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The current coronavirus disease 2019 (COVID-19), caused by severe acute respiratory
syndrome virus 2 (SARS-CoV-2), has resulted in a major global pandemic, causing
extreme morbidity and mortality. Few studies appear to suggest a significant impact of
gender in morbidity and mortality, where men are reported at a higher risk than women.
The infectivity, transmissibility, and varying degree of disease manifestation (mild, modest,
and severe) in population studies reinforce the importance of a number of genetic and
epigenetic factors, in the context of immune response and gender. The present review
dwells on several contributing factors such as a stronger innate immune response,
estrogen, angiotensin-converting enzyme 2 gene, and microbiota, which impart greater
resistance to the SARS-CoV-2 infection and disease progression in women. In addition,
the underlying importance of associated microbiota and certain environmental factors in
gender-based disparity pertaining to the mortality and morbidity due to COVID-19 in
women has also been addressed.
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INTRODUCTION

The coronaviruses belong to the subfamily Coronavirinae, which cause respiratory and
gastrointestinal infections (1). First discovered in 1960, the coronaviruses were ascribed to
causing a mild respiratory symptom; these viruses include human CoV 229E (HCoV-229E) and
HCoV-OC43 (2). The present coronavirus disease 2019 (COVID-19) pandemic by severe acute
respiratory syndrome virus 2 (SARS-CoV-2) initially emerged from Wuhan Province, China at the
seafood market (3). Various studies on the innate and adaptive immune responses to coronaviruses
org August 2021 | Volume 12 | Article 6808451
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have been carried out in recent years. The role of the immune
responses is to initiate viral clearance, prevent viral replication,
and help tissue repair. However, such immune responses play a
crucial part in SARS-related pathogenicity. The SARS-CoV-2 is
known to dysregulate cytokine-mediated inflammatory and
immune responses (4). Innate immune humoral factors such
as complement and coagulation-fibrinolysis systems, soluble
proteins/naturally occurring antibodies, and cellular
components (natural killer cells and other innate lymphocytes)
seem to be fully engaged following viral infection. Dysregulation
of these factors leads to viral replication in the lung airways and
escalation of an adaptive immune response. Severity caused by
SARS-CoV-2 infection thus may also be attributed to the degree
of dysregulated immune and inflammatory response (5).

The virus has affected the global population; however, men
seem to manifest more severe form of the disease than women, as
per the onset of symptoms of the disease. The mortality in men is
2.4 times compared to women, although both gender have a
similar susceptibility to transmission (6). One study that involved
425 COVID-19 patients reported 56% men (7), while another
Frontiers in Immunology | www.frontiersin.org 2
study reported 50.7% of 140 patients being men as infected
individuals (8). Another study involving 1,019 COVID-19
patients revealed greater susceptibility of men compared to
women to SARS-CoV-2, indicating that gender is as a risk factor
for morbidity and mortality (6). One of the most noticeable
differences is the mortality rates among men and women in the
Western Europe, where 69% of men have died due to COVID-19.
Even in the United States of America, a lesser percentage of
women have died as compared to men (9). Similar patterns have
been seen in China and other affected countries. According to one
of the reports, the greatest sex disparity was seen in the death rate;
it came to only 36.2% deaths in women as compared to men at the
rate of 51.4%. Additionally, the analysis of COVID-19 cases
documented in China showed a 2.8% case fatality in men as
compared with a 1.7% rate in infected women (10) (Figure 1).

This is not the first time that coronaviruses have been found
to affect women lesser than men. The epidemiological data from
SARS-CoV (2003) and MERS-CoV (2012) epidemics also
highlighted women at a lower risk of death from these deadly
viruses (11). In Hong Kong, men were found to be affected more
FIGURE 1 | Global map showing the confirmed COVID-19 death incidence (male and female ratio) in various countries.
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severely than women by the SARS-CoV (12). Furthermore, men
had a significantly higher fatality rate than women (21.9% versus
13.2%) (13). In 2012, when MERS-CoV hit Saudi Arabia, the
disease occurrence among men (62%) was considerably higher
than in women (38%) of the total confirmed infected cases (14).
Thus, gender seems to play an important role in severity and
fatality in SARS-related diseases.
ESTROGEN ACTS AS AN IMMUNE-
STIMULATING FACTOR

As men are worse affected by SARS-CoV-2, they require longer
hospital stay and have a higher mortality rate when compared to
women (15). The observed resistance to SARS-CoV-2 in women
can be attributed to sex hormones, specifically estrogen, which is
known to enhance the immune activity of both B as well as T-
helper cells (16). Estrogen receptor alpha (ERa) is a steroid
hormone receptor that controls physiological functions,
including immunity. ERa has an effect on the subsets of T
cells that includes Th1, Th2, Th17, and T regulatory cells, as well
as follicular helper T (TFH) cells. It has been established that
induced immunization by NP-conjugated ovalbumin produces
specific antibodies that are elevated in CD4-ERa knock-out
mice, under sufficient estrogen environment (17). Therefore,
estrogen, the primary female sex hormone, stands out as a key
biological factor making women’s immune system more active
against the virus (13).

There is a growing interest in studying the role of sex
hormones in the tissue renin-angiotensin system (RAS). The
expression of ACE2 (angiotensin-converting enzyme) in some
organs, such as uterus, kidney, and heart, is regulated by 17b-
estradiol. This occurs by increasing the locally existing ACE2
effect on the cardiac tissue and suppressing the RAS through
catalytic cleavage of a particular residue of angiotensin II to
increase the release of cardioprotective angiotensin 1–7 and
upregulate anti-oxidative and anti-inflammatory effects (18)
Estrogen level is inversely related with the regulation of cardiac
troponin secreted during ischemic or anoxic condition, leading
to irreversible injury to the cardiac cells (19). In few studies
conducted on COVID-19 patients, it was seen that 51% patients
died due to cardiac injury (20). The death rate in COVID-19
patients was 7.6% having normal cardiac troponin levels and
without any cardiovascular disease. Mortality of 13.3% was seen
in patients with underlying cardiovascular disease and normal
cardiac troponin levels, 37.5% cardiovascular disease but elevated
cardiac troponin levels, and 69.4% patients having both the
conditions. A higher proportion of men (65.4%) had increased
cardiac troponin as compared to women (42.2%) with
COVID-19 (20).

The effect of estrogenic hormones could justify these
observations, as this hormone has been reported to reduce
low-density lipoprotein cholesterol and increase the high-
density lipoprotein (21). 17b-estradiol, an estrogenic hormone,
is also known to mediate the activation of early and late
endothelial nitric oxide synthase via estrogen receptor
Frontiers in Immunology | www.frontiersin.org 3
interaction (22). Cardiomyocytes also carry the functional
estrogen receptors that regulate the expression of nitric oxide
synthase to prevent the cardiovascular system from damage by
some factors such as suppression of the formation of thrombus,
platelet stimulation, and adhesion of leukocyte-endothelial cell.
It has been reported that male mice are more vulnerable to
SARS-CoV compared to females. However, when the ovaries (an
endocrine gland producing and releasing estrogen) from female
mice were removed, their mortality from the SARS-CoV sharply
increased (23).

COVID-19 affects men and women differently likely due to
the difference in genetic nature and influence of sex hormones.
COVID-19 enters the host body via the upper respiratory
system, through contacting droplets. Estrogen has a beneficial
impact on the entire respiratory tract system (16). Estrogen
activates the response of mucosa of the nose by regulating
turbinate hypertrophy and boosting secretion of nasal mucus
containing anti-viral, antibacterial, and immune factors such as
IgA, lysozyme, mucins, lactoferrin, electrolytes, and
oligosaccharides, which are important for restricting upper
airway infections (24). Besides, estrogen stimulates the synthesis
of hyaluronic acid that preserves a suitable tropism of the cilia and
the mucosal membrane (Figure 2). Additionally, estrogen
stimulates the local nasal immune system that acts directly by
stimulating phagocytic cells, antigen-presenting cells, and natural
killer cells (25). Once stimulated, they can kill the virus protecting
the body before its access to its target cells in the part of the
respiratory system, thus reducing the pathological effect of the
virus (26). In a study, it was indicated that G protein-coupled
estrogen receptor (GPER) specifically supports the diminishing
nasal symptoms, serum OVA-specific IgE, and Th2 cell immune
response, but boosts the Treg immune response in mice (27). In
addition to its indigenous impact in the nasal cavity, estrogen
provides the required level of hyaluronic acid secretion needed for
the mouth’s hydration by promoting the function of the lower
respiratory system as it acts directly on the bronchial epithelial
membrane to secrete more mucus. At this stage, the effective role
of estrogen is promoted by the progesterone (PG) physiological
function as it upregulates amphiregulin (epidermal growth factor)
to maintain the histological integrity of the lung tissue if the viral
infection occurs. PG also improves the onset of the symptoms of
respiratory disease, when given to women at menopause phase
(28). Estradiol (E2) and PG support a reduced case of a naive
immune-inflammatory reaction, via increasing the immune
tolerance and synthesis of immunoglobulins. It has been
reported that the combination of E2 and PG could enhance the
anti-viral immunity, but downplay cytokine storms in COVID-
19 (29).

E2 has been found to have a protective activity against the
disease severity, as revealed by higher levels of cytokines such as
IL-6 and IL-8 in severe cases. E2 corresponded to COVID-19
severity, because of the regulation of such cytokines associated
with inflammation (30). Also, regulatory proteins (Cardiac
troponin T and troponin I) play a key role in calcium
regulation (7).

Estrogen has anti-inflammatory and anti-oxidative actions on
the effectors of the renin-angiotensin system-like pro-oxidative
August 2021 | Volume 12 | Article 680845
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LOX-1 and pro-inflammatory ICAM-1. Estrogen alters the
homeostasis of the local RAS and offers protection in the atrial
myocardium (31). Moreover, other studies have indicated the
anti-viral activity of two selective estrogen receptor modulators
against viral infection like Ebola. Primary differentiated human
nasal epithelial cell cultures obtained from healthy men and
women demonstrated the action of estrogenic receptors on the
human cellular response to influenza A virus (IAV) infections.
Nasal epithelial cells are the primary cell type infected with IAV,
and these cultures allowed to investigate IAV infection and
pathogenesis based on the sex and hormonal milieu of the
donor cultures (32).

Menopause is an individual risk factor for COVID-19 as it
causes a sudden reduction in estrogen levels which could
minimize the risk difference between men and women,
although the case studies have revealed that the gender
disparity still exists in elderly people. In postmenopausal
women, the ovaries produce estrone, the inactive form of
estrogen, in high quantities. Additionally, estrogen is no longer
the only endocrine factor in the postmenopausal stage. A
number of extragonadal tissues such as adipose tissue, bone
chondrocytes and osteoblasts, aortic and endothelium, vascular
smooth muscle cells, skin, skeletal muscle, and several brain
regions produce estrogen, to act locally as a paracrine and
intracrine factor (33). Therefore, circulating estrogen levels
explain its effect in menopausal women because estrogen
escapes from local metabolism and gets into the main
circulation (33, 34). It is still unclear if the estrogen circulation
and expression in the local tissue play a part in the reduced
Frontiers in Immunology | www.frontiersin.org 4
COVID-19 mortality in menopausal women compared to age-
matched men (35). Therefore, the role of estrogen is fascinating.
DIFFERENCE IN INNATE AND
ADAPTIVE IMMUNITY

Women show reduced susceptibility to viral infections due to
their varying nature of innate immunity, hormones, and other
factors associated with sex chromosomes. Sex-related hormones
regulate the range of the immune responses distinctively in men
and women (36). The estrogen and ER-a influence the activation
and proliferation of T-lymphocytes and initiate elevation of
IFN-g level in Th1 lymphocytes. A gradual IFN reciprocation
by mismatched dsRNA or exogenous IFN-a treatment has been
found to inhibit SARS-CoV multiplication in the lungs of mice
(37). Studies have reported that IFN-b and IFN-g can
significantly suppress the replication of SARS-CoV, and a
symbiotic anti-SARS-CoV action was attained with the
synthesis of the IFN-b and IFN-g (38). As discussed earlier,
treatment with estrogen suppresses the inflammatory response
and reduces SARS-CoV load that leads to an increased survival
in mice (23). Contrary to estrogen, testosterone have a general
inhibitory action on the immune response, specifically to viral
antigens (39). In a study, murine macrophage treatment with
testosterone suppressed the nitrate oxidase synthetase (40).

Studies have shown suppressive effects of testosterone on the
activation of dendritic cells, antigen presentation to T-
lymphocytes, and initiation of immune response (41). Th1 cells
FIGURE 2 | Schematic representation showing the protective effects of estrogen on the upper and lower respiratory tract cells and its benefits on the immune response.
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have a crucial part to play in protection against viral infections by
secreting IFN-g (42). Androgens can influence the thymocyte
response by suppressing the Th1 proliferation and reducing IFN-
g synthesis (43–45).

Among women, in order to reduce the duplication of X-
linked genes, the second X chromosome is silenced via X
chromosome inactivation (XCI), although many genes escape
this inactivation. A location on Xp22.2, which is for the ACE2
gene, also bypasses X-inactivation, resulting in the phenotypic
differences between the genders. The other XCI escaping regions
are IRAK1 (Interleukin-1 receptor-associated kinase 1) and IKKg
(inhibitor of nuclear factor Kappa-B kinase subunit gamma) that
might influence the immune response against the COVID-19
Frontiers in Immunology | www.frontiersin.org 5
infection in women. Numerous genes are involved with the X
chromosome. Mutations occurring in a single gene may lead to
two different alleles with a distinct mechanism of response,
suggesting that women could not only escape the outcome of
deterrent mutations but also help to fight against infectious
challenges such as SARS-CoV-2. Additionally, estrogen and
estrogen receptor signaling confer an important potency to
innate as well as adaptive immunity and the process of tissue
repair during and after the viral infection (7, 36, 39) (Figure 3).

In SARS-CoV-2 infected women, T cells, especially CD8+ T
cells, were found much more activated. When their clinical
trajectory was analyzed, it was revealed that elevated cytokine
levels in women patients were related to the worsening condition
FIGURE 3 | The X chromosome in females has various genes associated with immunity. Natural mutation in one copy of X gene may lead to two different alleles
with distinct regulatory mechanism, which protect the women from implications of deleterious mutations and confers advantage in facing novel immunogens, like
SARS-CoV-2. Illustration presents the genes encoded on the X-chromosome involved in the increased immune response in females during COVID-19. (Abbreviations
used: TLR7, Toll-like receptor 7; DC, dendritic cell; CVS, cardiovascular system; IFN-g, interferon gamma; LDL, low-density lipoprotein; HDL, high-density lipoprotein;
ATIII, antithrombin III; IRAK1, Interleukin-1 receptor-associated kinase 1; MOF, multiorgan failure).
August 2021 | Volume 12 | Article 680845
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of COVID-19 disease (36). Most COVID-19 affected patients
have higher plasma levels of pro-inflammatory cytokines/
chemokines (IL-6, IL-2, IL-8, IL-7, CCL2, CCL3, and TNF) (3).
This may lead to tissue damage and subsequent organ failure.
Elevated levels of plasma cytokines are correlated with a decrease
in lymphocytes which leads to the progression of COVID-19
disease. Dysfunction of T cells with age is also associated with
worse COVID-19 disease outcomes (46). However, even though
elderly women develop a strong T-cell immune response,
majority develop anti-Spike IgG at the initial stage of infection
that helps in suppressing proinflammatory cytokines, and hence,
worsening of disease does not occur (47).

It is equally pertinent to mention that women are at no lesser
risk of getting infected with coronavirus, especially during
pregnancy, as women fall at higher risk of severe illness from
other respiratory infections. COVID-19 infection in pregnant
women did not differ much from non-pregnant women (48).
Reports have suggested that pregnancy and childbirth do not
seem to contribute to an increased risk of contracting SARS-
CoV-2 infection; it also does not increase the severity of the
clinical course of COVID-19, compared to non-pregnant women
of the same age (49–51).

COVID-19 infection during pregnancy may have more
unfavorable results in comparison with the non-pregnant
group (52). Additionally, COVID-19 and pregnancy increase
the chance of internal clotting that increases the risk of
thrombosis (53). During the period of pregnancy, a large
variety of immune cells, mostly natural killer (NK) cells,
macrophages, and regulatory T cells (Treg), are activated. The
accumulation of macrophages and NK cells takes place around
trophoblastic cells during the first trimester of pregnancy
protecting miscarriage of the allogeneic fetus (19). Hence, the
maternal immune system shields fetus from the damage by
environmental insults. Likewise, the fetus also modifies the
maternal immune system. During pregnancy, PG has
immunomodulatory effects that influence the Th1 response. In
pregnancy, an enhancement in anti-inflammatory factors like
interleukin-1 receptor antagonist (IL-RA) and TNF-a receptor
(TNF-R) is recorded; conversely, a decrease in IL-1b and TNF-a
is found (20).

Variations in the estrogen and PG levels during pregnancy
may cause respiratory, cardiovascular, reversible degeneration in
the thymus, with a reduction in CD4+ and CD8+ T cells that may
lead to more susceptibility of women to SARS-CoV-2 infection.
The PG on nasal mucosa acts as a facilitator in the attachment of
the virus and prevents its elimination. Additionally, an increase
in oxygen consumption due to vascular congestion and
reduction in the capacity of the lung may increase the risk for
severity of COVID-19 in pregnant women (54). Another risk
factor is the higher ACE2 expression during pregnancy, and
hence increased risk of complications from COVID-19 infection
(55). An increase in ACE2 receptors in the kidneys during
pregnancy may contribute to effective regulation of blood
pressure, although it can favor the attachment and facilitate
the virus entry into the host cells (54).

Androgens might lead to severe COVID-19 disease among
men through raising neutrophil count and increasing
Frontiers in Immunology | www.frontiersin.org 6
the production of cytokines (IL-1b, IL-10, IL-2), altering
TGF-b production by immune cells, and decreasing the
antibody production (47). This event is crucial as the patients
with severe COVID-19 exhibit cytokine storm syndrome due to
neutrophils. One of the androgen pathways in COVID-19
infection is the transmembrane protease, serine 2 (TMPRSS2)
gene that is expressed mainly in the adult prostate (56), and in
metastatic prostate cancers; it is also found in tissues like lung,
kidney, pancreas, colon, small intestine, and liver (56). The
TMPRSS2 gene is transcribed and regulated by the androgen
receptor, and the main target of TMPRSS2 expression in
COVID-19 is the lungs, kidneys, and liver (57). In one
retrospective study, increased levels of testosterone in most
women (60%) having COVID-19 disease were recorded; a
positive correlation between the levels of testosterone and pro-
inflammatory cytokines among women with COVID-19 was also
noted (58).

In view of a higher mortality in men from COVID-19
compared to women, it has recently been pointed out that
testosterone may affect disease severity. This notion is
supported by the evidence that the primer protease for SARS-
CoV-2 spike protein, TIMPRSS2, as well as the virus entry
receptor, ACE2, are upregulated by testosterone (59). Although
debated, androgen-deprivation therapy in prostate cancer
patients infected with SARS-CoV-2 has been suggested (60).
However, hypogonadism can also be a risk factor for severe
COVID-19 (61). It is worth noting that women suffering from
polycystic ovarian syndrome (PCOS), which is characterised by
heightened androgen levels (hyperandrogenism), have been
found to be at a significantly higher risk of COVID-19
compared to non-PCOS women (62, 63).
ROLE OF ANGIOTENSIN-CONVERTING
ENZYME 2 (ACE2)

The ACE2 gene that is found on the X chromosome (location:
Xp22.2; nucleotides 15 494 402–15 602 148, GRCh38.hg38
version) has been reported to work differently in men and
women (64). ACE2 carries out its important functions by
dissociating angiotensin I into angiotensin II. Angiotensin II,
being a small peptide, is of huge importance in the case of
vasoconstriction and sodium balance. ACE2 breaks angiotensin I
and II into dissociated peptides that possibly lead to
vasodilatation and, hence, countering angiotensin II (65, 66).
The entry route for SARS-CoV-2 is via ACE2, similar to the
SARS-CoV virus, bearing a spike protein that binds with ACE2
to invade the cells (20, 46, 67). The location of the ACE2 gene on
Xp22.2 is a site of genes that escapes XCI, leading to phenotypic
dissimilarities between genders (68, 69). SARS-CoV-2 possesses
16 residues of receptor binding motif (RBM), and binds to 16 of
the 20 ACE2 residues present in men. In women, the same RBM
of SARS-CoV-2 may be detected by ACE2 on any of the two X
chromosomes. The possibility becomes less for the similar
residue sequences of ACE2 present on the second chromosome
to bind efficiently to the RBM of SARS-CoV-2, leading to the
August 2021 | Volume 12 | Article 680845
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breakdown of Ang II to form Ang 1–7 by unbound ACE2, and
therefore might reduce the chance of respiratory edema during
SARS-CoV-2 infection. Men, with only one X chromosome, are
deficient in the alternative mechanisms that could impart cellular
protection during COVID-19 infection (70, 71).

Several significant divergences in the prevalence of ACE2
variants have been reported among diverse races and ethnicity.
Recently, a single-cell RNA sequencing (RNA-seq) study
reported that Asian men could express tissue ACE2 at a higher
level (72). During a study on the northeastern Chinese Han
population, the serum ACE2 activity was found to have a
negative correlation with body mass index, pulse pressure, and
estrogen levels among hypertensive women (6). Such studies
indicate a protective mechanism of circulating ACE2 and the
participation of estrogens in the expression and upregulation of
ACE2 activity levels (73).

ACE2 is present in epithelial cells of the lung, intestine, blood
vessels, and kidney (74). The angiotensin system plays a vital role
in cardiovascular homeostasis, acute inflammation, and
autoimmune disorders (75). The presence of high ACE2
receptors may lead to a higher risk of contracting SARS-CoV2.
It has been reported that men have elevated levels of circulating
ACE2 than women, and also in patients having diabetes and
cardiovascular ailments (76). People with cardiovascular failure
have the plasma ACE2 elevated in men compared to women,
which correlates with increased SARS-CoV infection (65, 77).
Among the hypertensive women, blood pressure and body mass
index inversely correspond to ACE2, whereas there is a direct
correlation of blood sugar and estrogen levels to ACE2 level (65,
78). As mentioned above, estrogen also downregulates the renin-
angiotensin system components acting as an anti-inflammatory
and anti-oxidative agent (67, 78). Significant functional regulation
of ACE2 by estrogen may explain the gender differences in
COVID-19 associated morbidity and mortality (79).

Microbiota
Development of a pronounced innate and adaptive immune
response is greatly influenced by the composition of the human
gut microbiota. The human gut possesses a diverse and complex
microbial consortium that reciprocates by establishing the
persistent host immune homeostasis (80–82). The human gut
harbors complex communities of microorganisms that includes
holobiont (composite organism) and hologenome (collective
genome of all bionts) (83). This complex composition offers a
crucial genomic and metabolic capability that has an important
impact on the initiation, development, and action of the host
immune system, thereby protecting against infections and
safeguarding the ecosystem of gut flora (84). The homeostatic
cascades existing between the immune system and gut microbiota
of the host play a crucial role in modulating the activation of host
cells and tissues involved in response to infectious agents (85).
The interaction of virus and microbiota has been studied in
several viral infections. For example, surfactin, a molecule on a
Bacillus subtilis surface, is known to disintegrate many viruses
including influenza A (85). Thus, the gut microbiota is likely to
influence COVID-19 pathogenicity, and conversely, SARS-CoV-2
may influence the gut microbiota leading to dysbiosis and other
Frontiers in Immunology | www.frontiersin.org 7
unpleasant consequences (86). Therefore, the alteration of the
composition of existing microbiota and health conditions during
SARS-CoV-2 infection is likely to have a major role in
establishing the susceptibility and resilience of an individual to
COVID-19. However, most of the COVID-19 severe symptoms
and fatalities occur in individuals having some risk factors such as
aging, preexisting comorbidities, and, to some extent, gender,
which are indirectly characterized by disrupted microbiome
status (87).

Like gastrointestinal system, the respiratory microbiome
constitutes the community of differentiated bacterial phyla like
Bacteroidetes, Firmicutes, and Proteobacteria and has a protective
role in the host immunity (44, 88) (Figure 4A). Han et al. showed
that the COVID-19 infection can alter the lung microbiome (89).
A severe dysbiosis was found among COVID-19 patients, with a
higher prevalence of pathogenic microbes such as Klebsiella
oxytoca, Faecalibacterium prausnitzii, Lactic Acid Bacteria, and
Tobacco mosaic virus (TMV) (Figure 4B). The serious
inflammatory environment in the lungs correlated with Rothia
mucilaginosa, TMV level, and SARS-CoV-2, suggesting a key
role of respiratory microbiota in COVID-19 disease. Other
studies also reported fecal microbial changes in 15 subjects
infected with COVID-19 that correlated with high severity and
abundance of Coprobacillus, Clostridium ramosum, and
Clostridium hathewayi, and reduced levels of Faecalibacterium
prausnitzii and Alistipes onderdonkii (90, 91) (Figures 4A, B).

The microbiota existing outside of the reproductive tract is
significantly mediated by the sex steroid hormones. Many studies
conducted on mice, fish, and humans have analyzed the sex
difference in gut microbiota. This subject of whether the sex
difference in gut microbiome in humans has any involvement in
the disparity of viral infection is an interesting area to study (92).
In a study, gender differences correlated with the overall
composition of gut microbiota. The gut microbiome in women
was found to have a lower occurrence of Bacteroidetes compared
to men (93). An animal study evaluated gender-specific
variations in the composition of gut microbiota (94, 95). The
systemic estrogen levels may be influenced by dietary fiber,
which is the main energy source of gut microbial fermentation
and, hence, formulates the gut microbiota (94, 96).
ENVIRONMENTAL MEDIATORS

In addition to biological differences accounting for a significant
gender disparity of COVID-19, the influence of environmental
factors could also play a part (97).

Lifestyle
Lifestyle choices among the genders possibly makes a huge
difference. Historically, it has been noticed that men are more
habitual of smoking than women. Smokers tend to have
weakened lungs leading to chronic lung and heart diseases
that could be the worst outcome, if infected with COVID-19
(97–100). In China, the smoking prevalence in men is 57.6%
which is nearly 10 times more than the women with 6.7% (101).
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A

B

FIGURE 4 | Illustration showing the impact of healthy and unhealthy microbiota on respiratory tract infection. The complex relationship via gut-lung axis might be
crucial in determining the vulnerability of respiratory tract to COVID-19, as an outcome of potential variation and crosstalk between (A) healthy gut microbiota with
occurrence of fewer Bacteriodetes and (B) respiratory microbiota with prevalence of more Klebsiella and Ruthia sps in virus infected alveolus.
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The lower airways of smokers have shown a higher expression of
ACE2, suggesting a higher risk for COVID-19 (102, 103). Such
findings are an indication of one of the factors behind the
increased mortality in men with COVID-19 which needs
further validation.

Exercise
The decreased incidence rate of COVID-19 symptoms in women
can be also related to the physical activity engaging frommoderate-
to-vigorous one. Women are considered to be physically more
active when compared with men who prefer prolonged and
intensive exercises (1, 104). Prolonged and vigorous exercise may
lead to immunosuppression; on the contrary, mild and moderate
exercise enhances immune response and significantly minimizes
the risk and severity of respiratory viral infection. This is supported
by a number of studies that explain a moderate level of exercise
lowers inflammation and boosts the immune function. Regular
mild physical activity influences the level of hormones related to
stress, which downregulates intense inflammation of the respiratory
tract and helps in activating the anti-viral innate immunity
polarising the immune function towards a Th2 profile, extensive
research is needed to study cellular and molecular cascades through
which exercise regulates immune response (104–106).

Nutrition
A study shows nutritional environment during the post and
prenatal period is associated with a reduced mortality rate
among females in case of HIV, for example, high-fat diet and
the micronutrients like Vitamin B, C, and E supplements have a
reduction of 32% (107). Another study suggests the benefits of
supplementary maternal micronutrients in women compared to
men (108, 109).
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSIONS AND PERSPECTIVE

Immunity, X-chromosome associated genes, and sex hormones
are the main distinguishing factors that are likely to offer greater
resistance against SARS-CoV-2 in women. The evidence
suggesting important decisive factors of gender-related
disparity in immunity may impact on the onset of COVID-19
and vaccination outcomes.
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