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Abstract. The Multi-Depot Vehicle Routing Problem (MDVRP) is a real-world model of 
the simplistic Vehicle Routing Problem (VRP) that considers how to satisfy multiple 
customer demands from numerous depots. This paper introduces a hybrid 2-stage approach 
based on two population-based algorithms – Ant Colony Optimization (ACO) that mimics 

ant behaviour in nature and the Imperialist Competitive Algorithm (ICA) that is based on 
geopolitical relationships between countries. In the proposed hybrid algorithm, ICA is 
responsible for customer assignment to the depots while ACO is routing and sequencing the 
customers. The algorithm is compared to non-hybrid ACO and ICA as well as four other 
state-of-the-art methods across 23 common Cordreau’s benchmark instances. Results show 
clear improvement over simple ACO and ICA and demonstrate very competitive results 
when compared to other rival algorithms.  
 
Keywords: combinatorial optimization, multi-depot vehicle routing problem (MDVRP), 
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1. Introduction 

The Vehicle Routing Problem (VRP), first described by [1] in 1959, is an extension of the Traveling 

Salesman Problem (TSP) [2]. Compared to TSP, where an agent has only to visit all cities once, VRP 

introduces demands for each customer or stop. Demands need to be satisfied by routing vehicles 

such that they start and finish their paths at the same depot. Many real-life problems can be 

modelled as a form of VRP, for example, picking up and delivering mail, packages or any other goods 

or services. Due to the wide range of practical applications, many variations of VRP have since been 

explored. For instance, capacitated VRP introduces capacity constraints on the vehicles; VRP with 

Time Windows (VRPTW) requires delivery to happen within a specific time window; VRP with 

maximum vehicle distance constraints (DVRP) and many others [3].  

A common VRP derivation is the Multi-Depot Vehicle Routing Problem (MDVRP). MDVRP is an 

extension of classical VRP by the introduction of multiple depots. Vehicles in the MDVRP are subject 

to capacity constraints (how much cargo can be carried onboard) and the maximum duration for the 

route before the vehicle needs to return to the original depot.  The MDVRP resembles a lot of 

everyday transportation, logistics and distribution problems and therefore, has been a common 

research area [4]. Furthermore, the MDVRP is also an NP-hard combinatorial optimization problem, 

thus optimal solutions are hard to find [5]. Although exact algorithms for solving these class of 

problems exist, they are limited to small problem instances [6]. To solve large instances of the 

MDVRP, wide range of metaheuristics and population-based algorithms have been used [4]. This 

paper explores the use of a combination of two stand-alone metaheuristics to tackle the MDVRP.  

The main contribution of this paper is the novel hybrid 2-stage Imperialist Competitive Algorithm 

(ICA) with Ant Colony Optimization (ACO) called ACO-ICA as an improvement of its algorithm 

counterparts for solving the MDVRP. In the proposed approach, ICA is responsible for customer 

clustering to their depots while ACO is focused on routing and sequencing the customers. 

Furthermore, computation results and comparisons for 23 commonly used MDVRP instances are 

provided for both ACO and ICA, with ICA applied to MDVRP for the first time. Moreover, the 



computation results of ACO-ICA are also compared to the most recent state-of-the-art 

metaheuristics found in the literature.   

1.1. Multi-Depot Vehicle Routing Problem formulation 

The main aim of the MDVRP is to route a fleet of vehicles from multiple depots to multiple 

customers requiring goods or services. Vehicles delivering the products start from a depot and are 

required to terminate at the same depot while complying with constraints such as maximum vehicle 

capacity and maximum vehicle duration. Figure 1 shows an example of a simple MDVRP solution 

with ten customers (as circles) and two depots (as rectangles). Although there exist multi-objective 

approaches for solving MDVRP [7], the most common goal is to minimize the total cost.  

 

Figure 1. Example of an MDVRP with ten customers (as circles) and two depots (A and B as rectangles) 

The MDVRP can be formalized in a mathematical model based on [8] and [9]. Given direct graph 

𝐺 =  (𝑆, 𝐸) where 𝑆 =  𝐶 ∪ 𝑈 is a set of customers 𝐶 =  {𝐶1 , 𝐶2 , … , 𝐶𝑁} and depots 𝐷 =

 {𝐷1, 𝐷2, … , 𝐷𝑀} and 𝐸 is a set of edges between all the nodes in the graph. In a fully connected 

graph, every edge 𝐸𝑖𝑗 between nodes  𝑆𝑖  and 𝑆𝑗   (𝑖 ≠ 𝑗) has associated positive cost 𝑐𝑖𝑗   - distance or 

time, for example. Each customer has a positive demand 𝑑𝑖 (𝑖 ∈ 𝐶). Furthermore, there is also a 

fleet of 𝐾 identical vehicles available at each depot 𝐷𝑘 𝜖 𝐷 (that are not allowed to exceed capacity 

𝑄𝑚𝑎𝑥  and duration 𝑅𝑚𝑎𝑥). The goal is to minimize the total cost across all vehicles (1).  

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗 ∈ 𝑆𝑖 ∈ 𝑆

 (1) 

 

where 𝑥𝑖𝑗 equals 1 if 𝑖 comes after 𝑗 in the customer sequence on any route of all vehicles and 0 

otherwise. The problem is subject to the following constraints:  

• each vehicle route starts and ends at the same depot; 

• the total demand on each route does not exceed vehicle capacity 𝑄𝑚𝑎𝑥;  

• the maximum route duration 𝑅𝑚𝑎𝑥  is not exceeded; 

• each customer is served by exactly one vehicle.  

 

2. State-of-the-art algorithms for solving the MDVRP 

Since the first formulation in [1], many exact and heuristic algorithms have been explored for the 

vehicle routing problems. Most notably, [10] proposed a heuristic approach based on the cost 

savings algorithm that has since been used in some form in many other algorithms [11]. Another 



popular heuristics approach was introduced in [12] that allowed problems divided into sub-problems 

based on vehicles and then solved separately, combining results into single solution afterwards. 

Although heuristic approaches such as integer programming [13] and variable neighbourhood search 

[14] have the potential to find optimal solutions every time, they generally do not scale well with the 

problem size and are limited to smaller MDVRP instances or are very time-consuming [6]. 

Meta-heuristic algorithms offer a stochastic approach for solving highly complex combinatorial 

problems with near-optimal or optimal solutions. They have been a growing interest in many areas 

[15], and MDVRP is no exception. A recent survey of metaheuristic algorithms [4] suggests that the 

two of the most common algorithms used for solving MDVRP are Ant Colony Optimization (ACO) and 

Genetic Algorithm (GA). However, other algorithms like Particle Swarm Optimization (PSO) [16] and 

Ant Lion Optimization (ALO) [17] have also been successfully applied. GA is a nature-inspired 

algorithm that is based on the natural selection process.  A comprehensive summary of methods and 

approaches used for solving MDVRP with GA is presented in [3]. ACO is another popular approach 

for solving VRP class problems as it mimics ants travelling and searching for food while creating 

paths for other ants to follow. Many implementations of ACO for MDVRP exist in the literature; the 

most recent work includes [18] who applied the ACO algorithm for fresh seafood delivery routing 

problem.  

More recently hybridized algorithms have emerged that take one or more methodologies and 

combines the strengths of each. Most commonly meta-heuristic algorithm is combined with a local 

search such as 2-opt [17] or simulated annealing ([9], [19]). Similarly, [20] introduced a mutation 

operator from GA in ACO to improve the solution quality in MDVRP.  

3. Hybrid 2-stage ACO-ICA 

The Hybrid 2-stage Imperialist Competitive Algorithm with Ant Colony Optimization (ACO-ICA) 

combines an ICA based algorithm previously proposed by authors in [21] for customer assignment to 

depots. At the same time, ACO (also already used by authors in [22]) is dedicated for customer 

sequencing and routing in the MDVRP.  

3.1.  Ant Colony Optimization 

The Ant Colony Optimization (ACO) algorithm was first introduced by Marco Dorigo in 1992 and 

since been used for many routing problems [23]. The algorithm is inspired by the movement of ants 

searching for food; each ant leaves a scent called pheromone for other ants to follow. An algorithm 

can be divided into two stages – the construction of the solution and pheromone feedback to other 

ants. The search for food starts at near-random, but as more pheromone get deposited on good 

paths, other consecutive ants are more likely to follow them while improving the solution. The 

iterative process continues until the solution reaches the optimal or close to optimal solution. 

In the MDVRP, the ant starts the tour from a depot and visits nodes (customers) and returns to the 

same depot. As there are multiple depots, the algorithm uses multiple ant colonies (one per each 

depot) to solve the problem. Once all customers have been visited, routes from all colonies are 

combined and evaluated as the final solution. For paths that improved cost, a pheromone is 

deposited on the edges of the graph to guide ants in the next iteration. Furthermore, an evaporation 

process takes place after each iteration to avoid getting stuck in local optima. During the creation of 

the solution, an ant can visit any of the customers that have not yet been visited.  

 

 



3.2. Imperialist Competitive Algorithm  

The Imperialist Competitive Algorithm (ICA) was first introduced in 2007 for solving continuous 

optimization problems [24] but has been extended to other discrete problems. The ICA is inspired by 

geopolitical relationships between countries where developed countries attempt to take over less 

developed countries – colonize them to extend their power [25]. The initial population of countries 

is divided into imperialists and colonies based on the country’s strength (inverse of cost value). After 

the grouping, each colony inside empire moves closer to their imperialist (assimilation operator). 

Imperialists compete for the colonies and the imperialist competition gradually results in an increase 

in power of strong empires while decreasing the power of weak ones. Weak empires eventually lose 

all colonies and collapse, with the strongest remaining imperialist providing the final best solution 

[24].  

Although no ICA implementation for solving the MDVRP with ICA exists in the literature, the 

algorithm was applied for VHR with time windows in [26] where the authors encoded the routes in 

the country based on the vehicle. Furthermore, authors in [27] used slightly different encoding, 

where not only the visited customer sequence but also the number of visited customers is 

embedded in the country representation. In contrast to other approaches, the ICA implementation 

in this paper encodes the depots as part of the country, not the customers. An example of the ICA 

encoding is shown in Figure 2.   

3.3. Hybrid ACO-ICA 2-stage algorithm 

There have been few attempts to hybridise both ACO and ICA with other algorithms. Compared to 

ICA, the ACO algorithm has been around for longer and hence many more hybrids exist and a survey 

in [28] provides an excellent summary. Although not as common, ICA hybrids have been explored 

before.  For instance, the authors in [29] combined ICA with particle swarm optimization (PSO) for 

the management of reactive power resources.  Furthermore, [30] solved a facility relocation 

problem by combining ICA with simulated annealing and local neighbourhood search. Combination 

of ACO and ICA has also been attempted before in [31] for truss structure design where ACO was 

used to improve on ICA solutions. Compared to the ACO and ICA hybrid in [31] where ACO is used as 

local search, the approach in this paper is separating the creation of the solution in two stages – 

first, ICA assigns the customers to depots and then ACO routes and finishes the final solution.  

The proposed ACO-ICA 2-stage hybrid algorithm uses the ICAwICA algorithm previously developed 

by authors in [21] for the customer assignment process.  The search starts by empire initialization, 

where random solutions are created, and countries are split into imperialist and colonies. The search 

then follows an iterative process of colony assimilation and imperialist competition as described in 

[21] and the flowchart in Figure 4.  Each new country created by ICA follows the 2-stage process for 

creating a feasible solution: 

Stage 1: Customer assignment to depots 

First, customer-depot relationships are encoded as the country. Each country is represented as a 

vector of the size of the number of customers where each customer is assigned a depot index. An 

example of new country creation via assimilation is shown in Figure 2, where the initial colony has 

encoded the following grouping: Customer 2 and 8 will be routed from Depot 1; Customers 1, 3 and 

6 will be routed from Depot 2; Customers 5,7,9 and 10 will be routed from Depot 3 and finally, 

Customer 4 will be routed from Depot 4. Each time new country is created as part of ICA assimilation 

process, capacity constraints are considered such that the total demand for all customers assigned 

to the depot does not exceed the maximum capacity available across all vehicles to the given depot. 



 

Figure 2. Customer assignment to depots using ICA assimilation in ACO-ICA 2-stage algorithm. Where C1-C10 are customer 
indices and the encoded integers are depot indices that are assigned to a given customer. With bold representing 

assimilated changes.   

Furthermore, the example in Figure 2 also shows an assimilation process for the colony and 

imperialist and considers ten customers that are grouped into four depots. Bold type represents 

assimilated changes. For example, Customer 2 (C2) demand was previously supplied by Depot 1 but 

now is supplied by Depot 4. Similarly, Customer 6 (C6) demand was previously supplied by Depot 2 

but now is supplied by Depot 3.  

Stage 2:  Customer routing 

Once customers have been assigned to the depots, an ant colony for each depot is created. 

Furthermore, persistent global pheromone matrix for the country is used to guide the colony search, 

where the pheromone matrix is represented as all connections 𝐸 between two edges in the graph 𝐺. 

The probability of visiting a customer that is not assigned to the depot is set to 0, therefore, no 

customer can be visited from more than one depot. The ants in each depot’s ant colony build routes 

complying with the MDVRP constraints and update the local pheromone matrix. This process is 

repeated until the termination condition is reached. A flowchart of ACO customer routing in the 

MDVRP is shown in Figure 4.    

Partial solutions for each depot are then combined and the final solution evaluated. The global 

pheromone matrix for the country is updated based on the best solution and global pheromone 

evaporation operator. The pseudo-code for new solution creation is shown in Figure 3. 

Stage1: Create new country with ICA 
Stage1: Split customers to depots while maintaining capacity constraints 
for 𝐷 = 1 to 𝐷𝑀 
    Stage 2: route customers C allocated at depot 𝐷 with ACO 
end loop 
Combine depot partial solutions and evaluate cost 
if solution is better than the current country’s best solution     

    Keep best solution 
 endif 
 Update global pheromone matrix for ACO based on the best solution 
 Evaporate global pheromone 
 

 
 

Figure 3. Pseudo code for new solution creation of hybrid ACO-ICA 2-stage algorithm 



 

Figure 4. Flowchart of Ant Colony Optimization for route creation in ACO-ICA 2-stage algorithm (on the left). And flowchart 
of ICAwICA [21] algorithm on the right.  

4. Experimental results 

The proposed ACO-ICA hybrid algorithm was evaluated on well-known Cordeau’s [32] MDVRP 

benchmark instances.  The dataset with the best-known solutions (BKS) was obtained from [33]. 

Table 2 specifies the properties of each of the 23 instances. In the table, 𝑁 represent the number of 

customers, 𝑀 – the number of depots, 𝑄𝑚𝑎𝑥 – maximum vehicle capacity and Rmax  - maximum 

vehicle duration for given problem instance.  

All three algorithms – ACO (based on [22]), ICA (based on [21]) and ACO-ICA were implemented in 

C++ using Visual Studio 2019 (v142) compiler. The computation was performed on a workstation 

with AMD Threadripper 2990WX processor (3.0 GHz, 64GB RAM), running Windows 10 Pro 

operating system.  Algorithm hyperparameters were chosen with both empirical study and from the 

relevant literature ([9], [21], [31]) and are as summarized in Table 1. Furthermore, termination 

criteria set to the maximum number of iterations with no improvement (stagnation iterations, 𝑛𝑖) or 

one hour of elapsed time, whichever terminates first. 



Table 1. Hyper-parameters used for experiments for ACO, ICAwICA and ACO-ICA 

ACO 

Number of ants, 𝑛𝑎  10 
Relative pheromone strength, α 2 
Relative heuristic information strength, β  1 
Pheromone evaporation rate, ρ 0.1 
Pheromone update rate, σ 0.1 
Exploitation to exploration ration, 𝑞0 0.5 
Stagnation iterations, 𝑛𝑖  20000 

ICAwICA 
Number of countries, 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  4096 

Number of imperialists, 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠 1638 

Local iterations, 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 16 
Assimilation rate, ϒ 0.05 
Average power of empire’s colonies, 𝜉   0.05 
Independence rate, 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 0.7 
Stagnation iterations, 𝑛𝑖  10 

ACO-ICA 
Number of countries, 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  128 

Number of imperialists, 𝑁𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑠 51 

Local iterations, 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 1 
Assimilation rate, ϒ 0.1 
Average power of empire’s colonies, 𝜉   0.05 
Independence rate, 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 0.8 
Number of ants, 𝑛𝑎  3 
Relative pheromone strength, α 4 
Relative heuristic information strength, β  1 
Pheromone evaporation rate, ρ 0.1 
Pheromone update rate, σ 0.1 
Exploitation to exploration ration, 𝑞0 0.8 
ACO iterations per country creation, 𝑛𝑎𝑐𝑜 100 
Stagnation iterations, 𝑛𝑖  50 

 

All three algorithms were run on the 23 Cordeau’s MDVRP benchmark instances 10 times with 

different random seed and results summarized in Table 2, where BKS represents the best-known 

solution obtained from [33]. The best-obtained values, as well as average values across all 10 runs, 

were recorded alongside the average computational times (in minutes) for a single execution of the 

algorithm. With * representing values that were terminated due to the maximum allowed execution 

time of one hour. Finally, the average error percentage across all 23 instances is calculated using BKS 

as reference. 

Results in Table 2 show that ACO algorithm was able to reach the best-known solution on four 

instances (p01, p12, p13 and p16), ICA reached the best-known solution on nine cases (p01, p02, 

p03, p06, p12, p13, p16, p17 and p19). The hybrid approach of ACO-ICA performing the best – 

improving on the best-known solution on one instance (p11) and finding the same solution in 16 

cases (p01, p02, p03, p04, p06, p08, p09, p10, p12, p13, p14, p15, p16, p17, p19, p20). The average 

best error across all benchmark instances was 1.2%, 0.67% and 0.2% for ACO, ICA, ACO-ICA 

respectively. It is also worth noting that ACO took the least execution time, while ICA – the most, on 



nine problems reaching the maximum allowed time. The hybrid ACO-ICA approach on average was 

faster than the ICA, but slower than ACO, however, outperformed both non-hybrid algorithms in 

terms of average error. 

Next, the hybrid ACO-ICA algorithm was compared to other state-of-the-art algorithms. Although 

there have been many algorithms applied to the MDVRP, the most recent approaches in literature 

were selected and are summarized in Table 3. A cooperative coevolutionary algorithm called CoES 

[34], Improved Ant Colony Optimization (IACO) [18], Tabu Search Heuristic (TSH) in [35], as well as 

hybrid Ant Colony with simulated annealing and local search algorithm called ACO+ [9] were 

selected for the comparison. The ACO-ICA algorithm was also compared to the best-known solutions 

in [33] and it is worth mentioning that these solutions are outdated as better results are reported in 

the literature. Nevertheless, the best-known solutions of [33] are included for reference. 

Table 2. Computational results of Cordeau’s MDVRP benchmark instances. Best and Average solution scores are derived 
across 10 independent runs, with the average time to reach a solution (in minutes). With bold representing the best scores.  
Time with * representing solutions that were terminated by reaching maximum allowed time (1h). Average error percentage 
calculated using BKS as reference. 

Instance BKS [33] 

Best Average Time (minutes) 

ACO ICA ACO-ICA ACO ICA ACO-ICA ACO ICA ACO-ICA 

p01 576.87 576.87 576.87 576.87 586.77 576.87 576.87 1.3 4.2 2.5 

p02 473.53 475.86 473.53 473.53 496.46 475.24 473.53 1.9 6.2 3.2 

p03 641.19 644.46 641.19 641.19 672.46 655.29 644.70 2.6 7.9 4.2 

p04 1001.59 1020.52 1006.66 1001.59 1072.06 1015.11 1011.35 2.4 12.4 6.2 

p05 750.03 751.90 753.40 750.11 790.80 789.15 767.46 2.3 20.3 12.2 

p06 876.50 885.84 876.50 876.50 911.96 887.71 884.98 2.7 14.7 2.7 

p07 885.80 891.95 895.53 887.11 949.52 916.79 891.70 2.0 11.5 2.3 

p08 4420.94 4485.08 4482.44 4420.94 4510.81 4502.22 4470.18 23.7 60.0* 53.6 

p09 3900.22 3971.59 3937.81 3900.22 4017.15 3986.70 3955.97 28.7 60.0* 36.9 

p10 3663.02 3747.62 3714.65 3663.02 3806.98 3801.16 3686.46 33.1 60.0* 43.2 

p11 3554.18 3599.93 3569.68 3554.08 3686.45 3644.02 3561.39 25.2 60.0* 50.6 

p12 1318.95 1318.95 1318.95 1318.95 1373.52 1359.49 1360.69 1.9 10.0 4.6 

p13 1318.95 1318.95 1318.95 1318.95 1353.22 1320.79 1320.27 2.0 8.9 3.4 

p14 1360.12 1373.18 1365.68 1360.12 1419.31 1394.01 1379.70 2.4 6.7 4.5 

p15 2505.42 2588.22 2565.67 2505.42 2679.65 2644.14 2556.87 3.2 25.5 7.2 

p16 2572.23 2572.23 2572.23 2572.23 2583.22 2577.66 2579.19 3.2 16.0 3.4 

p17 2709.09 2731.37 2709.09 2709.09 2773.67 2742.93 2724.59 4.2 12.3 5.5 

p18 3702.85 3781.03 3781.03 3781.03 3922.48 3855.70 3854.31 29.2 60.0* 40.3 

p19 3827.06 3831.71 3827.06 3827.06 3866.40 3857.36 3837.90 35.4 42.3 45.5 

p20 4058.07 4142.00 4097.06 4058.07 4257.20 4164.88 4168.72 34.5 60.0* 58.0 

p21 5474.84 5617.53 5535.99 5495.54 5817.76 5764.61 5560.31 60.0* 60.0* 60.0* 

p22 5702.16 5832.07 5772.23 5772.23 6047.49 5963.71 5994.10 60.0* 60.0* 60.0* 

p23 6095.46 6183.13 6145.58 6145.58 6261.69 6295.46 6203.31 60.0* 60.0* 60.0* 

Average error 1.20% 0.67% 0.20% 4.16% 2.59% 1.46%    

 

Compared with other algorithms in Table 3, ACO-ICA was able to obtain the same best score in 12 

out of 23 instances and outperformed the four rival algorithms on p08 instance. On average error 

percentage in respect to BKS, ACO-ICA fell short compared to ACO+ (0.13% vs 0.20% error), 



however, outperformed other compared approaches. Therefore, it can be concluded that the 

proposed ACO-ICA hybrid 2-stage algorithm is appropriate for solving the MDVRP, leveraging the ICA 

for customer assignment and ACO for customer routing. 

Table 3. Best solution obtained by ACO-ICA compared to other algorithms in the literature across Cordeau’s MDVRP 
benchmark instances and the best-known solution (BKS). The best scores represented in bold,  N representing the number of 
customers, M – the number of depots, 𝑄𝑚𝑎𝑥 – maximum vehicle capacity, 𝑅𝑚𝑎𝑥   - maximum vehicle duration for a given 
problem instance. Average error percentage calculated using BKS as reference. 

Instance N M 𝑸𝒎𝒂𝒙 𝑹𝒎𝒂𝒙 

BKS  
[33] 

CoES, 
2016 
[34] 

IACO, 
2017 
[18] 

TSH, 
2019  
[35] 

ACO+, 
2020  
[9]  

ACO-ICA 
(this work) 

p01 50 4 80 ∞ 576.87 576.87 576.87 576.87 576.87 576.87 

p02 50 4 160 ∞ 473.53 473.87 473.53 473.53 473.53 473.53 

p03 75 5 140 ∞ 641.19 641.19 641.19 641.19 641.19 641.19 

p04 100 2 100 ∞ 1001.59 1007.40 1001.49 1008.47 1003.52 1001.59 

p05 100 2 200 ∞ 750.03 750.11 750.26 758.87 751.90 750.11 

p06 100 3 100 ∞ 876.50 876.50 876.50 881.76 881.60 876.50 

p07 100 4 100 ∞ 885.80 888.41 885.69 896.96 884.66 887.11 

p08 249 2 500 310 4420.94 4445.37 4482.44 4430.36 4428.00 4420.94 

p09 249 3 500 310 3900.22 3895.70 3912.23 3971.59 3897.33 3900.22 

p10 249 4 500 310 3663.02 3666.35 3663.00 3779.10 3657.03 3663.02 

p11 249 5 500 310 3554.18 3569.68 3648.95 3652.01 3549.99 3554.08 

p12 80 2 60 ∞ 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 

p13 80 2 60 200 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 

p14 80 2 60 180 1360.12 1360.12 1365.68 1365.69 1360.12 1360.12 

p15 160 4 60 ∞ 2505.42 2526.06 2505.29 2552.79 2505.42 2505.42 

p16 160 4 60 200 2572.23 2572.23 2587.87 2572.23 2572.23 2572.23 

p17 160 4 60 180 2709.09 2709.09 2708.99 2731.37 2709.09 2709.09 

p18 240 6 60 ∞ 3702.85 3771.35 3781.04 3802.29 3710.49 3781.03 

p19 240 6 60 200 3827.06 3827.06 3827.06 3831.71 3827.06 3827.06 

p20 240 6 60 180 4058.07 4058.07 4058.07 4097.06 4091.78 4058.07 

p21 360 9 60 ∞ 5474.84 5608.26 5474.84 5617.53 5505.39 5495.54 

p22 360 9 60 200 5702.16 5702.16 5702.06 5706.81 5702.16 5772.23 

p23 360 9 60 180 6095.46 6129.99 6095.46 6145.58 6140.53 6145.58 

Average error 0.33% 0.33% 0.96% 0.13% 0.20% 

 

5. Conclusions and future work 

This work solves multi-depot vehicle routing problem (MDVRP) using novel hybrid ACO-ICA 2-stage 

algorithm, where Imperialist Competitive Algorithm is used for assigning customers to the depots 

and Ant Colony Optimization used for routing and sequencing customers across vehicles from 

depots. The algorithm was run across 23 common MDVRP instances and results show that proposed 

hybrid outperforms ACO and ICA non-hybrid counterparts. When compared to other state-of-the-art 

methods, ACO-ICA shows very competitive results across all benchmark instances.  

However, the proposed hybrid algorithm introduces extra complexity and therefore increased 

computation time, which could be addressed as part of future research. Because two standalone 

population algorithms have been combined, the number of hyperparameters for the algorithm has 

also been increased, making algorithmic parameter selection harder and more time-consuming. ACO 



combined of with simpler algorithms, such as evolution strategy for customer grouping, could be 

investigated. Moreover, the current algorithm implementation assigns ACO’s global pheromone 

matrix per ICA’s country, another approach, of pheromone matrix per empire or even per 

population, could be investigated.  
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