=2,4,6) critical values  

  for Problem 4.1 with h = 0.02 
 
   

    
Baldwin (1987b) 

 

 
Computed results 

 
n 
 

 
R 
 

 
A 

 
R 

 
A 

2    
411.720155 

 
1.6791 

  
   411.515421 

 
1.6790 

4 11382.695328 3.8130 11356.557010 3.8112 
6 68778.117 5.971 68397.491 5.965 

 
 

Table 4.2 First three odd-mode (n=l,3,5) critical values 

 for Problem 4.2 with h = 0.02 
 

    
Baldwin (1987b) 

 

 
Computed results 

 
n 
 

 
R 
 

 
A 

 
R 

 
A 

1 
9.78136567

 
0.72605 

     
9.77836945 

 
0.72603 

3   3006.709534 2.7379  3003.053226    2.7374 

5  30916.2534 4.8916 30800.6998    4.8882 

 
 
Table 4.3 First four critical values (n=l,2,3,4) 

 for Problem 4.3 with h = 0.02 
 

    
Baldwin (1987a) 

 

 
Computed results 

 
n 
 

 
R 
 

 
A 

 
R 

 
A 

 
1 

      
   550.790984 

 
1.5928 

    
   550.539887 

 
1.5925 

2  16380.4958 3.7529  16342.5918 3.7513 
3  99807.1956 5.9031  99239.9841 5.8980 

4 344966.91 8.051 341332.66     8.036 
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Table 4.4.    First four critical values (n=l,2,3,4) 

for Problem 4.4 with h = 0.02 
 
 

    
Baldwin (1987a) 

 

 
Computed results 

 
n 
 

 
R 
 

 
A 

 
R 

 
A 

 
1 

    
   1178.594406 

 
2.0337 

      
     1178.183739 

 
2.0335 

2   2893.6831 4.1829     22846.6806 4.1811 
3 123586.84 6.322    122930.96     6.314 

4 403656.60 8.466    399600.86 8.449 
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