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0 - Abstract 
 
 
 
 
A systematic way for tightening an IP formulation is by employing classes of linear 
inequalities that define facets of the convex hull of the feasible integer points of the 
respective problems. Describing as well as identifying these inequalities will help in the 
efficiency of the LP-based cutting plane methods. In this report, we review classes of 
inequalities that partially described zero-one poly topes such as the 0-1 knapsack polytope, 
the set packing polytope and the travelling salesman polytope. Facets or valid inequalities 
derived from the 0-1 knapsack and the set packing polytopes are algorithmically identified 
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1 – Introduction 
 
 

In the first report on cutting plane methods for integer programming [Abdul-Hamid 

etal. (1993)], techniques for generating all valid inequalities for general integer programming 

(IP) and mixed integer programming (MIP) were presented. For these techniques to perform 

more efficiently, we concluded that it is necessary to use cuts that are strong in the sense that 

they define facets or even supports of the convex hull of a set of integral points. These cuts 

are derived by studying the facial structure of the polytope related to the problem. Applying 

the results of the underlying polyhedral theory to actual solving, leads to new cutting planes, 

known as polyhedral cutting planes, that are different from the classical cutting planes 

discussed in the previous report. While these new cuts are also valid inequalities, the facet-

defining inequalities are needed for the minimal description of the polytope of the IP 

problem. By contrast, traditional cutting planes do not generally have this property and are 

not even guaranteed to intersect the convex hull of integer solutions. 

 

Before we discuss about facet-defining inequalities of a polytope and related 

computational procedures to identify these inequalities we need to introduce a terminology 

that is frequently used in combinatorial optimization. In computational complexity theory 

[see, e.g., Garey and Johnson (1979)], an instance of a problem is a single occurance of such 

a problem and is specified by providing a certain input. The size of an instance is the number 

of characters, or binary bits required to represent the instance. 

 
 In discussing the complexity of a problem, a decision problem is sometimes more 

convenient than an optimization problem. A decision problem is the one that can be answered 

with a 'yes' or 'no'. For example, consider the minimum vertex cover problem. The 

optimization problem for this particular problem can be stated as follows. Let G(V, E) be an 

undirected graph and let V' V be a vertex cover if any edge e = (v⊆ i, vj) in G has the 

property either vi ∈  V' or vj ∈  V'. Find a vertex cover with the mimimum cardinality. On 

the other hand, the decision problem of the minimum vertex cover is as follows. Given G 

and a positive integer k, decide whether G has a vertex cover whose cardinality is not larger 

than k. The class P is the set of all decision problems which can be solved polynomially. 
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That is, for each problem P∈P, there must exist an algorithm and a polynomial p( ) such 

that an instance of P whose encoding is of length t can be solved by the algorithm in at most 

p( ) elementary steps. 

l

l

 
The most important class of problems is in the class NP. These are problems for 

which a 'yes' answer can be verified in a polynomial amount of time, provided that some 

extra information called certificate is given. For each instance the length of this certificate 

must be polynomially bounded in the length of the corresponding input. Consider the 

question of determining whether a graph G is Hamiltonian. The input is some encoding of 

G. To the best of our knowledge it is known that no algorithm will solve this problem in a 

polynomial number elementary steps. But, the problem is in NP and a certificate consists of 

a list of the edges belonging to a Hamiltonian cycle. Given this information, it can be            

verified that a graph is Hamiltonian. 

 
A problem is NP-complete if it is in NP, and showing that it is in P would imply P 

= NP. More specifically, a problem is NP-complete if a polynomial bounded algorithm for 

solving it could be used once as a subroutine to obtain a polynomially bounded algorithm for 

every problem in NP. A problem is NP-hard if a polynomially bounded algorithm for it 

would result in a polynomially bounded algorithm for every problem in NP. Examples of 

NP-hard optimization problems include the travelling salesman problem and knapsack 

problem. 

 
The idea of using facial structure to determine strong valid inequalities was first 

introduced by Dantzig, Fulkerson and Johnson (1959) . Since then, strong valid inequalities 

have been obtained for a variety of specially structured problems, such as the node-packing 

polytope, the zero-one (0-1) knapsack polytope and the symmetric travelling salesman 

polytope. Most of the known results are for problems having zero-one variables only. 

However, the use of structure to obtain a polyhedral representation of the constraint set is 

limited by the inherent complexity of the problem. For NP-hard IP problems, complete 

descriptions of convex hulls of feasible solutions by way of linear inequalities are often not 

known. However, several experimental studies based on polyhedral theory indicate that 

partial description of the convex hull of integer solution can be of considerable practical help 
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for the solution of an IP problem [see, e.g., Padberg (1979)]. 
 

This report is divided into three main sections. Section one is the introduction 

followed by the definitions of classes of strong valid inequalities. Section two involves the 

studies of the polyhedral structure of problems such as the zero-one knapsack, the set packing 

and the symmetric travelling salesman. This includes, derivation of valid inequalities (and 

facets) and discussion on how they can define high dimensional facets of the polyhedron. 

Section three consists of procedures to solve the constraint identification problem, that is, 

algorithmically identifying violated facet-defining inequalities. Given a fractional solution to 

the LP-relaxation of an integer program, algorithms for identifying facet-defining inequalities 

violated by the solution will be considered. The summary or the conclusion can be found at          

the end of this report. 

 
 
 
1.1 - Classes of valid inequalities 
 

Consider the convex polytope in Rn defined by 
 
 

P = {x ∈  Rn ¦ Ax ≤ b),     (1) 
 
 

where A and b are mxn and mx1 matrices respectively, with arbitrary rational coefficients.  
Let 
 
 

PI  =  conv{x∈P : xj ∈  Z+
n},    (2) 

 
 
(where Z+

n is the set of nonnegative integers) denote the convex hull of the integer points of           

P (that is, the smallest convex space that contains all feasible integer solutions to IP). 
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An inequality 
 
 

πx ≤ π0      (3) 
 
 

[or (π, π0)] is called a valid inequality for PI if it is satisfied by all points in PI. If (π, π0) 

is a valid inequality for PI and 

 
 

F =  {x ∈  PI  ¦  πX = π0},    (4) 
 
 

F is called 2. face of PI, A face F is said to be proper if F ≠   and F ≠  PI. F is nonempty 

if and only if max{πx | x ∈  PI } = π0. When F is nonempty we say that the inequality πx ≤ 

π0 supports PI; for an example, an inequality is supporting if it is valid and satisfied as an 

inequality by at least one x  P∈ I. A face F of PI is a. facet of PI if dim(F) = dim(PI) - 1. 

Specifically, if dim(PI) = d, there exist exactly d affinely independent vertices xi of PI 

satisfying πxi = π0, i=1,... ,d. Faces of dimension zero are called vertices of the polyhedron 

and faces of highest dimension are termed facets. 
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Example 1.1: 
 

Let P={(0,0),(0,1),(1,0)}. 
 
 
 

 
 

Figure 1 
 
 
 
In this example, PI is fully dimensional (dim (PI) = dim (R2) = 2); C1 and C2 are valid 

inequalities; C3, C4 and C5 are valid inequalities, define supports and they define facets; C6 

is a valid inequality that supports but is not a facet-defining for P. ■ 
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Example 1.2: 
 

Consider R3 polytope. 
 
 
 
 

 
 
 
 

Figure 2 
 
 
In this example, faces of dimension zero are the vertices V0, V 1, V 2 and V 3, and the plane 

{V 1, V 2, V 3} is an example of a facet (that is, a face of highest dimension). Any line joining 

two vertices is a face. ■ 

 
The inequalities xj ≥ 0 are trivial facets of PI provided that 0 ≤ aij ≤  bi for all j∈  

N =  {1,...,   n} and  for  all   i.   For   any   nontrivial   facet   of  PI,  where   again 

P = {x∈R, Ax ≤   b}and A is  mxn matrix, we have x j  ≥  0,j = l,...,n and x0 >0.  

 
Given two valid inequalities πx ≤ π0 and γx ≤ γ0 that are not scalar multiples of each 

other, we say that πx ≤ π0 is stronger or dominates γx ≤ γ0  if π ≥ γ, π0 ≥ γ0 and at 

least one of the inequalities is strict. 

 
6 



2 - Polyhedral descriptions of the zero-one polytopes 
 
 

A systematic way to obtain a tighter formulation of an IP problem is to study classes 

of linear inequalities that define facets of the convex hull of the feasible integer points of the 

respective problem. According to a result on convex polyhedra due to Weyl (1935), there 

of feasible integer points PI which can be described by a system of linear inequalities, that 

is, 

                           PI = {x ∈  P  ¦  1x  ≤ 10  ∀  (1, 10)  ∈  ℒ }                     (5) 
 

where ℒ is a finite family of linear inequalities. Moreover, ℒ (a minimal system of 

inequalities that describes PI completely) can be chosen such that each inequality of ℒ 

induces a different facet of PI. 

 
In this section, facet-defining inequalities for special structured zero-one polytopes 

such as the zero-one knapsack, the set packing and the symmetric travelling salesman 

problem are discussed. 

 
 
 
2.1 - Facets for the zero-one knapsack polytope 
 

The facial structure of the knapsack polytope has been studied simutaneously by Balas 

(1975), Padberg (1975), Hammer, Johnson and Peled (1975) and Wolsey (1975). However,                  

a complete list of the linear inequalties that define the knapsack  polytope still  remains 

unknown. 
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Zero-one problems and knapsack problems 
 
 

Consider the zero-one programming problem: 
 
 
 

Maximize   ∑
−

n

j
jj xc

1

 

subject to                      i = 1, 2,…, m,    (6) ∑
−

≤
n

j
rjij bxa

1

 
 

xj = 0 or 1                   j = 1, 2,..., n. 
 
 

In matrix form, this can be written as 
 
 

max{ cx : Ax ≤ b, x ∈  {0, 1}n}    (7) 
 
 
 

where A is mxn matrix with arbitrary rational entries, and b and c are vectors of length m 

and  n respectively, with rational entries. The zero-one problem with a single linear constraint 

(where m = 1) is called the knapsack  problem.  Let (ai, bi ) denote the ith constraint of zero-

one problem (6) and let 

 
 

P i  = conv{x I ∈  Rn | aix ≤ bi,  xj = 0 or 1                                 
(8) 

for j = 1, 2,..., n) 

 

denote the convex hull of the zero-one solutions to the single inequality dx ≤ bi where i ∈  

{1, 2,..., m}. That is, P i  is the knapsack poly tope associated with constraint i of problem 

(6). Likewise, again let 

I
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PI = conv{x ∈  Rn | Ax  ≤  b, xj  =  0 or 1 for j  =  1,..., n)  (9) 

 

denote the convex hull of zero-one solutions to the entire constraint set of problem (6). If  PI 

is the zero-one polytope associated with problem (6), then we have 

 

PI    I      (10) ⊆
m

i

i
IP

1=

 

In other words, PI is equal to or contained in the intersection of all the knapsack polytopes 

P i , i = 1,..., m. Thus, all inequalities that are valid with respect to P i  are also valid for PI I I. 

 

If the problem is a large-scale zero-one programming problem with a sparse matrix 

A and with no apparent special structure, it is reasonable to expect that intersection of the m 

knapsack polytopes provides a fairly good approximation to the zero-one polytopes. This is 

the working hypothesis used by Crowder et al. (1983) and was strongly supported by their 

computational study to be a reasonable assumption. With this assumption, we can concentrate 

on the individual rows of the constraint set of problem (6) when deriving valid inequalities 

for the polytope PI. 

 
 
 

 
Valid inequalities for the 0-1 knapsack polytope 

 
 

By complementing variables, an individual constraint of a zero-one problem can be 

expressed as a zero-one knapsack problem. Specifically, the ith constraint can be restated as 

 
 
  }1,0{,|| ∈−≤ ∑∑

∈∈

i

Nj
ij

Nj
i

i
jij xabxa                                                  (11) 

 
 

 where x i = xj j  if  j ∈  N + and x i  = 1 – xj j   for j ∈  N. (N+ denotes the index set of coefficients 
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aij with positive value and N_ denotes the index set of coefficients aij with negative value). 

This transformation enables one to use valid inequalities or facet-defining inequalities for the 

zero-one knapsack problem as valid inequalities or facet-defining inequalities for the general 

zero-one IP problems. 

 
 

Consider a zero-one knapsack problem, 

 

 

                 (12) 0axa
Nj

jj ≤∑
∈

 

 

where 0 < aj  a≤ 0 are positive integers and xj = 0 or l, j  ∈N = {1, 2,..., n}. Let the 

coefficient be ordered monotonically so that a1 ≥ a2  ≥...≥ an. It is known that the 

knapsack polytope P i  is fully dimensional polytope since aI j ≤ a0. 

 

Two classes of inequalities for knapsack polytopes that can be used to characterize 

facets of P i  are being considered. One of these classes is known as the minimal cover 

inequalities and was introduced in 1975 [see e.g., Balas (1975)]. 

I

 

Let S ⊆  N such that 
 
 

∑
∈

>
Sj

j aa 0 and    0aaa
Sj

kj ≤−∑
∈

 for all k∈S     (13) 

 
 

hold. Then the set S is called a minimal cover with respect to (12); it has been shown [see 

e.g., Balas and Jeroslow (1972)] that every zero-one solution to (12) satisfies the inequality 

 
 

1|| −≤∑
∈

Sx
Sj

j       (14) 

 
 

where   | S  |  denote the cardinality of the set S. The inequalities (14) define facets of the 
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associated knapsack polytope whenever S = N holds. For any subset H  N, let P⊆ H be the 
convex hull of zero-one solutions with respect to 
 
   

0axa j
Hj

i ≤∑
∈

                                                          (15) 

 
 
It is known [see, Balas (1975), Padberg (1975) and Wolsey (1975)] that if S is a minimal 

cover for (12), then the inequality (14) defines a facet of the polytope Ps. When S = N, then 

PS is exactly the original knapsack polytope. If, however, S ⊂ N, then a procedure for lifting 

inequalities in Section 2.4 is needed to generate a facet for the original polytope. 

 

The next class of inequalities for the knapsack polytope are due to Padberg (1979, 

1980). This class of inequalities was shown to define facets for the knapsack polytope with 

zero-one vertices only. In addition to the minimal cover inequalities, Crowder et al. (1983) 

used inequalities in this class to optimality solve a number of large-scale pure zero-one 

problems. Suppose that any set S* ⊆  N and any index t ∈  (N \ S*) satisfying 

 
 

∑
∈

≤
*Sj

0j aa , 

(16) 
and Q  {t} is a minimal cover U

for every Q  S ⊂ * with |Q| = k, 
 
 

where k is any integer satisfying 2  ≤ k ≤ | S+ |  . Due to the one-element role of the index  

t and since k is some integer number, the set S* ∪ {t} is called a (1, k)~configuration with 

respect to (12). It was proven that every zero-one solution to (12) satisfies the inequalities 

that are associated with a (1, k)-configuration given by: 

 
 

(r – k + 1)xi  +  
( )
∑
∈

≤
rTj

ij rx  ,                                                 (17) 
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where T(r)  S⊆ * is any subset of cardinality r of S* and r is any integer satisfying k < r <  

| S* | . Minimal cover inequalities are obtained when r = k. If k = | S* | holds in (16)    

then a (1, k)-configuration is a minimal cover. In general, the class of inequalities associated 

with (1, k)-configurations properly contains the class of inequalities associated with minimal 

covers. The inequalities (17) define facets of the associated knapsack polytope whenever N 

=  S*  ∪  { t}. 

 
So far, to the best of our knowledge, the minimal cover inequalities and (1, k)-

configuration inequalities are the only configurations that describe the knapsack polytope 

and procedures for finding these two classes of inequalities are discussed in Section 3.2. 

 
 
 
 
 

2.2 - Facets for the set packing polytope 
 
 

The set packing problem is a specially structured zero-one IP, The facets of this 

polytope are related to certain subgraphs of an associated graph. Several classes of facet-

defining inequalities for the set packing polytope have been identified (see, Padberg (1973), 

Nemhauser and Trotter (1974) and Trotter (1974)). Derivation of some of these inequalities will 

now be discussed. 
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Set partitioning, set packing and set covering problems 
 

 
Consider the (weighted) set-partitioning problem (SPP): 
 
 

 

minimise         (18) ∑
=

n

j
jj xc

1

subject to    Ax = em 

       xj ∈  {0, 1} 

 
 
where A ∈  Zmxn of zeros and ones, and em is the vector having m unit entries. 

 

                  The SPP problem has two close relatives, the set packing problem (SP), 
 
 

maximise     ∑
=

n

j
jj xc

1

subject to    Ax ≤ em    (19) 

       xj ∈{0, 1} 

 
 
and the set covering problem (SC), 
 
 

minimise       ∑
=

n

j
jj xc

1

subject to    Ax ≥ em    (20) 

xj  ∈  {0, 1} 

 
 
where A and em are defined as in SPP. 
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The SP problem, like the SPP problem is a "tightly constrained" problem (that is, 

each constraint requires at most one, or exactly one, of many variables to be one), whereas 

the SC problem is a "loosely constrained" problem (that is, each constraint requires at least 

one of the many variables to be one). Any SPP can be reduced to a SP problem by a suitable 

change in the objective function [see e.g., Darby-Dowman and Mitra (1985)]. 

 

To study the facial structure of the SP polytope, one associates with the zero-one    

matrix A, the finite undirected intersection graph G = (V, E) defined as follows: 

 

G has a node for every column of A, and an edge for every pair of 

nonorthogonal columns of A, that is, (i, j) ∈  E if and only if dd ≥ 1 (where     

a1 is the ith column of A). 

 

Let AG be the edge-node incidence matrix of G, and let the (weighted) node-packing problem 

(NPP) whose weight Cj are the same for each node of SP be 

 
 

maximise                                             ∑
=

n

j
jj xc

1

(21) 

subject to    AGx ≤ eq 
 

x j∈{0,l} 

 

where eq is the vector q ones corresponding to the edges of G. It can be verified that each 

feasible solution to (21) (i.e., every independent (stable) node set in G) is a feasible solution 

to (19) and vice versa. Moreover, for every optimal solution to (21), there exists a 

corresponding feasible integer solution that is optimal for (19). Thus, any SP problem is 

equivalent to an NPP on a finite undirected graph. Therefore, one way of solving SP                

problems is to solve the associated NPP. 
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Example 2.1: 
 
 

Let A be the A-matrix of a SP problem given by 
     
     
 
 

 
 
A =  

 
 
    

1 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0
0 0 0 0 1 1 0
1 1 1 1 0 0 0
0 0 0 0 0 1 1
0 0 1 0 0 0 1
0 1 1 0 0 0 1
0 0 0 1 0 0 0 

 
 

 
The intersection graph G constructed from A is as follows: 
 
 

 
 
Figure 3 
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and the corresponding AG is 

 
 
 
 

 
 
 
  
AG =   

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 1 0
0 0 0 0 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 0
0 1 0 0 0 0 1

 
 
 
 
 
 
 
 
 
where AG has exactly two ones in each row. 
 
 
 
 
 
Valid inequalities for the set-packing polytope 
 
 

Assume that A has no zero rows or zero columns. Denote by P, the polyhedron given 

by the feasible solutions of the LP-relaxation associated with SP, that is, 

 
 

     P = {x ∈  Rn | Ax ≤ e, 0 ≤ x ≤ 1}    (22) 
 
 
where A is the coefficient matrix of SP, and let PI be the associated convex hull of zero-one 

solutions satisfying the constraints of SP: 

 
PI = conv{x ∈  P | x ∈  {0, 1}n}.                                            (23) 
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We note that dim(P) = dim(PI) = n (both P and PI are fully dimensional) and that PI⊆P. 

Recalling that the NPP polytope is defined by the feasible zero-one solutions to (21), we 

further define P  to be the convex hull of zero-one solutions to this polytope. Since PG
I I = 

P  every facet of PG
I I is a facet of P G  and vice versa. In order to identify facets of PI I, one 

may then restrict one's attention to facet identification for NPP. Certain subgraphs of G give 

rise to classes of facet-defining inequalities that have been proven to be useful in solving 

NPP. 

 
 

The first class of graphs or subgraphs that give rise to facet defining inequalities of 

NPP (and hence, SP polytope) are cliques. A set K  V is called a clique if each pair of              

nodes in K is joined by an edge. That is, a clique is a maximal complete subgraph of the 

intersection graph G. The following result is due to Padberg (1973): 

⊆

 
 

An inequality 
 
 

∑
∈

≤
Kj

jx 1     (24) 

 
 
 

where K  V,   is a facet-defining for P, if and only if K is the node set of a clique in G 

where G is the associated intersection graph. 

⊆

 
 
 
Example 2.2: 
 

Consider the intersection graph G in Figure 3. A maximal clique in G is K = {1, 2, 

3, 4} with the corresponding clique constraint that is 

 
x1 + x2+ x3 + x4 ≤ 1,  
 
 

 This is facet-defining for the associated NPP polytope. 
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Other types of graph structures that generate facet-inequalities of NPP (hence SP) 

polytopes are odd holes, and the odd anti-holes in the intersection graph G. Subset V1⊆V 

induces a subgraph G1 = (V', E'), where (i, j) ∈  E' if and only if i ∈  V’, j  V’, (i, j) ∈ ∈      

E. The complement  of a graph G = (V, E) is the graph G = (V, −G ~E ), where (i, j) ∈ ~E  if      

and only if (i, j) ∉  E. A chordless cycle C in G is a cycle each of whose nodes is adjacent 

to exactly two other nodes of C. A cycle is called odd or even according to whether it is of 

odd or even length. A cycle of length three is obviously chordless and is a clique. A 

chordless cycle of length greater than three is called a hole, its complement an anti-hole. 

 

If GH is a subgraph of G, with nodeset H⊆V, we see that there is a matrix AH that 

corresponds with the nodes of H and which is made up of a subset of the columns of AG. Let          

PH denote the polytope associated with the feasible solutions to the problem defined as: 

 
 

AHx ≤ et                                                                                      
(25) 

xj  ∈    {0, l} 

 

 
where et is the vector t ones corresponding to the edges of GH. The following two results are 

due to Padberg (1973) and Nemhauser and Trotter (1974), respectively. 

 

(i) Let GH be an odd hole of G. Denote by H ⊆V the node set of GH and let h=|H|. 
Then 
 
 

     ∑
∈

−
≤

Hj
j

hx
2

)1(                                               (26) 

 
 
is a facet of PH . 
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(ii) If instead GH is an odd anti-hole and H ⊆  V, then 
 

∑
∈

≤
Hj

jx 2       (27) 

 
 
 
is a facet of PH. 
 
 
 
Example 2.3: 
 

Consider the intersection graph G in Figure 3. The only odd hole is H = {3, 4, 5,                  

6, 7} (see Figure 4) and the corresponding facet defining inequality is 

 

 
x3 +  x4 + x5  +x6  +  x7  ≤  2. 

 
 
This inequality is facet-defining for the polytope PH. 
 

 
 
 

Figure 4 
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The odd anti-hole (Figure 5) is H = {3, 4, 5, 6, 7} gives the corresponding odd anti-hole 

inequality 

 
x3 +  x4 + x5  +x6  +  x7  ≤  2. 

 

which is a facet-defining for the associated polytope PH. 
 

 
 

Figure 5 
 
 

In addition to cliques, odd hole and odd anti-hole Trotter (1974) specifies two further 

classes of facet defining inequalities derived from a web of a graph. This is a generalization 

of cliques, odd holes and odd anti-holes. However, as asserted by Padberg (1979), the 

implementation of this idea appears to be hopelessly difficult and Nemhauser and Sigismondi 

(1992) claimed that they still had not found efficient procedures to find violated members of 

this family including the odd anti-hole family. Thus, facet-defining inequalities derived from 

such graph structures will not be discussed in this report. 
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2.3 - Facets for the symmetric travelling salesman polytope 
 
 

Another specially structured zero-one IP that uses a graph to derive facet-defining 

inequalities is the symmetric travelling salesman problem (STSP). This is the problem of 

finding the shortest hamiltonian cycle or tour in a weighted undirected finite graph without 

loops and multiple edges. In other words, tours are the feasible solutions to the STSP. In 

the most common interpretation of this problem, the nodes of the graph represent cities, the 

edges represent the routes between the cities and the weights the distances between pairs of 

cities. 

 

Given a graph G = (V, E) with n = | V | labelled nodes and m = | E | labelled edges, 

a tour is a subset of E given by a Hamiltonian cycle of G. Let Rm be the space of real vectors 

whose components are indexed by the elements of E. With every tour t of G, we associate               

an incidence vector  Rτx ∈ m with components 

 
 

    x =      (28) τ
e

⎩
⎨
⎧

∉
∈

.0
,1
τ
τ

eif
eif

 
 
Much work has been done on the study of the STSP polytope by Grotschel and Padberg              

(1979, 1985). The STSP polytope is the convex hull of the incidence vector of all tours of                 

the complete graph Kn having m = ½ n(n-l) edges. Let 

 
 

Qn = conv{x τ ∈  Rm | τ is a tour in Kn}                               (29) 
 
 

be the STSP polytope. Since every node is met by exactly two edges of a tour, Qn is 

contained in the polytope 

 
 

Qn
A = conv{x ∈  Rm | Ax = 2,   0 ≤ x ≤1},                            (30) 
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where A is the node-edge incidence matrix of  Kn,0, 1, and 2 are suitably dimensioned 

vectors having all components equal to 0, 1 and 2, respectively. The equalities Ax = 2 are 

called the degree equalities. 

 
Let c  R∈ m be a vector that associates with each edge of the complete graph Kn a real 

number c e, the length of edge e. The optimal solution of STSP is given by a minimum length 

tour. Since there are only a subfamily ℒ’ of the facet inducing inequalities ℒ for the STSP 

polytope is known, the following relaxed problem: 

 
 

minimise   cx 

subject   to   Ax = 2,                                                                    (31) 

       lx ≤ l0     (l2  l0)  ∈  ℒ*  ∈  ℒ l, 
 0 ≤  x ≤ 1 

 

 

(where ℒ*  ℒ⊂ ’  ℒ ) is generally solved. We now discuss known classes of inequalities 
in  ℒ ‘. 

⊂

 
 
 
 
 
Valid inequalities for the STSP polytope 
 
 

There are four families of inequalities valid for the STSP polytope. The best known 

linear inequalities that are satisfied by all tours are due to Dantzig et al. (1954). For W  

V, let E(W) = {e 

⊆

∈  E: both ends of e are in W}. If E' E and |E'  E(W) | ≥ | W| ,  

the subgraph G' = (V, E') contains at least one subtour. This yields the subtour elimination 

inequalities: 

⊆ I

 
 

.1||2,1||
)(

−≤≤⊆∀−≤∑
∈

nWVWWx
WEc

e                             (32) 

 
 

 
22 



These inequalities were shown to define facets of the convex hull of tours Qn by Grötschel 

and Padberg (1979). 

 

These subtour elimination inequalities are not enough to describe the symmetric 

travelling salesman polytope. Moreover, there exists fractional solutions satisfying the degree 

equalities and the subtour elimination inequalities which leads researchers to study different 

classes of facet defining inequalities for the symmetric travelling salesman polytope. 

 

The second class of valid inequalities for Qn is called the 2-matching inequalities and 

is due to Edmonds (1965). A 2-matching in a graph is a set of edges such that every node                

is an endpoint of exactly two edges. Clearly every tour (subset of a tour) is a 2-matching.                

Thus the 2-matching inequality given by 

 
 

)1|(||| 1
2
1

)( 1

−+≤+ ∑∑
∈∈

EHxx
Ee

e
HEe

e  

                  for all H  V and all E⊂ 1  E satisfying   (33) ⊂

(i) |e H| = 1  I IE∈∀e

    (ii) ei I ej  = ø, ei ≠ ej IE∈  

    (iii) | IE | ≥ 3 and odd, 

 

 

where the set H is called handle and the edges of set E' are called the teeth. The graphical 

configuration of a 2-matching inequality is shown in Figure 6. 
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Figure 6 
 
 
 
 
Example 2.4: 
 

Suppose we have the subgraph given in Figure 7a. The numbers given are values for 

a current LP-relaxation solution of the problem (that is, the variable corresponding to edge 

AB currently has value 3/4 etc.) Since the subtour elimination inequalites: 

 
 

 xAB  +  xBC  +  xCD  +  xBD   +  xAC  = 2 4
3 ≤  | 4 |  -  1 = 3 

 
 

is strictly satisfied by subgraph (7a), we must consider the 2-matching inequality given in 

(33) corresponding to (7b) to cut off the fractional solution, that is, 
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L.H.S. 
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R.H.S. 

  
             |H|   +  2

1 (| IE  |   -  1)   =  | 4 | + 1 = 5 
 

 

 

hence we have a violated 2-matching constraint. 

 
 
 

 7(a) 7(b) 
 
 
 
Figure 7 
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Grotschel and Padberg (1979) generalised the 2-matching inequalities and called comb 

inequalities: 

         ∑ ∑ ∑∑
∈ = =∈

+−+≤+
)( 1

2
1

1)(
)1(|(|||

1HEe

k

i i
l

TEe
ee kTHxx  

    for all H, T1,….,  Tk ⊂V satisfying 

 

(i)  |Ti  H|   ≥  1,   i   =  1,….k,    (34) I

(ii) |Tt   \   H|   ≥  1,   i   =  1,….k, 

(iii) Tt   TI i  =  ø, i ≠ j,  1  ≤  i  ≤  k, 

(iv) k ≥  3  and odd. 

 
 
 
The set H is called handle and sets Ti are called teeth. Chvatal (1973) considered the simple 

comb; that is, where (i) is satisfied with equality for all Ti, i = 1, 2,...k. The graphical 

configuration of a comb is shown in Figure 8. Here the teeth Ti for i = 1,..., k, can contain 

more than two nodes and can have more than one node in common with the handle. 

Specifically a comb C is a subgraph generated by a node set {H, Ti..., Tk} satisfied by the 

four properties given in (34). 

 
 

 
 
 
 

Figure 8 
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A comb C with k = 1 and | H | = 1 is a subtour elimination inequality, while a 

comb inequality is a 2-matching inequality if the inequalities of both (i) and (ii) in (34) hold 

as strict equalities. This class of comb inequalities was shown to define facets by Grötschel 

and Padberg (1979). 

 

Grotschel and Pulleyblank (1986) generalised comb inequalities to give the following 

facet-defining clique tree inequalities: 

 

   ∑∑ ∑∑ ∑
== ∈= ∈

+≤+
r

i
i

k

i TEe
e

r

i HEe
e Hxx

i 11 )(1 )(
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                      (35) 
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where ti is the number of handles met by Ti V Hi,..., Hr  V and T⊆ 1,..., Tk ⊆V which are 

the handles and teeth, respectively, of a clique tree. A clique tree is a connected subgraph  

of Kn whose cliques satisfying the following properties: 

(i) the cliques are partitioned into two sets, the set of handles and the set of teeth, 

(ii) no two teeth intersect, 

(iii) no two handles intersect, 

(iv) each tooth contains at least two and at most n-2 nodes and at least one node not 

belonging to any handle. 

(v) each handle intersects an odd number (≥3) of teeth, 

(vi) if a tooth T and a handle H have nonempty intersection, then H T is an I

articulation set of the clique tree. 

Figure 9 shows a graphical configuration for generating a clique tree inequality. In their 

work, the authors showed that this class of inequalities encompasses the subtour elimination, 

the 2-matching and the comb inequalities as special cases. 
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Figure 9 
 
 
 
 
 
 
2.4 - Lifting the facets of zero-one polytopes 
 
 

We have seen in previous sections, that some inequalities are facet-defining for lower 

dimensional polytope, but may not be facet-defining for the original (possibly higher 

dimensional) polytope. Some of these facets and valid inequalities for lower dimensional 

subpolytopes can be raised into the space of the original problem in order to get facets for              

the possibly higher dimensional polytope. Specifically, let PI, be the solution set of any zero- 

one program; that is, PI is an arbitrary subset of {0,1}|N|,  where N = {1, 2,..., n} is the  

index set for the variables. Also let  P *
I  =  conv(PI).  For any subset S  N, define: ⊆

 
 

PI(S) = {x ∈  PI | xi  = 0, i ∈  N \ S }                                            (36) 

PP

*
I (S)  = conv(P (S)).                                                                  I   
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Suppose we have a facet-defining inequality of  (S): *
IP

 
     ∑

∈

≤
Sj

ojj bxb                                                       (37) 

 
 
 

and we are interested in obtaining a facet-defining inequality for P  of the form +
I

 
 
∑ ∑

∈

≤+
SNj

ojjjj bxbxb
\

.                                          (38) 

 
 

In other words, the inequality of (38) is derived by finding suitable coefficients for variables 

with indices set N\ S. 

 
 

A procedure for raising facet-defining inequalities from a lower dimension is called 

lifting and the facet inequalities obtained by this procedure is called lifted facet-inequalities. 

There are several ways one can lift a facet-defining inequality. However, there are two basic 

approaches mat are used by most researchers. One way is to consider lifting one variable at 

a time in sequence, where another is to consider several lifting variables at a time. The 

former procedure is called sequential lifting and the latter procedure is called simultaneous 

lifting. The details of these two procedures are presented later in this section. To our     

knowledge, of these two methods, the sequential lifting procedure is of practical interest and 

many computational studies [e.g., Crowder et al. (1983) and Hoffman and Padberg (1993)] 

report experience of applying this approach 

 
 
Sequential lifting 
 

This lifting procedure was first established by Padberg (1973) for the set packing 

polytope, men extended this procedure to 0-1 programming polytopes with positive 

coefficients (Padberg (1975). Wolsey (1976) then extended this procedure for general linear 

integer programs. The coefficients of a facet obtained by sequential lifting depend on the 
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ordering of N\S. That is, the facets obtained depend on the sequence in which new variables 

are introduced. 

 
Hoffman and Padberg (1991) projected out variables both at zero and at one. Once 

the most violated minimal cover inequality (over only the fractional variables) is identified, 

the sequential lifting is applied to it. This is done by first lifting back the remaining fractional 

variables not in minimal cover, then the variables which are projected at one, and then the 

variables which were projected out at zero. 

 
Hoffman and Padberg (1991) implemented this approach in order to ensure that the 

inequalities obtained are valid for the problem and approximate the integer polytope in the 

area around the fractional linear programming solution. Projecting out at value zero 

corresponds to the usual lifting procedure which is the Padberg's sequential lifting [Padberg 

(1973) and (1975)]. Projecting out at value one is the "reverse" lifting [Wolsey (1975)]. By 

using both type of projection, it is unnecessary to distinguish facets that are generated from 

minimal covers and from (1, k)-configuration. 

 
The other difference is that of the sequential ordering. The order is determined based 

on both the first-order lifting coefficient and the reduced cost of the nonbasic variables. 

 
According to Grotschel and Padberg (1985), sequential lifting is also applicable to any 

of the facet-defining inequalities of the symmetric traveling salesman polytope. However this 

procedure does not produce any new results. 

 

 

Sequential lifting of minimal cover and (l,k)-configuration inequalities 
 

In Section 2.1 we have defined, minimal cover inequalities for the zero-one knapsack 
polytope as in (14), that is,     |S| - 1,   where S is a minimal cover. The same 

minimal cover  S, may yield as many as |N \  S|!  facets of the corresponding polytope, 

≤∑
∈Sj

jx
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though the number of distinct facets are usually much smaller than this number. 
 

For any S*  N and any index t ⊆ ∈  (N \ S*), the (1, k)-configuration inequality is 

again defined as in (17), that is, 

 
 

(r - k + l) xt +  ∑
∈

≤
)(

,
rTj

j rx   

 
 
where T(r)  S⊆ * is any subset of cardinality r of S* and r is any integer satisfying k ≤ r ≤ 

|S*|It follows that a (1, k)-cofiguration (the set S* U {t}) defines  distinct facets ∑
=

⎟
⎠
⎞⎜

⎝
⎛

p

kr
r
p

of Ps*, where p = |S*|. Using the sequential lifting procedure, yield an even greater number 

of facets of the knapsack polytope P i . I

 
 

Padberg's sequential lifting procedure for facets of zero-one knapsack polytope, is as 

follows: 

 
 
Initialisation step: 
 

For a minimal cover, set 
 
 

 

⎪
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                                (39) 

 
 

and for some index t and some integer number k of a (1, k)-configuration, set 
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Iterative step: 
 
 

Let l ∈  N \ S. Determine 
 
 

∑∑
∈∈

=−≤=
Sj

jrjj
Sj

jji orxaaxaxZ 10|{max 0β                 

for all j∈S }.                                                 (41) 

 
 

Define :zl0l −=ββ if the coefficient lβ  is positive, merge variable l into the set S 

according to its ratio  |a/lβ l|. Redefine S to be S U {l} and repeat until N \ S is empty. The 

resulting inequality β x ≤β 0 defines a facet for the polytope P i  associated with (12), that   is, I

.0∑
∈

≤
Nj

jj axa  

 
 
 

Therefore when lifting is applied to (14), one gets inequalities of the form 
 

 

1||
\

−≤+ ∑∑
∈∈

Sxx
SNj

jj
Sj

j β                                     (42) 

 

 

and when it is applied to (1, k)-configuration (17) the lifted inequalities are of the form 
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(r – k + 1)xi   +  ∑∑
∈∉

≤+
}{\\)( * tSNj

jj
rTj

j rxx β     (43) 

 

 

This sequential lifting procedure requires the solution of a sequence of 0-1 knapsack 

problems. Since the 0-1 knapsack problem is known to be NP-hard one usually relaxes (41)              

to a linear program, to get an approximate lifting procedure, and thus efficiently produce 

’almost’ facet-defining inequalities for the knapsack polytope. 

 

 

Example 2.4: 
 

Consider a problem with N = {1, 2,..., 5), and let 

PI = {x ∈{0, l}5: 15x1 + 13x2 + 13x3 + 12x4 + 10x5 ≤ 30}. 

 

A minimal cover is S = {1, 2, 3} with a corresponding valid inequality 
 

 

x1+ x2 + x3 ≤ 2. 
 

 

This inequality is facet defining for 3-dimensional polytope 
 

 

PI(S) = {x ∈  {0, l}5 | 15x1 + 13x2 + 13x3 + 12x4 +  10x5 ≤ 30, x4  =  x5 = 0}, 
 

 

but may not necessarily define a facet for polytope Pl. Thus, we would like to lift and find 

an inequality that is facet-defining for Pl . Lifting the inequality using the ordering of indices  

l ∈  N \ S = {4, 5}, and solving the LP-relaxation of (41) at each iteration step, we have as 

follows: 

 
 
Initialisation step:  Set 1=jβ for j = 1, 2, 3., 0β  = | 3 | -1 = 2. 
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Iterative step: 

Iteration 1: l = 4, a4 = 12, S = {1, 2, 3}, solve 

 
 
 ,1830131315:{max 43213214 =−≤++++= axxxxxxZ  
     0 ≤ xj ≤ 1, for j = 1, 2, 3}. 
 
 
 
 
 
Using Dantzig's method [Martello and Toth (1990)] we have, 
 
 
  13

34313
321 101 ==== zandx,x,x  

 
 
 
and thus rounding, we get z*

4  = 1 and yields a lifting coefficient β 4 = β 0 - z ∗  = 1 for x4 4. 
 
  
Iteration 2: With l = 5, a5 = 10 and S = S U {4} we solve, 
 
 
 ,2030121315:{max 542143215 =−≤+++++= axxxxxxxZ  

0 ≤ xj ≤ 1, for j = 1, 2, 3, 4}. 

 
 

Using Dantzig's method we have 
 
 
  ,10,,1 13

5
5413

5
21 ==== zandxxx  

 
    
and rounding z ∗  = 1 and the lifting coefficient for x5 5 is β 5  =  β 0 - z  = 1. ∗

5

 Hence, the lifted minimal cover inequality is given by 
 
 
 
 
 
 
 
 

34 



x1 + x2 + x3 + x4 + x5 ≤ 2. 
 
 
 

Again, because of the relaxation of (41) at the iteration step, the resulting inequality is not 

guaranteed to be facet-defining, but can be expected to be very strong. On this small               

example, it is easy to check that the lifted inequality is facet-defining for the polytope PI(S).  

(That is, by solving (41) exactly, gives  4z  = 1 and  5z = 1 which implies that the 

coefficients of x4 and x5 are 1). 

 
 
 
Sequential lifting of odd hole inequalities 
 
 

We next look at facet-defining inequalities of the set packing polytope. As in Section 

2.2, let the set packing polytope PI be defined as (23). Unlike clique inequalities, the odd 

hole inequalities generally do not provide facets for PI. In order to obtain facets for PI we 

need the rifted odd hole inequalities. This can be done by applying the sequential lifting 

procedure only since odd holes and odd anti-holes are strongly facet-producing. A graph G 

is called strongly facet-producing if the polytope PG has a facet which cannot be obtained by 

simultaneously lifting a facet of lower dimensional polytope. The lifted odd hole inequalities 

can be obtained by lifting the odd hole facet inequalities (26) to give 

 
 

∑ ∑
∈

−

∈

≤+
Nj

n

VNj
jjj xx 2

)1(

\
β                                                     (44) 

 
 
a facet of set packing polytope PI. Padberg (1973) has shown that there always exists at 

least one lifted inequality (44) with the coefficients VNjj \}{ ∈β  that are all integer. 

 
 

The Padberg's sequential lifting for minimal cover or (1, k)-configuration inequalities 

for the zero-one knapsack polytope can be applied to the odd hole inequalities of the set 

packing polytope. Thus the lifting procedure for an odd hole inequality is as follows: 
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Let H V be the index set of any set of nodes of the intersection graph G which 

define an odd hole in the graph G. Denote A

⊆

G be the edge-node matrix of the associated 

intersection graph. Again let aj be the jth column of AG, Let the sequence of the variables be 

jl,...,jt  in N \ V where t = |N \V|. 

 
 

Initialisation step: 

Define the set V \ H = Tq = Tq-1 U {jq} for jq ∈  T \ Tq-1 and q = 1, …, Q  =  

|T | ,  with T0  = 0. 

 
 

Iterative step: 
 
 

Solve the problem (Mq): 
 

    max zq =  ,|
11

qj

qTHj
Gj

j

qTj
jj

Hj
j aexaxx −≤+ ∑∑∑

−∈−∈∈ U

β

                                                                                                  (45) 
xj = 0 or 1  for j ∈  H U  Tq-1. 

 
 
 
where jβ , are defined recursively by 

qj
β  = s - −qz  , [ s = 2

1 (n - 1) and qz is the optimal 
 
 
value of the objective function of problem (Mq)]. 
 
 
 
Example 2.5: 
 
 

Consider an odd hole H = {3, 4, 5, 6, 7} and the corresponding inequality obtained 

in the Example 2.3, 

 
x3 + x4 + x5 + x6 + x7  ≤  2 
 
 

which is a facet-defining for the 5-dimensional polytope 
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PI(H) = {x ∈  {0,1}7 |AGx ≤ e, x1 = x2  = 0} 
 

 

but may not be a facet for the set packing polytope PI and therefore sequential lifting is 

needed. The set index V \ H = {1, 2}. 

 
 
Iteration 1: q = 1, Tl = 1, we have to solve 
 
 

 z1 = Maximise  x3 + x4 + x5 + x6 + x7 
such that    a3x3 + a4x4 + a5x5 + a6x6 + a7x7 ≤ eG – aj1 

 

 

That is, by solving 
 

 

z1 = max x3+ x4 + x5 + x6 + x7  such that 
 
  

                                     

10000
00110
01100
11000
00001
00010
00001
00010
00011
00001
00000

   

7

6

5

4

3

x
x
x
x
x

 ≤   

1
1
1
1
1
1
1
1
1
1
1

 -  

0
0
0
0
0
0
1
1
0
0
1

  

      
 
 
we get 
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x3   =  x4 = x6  = 0 and x5  =  x7  =  1 

 
    
which implies that 2=1z , 1β = 1, that is, the coefficient of x1 = 1. 
 
 
Iteration 2: q = 2, T2 = {1} U {2}, we have to solve 
 
 

z2 = Maximise x1 + x3 + x4 + x5 + x6 + x7 

                                          such that    a1x1 + a3x3 + a4x4 + a5xs + a6x6 + a7x7 – aj2 

 

 

That is, by solving 
 
 

      z2 = max x1 + x3 + x4 + x5 + x6 + x7  such that 
 
           

                                       

10000
00110
01100
11000
01010
00100
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1
1
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1
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1

                              

 
 
 
we have, 
 
 

x1 = x3 = x4 = x6 = 0 and x5 = x7 = 1 
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which implies that 2z  = 2, β 2 = 1, that is, the coefficient of x2 = 1. 

Hence the lifted odd hole inequality is given by 

 
x1 + x2 + x3 + x4 + x5 + x6 + x7   = 2. 
 

The lifting procedure for the odd hole inequalities, that is, the procedure to calculate 

jβ of (44) consists of solving a sequence of set packing problems, one for each j ∈  N \ V, 

in the variables j ∈  V∪V' , where V'  is the index set for the coefficients already computed. 

As in the lifting of minimal cover inequalities, the sequence in which the coefficients jβ are 

computed does matter, and different sequences may produce different facets. 

 
 
 

Simultaneous lifting 
 
 

The sequential approach was generalized by Zemel (1978) and Balas and Zemel 

(1978) and they called this procedure simultaneous lifting since the variables are introduced 

in groups. 

 

In Padberg's sequential lifting procedure, the lifting coefficients are computed one by 

one. For instance, in the lifting of the minimal cover inequalities the computation of each 

coefficent jβ  requires that a certain 0-1 knapsack problem of size between | S | and n be 

solved to optimality. The coefficients obtained in this way depend on the sequence in which 

they are calculated and, in general there may be an exponential number of sequences yielding 

distinct facets of P i .  Moreover, there may exist facets of P i  which are liftings from S, but 

which cannot be obtained by Padberg's algorithm for any sequence of N\S. To overcome this 

problem Balas and Zemel (1978) and Zemel (1978) proposed a simultaneous lifting procedure 

where variables in N\S are lifted in group rather than one by one. They showed that the 

sequentially lifted facets are precisely those corresponding to integer vertices, whereas facets 

that are obtained by simultaneous liftings are associated with the fractional vertices. This 

procedure can be viewed as a generalization of Padberg's procedure for obtaining the 

sequentially lifted facets. 

I I
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Gottlieb and Rao (1988) have studied a class of facets of the knapsack polytope 

containing fractional coefficients; these facets can be derived from disjoint and overlapping 

minimal covers and (1, k)-configurations. For such class, they have given necessary and 

sufficient conditions which can be verified without the use of the simultaneous lifting 

procedure. 

 
 
 

Simultaneous lifting procedure [Zemel (1978)] 
 

Consider an arbitrary fixed subset S N. For a subset M N\S let ⊆ ⊆
 

PI(S,M) = {x∈PI | xj = 1, j ∈M, xj  = 0, j∈  N\(MU S) }      (46) 
 
 

Denote by ℱ  the family of those subsets of N \ S, M, for which PI (S,M) ≠ 0, that is, 
 

ℱ = {M N\S |  PI(S,M)≠0}.                                       (47) ⊂
 
 
The members of ℱ  induce a partition of the vertices of PI, such that every vertex of PI 

belong to exactly one subset PI(S,M). 

 

Every set M N\S is associated with integer program IP⊆ M, whose variables are those 

of S and whose feasible set is PI(S,M): 

 

(IPM):    MZ  = max ∑
∈Sj

jj xb  

(48) 
                        s.t.  x ∈  PI (S,M)                                             
 

 
 
where ∞−=MZ  if PI(S,M) =  Ø. Let MM Zb −= 0π  and let PL be the polyhedral set: 
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PL = {b∈RN\S | ∑ ≤ Mjb π for every M ∈ ℱ }.  (49) 

 
It was shown by Zemel (1978) that if S  N and (37) is a valid inequality for P⊆ I(S), 

then (38) is a valid inequality for PI if and only if b∈PL. 

 
Zemel (1978) generalised the fact which was stated by Hammer et al. (1975) for 

monotone polytopes and for nonhomogeneous facet that if | N \ S| ≤ 2, the only lifted facets 

of a given lower dimensional facet are sequentially lifted facet. 
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3 - Facet identification for the zero-one polytopes 
 

In the previous section we were concerned with the problem of describing facet 

inequalities for the zero-one knapsack polytope, set-packing polytope and symmetric 

travelling salesman polytope. This section deals with the problem that one encounters if one 

wants to use the theoretical results of the preceding section in a cutting plane (constraint 

generation) algorithm for the zero-one problems. That is, the problem of algorithmically    

finding facet inequalities that are violated by a solution of the current LP-relaxation in a 

constraint generation technique. As we are considering general zero-one problems and since 

the symmetric travelling salesman is a very specific problem, the facet identification 

procedures for this polytope are not presented. However, for readers interested in 

identification procedures, we recommend Padberg and Rinaldi (1990). 

 
 
 
 
3.1 - The Facet identification problem 
 
 

Consider a family of linear inequalities ℒ of a zero-one polytope. Let L0 0 be a known 

subfamily of the facet-inducing inequalities ℒ . It is known that ℒ’ ⊆  ℒ 0  ℒ   where ℒ ' 

is the inequalities that have been identified. For most combinatorial optimization problems,   

ℒ

⊂

0  ⊂ ℒ . An example of a problem where ℒ 0 = ℒ  is the matching polytope where Edmonds 

(1965) defined completely the integer hull of the matching polytope. A constraint generation 

algorithm adapted from Padberg and Rinaldi (1990) for solving a certain zero-one IP problem 

is as follows: 

 

Procedure 3.1: 
 

Step 1: Set ℒ' = 0. 
 

Step 2: Solve the associated LP of the 0-1 problem and let x  be its solution. 
 

Step 3: Find one or more inequalities in ℒ0 violated by .x  
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Step 4: If none is found, stop. Otherwise add the violated inequalities to ℒ'       
and go to Step 2. 

 

Since ℒ0 is finite, the Procedure 3.1 stops after a finite number of steps. The core 

of the procedure is Step 3 which is called the identification problem or separation problem. 

It is formally stated as follows: 

 
 
 

Facet identification problem: 
 

Given a point nx R∈  and a family ℒ0  of inequalities ∈  Rn, 

identify one or more inequalities in ℒ0 violated by x                              (50) 

or prove that no such inequality exists. 

 
 
 

In actual computation, especially for solving a large scale problem it is impossible to 

generate a priori all possible valid inequalities or facet-defining inequalities for a polytope 

associated with a given class of problem. Although L 0 is finite, it is exponential in number. 

By using (50) as a routine in a solver, one can generate violated facet inequalities "on the 

fly". In other words generate them in the course of computation as they are needed. 

 

Grötschel, Lovász and Schrijver (1981) have shown that a combinatorial optimization 

problem can be solved polynomially if and only if there exists a polynomial algorithm for              

the identification problem (or separation problem) (50). Another way of looking at this is to 

note that IP optimization problems are NP-hard if and only if the identification problem for 

these IPs is NP-hard. Given a family of inequalities L, a procedure is called exact if it 

solves problem (50) and heuristic if it sometimes identifies violated inequalities, but does not 

guarantee the solution of (50). By using fast approximate methods or heuristics, it is 

frequently possible to solve the facet identification problem (50) quickly. An example of a 

heuristic procedure was discussed in Section 2.4 where finding exact liftings was relaxed. 

In this section, some exact and heuristic facet identification procedures for zero-one polytopes 
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that were discussed in the previous section and implemented in various computational studies 

are discussed. 

 
 
 
 
3.2 - Facet identification procedures for the zero-one knapsack polytope 
 

In the course of computation, it is common to restrict one's search to not only finding 

a violated inequality but to find the most violated inequality. The motivation for doing this 

is that most classes of known facet inequalities are exponential in size and therefore 

generating them would simply explode the memory required to store all such constraints. An 

example of such constraints would be (1, k)-configurations for a zero-one knapsack problem 

 
0axa

Nj
jj ≤∑

∈

 which is exponential in the number of variables [see Crowder et al. (1983)]. 

 
Finding the most violated inequality can be accomplished by solving the constraint 

identification problem in approximation to the facet identification problem (50) and is stated 

as follows: 

 

Constraint identification problem: 
 
 

Given x , find a minimal cover inequality 
 
    ∑

∈

−≤
Sj

j Sx 1||  

 
or a (l, k)-configuration inequality    (51) 

(r - k + l)xt + ∑
∈

≤
)(rTj

j rx  

that chops off x , if such an inequality exists. 
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Identification of minimal cover inequalities 
 
 

One of the procedures that solves the constraint identification for a most violated 

minimal cover inequality was developed by Crowder et al. (1983). To solve problem (51), 

one needs to solve the zero-one knapsack problem 

 
               ζ  = min { ∑∑ ∈∈

=>−
Nj jjjNj jj orSasasx 10,|)1( 0  

     (52) 
                                     for all j ∈ N }.  
 
 

It follows that there is a minimal cover inequality ∑
∈

−≤
Sj

j Sx 1||  that chops off x  if and 

only if the optimal objective function value ζ of  (52)  is less than one. This can be shown as 

follows. Suppose that there is a minimal cover S  N that chops off ⊆ x . By letting sj  = 1 for 

all j ∈  S and Sj  = 0 for all j ∈   N \ S we get an objective function value less than one. 

Conversely, observe that 0 ≤ 1≤jx  for ally j = 1,..., n implies that the objective  function 

coefficients in (52) are nonnegative, and among the optimal solutions to (52), at least one 

defines a minimal cover. Let S be the set of variables with value one in such a solution. If 

the optimum value of the objective function value of (52) is less than one, then the 

corresponding inequality chops off x . 

 

Crowder et al. (1983) claimed that the constraint identification problem (52) is 

constructed in such a manner that its solution finds a most violated minimal cover inequality. 

One might note that (52) is itself a (0,1) IP problem which is also NP-hard. The authors also 

conjectured that by using a different approach than the one they had, a violated minimal 

cover inequality can be identified by a polynomially bounded algorithm. To get around the 

problem of solving (52) exactly, they solve its LP-relaxation in the following procedure: 

 

Procedure 3.2: 
 

Step 1: Solve the associated LP-relaxation of the zero-one knapsack problem. Let x  

be the current solution. 
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Step 2: If x  is a zero-one solution - terminate; x  solves the problem.          

Otherwise go to Step 3. 

 
 

Step 3:  Solve the associated LP-relaxation of the constraint identification (52). 
 
 

Step 4: If the objective function value ζ < 1, then the corresponding minimal                         

cover inequality is violated by x . Otherwise look for a (1, k)-configuration                    

inequality using Procedure 3.3 

 
 
Example 3.1: 

Let 
 

K = {12x1 + 13x2 + 13 x3 + 12x4 + 9x5 + 10x6 + 9x7 + 11x8 ≤ 39 }  and 

   x  = (1, 1, 1, 
12
11 , 0, 0, 0, 0). 

 

To check whether there is a violated minimal cover, we solve the constraint identification 

problem 

 

ζ = min {0s1 + 0s2 + 0s3 + 
12
11 s4 + s5 + s6 + s7 + s8  | 

12s1  + 13s2  + 13s3  + 12s4  + 9s5 + 10s6 + 9s7 + l ls8 ≥ 40  

                         si  =  0 or 1    for i = 1, 2….,  8}. 

 

 

Note: The data of the constraint are integer and thus >39 is replaced by ≥ 40. (For rational 

data replace >39 by ≥ 39+∈  where ∈  is a small positive number.) 

 
 
The optimal solution is 
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s1 = s2  = s3 = s4  = 1, s5 = s6 = s7 = s8 = 0 and ζ = 
12
11 . 

 
 

As ζ< 1, the cover inequality 
 

x1 + x2 + x3 + x4 ≤ 3 
 
 

is violated by x .  ■ 
 

   

Identification for (l,k)-configuration inequalities 
 
 

The procedure to identify a most violated (l-k)-configuration inequality is invoked 

only if Procedure 3.2 does not generate a most violated minimal cover inequality. Crowder 

et al. (1983) do not have a formulation of the facet identification problem in a tractable form 

such as (52). However, for a large scale zero-one problem they proposed an ad-hoc 

procedure to identify these inequalities. 

 

 

Procedure 3.3: 
 

Step 1: Start with a minimal cover S that is not violated by x  (obtained 

through Procedure 3.2) and define the index t of the (1, k)-configuration to be 

the index with the largest | aij | for all j∈S. If this does not yield a unique 

index, take the next knapsack constraint. Otherwise, set S* = S \{t} and k = 

|S |  - l .  

 
 

Step 2: Scan the indices in K \ S* \ {t} one by one. Let i ∈  K \ S* \ {t} be the 

current index and check whether or not (16) is valid with S* replace by 

S* ∪  {i}. If yes, replace S* by S* ∪ {i}. Otherwise scan the next index. 
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Step 3: Check whether or not the inequality (17) chops off the solution x . If 

yes, save S* for further use. Otherwise scan the next index. 

 
 

Step 4: Extend the inequality found to the other variables in N \ S* \ {t} by 

sequential lifting (as discussed in Section 2.4). 

 
 
 
 
3.3 - Procedures for solving a general zero-one problem 
 
 

We now consider how facet identification procedures for a 0-1 knapsack problem can 

be used for solving a general zero-one problem. Crowder et al. (1983) proposed a procedure 

that is based on the constraint identification for a most violated minimal cover inequality or 

a most violated (1, k)-configuration for each individual constraint of the zero-one problem. 

(To minimise the actual computational effort, one needs to set up auxiliary data structures 

by scanning each constraint.) Assume that all constraints are of the form (11), and let the 

current solution to the LP-relaxation of the general (0,1) IP problem be x . 

 
 
Procedure 3.4: 

Let i be the current row. 

 

Step 1: Express row i into the a knapsack constraint with all nonnegative                

coefficients (if necessary use the substitution   x 1  = 1 – xj j ). 

 

Step 2:  Let the solution vector be y  (due to the substitution). 
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Step 3:  Define 
 

K1 = {j ∈  N | jy  > 0,  aij   ≠  0 }, 

K0 = {j ∈  N | jy  = 0,  aij  ≠  0} 
 
 

where N = {1, 2..., n}. 
 

Step 4: If K1 = Ø, or if j∈  K1 implies jy  = 1, or if j∈K1 implies |aij|                    

= 1, then process the next constraint (go to Step 1). Otherwise go to Step 5. 

 

Step 5: Let N = KI and yx = . Solve the associated LP-relaxation of the 

problem (52). 

 
 

Step 5.1: Obtain a cover by rounding the fraction variables to 

one. 

 
Step 5.2: By dropping some of the variables to zero, change a  

cover obtain in Step 5.1 into a minimal cover S where S is the  

index set of the variables in the minimal cover. 

 
Step 5.3: If the objective function ζ ≤ 1, then the corresponding 

minimal cover inequality is violated by y . Otherwise go to Step 8. 

 

Step 6 : Sort the variable in S by increasing order of magnitude of the 

coefficients |aij|. If K1\ S ≠ Ø then lift the variables using the sequential 

lifting procedure of Section 2.4. 

 

Step 7 : Check if the lifted inequality cuts off y . If it does lift the variables          

in K0. Otherwise go to Step 8. 

 
Step 8 : Look for a (1,k)-configuration inequality using Procedure 3.3. 
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Nemhauser and Wolsey (1988) proposed a procedure for the identification of violated 

inequalities that is similar to Procedure 3.4 but without looking for (1,k)-configurations 

inequality. 

 

 

 

Constraint generation algorithm for solving a general large scale zero-one programming 
 
 

By combining the procedures above, we can now expand the constraint generation 

Procedure 3.1 to solve a general large scale zero-one IP problem as follows: 

 

 

Procedure 3.5: 
 
 

Step 1: Solve the associated LP-relaxation of the zero-one problem, intialise i = 0. 
 

Step 2: If the optimal solution is a zero-one solution, terminate - it solves the zero-               

one problem. Otherwise go to Step 3. 

 

Step 3: Let i = i + 1 (repeat until i = n) and solve for the ith constraint the 

identification problem using Procedure 3.4 to obtain the most violated minimal cover 

inequality. If a most violated inequality is found, process the next row (i+1). 

Otherwise go to Step 4. 

 

Step 4: Apply Procedure 3.3 to identify the most violated (1, k)-configuration 

inequality. If a violated inequality is found, lift it and go to Step 3. 

 

Step 5: Append all the lifted inequalities to the LP of the associated 0-1 IP 

problem and goto Step 1. 
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This procedure is repeated until one of the following conditions occur:  

(i) a zero-one solution is found; 

(ii) no more constraints are found; 

(iii) the gain in the objective function value becomes too small e.g., is less                  

than one unit in terms of the objective function. 

 

Crowder et al (1983) implemented this algorithm to solve pure 0-1 problems within 

their hybrid algorithm which comprise of preprocessing, constraint generation and clever 

branch and bound. Later Hoffman and Padberg (1991) and Padberg and Rinaldi (1991) 

implemented this procedure in their branch-and-cut algorithm to solve large-scale zero-one 

programming and traveling salesman problem respectively. 

 
 
 
 

3.4 - Facet identification procedures for the set-packing polytope 
 

There are few studies made on procedures to identify violated minimal covers in the 

knapsack polytope but only limited studies on how to identify violated clique or odd hole 

inequalities for the set packing polytope. Procedures we are going to discuss in this section, 

for identification of violated clique inequalities and odd hole inequalities are proposed in 

computational studies by Hoffman and Padberg (1993) and Nemhauser and Sigismondi 

(1992). We adapt these procedures to develop a constraint generation algorithm for solving 

the set packing problem. Again, we work with the same graph structures defined in Section 

2.2 (that is, the cliques and the odd holes of the intersection graph G). 
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Identification of clique inequalities 
 

In order to find a violated clique inequality Nemhauser and Sigismondi (1992) defined 

node weights equal to the values of the variables in the optimal solution of the associated LP-

relaxation of the problem. The following is the constraint identification problem for a clique 

inequality: 

 
 

Given x , find a clique C such that  ∑
∈

>
Cj

jx 1  holds 

(53) 
or prove that no such inequality exists.                                    

 
 
The authors use a heuristic procedure to find a clique C of large weight. If the weight of C 

is greater than one, then a violated clique inequality is found. This process is repeated until 

optimality is proven or no more violated clique inequalities are found. In the latter case, the 

procedure attempts to find odd hole inequalities. 

 

Nemhauser and Sigismondi (1992) use the following fast greedy procedure that tries 

to find violated clique inequalities. Since it is a heuristic procedure, it may not always 

identify violated inequalities when they exist. 

 
 
Procedure 3.6: 

 

Let star(v) = v U N(v) where N(v) are neighbours of v. Starring a graph 

means choosing a node v, deleting all of the nodes not in star(v) and then 

marking node v. Repeat this process until all the nodes in the remaining 

graph are marked. Since star (v) contains every clique that contains v, the set 

of marked nodes is a clique. This procedure uses the two following heuristics 

for selecting the star node at each iteration. 

(i) choose a variable that maximises {xv : xv < 1}. 

(ii) choose a variable that minimizes {|xv-1/2| :0<xv< l}. 
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Hoffman and Padberg (1993) proposed three procedures to identify violated clique 

inequalities. In all these procedures for detecting violated inequalities, it suffices to 

investigate the subgraph induced by nodes of G that are in F (where F is the index sets of 

variables that have fractional values of x ) and edges EF, with both endpoints in F. Such a 

subgraph will henceforth be denoted GF = (F, EF). For all the following procedures, let F 

= {j V : 0 < ∈ x j < 1} where x  Rn  is the solution vector of current LP. The first 

procedure offered is given as follows: 

 

Procedure 3.7: 
 

Step 1: Scan every row of A that has a nonempty intersection with the columns in F. 
 

Step 2: Let M  = {j ∈  F : aF
r rj = 1} where r is the current row. 

 

Step 3: Find the set K  F \ M  of columns in F that are nonorthogonal to all 

columns in M . 

⊆ F
r

F
r

 

Step 4: If K ≠ Ø then some or all the columns form cliques with columns of M . F
r

 

Step 5: Identify a most violated inequality and lift it. 
 

 
The efficiency of this procedure is evidently dependent upon the storage of the A 

matrix. The data structures used in the implementation of Hoffman and Padberg (1993) is 

discussed in Section 4. 

 

The second procedure of clique identification uses the fact that small problems can 

be solved quickly by enumeration. This procedure is similar to that used by Nemhauser and 

Sigismondi (1992). 
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Procedure 3.8: 

 

Step 1: Let d(v) denote the degree of node v ∈  F. Select a node v of minimum d(v) 

of GF. 

 

Step 2: Let star(v) denote the set of nodes of GF that contains v and is itself a subset 

of the neighbours of v. Note that d(v) = | star(v) |. 

 

Step 3: If v is a pending node, (that is, d(v) = 1) then go to step 5. 
 

Step 4: If v is a simplicial node, that is, {v} star(v) forms a clique, check if the 

corresponding clique constraint is violated. If yes, lift the constraint and store it and 

go to step 5. Otherwise go to step 5. 

U

 

Step 5: Delete node v and select next node and go to step 1. 

 

If d(v) ≤ 16, (that is, if the degree of node v is less or equal to 16), then one simply 

enumerates all possibilities by looking at the complement graph of the subgraph induced by 

the nodes in star(v). Any clique in G defines a stable (independent) set in the complement 

graph and vice versa. Prior to enumerating, however a greedy routine on the complement 

graph is called to find a violated clique quickly. If one is found, there is no need to 

enumerate. Otherwise we do. If all degrees of the input graph are less than 16, then the above 

Procedure 3.8 is exact: it is guaranteed to find a violated clique inequality if one exists. 

Consequently, one either finds a violated clique inequality that contains v or one has proven 

that no such inequality exists. In the first case, one lifts the corresponding inequality and 

stores it. In either case, delete the node and repeat. 

 

However, if the minimum degree node of the graph has a degree greater than 16, then 

determine a most violated inequlity in star(v) greedily as before, if applicable lift and store 

it, and delete the node and repeat. For solving large scale problems and after various graph 

reductions have been carried out, the minimum degree node frequently has a degree less or 
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equal to 16. 
 
 

The third procedure for clique detection is invoked only if the graph GF used as input 

for the second procedure is dense; that is, if its total number of edges exceeds 50% of the 

number of edges for a complete graph on the nodeset F of GF. 

 
 
Procedure 3.9: 

 

Step 1: Invoke procedure 3.8. 

 

Step 2: Set up the complement graph. 

 

Step 3: For every node of the complement graph, determine a maximum 
weight (given by the values x j for j ∈  F) stable set containing that node. 
 

Step 4: If the weight exceeds one, then a violated clique is found in the 

original graph. 

 
Step 5: Lift and store the violated inequality. 

 

It is possible that the three procedures find the same violated clique constraint. 

However, since Hoffman and Padberg (1993) use a randomization of the lifting sequence, 

these procedures tend to identify distinct clique constraints. 

 

 

Identification of odd hole inequalities 

 

By solving no more than |V| shortest path problems, one either identifies a violated 

odd hole inequality or shows that none exists. (One way of solving shortest path is to use 

Dijkstra's algorithm [see for instance, Aho et al. (1983)]). If a violated odd hole inequality 

is found, then a lifting procedure is applied. Nemhauser and Sigismondi (1992) implemented 

the following procedure in their computational studies. This procedure was given in 
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Grotschel et al. (1988) to identify odd hole inequalities violated by the current fractional    

optimal solution x . 

 
 
Procedure 3.10: Approach 1 
 

From the graph GF = (F, EF) and the weight vector x , construct a bipartite graph KF   

= (F1, F2, E’) where F1 = F2 = F.  For every edge (u,v) ∈EF, introduce a pair of edges 

(u,v), (v,u’)  E' where u',v'  F∈ ∈ 2 are the duplicates of u, v ∈  F1 . Assign to them 

identical edge-weights Cuv = 1- .0≥− vu xx For every node pair (v,v’) in KF find a 

shortest path between them. If the weight of the path is less than 1, a violated odd hole 

inequality is identified. Otherwise each node pair of the form (u,u’) is considered in turn 

until a violated inequality is found. 

 
 
Hoffman and Padberg (1993) claimed that although this algorithm is easy to 

implement, it will not produce the desired result. If there is no violated odd hole inequality 

in GF, it may return an odd circuit. Secondly, in general, it may be that after a few rounds, 

none of the odd holes generated gives rise to a violated odd hole inequality. Further, since               

odd hole C with |C| ≥ 5 is needed to start the lifting of violated lifted odd hole inequality, 

Hoffman and Padberg (1993) implemented a procedure that is a modification of this              

approach. 

 
 
Before one can apply Procedure 3.12 to identify violated odd hole inequalities, one 

has to construct the "layered" graph as follows: 

 

Procedure 3.11: Construction of layered graph 
 
 

Pick a node v ∈  F, call it the root, and build a layered graph starting from node v. 

Each level of the layered graph is defined by the edge distance that its nodes have from the 

root. All neighbours of v are on level 1, the neighbours of the neigbours (except v and those 

nodes that have already been assigned to level 1) form level 2, and so forth. In general, the 

shortest path from level k, say, to the root level contains k edges. 
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Procedure 3.12: Approach 2 
 

 
Step 1: Construct the layered graph level by level. 

 

Step 2: To all edges (u,w) ∈EF that are in the layered graph, assign 

edgeweight 1 - wu xx −   

 

Step 3: At level k ≥ 2, let u and w be any two nodes on level k such that (u, 

w) ∈ EF. 

 

Step 4: Determine a shortest path from u to the root. 

 

Step 5: "block" in the graph, all neighbours of the nodes in the path (except 

v) by assigning the corresponding edges a very large weight M. 

 

Step 6: For the remaining graph and for all nodes on the level that are smaller 

than k, determine the shortest path from w to v. 

 

Step 7: If a shortest path of length less than M exists, then an odd hole 

inequality containing u, v and w is detected. 

 

Step 8: If none exists, take another edge on level k until they are exhausted. 
 

Step 9: Construct the next level of the layered graph and go to step 2. 
 
 

Identification of an odd anti-hole inequality 
 

The other facet-producing configuration of the intersection graph mentioned in Section 

2.2 is the complement of the odd hole, the odd anti-hole. Let C  be the node set of the odd 

anti-hole in GF. The node set of every odd hole in the complement graph FG  of the GF 

defines such a node set C  and vice versa. To find a violated odd anti-hole inequality, one has 
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to produce the complement graph and get the node set C; run Procedures 3.7, 3.8 and 3.9. 

The corresponding inequality has to be lifted in order to have the inequality that defines a 

facet for the set packing poly tope. 

 

The above procedure for finding violated odd anti-hole inequalities was proposed by 

Hoffman and Padberg (1993) while Nemhauser and Sigismondi (1992) claimed that they have 

not found an efficient procedures to find odd anti-hole inequalities. 
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4 – Conclusion 
 
 
 
 
 

This report concerns the facial structures of the zero-one problems for which good 

understanding is needed to develop an efficient cutting plane method. We present valid 

inequalities, in particular the facet-defining inequalities that are derive from the zero-one 

knapsack, set packing and the travelling salesman polytopes, and in turn are used to eliminate 

nonintegral solutions. Procedures in detecting most violated inequalities are also discussed. 

 
 
We consider two classes of valid inequalities that described the zero-one knapsack 

polytope. These are the minimal cover inequalities and the (1, k)-configuration 

inequalities. Established procedures for identifying these inequalities are discussed as 

well as the development of the constraint generation algorithm for solving a large scale zero-one 

program. 

 
 
The solution procedures to the set packing problem use intersection graph to derive 

valid inequalities. The graph structures that give rise to facet-defining inequalities include 

cliques, odd holes and odd anti-holes. Procedures to detect these graphs and to construct the 

associated valid inequalties are presented. 

 
 
For the travelling salesman problem, four classes of valid inequalities, namely the 

subtour elimination, the 2-matching, the comb and the clique tree inequalities, are presented. 

These inequalities partially define the convex hull of the integer points for the solution space. 

 
 
Some of the above mentioned valid inequalities are facet-defining for lower 

dimensional polytopes but may not be facet-defining for the original polytopes. Lifting 

procedures have also been considered to obtain a facet of a possibly higher dimension. 
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Computational studies have indicated that a combination of problem preprocessing, 

cutting planes and branch and bound (or branch-and-cut) techniques can be extremely 

efficient in obtaining exact solutions of large scale zero-one IP problems. This motivates 

further investigation on the development of these cutting plane procedures within a branch-

and-cut algorithm. As a follow up to this review, the implementation of the procedures 

discussed will be reported. 
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