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Abstract. Pointing accuracy is an important indicator for electro-optical detection systems, as it significantly
affects the system performance. However, as a result of misalignment, nonperpendicularity in themanufacturing
and assembly processes, as well as the sensor errors such as camera distortion and angular sensor error, the
pointing accuracy is significantly affected. These errors should be compensated before using the system.
Parametric models are firstly proposed to compensate for the errors, whilst the semi-parametric models with the
nonlinearity added are also put forward. Both methods should analyse the parametric part first, which is a
complicated and inaccurate process. This paper presents a nonparametric model, without any prior information
about mechanical dimensions, etc. It depends only on the test data. Gaussian Process regression is used to
represent the relationship between data and predict the compensated output. The test results have shown that
the regression variances have decreased by more than an order of magnitude, and the means have also been
significantly reduced, with the pointing error well improved. The nonparametric model based on Gaussian
Process is thus demonstrated to be an effective and powerful tool for the pointing error compensation.
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1 Introduction
Electro-optical detection systems (EODSs) have been
widely used to collect targets location information with
visible and infrared cameras in many applications, such as
vehicles, ships, aircrafts, and spacecraft. It always contains
a biaxial mechanical structure, the camera is fixed on the
inner frame.With the two axial motor rotation, the camera
can search and track the target in a certain angle range. As
the pointing accuracy significantly affects the target
tracking and location, it is necessary to obtain the pointing
direction of line of sight (LOS) accurately [1,2]. The
pointing error can be approximately divided into two
categories, the first is the mechanical error, which is caused
by misalignment, nonperpendicularity, etc. in the
manufacturing and assembly processes. The second is
the sensor errors, including camera error and angular
sensor error. A minor bias of LOS will result in significant
deviation over a long location distance. It is thus
imperative to model and compensate for these errors to
improve the pointing accuracy [3,4]. Parametric compen-
sation model is firstly proposed to compensate for the
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errors. In reference [3], each geometric error source was
analysed, error synthesis was the final pointing error.
Reference [5] proposed a parametric compensation model
based on the integrant errors, which presented the
distributions of each error source for radio telescopes in
detail. Since the platform of EODS is similar to that of radio
telescope, the analysis method is also applicable to the
EODS. Reference [6] analysed the mechanical errors of an
integrated time delay integration charge coupled device
aerial camera and established a pointing error model based
on the ray tracing algorithm, and a genetic algorithm was
performed to identify the model parameters. Since the
platform of EODS is similar to that of radio telescope, the
analysis method is also applicable to the EODS. In reference
[7], a pointing error model caused by the machining errors
and installation errors of ground based telescope is
established, and a simulated annealing algorithm is used
to correct the parameters of pointing errormodel to improve
the detection accuracy. Reference [8] considered the
detection and the launch system with different wavelength,
the error between the detection and the launchwas analysed
and the relationship was calculated. Meanwhile, the
semiparametricmodel has also beenwidely used for pointing
accuracy improvement, which is built on the parametric
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model. Semiparametric models add extra nonlinear error
factors,modelaccuracy ismoreaccurate.Reference [9]firstly
obtained the integrant error model and then applied
semiparametric compensation model to improve the
pointing accuracy of the EODS. In reference [10], a
telescope’s kinematics model was established based on the
Denavit-Hartenberg convention, mechanical errors were
analysed, and a semi-parametric model was established for
pointing error compensation. Reference [11] firstly estab-
lished a basic parametric model of point error with clear
physical significance by analysing the physical structure and
error source, and a semi-parametric regression model was
proposed to improve the system accuracy. Reference [12]
proposed a new model named Allan variance based semi-
parametric model to improve the point precision for alt-az
telescopes. Similar semi-parametric models were also
presented in [4,13], which demonstrated semiparametric
model’s better performance. Both for parametric and semi-
parametric models, the parametric part should be analysed
first, including mechanical dimensions, installation mode
and tolerance control, it is a very complicated process to
establish each integrant error propagation model. Different
from above two types of models, nonparametric model is
establishedwithout any prior information aboutmechanical
dimensions, etc. It depends only on the test data. As a result,
themodelling process becomes simpler. Hence, we propose a
nonparametric model based on Gaussian Process (GP)
regression to analyse and improve the pointing accuracy.

2 Gaussian process regression

GP regression is a kind of machine learning problems,
which are broadly divided into three fundamental classes:
supervised learning, unsupervised learning and reinforce-
ment learning. Supervised learning is the learning of input-
output mappings from the training data. As generally used
covariance functions, GP is a simple and general class of
probability distributions on functions [14]. Since proposed
by O’Hagan in 1978 [15], GP regression model has been
widely used to perform Bayesian nonlinear regression and
classification problems in machine learning due to its good
performance in practice and desirable analytical properties
[16–19].

2.1 Gaussian process

From the view of function space, the definition of GP in [10]
shows a GP is collection of random variables, any finite
numberofwhichhavea jointGaussiandistribution. It canbe
completely represented by itsmean function and covariance
function. The mean function m (x) and covariance function
k (x, x0) of a mapping function f (x) are defined as [17]

m xð Þ ¼ E f xð Þ½ � ð1Þ

k x;x0ð Þ ¼ E f xð Þ �m xð Þð Þ f x0ð Þ �m x0ð Þð Þ½ � ð2Þ
The GP can be denoted as

f xð Þ∼GP m xð Þ; k x;x0ð Þð Þ: ð3Þ
Given a data set X consisting of n input vectors, X=

[x1, x2 ... xn] (x �R
D), and the corresponding output vectors,

Y= [y1, y2 ... yn]. We assume thatY is noisily observed from
the underlying functional mapping f (X).

Y ¼ f Xð Þ þ e; e∼N 0; s2I
� �

: ð4Þ

where s2 is the variance of the noise, I is the identitymatrix.
Equivalently, the noise model can also be denoted as [17]

p Y jfð Þ ¼ N f; s2I
� �

: ð5Þ

The main regression task is to estimate the mapping
function f (X) from the training dataX andY. The primary
objective is to give the optimal estimate Y* from the test
input vectors, X*= [x*1, x*2 ... x*m].

A GP defines a probability distribution on functions
p (f), which can be used as a Bayesian prior for the
regression estimate, and Bayesian inference is used to make
predictions from data as shown in (6) [17]

p fjXð Þ ¼ pðXjfÞp fð Þ
p Xð Þ : ð6Þ

We normally assume the zero mean GP prior on f
satisfies

p f Xð Þð Þ ¼ N 0;Kð Þ: ð7Þ
whereK is the covariance ofX. Themarginal likelihood can
be obtained by integrating over the unobserved function f
[17],

p Y jXð Þ ¼ ∫p Y jf;Xð Þp fjXð Þdf ¼ N 0;K þ s2I
� �

: ð8Þ

As the mean is assumed zero, the significant factor
affecting the regression estimate result is the covariance
function. A commonly used form is the ‘squared exponen-
tial’, shown in (9) [17]

k x;x0ð Þ ¼ s2
fexp

� x� x0ð Þ2
2l2

 !
ð9Þ

where s2
f is themaximum allowance variance, l is the length

factor. Then the covariance K can be computed as

K ¼
k x1;x1ð Þ ::: k x1;xnð Þ

..

.
⋱ ..

.

k xn;x1ð Þ ::: k xn;xnð Þ

2
64

3
75: ð10Þ



Fig. 1. Test apparatus of the EODS.

Q. Tang et al.: Int. J. Metrol. Qual. Eng. 12, 22 (2021) 3
2.2 Prediction

Considering the test input, X*, we have the covariance
matrices of X* to X* and X* to X.

K�� ¼
k x�1;x�1ð Þ ::: k x�1;x�mð Þ

..

.
⋱ ..

.

k x�m;x�1ð Þ ::: k x�m;x�mð Þ

2
64

3
75 ð11Þ

K� ¼
k x�1;x1ð Þ ::: k x�1;xnð Þ

..

.
⋱ ..

.

k x�m;x1ð Þ ::: k x�m;xnð Þ

2
64

3
75: ð12Þ

As the premise, we assumed the data complying with a
multivariate Gaussian distribution, the multivariate
distribution with additive independent identically distrib-
uted noise is presented as [17]

Y
Y �

� �
∼ K þ s2I K�T

K� K��

� �
ð13Þ

where KT
� is the transposition of K*. Then the conditional

distribution of Y* given Y is [17]

Y �jY ∼N K� K þ s2I
� ��1

Y ;K�� �K� K þ s2I
� ��1

KT
�

� �
:

ð14Þ
The optimal estimate for the output is the mean in (14)

Y � ¼ K� K þ s2I
� ��1

Y ð15Þ

and its uncertainty is the variance in (14)

var Y �ð Þ ¼ K�� �K� K þ s2I
� ��1

KT
� : ð16Þ

2.3 Parameter selection

Take the squared exponential covariance function as an
example, in order to ensure GP regression to be a practical
tool in pointing error compensation, we have to select
proper sf and l for (9) to obtain the best regression. We
define the hyper-parameters of the covariance function as

w ¼ sf ; l
� 	

: ð17Þ

According to Bayes’ theorem in (6), to obtain the
maximum posteriori estimate of w, p(w|X, Y), we should
maximize the p(Y|X, w), as obtained in (8). To simplify the
computation, the log marginal likelihood is often used [17]

log p Y jX;wð Þ ¼ � 1

2
Y T K þ s2I
� ��1

Y � 1

2
logjK

þ s2Ij � n

2
log 2pð Þ: ð18Þ
Through multivariate optimization algorithm, such as
conjugate gradients, Nelder-Mead simplex, etc., we could
determine the proper hyper parameters [18].

3 Model selection

During the covariance computation, there are plenty of
possible covariance functions to choose from, including
squared exponential, polynomial, neural network, etc.,
each has a number of undetermined hyper-parameters.
Choosing proper covariance functions for a particular
application is vital to the regression. A complex covariance
function withmany undetermined parameters needs a huge
amount of test data, and it is difficult to converge to the
optimal solution. According to the experimental data and
the complexity of EODS, we chose to employ the squared
exponential covariance function, which is universal and
easily convergent. The general form [17] is shown as:

k x;x0ð Þ ¼ s2
f exp � 1

2
x� x0ð ÞTM x� x0ð Þ


 �
ð19Þ

where the matrix M may be one of the following forms

M1 ¼ l�2I; M2 ¼ diag lð Þ�2; M3

¼ diag lð Þ�2 þLLT ð20Þ

where l is a vector of positive values l= l1, l2 ... lD; L is a
D� k(k<D) matrix.

In this paper, as the inputs are two dimensional, we
applied the first form in (20) to estimate the overall trend of
the pointing error, and utilized the second to remedy the
differences of each dimension. The final covariance function
is shown in (21)

k x;x0ð Þ ¼ s2
f1 exp

� x� x0ð ÞT x� x0ð Þ
2l2

 !

þ s2
f2 exp � 1

2
x� x0ð ÞT l1 x� x0ð Þ


 �
þ s2I ð21Þ

where l1=diag (l11, l12).



Fig. 2. Pointing error regression for azimuth and elevation.

Fig. 3. Prediction results for the training data.
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Here, it should be noted that “nonparametric” is raised
corresponding to “parametric” and “semiparametric”.
“Parametric” model contains determined error sources
and their propagation models, and the compensation is
targeted. “Semiparametric” model includes both “paramet-
ric” part mentioned above, and “nonparametric” part
denoting the nonlinear error sources, which cannot be
expressed by specific formulas. “Nonparametric” in this
paper means there are no determined error sources in the
compensation model, and the error is compensated as a
whole.

4 Test results

The data acquisition system contains a high precision
turntable, an autocollimator and the EODS, as shown in
Figure 1. The test angular range is �20°∼20° for azimuth,
and �20°∼10° for elevation. The turntable generates
precision rotatory angles, the EODS rotates in the opposite
direction, and the autocollimator gives the pointing error
readout.
After the systemic error of the test system due to
misalignment is compensated for, we apply GP regression
to estimate the pointing errors using Gaussian processes for
machine learning toolbox [19]. The azimuth and elevation
results are shown in Figures 2–4 and Tables 1 and 2.

Figure 2 presents the regression results for azimuth and
elevation over the measuring domain, which shows
apparent differences in the components of pointing error,
azimuth error is more significant. Figure 3 gives a detailed
description of the prediction results in azimuth and
elevation for the training data. Combined with Table 1,
both the mean and variance values are greatly reduced
after compensation. Figure 4 shows the comparisons of the
actual measuring results and GP prediction results. The
variances in the azimuth and elevation axes have decreased
from0.0258 (°)2 and 0.0017 (°)2 to 0.0014 (°)2 and 0.0010 (°)2,
respectively, improved by more than an order of
magnitude, and the means are also significantly reduced.
These all illustrate that the proposed nonparametric
compensation model based on GP regression is effective
and successful.



Fig. 4. Prediction results for the test data.

Table 1. Compensation results comparison.

Pointing error

Variance ((°)2) Mean (°)

Original Compensated Original Compensated

Azimuth
0.0492 0.0007 –0.1674 –0.0002
0.0258 0.0014 –0.0894 –0.0185

Elevation
0.0065 0.0005 –0.0454 –0.0004
0.0017 0.0010 –0.0161 –0.0122

Table 2. Prediction results comparison among different models for test data.

Pointing error
Variance ((°)2) Mean (°)

Azimuth Elevation Azimuth Elevation

Original 0.0258 0.0017 –0.0894 -0.0161
Parametric model 0.0042 0.0016 0.0017 –0.0160
Semiparametric model 0.0014 0.0009 –0.0147 –0.0130
Nonparametric model 0.0014 0.0010 –0.0185 –0.0122
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Among the three types of compensation models [4],
both nonparametric and semiparametric models present a
better performance than parametric model based on
integrant errors. Although the semiparametric model
should be theoretically more advantageous as a result of
its applicability in linear and nonlinear problems, in this
paper the nonparametric model based on GP regression
achieved the same effect as the semiparametric model. On
the other hand, without complicated modelling process for
each integrant error source, the nonparametric is more
convenient than the other two models. Hence, the
nonparametric method is effective and recommendable.

5 Conclusions

Pointing accuracy of EODS significantly affects the
target tracking and location, it is necessary to obtain
the pointing direction of LOS accurately. As for
misalignment, nonperpendicularity, etc. in the
manufacturing and assembly processes, this paper
established a nonparametric compensation model based
on GP regression. Different from the parametric and
semi-parametric models, which should analyse the
parametric part based on the physical structure and
error source, it is complicated and inaccurate. This paper
only focused on the test data, and it realised pointing
error compensation based on the Gaussian process
regression. It firstly obtained the marginal likelihood
of the training data, and then the prediction equations by
means of choosing proper covariance functions. To
obtain the optimal hyper parameters, the maximisation
of the log marginal likelihood equation was performed.
The hyper parameters were finally utilized in pointing
error regression of the EODS. The test results demon-
strated that this method is effective, the variances were
reduced by more than one order of magnitude with the
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pointing accuracy significantly improved. It has been
demonstrated that GP regression can be effectively and
conveniently used as a powerful tool in pointing error
compensations.
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