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Abstract
The local support basis representation of the ‘weighted v-spline’
is derived in terms of double knot cubic B-splines, so providing a

convenient form for computing and analysing the representation.
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1 Introduction

In this note, the local support basis representation of the weighted v-spline,
[Foley’87,88], is considered via a transformation to double knot cubic B-
spline form. The weighted v-spline is a C' piecewise cubic curve which has
specific second derivative jump discontinuity constraints across the knots of
the spline. The constraints involve interval and point tension weights, which
can be used to influence the shape of the curve, and the transformation
to double knot B-spline form provides a convenient computational tool for
handling and analysing the local support basis representation.

The weighted v-spline combines the v-spline, [Nielson’74], with the weight-
ed spline, [Salkauskas’84], and thus includes these splines as special cases.
Since the v-spline is intimately connected with the f-spline, [Barsky’81],

[Goodman’85], there is an immediate relationship between the local support
basis representation presented here with that of thef-spline. The develop-

ment of the local support basis representation builds on the work of [Foley’86],
for the weighted spline, and with the work of [Boehm’85] and [Lasser’88], for
‘geometric  splines’, where Bernstein-Bézier representations are discussed, see
also [Dierckx and Tytgat'89]. Thus, for completeness, we briefly review the
transformation to Bernstein-Bézier form in section 3. Here we will see that
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the control points of the Bernstein-Bezier representation include those of
the double knot B-spline representation developed in section 2, a result that
should not surprise the thoughtful reader. In the final section 4, the deriva-
tion of the local support basis representation which satisfies interpolation

constraints at the knots is considered.

2 The double knot B-spline representation

Let {tl. eR:ie/Z }deﬁne a sequence of distinct knots with interval spacing

h;

1

t, —t. >0,icZ.Then a weighted v-spline is a C' parametric

Function p: IR — IR" such that
P‘(titiﬂ) € H3 A€ , (piecewise cubic curve) (2.1)

and

w,p () ~w PP )=v,PU(,) i Z. (2.2)
The case w;=w;; =1 is that of the unweighted v-spline of [Nielson’74],
when (2.2) defines a geometric GC? constraint across the knot t;, that is the
curve is C” under a reparameterization. The case V; =0 is the weighted
spline of [Salkauskas’84], see also [Foley’86]. The general case (2.2) is that
described in [Foley’87,88]. For the analysis we take w, #0,ieZ, and

replace (2.2) by the equivalent form

POt )~ wp® () =vp(t)i e Z, (2.3)
where
W, =W, /WY, =V, [ w,. (2.4)
Assume that there exists a normalized local support basis {Ni(t)}ieZ for
the linear space of weighted v-splines, defined such that
N.(t)=0,t & (t,,t,,,), (local support) (2.5)
and
Z N.(t) =1, (partition of unity normalization). (2.6)

ieZ
Then given the control points {cj eR :jeZ }, we wish to represent the

Curve

p(t) = Z Cij(t)

jez

- ZI: c;N;(t).te [ti>ti+l ]a (2.7)

j=i-3
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in double knot cubic B-spline form. Indeed, the representation of a weighted
v-spline as a double knot B-spline will demonstrate the existence of the local
support basis representation.

Thus, let

B?(t) = (tj+4_tj)[tj,tjﬂ,tﬁz,tj+3,tj+14,:|(.—t)j_ ,JEZL, (2.8)

define the normalized cubic B-splines, see [de Boor'78], on the double knot
partition

{tjEIR tty =t =t,,€Z }, (2.9)

In particular,

B;«f ()= (., = ti)[tj’tj RPN ak- - t):-
and

B (6) = (s = 1)t ot ol pao o o= D
are the double knot B-splines with the local support of (t;,t;,,).

The space of double knot cubic B-splines consists of C' piecewise cubic curves which, in
general, have second derivative discontinuities across the
knots. We thus seek the representation of a weighted f-spline in the double
knot cubic B-spline form
P(t):=) b,Bi(t)
jez
2i+1

=Y bBItelt.t,], (2.10)
2

j=2i-

with control points {b_/ eR":jel } Following [de Boor’78, pl39] we

have
PP @)= BVBN0),bY =3(b, —b, )/t ;3 1)) (2.11)
jez
pP ()= D b B} (1), b =26 b ) (1 12— 1)), (2.12)
JeZZ
where

B (1) = (1 js3— t)[t,-, tii,tjs2, tj+3}(.—l)2+,
(2.13)

A

AN A A A
B (t):=(tjs2- t)[tj, {41, zﬁz,}(.— '+,

define the normalized quadratic and linear double knot B-splines. It is now a

relatively simple exercise to show that the weighted v-spline constraint (2.3),

applied to the double knot B-spline representation (2.10), gives
(-7,,)by,+7,,b, 3, =(1-0,,)b, +0,,b,, (2.14)
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Figure 1: Transformation to double knot B-spline control points

where

T, ,=2 VAVI' (hy +h) /(hiz—lpi)o 0,5 ==2(h_ +h) /(hizpi) (2.15)
with

pi:=2/h; +2wi/h,_ +vi. (2.16)
Equation (2.14) can be interpreted as the requirement that two lines intersect
at a point and it is the simple observation of Proposition 2.1 below that this

intersection is the control point ¢, , of the local support basis representation

(2.7), see figure 1. Thus, given {ci} the control points {bi }iez , are given

i€Z °
by solving
(1=0,,)by +0,,by =¢; 9} ieZ, 2.17)
Tiabyy +(A=7)by =y,
that is

2i-1 = [(1 - Ti—l)/Ai]Ci—Z - [Gi—z

b /A]c}
ie BZ (2.18)
by = _[(Ti—l /Ai)]ci—z + [1 —G6i, /Ai]ci—l’

where

A, =1-T,_, -oc,,. (2.19)
We now have:
Proposition 2.1 Suppose p, #0 and A, #0, i€ Z . Then

(i) There exists a normalized local support basis {M (t)}i € Z for the space

of weighted v-splines.
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(i1) There exists the transformation (2.18) from the control points of the
local support basis representation to those of a double knot B-spline represent
tation.
Furthermore, if

wi >0 and p, ==2/h, +2wi/h_ +vi >0, ie Z , (2.20)

then
(iii) The normalized local support basis is non-negative and the local sup-

port basis representation P(t),t € [ti,zfi+1 ], lies in the convex hull of {ci};:H.
(iv) The local support basis representation is variation diminishing, in

particular, any (hyper) plane of dimension m — [ crosses P(t),t e [t, t. ] no

12 Vi+l

more times than it crosses the control polygon joining the points {CJ};:i—S'

Proof. The proof is straightforward and for brevity we just outline its es- sential
features. For a given je Z let scalar values b, ;,b,,; be defined by (2.18), with
right hand sides having scalar values ¢, ,;,c,; defined by

¢;;j=0,,,1€Z (2.21)

Then b;j, ie Z has the support of the integer set {2j + 1,..., 2j + 4} and
2j+4

Nj(t) :Zbi,jBi(t): Zbi,jBi(t) (2.22)

ez i=2j+1

defines a weighted v-spline function with the local support of (t;,t;+4). More- over, our
previous work then demonstrates the existence of the transforma- tion (2.18). In
particular, with scalar values {c,=1:i€Z } we ob- tain {b,=1:ieZ }from
(2.18) and the partition of unity normalize- tion (2.6) follows from the partition of
unity property of the double knot B-splines. The conditions (2.20) guarantee
thatr, ,<0,0, ,<0, and then A, =1-7, ,—0,,>1, ieZ . Hence the
transformation (2.18) involves convex combinations and it follows that the
b, ;i €Zin (2.22) are non-negative. Hence N;j(t) is non-negative and the convex hull

property fol- lows from the partition of unity normalization. Also, (2.18) defines a corner
cutting process, see figure 1, and hence the variation diminishing property follows from

that of the double knot B-spline representation. O

Remark. In terms of the notation of the standard weighted v-spline con- straint (2.2),
condition (2.20) can be written as

w.>0,v. >-2(w, /h.+w, /h_)ieZ, (2.23)

and it should be noted that negative values of the parameter v; are allowable whilst still
maintaining properties (iii) and (iv) of the Proposition.
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Tension properties. The transformation (2.18) can be used to justify the point and
interval tension properties of the local support basis representation of the weighted v-
spline with respect to the parameters v; and w;. We first observe that, in terms of the
double knot B-spline representation,
hi hi—l
Pl )= b g o (2.24)
The analysis of the control point transformation (2.18) now leads to the following results,

where, for simplicity, it is assumed that the other shape parameters are held constant with
respect to each limit process:

(i)Point tensionv, .

limb,, ,=limb,  =c,,. (2.25)
Vi —® Vi 0
Thus, as v, increases, P(t;) is pulled towards ci, in the limit a cusp tangent

discontinuity is introduced at c;.,.

(if)Interval tension w;.

limb, , =c,_, (2.26)
) 2h.+h, h_ +h
limb,, | = i C oyt —" o Ciys (2.27)
W= h_,+3h +h,, h_,+3h +h,,
h. +h. h.  +2h,
limb, = e AP (2.28)
Wi h;, +3h;+h, h,, +3h; +h,
limb,, =c,,. (2.29)
It follows that, as w; increases, P(t), te[ti,tm] is pulled onto a straight line segment
between c, , and c, ,. Furthermore, the end points of this segmentare given by:
3h. +h. h.
lim P(t,) = — i oy I (2.30)
WiD® h;, +3h;+h;, h;, +3h;+h;
: h. +3h,
lim p(t..,) = i c.,+ i ¢ ., 2.31
wl%mp( 1+1) hi71 +3h1 +hi+1 i-2 hi71 +3h1 +hi+l i-1 ( )
Here, the analysis confirms the results of [Foley’86].
Some simple examples of the point and interval tension behaviour for the local
support basis are given in figure 2.
3  The Bernstein-Bézier representation
For completeness, we briefly review the transformation of the weighted v - spline to

Bernstein-Bézier (triple knot B-spline) form. This transformation
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Figure 2: Examples of tension control behaviour
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could be easily derived from the double knot B-spline representation but instead we
generalize the discussion to the space of C° piecewise cubic gen-realized [3 -spline curves

p:lR > R" defined such that
PU(E )=, P (c,) |
P(z)(tf)=Bz,iP(l)(tf)+Ba,,»P(2)(t;),}1€Z ) 3.1)

The derivation of the Bernstein-Bézier form of the local support basis repre-entation then
follows from the work of [Boehm'85] and [Lasser'88].

It is well known that there is no loss of generality in taking integer knots in (3.1),
since a piecewise affine transformation onto integer knots gives con straint equations with
parameters

A ::Bl,ihi

i B s B

h-,l > Bz,i h-,l > BS,i hH

1 1

; (3.2)

On the general knot partition, the weighted v -spline constraint (2.3) is re- covered as the
special case

ﬂl,i =1, :Bz,i = ‘;Hﬁli = v’{}i' (3.3)
The case B;; =PB°1; gives the standard B -spline of [Barsky '81], see [Goodman  ’85], when

(3.1) defines a geometric GC* constraint across the knot t;. In fact, in the non-periodic
case, the standard f -spline and unweighted v -spline are equivalent under a piecewise

denned affine transformation, although we  will not pursue this equivalence here.
We now seek the representation of a generalized B -spline in the C° piece- wise denned

Bernstein-Bézier form
3
Pl )(t) =D b5, B, (0),0=(t—t,)/h,,ieZ , (3.4)
k=0

where
3

k

B, (0) :(

Imposing the constraints (3.1) on this form gives, after some elimination,

jek (1-6)™. (3.5)

by =p;by +(1 — Y )b3i—1 (3.6)
and
(1 —Ti )b3i—1 +7,,b5 :(1 —Gi, )b3i+1 +0;,b5.55 (3.7)
where
B —2(1+B,. B,. —2(1+B,,
Hl — Bl: Ti_z — ( BI,I)S3,1 , 01_2 — ( Bl,l)’ (38)



Weighted v-Spline 9

Figure 3: Transformation to Bernstein-Bézier form

with
k=2 +p,;+ B, (3.9)
Equation (3.7) represents the intersection of two lines at the control point c, ,of the

local support representation, see figure 3. We then have

by :[(1 - Ti—l)/Ai]Ci—z - [Gi—z A, ]Ci—l, )
1eZ , (3.10)
by, = _[Ti—l A, ]Ci—z + [(1 -0,/ A ]Ci—l,
where
A, =1-1_,-0c,_,. (3.11)
Equations (3.10) and (3.6) thus define the transformation from the control points Cj,

1 eZ to those of the Bernstein-Bézier representation.

For the case of the weighted v -spline, where the [ -coefficients are defined by (3.2),
we obtain

#=hy /(b +h) (3.12)

from (3.8) and coefficients t, ,, o, , which are identical with those of the double knot
B-spline transformation defined by (2.15). Thus the interior control points (3.10) of the
Bernstein-Bézier representation are identical with the control points (2.18) of the double
knot B-spline representation (compare also (2.24) with (3.6)). This is a property which
could be observed directly from a study of the behaviour of the double knot cubic B-
splines.

4 Interpolation using the local support basis

We conclude by considering the derivation of the local support basis repre-sentation
satisfying interpolation constraints at the knots. For brevity, we
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consider only clamped type end conditions for the interpolation problem.
Thus, given the local support basis representation

n-1
P(t) :=>¢,N (t) (4.1)
j=—3
of a weighted v -spline on [to, t,], we seek the c;, j = -3,..., n-1 such that
P(t;)=y,.i=0,....n, 4.2)
with clamped end conditions
PO(t,) =dy. P(t,)=d,. 43)

The representation (4.1) could be derived from the work of [Foley'87], by onverting
the piecewise Hermite representation used there to double knot B-spline form. Here,
however, we consider a direct derivation of the control ~ points C;. Substituting the double
knot B-spline representation (2.10) in (4.2) and (4.3), with control points given by

(2.18), gives

-ht, c., +{hi(1A_ 01—3)+ hil(lA_ Til)i|ci_2 + —-h, 0,
i1 i

1

Ci
i1 i1

=(h,+h_)y,,i=0,.,n,(4.4)
with end conditions

s C,= {—1_6_3 + s }:2 + _ziz €. _%(hl +hy)d,, (4.5)

A A A, 0
_ _ 1— 1—
G“*Z Cn—l = T"*Z Cn—3 + Gn_3 - T“*I Cn—2 +l(hn—l +hn)dn'
An An—2 An—l An 3
(4.6)
Using (4.5) and (4.6) to eliminate c3 and c,.; then gives a tridiagonal
system defined by (4.4) fori=1,...,n— 1, where for 1 =0 and 1 = n the
equations become
-7 -0 1
A Lcoo+ A 2ca =Yy, +§h0d0, (4.7)
LTS +1_6"’3c = —lh d (4.8)
A,Fl n=3 A’Fl n-2 Yn 3 n—=1""n" :
h_, +h
Let a, , = M

wipi
Then o, , > 0 for p;, satisfying (2.20) and simple substitution shows that
(1 —0i; )O(’i—z =0, =T ,0 5 > —T;,0,5 >0, (4.10)

1
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(1 T )ai—2 =, ,—0,,0,,>—0,,0,,>0, (4.11)

It follows that under the transformation

A

¢, =0, ¢, (4.12)

C, i —

the tridiagonal system in the unknowns “i, i = —2,.., n — 2 is diagonally
dominant. We thus have:

Proposition 4.1 For parameters satisfying (2.20), or equivalently (2.23),

fori=0,...., n—1, there exists a unique weighted v-spline on [ty,t,] satisfying

the interpolation conditions (4.2) and (4.3).
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