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Abstract

Recent earthquakes have shown that tunnels are prone to damage, posing a major threat to safety and having major cascading and
socioeconomic impacts. Therefore, reliable models are needed for the seismic fragility assessment of underground structures and the
quantitative evaluation of expected losses. Based on previous researches, this paper presented a probabilistic framework based on an
artificial neural network (ANN), aiming at the development of fragility curves for circular tunnels in soft soils. Initially, a two-
dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under
ground shaking. The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility
of tunnels were adequately considered within the proposed framework. An ANN was employed to develop a probabilistic seismic
demand model, and its results were compared with the traditional linear regression models. Fragility curves were generated for various
damage states, accounting for the associated uncertainties. The results indicate that the proposed ANN-based probabilistic framework
can results in reliable fragility models, having similar capabilities as the traditional approaches, and a lower computational cost is
required. The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic
loading, and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.
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1 Introduction

Tunnels play a vital role in satisfying the growing infras-
tructure needs around the world (Huang & Zhang, 2016;
Jin et al., 2019; Zheng et al., 2021), especially in densely
populated urban regions (Tsinidis et al., 2020). Therefore,
seismic safety and understanding of potential induced dam-
age are crucial in the design and rehabilitation of new and
existing tunnels in earthquake prone areas. This becomes
more relevant, considering the cases of reported severe
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damage in tunnels during previous strong earthquakes,
such as the 2008 Wenchuan (Yu et al., 2016), the 1999
Chi-Chi (Wang et al., 2021), and the 1995 Kobe events
(Billings, 1995; Sayed et al., 2019), which ultimately led
to significant socioeconomic losses. Hence, reliable seismic
fragility and risk analysis of underground structures sub-
jected to various earthquake scenarios becomes a critical
issue for the resilience assessment of existing transport
assets and networks, as well as for the design of new
infrastructure.

Fragility curves, constitute a critical tool for the risk
analysis of tunnels, describing the exceedance probability
of different damage states (XDS) against a given hazard
behalf of KeAi Communications Co. Ltd.
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intensity measure (XIM). Empirical fragility curves can be
derived based on expert elicitations or damage evidence
from past earthquake events (ALA, 2001; Corigliano
et al., 2007; Pitilakis et al., 2006). Numerically derived fra-
gility curves developed based on the framework of
Performance-Based Earthquake Engineering (PBEE), con-
stitute a current trend in the field. Recent studies proposed
fragility models for circular tunnels in soft layered soils
based on numerical simulations, considering representative
types of soil and tunnel lining (Argyroudis & Pitilakis,
2012; Argyroudis et al., 2017; de Silva et al., 2021; Hu
et al., 2020; Huang et al., 2020). However, further research
is needed to improve our understanding of tunnels’ seismic
response and enable new approaches that allow the devel-
opment of rigorous models for rapid and case-specific risk
assessment of underground structures.

In most of the above numerical fragility models, a linear
regression method is utilized to compute the exceedance
damage probability, following a lognormal distribution
(Argyroudis & Pitilakis, 2012; Argyroudis et al., 2017;
Hu et al., 2020). It is assumed that the intensity measure
(XIM) and damage measure (XDM), usually defined in terms
of the tunnel lining bending moment capacity (Argyroudis
& Pitilakis, 2012; de Silva et al., 2021), exhibit a linear rela-
tionship in the logarithmic space (Jalayer et al., 2015).
However, this assumption may not always hold true, con-
sidering that the dynamic response history data of tunnels
inherently exhibits complex and nonlinear behaviour (Chen
et al., 2020). In fact, the data cloud (lnXIM, lnXDM) has the
potential to follow a nonlinear form. In recent years, the
development of artificial intelligence (AI) has brought
new opportunities in civil engineering. Artificial neural net-
work (ANN), which is one of the most popular machine
learning algorithms (Hassoun, 1995; Zhang et al., 2021a),
is often utilized to predict the performance of nonlinear
systems due to its high nonlinear mapping ability. This
approach can facilitate more rigorous estimations of the
damage measure XDM in seismic analysis of tunnels. Fur-
thermore, the traditional seismic fragility analysis usually
requires computationally demanding dynamic simulations
based on finite element modelling to obtain sufficient anal-
ysis results (Shokri & Tavakoli, 2019). Properly trained and
tested ANN-based models may be utilized as a fast and
effective way to substitute time-consuming dynamic analy-
ses, thus, lower computational power is required for the
analyses (Lagaros et al., 2009). Recent studies have
employed ANN models for the fragility assessment of rein-
forced concrete structures (Mitropoulou & Papadrakakis,
2011), steel structures (Liu & Zhang, 2018), nuclear power
plants (Wang et al., 2018) and bridges (Mangalathu et al.,
2018). It is noted that most of the existing works focus on
the fragility assessment of aboveground structures, while to
the best knowledge of the authors, there is no relevant
research concerning underground structures.

In this respect, this paper extents the previous work by
Huang et al. (2020) by applying an ANN-based methodol-
ogy to evaluate the seismic fragility of circular tunnels in
2
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soft soils. Figure 1 presents the flowchart of the proposed
methodology, which will be discussed in detail in the fol-
lowing sections. The organization of the paper follows
the flowchart. Initially, the finite element approach used
to model the investigated soil-tunnel system is summarised
(Section 2). The proposed numerical approach is applied to
evaluate the seismic performance of the examined tunnels
under increasing seismic excitation, expressed by well-
defined damage measures (Section 3.1). Subsequently, an
ANN model is constructed (Section 3.2) to generate the
probabilistic seismic demand model (PSDM) of the studied
tunnels. The advantages of the ANN model over the tradi-
tional linear regression method are discussed. Further-
more, the correlation of five different widely used
intensity measures (XIM) with the seismic response of the
studied tunnels is also discussed (Section 3.3), aiming at
the definition of the most efficient XIM. The examined
XIM includes the peak ground acceleration (aPG), the peak
ground velocity (VPG), the peak ground displacement
(DPG), the ratio between VPG and aPG, i.e., Fr1 = VPG/

aPG, and the Arias intensity (Ia), Finally, based on the pro-
posed ANN-based PSDM and the derived efficient IM, i.e.,
VPG, fragility curves are established for the examined soil-
tunnel configurations (Sections 3.4 and 4). These curves are
compared with the ones developed based on traditional lin-
ear regression method (Sections 4 and 5).

2 Conceptual assumptions and analysis of soil-tunnel

configurations

2.1 Tunnel and soil parameters

A circular tunnel section with an external diameter d of
6.2 m representative of the Shanghai metro network is cho-
sen as a studied case. The thickness of the tunnel lining is
0.35 m and the concrete cover depth of the lining is
50 mm. The burial depth C from the ground surface to
the top of the tunnel is 20 m, corresponding to a moder-
ately deep tunnel section. The elastic modulus Ec and Pois-
son’s ratio vc of reinforced-concrete tunnel are 3.55 GPa
and 0.2, respectively.

Two soil profiles with clayey and sandy layers, corre-
sponding to typical soft soil conditions in Shanghai, are
considered in this study. The layered soil profiles, denoted
as IV-1 and IV-2, are categorized as ground type IV based
on the Chinese seismic code (GB50011—2010). The
detailed geotechnical properties of soils and the shear wave
velocities profiles as well as the variations of normalized
shear stiffness G/Gmax and damping ratio Dr with shear
strain c for the examined sites can be further referenced
from author’s previous work (Huang et al., 2021).

2.2 Development of the soil-tunnel numerical model

Since the transversal response of the tunnels under
ground shaking is more critical than the longitudinal one,
i.e., higher potential for damage during shaking in
gility assessment of tunnels in soft soils using artificial neural networks,
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Fig. 1. Probabilistic framework for seismic fragility assessment of tunnels using artificial neural network (ANN).
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transversal direction (Hashash et al., 2001; Tsinidis et al.,
2020), this study is focused in 2D conditions. Moreover,
the seismic response of the examined tunnel is considered
only in circumferential conditions; hence, it can be seen
3
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as a plane strain problem. In this respect, the potential
3D effects are ignored for simplicity, and a two-
dimensional model of the soil-tunnel system is generated
using ABAQUS (2011), as shown in Fig. 2. The model
gility assessment of tunnels in soft soils using artificial neural networks,
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domain is 400 m wide and 100 m deep, the ground beyond
this depth is assumed to be ‘elastic bedrock’ for the studied
soil profiles. Two-node beam elements (B21) are used to
model the tunnel lining. The interaction between tunnel-
soil interface is simulated by a finite-sliding hard contact
model. The normal interface behavior is controlled through
a hard contact formulation, while the tangential interface
behavior is modelled through a Coulomb frictional model.
A friction coefficient l = 0.6 is used for the tunnel-soil
interface. The soil is simulated by the plane strain elements
(CPE4R). The mesh size is properly chosen based the rule
proposed by Lysmer and Kuhlemeyer (1969). Moreover, a
finer discretization is adopted for the surrounding soil ele-
ments close to the lining, ensuring the efficient simulation
of the soil-tunnel interaction effects.

The elastic bedrock is modelled using the dashpots, to
minimize seismic wave reflections (Lysmer &
Kuhlemeyer, 1969). Horizontal kinematic tie constraints
are introduced for the nodes on the side boundaries of
the model, to ensure that the opposite vertical sides have
the same movement, following Tsinidis et al. (2014).

The tunnel lining is simulated utilizing a linear elastic
model, while the behaviour of the soil is modelled by a
visco-elasto-plastic model with a Mohr–Coulomb yield cri-
terion. Soil parameters are calibrated following Tsinidis
et al. (2015, 2016) based on 1D soil response analysis with
EERA (Bardet et al., 2000). The viscous damping of the
soil is introduced in the analysis in the form of Rayleigh
damping, calibrated properly for critical frequencies of
the system. The other simulation procedure and numerical
modelling is described in more detail in authors’ previous
work (Huang et al., 2021).

The proposed numerical modelling approach is used to
calculate the seismic response of tunnel and generate the
database for the fragility analysis. The proposed numerical
model has some limitations. For instance, the volume loss
is not considered in this study. Generally, as we can expect,
the excavation process may alter to some extent the initial
state of stress close to the tunnel. Since the study mainly
focuses on the dynamic soil inelastic response, the tunnel
Dashpots
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Fig. 2. Finite element soil-structure-interactio
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is simulated as being in place within a geostatic step, pro-
ducing a reasonable ‘‘reference” initial stress state around
the tunnel. This modelling procedure has been widely
adopted by other researchers (e.g., Hatzigeorgiou &
Beskos, 2010; de Silva et al., 2021). Moreover, the cumula-
tive shaking effects are ignored since this study focuses on
the vulnerability of tunnels in the case of a single strong
seismic event, which is in line with previous studies (e.g.,
Nguyen et al., 2019; de Silva et al., 2021; Zi et al., 2021).
The above limitations, as well as some additional issues,
e.g., the implementation of more advanced soil constitutive
models are issues to be examined in future studies.

2.3 Input ground motion characteristics

The selection of earthquake motions is of prior impor-
tance for the seismic fragility analysis. Liu et al. (2017)
reported that a suite of 10–20 well-chosen earthquake
records can meet the needs for the accurate computation
of seismic demands of studied structures. Twelve different
records are selected in the framework of this study
(Table 1). The selection is made from the PEER (2000)
strong motion database, following the commonly used
spectral matching method (Gardoni et al., 2003; Iervolino
& Manfredi, 2008). The acceleration response spectra of
the selected records compare well with the design response
spectrum from the Chinese seismic code (GB50011—2010).
More details of this comparison and the selection of earth-
quake motions were provided by Huang et al. (2021). In
this work, the incremental dynamic analysis
(Vamvatsikos & Cornell, 2002) was adopted to cover a
wider range of ground motion amplitudes. To evaluate
the seismic response of tunnel lining under an increasing
increment of seismic intensity, the peak of the selected
earthquake motions was scaled from 0.1 g to 1.0 g with a
step of 0.1 g. This is a common approach in similar studies
related to the fragility assessment of structures (de Silva
et al., 2021; Nguyen et al., 2019; Zhong et al., 2020). Thus,
a total of 120 input motions are finally used to develop the
fragility curves.
 

Gravity

400 m

Horizontal kinematic constraintseam elements

n (SSI) model for the soil-tunnel system.
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Table 1
Properties of the selected records.

Earthquake Station name Year Mag. (Mw) R (km) aPG (g)

Kobe, Japan Port Island 1995 6.90 3.31 0.32
Northridge USA LA - Hollywood Stor FF 1994 6.69 19.73 0.23
Parkfield, USA Cholame-Shandon Array 1966 6.19 12.90 0.24
Imperial Valley-07, USA El Centro Array #11 1979 5.01 13.61 0.19
Superstition Hills-01, USA Imperial Valley W.L. Array 1987 6.22 17.59 0.13
San Fernando, USA Castaic - Old Ridge Route 1971 6.61 19.33 0.34
Tottori, Japan TTR008 2000 6.61 6.86 0.39
Parkfield-02, USA Parkfield-Cholame 2WA 2004 6.00 1.63 0.62
Borrego Mtn, USA El Centro Array #9 1968 6.63 45.12 0.16
Loma Prieta, USA Treasure Island 1989 6.93 77.32 0.16
Kern County, USA Taft Lincoln School 1952 7.36 38.42 0.15
Imperial Valley-02, USA El Centro Array #9 1940 6.95 6.09 0.28

Notes: R is epicentral distance, Mag. is moment magnitude, and aPG is peak ground acceleration.
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3 Development of PSDM

3.1 Definition of damage measure and damage states

The definitions of the damage measure (XDM) and dam-
age states (XDS), constitute critical components for the fra-
gility analysis of any element at risk, as they should directly
reflect the seismic response of the examined element
(Argyroudis et al., 2019). In this study, five damage states
are defined in terms of the ratio of the actual bending
moment (MSd) over the capacity bending moment (MRd)
of the tunnel cross-section, describing the exceedance of
none, minor, moderate, extensive and complete damage
of the tunnel lining. The limit values for different damage
states are defined based on available literature
(Argyroudis & Pitilakis, 2012), as shown in Table 2. The
proposed damage measure and damage states have been
used in similar studies (e.g., Hu et al., 2020; de Silva
et al., 2021). Herein, the actual bending moment of the tun-
nel lining is evaluated through the dynamic analyses, while
the capacity of bending moment is computed by a section
analysis using the lining geometry and material properties.

3.2 ANN-based probabilistic seismic demand model

An ANN is used to generate the PSDM of the studied
configurations, accounting for the capability of the method
to deal with nonlinear regression issues, with good predic-
tion performance and without time consuming numerical
Table 2
Adopted damage measure and damag
2012).

Damage state
(XDS)

Range of damage m
(XDM)

XDS0: none MSd/MRd � 1.0
XDS1: minor 1.0 <MSd/MRd � 1
XDS2: moderate 1.5 <MSd/MRd � 2
XDS3: extensive 2.5 <MSd/MRd � 3
XDS4: complete MSd/MRd � 3.5
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simulations. The application of an ANN can effectively
reveal complex nonlinearities, which inherently exist
among the structural response data obtained from incre-
mental dynamic analysis, and ultimately result in more pre-
cise and reliable estimations of damage measure (XDM) for
the studied tunnels. Figure 3 shows the typical structure of
the ANN model used in this work, which generally con-
tains six basic elements, i.e., (i) the input layer, (ii) the out-
put layer, (iii) the hidden layer, (iv) the connection weights
between each layer, (v) the bias parameter associated with
each neuron in the hidden layer and (vi) the activation
functions. The input layer receives the information from
the input neurons and transforms such information to
the hidden layer, which is located between the input and
output layers. The hidden layer plays a role in applying
the transformation from the input layer to the output layer.
The output layer represents the solution of the model, i.e.,
the damage measure in this study. The weights are adjusted
to connect the neurons in the different layers, and the bias
parameter is set to avoid the model output null values by
zero inputs. The activation functions are used to establish
the non-linear correlations between input and output neu-
rons. In this study, XIM and the structural damage measure
are set as the input and output of the model, respectively.

The ANN model in this study was established according
to the multilayer perceptron (MLP), trained by the algo-
rithm called as feed-forward back-propagation (BPP).
Specifically, the ANN model was trained by the Leven-
berg–Marquardt back-propagation algorithm
es states (Argyroudis & Pitilakis,

easure Central value of
XDM

—
.5 1.25
.5 2.00
.5 3.00

—
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Fig. 3. ANN-based PSDM.
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(Marquardt, 1963) provided by MATLAB (2018), to calcu-
late the associated weights and biases between different lay-
ers. The above calculated datasets (i.e., XIM-XDM data
pairs) were randomly divided into training and testing sets,
respectively. Specifically, 80% of datasets were utilized for
training, and the remaining random 20% of data were used
for testing process. It is noted that the data division (i.e.,
80/20 percent) adopted in this study is commonly used by
other researchers (e.g., Ranasinghe et al., 2017; Zhang
et al., 2021b; Chen et al., 2021) in similar research topics.
This data division method can guarantee sufficient dataset
to test the accuracy of ANN. Meanwhile, the dataset of
training was used to calculate the biases and connection
weights in different layers, while the dataset of testing
was utilized to measure the performance of the ANN
model and guarantee that the overfitting problems do not
happen in the ANN model.

Considering that the interval of the input and output
parameters are different to the same scale, the input and
output parameters of the ANN model were scaled in a
range of � 1 and 1 based on Eq. (1), to achieve dimensional
consistency of all the parameters. Moreover, with this nor-
malization, the ANN has a better convergence perfor-
mance during the training process, and potential
overfitting issues are avoided.

Y n ¼ 2� ðY i � Y minÞ
ðY max � Y minÞ � 1; ð1Þ
6
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where Yn is the normalized parameter, Yi is the corre-
sponding data to be normalized, and Ymax and Ymin stand
for the maximum and minimum data of the considered
parameter, respectively.

For simplicity, only one hidden layer was used in the
ANN model of this study, as previous studies (Chern
et al., 2009; Salsani et al., 2014) have indicated that the
ANN model with one hidden layer can have a rather excel-
lent performance in similar problems. Hence, the final
ANN consists of one hidden layer and one output layer.
Moreover, in the hidden layers, the logistic sigmoid (LOG-
SIG) nonlinear function of d ðxÞ ¼ 1

1þe�x is used as an acti-

vation function of the neurons, while in the output layers,
the pure linear (PURELIN) activation function of dðxÞ ¼ x
is utilized. Their functions are presented in Fig. 4. The
above two activation functions are widely applied in the
field of civil engineering (Liu & Zhang, 2018;
Mangalathu et al., 2018). Levenberg-Marquardt (LM)
learning algorithm (Khosravikia et al., 2020; Shahin
et al., 2001) is adopted in this study to train the network
and calculate the corresponding connection weights and
bias terms.

The number of neurons in the hidden layer is deter-
mined through the trial-and-error method, and the mean
square error (MSE) is used to assess their performance.
Figure 5 presents the calculated MSE values for various
neurons ranging from one to six using the data pairs of
VPG and XDM. It is obvious that the maximum MSE is
gility assessment of tunnels in soft soils using artificial neural networks,
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Fig. 4. Activation functions: (a) LOGSIG and (b) PURELIN.
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observed when the number of neurons is one, while the
minimum MSE is found when the number of neurons is
six. Generally, the value of MSE is quite similar when
the number of neurons is larger than one, and the results
indicate that the reduction of MSE is not significant when
the number of neurons in the hidden layer range between
two and six. Similar conclusions can be obtained for the
other data pairs of considered XIM and XDM. The quick
convergence of the ANN may be attributed to the nature
of the examined problem, i.e., only one input parameter
and one output parameter are examined in the problem
in hand. The trend between the input and output parameter
is easy to be captured by ANN model with a small number
of neurons in the hidden layer. It is noted that if multiple-
input and output parameters exist, it is more difficult to
achieve convergence of ANN compared to the case in this
study (Haykin, 2010). Additionally, as addressed by
Lagaros et al. (2009), utilizing three or more neurons, in
which the output (XDM) is predicted via only one input
(XIM), may result in adverse overfitting issues. Hence, for
the sake of simplicity, two neurons are selected for the hid-
den layer of the proposed ANN model.
Fig. 5. Performance of different number of neurons in the hidden layer
(case: VPG and XDM).
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After training, using the connecting weights and biases
as well as the transfer function, an ANN network shown
in Fig. 3 can be described by Eq. (2):

XDM ¼ bþ
X2

i¼1

hi � 1

1þ exp½�ðwi � X IMð Þ þ biÞ�
� �

; ð2Þ

where b and bi are the bias at the output layer and the i-th
neuron of the hidden layer, respectively; hi is the connec-
tion weight between the i-th neuron of the hidden layer
and the output neuron; wi is the connection weight between
the input layer and i-th neuron of the hidden layer. The
connection weights and bias values can be calculated dur-
ing the training process. Using Eq. (2) and the correspond-
ing coefficients, the XDM of the studied tunnels can be
easily estimated for a given XIM of the ground motion with-
out re-training the ANN model.

3.3 Selection of efficient seismic intensity measure

The potential correlations of different seismic XIM with
the seismic response of the tunnel are briefly discussed in
this section aiming at selecting the most efficient one within
the proposed fragility assessment framework. The exam-
ined XIM includes the peak ground acceleration (aPG), the
peak ground velocity (VPG), the peak ground displacement
(DPG), the ratio between VPG and aPG, i.e., Fr1 = VPG/aPG,
and the Arias intensity (Ia). In this context, these XIM are
set separately as input of the proposed ANN model shown
in Fig. 3, to obtain the corresponding PSDM. Generally,
an efficient XIM should result in a relatively low dispersion
in the seismic response of examined structures and thus
more reliable results of the fragility assessment
(Karafagka et al., 2021). A term, defined as bDM/IM, is
adopted as the metric to represent the efficiency of each
XIM. Herein, bDM/IM is computed by conducting statistical
processing of the numerical results (lnXIM-lnXDM data
pairs). More specifically, bDM/IM is estimated as the disper-
sion of the simulated XDM regarding the regression fit for
the corresponding numerical data using the following
equation:
gility assessment of tunnels in soft soils using artificial neural networks,
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bDM=IM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ln XDMið Þ � lnðXDMÞ½ �2

N � 2

vuuut
; ð3Þ
where XDMi is the calculated damage measure and N is the
total number of dynamic nonlinear analyses of the studied
tunnels.

The 240 XIM-XDM data pairs derived from 2D numerical
analyses are utilized in the development and the training of
the ANN-based model for the five selected XIM. Figure 6
summarizes the dispersions, bDM/IM, between the predic-
tions of the damage measure XDM of the studied tunnel
and five XIM. The results indicate a significantly lower dis-
persion, i.e., 0.13, when VPG is used as XIM compared to
the other four XIM, indicating that VPG is the most ‘effi-
cient’ XIM among the tested XIM. This finding is well in line
with the authors’ previous work (Huang et al., 2021) for
the same case of moderately deep tunnel and is also consis-
tent with other studies (Corigliano et al., 2007; Chen &
Wei, 2013). The potential reason for this phenomenon is
that the imposed ground deformations during shaking
are prevailing in dominating the seismic performance of
underground structures such as tunnels in this study, and
VPG is a better indicator for ground deformations (cmax)
induced during ground shaking, as mentioned in NCHRP
611 report (Anderson et al., 2008) and Pitilakis and
Tsinidis (2014). Hence, VPG is better correlated with struc-
tural damage and exhibits smaller dispersion in Fig. 6,
compared to other studied XIM. Furthermore, DPG and Ia
have a similar dispersion of about 0.25, while FR1 is the
least ‘efficient’ XIM as it has the highest dispersion of 0.37
among the five tested XIM. In other words, VPG produces
the best prediction of the damage measure XDM of the tun-
nels. Therefore, the use of VPG as the XIM for the construc-
tion of fragility curves is suggested in this study,
considering that the total dispersion is lower. Hence, it is
expected that the assessment of the probabilities of exceed-
ing various damage states will be more accurate. In this
Fig. 6. Dispersion bDM/IM of results with different XIM.
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regard, Table 3 presents the connection weights and bias
values of the trained ANN for the development of PSDM
of the studied tunnel by using VPG as the XIM.

3.4 Comparison of ANN-based PSDM with traditional

linear models

In this section, the prediction capabilities of the ANN-
based and traditional linear-based PSDM are compared
by using VPG as the XIM. Figure 7(a) portrays pairs of
damage measure XDM-VPG in log–log space (Huang
et al., 2020), with the damage measure values being com-
puted by the ANN model. The figure presents the line of
linear regression between the damage measure and the
intensity measure (black solid line). This figure indicates
that the intensity measure VPG and the damage measure
XDM do not show a perfect linear relationship in log–log
space, especially for the XIM-XDM pairs at low VPG levels.
Moreover, the predictions from ANN models and linear
regression are quite similar when the ln(XIM) � ln(XDM)
pairs exhibit a linear relationship. It is clearly observed that
the linear regression method does not predict data as
accurately as the ANN model does. ANN is capable to
correctly describe the trends inherently existed in the data
sets, and outcomes more precise predictions of the damage
measure XDM of the studied tunnels. The standard
deviations bDM/IM estimated by both methods are also
computed and compared in Fig. 7(a). As shown in this fig-
ure, the implementation of the ANN method results in
slightly lower deviation compared to the linear regression
method.

To further examine the efficiency of the employed ANN
model, in Fig. 7(b) we plotted the damage measure XDM

values computed by the traditional numerical analyses
against the predicted values from ANN model and those
of the linear regression analysis. It is observed that the data
from the ANN model are closer to the 1:1 line, highlighting
a better correlation between the measured and predicted
data values. A higher coefficient of determination R2 is
computed by a relevant regression of data for the ANN
model compared to the linear regression analysis, as shown
in Fig. 7(b). Therefore, the ANN may be safely utilized to
capture the PSDM for the fragility analysis of the exam-
ined tunnel as described in the following section. It should
be noted that the validity of the ANN model is limited by
the range of the training data (Lagaros et al., 2009). Hence,
the input parameter needs to be restricted between the min-
imum and maximum values of the training data, i.e., 0.068
to 2.510 m/s for VPG and 0.458 to 3.294 for XDM. Gener-
ally, the performance and the reliability of the ANN model
are better when no extrapolation is done beyond this range,
and a wider range of datasets are used. Moreover, for more
complex and nonlinear soil-underground structures prob-
lems, it is recommended that the above ANN-based
methodology can be utilized to substitute time consuming
dynamic analyses, so as to increase the computing
efficiency significantly.
gility assessment of tunnels in soft soils using artificial neural networks,
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Table 3
Coefficients of the ANN equation for estimating damage measure XDM of studied tunnels with respect to VPG

XIM w1 w2 b1 b2 h1 h2 b bDM/IM

VPG �78.11 75.91 �0.840 �0.903 �1.928 �1.950 1.417 0.13
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4 Development of fragility curves

A lognormal probability distribution function is com-
monly used to develop fragility curves:

P XDS � XDSi

X IM

� �
¼ /

ln X IMð Þ � ln X IMið Þ
btot

� �
; ð4Þ

where PðXDS � XDSi=XIMÞ is the exceeding probability for
a particular damage state XDS, given a seismic intensity
level XIM, XDSi is the damage limit state, / is the standard
normal cumulative distribution function, XIMi is the med-
ian threshold value of XIM that causes a particular XDS
Fig. 7. Comparison between the ANN-based and linear-based PSDM: (a)
ln(XDM) versus ln(VPG); (b) Predicted versus measured ln(XDM) values.
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and btot is the lognormal standard deviation representing
the total dispersion related to each fragility curve. The
capacity of the tunnel lining (bC), the seismic demand
(bDM/IM) and the definition of damage state (bds) are the
major variability dispersions for the definition of btot, as
presented in Eq. (5):

btot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
C þ b2

DM=IM þ b2
ds:

q
ð5Þ

In this study, the parameters bds and bC are taken as 0.4
and 0.3, respectively (Argyroudis & Pitilakis, 2012;
Argyroudis et al., 2013), while the parameter bDM/IM is
computed by conducting statistical processing of the
numerical results (i.e., lnXIM-lnXDM data pairs) (see Sec-
tions 3.3 and 3.4).

Using the derived PSDM in Section 3.4, the thresholds
of each damage state in Table 2 and the definition of btot
in Eq. (5), the two critical parameters for the development
of the fragility functions, i.e., the median XIM i (VPG) and
standard deviations btot are estimated for the examined
configurations and various damage states (see Table 4).

Figure 8 shows the comparisons of the computed sets of
ANN-based and linear-based analytical fragility curves for
the studied tunnels in terms of VPG at the ground surface in
free-field conditions. It is noted that a higher btot value
leads to a flatter fragility curve and thus to higher uncer-
tainty. The herein computed btot values for the ANN-
based fragility curves are lower than the ones for the linear
regression analysis. Additionally, as expected, for both the
ANN-based and linear-based fragility curves, the probabil-
ity of damage increases as the value of VPG increases for all
the damages states. Moreover, for the same value of VPG, it
is noted that the probability of damage from ANN-based
curves is very close to the one from linear-based curves
for all damage states. For example, when the VPG value
equals to 0.55 m/s, the probabilities of exceeding minor,
moderate and extensive damage for the linear-based curves
are equal to 49.8%, 7.7% and 4.0%, respectively, while for
the ANN-based fragility curves, they are equal to 45.6%,
9.0% and 3.0%, respectively. Generally, the above results
indicate that for this level of seismic intensity, the studied
tunnels are expected to suffer no damage or minor damage
to some extent, so the potential to suffer extensive damage
Table 4
Computed parameters of the fragility curves in terms of VPG for the
studied tunnel using ANN and linear regression analysis methods

Damage states Minor Moderate Extensive btot
median VPG (m/s)

ANN 0.583 1.102 2.303 0.517
Linear regression analysis 0.552 1.159 2.199 0.521

gility assessment of tunnels in soft soils using artificial neural networks,
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Fig. 8. Comparison of the ANN-based and linear-based fragility curves.

Fig. 9. Fragility curves in terms of VPG at the bedrock.

Fig. 10. Fragility curves in terms of Fr1 at the ground surface.
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is negligible. The above discussion indicates that the
derived vulnerability from ANN-based curves is generally
close to the one from linear-based curves with slightly less
uncertainty. The differences between these two approaches
are really minimum and insignificant in practice. Therefore,
it is concluded that the proposed ANN-based probabilistic
framework for seismic vulnerability assessment of tunnels
provides similar capabilities as the traditional linear regres-
sion method, but has the major advantage of significantly
lower computational cost to run the whole analysis. Thus,
it might be very promising for the estimation of fragility
curves in case of complex soil-tunnel typologies. Moreover,
the alternative use of ANN might be the key for the devel-
opment of more completed analysis cases, in the sense of
covering a larger cluster of tunnels and soil conditions
and considering also other important parameters like aging
effects.

5 Discussion

This section provides further insights into the derived
fragility curves by discussing how the fragility assessments
might be affected when different intensity measures are
enabled, i.e., VPG at the bedrock and Fr1 at the ground sur-
face, which is the less efficient XIM (see Section 3.3).

Figure 9 shows the derived fragility curves along with
their fragility parameters (median XIM i and standard devi-
ations btot) in terms of VPG at the bedrock. Naturally, the
probability of damage increases gradually as the value of
VPG at the bedrock increases for all the damage states.
Compared with the fragility curves in terms of VPG at the
ground surface given in Fig. 8, it is noted that a reduction
of the fragility median value appears for minor damage
state, while an increase of the fragility median value
appears for moderate and extensive damage states.

Figure 10 shows the derived fragility curves along with
their fragility parameters in terms of Fr1 at the ground sur-
face. As expected, the probability of damage also increases
as the value of Fr1 at the ground surface increases for all
10
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damage states. It is noted that the total standard deviation
btot (a value of 0.625) in Fig. 10 is generally higher than the
one (a value of 0.517) in Fig. 8 in terms of VPG at the
gility assessment of tunnels in soft soils using artificial neural networks,
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ground surface (i.e. the most efficient XIM). This compar-
ison qualitatively illustrates the way that the dispersion dif-
ference propagates to the output fragility curves between
the less and most efficient XIM, i.e., Fr1 and VPG at the
ground surface.
6 Summary and conclusions

This study presented an artificial neural network (ANN)
based probabilistic framework to assess the seismic fragility
of tunnels in soft soils. The first step of the methodology
included the analysis of the response of a typical circular
tunnel under a variety of seismic motions, by employing
2D finite element numerical models of the examined
tunnel-soil configurations. The damage measure was
defined in terms of a ratio between the acting bending
moment on the tunnel and the lining bending moment
capacity. An ANN was utilized to generate the PSDM
for the studied tunnel. VPG was proved to be the most ade-
quate intensity measure (XIM) among the five tested XIM

(aPG, VPG, DPG, Fr1, and Ia), and used to generate the seis-
mic fragility curves. Fragility curves were derived for
increasing levels of VPG at the ground free-field conditions
considering the various uncertainties involved. The results
indicate that the proposed ANN-based probabilistic frame-
work has similar capabilities with the traditional linear
regression method. Another two sets of fragility curves in
terms of VPG at the bedrock and Fr1 (i.e., the less efficient
XIM) at the ground surface were also presented to provide
insight on how the parameters of the fragility functions and
thus the loss assessment of tunnels, could be affected by the
use of different XIM.

The results show that once the ANN model is well
trained, it can be adopted to replace time-consuming finite
element modelling and conduct a large number of simula-
tions for fragility analyses in few minutes, at negligible
computational cost. Hence, the computational demand is
significantly reduced compared to the traditional methods
used by previous researchers (Huang et al., 2020; Liu
et al., 2017; Nguyen et al., 2019). In this respect, the pro-
posed ANN-based methodology can be also applied in
the fragility analysis of more complex underground sys-
tems. To enhance the capability and accuracy of the
ANN model for more complex underground systems, fur-
ther investigations should be conducted for the application
of other advanced machine learning algorithms such as
convolutional neural network (CNN), recurrent neural net-
work (RNN) and long-short term memory (LSTM)
network.

The developed fragility curves can be used for the quan-
titative seismic risk and resilience analysis of circular tun-
nels embedded in similar soil deposits. The proposed
ANN-based methodology can be further applied to estab-
lish the multivariate PSDMs that consider multiple XDM in
a single model, which could potentially capture better the
correlation among different XDM and XIM, leading to more
11
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realistic demand models and finally to more reliable fragi-
lity assessments.
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