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Abstract 

 The local support basis representation of the ‘weighted v-spline’ 
i s  de r ived  in  t e rms  o f  doub le  kno t  cub ic  B-sp l ines ,  so  p rov id ing  a   
conven ien t  fo rm fo r  comput ing  and  ana lys ing  the  represen ta t ion .  
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1 Introduction 
In this note, the local support basis representation of the weighted v-spline, 
[Foley’87,88], is considered via a transformation to double knot cubic B-            
spline form. The weighted v-spline is a C1 piecewise cubic curve which has        
specific second derivative jump discontinuity constraints across the knots of                
the spline. The constraints involve interval and point tension weights, which               
can be used to influence the shape of the curve, and the transformation                 
to double knot B-spline form provides a convenient computational tool for       
handling and analysing the local support basis representation. 
    The weighted v-spline combines the v-spline, [Nielson’74], with the weight-                   
ed spline, [Salkauskas’84], and thus includes these splines as special cases.            
Since the v-spline is intimately connected with the -spline, [Barsky’81],  
[Goodman’85], there is an immediate relationship between the local support             
basis representation presented here with that of the -spline. The develop-            
ment of the local support basis representation builds on the work of [Foley’86],                  
for the weighted spline, and with the work of [Boehm’85] and [Lasser’88], for       
‘geometric splines’, where Bernstein-Bézier representations are discussed, see                 
also [Dierckx and Tytgat'89]. Thus, for completeness, we briefly review the 
transformation to Bernstein-Bézier form in section 3. Here we will see that 
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the control points of the Bernstein-Bezier representation include those of 
the double knot B-spline representation developed in section 2, a result that 
should urprise the thoughtful reader. In the final section 4, the deriva- not s
tion of the cal suppor asis representation which satisfies interpolation lo t b

2    The double knot B-spline representation 
constraints at the knots is considered. 

Let { define a sequence of distinct knots with interval spacing }ΖΖ∈∈ iRIti :

ΖΖ∈>−= + i,0tt:h i1ii . Then a weighted v-spline is a C1 parametric 

Function  p : such that mRIRI →

,i,)tt(
31ii ΖΖ∈∈Ρ ∏+   (piecewise cubic curve)  (2.1) 

and 

ΖΖ∈=− −
−

+ itPvtPwtpw iiiiii ,)2(

The case w
)(()( )1()

1
)2( .   (2.2) 

i = wi-1 = 1 is that of the unweighted v-spline of [Nielson’74], 
when (2.2) defines a eometric GCg  across the kn
curve is C

2 constraint ot ti, that is the 
2 under a reparameterization. The case Vi =0 is the weighted 

spline of [Salkauskas’84], se  als  [Foley’86]. he ene l case (2.2) is that e o T  g ra
described in [Foley’87,88]. For the analysis we take ΖΖ∈≠ iwi ,0 , and 
replace (2.2) by the equivalent form 

,),(p)(p)(P (1)(2)(2) ΖΖ∈=− −+ itvtwt iiiii
))    (2.3) 

where 
.//1 iiiiii wvvwww == −

))     (2.4) 

        Assume that there exists a normalized local support basis { } Ζ∈ii )t(N  for 

the linear space of weighted v-splines, defined such that 
),t,t(t,0)t(N 4iii +∉=  (local support)  (2.5) 

and 
1)t(Ni

i
=∑

Ζ∈

,  (partition of unity normalization).   (2.6) 

Then given the control points { }ΖΖ∈∈ j:RRc j , we wish to represent the 

Curve                              
)t(Nc)t(p jj

j
∑
Ζ∈

=                  

[ ,t,tt),t(Nc 1iijj

i

3ij
+

−=

∈= ∑ ]      (2.7)  
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in double knot cubic B-spline form. Indeed, the representation of a weighted 
v-spline as a double knot B-spline will demonstrate the existence of the local 
support basis representation. 
Thus, let 

  ,   (2.8)          ΖΖ∈+−⎥⎦
⎤

⎢⎣
⎡−= +

∧

+

∧

+

∧

+

∧∧∧

+

∧

j,)t(.,t,t,t,t,t)tt(:)t(B 3
14j3j2j1jjj4j

4
j

define the normalized cubic B-splines, see [de Boor'78], on the double knot 
partition 

⎭
⎬
⎫

⎩
⎨
⎧ ΖΖ∈==∈ +

∧∧∧

,ttt:RRt j1j2j2j ,      (2.9) 

In particular, 
  [ ] +−−= ++++

3
2112

4
2 )(.,,,,,)(:)( tttttttttB jjjjjijj  

and 
[ ] +−−= ++++++

3
22112

4
12 )(.,,,,,)(:)( tttttttttB jjjjjjjj  

are the double knot B-splines with the local support of . )t,t( 2jj +

The space of double knot cubic B-splines consists of C1 piecewise cubic curves which, in 
general, have second derivative discontinuities across the 
knots. We thus seek the representation of a weighted f-spline in the double 
knot cubic B-spline form 

   )t(Bb:)t(P 4
jj

zj
∑
∈

=

          ,                (2.10) [ ]1
4

12

22
,),(: +

+

−=

∈= ∑ iijj

i

ij
ttttBb

with control points { }ΖΖ∈∈ jRIb m
j : . Following [de Boor’78, pl39] we 

have 

)/()(3),()( 31
)1(3)1()1(

jjjjjjj
j

ttbbbtBbtp
∧

+

∧

−
ΖΖ∈

−−== ∑              (2.11) 

),/()bb(2b),(b)(p 2
)1(
1

)1()2(2)2()2(
jjjj

j
jjj tttBt

∧

+

∧

−
ΖΖ∈

−−== ∑              (2.12) 

where 

                                             (2.13) 

⎪
⎪
⎭

⎪⎪
⎬

⎫

+−⎥⎦
⎤

⎢⎣
⎡−=

+−⎥⎦
⎤

⎢⎣
⎡−=

+

∧

+

∧∧∧

+

∧

+

∧

+

∧

+

∧∧∧

+

∧

,)(.,,,)(:)(

,)(.,,,)(:)(

1
212

2

2
3213

3

tttttttB

ttttttttB

jjjjj

jjjjjj

define the normalized quadratic and linear double knot B-splines. It is now a 
relatively simple exercise to show that the weighted v-spline constraint (2.3), 
applied to the double knot B-spline representation (2.10), gives 

,bb)1(bb)1( 22122322222 iiiiiiii −−−−−−− +−=+− σσττ              (2.14) 
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Figure 1: Transformation to double knot B-spline control points 
where 

)/()(2:),/()(2: 2
12

2
112 pihhhpihhhw iiiiiiiii +−=+= −−−−

∧

− στ                          (2.15) 

with 

i1iii vh/w2h/2:pi
∧

−

∧

++= .                (2.16) 

Equation (2.14) can be interpreted as the requirement that two lines intersect 

at a point and it is the simple observation of Proposition 2.1 below that this 

intersection is the control point  of the local support basis representation 2ic −

(2.7), see figure 1. Thus, given { }  the control points,c ii ΖΖ∈ { } ,b ii ΖΖ∈  are given 

by solving 

  
⎭
⎬
⎫

=−+
=+−

−−−−

−−−−

,)1(
,)1(

121121

222122

iiiii

iiiii

cbb
cbb

ττ

σσ
,ΖΖ∈i               (2.17) 

that is 

[ ] [ ]
[ ] [ ] ΖΒΖ∈

⎭
⎬
⎫

∆σ−+∆−=
∆σ−∆−=

−−−−

−−−−− i
,c/1c)/T(b
,c/c/)T1(b

1ii2i2ii1ii2

1ii2i2ii1i1i2                  (2.18) 

where 

2i1ii T1: −− σ−−=∆ .                             (2.19) 

We now have: 

Proposition 2.1  Suppose  and 0pi ≠ ΖΖ∈≠∆ i,0i . Then 

(i) There exists a normalized local support basis { } ΖΖ∈itNi )(  for the space  

of weighted v-splines. 
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(i  There xists the transformation (2.18) from the control points of the i)  e

 local support basis representation to those of a double knot B-spline represent  
tation. 

Furthermore, if 

    (2.20) ,i,0vh/w2h/2:and0w i1iiiii ΖΖ∈>++=ρ>
∧

−

∧∧

then 
        (iii) The normalized local support basis is non-negative and the local sup- 
 port  basis representation [ ],,),( 1+∈ ii ttttP  lies in the convex hull of  { } . i

31jic −=

       (iv) The local support basis representation is variation diminishing, in 
particular, any (hyper) plane of dimension m — 1 crosses [ ]1ii t,tt),t(P +∈  no 
more times than it crosses the control polygon joining the points { } . i

3ijjc
−=

Proof. The proof is straightforward and for brevity we just outline its es-             sential 
features. For a given ΖΖ  let scalar values j, b,  be defined by (2.18), with 
right hand sides having scalar values  defined by  

∈j j,i21i2b −

j,1ij,2i c,c −−

 ΖΖ∈δ= i,c j,ij,i      (2.21) 

Then bi,j,  has the support of the integer set {2j + 1,..., 2j + 4} and  

              (2.22) 

ZZi∈

( ) ( ) ( )∑∑
+

+=∈

==
4j2

1j2i
ij,i

ZZi
ij,i:j tBbtBbtN

defines a weighted v-spline function with the local support of (tj,tj+4). More-            over, our 
previous work then demonstrates the existence of the transforma-              tion (2.18). In 
particular, with scalar values { }ZZici ∈= :1  we ob-                           tain { }from 
(2.18) and the partition of unity normalize-                  tion (2.6) follows from the partition of 
unity property of the double knot                   B-splines. The conditions (2.20) guarantee 
that

ZZibi ∈= :1

,0,0 22 << −− ii στ  and                       then .,11 21 ZZiiii ∈>−−=∆ −− στ  Hence the 
transformation (2.18)                     involves convex combinations and it follows that the 

in (2.22) are            non-negative. Hence NZZib ji ∈,, j(t) is non-negative and the convex hull 
property fol-       lows from the partition of unity normalization. Also, (2.18) defines a corner 
cutting process, see figure 1, and hence the variation diminishing property        follows from 
that of the double knot B-spline representation. □ 
 
Remark. In terms of the notation of the standard weighted v-spline con-            straint (2.2), 
condition (2.20) can be written as 
 

,ZZi),h/wh/w(2v,0w 1i1iiiii ∈+−>> −−    (2.23) 
 
and it should be noted that negative values of the parameter vi are allowable        whilst still 
maintaining properties (iii) and (iv) of the Proposition. 
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Tension properties. The transformation (2.18) can be used to justify the         point and 
interval tension properties of the local support basis representation         of the weighted v-
spline with respect to the parameters vi and wi. We first               observe that, in terms of the 
double knot B-spline representation, 

  ( ) .b
hh

h
b

hh
h

tP 1i2
i1i

1i
2i2

i1i

i
i −

−

−
−

− +
+

+
=    (2.24) 

The analysis of the control point transformation (2.18) now leads to the        following results, 
where, for simplicity, it is assumed that the other shape parameters are held constant with 
respect to each limit process: 
 
(i)Point tension . iν

 .cblimblim 2i1i2v2i2v ii
−−∞→−∞→

==   (2.25)  

Thus, as  increases, P(tiν i) is pulled towards ci-2  in the limit a cusp                   tangent 
discontinuity is introduced at ci-2. 
 
(ii)Interval tension wi. 
 
        (2.26) ,2i2i2w

cblim
i

−−∞→
=

 ,
33

2lim 1
11

1
2

11

1
12 −

+−

−
−

+−

+
−∞→ ++

+
+

++
+

= i
iii

ii
i

iii

ii
iw

c
hhh

hhc
hhh

hhb
i

   (2.27) 

  ,c
hh3h

h2h
c

hh3h
hh

blim 1i
1ii1i

i1i
2i

1ii1i

1ii
i2wi

−
+−

−
−

+−

+

∞→ ++
+

+
++

+
=   (2.28) 

        (2.29) .cblim 1i1i2wi
−+∞→

=

It follows that, as wi increases, P(t), [ ]1ii t,tt +∈  is pulled onto a straight line     segment 
between  and . Furthermore, the end points of this segmentare given by: 2ic − 1ic −

 ,c
hh3h

h
c

hh3h
hh3

)t(Plim 1i
1ii1i

1i
2i

1ii1i

1ii
iwi

−
+−

−
−

+−

+

∞→ ++
+

++
+

=   (2.30) 

 ,c
hh3h

h3h
c

hh3h
h

)t(plim 1i
1ii1i

i1i
2i

1ii1i

1i
1iwi

−
+−

−
−

+−

+
+∞→ ++

+
+

++
=   (2.31) 

Here, the analysis confirms the results of [Foley’86]. 
      Some simple examples of the point and interval tension behaviour for the       local 
support basis are given in figure 2. 
 
3 The Bernstein-Bézier representation 
 
For completeness, we briefly review the transformation of the weighted ν -        spline to 
Bernstein-Bézier (triple knot B-spline) form. This transformation 
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Figure 2: Examples of tension control behaviour 
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could be easily derived from the double knot B-spline representation but       instead we 
generalize the discussion to the space of C° piecewise cubic gen-realized -spline curves 

 defined such that 
β

nRIRI →:p

     (3.1) 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) .ZZi

,tPtPtP

,tPtP

i
2

i,3i
1

i,2i
2

i
1

i,1i
1

∈
⎪⎭

⎪
⎬
⎫

β+β=

β=
−−+

−+

The derivation of the Bernstein-Bézier form of the local support basis repre-entation then 
follows from the work of [Boehm'85] and [Lasser'88]. 
       It is well known that there is no loss of generality in taking integer knots        in (3.1), 
since a piecewise affine transformation onto integer knots gives con straint equations with 
parameters 

  ,
h

hˆ,
h

hˆ,
h

hˆ
1i

2
ii,2:i,3

1i

2
ii,2:i,2

1i

ii,1:i,1
−−−

β
=β

β
=β

β
=β    (3.2) 

On the general knot partition, the weighted ν -spline constraint (2.3) is re-   covered as the 
special case 
   .ˆ,ˆ,1 ,3,2,1 iiiii w=== βνββ     (3.3) 

The case  gives the standard i,1
2

i,3 β=β β -spline of [Barsky '81], see [Goodman      ’85], when 
(3.1) defines a geometric GC2 constraint across the knot ti. In          fact, in the non-periodic 
case, the standard -spline and unweighted β ν -spline     are equivalent under a piecewise 
denned affine transformation, although we      will not pursue this equivalence here. 
     We now seek the representation of a generalized β -spline in the C° piece-  wise denned 
Bernstein-Bézier form 

 ( ) ( ) ( ) ,ZZi,h/tt),(BbtP ii

3

0k

:
kki3

:
tt 1i,i

∈−=θθ=∑
=

++
   (3.4) 

where 

              (3.5) ( ) ( ) .1
k
3

B k3k:k
−θ−θ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=θ

Imposing the constraints (3.1) on this form gives, after some elimination, 
          ( ) 1i3i1i3ii3 b1bb −− µ−+µ=      (3.6) 

and 
 ( ) ( ) ,bb1bb1 2i32i1i32i1i32i1i32i +−+−−−−− σ+σ−=τ+τ−    (3.7) 

where 

   ( )
( ) ( )

,
k

ˆ12
,

k

ˆˆ12
,ˆ1

ˆ

i

i,1:2i
i

i,3i,1:2i
i,1

i,1:i

β+−
=σ

ββ+−
=τ

β+

β
=µ −−    (3.8) 
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Figure 3: Transformation to Bernstein-Bézier form 
with 

        (3.9) .ˆˆˆ2 ,3,2,1 iiiik βββ ++=

Equation (3.7) represents the intersection of two lines at the control point         of the 
local support representation, see figure 3. We then have 

2ic −

    (3.10) 
( )[ ] [ ]
[ ] [ ] ,ZZi

c/)1(c/b
c/c/1b

,1ii2i2ii1i2i3

,1ii2i2ii1i1i3 ∈
⎭
⎬
⎫

∆σ−+∆τ−=

∆σ−∆τ−=

−−−−+

−−−−+

where 

      .1 2i1i:i −− σ−τ−=∆      (3.11) 

Equations (3.10) and (3.6) thus define the transformation from the control        points Cj, 
 to those of the Bernstein-Bézier representation. ZZi∈

    For the case of the weighted ν -spline, where the β -coefficients are defined      by (3.2), 
we obtain 

    ( )iiii hhh += −1/µ     (3.12) 

from (3.8) and coefficients ,  which are identical with those of the       double knot 
B-spline transformation defined by (2.15). Thus the interior       control points (3.10) of the 
Bernstein-Bézier representation are identical with      the control points (2.18) of the double 
knot B-spline representation (compare      also (2.24) with (3.6)). This is a property which 
could be observed directly      from a study of the behaviour of the double knot cubic B-
splines. 

2i−τ 2i−σ

 

4 Interpolation  using  the  local  support  basis 
We conclude by considering the derivation of the local support basis repre-sentation 
satisfying interpolation constraints at the knots.  For brevity, we 
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consider only clamped type end conditions for the interpolation problem. 
Thus, given the local support basis representation 

        (4.1) ( ) ( )∑
−

−=

=
1n

3j
jj: tNctP

of a weighted ν -spline on [t0, tn], we seek the cj, j = -3,..., n-1 such that                        
( ) ,n,....,0i,ytP ii ==  (4.2) 

with clamped end conditions 
    ( ) ( ) ( ) ( ) .dtP,dtP nn

1
00

1 ==    (4.3) 
The representation (4.1) could be derived from the work of [Foley'87], by onverting 

the piecewise Hermite representation used there to double knot            B-spline form. Here, 
however, we consider a direct derivation of the control     points Cj. Substituting the double 
knot B-spline representation (2.10) in            (4.2) and (4.3), with control points given by 
(2.18), gives 

( ) ( )

( ) ( 4.4,n,...,0i,yhh

c
h

c
1h1h

c
h

i1ii

1i
1i

2i1i
2i

i

1i1i

1i

3ii
3i

1i

2ii

=+=

∆
σ−

+⎥
⎦

⎤
⎢
⎣

⎡
∆

τ−
+

∆
σ−

+
∆
τ−

−

−
−

−−
−

−−

−

−
−

−

−

)

 

with end conditions 

( ) ( )

( ) .dhh
3
1c11

cc

5.4,dhh
3
1cc11

c

nn1n2n
n

1n

1n

3n
3n

2n

2n
1n

n

2n

0011
0

2
2

0

1

1

3
3

1

2

++⎥
⎦

⎤
⎢
⎣

⎡
∆
τ−

−
∆
σ−

+
∆
τ−

=
∆
σ−

+−
∆
σ−

+⎥
⎦

⎤
⎢
⎣

⎡
∆
τ−

+
∆
σ−

−=
∆
τ−

−−
−

−

−
−

−

−
−

−

−−
−

−
−

−

−
−

−

−

 

(4.6)  
Using (4.5) and (4.6) to eliminate c-3 and cn-1 then gives a tridiagonal 
system defined by (4.4) for i = 1,..., n — 1, where for i = 0 and i = n the 
equations become 
        

( )

( )8.4.d
3
1yc1c

7.4,d
3
1ycc1

12
1

3
3

1

2

0001

0

2
2

0

1

nnnn
n

n
n

n

n h

h

−−
−

−
−

−

−

−
−

−
−

−=
∆
−

+
∆
−

+=
∆
−

+
∆
−

στ

στ

 

Let
( ) .1:

2
ii

ii
i pw

hh +
= −

−α  

Then  > 0 for ρ2i−α i, satisfying (2.20) and simple substitution shows that 
( ) ,01 3i2i3i2i2i2i3i >ατ−>ατ−α=ασ− −−−−−−−                  (4.10) 
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( ) ,01 1212221 >−>−=− −−−−−−− iiiiiii ασασαατ            (4.11) 

 

It follows that under the transformation 

  (4.12) 
∧

α= ,c:c iii

the tridiagonal system in the unknowns ic) , i = —2,..., n — 2 is diagonally                        
dominant. We thus have: 

 

Proposition 4.1 For parameters satisfying (2.20), or equivalently (2.23), 
 for i = 0,...., n—1, there exists a unique weighted v-spline on [t0,tn] satisfying 

the interpolation conditions (4.2) and (4.3). 
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