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Abstract 

When COVID-19 was declared as a pandemic by the World Health Organization on 11 March 2020, 

national governments and health authorities across the world begun considering different preventive 

measures to fight against the coronavirus outbreak. Researchers and tech companies worldwide have 

been striving to utilize advanced technologies to aid in the fight against the Covid-19 outbreak. This 

paper aims to couple multifunction drone with AI to deliver wireless services that will help the fight 

against the Coronavirus pandemic. The proposed drone-eye-system with its thermal imaging cameras 

and an AI framework utilizes a Convolutional Neural Network (CNN) with its Modified Artificial 

Neural Network (MANN) for face mask detection of people wearing masks in public. The system can 

perform basic diagnostic functions such as elevated body temperatures for helping minimize the risk 

of spreading the infection through close contact. The AI framework evolve an optimized elevation angle 

θ and altitude ht to enhance wireless connectivity between a drone and a ground station, which in turn 

leads to better throughput and power consumption. The proposed framework has been developed 

using the MATLAB toolbox and shows promising results with an accuracy of face mask detection of 

82.63%, with an F1-score of 0.98, and an enhanced by 10% link budget parameters. 
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1. Introduction 

COVID-19 common symptoms may include a severe acute respiratory syndrome, 

high fever, cough, and shortness of breath.  According to the WHO the disease has struck every country 

across the world resulting in millions of confirmed cases and over a million of confirmed deaths [1]. 

Authorities worldwide have considered different preventive measures in the fight against the 

Coronavirus pandemic, such as hand washing, social-distancing, self-isolation, travel restrictions, 

curfews, and stay-at-home orders. Researchers and tech companies across the globe have joined the 

race to develop advanced technologies to help the fight against the pandemic. Most of technologies that 

have evolved relate to the Fourth Industrial Revolution (4IR) and these include Drones, Robotics, 

Artificial intelligent (AI), Biotechnology, Internet of Everything (IoE), to name a few. Fig. 1 shows a 

more comprehensive list [2, 3].  

The rapid advancement of the 4IR has opened doors to limitless possibilities through breakthroughs of 

emerging technologies in the field of drone technology in partnership with creative digitization. Drone 

technology provides a cost-effective infrastructure for providing broadband services to fixed and 

mobile users, like near-space-satellites but without the issues that arise by the distance, high cost or 

complexity downsides factors. Connectivity, network flexibility, re-configurability, and rapid 
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deployment are advantages of drone technology in providing seamless services over heterogeneous 

networks at temporary events. A wide range of applications have been taking advantage of drones and 

IoE for improving smart city infrastructures [4-8]. 

 
Fig. 1. Technological pillars of the 4th industrial revolution [3]. 

AI has been serving several crucial roles in the fight against COVID-19 across many areas including, 

but not limited to, outbreak detection, vaccine development, thermal screening, face mask recognition, 

and CT scan analysis. An Internet of Medical Things (IoMT) platform that uses machine learning on 

various devices and mobile applications would be useful in tracking and preventing COVID-19. Such 

a platform would enable ubiquitous retrieval of real-time patient information without much contact 

between patients and healthcare workers. UAVs may support such logistics and pave the way in 

revolutionizing the fight against the Covid-19 outbreak by acting as relays between ground devices and 

the cloud. This would be particularly useful in remote areas where it may not be economically viable 

or even possible to achieve within existing infrastructures. UAV-enabled remote sensing of, e.g., 

elevated temperatures and face-mask recognition would be added value with this technology [1, 9-13].  

Facial recognition is a significant approach in empowering security and enabling touchless biometrics 

for a broad range of purposes. This type of biometric technology brings seamless integration and 

automation along with fast processing. The COVID-19 pandemic has added additional complexity with 

the wearing of protective face masks to limit the spread of Coronavirus. Thus, the facial recognition 

process has become more difficult as the number of facial features available to the process is 

significantly reduced. The process encounters additional complexities when in addition to face covers, 

sunglasses, scarf, low hat are worn or when partially facing toward the camera [14-16]. All these 

scenarios would affect the performance of facial recognition algorithms. Thus, turning to AI to utilize 

its underlying capabilities of learning, classification, and recognition would be a logical approach. 

The overall aim of this paper is to integrate AI into a multifunction drone along with thermal imaging 

cameras and deploy this drone-eye-system in the fight against the pandemic. The modified drone 

implements an AI framework for face mask detection and thermal sensing functions such as elevated 

body temperatures and uses elevation angle and altitude to improve wireless connectivity between the 

drone and ground stations, for increased throughput and reduced power consumption. 

The rest of this paper is organized as follows: section II presents our related research review on drones 

that are coupled with AI technology and concludes with a presentation of key research gaps, section III 

presents the AI framework implementation which is the key contribution of our research work, section 

IV validates our simulation results, and concludes with a complexity analysis and discussion of 

challenging limitations, and section V concludes with a discussion focused on future perspectives. 

2. Related research review 

This section, firstly, presents a representative sample of the related research works that have been 

reviewed, compiles a summary of the review in a windup table and then concludes by highlighting 

research gaps and our own research motivations. We have used the following criteria to source and 



 

review related research works that couple UAVs with AI or ML: (a) UAV platform type, (b) standalone 

topology, (c) propagation model type, i.e., empirical, or deterministic, (d) aerial imaging, i.e., RGB or 

thermal camera, (e) AI or facial recognition framework, and (f) low altitude missions.  

UAVs including drones have a promising potential to revolutionize the future of IoE by working as 

wireless aerial relays to improve connectivity to ground networks and deliver various wireless 

communication services. Such a wireless connectivity can be achieved via propagation models which 

fall into two types as reported in literature: Free space models (e.g. Air-To-Ground (ATG)) [17-21] and 

Empirical propagation models (e.g. Okumura-Hata, and COST-231) [22-25]. The free-space propagation 

type focus is a closed-form formula which includes line-of-sight (LoS) and non-line-of-sight (NLoS), 

and crucially a UAV’s elevation angle. These parameters show a clear tendency towards a wide 

coverage footprint and a reasonable shadowing effect. The empirical propagation type focus is a pre-

defined set of constants and constraints for different geographies. These models can deliver a good 

level of accuracy, despite some limitations resulting from their limited antenna heights and short 

transmission coverage. Both types of propagation models feature advantages as well as shortcomings 

in relation to aspects that affect the performance of any propagation model, e.g., a UAV’s altitude, 

elevation angle, antenna specifications, and power consumption. Thus, optimization is always required 

to achieve a wider coverage, moderate power consumption, and better LoS connectivity [3, 17].  

Researchers in [26, 27] highlight recent advancements and trends with UAVs for 5G communications. 

The cutting-edge technologies that is associated with 5G may enable many wireless applications such 

as wireless sensor networks. Taking advantage of the higher frequency bands of 5G wireless networks, 

using UAV at 28 and 60 GHz offers much promise for high-capacity wireless communications for such 

aerial platforms. And yet, our research review informs that the synergy between IoE and UAVs remains 

an untapped area, which is offering motivation to researchers to pursue further work. Work in [28] 

presents a NN self-healing model to optimize a UAV’s positioning likelihood for maximizing 

throughput, coverage, and maximum UE in a 5G network. Results show that the performance of the 

neural model is an efficient approach based on the upper and lower values of the UAVs’ positioning 

likelihood along with achieving energy consumption efficiency.  

One of UAV’s capability is related to aerial imaging and sensing using different types of equipment, 

cameras and sensors, for carrying out intelligence, surveillance, and reconnaissance tasks [29]. The 

complexity in design and fabrication, as well as the challenge of transmitting high quality videos and 

images to the ground station calls for revisiting antenna design and channel modelling. Researchers in 

[30] emphasize the dynamic interactions between sensing, coordination, and communication using 

drones. They also argue that the trade-off between camera quality against their weight is an open issue. 

Researchers in [31] introduce an innovative approach in which a UAV network uses fog computing to 

support a natural disaster management system. The proposed work promises flexibility, mobility, and 

fast deployment features to support IoE systems in smart cities. 

The review in [32] highlights open research issues related to drone applications for aerial monitoring, 

and disaster search and rescue. Reliable communication links between a drone and terrestrial users 

and/or things is one of the greatest challenges. Where coordination of a drone includes elevation angles 

and altitudes in addition to the effect of whether conditions to on-board sensors and cameras, the effect 

on resolution and throughput is significant. The authors argue that on-line decision making for 

optimization would improve drone’s functionality. The work in [33] highlights some common issues 

that relate to drone face surveillance, including the effect of motion, differences in pose, illumination, a 

drone’s altitude, and a camera’s resolution. These effects have a negative relationship with distance 

between the drone and ground subjects. The paper presents reasonable results using the DroneSURF 

drone dataset for active and passive surveillance although facial recognition was not significantly 

effective during evenings due to low source illumination.  

Researchers in [34] propose a drone-based smart healthcare system for COVID-19 monitoring, 

sanitization, social distancing, and data analysis using real-time and simulation-based scenarios. Their 



 

framework uses wearable sensors to record the observations in Body Area Networks (BANs) using a 

thermal camera on board the drone. Results show that a large area can be covered for sanitization, 

thermal image collection, and patient identification within 2 km and approximately 10 minutes. In [35] 

the authors show an implementation of a drone with thermal camera for automatic detection, 

classification and tracking of objects on the Ocean’s surface. These operations are calculated 

mathematically using a kernel approximating a Gaussian distribution and Kalman Filter. Although 

reasonable results are reported, the on-board GPS and Attitude-Heading Reference System (AHRS) are 

areas suggested for improving the tracking performance.  

Authors in [36] present a fast and mobile inter-spectral image registration for real-time monitoring 

using multiple small-scale drones. Images captured by low-altitude UAVs reveal benefits in 

surveillance and human detection. However, some challenges are reported such as overlap, scale, 

rotation, and point of view. Therefore, altitude optimization is recommended for improving results. 

[37] uses drones with thermal cameras and GPS integrated with Google maps for human detection and 

geolocation for search and rescue in disaster zones. Experimental results reveal a good level of accuracy 

in detection by the thermal sensors at an altitude of 12m and within a radius of 10m. Researchers in [38] 

suggest the use of aerial drones with a thermal camera and GPS onboard during foggy weather 

conditions. They propose road scanning during a fog ahead of police and/or ambulances to reduce the 

possibility of accidents and assist with their safe and fast navigation to their destination. The altitude 

and speed of a drone will vary depending on the severity of the weather conditions. 

The work in [39] aims to map physical and biological characteristics of unique habitats safely and 

accurately at an altitude of 20m using a thermal FLIR Tau sensor with a GPS device attached to a 

quadcopter drone. Experimental results reveal operational flexibility alongside the high spatial 

resolutions obtained. It is argued that energy efficiency is a challenge that could be improved by 

channel optimization. The authors in [40] use a drone that is equipped with thermal camera and a GPS 

device to calculate the efficiency of solar panels. The aerial thermographic inspection is a useful method 

in recognizing critical problems in a photovoltaic power plant, in addition to estimating the payback 

period of maintenance interventions or substitutions. 

The work in [41] propose a drone combined with a thermal far-infrared camera for detecting sinkholes 

from a height of 50m using a convolutional neural network (CNN) and based on a Boosted Random 

Forest (BRF) and pattern classification techniques. The simulation results produce reasonable sinkhole 

detection results. However, the thermal energy of a sinkhole differs significantly, thus detection 

performance varies. Authors in [42] propose a drone dataset for humans in need of help via action 

recognition during search and rescue missions. The proposed model uses a CNN based classifier, then 

non-maximum suppression (NMS) to overcome multiple detections of the same object in an image. 

Authors in [43] present an autonomous drone for person identification via taking videos/photos of a 

target location. In [44] a CNN is introduced to enhance performance of UAV that may act as an artificial 

eyesight for search and rescue operations for shipwrecked people. The results show that this method 

offers time efficiency and accuracy.  [45] proposes a Convolutional Support Vector Machine (CSVM) 

network for object detection in UAV imagery. Despite the promising capability of the proposed CSVM 

network, the configuration reveals high computation time. The paper concludes that recent CNNs 

could handle multiclass classification issues and thereby produce enhance results. Authors in [46] 

provide a review on deep learning approaches to applications that include UAVs. CNN, Deep Belief 

Networks, (DBNs), Deep 𝑄-Network (DQN), Deterministic Policy Gradient (DDPG) are approaches 

that have been considered and reveal satisfactory results. 

Researchers in [47] evaluate many factors that affect facial detection and recognition performance from 

a drone point of view. The empirical study confirms that drones are capable of facial recognition but 

with some challenges such as distance, angle, and angles of depression.  A drone enabled with a camera 

and face recognition software for human tracking and public safety surveillance is introduced in [48]. 

In this work, a detected face is color-coded in a square; white for no match, Green for VIP, and Red for 



 

blacklisted/missing person. In the event of an escape attempt, the drone can pop-up an alert and give 

the location coordinates to the pursuing authorities. Results confirm that the proposed framework can 

reduce human effort, thereby making missions efficient and accurate. 

[49] uses a drone with a facial recognition prototype for the purpose of biometric identification, military 

operations, and surveillance. Results show that despite face detection, there is a need for additional 

features to become a smarter automated drone. The author in [50] highlight their drone’s efficiency 

with biometric facial recognition to fight against terrorism. The article concludes that some vital factors 

should be carefully considered to achieve optimal communication between user and aerial vehicle, 

battery life, on-board cameras, and AI capabilities. 

In [51, 52] a small-size drone equipped with an RGB camera is used in tracking a walking person and 

robotically capturing a frontal photo of the target from an altitude of 3-4m. The proposed model uses a 

deep neural network YOLOv3, Locality-constrained Linear Coding (LLC), and Multi-task Cascaded 

Convolutional Neural Networks (MTCNN) for person detection, target person matching, and face 

detection respectively. The model uses a 4G LTE communication module and GPS device to 

communicate and geolocate the drone. Experimental results verify its effectiveness and practicability.  

Table 1 reports the results of a comparative analysis between approaches presented in this section. It 

helps identify gaps and highlight unresolved issues which are exploited in the remainder of this section. 

TABLE 1:  related review windup and comparative analysis between existing approaches. 

Authors 

Optimized 

Propagation 

Model 

Optimized 

Elevation 

Angle (𝜽) 

Optimized 

Altitude 

(𝒉𝒕) 

Thermal 

Camera 

Aerial 

Imaging 

Facial 

Recognition 

Global 

Position 

System 

(GPS) 

Artificial 

Intelligence 

(AI) 

[4-7] √ √ √ x x x x √ 

[22-25] √ √ √ x x x x √ 

[28] x x x x x x x √ 

[34] x x x √ √ x √ x 

[35] x x x √ √ x x x 

[36] x x x √ √ x x x 

[37–40] x x x √ √ x √ x 

[41] x x x √ √ x x √ 

[42] x x x x √ √ x √ 

[43] x x x x √ √ √ x 

[44, 45] x x x x √ x x √ 

[46] x x x x √ x √ √ 

[48] x x x √ √ √ x x 

[49] x x x x √ √ √ x 

[50, 51] x x x x √ √ √ √ 

The research review has revealed a few challenges that need to be addressed to enhance the deployment 

of a multifunction drone with AI in the fight against the Coronavirus pandemic. These include: 

• Lack of an optimized channel model for aerial imaging 

• Need for a trade-off between ht against image resolution and transmission throughput 

• Lack of optimized θ and ht for aerial imaging 



 

• Need for trade-off between throughput and power consumption 

• Lack of consideration of thermal imaging for face mask detection from a drone’s point of view 

• Lack of consideration of an integrated payload consisting of a transceiver payload, GPS, and 

thermal imaging camera 

• Lack of consideration of coupling AI with partial facial detection from a drone point of view 

After careful consideration of the above shortcomings, we propose to exploit the use of an aerial drone 

system in pursue of the following research objectives: 

• Channel optimization by tuning θ and ht to enhance wireless connectivity, throughput, and power 

consumption 

• Design of an AI framework for partial face mask detection  

• Deployment of thermal imaging camera to sense body temperatures a main symptom of Covid-19 

• Deployment of a transceiver payload with GPS for geolocation tracking of persons with elevated 

body temperatures, who violate curfews or stay-at-home orders 

 

3. Proposed framework implementation 
This section presents the physical architecture underpinning the implemented AI framework which is 

shown on Fig. 2, and then discusses the AI framework which is illustrated on Fig. 3. The principal aim 

of the work is to integrate AI in a multifunction drone that helps deliver a wireless service, from basic 

diagnostic functions that will help with minimizing the risk of spreading infection to face mask 

detection to tracking individuals [52-54].  

 
Fig. 2. Conceptual architecture of the proposed model AI framework. 

The proposed conceptual model on Fig. 2 shows a drone-eye-view along with its payloads in the space 

segment with the ground segment containing a Ground Control Unit (GCU) which executes the AI 

Framework with data received from the Drone. The architecture serves a list of functions: Firstly, face 



 

mask detection to identify a person who is wearing a mask and may be exhibiting anti-social behaviour 

or violating curfews and stay-at-home orders. Secondly, thermal imaging to sense elevated body 

temperatures and geolocation tracking of persons with elevated body temperatures to minimize the 

spread of infection. Thirdly, geolocation tracking of persons who exhibit anti-social behaviour or violate 

curfews and stay-at-home orders. Fourthly, wireless communication between the drone and (a) the 

GCU using a control signal, and (b) terrestrial users using direct Radio Frequency (RF) links.  

Drones are regarded as a fast and low-cost alternative to setting up an eye-in-the-sky because they 

feature many of the satellite advantages but without the distance penalty. Furthermore, terrestrial 

receivers may offer a higher signal quality as the RF links may be at LoS, and, thus, experience less 

propagation delay. The prototype uses a DJI Quadcopter with various onboard payloads, a thermal 

camera, and a transceiver. The transceiver collects data using the thermal camera and then transmits 

the data to the cloud for storage and further analysis. The thermal camera is loaded with a GPS sensor, 

so when a person that has been identified has a higher-than-normal temperature, or is in violation of a 

stay-at-home order, their geo-location can be retrieved, and their movement tracked for containment. 

Fig. 3 illustrates the proposed AI framework that carries out its tasks in a two-phase approach. During 

the first phase, it optimizes the link budget parameters to enhance wireless connectivity between a 

drone and the GCU by tuning the drone's θ and ht using the Radial Basis Function (RBF) Neural 

Network Tool. During the second phase, the framework carries out face mask detection of persons 

wearing face masks using a Convolutional Neural Network (CNN) with its Modified Artificial Neural 

Network (MANN) [52-54]. 

 
Fig. 3. The proposed AI framework. 

https://www.youtube.com/watch?v=xC5V8EKaVGE
https://www.youtube.com/watch?v=xC5V8EKaVGE


 

3.1 Phase 1: Optimizing Link Budget Parameters 

This phase aims to establish enhanced wireless communication links between a drone and its ground 

station by optimizing link budget parameters. This can be done by tuning the input parameters of drone 

altitude (ht), and elevation angle (𝜃), which reportedly affect wireless connectivity in any space-based 

communication system [33, 54]. To carry out the optimization, the RBF-NN tool is used as it supports 

data selection, network creation and training, and network performance evaluation using MSE and 

regression analysis. The optimization aims at maximizing Received Signal Strength (RSS), throughput 

(T) and coverage distance (D) whilst minimizing transmission power and consumption. 

The framework uses a two-rays propagation model as it offers advantages in relation to altitude, wide 

coverage range, adaptation with both LoS and NLoS conditions in an urban environment. The two-rays 

model takes into consideration various elevation angles along with altitudes between a drone and 

mobile or stationary terrestrial users which in turn leads into enhanced connectivity and greater 

support for peer-to-peer (P2P) connections [3]. The path loss of the two-rays model and the link budget 

parameters can be expressed by equations (1) through to (5). 

𝑃𝐿 [dB] = 40 log(d) – [10 log (𝐺t ) + 10 log (𝐺r ) +  20 log (ℎt ) +  20 log (ℎr )] (1) 

d [km] = 2 𝐸𝑟[cos−1 (
𝐸𝑟

𝐸𝑟+ℎt 
∗ cos(𝜃)) − 𝜃] (2) 

RSS = Pt + G(ht)  + G(hr)  − PL − L (3) 

SNIR =
RSS

N + I
 

(4) 

T = B × log (1 + SNIR) (5) 

where distance 𝑑 of the propagation model’s range is computed based on 𝜃, G(ht) denotes transmitter 

antenna height gain, G(ht) denotes receiver antenna height gain, ht denotes drone’s altitude, hr denotes 

receiver antenna height, 𝐸𝑟  denotes the Earth’s radius at 6378 km, Pt denotes  transmitter power, L 

denotes connector and cable loss, N denotes Noise figure, I denotes Interference, B denotes bandwidth, 

SINR denotes signal-to-interference-ratio [3]. 

Before using the RBF-NN tool to optimize the link budget parameters of RSS, T, and D a random 

representative input sample from the initial predictions are presented to the neural network for 

training. After training the predicted results are interred as inputs (x1, x2, x3,… xn) to the RBF-NN. At 

the hidden layer the neurons are activated by the RBF-NN using Gaussian functions and a nonlinear 

transformation is applied to the input variables. The optimized parameters are obtained at the output 

layer. The learning rate is accelerated, and the usual local minimum issue is avoided. The layers of RBF-

NN can be mathematically expressed by equations (6) through to (11). 

X= [x1, x2, x3, … . xn]T (6) 

H= [h1, h2, h3, … . hn]T (7) 

hn = exp (− 
‖X− Cn‖2

2 bn
2  )   (8) 

C= [C1, C2, C3, … . Cn]T (9) 

B= [b1, b2, b3, … . bn]T (10) 

W= [w1, w2, w3, … . wn]T (11) 

where 𝑋 are the predictions used as training input denoted in (6), H is the radial vector of the RBF 

network denoted in (7), ℎ𝑛 is a multivariate Gaussian function denoted in (8), C is the centre vector of 

the network denoted in (9), B is the radial width vector denoted in (10), and W is the weight vector of 

the network denoted in (11). These parameters are required to predict the output of the RBF-NN. 

At the start of the learning phase the connection weights in W0j are distributed as follows: RSS=0.5, 

D=0.2, and R=0.3. The higher weight of RSS sets out channel performance as a top priority during setup. 

Nevertheless, the weights of Wji will get updated in the perceptron of the hidden layer as the learning 



 

phase proceeds. Equations (12) and (13) represent the network output as a linearly weighted sum of the 

number of base functions in the hidden layer. 

O = F0 (∑ W0j

N

j=0

 (Fh ( ∑ Wji 

N

i=0

 hn ) ) ) 
(12) 

O = ( WRSS + h1W1 ) +  ( W2 + h2 W2 ) + ( W3 + h3 W3 ) (13) 

where, Fh and F0 are the activation functions of the neurons in the hidden and output layers 

respectively. Selecting the most optimal value is fulfilled by applying k-means clustering using a 

Gaussian mixture distribution as shown in equations (14) through to (17). This is achieved by specifying 

the beta coefficients β, and setting sigma σ to the mean distance between the cluster centre and other 

points in the cluster. K-means starts by initializing the centre for the first pattern of the cluster, which 

includes the optimized values of different parameters at various aerial platform altitudes and elevation 

angles. During selection of the best optimized value, the network adaptively fine-tunes the free system 

parameters based on the corrections which minimize the MSE between inputs yi and the desired output 

di, which represents the parameter bounds that are considered will improve channel performance. RBF-

NN neurons compete at every iteration until either there are no further centre updates, or the maximum 

number of iterations is reached [33, 54, 55]. 

σ =
1

m
∑||xi − μ||

m

i=1

 
(14) 

β =
1

2σ2
 

(15) 

p(x) = ∑ πk

K

i=1

𝒩(x|β ∑)

i

 
(16) 

MSE =
1

2
 ∑(

N

j=1

yi − di )
2 

(17) 

where, m denotes the number of training samples belonging to cluster, xi denotes the ith training 

sample in the cluster, μ denotes the cluster centroid, p(x) denotes Gaussian data of K number of 

distributions, πk denotes the proportion of data generated by the k-th distribution, 𝒩(x|β ∑ )i  denotes 

the multidimensional Gaussian function with mean vector β and covariance matrix (∑ )i  [33, 34].  The 

stages above inform the output matrix that may help responsible authorities in making decisions that 

will ensure safety and security protocols are upheld: 

➢ Recognition of a person through face mask detection or storing of the face features as new data in 

the database, if a match was negative, 

➢ Elevated body and head temperature in Celsius, and 

➢ Optimized link budget parameters of RSS, T, and D 

3.2 Phase 2: Face Mask Detection 

This phase is carried out across four steps: Image Acquisition (Step 1), Image Pre-processing (Step 2), 

Feature Extraction (Step 3) and Classification (Step 4), as shown on Fig. 3. 

Step 1: During the image acquisition step, thermal imaging is continuously acquired with variable 

expressions for multiple persons regardless of whether protective masks are worn. These are then 

stored in a database for processing and further use during subsequent steps. During this step, a thermal 

camera is used to detect radiating heat from a body, usually from the forehead, and this is then used to 

estimate a body temperature. This is a vital piece of information in the fight against the spread of the 

pandemic as an elevated temperature is one of coronavirus key symptoms, and early detection may 

help with minimizing the risk of spreading the infection. The thermal camera may be linked with a GPS 

sensor, so when a person is identified as having a higher-than-normal temperature, or as violating 



 

curfews and stay-at-home orders, their geo-location can be traced, and their movement tracked for the 

relevant authorities to take the right course of containment action. 

Step 2: During the image pre-processing step, thermal images are converted from colour to grayscale 

images, binarized, and the face centroid determined. The process of binarization can be mathematically 

expressed by equations (18) through to (20). Finding the face centroid is expressed by equations (21) 

and (22). 

b (i,j) = 1 if g (i,j) ≥ gmean  

          = 0 otherwise                
(18) 

gmean =
∑ ∑  g (i, j) column

j=1
row
i=1

(row × column
 (19) 

I = (0.298 × redcomponent ) + (0.587 × greencomponent ) + (0.114 ×  bluecomponent ) (20) 

X =
∑ mf(𝑥,𝑦)𝑥 

∑ mf(𝑥,𝑦) 

 (21) 

Y =
∑ mf(𝑥,𝑦)𝑦 

∑ mf(𝑥,𝑦) 

 (22) 

where I is grayscale image, gmean is mean gray value of grayscale image, b (i, j) is binary image where 

black pixels means background is represented with ‘0’s while white pixels means background is 

represented with ‘1’s, g (i, j) represent the redcomponent , greencomponent , and bluecomponent of an RGB 

color image respectively, (x, y) are the coordinates of a binary image, m is the intensity value that is 

mf(𝑥,𝑦) = f(𝑥,𝑦) =0 or 1. 

Step 3: During the feature extraction step, CNN techniques are used to extract features from the 

grayscale image: Scale Invariant Feature Transform (SIFT), Active Appearance Model (AAM), and Holo 

entropy.  The SIFT descriptor layer detects and describes specific local features of an image such as the 

orientation and the spatial relationship of the features extracted by the convolutional layer. AAM uses 

a statistical model to annotate a face shape, coordinates, and appearance to a new image. Holo entropy 

uses entropy and correlation information to detect outliers and uniqueness on a face image. These 

features can be mathematically expressed by equations (23) through to (30). 

L (a, b, σ) = G (a, b, σ) × I (a, b) (23) 

G (a, b, σ) =  
1

2πσ2 𝑒
−𝑎2+𝑏2

2σ2   (24) 

D (a, b, σ) = L (a, b, kσ) - L (a, b, σ) (25) 

E= 
𝜕2 𝐷−1

𝜕a2 −  
𝜕𝐷

𝜕𝑎
 (26) 

𝐷𝑚(𝑎, 𝑏) = √𝐿(𝑎 +  1, 𝑏) − 𝐿(𝑎 − 1, 𝑏) + (𝐿(𝑎, 1 + 𝑏) −  𝐿(𝑎, 1 − 𝑏))2 
  

 (27) 

𝜃(𝑎, 𝑏) =
𝑡𝑎𝑛−1 (𝐿(𝑎,1+𝑏)−𝐿(𝑎,1−𝑏))

(𝐿(𝑎+ 1,𝑏)− 𝐿(𝑎,1−𝑏))
  (28) 

𝐻𝐷(𝑉)= 𝐻𝐷(𝑉1) + 𝐻𝐷(𝑉2) + 𝐻𝐷(𝑉3) + ⋯ 𝐻𝐷(𝑉𝑚|𝑉𝑚−1, 𝑉1) (29) 

𝐻𝐿𝐷(𝑉) = ∑ 𝐻𝐷(𝑉𝑖)
𝑚
𝑖=1   (30) 

where L (a, b, σ) represents the evaluation search over image scales and orientation of convolution with 

a variable-scale Gaussian G (a, b, σ), I (a, b) is the input image, and D (a, b, σ) represents a Taylor 

expansion of the scale-space function. Key points are selected based on measures of stability via E, a 

location of extremum, whose value should be carefully considered against a threshold as one below 

means poorly localized candidate, whereas above means accurately locating key feature points by 

discarding indistinct key info points. 

Step 4: During the classification step, MANN categorizes a facial image into recognized or not 

recognized using a backpropagation algorithm for training purposes and a firefly algorithm for 



 

correcting the placement of neuron weights. These can be mathematically expressed by equations (31) 

through to (37). 

where 𝐹1(𝑛) is input units, 𝐻𝑢is hidden units, 𝑤(𝑛) is weight which can be updated for each solution of 

the firefly algorithm. The fitness value of each solution is estimated using mean square error (MSE) 

which represents the shortlisted value as the current best weights. 𝛼 and 𝛿 represent the uniformly 

spread values in the range of 0 to 1. 𝐴𝑡0, 𝛽, and 𝐷𝑖𝑗  are pre-set attractiveness, light absorption coefficient, 

and distance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ neighbouring solution respectively. 𝐴𝑐𝑡𝑖𝑣𝑒 (𝐼) represents the 

activation function for the output layer, 𝐷𝑛 is actual outputs, 𝐷𝑛  is desired outputs, and 𝑂 is the output 

unit. The Error is expected to be at a minimum value to get a well-trained network. This can be done 

via fixing a threshold value against the output value. If the output is below the threshold, the face image 

is recognized otherwise, it is not. 

4. Simulation and validation  

This section, firstly, visualises and validates simulation results, and then undertakes a complexity 

analysis and concludes with a discussion of challenging limitations to any researcher whose work 

involves the use of drones. 

4.1 Visualisation of simulation results 

Our entry point to the simulation is the primary dataset of the thermal imaging obtained by the thermal 

camera FLIR Lepton, as Fig. 4 shows. This is divided into two subsets: a training set for the neural net 

as shown on Fig. 5, and a testing and validating set for face mask detection as shown on Fig. 6. Random 

sets are used for sensing elevated temperature in Celsius as also shown on Fig. 6. When training the 

neural network, we consider the 5G MIMO antenna specifications provided by the Taoglas Company 

[56]. We tune the drone's elevation angle and altitude to predict the optimized link budget parameters 

with θ varied between 5° and 90° and ht floating between 10 and 100m above ground. All predictions 

are obtained by applying equations 1-37 in MATLAB simulation toolboxes. 

Fig. 7 shows the neural network training accuracy against loss. This shows an accuracy of 82.63% with 

face mask detection. A Confusion matrix is used to validate quantitatively the results as shown on Fig.8. 

The facial images classified appeared in green squares, whilst those that remain unclassified appear in 

red squares. The confusion matrix is one of the well-known performance indicators in a classification 

algorithm. This is done by calculating Sensitivity, Precision, and accuracy out of all positive classes, i.e., 

how much has been predicted correctly. To give more depth to our validation an F1-score is used to 

represent the harmonic mean of precision and recall together. 

TABLE 2 shows the confusion matrix performance of the proposed face mask detection using CNN 

with MANN. The TABLE shows that the confusion matrix confirms that the thermal images that are 

used in training, testing and validations are properly classified with a high F1-score close to the value 

of 1. In turn this confirms that the proposed AI framework is working well with a high level of accuracy. 

 

𝐼 = 𝛼 + ∑ 𝑤(𝑛)𝐹1(𝑛) +
𝐻𝑢−1
𝑛=0 𝑤(𝑛)𝐹2(𝑛) + ⋯ 𝑤(𝑛)𝐹𝑚(𝑛)  (31) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = min ∑ 𝑀𝑆𝐸𝑛
𝑖=1   (32) 

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖 + 𝐴𝑡(𝑤𝑗 − 𝑤𝑖) +  𝛼 (𝛿 −

1

2
)  (33) 

𝐴𝑡 =  𝐴𝑡0𝑒−𝛽𝐷𝑖𝑗
2

  (34) 

𝐴𝑐𝑡𝑖𝑣𝑒 (𝐼) =
1

1+𝑒−𝐼  (35) 

𝑂 =
1

2
∑ (𝐷𝑛 − 𝐴𝑛)2𝐻𝑈−1

𝑛=0   (36) 

𝑟𝑒𝑠𝑢𝑙𝑡 = {
𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑, 𝑂 < 𝑤,

𝑛𝑜𝑡 𝑟𝑒𝑐𝑜𝑛ℎ𝑔𝑖𝑧𝑒𝑑, 𝑂 ≥ 𝑤
  (37) 



 

 
Fig. 4. Building a dataset of thermal images 

 

Fig. 5. Training dataset of thermal images 

 

Fig. 6. Validation dataset of thermal images with temperature sensing 



 

 

Fig. 7. Neural network training accuracy 

 
Fig. 8. Confusion matrix 

TABLE 2: confusion matrix of proposed ai framework 

Dataset Sensitivity Precision Accuracy F1-score 

Training Dataset 0.99 0.54 0.95 0.98 

Validation Dataset 0.98 0.54 0.94 0.973 



 

The predicted results on a drone’s altitudes and elevation angles that are used in RBF-NN are shown 

on Fig. 9, and Fig. 10 as RSS and T predictions as function of D respectively, at different drone’s 

altitudes. Minimizing PL whilst maximizing RSS, T and D at various drone altitudes and elevation 

angles are significant performance indicators for network planning, and QoS results. Fig. 11 displays 

the RBF-NN layout in MATLAB.  Fig. 12 and Fig. 13 illustrate the predictions evolved from the 

proposed AI framework using Gaussian distribution, and MSE analysis, which also contains a 

performance evaluation of the optimized output. 

 

Fig. 9. RSS predictions as function of D at different drone altitudes 

 

Fig. 10. T predictions as function of D at different drone altitudes 

 

Fig. 11. RBF-NN layout in MATLAB 



 

 

Fig. 12. RBF-NN as a Gaussian mixture distribution function 

 

Fig. 13. The MSE performance of the proposed RBF-NN in MATLAB 



 

Fig. 12 depicts the Gaussian mixture distribution function of the RBF-NN using a shaded mesh plot in 

MATLAB. This distribution describes data that been clustered around a mean. The probability density 

is a plotted Gaussian bell curve with a peak at the mean, where each curve denotes a distinguished 

cluster with its own mean and covariance. This probability density can be calculated by k-means for 

each cluster’s mean and covariance, before either get updated at every iteration up to the maximum 

number of iterations, or no significant change in the Gaussian mixture distribution has occurred. The 

probability density converges to the outmost suitable clusters that meet optimization requirements. 

This is visualised as a bell curve with the peak as the evolved optimized value. 

Fig. 13 presents the MSE performance of the RBF-NN for all datasets that have been plotted on a 

logarithmic scale in MATLAB. Training MSE is declining as the number of iterations increase. The plot 

demonstrates the evolved optimized results against different values of ht that represent   altitudes of a 

drone at various θ. The optimized results scored the best MSE with the RBF-NN converging towards 

the best-fit value at around 129 iterations with the lowest MSE in comparison to non-optimized values. 

The performance indicator is fitting and reasonable as the final MSE is small, the NN converges with 

no overfitting occurring, before its best validation performance occurrence on the Gaussian mixture 

distribution. Therefore, the optimized parameters evolved are at an altitude of 21m with an average 

improvement of -7dBm in RSS, which leads to an improved coverage distance D of up to 1.5km, and 

an enhanced throughput T of 3.4 mb/s. 

4.2 Complexity Analysis  

We use complexity theory to analyse how the execution time of a simulation scales with inputs by 

considering the relationship between the number of basic operations with respect to the size of input, 

e.g., the number of iterations, and the number of drone altitudes and elevation angle. We use Big-O 

notation to mathematically express the complexity functions shown in equations (38) and (39). 

𝑂𝑃ℎ1
(𝑛) = 𝑛2 + 𝐶𝑃ℎ1

 (38)                                                        

𝑂𝑃ℎ1
(𝑛) = 𝑛 × 2 + 𝐶𝑃ℎ2

 (39)                                                              

where 𝑂𝑝ℎ(𝑛) denotes the complexity level, n the number of operations, 𝐶𝑃ℎ1
= 0.70, and 𝐶𝑃ℎ2

= 0.50. 

Fig. 14 shows the level of complexity for the two phases of the proposed framework with the number 

of iterations rising exponentially in relation to the number of drone altitudes, as at each altitude the 

number of parameters considered are used as input to phase 2. While Fig. 15 reveals that whilst the 

overall time complexity rises in relation to the number of drone altitudes, the overall complexity of the 

proposed architecture is kept at a moderate level. 

Working with drones is not without risks and anyone undertaking research that involves the use of 

drones will inevitably be confronted with a set of issues that are both hindering progress which often 

leads to sudden failure and the subject of ongoing research. 

• Drone hovering flight stability. A sudden change in weather conditions, e.g., sudden gusts of 

wind, especially at low altitudes will affect both forward and hovering flight stability, especially 

hovering, which may throw the drone off course or cause a fall and crash to the ground. Correcting 

a drone’s reference direction, if it has remained in flight, requires additional gyroscopic measures 

and power consumption. 

• Power consumption. A drone’s weight, fly time, connectivity and all on-board processing will 

determine its power consumption which is sourced entirely from on-board sources. Optimising 

power consumption requires migrating to other forms of energy or providing additional energy 

sources whilst maintaining a light weight as possible, transferring off-board as much of the on-

board processing as possible, reducing the need for correcting a drone’s reference direction as 

much as possible to name just a few. 

 



 

 

Fig. 14. The AI framework  complexity flowchart. 

 

Fig. 15. The AI framework complexity level. 



 

5. Concluding discussion and future work  

The integration of AI and Simulation is old wine [57] in new bottles [58]. In this era of the 4IR, smart 

cities contain smart things which can collaboratively enhance quality of life and people’s health and 

security. As part of the continuous effort to fight against the spread of coronavirus, this paper has 

shown that coupling a drone with AI may help with the fight against the pandemic. The proposed eye-

in-the-sky drone system with its payloads of thermal imaging cameras and AI framework may help 

with detecting and recognizing persons wearing masks who are in violation of curfews and stay-at-

home orders. The system can also perform basic diagnostic functions like elevated body temperatures 

to help with reducing the spread of infection. The AI framework evolves an optimized θ and ht to 

enhance connectivity, throughput, and power consumption in support. Results of the framework 

obtained using the MATLAB toolbox show promising output across three main findings: 82.63% 

accuracy with face mask detection; 0.98 F1-score which confirms that thermal imaging used for training, 

testing and validations is correctly classified; the Gaussian mixture distribution and MSE plots shows 

that optimized values offer reasonable channel performance with a mobile 5G antenna. 

Drone technology is a promising robust and reliable wireless communication system because of its 

ability of rapid deployment and adoption of IoE and 5G technologies. We are currently investigating 

the potential use of an adaptive aerial system on-the-go for face mask detection for both indoors and 

outdoors settings e.g., airports, and shipping malls. Using a smart IoT application that can render a 3D 

urban environment on the go over Google Maps and track and trace multiple persons is increasingly 

being reported as future research and development work both in the academic literature as well as in 

industry. Several authors report ongoing research and development work in addressing drone 

hovering flight stability and energy consumption. 
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