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ABSTRACT 

Endocrine disrupting chemicals (EDCs) can enter the aquatic environment via wastewater 

treatment work (WwTW) effluents. Oestrogenic and (anti-)androgenic chemicals present in 

effluents affect the reproductive health of fish living downstream of these effluents. 

The effects of WwTW effluent before and after the addition of an advanced granular 

activated carbon (GAC) treatment; installed to reduce EDCs, are compared. In laboratory 

studies, no oestrogenic effects of standard or GAC effluent were observed in fathead 

minnows (FHM; Pimephales promelas). However, the standard effluent elicited possible anti-

androgenic effects not observed in the GAC-treated effluent. In the river receiving this 

effluent, wild roach (Rutilus rutilus) were sampled before and after the GAC addition. Here 

oestrogenic effects were observed in the roach, and these effects were reduced following 

the GAC addition to the WwTW, but not completely removed. 

Over 100 chemicals previously detected in WwTW effluents were examined for (anti-

)androgenic activity using an in vitro yeast-based assay. Toxicity can cause false positive 

results in this assay. Investigations, including employing a modified version of the in vitro 

assay, were conducted to improve the assay’s reliability. Then, assessments of the most 

potent anti-androgenic chemicals were made to determine if they were likely to cause a risk 

to the environment. 

Currently, the best in vivo fish screen for (anti-)androgenic activity utilises the induction of 

spiggin, an androgen dependent glue-like protein, normally produced by male 3-spined 

stickleback (Gasterosteus aculeatus) during nest building. Male FHMs also glue their mates’ 

eggs to substrate. Therefore, FHM may have homologous androgen dependant 

genes/proteins which could serve as biomarkers of (anti-)androgenic activity. Spiggin-like 

primers were designed and used to look for spiggin-like genes in tissues collected from 

FHM. However, none of the spiggin-like primers were male specific and further work is 

needed to determine if similar androgen dependant spiggin-like proteins are present in FHM. 
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1. Introduction  

Ever since Silent Spring was published in the 1960s (Carson, 1962) there has been a 

growing interest regarding chemical pollution impacting wildlife reproduction and 

development. The field of endocrine disruption has gathered momentum since the 1990s, as 

both scientists and policymakers have started to appreciate the importance of the issue. 

There are now many papers that address the effects of chemicals on wildlife and collectively 

they support a connection between environmental pollution and effects on wildlife 

populations (Bernanke and Kohler, 2009). 

In 2010, the international community, with the support of the Convention on Biological 

Diversity, agreed on 20 biodiversity-related ‘Aichi Targets’ to be achieved within a decade, 

and at the mid-term review it was noted that additional effort was required to reduce 

pressures caused by pollution (Tittensor et al., 2014). In a more recent report, one of the five 

main causes of biodiversity loss was considered to be pollution, and this anthropogenic 

driver of biodiversity loss continues to increase globally, despite national efforts to meet the 

Aichi Targets (IPBES, 2019). 

The World Health Organisation defines an EDC as ‘an exogenous substance or mixture that 

alters function(s) of the endocrine system and consequently causes adverse health effects in 

an intact organism, or its progeny, or (sub)populations’ (Damstra et al., 2002). More simply 

put, an EDC is an exogenous chemical, or mixture of chemicals, that interferes with any 

aspect of hormone action (Zoeller et al., 2012).  

EDCs can interfere with the endocrine system in a number of ways; mimic the effect of 

endogenous hormones (e.g. oestrogens, androgens, thyroid), antagonise the effect of 

endogenous hormones, disrupt the synthesis and metabolism of endogenous hormones, 

and disrupt the synthesis and metabolism of hormone receptors (Sonnenschein and Soto, 

1998). This can then lead to a range of developmental, reproductive, immune, neurological 

or metabolic diseases in humans and animals.  

Here I provide some background relating to the endocrine system of vertebrates, specifically 

concentrating on fish, as endocrine disruption in fish is the main focus of this PhD thesis. 

 

1.1. The endocrine system 

1.1.1. The hypothalamic–pituitary–gonadal axis 

In common with all vertebrates, reproduction in teleost fish is regulated by coordinated 

interaction among hormones of the hypothalamic-pituitary-gonad axis (HPG; Figure 1). In 
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seasonally spawning fish, external factors such as light and water temperature control the 

timing of gonadal recrudescence and maturation via the brain (Scholz and Mayer, 2008). 

Kisspeptin stimulates the release of gonadotropin releasing hormones (GnRHs) from the 

hypothalamus, that in turn stimulate the release of gonadotropins (luteinising hormone (LH) 

and follicle stimulating hormone (FSH)) from the pituitary gland. The gonadotropins in turn 

regulate the production and secretion of sex steroid hormones (steroidogenesis) from the 

gonad (Ji et al., 2013). Through interactions with membrane-bound gonadotropin receptors 

(e.g. LH receptor and FSH receptor) on the surface of gonad cells, pituitary gonadotropins 

including LH and FSH play a key role in regulating steroidogenic gene expression via 

negative or positive feedback mechanisms (Villeneuve et al., 2007). This constant feedback 

from the target glands to the hypothalamus and pituitary gland ensures homeostasis of the 

hormone system, and when the correct blood levels of those hormones are reached, the 

hypothalamus and/or the pituitary cease hormone release, thereby turning off the cascade 

(Hiller-Sturmhöfel and Bartke, 1998). 

In addition, the major carrier of endogenous sex steroids, sex hormone-binding globulin, 

regulates the plasma levels and biological actions of sex steroids by modulating their 

bioavailability and accessibility and protecting the sex steroids from rapid degradation and 

excretion (Liu et al., 2017). 

In mammals, LH enables Leydig cells (in the testis) to generate androgens whereas FSH 

stimulates granulosa cells (in the ovary) to produce oestrogens. Although the precise 

function of these hormones in teleost is still not clear, much evidence indicates that their 

roles in steroidogenesis are similar to those in mammals (Gong et al., 2017). 

1.1.2. Gonadal steroidogenesis 

Steroids are synthesised from cholesterol through a series of reactions catalysed primarily 

by several cytochrome P450s (Figure 2). Aromatase cyp19 is the key enzyme responsible 

for the conversion of 19-carbon androgens (mainly testosterone (T) and androstenedione) to 

18-carbon oestrogens, regulating local and systemic levels of oestrogens in the body 

(Cheshenko et al., 2008). The enzyme 5 α-reductase is the enzyme that converts T to 

dihydrotestosterone (DHT). 
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Figure 1. The hypothalamic-pituitary-gonad axis and its role in sex development. 

Gonadotropin releasing hormones (GnRHs) produced by the hypothalamus stimulate the 

release of gonadotropins (luteinising hormone (LH) and follicle stimulating hormone (FSH)) 

from the pituitary gland. The gonadotropins then control the production and secretion of sex 

steroid hormones by the gonads. The LH and FSH regulate steroidogenic gene expression 

via negative (-) or positive (+) feedback mechanisms, and this constant feedback from the 

target glands to the hypothalamus and pituitary gland ensures homeostasis of the hormone 

system. 
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Figure 2. Schematic representation of the main steroidogenic pathways in teleost fish. The 

coloured arrows indicate the different conversion enzymes required for the generation of sex 

steroids from cholesterol;  

Black, cytochrome P450 family 11 subfamily A member 1 (P450scc); Cyp11a1 

Dark green, cytochrome P450 17α-hydroxylase/C17, 20-lyase; Cyp17 

Light blue, 17β-hydroxysteroid dehydrogenase; 17β-HSD 

Light red, 5α-reductase; 5α-R 

Dark red, aromatase; Cyp19 

Purple, 3β-hydroxysteroid dehydrogenase; 3β-HSD 

Pink, 11β-hydrolase 

Dark blue, 11β-hydroxysteroid dehydrogenase; 11β-HSD 

Light green, 20β-hydroxysteroid dehydrogenase; 20β-HSD 

 

Sex steroid hormones such as oestradiol (E2) and T in females, and DHT and T in males, as 

well as maturation-inducing hormones in both sexes, initiate changes in secondary sexual 

characteristics (SSCs) and behaviour, as well as development and maturation of gametes 

(Scholz and Mayer, 2008).  

Androgens (based on transcriptomics and proteomics) also have functions in apoptosis, 

transport and oxidation of lipids, synthesis and transport of hormones, protein metabolism, 

and cell proliferation (Martyniuk and Denslow, 2012). 

Androgens are all steroids with 19 carbons (Marcoccia et al., 2017). The majority of naturally 

occurring steroids with androgenic activity are, in decreasing order of potency relative to T; 

DHT (150-200%), androstanediol (65%), androst-4-ene3,17-dione (25%), androsterone 

(10%) and dehydroepiandrosterone (10%). Over 95% of T is produced and secreted by 

Leydig cells in the testis, whereas the remaining 5% is produced in the adrenal glands by 

conversion of precursors. DHT is one of the most important steroids in many male 

vertebrates with the exception of teleost fish, where T and 11-ketotestosterone (11-KT) were 

thought to be the major circulating male androgens as well as the most potent ones (Borg, 

1994). However, it is now considered that DHT does have a role in the mediation of 

androgenic responses in teleost fish (Margiotta-Casaluci and Sumpter, 2011). 

The traditional view of E2 as the female hormone and T as the male hormone has been 

challenged in recent years. Now oestrogen is thought to have a regulatory role in the testis 

because oestrogen biosynthesis occurs in testicular cells and the absence of oestrogen 

receptors (ERs) causes adverse effects on spermatogenesis and steroidogenesis 

(Akingbemi, 2005). Also, a direct role for androgens (as the precursor for E2), acting via the 



6 
 

AR in female reproductive function has been confirmed as key to optimal ovarian function 

(Walters and Handelsman, 2018). 

1.1.3. Hormone receptors 

Steroid hormone receptors (SHRs) are hormone-activated nuclear transcription factors with 

distinct specificities for endogenous steroid hormones. In all steroid receptors, the activating 

hormone binds to an internal cavity within a well-conserved ligand binding domain (LBD), 

causing the LBD to change conformation, attract co-activator proteins and increase 

transcription of target genes. Humans have two phylogenetic classes of steroid receptors 

depending on the endogenous ligand (Eick et al., 2012). In the first class, the ER, the 

endogenous ligands are 18-carbon steroids with an aromatised A-ring and a hydroxyl 

attached to the C3 on the steroid skeleton. The other class comprises receptors for 

androgens (AR), progestogens (PR), glucocorticoids (GR) and mineralocorticoids, and all 

the ligands for these receptors contain a non-aromatisable A-ring, an additional methyl at 

C19, and in most cases a ketone at C3. 

The AR is consistent with the characteristic nuclear receptor modular structure; consisting of 

three major functional domains (1) NH2-terminal domain (NTD) containing the Activation 

Function region 1 (AF1)), (2) highly conserved deoxyribonucleic acid (DNA)-binding domain 

(DBD), and (3) a conserved C-terminal domain containing the LBD (Figure 3). The AR-LBD 

has three different binding or active sites where an agonist or antagonist can bind and alter 

AR functions (Sakkiah et al., 2018); the ligand binding pocket (LBP), the AF2 site and the 

Binding Function 3 site (BF3). The hinge region acts as a bridge between the DBD and LBD. 

The three-dimensional structure of the AR-LBD consists of 12 bundles of helices forming 

three layers. Among these 12 helices, the Helix-12 (H12) plays a major role in AR activation 

and when an androgen binds the LBP of the AR, H12 tightly holds co-activator proteins and 

initiates function. 

AR activation can occur through direct or indirect pathways (Lynch et al., 2017). Direct AR 

activation occurs through a multi-step process (Figure 4). In the absence of a ligand, SHRs 

are predominantly monomeric and bind to chaperones/ cochaperone complexes to remain 

stabilised in the cytoplasm (Chen et al., 2018). To dissociate from chaperones/ 

cochaperones and translocate to the nucleus, the AR must be bound by ligands. Once in the 

nucleus, the SHRs forms dimers, binding to specific genomic response elements and 

recruiting coregulators. The SHRs then bind other transcription factors to form transcription 

regulatory complexes to activate transcription. Hence, the subcellular signalling of SHRs is 

dynamic and requires the transportation of the SHRs from the cytoplasm to the nucleus.  
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Figure 3. The linear domain structure of a steroid hormone receptor comprising; an N-

terminal domain (NTD), a DNA-binding domain (DBD), a hinge region and a ligand binding 

domain (LBD). Embedded in the NTD is the Activation Function 1 (AF1), and embedded in 

the LBD is the AF2, the Binding Function 3 (BF3), and the Helix-12 (H12). 

Adapted from Chen et al. (2018) 

 

The presence (in some fish species) of multiple AR isoforms with various binding 

specificities and tissue distributions suggests that different androgens may mediate the 

androgenic response according to the species and to the differential expression and 

abundance of AR isoforms in each tissue (Margiotta-Casaluci and Sumpter, 2011). For 

example, expression analysis of medaka ARα and ARβ in several adult tissues of both 

sexes revealed both ARs to be highly expressed in male kidney in which the enzymes for 

androgen production are expressed (Kusakabe et al., 2002). Quantitative polymerase chain 

reaction (qPCR) suggested that the ARα was more highly expressed in the testis than the 

ovary whereas ARβ did not show such sexual dimorphic expression in adult gonads. 

1.1.4. Gonadogenesis 

In almost all vertebrates, sexual reproduction requires two sexes (males and females) to 

maintain genetic variation. Hence, sex determination and differentiation is one of the most 

important processes for species survival. The gonad is a unique organ due to its bipotential 

nature; either testis or ovary can develop from a single primordium (Brennan and Capel, 

2004). 

However, sex determination mechanisms vary greatly among taxa (Devlin and Nagahama, 

2002). In vertebrates, sex is determined either genetically or environmentally, or a 

combination of both (Chen et al., 2016). In most mammals, sex determination is genetically 

controlled by the presence or absence of the Y-chromosome, and the initiation of the male 

pathway depends on the gonadal expression of the Y-linked gene, Sry. The development of 

SSCs, including external genitalia, depends on whether the gonad differentiates into a testis 

or ovary and subsequently secretes primarily androgens or oestrogens. 
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Figure 4. An overview of the signalling processes of steroid hormone receptors (SHRs). This 

multistep process starts with ligand binding and ends with transcriptional activation. Agonists 

induce an active conformation of the SHR that recruits co-activators and activates 

transcription. Conversely, an antagonist induces the inactive conformation of the SHR that 

recruits co-repressors and represses transcription. 

Adapted from Chen et al. (2018) 

 

Whilst in certain families of fish hermaphroditism or sex reversal represent the normal mode 

of reproduction, the vast majority of species are gonochoristic, in which distinct males and 

females are independent and stable (Nolan et al., 2001). In many gonochoristic fish species, 

sex determination is genetic, but in other cases, sex is determined by environmental factors 

such as temperature (Baroiller et al., 1999). Sex differentiation is correlated with sex steroid 

production and receptor signalling pathways involving androgens and oestrogens (Wood et 

al., 2015). In teleosts, endogenous oestrogens act as the natural inducer of ovarian 

differentiation, while androgen is not synthesised in the gonad during the critical period of 

sex determination (Nagahama, 2000). Consequently, sex differentiation and meiosis initiate 

earlier in female than in male, and this may be because oogenesis takes more time than 

spermatogenesis (Chen et al., 2016).  

The Doublesex and Mab-3 Related Transcription Factor 1 (Dmrt1) gene is proposed as the 

major player in fish sex differentiation and its expression has been related with testis 

development and spermatogenesis in several species, for example, Nile tilapia and medaka 

(Herpin and Schartl, 2011). In addition, the Forkhead Box I2 (foxI2) gene is involved in 

ovarian development and oocyte maintenance, and is thought to be associated with the 

regulation of aromatase expression in different fish species (Baron et al., 2004). Alterations 

of the expression patterns of these genes can lead to modified sex differentiation outcomes 

in fish.
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Figure 5. Generalised illustration of the pituitary-gonad axis demonstrating induction of the egg yolk protein, vitellogenin, in female 

fish.Oestradiol produced by the ovaries stimulates the liver to produce vitellogenin. Vitellogenin is then transported by the blood to the ovary 

where it is sequestered by developing oocytes. LH, luteinising hormone; FSH, follicle stimulating hormone
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1.1.5. Gametogenesis 

Gametogenesis is the process by which gametes, or germ cells, are produced in an 

organism. The formation of egg cells, or ova, is called oogenesis, and the formation of sperm 

cells, or spermatozoa, is called spermatogenesis. 

In the testis, FSH and LH are the most important pituitary hormones regulating fish 

spermatogenesis; FSH plays a regulatory role in the early stages of spermatogenesis and 

LH is mainly involved in later stages of maturation, e.g. regulation of spermiation (Gong et 

al., 2017). 

Vitellogenin (VTG) is a female-specific egg-yolk precursor that is synthesised in the liver in 

response to circulating oestrogens and transported by blood to the ovary, where it is taken 

up by oocytes and deposited as yolk (Tyler and Sumpter, 1996) (Figure 5). Oocyte growth 

can be divided into two main stages of development, classified as primary or previtellogenic 

growth and secondary or vitellogenic growth (Basili et al., 2018). FSH in fish has a dominant 

role in regulating the vitellogenic growth of follicles, partly through stimulation of E2 

biosynthesis by ovarian follicles. LH is involved in final oocyte maturation and ovulation, 

partly through the stimulation of production of maturation hormone (Nagahama and 

Yamashita, 2008).  

 

1.2. Mechanisms of disruption 

EDCs have been reported to act via several mechanisms which can disrupt the HPG axis, 

including those that are receptor and non-receptor mediated effects (Wilson et al., 2007). 

These include the activation/inhibition of hormone receptors, inhibition of hormone synthesis, 

disruption of hormone transport proteins, and inhibition of hormone metabolism (Liu et al., 

2017).  

Most studies currently focus on SHRs and this thesis specifically examines chemicals that 

act as oestrogens and (anti-)androgens. Known androgen antagonists (for example, 

pharmaceutical anti-androgens flutamide and bicalutamide) have demonstrated that 

antagonists inhibit AR function by competitive binding with natural androgens (Perera et al., 

2017).  

One widely proposed mechanism for AR antagonism is the displacement of the H12 upon 

ligand binding, leading to distortions in the AF2 site, preventing co-activator binding; during 

binding the H12 functions as a lid, which closes (agonist) or moves away from the LBP 

(antagonist) (Tan et al., 2015) (Figure 6). AR antagonists are usually bulkier than agonists 

and thus require a wider binding pocket than agonists. Due to their large size,
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Figure 6. Model for ligand-dependent activation of the androgen receptor. During ligand 

binding, the H12 functions as a lid and (A) closes when the ligand binding pocket (LBP) is 

presented with an agonist (illustrated by the blue triangle) or (B) moves away from the LBP 

in the presence of a bulkier antagonist (illustrated by the red diamond).  

Adapted from Tan et al. (2015) 
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antagonists push the residues in H12 outward to expand the active site. These structural 

changes in the LBP cause the AF2 site to undergo conformational changes, preventing co-

activator binding. When a small molecule binds to the AR a conformational change can 

occur which impacts subsequent binding of the co-regulator proteins and DNA. Thus, an 

agonist induces an active conformation of the SHR that recruits co-activators and activates 

transcription (Figure 4). Conversely, an antagonist induces the inactive conformation of the 

SHR that recruits co-repressors and represses transcription. Co-activators and co-

repressors are therefore recruited by SHRs upon binding of agonist and antagonist ligands 

respectively and play an essential role in the regulation of transcription (Chen et al., 2018).  

In addition to receptor mediated effects, steroidogenic enzymes can also be a target for 

EDCs. For example, cyp19 (aromatase) catalyses the conversion of androgen to oestrogen 

and therefore changes in aromatase activities (whether up or down regulation) can influence 

the concentration and balance of sex hormones (Cheshenko et al., 2008). Similarly, 5α-

reductase inhibitors will block the conversion of T to DHT and this leads to an increase in T 

(Azzouni et al., 2012). 

 

1.3. What evidence is there of endocrine disrupting chemicals having harmful 

effects? 

To date, there is evidence of endocrine disruption occurring in many invertebrate and 

vertebrate species, and here I provide a few key examples of reported reproductive 

disruption in vertebrates caused by chemical(s) exposure.  

1.3.1. Humans and rodent models 

Pesticides have been directly linked to endocrine disruption in humans following 

occupational exposure; for example, reduced sperm counts following handling of the 

insecticide dichlorodiphenyltrichloroethane (DDT; Singer, 1949) and reduced sperm motility 

through exposure to the insecticide chlordecone (kepone; Guzelian, 1982). 

In addition to these occupational exposure cases, in another well documented case of 

endocrine disruption, the pharmaceutical oestrogen diethylstilbestrol (DES) was prescribed 

to pregnant women during the 1940s to 1970s to prevent miscarriage (Ho et al., 2017). In 

1971, DES was shown to cause a rare vaginal tumour in girls and women who had been 

exposed to this medication in utero (Swan, 2000). In addition, the gestational exposure to 

DES increased the infertility rate and poor pregnancy outcomes in daughters and caused an 

increase in the incidence of genital abnormalities in sons (Schrager and Potter, 2004). 
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Congenital penile anomalies (CPAs) are amongst the most common birth defects and 

encompass a range of malformations, including failure of urethral tube closure 

(hypospadias), penile curvature (chordee), micropenis, and feminisation of male genitalia. 

Reports of CPAs have risen sharply in recent decades, and the most common of these 

malformations, hypospadias, now affect 1:125 live male births in the U.S. (Zheng et al., 

2015). Matlai and Beral (1985) also examined the rates of malformations of male external 

genitalia reported at birth and found a significant increase in cases of cryptorchidism (a 

condition in which one or both of the testes fail to descend from the abdomen into the 

scrotum), hypospadias and hydrocele (a swelling in the scrotum that occurs when fluid 

collects in the thin sheath surrounding a testicle) between 1969 and 1983. Existing research 

indicates that the male reproductive system is the target organ of EDCs, and that exposure 

to EDCs may result in significantly lower T levels and as a result be responsible for the 

cryptorchidism, hypospadias, and other urogenital disorders (Liu et al., 2015). Studies of 

paternal and maternal pesticide exposures reported associations with cryptorchidism and 

hypospadias but could not pin-point specific chemicals (Pierik et al., 2004).  

The anogenital distance (AGD) is naturally shorter in females compared to males and has 

been used as a marker of a feminised or demasculinised phenotype in rodent models and 

other mammals. In addition to the CPAs reported in humans, exposures to anti-androgenic 

pesticides and plasticisers during the critical development window in male reproductive 

development have also been linked to shortened AGD in humans and rodents (reviewed by 

Schwartz et al., 2019). In humans, shorter AGD has also been associated with poor semen 

quality in adult men (Lind et al., 2017).  

Testicular dysgenesis syndrome arises from insufficient androgen in foetal life (Arrebola et 

al., 2015). Due to a disturbance of testicular development, poor semen quality and germ cell 

cancers can occur (Arrebola et al., 2015). Carlsen et al. (1992) carried out a meta-analysis 

on data from 14,947 men, and this indicated that there had been a decline in semen quality 

during a period of half a century. Most individual cases of poor semen quality have no known 

aetiology as people are exposed to low concentrations of thousands of chemicals and so 

proving specific cause and effect is challenging. Also, individuals are exposed to chemicals 

as mixtures and these could be acting together to cause effects rather than a single 

chemical being responsible for the effects (Silva et al., 2002).  

The timing of reproductive system differentiation is different in females and males, and 

female germ cells enter meiosis prenatally and complete initial phases of meiosis before 

birth, whereas male germ cells only begin to enter meiosis postnatally and continuously do 

so throughout adulthood. The belief was that androgens induced and completed 

masculinisation of the reproductive tract during the time when morphological differentiation 
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could be observed. However, Welsh et al. (2008) discovered that androgens could 

‘preprogram’ masculinisation before morphological changes were actually observed in rats, 

and this was termed the ‘masculinisation programming window’. Only within this window did 

blocking androgen action induce hypospadias and cryptorchidism and alter penile length in 

male rats, all of which correlated with AGD. Androgen-driven masculinisation of females was 

also confined to the same window.  

1.3.2. Fish 

The aquatic environment represents the ultimate sink for a vast number of anthropogenic 

contaminants, and fish populations are directly exposed to a wide variety of EDCs originating 

from industrial, agricultural, or municipal effluents. Thus, fish are considered as one of the 

primary risk organisms for EDCs (Scholz and Mayer, 2008). Sex determination in teleosts is 

characterised as being very labile and can be disturbed or even functionally reversed by the 

external application of natural or synthetic hormones and/or aromatase inhibitors (Nolan et 

al., 2001). Indeed, steroid hormones are widely used to control fish sex in aquaculture (Chen 

et al., 2016). The labile period when fish are most susceptible to endocrine perturbation is 

just following hatching or at the juvenile stage (Jobling et al., 1998), and the timing of 

exposure has been shown to be a crucial factor that determines the potency of EDCs (Gore 

et al., 2014).  

Most teleost fish have external fertilisation, but some species develop copulatory organs 

formed from an elongation of the anterior region of the anal fin, termed gonopodium, for 

internal fertilisation (Ogino et al., 2004). The mosquito fish (Gambusia affinis holbrooki) has 

sex dimorphism driven by androgenic hormones mediated by the testis and this becomes 

apparent in the gonopodium formation at late juvenile stage.  

The only androgenic industrial effluent identified to date is pulp mill effluent and reports focus 

on masculinisation of wild female mosquito fish; both the development of a male-like 

gonopodium and male-like reproductive behaviours (Howell et al., 1980). Subsequent 

studies confirmed the presence of androgenic compounds in paper and pulp mill effluent, but 

these effluents contain a complex mixture of organic and inorganic pollutants and the exact 

chemical(s) responsible for the androgenic activity have yet to be identified (Kamali et al., 

2016; Parks et al., 2001; Singh and Chandra, 2019). 

Another widely documented source of environmental androgens are the growth promotor 

implants used in the cattle industry. Male fathead minnow (FHM; Pimephales promelas) 

collected from rivers downstream of feedlots were found to be demasculinised (decreased 

plasma T, altered head morphology, smaller testis size) due to androgenic activity either 

from natural androgens or androgenic pharmaceuticals used in growth implants (trenbolone 
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acetate is metabolised to the potent 17β-trenbolone; Orlando et al., 2004). Female FHM 

collected from the same river had a decreased E2:T ratio due to a reduction in E2 synthesis 

and an increase in T synthesis, indicative of the presence of androgenic compound(s). That 

is, the presence of endogenous androgen(s) leads to negative feedback via the HPG axis 

and results in either increased or decreased exogenous T as the FHM attempts to maintain 

equilibrium (Section 1.1.1). 

Additionally, EDCs in the environment have also been shown to feminise fish. For example, 

exposure to domestic sewage has been shown to feminise male roach (Rutilus rutilus), and 

this effect has been attributed to ethinylestradiol (EE2), the synthetic oestrogen in the oral 

contraceptive pill found in sewage effluents (Purdom et al., 1994). Jobling et al. (1998) also 

collected roach from a number of UK rivers and found a widespread incidence of intersex, 

and the presence of oocytes in male testicular tissue, which is not normally seen in this 

single-sex (gonochoristic) fish species.  

In 2004, the Environment Agency sampled roach from 51 UK sites and found 44 of the sites 

to have feminised male (intersex) fish. The severity of the feminisation correlated with 

predicted exposure to oestrogens, with the most severely intersex fish being found in the 

older year classes (Gross-Sorokin et al., 2006). In later studies, the presence of anti-

androgenic activity (determined in vitro) in UK wastewater treatment works (WwTW) effluent 

was also found to be statically associated with the feminised responses seen in the wild 

roach living in those rivers (Jobling et al., 2009).  

 

1.4. What are the sources of chemicals in the aquatic environment?  

1.4.1. Steroidal EDCs with understandable biologically activity 

Globally, it is likely that over 80% of wastewater is released to the environment without 

adequate treatment (WWAP, 2017). In Central European countries, connection rates to 

WwTWs have increased since 1995 and are now at 97%, with about 80% receiving tertiary 

treatment (European Environment Agency, 2017). In the UK, all wastewater effluent is 

treated; 43% receiving secondary treatment and 57% receiving tertiary treatment (European 

Environment Agency, 2017). 

One major group of chemicals found in the environment are steroids; either natural (e.g. 

oestrone (E1), E2 and T) or synthetic (e.g. EE2 and trenbolone). The natural oestrogens, E1 

and E2, and the synthetic compound EE2, were found to contribute a large fraction of the 

total oestrogenicity of wastewater (Arlos et al., 2018b). Thomas et al. (2002) also found that 

99% of the androgenic activity of WwTW effluent, determined in vitro, was due to natural 
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steroids/metabolites. Of these, androstenedione (direct metabolism of T in the human body 

followed by excretion) accounted for 33%. Similarly, Houtman et al. (2018) analysed 24 

steroid hormones in WwTW effluent and androgenic activity was explained by the presence 

of T and androstenedione. 

Wastewater treatment works utilise a number of different processes depending on the 

amount of effluent that the works receives; ranging from primary settlement, secondary 

biological treatment, and tertiary treatment with another settlement step (discussed further in 

Chapter 2). Wastewaters are complex mixtures of chemicals and nutrients that can vary 

temporally (Fuzzen et al., 2016), and the removal of micropollutants depends on the physical 

and chemical properties of the compound as well as the characteristics of the WwTW, i.e. 

the degree and type of treatment process. The incomplete removal of chemicals during 

wastewater treatment means that some of these compounds are discharged with final 

effluent, causing aquatic organisms to be continuously exposed (Petrie et al., 2015). Many 

EDCs are sufficiently stable to survive the wastewater treatment process and can even be 

reactivated during treatment, for example, conjugated steroids can by hydrolysed to their 

free form during biological treatment (Zhang and Zhou, 2005). Incomplete mineralisation 

during wastewater treatment can also result in the formation of transformation products with 

a potential to produce more toxicity than the parent compound (Maya et al., 2018).  

Given that food production consumes more than two-thirds of the world’s extracted water 

and is expected to rise by 70% by 2050 due to population growth (Gilbert, 2012b) there is a 

need to evaluate the efficiency of current tertiary wastewater treatment processes and to 

develop advanced treatment processes (Hamilton et al., 2014). 

In addition to chemicals entering our aquatic environment via WwTW effluents (point 

sources), chemicals also enter via non-point sources from land run-off, precipitation, 

atmospheric deposition, drainage, seepage, or hydrologic modification. Non-point source 

pollution originates from many diffuse sources and is caused by precipitation moving over 

and through the ground, picking up and carrying pollutants and finally depositing them into 

lakes, rivers, wetlands, coastal waters, and ground waters (Gang et al., 2006). Agricultural 

activities that cause non-point source pollution include poorly located or mismanaged animal 

feeding; overgrazing; mismanaged ploughing; and improper, excessive, or poorly timed 

application of fertiliser (e.g. run-off from land-applied animal manure; Abdel-moneim et al., 

2017).  

Oestrone can be readily measured in run-off, soil, and groundwater, and the major source of 

this steroid in the environment appears to be cattle and chickens (Shore and Shemesh, 

2003). Additionally, wild FHM from a cattle feedlot in the USA were found to be 
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demasculinised with reduced T synthesis, altered head morphology and smaller testes. As 

there was no evidence of feminisation (i.e. no oestrogens), the effluent was thought to be 

androgenic due to the growth promoter administered to the cattle, 17β-trenbolone (Orlando 

et al., 2004). Whilst use of trenbolone is no longer allowed in the European Union (EU), the 

use of hormones as production aids is still permitted in North American countries. 

1.4.2. Industrial compounds with unforeseen biological activity 

Globally, 400 million tons of chemicals were produced in 1995 and Europe was the largest 

chemical producing region in the world, accounting for 38% of this production (EEA/UNEP, 

1998). However, worldwide competition has shifted significantly over the last ten years and 

now China holds the top ranking in sales (ECIC, 2020). In 2007, the European Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH) entered into force and 

during the first six month period, 143,000 existing substances were pre-registered by 65,000 

companies. The REACH deadline for registering existing substances manufactured or 

imported in quantities from 1 to 100 tonnes per year in the EU was on 31 May 2018 and 

since 2008, 145,297 substances have now been pre-registered 

(https://echa.europa.eu/information-on-chemicals/pre-registered-substances, downloaded 

22/12/2020) and 23,118 substances have been registered 

(https://echa.europa.eu/information-on-chemicals/registered-substances, downloaded 

22/12/2020). Similarly, the 1976 Toxic Substances Control Act (TSCA) requires the US 

Environmental Protection Agency (EPA) to compile and keep a current list of every 

substance that is manufactured or processed in the US, and this list has also continued to 

grow and now has over 86,000 chemicals on it (https://www.epa.gov/tsca-inventory/about-

tsca-chemical-substance-inventory). 

The chemical bisphenol A is the monomer used to produce polycarbonate and was, by 

chance, found to be oestrogenic when the chemical leached from autoclaved tissue culture 

flasks and caused MCF-7 breast cancer cells to proliferate (Krishnan et al., 1993). 

Alkylphenol polyexthoxylates, used in the textile industry for wool scouring, were also found 

to be broken down by wastewater treatment to oestrogenic alkylphenols, e.g. octylphenol 

and nonylphenol (Desbrow et al., 1998). These chemicals were discharged to rivers and this 

led to the induction of the female-specific protein, VTG, in caged male trout sited in rivers 

below WwTWs (Harries et al., 1997). Due to these results, many other chemicals have now 

been tested for oestrogenic activity, and other classes of chemicals have been found to have 

activity too, e.g. phthalates (Harris et al., 1997) and parabens (Routledge et al., 1998).  

Phthalates or plasticisers enhance the flexibility of plastics and are widely used in consumer 

and industrial products such as medical devices, food wrappings, toys, paints, finishes, and 
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upholstery. As a result of their oil solubility and viscous nature, they are similarly constituents 

of personal care products (Witorsch and Thomas, 2010). Parabens are preservatives widely 

used in cosmetics and pharmaceuticals and, along with phenols, include some of the highest 

volume production chemicals in the world (Pollack et al., 2016). Many man-made chemicals 

find their way into aquatic ecosystems, for example, numerous consumer products are 

flushed down drains and discharged with wastewater effluent and thence enter the aquatic 

environment (Jobling et al., 1998), and this wide usage has meant that synthetic chemicals 

are now ubiquitous in water systems (Wangmo et al., 2018).  

The classes of EDCs known to interfere with the androgen signalling pathway include 

dicarboximide fungicides (e.g. vinclozolin; van Ravenzwaay et al., 2013), organochlorine-

based fungicides (e.g. the DDT metabolite, dichlorodiphenyldichloroethylene (p,p’-DDE); 

Kelce et al., 1995), conazole fungicides (e.g. prochloraz; Vinggaard et al., 2002), plasticisers 

(e.g. phthalates; Svechnikov et al., 2016), polybrominated diphenyl ether flame retardants 

(Stoker et al., 2004) and urea-based herbicides (e.g. linuron; Gray et al., 2001). 

Man-made chemicals also include pharmaceuticals and there over 4,000 approved drug 

products for human, veterinary, agriculture and farming use (Lee et al., 2017). 

Pharmaceuticals are designed to be biologically active and maintain their therapeutic action, 

resulting in the occurrence of pharmaceuticals in the aquatic environment (Lee et al., 2017). 

These drugs are currently available under various formulations and comprise a large number 

of chemical classes and modes of action (Meador et al., 2016).  

Whilst for humans, exposure is transient, aquatic organisms will be exposed continually to a 

cocktail of drugs (Rand-Weaver et al., 2013). Gunnarsson et al. (2008) looked at 1318 

human drug targets and found 86% to be conserved in zebrafish, 61% in Daphnia pulex 

(water flea) and 35% in Chlamydomonas reinhardtii (green algae), indicating the potential for 

lower vertebrates to respond to the pharmaceuticals present in the aquatic environment. 

This is of concern as Scott et al. (2018) found 40% of mosquitofish sampled from Australian 

river sites to contain active pharmaceuticals. 

Man-made chemicals enter our aquatic environment via non-point sources. The types of 

chemicals found in the aquatic environment in agricultural landscapes are typically 

herbicides, fungicides and insecticides, as well as hormones and pharmaceuticals from 

livestock, and these will differ from those found in urban landscapes that will typically be oil, 

grease and toxic chemicals (Elliott et al., 2017).  
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1.5. Methods for assessing oestrogenic and (anti-)androgenic chemicals in the 

aquatic environment? 

1.5.1. Chemical analysis 

The highly diversified chemical structures, properties, and mechanisms of action of 

environmental EDCs present a major challenge to their chemical detection/quantification 

(Tse et al., 2013). Chemical analysis of environmental samples is required if observed 

effects need to be linked to specific chemical(s), however, many EDCs often occur at very 

low concentrations that are often close to or below detection limits (DLs) of analytical 

chemistry methods (Arlos et al., 2018a).  

Water samples can be collected as grab-water samples which enable the determination of 

water chemistry at a moment in time, but it is difficult to use this method to ascertain the 

variability in the presence of EDCs and may be more susceptible to extreme events (Perkins 

et al., 2017). Other approaches such as composite water sampling strategies can 

compensate for this, although chemical concentrations are then averaged over the time that 

the composite sample is made, and extreme events may be missed. An alternative is to 

utilise passive samplers, such as the polar organic chemical integrative sampler, that allow 

hydrophilic chemicals to permeate the sampler membrane and be taken up by a sorptive 

sequestering medium over a prolonged exposure period, thus providing a time-integrated 

record of EDCs present (Jorgenson et al., 2018). Because of accumulation of chemicals 

over the exposure time, the use of passive samplers allows the detection of EDCs at 

concentrations much lower than can be achieved with grab-water samples (Lahti et al., 

2012) and they have been applied to better understand exposure of biota over time 

(Hamilton et al., 2016). This information, however, is not readily translated to environmental 

concentrations of the detected compounds and excludes hydrophobic compounds. 

Other substances in water can alter the bioavailability and potency of EDCs, e.g. 

hydrophobic contaminants in water can associate with dissolved or particulate organic 

matter such as humic acid (Matthews et al., 1995). Water concentrations may therefore 

underestimate the concentration present in the environment (Yarahmadi et al., 2018). 

Indeed, Alvarez-Munoz et al. (2015) found that the presence of anti-androgenic activity was 

significantly correlated with total organic carbon and silt content. That is, the moderately 

hydrophobic anti-androgenic compounds associated with the organic matter and sorbed onto 

particles (Rostkowski et al., 2011). 

A wide range of EDCs can bioconcentrate in fish bile at concentrations that are many 

thousands of times greater than in the aquatic environment, facilitating the structural 

identification of bioavailable contaminants present in that environment (Rostkowski et al., 
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2011). Some authors have found a significant relationship between oestrogenic activity and 

levels of oestrogenic substances in surface waters (Larsson et al., 1999; Yang et al., 2014), 

illustrating that analysis of fish bile could be used to identify EDCs present in water. EDC 

concentrations in bile and plasma revealed strong accordance in caged trout (Lahti et al., 

2012). Good correlation has also been found between bile E2 equivalent concentrations 

(E2EQs, measured in vitro) and plasma VTG (biomarker of oestrogenic exposure) induction 

in male bream (Legler et al., 2002).  

1.5.2. Current tests for assessing chemicals for oestrogenic and (anti-)androgenic activity 

In the USA, the original 1976 TSCA did not require chemicals to be tested prior to their use 

in many consumer products and industrial applications (Trasande and Liu, 2011). Since 

then, new regulations have come into force to increase the protection of human health and 

the environment from the risks that can be posed by chemicals. 

The development of non-animal test methods for the detection of EDCs has been confirmed 

as high priority for regulatory authorities in most countries and in 2012 the Organisation for 

Economic Co-operation and Development (OECD) investigated test methods in the scientific 

literature that could be standardised and used in chemical regulations to detect and 

characterise hazards posed by EDCs. This resulted in a Conceptual Framework for Testing 

and Assessment of Endocrine Disruptors and the issuing of the OECD Standardised Test 

Guidelines (revised guidelines; OECD, 2018d). These guidelines give the background of 

each standardised assay, its applicability domain and conceptual framework for testing 

(Dvorakova et al., 2016). The framework consisted of five levels, each corresponding to a 

different level of biological complexity; Level 1 using existing data and non-test information, 

Level 2 utilising in vitro assays to provide mechanistic information and Levels 3-5 using in 

vivo test systems for a more definitive understanding of the effects (revised guidelines; 

OECD, 2018d). The OECD Standardised test guidelines have been updated more recently 

(OECD, 2018d) and high throughput (HTP) screening techniques are now included, in 

conjunction with computational methods and information technology, to aid screening of the 

large number of chemicals still untested.  

Similarly, the US EPA Endocrine Disrupter Screening Program (EDSP) was established to 

identify potential endocrine bioactivity of pesticides and chemicals found in sources of 

drinking water. The EDSP focussed on chemicals perturbing the oestrogen, androgen and 

thyroid hormone pathways following a 2-tiered approach consisting of a battery of eleven in 

vitro Tier 1 screening assays and four Tier 2 in vivo tests to characterise adverse outcomes 

(Pinto et al., 2018). While there are about 10,000 chemicals covered by the EDSP chemical 

universe, only 52 of these chemicals have undergone Tier 1 screening. To evaluate potential 
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EDCs more quickly and cost-effectively, the EDSP has been transitioning from traditional 

Tier 1 screening methods to HTP in vitro assays to prioritise chemical screening and to 

provide alternative data for Tier 1 endpoints (Coady et al., 2017).  

With the move to HTP assays, more chemicals are being tested, e.g. the US EPAs Tox Cast 

program has screened thousands of chemicals for biological activity, primarily using HTP in 

vitro bioassays (Fay et al., 2018). However, with over 145,000 pre-registered substances in 

the EU and more than 86,000 synthetic chemicals registered in the US, only a small fraction 

of these have been tested for endocrine disrupting activity, and of those tested so far, only 

around 320 chemicals are considered to be EDCs or probable EDCs (Trasande et al., 2016) 

(Figure 7). Additionally, these assays are in vitro assays, any EDCs identified as endocrine 

active in in vitro tests will then require in vivo testing.  

There is a lack of data on the hazards (toxicity and ecotoxicity) of chemicals registered with 

REACH and in the US TSCA Chemical Substance Inventory. This presents a challenge for 

regulatory decision making, especially as the number and variety of potentially hazardous 

chemicals continues to increase. Due to the untenable nature of identifying all contaminants 

at increasingly lower concentrations and then assessing each of these individually, alternate 

approaches are needed (Davis et al., 2016).  

Regulatory authorities have approached the task of assessing all these chemicals by 

applying rapid and inexpensive quantitative structure-activity relationship (QSAR) Tier 1 

methods as decision support tools to address the data gaps and provide provisional data in 

the toxicity database of a chemical (Morger et al., 2020; Ruiz et al., 2017; Thomas et al., 

2019). Also, the call to reduce animal testing in toxicity evaluation has led to an expansion of 

these tools. QSAR is thus used to prioritise and reduce the number of chemicals requiring 

further testing, so that efforts can be focussed on those most likely to be endocrine active.  

1.5.2.1. In vitro testing of environmental samples for ED activity 

Tier 1 in vitro screening bioassays are more precise at predicting in vivo effects than 

chemical analysis alone (Volker et al., 2016). Environmental samples can contain both 

agonists and antagonists and in vitro bioassays provide information about the net effect of all 

active chemicals. This means that the presence of antagonists may reduce the observed 

effect (Grover et al., 2011a). Prior to in vitro screening, fractionation of samples can help to 

separate these effects (Leusch et al., 2017). In vitro bioassays are therefore often used as a 

pre-screening to give an overview of a sample’s hormonal activity before analytical detection 

to determine the compounds that are present (Chamas et al., 2017). 
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Discrepancies are sometimes found between analytical chemistry measurements and the 

results of bioassays, and Sun et al. (2017) thought that this was because partially 

decomposed samples were not picked up by gas chromatography–mass spectrometry (GC-

MS) but were still active in the yeast oestrogen screen (YES). Similarly, Kanda and 

Churchley (2008) found considerable discrepancy between E2EQs determined with the YES 

and steroid oestrogen concentrations determined analytically, and this was thought to be  

 

  

 

Figure 7. This figure illustrates the >145,000 substances pre-registered with the European 

Union and >86,000 registered in the United States. Only the ‘tip of the iceberg’ has been 

tested for endocrine disrupting activity and many more await testing. EPA, Environmental 

Protection Agency 

Adapted from Trasande et al. (2016) 
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due to matrix effects of the wastewater samples, as these can either suppress or enhance 

the analytical signals (Taylor, 2005). 

In addition to receptor mediated mechanisms, chemicals may also affect processes involved 

in the synthesis, release, metabolism, transport, and elimination of endogenous hormones, 

which can lead to alterations in the levels of circulating sex hormones (Pinto et al., 2018). 

The EPA's EDSP has incorporated the OECD validated H295R-based in vitro 

steroidogenesis assay as part of the Tier 1 screening battery (US Environmental Protection 

Agency, 2009). As H295R cells synthesise most major steroid hormones, chemically 

induced toxicity can easily be evaluated using this assay. 

In vitro assays provide a rapid, low-cost and sensitive means to assess a wide range of 

biological effects, and are typically mechanism-based (Cavanagh et al., 2018). However, 

translating in vitro results to in vivo is quite complicated and Wangmo et al. (2018) only 

observed good correlations for compounds acting via direct binding to sex steroid receptor. 

Konig et al. (2017) also did not find in vitro tests to be directly predictive of effects at the 

whole organism level and population level. It is often hard to compare results because of 

variability in assay responses with different cell lines, and a greater focus on standardising 

bioassay protocols is needed if they are to be incorporated into robust environmental 

assessment frameworks.  

In vitro methods are beneficial as they reduce the need for animal testing and are cheaper to 

run. However, in vitro assays must be used in conjunction with in vivo testing, as in vitro 

systems cannot fully take into account bioaccumulation, metabolism, and availability to the 

target cell, or alternative pathways for endocrine disruption. 

Issues and uses of in vitro testing are discussed further in Chapter 3. 

1.5.2.2. In vivo testing 

Unlike QSAR models and in vitro screening, in vivo studies use intact organisms with 

metabolic function, normal architecture, normal cell-cell and tissue-tissue interactions (Cote 

et al., 2016). In vivo assays therefore take into account the pharmacokinetics of the 

compounds (uptake, transport, metabolism, differences in binding efficiencies) and thus are 

measuring final health effects. In vivo assays though are less suitable for HTP screening. 

Hence for comprehensive characterisation of complex environmental pollution, a 

combination of analytical chemistry, in vitro and in vivo assessment should be applied. 

The gold standard in vivo assays for identifying oestrogenic or androgenic compounds were 

initially developed in mammal models. The uterotrophic assay (Ankley and Gray, 2013) is an 

in vivo assay that utilises rats to detect oestrogenic chemicals. For this assay, immature or 
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ovariectomised adult female rats are treated with test chemicals for three consecutive days. 

After exposure, the uterus is weighed, and increases are indicative of chemicals acting as 

ER agonists (OECD, 2007).  

The OECD Hershberger in vivo androgenic screen relies on castration removing 

endogenous androgen in prepubertal male rats, so that exogenous androgens are needed 

for the target tissues to grow and gain weight. This assay has several advantages; the 

tissues are the natural targets for androgens, the tissue growth response is relatively rapid, 

and the tissue weights are quantitative (Owens et al., 2006). This assay can also be used to 

detect AR antagonists. Another rat assay, the male pubertal system, will more effectively 

detect other AR antagonists in the intact developing rat (e.g. those affecting 

steroidogenesis), and is important for confirming observations made in the Hershberger 

assay (Ankley and Gray, 2013). 

Questions remain as to whether the mechanistic information from mammalian studies can be 

used to predict toxicant effects in fish and wildlife (Wells and Van Der Kraak, 2000).  

Sex determination in teleosts can be disturbed or even functionally reversed by the external 

application of hormones, and this forms the basis of a number of fish assays. For assessing 

aquatic contaminants, fish are ideal, either collected in the field or exposed in laboratories. 

Small fish model species (zebrafish, FHM, medaka and 3-spined stickleback) are regularly 

used for biomonitoring, due to their short life-cycles allowing for assessment of reproductive 

performance, which is one of the most important endpoints for long-term effects, with 

implications for population development (Scholz and Mayer, 2008). 

Small-bodied freshwater fish are commonly used in regulatory testing for EDCs but most 

lack a sensitive and quantifiable androgen specific biomarker (Muldoon and Hogan, 2016). 

The FHM is extensively used both for regulatory testing and research for the assessment of 

chemicals for oestrogenic and androgenic activity. Several endpoints are responsive to 

oestrogens (VTG, sex-steroid production, decreased nuptial tubercle counts in males, 

delayed maturation and decreased fecundity and fertility) and others are responsive to 

androgens (SSCs – nuptial tubercle growth, alterations in size of the dorsal fat pad, 

alterations in shape, colouration and breeding behaviours). These SSCs are often not 

sensitive to low concentrations of androgenic compounds and are scored using a subjective 

scale and thus may be subject to bias. SSCs can also be affected by the hierarchical status 

of the fish, making it difficult to attribute a change in appearance to exposure to an EDC. 

Measurement of FHM SSCs in response to androgens and anti-androgens can therefore be 

ambiguous (Collette et al., 2016). 
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One of the best-documented physiological responses under tight androgen control is 

‘spiggin’ production in sticklebacks (Sebillot et al., 2014). The kidney of the male stickleback 

hypertrophies during the breeding season, when the secondary proximal epithelial cells 

synthesise a glue glycoprotein, spiggin (the Swedish name for the three-spined stickleback 

being spigg). The spiggin is secreted into the urinary bladder and is then used to stick plant 

material together to form a nest (Borg, 1994). Spiggin levels are almost undetectable in 

female stickleback fish under natural conditions, but androgen-dependent spiggin can also 

be induced in the kidneys of female stickleback in response to exogenous androgens, where 

it can be determined by measuring the kidney epithelial height (KEH) or by using an 

enzyme-linked immunosorbent assay (ELISA; Katsiadaki et al., 2002). Since the detection, 

characterisation and cloning of spiggin, this appropriate and quantifiable biomarker can now 

be used for the screening of androgens in sticklebacks (Scholz and Mayer, 2008). In the 

stickleback a clear and quantifiable androgenic response can be measured at 100ng/L 

methyltestosterone (MT; Muldoon and Hogan, 2016). The stickleback is more sensitive to 

androgens than the FHM (tubercle formation in females occurs at a concentration of 1 µg/L 

or greater; Pawlowski et al., 2004), and less sensitive than the Japanese medaka (formation 

of papillary processes in females occurred at 22.5 ng/L of MT; Kang et al., 2008). The 

advantage of using stickleback is that it is possible to simultaneously assess androgen and 

oestrogen exposure in a single fish using fully quantitative endpoints (Muldoon and Hogan, 

2016). However, due to the large variability and high levels of spiggin in males, for the anti-

androgen screen female co-exposure with androgens has been preferred. Spiggin as a 

biomarker is only applicable to sticklebacks, but sticklebacks are not as widely used in 

toxicology as, for example, FHM or medaka. Therefore, fish assays that are sensitive to 

androgenic/anti-androgenic chemicals and not prone to subjectivity (such as current SSCs) 

need to be developed. In terms of oestrogen responsiveness, the FHM, medaka and 

zebrafish may be more suitable species as test methods are better established. These 

species could therefore hold promise if robust androgenic/anti-androgenic biomarkers or 

endpoints could be developed. This topic will be developed further in Chapter 5 of this 

thesis.  

 

1.6. My aims 

The aim of my thesis was three-fold: 

To determine the extent of endocrine disruption in fish exposed to a WwTW effluent before 

and after the addition of an advanced water treatment process, Granulated Activated Carbon 

(GAC), was implemented to investigate the technology’s ability to reduce EDCs being 
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released into the environment. Both laboratory and field-based assessments of the same 

effluent were conducted to investigate the impacts of the traditional and advanced treatment 

processes on well characterised markers of endocrine disruption in fish namely, occurrence 

of intersex phenotypes (both eggs and sperm in the gonad), VTG induction in male fish, and 

disruption to reproductive output and SSCs.      

To examine over 100 chemicals found in WwTW effluents for (anti-)androgenic activity in an 

in vitro yeast test system and determine the potencies of these chemicals. 

To search for male-specific molecular markers in a sexually dimorphic fish species, in order 

to identify possible biomarkers which could provide promising additional endpoints for 

detecting (anti-)androgenic activity in fish in vivo regulatory assays. 

 

1.7. My research questions: 

Question 1: Does the addition of an advanced treatment process to a full-scale 

wastewater treatment plant lead to a reduction in endocrine disruption in fish? 

Whilst investigating Question 1 (described in Chapter 2), further questions arose around 

whether the endocrine effects seen in the effluent exposed fish were driven purely by well 

characterised oestrogenic chemicals or if they were also caused by less well identified anti-

androgenic compounds (raised in Question 2, described in Chapters 3 and 4) and if it 

would be possible to identify a novel specific biomarker of anti-androgenic exposure in the 

FHM, a well characterised and commonly used fish species in OECD regulatory test 

guidelines (raised in Question 4, investigated in Chapter 5).  

Prior to my thesis, an effect directed analysis (EDA) approach was used to tentatively 

identify chemicals present in environmental samples as having (anti-)androgenic activity 

using an in vitro yeast-based assay. Following on from this work, I then asked the question - 

Question 2: Which individual chemicals from wastewater treatment work effluents 

have (anti-)androgenic activity and how potent are these chemicals? 

Whilst testing these chemicals for (anti-)androgenic activity, several issues were 

encountered that affected data interpretation which could lead to the mislabelling of certain 

chemicals as endocrine disruptors. Therefore, to refine these results, two in vitro assays for 

the determination of (anti-)androgenic activity of environmental chemicals were then 

compared, and the question asked was – 
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Question 3: Do both in vitro assays for (anti-)androgenic activity produce the same 

results and if not, which is the most reliable, i.e. least likely to produce false positive 

results? 

In stickleback, a sexually dimorphic fish species, males secrete a glue-protein, known as 

spiggin, which is used to build a nest in preparation for female egg laying. Once the eggs are 

laid the male then cares for the eggs until shortly after they hatch. Spiggin is known to be 

produced under the control of androgens in males. The presence of spiggin in female 

sticklebacks indicates exposure to environmental androgens, and a reduction in spiggin in 

male fish indicates exposure to environmental anti-androgens. Here I ask the question – 

Question 4: Do FHMs, another sexually dimorphic fish species exhibiting paternal 

parental care, possess a similar spiggin-like protein that could be used as a sensitive 

biomarker of (anti-)androgen exposure, to provide an additional endocrine endpoint to 

commonly used OECD regulatory test guidelines?   
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2. Investigating the efficacy of an advanced wastewater treatment process, 

granular activated carbon (GAC), at removing endocrine-disrupting activity; 

laboratory and field-based studies of standard and GAC treated wastewater 

effluents  

2.1. Introduction 

2.1.1. Brief history of oestrogenic endocrine disruption in wild fish 

Whilst in certain families of fish hermaphroditism or sex reversal are the normal mode of 

reproduction, the vast majority of species are gonochoristic, in which distinct males and 

females are independent and stable (Nolan et al., 2001). The gonad is a unique organ due 

to its bipotential nature; either testis or ovary can develop from a single primordium (Brennan 

and Capel, 2004). In teleosts, endogenous oestrogens act as the natural inducer of ovarian 

differentiation, while androgen is not synthesised in the gonad during the critical period of 

sex determination (Nakamura et al., 1998). Consequently, sex differentiation and meiosis 

initiate earlier in female teleosts than in male teleosts. Under experimental or aquaculture 

conditions, the phenotypic sex of gonochoristic fish species can be affected by exposure to 

sex steroids, and, in general, exogenous exposure to oestrogens will produce a female 

phenotype whereas exposure to androgens will produce a male phenotype (Ankley et al., 

1998).  

A wide variety of chemicals discharged into the aquatic environment are thought to disrupt 

endocrine function in fish, leading to reproductive disorders and abnormalities (reviewed in 

Sumpter, 2005). Roach (Rutilus rutilus), of the family Cyprinidae, is a gonochoristic fish 

species native to the UK. The occurrence of oocytes in testicular tissue in gonochoristic fish 

(intersex) is thought to be rare (Nolan et al., 2001). However, when Jobling et al. (1998) 

carried out a survey of roach collected from eight UK lowland rivers, the incidence of 

intersexuality was much higher in those rivers that received sewage effluents (proportion of 

intersex males at downstream sites ranged from 16-100%) than at the control sites 

(proportion of intersex males ranged from 4-18.1%). An association was also confirmed 

between the widespread incidence of intersexuality (gonads containing male and female 

tissue and/or female-like reproductive ducts) in roach and the degree of exposure to WwTW 

effluents (Jobling et al., 1998). The severity of intersex in roach was observed to range from 

single primary oocytes scattered throughout the testicular tissue, to continuous areas of 

ovarian tissue set apart from the testicular tissue (Jobling et al., 1998).  

Jobling et al. (1998) found that the number of male roach with normal testes was inversely 

proportional to the number of intersex fish, indicating that this trend was due to the 

feminisation of genetically male fish rather than the masculinisation of genetically female 
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fish. Exposure to WwTW effluents has also been shown to induce the synthesis of VTG 

(Harries et al., 1997; Purdom et al., 1994) in male fish and to also inhibit testicular growth 

(Harries et al., 1997). In addition, exposure of juvenile roach to WwTWs effluent has been 

shown to induce a dose-dependent formation of female-like reproductive ducts (oviducts) in 

otherwise ‘male’ looking fish (Rodgers-Gray et al., 2001). More recent work, looking to see if 

male intersex impacts reproduction, found a significant negative relationship between the 

severity of intersex and reproductive success; the intersex condition reduced the average 

contribution to the offspring from 19% for non-intersex fish to 4.5% for severely feminised 

fish (>100 oocytes within the testicular tissue; Harris et al., 2011). 

Intersexuality in fish associated with WwTW effluents is not restricted to roach in the UK, and 

has also been reported in other fish species and a number of other countries (for example, 

intersex gudgeon in the UK (van Aerle et al., 2001); intersex roach in France (Geraudie et 

al., 2017); intersex roach in Denmark (Bjerregaard et al., 2006); intersex rainbow darter in 

Canada (Bahamonde et al., 2015); intersex smallmouth bass in the USA (Blazer et al., 

2014)). 

To identify the chemical(s) in the effluent responsible for the feminising effects seen in male 

roach, Desbrow et al. (1998) adopted an EDA approach, using a combination of biotesting, 

fractionation procedures and chemical analysis. Following the EDA approach, the 

oestrogenic activity of WwTW effluent was attributed to natural steroid oestrogens; E2, E1, 

the synthetic birth-control pharmaceutical, EE2 (predominantly excreted by women), and 

alkylphenols from domestic and industrial sewage effluent, and these chemicals were 

considered to be the primary agents responsible for the feminisation of fish downstream of 

the WwTW (Desbrow et al., 1998; Harries et al., 1997). 

2.1.2. (Anti-)androgens present in the environment 

In addition to work looking at oestrogens in the environment, now chemicals possessing 

other mechanisms of endocrine modulation are being examined. There are a growing 

number of anthropogenic chemicals being identified in influents and rivers, and there is 

increasing evidence showing that discharges are having adverse environmental effects 

(Prasse et al., 2015). In addition to chemicals in WwTW effluent acting as agonists of the 

ER, the feminisation of male fish is also thought to be due to anti-androgens, and statistical 

modelling shows a strong correlation between fish intersex and the predicted exposure to 

the combination of oestrogens and anti-androgens in effluent (Jobling et al., 2009). However, 

Johnson et al. (2007b) saw no clear relationship between the presence of oestrogenic 

activity and anti-androgenic activity in individual effluent samples and suggested that 

different chemical(s) may be causing the oestrogenic and anti-androgenic effects.  
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In fish, androgens are important as they regulate male sexual differentiation and maturation 

(Borg, 1994). Most environmental (anti-)androgenic contaminants can bind with the AR to 

either mimic or block the response, thereby acting as either androgens or anti-androgens 

(Wong et al., 1995). WwTWs effluents are often found with in vitro anti-androgenic activity at 

concentrations known to cause effects on fish (for example, Fang et al., 2012; Johnson et 

al., 2007b). Laboratory studies have shown that anti-androgenic chemicals can cause 

demasculinisation of male fish, for example, the fungicide vinclozolin and the clinical anti-

androgen cyproterone acetate induced intersex and inhibited spermatogenesis in medaka 

(Kiparissis et al., 2003) and reduced SSCs in FHM (Filby et al., 2007). In addition, in 

laboratory studies using stickleback kidney cell primary culture, spiggin production (a 

biomarker of androgen exposure) could be inhibited with anti-androgens (Jolly et al., 2009).  

2.1.3. Measurement of endocrine disrupting activity in fish 

It is not possible to identify every chemical present in an effluent as to do so analytically 

would be extremely time consuming and costly. Especially as thousands of chemicals are 

discharged into our rivers (Tyler et al., 2007) and these are transformed in WwTWs and 

rivers into additional compounds (Escher et al., 2014). A wide range of EDCs have been 

shown to bioconcentrate in fish bile (to concentrations many thousand times more than 

concentrations in the environment; Rostkowski et al., 2011), prior to excretion into the 

intestines as the parent compound or as conjugates (Hill et al., 2010). As with effluent, it 

would be too time-consuming and costly to measure every chemical present by analytical 

chemistry. However, the total activity present in fish bile when measured using a bioassay is 

a much more practical approach and this activity gives a good indication of the types of 

contaminants that would have been present in the river and that have bioconcentrated in the 

fish bile over a period. 

2.1.4. Wastewater effluents are a major source of aquatic pollution  

2.1.4.1. Regulations relating to wastewater and aquatic pollution 

The continued occurrence of contaminants in rivers downstream of WwTWs has led to 

discussion regarding the need for improved wastewater treatment processes. In 1991, the 

EU Urban Wastewater Treatment Directive (WwTD) 91/271/EEC (European Commission, 

1991) was adopted to protect the environment from adverse effects of wastewater 

discharges from cities and certain industrial sectors. This directive prescribed secondary 

treatment (e.g. biological treatment with a secondary settlement) for urban areas with a 

population equivalent of greater than 2,000 and more advanced treatment in places with 

population equivalents of greater than 10,000 in sensitive areas (e.g. shellfish and 

freshwater fisheries or where water is used for the abstraction of drinking water) or greater 
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than 15,000 in areas where the effluent is not discharged into sensitive areas. This EU 

Urban WwTD established parameters that discharges from urban WwTWs must satisfy; 

organic content (biological oxygen demand and chemical oxygen demand) and total 

suspended solids, and for sensitive areas, parameters for total phosphorus and nitrogen 

must also be satisfied. This directive, however, does not provide acceptable parameters for 

EDCs. 

More recently, the EU Water Framework Directive (WFD) (European Commission, 2000) set 

out ‘Strategies against pollution of water’, that assesses the ecological and chemical status 

of surface waters for biological, hydromorphological, physio-chemical and chemical quality. 

The WFD outlines a list of priority substances and these substances were selected from 

amongst those presenting a significant risk to or via the aquatic environment. The original 

list, agreed in 2001, contained 33 priority substances (Decision 2455/2001) and in 2008, the 

Environmental Quality Standards (EQSs) for these substances were established 

(Environmental Quality Standards Directive (EQSD) 2008/105/EC, also known as the Priority 

Substances Directive). This list was further reviewed in 2012, and the amendment (Directive 

2013/39/EU) now lists 45 priority substances and 21 of these are thought to pose the 

greatest threat and are labelled ‘priority hazardous substances’. The Priority Substances 

Directive requires the progressive reduction and phasing out of these ‘priority substances’. 

These include di(2-ethylhexyl) phthalate (DEHP), nonylphenols, polycyclic aromatic 

hydrocarbons (PAHs), and tributyltins. In 2015, the most ubiquitous and potent steroid 

oestrogens, namely the natural steroid oestrogens E1 and E2, and the synthetic steroid 

oestrogen EE2 were added to the EU WFD chemical ‘1st watch list’ (Carvalho et al., 2015). 

Standard biological WwTW processes (e.g. trickling filters, activated sludge) do not 

completely remove steroid oestrogens entering the WwTW, although they can frequently 

reduce the concentrations down to low ng/L range in the effluent (Bain et al., 2014; Hicks et 

al., 2017; Kanda and Churchley, 2008; Volker et al., 2016). However, fish are extremely 

sensitive to these steroids (Caldwell et al., 2012), resulting in predicted no effect 

concentrations (PNECs) as low as 0.035 ng/L for EE2, 0.4 ng/L for E2 and 3.6 ng/L for E1 

(Loos et al., 2018). Therefore, in receiving water with little dilution, surface water 

concentrations may be close to, or exceed, these PNECs (Johnson et al., 2013). Better 

analytical techniques will also be required to determine if regulations regarding the 

concentrations permitted in final effluents entering rivers are being met. 

Natural hormones (T, E1, E2) are EDCs excreted by humans and other animals, and are 

therefore abundant in effluents. Whilst it would be possible to try to find safer alternatives to 

replace some man-made chemicals (e.g. alternatives that are more readily degraded), it 

would harder if not impossible to reduce the amount of natural steroid and pharmaceuticals 
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entering WwTWs. Therefore, other measures are required to reduce their release into the 

environment, and one option would be to improve effluent treatment technology at the 

WwTW. Another option would to be to reduce the number of new chemicals produced, 

unless these are specifically produced as safer alternatives.  

2.1.4.2. Traditional wastewater treatment methods  

Conventional WwTWs rely on physical, chemical, and biological methods that remove solids, 

pathogens, organic matter, and nutrients. For removal of EDCs this process would be by 

biodegradation, sorption to sludge, chemical transformation and volatisation (Kanda and 

Churchley, 2008). Depending on the chemical structure, biodegradation and/or sorption can 

lead to differing removal rates during the wastewater treatment process (Prasse et al., 

2015).  

Figure 8 illustrates different types of WwTWs processes, and the type of chemicals that are 

likely to be removed at the different treatment stages. 

The first step in the wastewater treatment process, the preliminary treatment, involves the 

removal of grit and gravel by slowing flows down to enable settlement. After this de-gritting 

step, the effluent is screened to remove large solids. Primary treatment then involves the 

passive and/or chemically-enhanced process of settlement of suspended solids not removed 

by preliminary treatment. Removal of chemicals from effluent during primary treatment relies 

on the hydrophobicity of the chemicals, the suspended solids content and their subsequent 

settling, and hydrophobic compounds are likely to bind to particles and settle out (Koh et al., 

2008).  

Secondary treatment is a biological process whereby dissolved organic matter is removed 

typically by either trickling filters or activated sludge plants. The major process difference is 

that in trickling filters the biomass is steady (sewage trickled over coarse aggregate coated 

with bacteria), and in activated sludge plants the biomass is in suspension (aerated agitated 

liquor). In the England and Wales, most WwTWs use trickling filters for secondary treatment 

(Johnson et al., 2007a), whereas the activated sludge process is the most widely used 

wastewater treatment system in the world (Liu et al., 2009b). Typically, the retention time of 

most European activated sludge systems is between 4 and 14 hours (Johnson and Sumpter, 

2001) compared with a trickling filter which might have a retention time of less than one 

hour. These longer retention times in the activated sludge system will give longer for 

biodegradation to take place and hence removal rates for EDCs will be better (Zeng et al., 

2013). For example, Korner et al. (2000) found 90% reduction in oestrogenic activity of 

effluent following activated sludge plant treatment and concluded that this was the result of 
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Figure 8. Schematic of (A) a conventional wastewater treatment works, and (B) end-of-

pipeline additional (tertiary) and advanced treatments necessary to improve effluent to meet 

the Environmental Quality Standards of the EU Urban Wastewater Treatment Directive and 

the Water Framework Directive. The removal process describes the types of compounds 

that will be removed at the different treatment stages. 
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biodegradation because only 2.8% of the activity had adsorbed to the sludge.  

Tertiary treatments such as sand filtration and reed beds increase the surface area and the 

retention time of the effluent and allow bacteria to work for longer, thus ‘polishing’ the 

effluent further. Baynes et al. (2012) found roach exposed to activated sludge process 

treated effluent to have evidence of significant feminisation compared with the roach 

exposed to river water, but the effect was much reduced with the addition of sand filtration 

following the activated sludge process. 

There are two approaches for removing EDCs from tertiary treated wastewater; optimising 

existing treatment technologies or upgrading existing WwTW with new end-of-pipe 

technologies (Koh et al., 2008), and here we consider end-of-pipe technologies for 

upgrading existing works with an advanced treatment process. Unlike the tertiary treatments, 

advanced treatments tend to rely on physical or chemical treatments. 

2.1.4.3. Advanced wastewater treatment methods 

Advanced treatments include membranes, activated carbon filtration, the application of 

ozone, and advanced oxidative processes. Removal of EDCs by physical means (e.g. 

membranes and activated carbon filtration) does not lead to metabolites or by-products, 

unlike biological or oxidative processes, and removal efficiencies are therefore easier to 

evaluate (Liu et al., 2009b). 

Membrane bioreactors combine conventional activated sludge treatment with micro/ultra-

membrane separation and can produce higher quality effluent compared to conventional 

activated sludge treatment (Li et al., 2015). Trinh et al. (2012) examined the efficiency of a 

membrane bioreactor at removing trace organic chemical contaminants and found 97-100% 

removal rates for steroid hormones. However, pharmaceuticals such as carbamazepine, 

diazepam, diclofenac, fluoxetine, and trimethoprim were less effectively removed (24-47%), 

and this was believed to be because they were not readily biodegraded or adsorbed to 

particles. Similarly, Snyder et al. (2007) tested a membrane bioreactor for its efficiency to 

remove 18 endocrine disruptors and pharmaceuticals and found that some compounds were 

well removed whilst others were not. In fact, some compounds appeared to increase in 

concentration in the membrane bioreactor. Snyder et al. (2007) further tested the membrane 

bioreactor followed by reverse osmosis (RO) and found the RO removed nearly all the 

compounds tested to below reporting levels. These membrane bioreactors have a lower 

foot-print than conventional activated sludge but have larger capital costs (Karim and Mark, 

2017). 
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Activated carbon is used as either GAC, as a packed bed filter, or as a powder added 

directly to the wastewater and subsequently filtered out. The powder form may not be 

retained by downstream sand filtration, and may therefore enter the environment (Prasse et 

al., 2015). Additionally, the powder becomes highly contaminated with time and disposal of 

this waste then also becomes an issue. Granular activated carbon is therefore more widely 

used and can remove a large variety of organic contaminants (Grover et al., 2011b; Snyder 

et al., 2007; Ternes et al., 2002). This GAC removal process is based solely on sorption with 

no formation of potentially reactive transformation products. However, Snyder et al. (2007) 

did find that water soluble compounds can break through the GAC much faster than tightly 

bound hydrophobic compounds. Similarly, Baynes et al. (2012) found good removal of 

steroid oestrogens following a 6-month exposure period of roach to GAC effluent as 

indicated by total removal of intersex induction in fish, but did find elevated EE2 

concentrations in some of the final samples, suggesting GAC saturation and subsequent 

breakthrough of the chemical into the effluent.  

Ozone has been shown to be an effective means of oxidising trace organic contaminants 

while also providing effective disinfection (Snyder et al., 2006). Giebner et al. (2018) used 

the YES to check for removal efficiency of oestrogenic activity and found 18.9% receptor 

activation after secondary treatment and this reduced to 3.2% with ozone treatment and 

2.9% with GAC treatment. Giebner et al. also measured androgenic activity using the yeast 

androgen screen (YAS) and found that there was almost total removal of activity following 

secondary treatment; receptor activation was 2.2%. Removal rates for anti-androgenic 

activity were not described as no activity was seen in primary treated samples. 

Ozonation can remove >90% of oestrogenic activity and 78% of anti-androgenic activity 

(Stalter et al., 2011), however, the resultant oxidation products can be more toxic to biota. 

For example, Rosal et al. (2009) found that the ozonation of clofibric acid produced oxidation 

products that were more toxic to Daphnia magna due to the formation of open-ring by-

products. Furthermore, Prasse et al. (2012) found the oxidation product of the antiviral drug 

acyclovir to be toxic to the bacteria Vibrio fischeri, and following 14 days of activated sludge 

treatment only 40% of this toxic product was removed. Magdeburg et al. (2012) tested 

ozonated effluent on five different invertebrate species and the results also indicated the 

formation of adverse oxidation products with a tendency towards increased toxicity in three 

of the species. The toxic effects of ozonation products have, however, been shown to be 

removed or detoxified by downstream sand filtration; based on studies using invertebrate 

species (Magdeburg et al., 2012) and rainbow trout (Magdeburg et al., 2014) as 

bioindicators. Similarly, Giebner et al. (2018) found that ozone-induced mutagenicity seen in 

the Ames test could be removed by a post-ozonation filtration step.  
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Similar to ozonation, advanced oxidation processes are based on the in situ generation of a 

powerful oxidising agent such as hydroxy-radicals. The generation of hydroxy-radicals by 

means of various chemical, photochemical, sonochemical, or electrochemical reactions 

leads to effective removal of chemicals of environmental concern, but also leads to the 

formation of oxidation products that may be more toxic (reviewed by Oturan and Aaron, 

2014).  

2.1.5. UK Endocrine Disrupting Chemicals National Demonstration Programme: 

assessment of the performance of WwTW in removing oestrogenic substances 

The Environment Agency, in collaboration with the government and the UK water industry, 

developed an Endocrine Disruption Demonstration Programme (EDDP) to evaluate different 

wastewater treatment plant processes for the removal of endocrine disruption. The 

programme considered the current wastewater treatment technologies for removing steroids 

from effluent and conducted both pilot-scale (GAC, Cl2 and ozone) and full-scale 

demonstration trials of promising advanced treatment technologies (Butwell et al., 2010; 

Gross-Sorokin et al., 2006; UKWIR, 2009). One of the test sites chosen for demonstrating a 

full-scale advanced wastewater treatment was Swindon WwTW (Rodbourne, Wiltshire, UK) 

that serves a population of approximately 180,000. The River Ray is in the non-tidal area of 

the upper River Thames catchment and the main discharge into the river comes from 

Swindon WwTW.  Due to the small size of the river, there is limited dilution of the effluent on 

entering the River Ray and in mid-summer approximately 80% of the flow is effluent at the 

point of discharge (Balaam et al., 2010). Furthermore, even 11 km downstream of the point 

of discharge just above the confluence of the River Ray with the River Thames, 

approximately 65% of the flow is effluent. 

Prior to the upgrade as part of the Demonstration Program, the Swindon WwTW consisted of 

primary treatment; screening followed by settlement, and secondary treatment; activated 

sludge processing and final settlement.  As part of this demonstration program, the Swindon 

WwTW was chosen for investigation into the efficacy of an advanced treatment step; the 

installation of a full-scale GAC plant, to extend the existing conventional treatment line, was 

implemented to investigate the technology’s ability to reduce concentrations of EDCs being 

released into the environment. In total, the plant used 1,900 m3 of GAC (Norit, Glasgow, 

UK), and had the following properties: 0.50 g/ml apparent density, 1.0 mm effective size, 920 

mg/g iodine number (Grover et al., 2011b). 

2.1.6. Endocrine sensitive endpoints and biomarkers of endocrine disruption in fish 
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Vitellogenin is present in high concentrations in the plasma of sexually mature female fish 

(Sumpter and Jobling, 1995). Vitellogenin is produced in the liver in response to oestrogens 

from the ovaries. Under normal circumstances, VTG concentrations in male fish are either 

undetectable or low (about 10,000-100,000 times lower than typical female concentrations; 

Ankley and Johnson, 2004). However, when male fish are exposed to oestrogenic 

substances, they are capable of producing a large amount of VTG, and blood concentrations 

can reach values similar to those in females. Thus, VTG induction in male fish is commonly 

used as a specific biomarker for the detection of oestrogenic endocrine disruptors in the 

environment, and also in OECD tests (OECD, 2018a; b) of suspected oestrogenic chemicals 

(Jobling et al., 1996). 

The simultaneous occurrence of male and female reproductive stages in the same gonad at 

the same time in teleost fish is atypical (Bahamonde et al., 2013) and is referred to as 

‘intersex’, and the presence of oocytes in testicular tissue is termed ‘ovotestes’. Sexual 

differentiation involves gonadogenesis (development of gonads and ducts) and 

gametogenesis (development of germ cells). Fish (and other animals) are most susceptible 

to perturbation during early life (Gimeno et al., 1996). Both gametogenesis and 

gonadogenesis can be altered by exposure to sex steroids and sex steroid mimics during 

development (Jobling et al., 1998), and the presence of ovotestes and/or an ovarian duct 

(cavity) in male fish are used as indicators of exposure to EDCs. It is not possible to alter 

gonadogenesis in adulthood, and the presence of an ovarian cavity in a male fish is an 

indication of exposure during development rather than adulthood (Jobling et al., 1998).  

Severely intersex fish (those with many oocytes in the testes) have been reported to have 

reduced fertility and fecundity (Fuzzen et al., 2015; Harris et al., 2011; Jobling et al., 2002b; 

Thorpe et al., 2009). Egg counts give an indication of fecundity, important as changes in 

fecundity could also lead to population level effects. This is especially significant for short 

lived species, as was observed by Kidd et al. (2007) when a whole lake exposure of FHM to 

EE2 impacted on gonadal development (intersex in males and altered oogenesis in females) 

and resulted in near extinction of this species from the lake. 

Secondary sexual characteristics are features that appear at sexual maturity and distinguish 

the two sexes of a species. The development of SSCs, including external genitalia, depends 

on whether the gonad differentiates into a testis or ovary, and the expression of the male 

SSCs in fish is under the control of the AR (Borg, 1994). Several SSCs are responsive to 

androgens, and monitoring for changes in SSCs is the basis of some fish tests for assessing 

chemicals for (anti-)androgenic activity; examples are gonapodial development in mosquito 
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fish (Howell and Denton, 1989), papillary process development in medaka (Seki et al., 

2006), and tubercle number and size of fatpad in FHM (Ankley et al., 2001).  

For my research outlined in this chapter, I have investigated endocrine disruption in two test 

species, namely the UK native roach (Rutilus rutilus), which is frequently found across 

Europe in effluent impacted rivers, and the FHM (Pimephales promelas), a North American 

species routinely used in regulatory testing for investigating possible EDCs. The following 

sections provide more details about these two species, their life histories, and specific 

endocrine sensitive endpoints and biomarkers.    

2.1.7. Test species 

Roach 

The roach is a slow growing and long-lived freshwater species and takes a relatively long 

time to sexual maturity (2–3 years for males and 3-4 years for females; Epler et al., 2005). 

For both males and females, the sexual maturation rate is also highly dependent on growth 

(Hamilton et al., 2015).  In addition to fish size, environmental conditions can influence the 

time roach take to reach sexual maturity (Paull et al., 2008). In most cyprinid species, 

including roach, the predominant cue for the annual rhythm of reproduction is a combination 

of annual photoperiod and/or temperature, and also social interactions (Jalabert, 2005). 

Roach typically spawn April-June, stimulated by an increase in day length and an increase in 

water temperature to above 12 oC (Paull et al., 2008).  

As highlighted above (Section 2.1.1), in the UK the majority of investigations of endocrine 

disruption in wild fish have focused on roach, involving assessments for intersexuality and 

VTG induction (for example, Baynes et al., 2012; Hamilton et al., 2015; Jobling et al., 1998; 

Tyler et al., 2007). The roach has proved a useful model for examining the effects of WwTW 

effluent on wild fish living in impacted rivers. However, roach are a relatively large (15-25 

cm; Geraudie et al., 2010) and slow maturing species that breeds only once a year, and the 

species lacks sexually dimorphic traits. It therefore has limited utility as a laboratory test 

species.   

Fathead minnow 

The FHM is a member of the Cyprinidae family with a broad distribution across North 

America. FHM males are larger than the female (3-5 g compared with 2-3 g, respectively) 

and when reproductively active, the male exhibits several SSCs (e.g. nuptial tubercles and 

dorsal fatpad; Smith and Murphy, 1974). Under optimal conditions the FHM reach maturity 

within 4-5 months post hatch, and depending on the water temperature and photoperiod, 

can spawn continuously for several months.  
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The FHM is extensively used both for regulatory testing and research, especially in North 

America (Ankley and Villeneuve, 2006), and along with the zebrafish is among the most 

widely used fish species for testing endocrine disrupting effects (Holbech et al., 2012). For 

example, the FHM is the recommended fish species in the OECD Fish Short Term 

Reproduction Assay (OECD, 2018b) and one of three fish species that can be used in the 

OECD 21-Day Fish Test; A Short-Term Screening for Oestrogenic and Androgenic Activity, 

and Aromatase Inhibition (OECD, 2018a). 

Several endpoints are responsive to oestrogens (VTG, sex-steroid production, decreased 

nuptial tubercles counts in males, delayed maturation and decreased fecundity and fertility) 

and responsive to (anti-)androgens (SSCs – nuptial tubercle growth, alterations in size of the 

dorsal fatpad, alterations in body shape, colouration and breeding behaviours). Some of 

these are short-term transient effects that the FHM is able to recover from once the 

oestrogen is no longer present (e.g. VTG induction).  

2.1.8. The aim of Chapter 2 

The aim of this chapter was to determine the extent of endocrine disruption in fish exposed 

to a WwTWs effluent before and after the addition of an advanced water treatment process; 

GAC. Two different approaches were used to investigate the impacts of the conventional 

and advanced treatment processes on well characterised markers of endocrine disruption in 

fish, namely the occurrence of intersexuality (oocytes in testicular tissue and/or feminised 

sperm ducts) in male fish, VTG induction in male fish, and disruption to reproductive output 

and SSCs. The first approach used short-term laboratory studies using the OECD test 

species, FHM, where the fish were directly exposed to effluent under controlled laboratory 

conditions. The second approach was chosen due to a wealth of historical data being 

available for the roach species, including roach from the River Ray, where the wild fish are 

continuously exposed to effluent in the field under environmental conditions. By using both 

types of studies, lab-based for short-term effects and field-based for realistic long-term 

effects, I was able to investigate whether the GAC was actually improving the quality of 

effluent enough to improve the reproductive health of the fish living in the river. 

For the laboratory studies using FHM, flow-through exposure studies were carried out with 

final effluent from the WwTW, both pre- and post-GAC, to determine the efficacy of GAC at 

removing endocrine-disrupting activity. At Brunel University London, the effluent was tested 

using two well documented and sensitive in vivo tests of endocrine disruption in fish using 

the FHM; (1) the VTG Test to measure the induction of VTG in male fish (Thorpe et al., 

2008), and (2) the Pair Breeding Test to measure the development of SSCs (tubercle 
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number and Fatpad Index (FPI)) and the cumulative egg production (an assessment of 

impacts on reproductive success) (Thorpe et al., 2009).  

For the assessment of the GAC addition on wild fish living in the river, wild roach were 

collected from the River Ray to see if field-based wild fish analysis supported the results 

found in our lab-based studies. In 2013 roach were collected downstream of the Swindon 

WwTW 5 years after the upgrade of the works with the GAC, and the results were compared 

with historical data from roach sampled from the River Ray in 2005 (prior to GAC addition). 

The effects of the advanced GAC treatment on the fish plasma VTG concentrations and the 

fish gonad histopathology were examined and compared with the 2005 dataset. In both 2005 

and 2013, bile samples were also collected from the fish for the measurement of oestrogenic 

activity and anti-androgenic activity using yeast-based assays; the YES and yeast anti-

androgen screen (AYAS), to look for changes in the amount of activity present. 

 

2.2. Materials and methods 

2.2.1. Ethics statement 

All fish studies that contributed data to this thesis were carried out in strict accordance with 

the recommendations of the United Kingdom Animals (Scientific Procedures) Act 1986. Fish 

were deeply anesthetised (complete loss of response to manual stimulation) prior to blood 

collection and were sacrificed either by destruction of the brain or trans-spinal severance. All 

efforts were made to minimise distress to the animals. 

For the fish studies carried out at Brunel University London, these were done under both 

Project and Personnel Licences granted by the UK Home Office, and in accordance with 

Brunel University London’s ethical policies. 

2.2.2. Laboratory studies - Fathead minnow flow-through exposure studies to WwTW 

effluents 

2.2.2.1. Experimental design 

The Swindon WwTW effluent was tested in two different fish tests both before and after the 

addition of the advanced GAC treatment at the Swindon WwTW (Four experiments in total; 

Experiments 1 and 2, 21-day VTG Tests, and Experiments 3 and 4, Pair-Breeding Tests). 

Tests on the same type of effluent were run simultaneously in two adjacent rooms due to 

space requirements (the standard effluent was tested from 28 May to 18 June 2009 whilst 

the GAC effluent was tested between 16 March to 6 April 2009). The experimental designs 

for the two tests are illustrated in Figure 9 and Appendix Figures A 1 and A 2. 
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For both the VTG Test and the Pair Breeding Test, fish were held in flow-through aquaria 

which contained various dilutions of the effluent under test (standard effluent at 100%, 50% 

and 25% dilution, and GAC at 100% only) together with a positive control (10 ng/L EE2 for 

the VTG Test and 20 ng/L for the Pair Breeding Test) and a ‘clean’ dilution water control 

(control) (see Appendix Figures A 3 and A 4).  

For the VTG Tests (Experiments 1 (standard effluent) and 2 (GAC effluent)) a total of 160 

FHMs were used (Experiment 1; 96 fish and Experiment 2; 64 fish). Two tanks of 8 male fish 

per treatment (n=8 males in each of 2 replicate tanks) were set up and an additional tank of 

16 male fish (in 2 tanks) were set up to determine baseline reproductive physiology. All fish 

were acclimated to the flow-through for 7 days. After 7 days acclimation, the 16 baseline fish 

were sampled (see Section 2.2.2.7). The fish in the treatment tanks were then exposed to 

dilution water (control), 10 ng/L EE2 (+ve control) or effluent (standard effluent at 100%, 

50% and 25%, and GAC effluent at 100%). All experimental fish (80 for standard effluent 

exposure and 48 for GAC effluent exposure) were sampled at the end of the exposure 

period. 

To initiate each Pair Breeding Test (Experiments 3 (standard effluent) and 4 (GAC effluent)), 

pairs of male and female FHMs were placed into eight replicate glass aquaria per treatment; 

total of 16 fish per treatment (Experiment 3; 80 fish and Experiment 4; 48 fish). The fish were 

acclimated to the test conditions for 14 days and the spawning substrates were checked 

daily at 11 am ± 1 hr to confirm spawning activity. At the end of this acclimation, all fish had 

fully acclimated to the test conditions and had spawned at least once. The egg number was 

then determined daily for each pair of fish, over a pre-exposure period of 3 weeks, to provide 

pair-specific data for egg production. Dosing of control, 20 ng/L EE2 or effluent (standard 

effluent at 100%, 50% and 25% and GAC at 100%) was then initiated and the number of 

eggs spawned by each pair of fish determined daily for the 3-week exposure period. All 

experimental fish were sampled at the end of the exposure period. 
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Figure 9. Schematic showing the timescale and endpoints for the fathead minnow exposure studies. (A) the Vitellogenin Test (Experiments 1 

and 2), and (B) the Pair Breeding Test (Experiments 3 and 4). SSCs; Secondary sexual characteristics
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2.2.2.2. Experimental animals 

Fathead minnow used in each experiment were bred from stocks maintained at the aquatic 

facility at Brunel University London, and were kept according to the United Kingdom Animals 

(Scientific Procedures) Act 1986 guidelines. The ages and average weights of the fish at the 

start of the baseline period (VTG Test) and pairing up period (Pair Breeding Test) are shown 

in Table 1. 

 

Table 1. Age and average weight of fathead minnows at the start of the Vitellogenin Test and 

Pair Breeding Test exposures to standard and GAC treated effluent. 

Effluent Vitellogenin Test  Pair Breeding Testing 

Standard 

Experiment 1: 

7 months post hatch  

(average male weight 2.6 g) 

Experiment 3: 

7 months post hatch  

(average male weight 3.1 g and 

female weight 2.5 g) 

GAC 

Experiment 2: 

11 months post hatch  

(average male weight 3.7 g) 

Experiment 4: 

11 months post hatch  

(average male weight 5.3 g and 

female weight 3.0 g). 

 

 

For the VTG Test, only male fish were selected for the exposure study instead of a mixture 

of males and females as previously reported (Thorpe et al., 2008), to minimise the possible 

influence of female fish-derived oestrogenic steroids as a confounding factor in the 

assessment of oestrogenic activity of the effluent. This also reduced the number of fish 

utilised, as female fish were not used for the VTG endpoint assessment.  

Three weeks prior to the onset of each experiment, sexually maturing males (onset of the 

development of the SSCs; nuptial tubercles and a dorsal fatpad) and females (presence of 

an ovipositor) were selected and separated into single sex tanks to prevent spawning 

activity. During this 3-week acclimation period, the fish were held in a recirculation system 

and were acclimated to clean dechlorinated water at 25 ± 1 oC, with a 16 h light: 8 h dark 

photoperiod. The fish were fed adult Gamma irradiated frozen brine shrimp twice daily 

supplemented with Tetramin Tropical Flake food once daily, ad libitum during this period. 
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During pre- and exposure periods, the fish were fed with adult Gamma irradiated frozen 

brine shrimp (VTG Test fish were fed 50mg/g fish and Pair Breeding Test fish were fed 0.25 

g/tank of 2 fish) once daily and were supplemented with Tetramin Tropical Flake food once 

daily. 

2.2.2.3. Water supply and test apparatus 

The supply of water to the flow-through laboratory dosing system was dechlorinated tap 

water (5 and 10 µm carbon-filtered). In all experiments, the tanks were gently aerated at the 

surface, using a glass pipette, to maintain dissolved oxygen concentrations at >70% of the 

air saturation value. 

Water temperatures were monitored daily while pH levels were checked twice weekly. 

Ammonia, nitrite, and nitrate were monitored on a daily basis using test strips (Precision 

Laboratories, Moulton, UK). Dilution water and test chemical flow rates were checked twice 

weekly. During the tests, flow rates (40 ml/min for VTG Tests and 20 ml/min for Pair 

Breeding Tests) to the individual aquaria provided >75% replacement in a 12-hour period. 

(N.B. this flow rate was higher and the feed rate lower than that suggested in the 

Demonstration Programme protocol because in our own pilot studies, lower flow rates and 

higher feed rates as specified in the protocol caused accumulation of uneaten food in the 

aquaria and this led to elevated nitrite and ammonia levels and death of the fish). 

For the VTG Test, 20 L tanks each held 8 male fish. For the Pair Breeding Test, one male 

and one female were housed in 8 L tanks together with a spawning chamber that consisted 

of a PVC half gutter (80 mm wide 110 mm diameter) on top of a glass tray (130 x 110 x 30 

mm (length x width x depth)) containing a 0.5 cm2 stainless steel mesh (Figure 10). This 

system allows collection of eggs, including those which have not adhered to the spawning 

surface. 

 

 

 

Figure 10. The spawning chamber; PVC half guttering inserted on top of a glass tray 

containing a stainless steel mesh. 
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2.2.2.4. Wastewater treatment works effluents 

Batches of the standard effluent were delivered twice weekly (6 batches of effluent in total) 

whilst batches of GAC effluent were delivered once weekly (3 batches in total). All effluent 

batches were delivered using an industrial stainless steel tanker, collected at the WwTW and 

immediately transported to the testing facility. On arrival at Brunel University London 

(between 10.30-11.30 am), the effluent was transferred into a fully enclosed stainless steel 

holding tank and chilled to between 8 and 10 oC. The effluent was pumped via a peristaltic 

pump from the storage tank to the test aquaria via a glass holding tank, where it was first 

heated to 18 oC. Tank heaters were then used to raise the temperature in the test aquaria to 

25 oC. The pH of each batch of effluent was checked on arrival. The pH values ranged from 

7.8 to 8.0 and dissolved oxygen concentrations were above 80%. The effluent storage 

system was fully drained and flushed with water immediately prior to the delivery of each 

batch.  

2.2.2.5. Oestrogen positive controls 

For the oestrogen positive controls, EE2 (98% purity) was purchased from Sigma-Aldrich 

Company Ltd., Gillingham, UK. Solvent-free stock solutions were prepared twice a week by 

adding 1 mL of a concentrated stock solution of EE2 (prepared at 20 mg/L in high-

performance liquid chromatography (HPLC) grade acetone; Fisher Scientific UK Ltd., 

Loughborough, UK) to a 10 L glass vessel. After evaporation of the acetone, 10 L of dilution 

water was added and the solution was stirred overnight on a magnetic stirrer. The solvent-

free stock was then dosed to the glass mixing vessels, where it was mixed with the dilution 

water to provide a nominal test concentration of 10 ng/L (VTG tanks) and 20 ng/L (pair 

breeding tanks). 

2.2.2.6. Measurement of oestrogenic activity and concentrations of steroid oestrogens 

On days 7, 14 and 21, water samples were collected using silanised glassware and 

transferred to amber bottles containing preservative (Standing Committee of Analysts, 

2008). From each VTG Test (Experiments 1 and 2) tank a total of 4.5 L water sample was 

collected, and a composite 4.5 L water sample was collected from the pair breeding tanks 

(Experiments 3 and 4). Each batch of effluent delivered to the laboratory was also sampled 

at the collection point in Swindon, on arrival at the lab and from the effluent storage tank at 

the end of each batch.  All samples were immediately couriered to the analytical lab 

(Thames Water, Reading, UK) to be solid phase extracted on the day of collection followed 

by analytical determination of steroid oestrogens (E1, E2 and EE2 analysed by liquid 

chromatography with tandem mass spectrometry (LC-MS/MS); Standing Committee of 

Analysts, 2008). For the total oestrogenic activity (analysed by Centre for Environment, 
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Fisheries and Aquaculture Science, Weymouth, UK), the E2 equivalent concentration 

(E2EQ) was calculated using the YES (Thomas et al., 2001). 

2.2.2.7. Fish sampling 

At the end of the study, all fish in all tanks were sacrificed according to UK Home Office 

regulations. Fish were anaesthetised with ethyl 3-aminobenzoate methanesulfonate salt 

(MS222; Sigma-Aldrich Company Ltd.) at 500 mg/L and buffered with 1M NaOH to pH 7.4. 

Whilst under anaesthetic, blood was collected from the caudal peduncle using heparinised 

capillary tubes and transferred to ice-cold 1.5 mL microfuge tubes (Alpha Laboratories, 

Eastleigh, UK), each containing one drop (~5 µL) of aprotinin (protease inhibitor; MP 

Biomedicals Germany GmbH, Eschwege, Germany). Following blood collection, the fish 

were killed by the destruction of the brain. Microfuge tubes were centrifuged (7000 × g; 5 

min, 4 oC) and the plasma was removed and stored at −80 oC until required for analysis of 

VTG. Fork lengths and wet body weights of the fish were recorded to the nearest 1 mm and 

0.01 g, respectively, and the condition factor derived by expressing the cube of the fork fish 

length as a function of the wet body weight. The gonads were removed, wet weighed to the 

nearest 0.001 g and the Gonadosomatic Index (GSI) derived by expressing the gonad 

weight as a percentage of the total body weight. The numbers of tubercles on the snout of 

each fish were recorded and the dorsal fatpad removed and wet weighed to the nearest 

0.001 g.  

2.2.2.8. Vitellogenin analysis 

Plasma VTG concentrations were measured by using a commercially available FHM VTG 

ELISA kit (Biosense Laboratories AS, Bergen, Norway). The ELISA utilises specific binding 

between antibodies and VTG to quantify VTG in plasma samples from FHM. The 

manufacturer’s protocol was followed and VTG in standards (0.05-50 ng/ml) and samples 

(diluted to 1:50, 1:5,000 and 1:500,000) were incubated for 1.5 hr at room temperature (20-

25 oC) in microplate wells that come pre-coated with a specific capture antibody. Between 

this and all subsequent incubations, plates were washed with a phosphate buffered saline 

(PBS; pH 7.3) / 0.05% Tween-20 wash buffer using a WellWash (Thermo Scientific, 

ThermoFisher Scientific, Hemel Hempstead, UK). The plates were then incubated for 30 

mins at room temperature, with a VTG-specific detecting antibody labelled with the enzyme 

horseradish peroxidase, that creates a sandwich of VTG and antibody. The enzyme activity 

was then determined by addition of a chromogenic substrate (3,3',5,5'-Tetramethylbenzidine) 

that gave a coloured product measured at 450 nm using a plate reader (Molecular Devices, 

San Jose, USA). As the colour intensity was directly proportional to the amount of VTG 

present, regression analysis using a log-log plot of the VTG standard data was used to 
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calculate the concentrations of VTG, after multiplying by the dilution factor to determine the 

concentration in the original samples. 

In total 7 assays were carried out (5 assays standard effluent and 2 assays GAC effluent), 

and the DL was 5 ng/ml and the inter-assay variability was 17%.  

2.2.2.9. Statistical analysis 

Where concentrations were reported at below the DL, for statistical purposes half the DL 

was used in calculations. All biological results are expressed as a mean ± standard 

deviation. To investigate effects of the effluent exposure and of the positive control on body 

weight, length, GSI, SSCs and VTG concentrations, data were compared to the control using 

GraphPad Prism 8 version 8.0.1 (GraphPad Software, La Jolla California USA; 

www.graphpad.com). Data were tested using the D'Agostino and Pearson test, and where 

the assumptions of normality and homogeneity of variance were met, these were analysed 

using one-way ANOVA followed by Dunnett's multiple comparisons test (F value with 

degrees of freedom in subscript). Where n was too small or data failed to meet these 

assumptions, analysis was carried out using the Kruskal-Wallis test followed by Dunn’s 

multiple comparisons test (H value with sample sizes (n)). To investigate the effects on 

reproductive activity, the mean cumulative distribution of the egg production data over the 

21-day pre-exposure and exposure periods were compared for each treatment group using 

the Kolmogorov-Smirnov test (D value with sample sizes (n)). Differences were considered 

significant if the p values were ≤0.05 (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

2.2.3. Field studies – wild roach collected from the River Ray downstream of the Swindon 

WwTW 

2.2.3.1. Site selection and fish sampling 

In 2005, prior to the GAC installation, 145 mature roach were collected downstream of the 

Swindon WwTW. Sampling sites were chosen along a 3 km section of the River Ray 

downstream from the point of discharge, from National Grid Reference: SU124866 at 

Sparcells to SU122873 at Moredon Bridge (Figure 11). The Environment Agency’s fisheries 

teams collected a total of 145 mature roach by electrofishing. Fish were collected mid-April 

to avoid the spawning season from late April to early June 2005. Fish were then taken to the 

Environment Agency’s National Fisheries Laboratory, Brampton, UK, and fish scales, 

plasma, gonads and bile were collected for processing. 

For the 2013 sampling, five years after the addition of the GAC treatment to the WwTW, two 

sites were chosen along the River Ray downstream from the point of discharge; Site 1 at 

National Grid Reference: SU124866 at Sparcells and Site 2 at SU122873 at Moredon Bridge 
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(Figure 11 and Figure 12). Power analysis indicated that a minimum sample size of 25 male 

fish (80% power) was required to determine if there was significant reduction in the 

incidence of intersex to baseline levels (0.5% of male fish; Geraudie et al., 2010) following 

the installation of the GAC.  

Mature roach were collected by electrofishing in collaboration with Hull International 

Fisheries Institute, University of Hull, UK (see Appendix A 5 and A 6). Twelve fish were 

collected from Site 1 and 44 from Site 2; a total of 56 fish. The fish were collected late 

November 2013 and were transported back to Brunel University London, Uxbridge, UK for 

processing. 

For Home Offices purposes, the fish were anaesthetised with neutrally buffered MS222 (500 

mg/L; Sigma-Aldrich Company Ltd.) and blood samples were collected from the caudal 

artery with a heparinised syringe. Following collection of the blood sample, the fish were 

killed by destruction of the brain. The blood was then transferred to Eppendorf tubes (Alpha 

Laboratories, Eastleigh, UK) containing one drop (~5 µL) of aprotinin (Sigma-Aldrich 

Company Ltd.), and samples were kept on ice until centrifugation at 12,000 g for 5 minutes. 

The plasma was pipetted to a fresh tube and immediately frozen on dry ice. The plasma 

samples were then transferred to -80 oC storage until ready for VTG analysis. 

Fork length and wet weight were measured, and the condition factor was calculated by 

expressing the cube of the length as a percentage of the weight. Scale samples were taken 

from each fish for age determination. 

For histopathological analysis and intersex determination, the gonads were dissected, and 

the macroscopic sex was determined by eye. The gonads were weighed, and the GSI was 

calculated by expressing the gonad weight as a percentage of the total weight less the 

gonad weight. The gonads were then fixed in Bouins (Sigma-Aldrich Company Ltd.) for 24 

hours and then stored in 70% industrial methylated spirits (IMS) until ready for tissue 

processing (histopathology). 

For the assessment of possible endocrine activity in the bile of wild roach, the gall bladder 

was also dissected, and these were placed in cryovials that was snap frozen in liquid 

nitrogen and stored at -80 oC until ready for bile analysis. 
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Figure 11. Locations of the 2005 and 2013 fish sampling sites along the River Ray together 

with the location of the Swindon Wastewater Treatment Works (WwTW). The 2005 sampling 

site is indicated by the red line and the two 2013 sites by the white lines. (Sourced from 

Google Maps) 
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Figure 12. Locations of the two 2013 sampling sites; Site 1, National Grid Reference: 

SU124866, and Site 2, National Grid Reference: SU122873. (Sourced from Grid Reference 

Finder)  
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2.2.3.2. Analysis of fish material 

2.2.3.2.1. Fish aging 

The fish were aged by counting the number of annuli (winter checks where the circuli are 

closely spaced) on each fish scale using a microfiche reader (Mann, 1973). 

2.2.3.2.2. Gonadal analyses 

After histological fixation, each pair of ovaries or testes was cut into three parts (anterior, 

median and posterior) using a microtome blade (MB35, Thermo Scientific, ThermoFisher 

Scientific), and from each part a 3-5 mm portion of gonad was taken and placed into a 

biopsy cassette (Histosette II, Simport™, Fisher Scientific).  The cassettes were then 

processed using a Leica tissue processor (model TP1020, Leica Biosystems (UK) Ltd., 

Milton Keynes, UK), to dehydrate the tissues and impregnate them with paraffin wax (W1, 

Thermo Scientific, ThermoFisher Scientific). The processor program was set with the 

following timings:  

Step no. Treatment Purpose Time (hours) 

1 70% IMS Dehydration 3 

2 90% IMS Dehydration 2.5 

3 95% IMS Dehydration 1.5 

4 100% IMS Dehydration 1.5 

5 100% IMS Dehydration 1.5 

6 100% IMS Dehydration 1.5 

7 100% IMS Dehydration 1.5 

8 Histoclear Clearing 1.5 

9 Histoclear Clearing 1.5 

10 Histoclear Clearing 1.5 

11 Wax Wax infiltration 1.25 

12 Wax Wax infiltration 1.25 

 

Following completion of the processing, the tissue samples were embedded in wax blocks 

(total of 6 pieces of gonad tissue per fish). Wax embedded blocks were sectioned at 3 µm on 

a rotary microtome (model RM2235, Leica Biosystems (UK) Ltd.), floated out on a water 



53 
 

bath (Electrothermal, Cole Parmer, Stone, UK) and mounted on PolysineTM slides (Menzel 

Gläser, Thermo Scientific, ThermoFisher Scientific). The slides were dried overnight on a 

slide drying bench (Electrothermal), and were then stained with Gurr haematoxylin (VWR, 

East Grinstead, UK) and 1% eosin aqueous (Pioneer Research Chemicals Ltd., Colchester, 

UK) using an automated stainer (Stainmate, Thermo Scientific, ThermoFisher Scientific) with 

the following timings: 

Step 

no. 
Stain Purpose 

Time 

(mins) 

1 Histoclear Dissolves wax 15 

2 100% IMS Hydration 2 

3 90% IMS Hydration 2 

4 70% IMS Hydration 2 

5 Tap water (running) Rinse 2 

6 Gurr haematoxylin Stains cell nuclei blue 10 

7 Tap water (running) Remove excess 10 

8 Acid / IMS Dechlorination 20 secs 

9 Tap water (running) Rinse 20 secs 

10 LiCO3 Salt 20 secs 

11 Tap water (running) Rinse 20 secs 

12 1% eosin (aqueous) Stains cytoplasm pink 20 secs 

13 Tap water (running) Remove excess 5 

14 70% IMS Dehydration 2 

15 90% IMS Dehydration 2 

16 100% IMS Dehydration 5 

17 Histoclear Remove IMS, binding agent 5 

 

Following staining, slides were sealed with Histomount (National Diagnostics, Hessle, UK) 

and a glass cover slip (22 x 50 mm, Menzel Gläser, Thermo Scientific, ThermoFisher 

Scientific).  



54 
 

For each fish sampled, all of the 6 sections were examined by light microscopy and the sex 

of each fish was determined (Nolan et al., 2001). As several stages of gametogenesis 

coexist at a given time, the preponderant stage occurring inside the gonad was used to 

characterise the stage of development (Table 2).  

For fish that looked predominantly male when the gametes were examined under light 

microscopy, the reproductive duct was also examined to see how many points of attachment 

there were; one point indicated a sperm duct (normal for males) whereas two points 

signifying an ovarian cavity terminating in an oviduct (normally only observed in females but 

also an indication of feminisation of male fish). The number of oocytes in the testes of 

intersex fish was counted microscopically, and each section was scored using an Intersex 

Index ranging from 0 (normal male testis) to 7 (100% ovarian tissue) (Jobling et al., 2006) 

(Table 3). The Intersex Index scores for each of the 6 sections were then averaged for each 

fish. 

Because the roach were sampled at different times of the year, the 2013 roach gonads were 

compared with roach caught from spring-fed Calverton fish farm in November, February, 

March and April to determine whether the gonadal maturity was as would be expected for 

the time of year of sampling. 

 

Table 2. Scoring systems used to derive stage of maturity based on Billard (1986) for male 

fish and Tyler and Sumpter (1996) for female fish. 

Sex Stage Cell type 

Male 

I Spermatagonia only 

II Mainly spermatagonia with <50% spermatocytes 

III Some spermatids but >50% spermatocytes 

IV Some spermatozoa but >50% spermatids 

V >50% spermatozoa 

VI Spent 

Female 

I Oogonia only 

II >50% primary oocytes (perinuclear and Balbiani body stage) 

III Some primary oocytes but >50% cortical alveoli stage 

IV >50% cortical alveoli and <50% vitellogenic 

V >50% vitellogenic  

VI Spent 
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Table 3. Scoring system used to determine the Intersex Index score for each section (from 

Jobling et al., 2006). 

Intersex Index 

Score 
Description 

0 Normal male testis 

1 Multifocal ovotestis with 1–5 oocytes (usually singly) scattered 

among the testicular tissue 

2 Multifocal ovotestis, 6–20 oocytes often in small clusters scattered 

among the testicular tissue 

3 Multifocal ovotestis, 21–50 oocytes in clusters 

4 >50 and <100 oocytes. Section is usually multifocal and has the 

appearance of a mosaic of testicular and ovarian tissue 

5 
>100 oocytes, usually multifocal but could also be focal with 

clearly identifiable zones of ovarian and testicular tissue 

separated from the testicular tissue 

6 
>50 per cent of the gonadal tissue on the section is ovarian and is 

clearly separated from the testicular tissue by epithelial cells and 

phagocytic tissues 

7 100 per cent of gonadal tissue on the section is ovarian 

 

 

2.2.3.2.3. Vitellogenin analysis 

For the quantification of VTG in plasma samples collected in 2005, a carp VTG ELISA 

previously validated for use with roach (Tyler et al., 1996) was utilised with a DL of 35 ng/ml 

VTG (Tyler et al., 1999).  

For the quantification of plasma samples collected in 2013, a commercial carp VTG ELISA 

kit based on the assay developed by Tyler et al. (1999) was utilised (Biosense Laboratories 

AS, Bergen, Norway). The manufacturer’s protocol was followed and VTG in standards 

(0.24-250 ng/ml) and samples (diluted to 1:50, 1:5,000 and 1:500,000) were incubated with a 

series of antibodies and the enzyme activity was then determined by addition of a 

peroxidase substrate (o-phenylenediamine; OPD) that gave a coloured product measured at 

492 nm using a plate reader. Plasma VTG concentrations were calculated as described in 

Section 2.2.2.8. 

Two assays (male and female plasma in separate ELISAs) were run, both with a DL of 24.5 

ng/ml VTG. 
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To determine comparability of VTG data between the two sampling occasions and methods, 

six plasma samples from the 2005 roach survey were reanalysed alongside the 2013 female 

plasma samples using the Biosense carp VTG ELISA kit. The Biosense commercial kit used 

to analyse the samples collected in 2013 was based on the pre-commercialisation method 

by Tyler et al. (1999) that was also used to analyse the samples collected in 2005. These six 

2005 samples were chosen to reflect the range of concentrations recorded in 2005. 

The 2013 male and female plasma samples were analysed at different times and therefore a 

subsample of nine male plasma samples from the 2013 sampling were also reanalysed 

along with the female plasma samples from the 2013 sampling in the same Biosense carp 

VTG ELISA assay. 

2.2.3.2.4. Bile analysis 

All chemicals were purchase from Sigma-Aldrich Company Ltd. unless stated otherwise. 

2.2.3.2.4.1. Enzymatic hydrolysis of bile samples 

For the analysis of the roach bile collected in 2005, the deconjugation, solid phase extraction 

and analysis for oestrogenic activity and anti-androgenic activity were carried out at the 

University of Sussex, Brighton, UK, according to Gibson et al. (2005). In brief, enzymatic 

hydrolysis of the samples used glucuronidase type VII-A from E. coli (1000 U/ml) and 

sulphatase type VI from A. aerogenes (2 U/ml). The activity of individual enzymes was 

tested with standard substrates; nitrophenol glucuronide and nitrophenol sulphate (10 µg 

substrate in 100 µl water). The hydrolysis took place in 0.1 M phosphate buffer (0.2 M 

sodium dihydrogen orthophosphate: 0.2 M disodium hydrogen orthophosphate: water 

(43.85:6.15:50.00, v/v/v) at pH 6.0) for 16 hours at 37 oC and the reactions were stopped 

with 90 µl glacial acetic acid. 

Prior to analysing the bile samples in 2013, the efficiency of the glucuronidase type VII-A 

from E. coli and sulphatase type VI from A. aerogenes was rechecked using conjugated 

oestrogens; β-oestradiol 17-(β-D-glucuronide) sodium salt (E2-G; Santa Cruz Biotechnology, 

Inc, Dallas, USA) and β-oestradiol 3-sulphate sodium salt (E2-S). The deconjugation was 

specific for the glucuronidase but there was no deconjugation with the sulphatase (see 

Appendix Figure A 7). To rectify this, the method was modified by carrying out the enzymatic 

hydrolysis of the bile with β-glucuronidase type HP-2 from H. pomatia (Sigma-Aldrich 

Company Ltd.; ≥100,000 units/ml with ≤7,500 units/ml sulphatase). For the 2013 samples, 

the hydrolysis took place using 10 µl H. pomatia ‘snail juice’ in 990 µl 0.1M phosphate buffer 

for 16 hours at 37 oC, and the reaction was stopped with 90 µl glacial acetic acid. The 

deconjugation rate with the ‘snail juice’ was 103.2% (ranging from 101 to 107%) with the E2-

G and 23.7% (ranging from 20.5 to 29.4%) with the E2-S.  
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2.2.3.2.4.2. Solid phase extraction 

In 2005, OASIS HLB cartridges (6 cc, 150 mg; Waters, Milford, MA, USA) were used to 

extract hydrolysed bile extract. The hydrolysed bile was diluted with the addition of 2 ml 

HPLC grade water (3 ml total). Cartridges were primed with 5ml methanol (meOH) followed 

by 5 ml HPLC water acidified with 1% acetic acid and the samples were then loaded onto 

cartridges and washed through with 2 ml HPLC water. After drying the cartridges under 

vacuum for 30 mins, samples were eluted sequentially into glass conical tubes (Corning Life 

Sciences, Tewksbury, USA), using 5 ml meOH and 3 ml acetonitrile (HPLC grade solvents 

from Fisher Scientific). Samples were then evaporated under a flow of nitrogen, 

reconstituted in 500 µl ethanol (etOH), and stored at 4 oC until analysis using recombinant 

yeast screens. 

For the 2013 samples, the same solid phase cartridges and method were followed although 

the cartridges were eluted with 5 ml meOH, 3 ml dichloromethane and 3 ml hexane (HPLC 

grade solvents from Fisher Scientific) to improve extraction efficiency of anti-androgens 

(Rostkowski et al., 2011). The SPE recovery rate for the bile samples hydrolysed in 2013 

was 76.3% (ranging from 70.7 to 79.9%) for the E2 spike and 67.3% (ranging from 64 to 

71%) for the flutamide spike. 

2.2.3.2.4.3. Recombinant yeast oestrogen and anti-androgen screens 

The recombinant hER and hAR yeast strains were developed by Glaxo Wellcome. The 

standard YES and AYAS were used to determine the amount of oestrogenic and anti-

androgenic activity in the bile samples collected in 2005, and have been described 

previously (YES, Routledge and Sumpter, 1996; AYAS, Sohoni and Sumpter, 1998). 

These yeast assays were modified for analysis of the 2013 bile extracts, as any toxic activity 

in the sample can lead to false positive activity in the AYAS using the standard method 

(discussed further in Chapters 3 and 4).  

2.2.3.2.4.4. Modified recombinant yeast oestrogen and anti-androgen screen procedure 

2.2.3.2.4.4.1. Preparation of medium and buffers 

10x Synthetic defined medium (10x SD-medium): The 10x SD-medium was prepared by 

dissolving 67 g yeast nitrogen base without amino acids (BD Difco, Wokingham, UK) and 

200 g glucose in HPLC grade water and adjusting the final volume to 1 L. The solution was 

then sterilised by filtration (0.2 µm, cellulose acetate; Nalgene, Thermo Scientific, 

ThermoFisher Scientific) under sterile conditions and dispensed to polypropylene centrifuge 

tubes (Alpha Laboratories, Eastleigh, UK). The aliquots were stored at ≤ -18 oC for up to 12 

months.  



58 
 

10x Dropout medium (10x DO-medium): The 10x DO-medium was prepared by adding 2000 

mg L-Serine, 1000 mg L-Threonine, 750 mg L-Valine, 500 mg L-Leucine, 250 mg L-

Phenylalanine, 150 mg L-Isoleucine, 150 mg L-Tyrosine, 100 mg Adenine, 100 mg L-

Arginine,  500 mg L-Aspartic acid, 500 mg L-Glutamic acid, 100 mg L-Histidine-HCl, 150 mg 

L-Lysine-HCl, 100 mg L-Methionine to HPLC grade water and adjusting the final volume to 

0.5L. The solution was then sterilised by filtration (0.2 µm, cellulose acetate) under sterile 

conditions and dispensed to polypropylene centrifuge tubes. The aliquots were stored at ≤ -

18 oC for up to 12 months. 

20 mM Copper (II) sulphate (CuSO4): The CuSO4 solution was prepared by adding 0.1596 g 

CuSO4 to HPLC grade water and adjusting the final volume to 50 ml. The solution was then 

sterilised by passing through a syringe filter (0.2 µm, polyethersulfone; Whatman, GE 

Healthcare Life Sciences, Little Chalfont, UK) into a sterile glass bottle, under sterile 

conditions.  

Growth medium: Under sterile conditions, 5 ml 10 x SD-medium and 5 ml 10 x DO-medium 

were added to a glass bottle containing 40 ml sterile HPLC grade water.  

Exposure medium: The exposure medium was prepared on the day required by adding 125 

µl CuSO4 solution to 50 ml of growth medium. 

LacZ-buffer (Z-buffer): To 400 ml HPLC grade water, 8.05 g sodium phosphate dibasic, 2.75 

g monosodium phosphate, 0.375 g potassium chloride and 0.123 g magnesium sulphate 

were added, and the pH was adjusted to 7.0. The buffer was made up to 0.5 L and 

autoclaved at 121 oC for 15 min. 

10% SDS: 10 g sodium dodecyl sulphate was added to sterile HPLC grade water and 

stirred. This was made up to 100 ml and then transferred to a sterile glass bottle.  

Assay buffer (quantities for 1 plate): Just prior to use, 24 mg ortho-Nitrophenyl-β-galactoside 

(oNPG) was dissolved in 11.9 ml Z-buffer. Once in solution, 32 µl 2-mercaptoethanol and 

120 µl 10% SDS were added. 

2.2.3.2.4.4.2. Assay procedure 

Chemicals were serially diluted in etOH and 10 µl volumes were transferred to 96-well flat-

bottom plates (Sarstedt AG & Co, Nümbrecht, Germany) where the etOH was allowed to 

evaporate to dryness.  Then, 200 µl exposure medium containing yeast (final cell number of 

5 x 105 cells/ml) was added to each well. Included in every assay was the negative control, 

etOH. 
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For the oestrogen screens, the positive control E2 was included in each assay (stock 

concentration at 2x10-7 M and serially diluted in etOH to achieve final concentrations from 10-

8 M to 4.88x10-12 M).  

The positive control, flutamide, was included in every AYAS (stock solution at 10-3 M and 

serially diluted in etOH to achieve final concentrations of 5 x 10-5 M to 2.44 x 10-8 M in the 

wells). For antagonistic screens, DHT at 2x10-9 M was also added to the medium prior to 

adding it to all wells.  

The plates were taped closed and shaken for 2 mins on a plate shaker. The plates were then 

incubated at 32 oC for 68 ± 1 hours. After the incubation period, the yeast cells were 

resuspended by shaking for 2 mins and then 50 µl of suspension was transferred to a new 

plate containing 50 µl growth medium (i.e. diluted by half). The plates were then shaken 

again for 2 mins before taking pre-lysis plate readings at 620 nm to determine yeast turbidity. 

The yeast cells were then lysed with 4 freeze/thaw cycles (4 mins on dry ice followed by 4 

mins at 42 oC) and finally shaken for 2 mins. Freshly made assay buffer was then added to 

each plate (100 µl per well) by reverse pipetting and the plates were transferred to a 37 oC 

incubator. The β-galactosidase (β-gal) in the cell lysate then caused the clear medium to 

turn yellow and plate readings were taken at 420 nm and 620 nm after 30, 60 and 90 mins 

incubation. The 90 min readings were used for all analyses. 

The half maximal effective concentration (EC50) was calculated using 4-parameter plot 

equations using SoftMax Pro version 5.0.1 (Molecular Devices Limited, Wokingham, UK); 

the concentration at which 50% of activity of the positive control, E2, was obtained. Similarly, 

the half maximal inhibitory concentration (IC50) was calculated as the concentration of 

flutamide required to produce a 50% inhibition of the DHT-induced activity. 

Oestradiol equivalent (E2EQ) and flutamide equivalent (FLUTEQ) concentrations were 

calculated using 4-parameter plot equations after correcting for any dilution or concentration 

factors. 

2.2.3.3. Statistical analysis 

To determine the roach sample size, power analysis (CHI-squared test; GraphPad StatMate, 

San Diago, USA) using the 2005 intersex incidence data was employed.  

Where concentrations were reported at below the DL, for statistical purposes half the DL 

was used in calculations. All biological results are expressed as a mean ± standard 

deviation. GraphPad Prism 8 was used for statistical analyses. Data were tested using the 

D'Agostino and Pearson test, and where assumptions of normality and homogeneity of 
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variance were met, the 2013 data was compared with the 2005 data using a t-test (t value 

with degrees of freedom in subscript). Where n was too small or data failed to meet these 

assumptions, data were compared with the 2005 data using the non-parametric Mann-

Whitney Test (U value with sample sizes (n)). The proportions of intersex fish and females 

with uncharacteristically immature ovaries were compared using Fisher's exact test. Where 

VTG plasma samples were reanalysed at a later date, comparisons were made using the 

Wilcoxon matched-pairs signed rank test (Spearman correlation coefficient rs with sample 

size (n)). Differences were considered significant if p values were ≤0.05 (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001). 

 

2.3. Results 

2.3.1. Laboratory studies - Fathead minnow flow-through exposure studies to WwTW 

effluents 

Water quality parameters (ammonia, nitrite, and nitrate) were within acceptable ranges (see 

Appendix Tables A 1 - A 12). Tank water temperature, pH, and flow rates (dilution water and 

test chemical) were also within acceptable ranges (see Appendix Tables A 13 – A 16). 

2.3.1.1. Oestrogenic content of the standard and GAC treated effluents within the test 

system over the course of the in vivo experiments 

Both analytical chemistry (LC-MS/MS) measurements for E1, E2 and EE2 (the principal 

oestrogens prevalent in WwTW effluents), and in vitro analysis (E2EQ determined using the 

YES) for measurement of total oestrogenic activity were used to characterise the 

oestrogenic content of the effluent delivered to Brunel University London and in the tank 

water within the exposure system. The mean values derived from these measurements (± 

standard deviation) are summarised in Figure 13. The variation in oestrogenic content 

between the individual batches of effluent delivered to the laboratory and the persistence of 

the measured oestrogenic activity for each batch of effluent, both in transit and during the 

holding period, can also be seen in Table 4 (standard effluent) and Table 5 (GAC effluent).  

Whilst there was a variation in the concentrations of steroid oestrogens and in the 

oestrogenic activity both within (at time of collection, on arrival at Brunel University London, 

and at the end of the batch) and between batches of effluent, none were significant, 

indicating their stability within the test system. Unexpectedly, the GAC effluent exposure 

tanks had higher E2 and EE2 concentrations than the standard treated effluent exposure 

tanks. 
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Figure 13. Measurements of steroid oestrogens taken to investigate how the concentrations 

in either standard treated effluent (black bars) or GAC treated effluent (grey bars) changed 

through the course of each short-term experiment. Mean concentrations of individual steroid 

oestrogens (E1, E2 and EE2, measured by LC-MS/MS) and total oestrogenic activity (E2EQ 

measured in the YES) measured on arrival at Brunel University London, at the end of the 

batch (taken from the stainless steel holding tank) and in the fish tanks (VTG Test and Pair 

Breeding Test) receiving 100% effluent. (A) E1, (B) E2, (C) EE2, and (D) E2EQ. For the 

standard effluent, n=6 on arrival and at end of batch and n=12 in fish tanks, and for the GAC 

effluent, n=3 on arrival and at end of batch and n=6 in fish tanks. Error bars represent mean 

± standard deviation; none of the concentrations changed significantly through the course of 

the experiments.  



62 
 

Table 4. Stainless steel holding tank concentrations of E1, E2, EE2 and E2 equivalent 

concentrations (E2EQ) measured in batches of standard effluent on collection, arrival at the 

laboratory, and at the end of the batch (taken from the stainless steel holding tank). 

Effluent Time E1 E2 EE2 E2EQ 

Batch Taken ng/L ng/L ng/L ng/L 

1 at collection 0.58 2.2 2.48 1.12 

 on arrival 0.18 0.85 <0.04 3.07 

 at end 2.37 0.31 <0.04 1.6 

2 at collection 0.58 <0.03 1.08 0.58 

 on arrival 2.52 0.05 <0.04 1.44 

 at end 0.47 0.37 <0.04 3.89 

3 at collection <0.04 <0.03 <0.04 1.6 

 on arrival 1.27 0.14 <0.04 5.06 

 at end 1.44 0.08 0.37 1.25 

4 at collection 1.97 1.19 0.93 0.51 

 on arrival 1.29 <0.03 0.25 0.9 

 at end 1.31 <0.03 0.23 2.31 

5 at collection 6.31 <0.03 0.04 0.58 

 on arrival 0.4 <0.03 0.11 1.38 

 at end 0.83 0.43 <0.04 1.34 

6 at collection 1.12 0.22 <0.04 2.12 

 on arrival 2.77 0.8 0.24 2.57 

 at end 1.26 <0.03 <0.04 3.34 

 

 

Table 5. Stainless steel tank concentrations of E1, E2, EE2 and E2 equivalent 

concentrations (E2EQ) measured in batches of GAC treated effluent on collection, arrival at 

the laboratory, and at the end of the batch (in the stainless steel holding tank). 

Effluent Time E1 E2 EE2 E2EQ 

Batch Taken ng/L ng/L ng/L ng/L 

1 at collection <0.04 <0.03 <0.04 <0.5 

 on arrival 0.61 2.14 0.61 <0.5 

 at end 2.26 2.00 3.00 <0.5 

2 at collection <0.04 <0.03 <0.04 <0.5 

 on arrival 1.11 0.54 1.46 <0.5 

 at end 0.72 0.23 0.05 0.68 

3 at collection 0.04 <0.03 0.19 <0.5 

 on arrival 0.14 <0.03 0.11 0.52 

 at end 2.86 6.51 5.46 1.92 
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The concentrations of steroid oestrogens and oestrogenic activity measured in the laboratory 

test systems are summarised in Figure 14 and below:  

Oestrone and oestradiol: 

The concentrations of the natural steroid oestrogens present in the control tanks were 

generally low but were often higher than their quantitation limits (0.03 ng/L for E2 and 0.04 

ng/L for E1), probably due to excretion of these steroids into the water by the fish. 

Accordingly, the concentrations of these steroids were higher in the control tanks of the pair 

breeding systems (Experiments 3 and 4, containing males and females) than in the VTG 

Test system (Experiments 1 and 2, containing only males). In the standard effluent test 

system, the concentration of E1 in the VTG Test (Experiment 1) fish tanks with the 50% and 

100% effluent were significantly greater than the control concentrations (H=35.86, 

n1=n2=n3=n4=n5=12, p=0.0086 and <0.0001, respectively). Likewise, in the GAC effluent 

VTG Test system (Experiment 2), the concentration of E1 was significantly higher in the 

100% effluent fish tanks than the control tanks (H=12.06, n1=n2=n3=6, p=0.0375). In the 

standard effluent test system, the concentration of E1 in the Pair Breeding Test (Experiment 

3) fish tanks with 100% effluent was significantly greater than the control concentrations 

(H=20.55, n1=n2=n3=n4=n5=6, p=0.0077). There were no statistical differences in the E2 

concentrations measured in any of the fish treatment tanks. 

Ethinylestradiol:  

The concentrations of EE2 measured in the control tanks were, as expected, close to or at 

the limit of quantitation (0.04 ng/L) in each experiment. For the positive control tanks, the 

amounts of EE2 measured were approximately half the nominal concentrations (nominal 20 

ng/L EE2 for the Pair Breeding Test and 10 ng/L for the VTG Test). In the standard effluent 

and in the GAC effluent, EE2 concentrations were extremely low (the standard effluent mean 

was 0.17 ± 0.35 ng/L EE2 in the VTG Test (Experiment 1) and 0.12 ± 0.24 ng/L in the Pair 

Breeding Test (Experiment 3); the GAC mean was 0.9 ± 0.66 ng/L EE2 in the VTG Test 

(Experiment 2) and 0.30 ± 0.42 ng/L in the Pair Breeding Test (Experiment 4)) and although 

the effluent EE2 concentrations were higher than in the control tanks (ranging from 0.03 to 

0.06 ng/L EE2), this was not statistically significant due to the variability in the concentrations 

of EE2 between different batches of effluent. 

2.3.1.2. Biological effects of effluent exposure under laboratory test conditions 

2.3.1.2.1. Experiments 1 and 2 Fathead minnow Vitellogenin Test 

There was no evidence that exposure for up to 21 days to the WwTW effluents or the 

oestrogen positive control affected survival (see Appendix Tables A 17 and A 18). 
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Biological measurements 

The size (length and weight) of the male FHM were not significantly different following 

exposure to EE2 and effluent in both of the VTG Tests (standard or GAC; Figure 15). 

Compared with the control fish, there was no significant difference between the condition 

factor of the male FHM following exposure to EE2 and effluent in both VTG Tests 

(Experiment 1 standard and Experiment 2 GAC effluent; Figure 16).  

 

 

Figure 14. Mean concentrations of individual steroid oestrogens (E1, E2 and EE2, measured 

by LC-MS/MS) and oestrogenic activity (E2EQ measured in the YES) in the fish tanks (± 

standard deviation). (A) VTG Test with standard effluent (n=12), (B) VTG Test with GAC 

treated effluent (n=6), (C) Pair Breeding Test with standard effluent (n=6), and (D) Pair 

Breeding Test with GAC treated effluent (n=3). The bars represent mean values ± standard 

deviation. Statistically different from control values; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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Figure 15. Lengths and weights of male fathead minnows measured at the end of the 

baseline period and after 21 days exposed in the VTG Test to the standard effluent (A, 

lengths; C, weights) and GAC treated effluent (B, lengths; D, weights). During the exposure 

period male fathead minnows (n=8 males in each of 2 replicate tanks) were exposed to 

effluent, or to the negative (control) or positive (10 ng EE2/L) control. The bars represent 

mean values ± standard deviation. None of the treatments produced a significant effect 

compared with the control values. 
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Figure 16. Condition factor and Gonadosomatic Index (GSI) of male fathead minnows 

measured at the end of the baseline period and after 21 days exposed in the VTG Test to 

the standard effluent (A, condition factor; C, GSI) and GAC treated effluent (B, condition 

factor; D, GSI). During the exposure period male fathead minnows (n=8 males in each of 2 

replicate tanks) were exposed to effluent, or to the negative (control) or positive (10 ng 

EE2/L) control. The bars represent mean values ± standard deviation. Statistically different 

from control values; ****p<0.0001. 
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In the VTG Tests, the control GSIs were higher than the baseline GSI values and this was 

particularly apparent for Experiment 1 (standard effluent, F5,90=7.338, p<0.0001; Figure 16C) 

where the baseline values were lower than for Experiment 2.  

Male plasma VTG 

There was clear evidence of increases in plasma VTG, of five orders of magnitude relative to 

the controls, in the fish exposed to the positive control EE2 (Figure 17A; H=44.51, 

n1=n2=n3=n4=n5=n6=16, p<0.0001, and Figure 17B; H=35.93, n1=n2=n3=n4=16, p<0.0001). 

However, there were no significant differences in the VTG concentrations in any of the 

standard or GAC effluent exposed fish, compared to the controls.   
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Figure 17. Vitellogenin concentrations measured in the plasma of male fathead minnows at 

the end of the baseline period and after 21 days exposed in the VTG Test to the standard 

effluent (A) or GAC treated effluent (B). During the exposure period male fathead minnows 

(n=8 males in each of 2 replicate tanks) were exposed to effluent, or to the negative (control) 

or positive (10 ng EE2/L) control. The scatter dot plots show individual values and the 

whiskers represent the mean VTG concentration ± standard deviation. Statistically different 

from control values; ****p<0.0001. 

 

Male Fatpad Index 

The baseline male FHM sampled just before the start of the exposure period had a 

significantly lower FPI (mean FPI 0.28) than the control fish (mean FPI 2.37) sampled at the 

end of the 21-day exposure in the VTG Test with standard effluent (H=37.66, 
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n1=n2=n3=n4=n5=n6=16, p<0.0001; Experiment 1; Figure 18A). There was no significant 

difference in the FPI between the baseline FHM and the control fish in the GAC VTG Test 

(Figure 18B), but in this experiment the baseline FPI was higher at the start of the exposure 

period (FPI 0.87).  

The FPI was also affected by exposure to the standard treated effluent; a significant 

suppression of the growth of the fatpad was seen in the both the 50% and 100% effluent 

treatments relative to the controls (H=37.66, n1=n2=n3=n4=n5=n6=16, p=0.0238 and 0.0009, 

respectively). No effects on the FPI were seen in the fish exposed to EE2 (Experiment 1 and 

2) or the GAC effluent (Experiment 2).   

 

 

Figure 18. Mean Fatpad Indices (FPI) measured in male fathead minnows at the end of the 

baseline period and after 21 days exposed in the VTG Test to the standard effluent (A) and 

GAC treated effluent (B). During the exposure period male fathead minnows (n=8 males in 

each of 2 replicate tanks) were exposed to effluent, or to the negative (control) or positive 

(10 ng EE2/L) control. The scatter dot plots show individual values and the whiskers 

represent the mean FPI ± standard deviation. Statistically different from control values; 

*p<0.05, ***p<0.001, ****p<0.0001. 
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Male tubercle number 

No statistical differences were seen with male tubercle numbers in any of the fish in the VTG 

Test with standard effluent (Experiment 1; Figure 19A). In the VTG Test with GAC effluent 

(Experiment 2; Figure 19B), the control fish (sampled at the end of the 21-day exposure) 

exposed to dilution water had significantly more tubercles (tubercle number 11.25, 

F3,60=9.469, p=0.0027) compared with the baseline fish sampled at the start of the exposure 

period (tubercle number 3.88). In addition, there was a significant suppression in male 

tubercle development with EE2 exposure in Experiment 2 compared with the control fish 

(F3,60=9.469, p=0.0039). No significant differences were seen with male tubercle number 

with the fish exposed to the GAC effluent. 

For raw data for both VTG Tests (standard and GAC effluent) see Appendix Tables A 17 and 

A 18. 

 

 

Figure 19. Mean tubercle number measured in male fathead minnows at the end of the 

baseline period and after 21 days exposed in the VTG Test to the standard effluent (A) and 

GAC treated effluent (B). During the exposure period male fathead minnows (n=8 males in 

each of 2 replicate tanks) were exposed to effluent, or to the negative (control) or positive 

(10 ng EE2/L) control. The scatter dot plots show individual values and the whiskers 

represent mean tubercle number ± standard deviation. Statistically different from control 

values; **p<0.01. 

 

 

0

10

20

30

T
u

b
e

rc
le

 n
u

m
b

e
r

C
o

n
tr

o
l

E
E

2

2
5
%

E
ff

lu
e

n
t

5
0
%

E
ff

lu
e

n
t

1
0
0
%

E
ff

lu
e

n
t

B
a
s
e
lin

e

A Experiment 1 (Standard)

0

10

20

30

T
u

b
e

rc
le

 n
u

m
b

e
r

C
o

n
tr

o
l

E
E

2

1
0
0
%

E
ff

lu
e

n
t

B
a
s
e
lin

e
B Experiment 2 (GAC)

**

**



70 
 

2.3.1.2.2. Experiments 3 and 4 Fathead minnow Pair Breeding Test 

In Experiment 3 (standard effluent exposure), three male fish died two days prior to the end 

of the trial and so the remaining EE2 treatment fish were sacrificed two days early to ensure 

no further deaths. Postmortem examination revealed kidney failure due to over production of 

VTG. High VTG concentrations have previously been linked with renal failure and elevated 

mortality (Herman and Kincaid, 1988). During the course of Experiment 3, an additional 4 

fish died (control tanks, 1 male and 1 female FHM; 50% effluent tanks, 1 male and 1 female 

FHM; see Appendix Tables A 19 and A 20). No fish died during the course of Experiment 4 

(see Appendix Tables A 21 and A 22).  

Biological measurements 

The fish length (Figure 20) of both male and female FHM were not significantly different from 

the control fish following exposure to EE2 and effluent, in both of the Pair Breeding Tests 

(standard and GAC effluent).  

The fish weights (Figure 21) were not significantly different from the control fish for both male 

and female fish exposed in the Pair Breeding Test with standard effluent (Experiment 3) and 

also for the female fish exposed to GAC effluent (Experiment 4). However, the male fish 

exposed to EE2 in the GAC Pair Breeding Test (Experiment 4) did weigh significantly less 

than the control male fish (F2,21=3.454, p=0.0302). 

Compared with the control fish, there was no significant difference between the condition 

factor of the both male and female FHM following exposure to EE2 and effluent in both of the 

Pair Breeding Tests (Experiment 3 standard effluent and Experiment 4 GAC effluent; Figure 

22). Similarly, the GSI values for male and female FHM exposed in both of the Pair Breeding 

Tests (standard and GAC effluent) were not significantly different from control fish values 

(Figure 23). 
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Figure 20. Lengths of male and female fathead minnows measured after being exposed in 

the Pair Breeding Test for 21 days to the standard effluent (A, males; C, females) and GAC 

treated effluent (B, males; D, females). During the exposure period 8 replicate pairs of 

fathead minnows were exposed to effluent, or to the negative (control) or positive control 

(+ve control; 20 ng EE2/L). The bars represent mean values ± standard deviation. None of 

the treatments produced a significant effect compared with the control values.  
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Figure 21. Weights of male and female fathead minnows measured after being exposed in 

the Pair Breeding Test for 21 days to the standard effluent (A, males; C, females) and GAC 

treated effluent (B, males; D, females). During the exposure period 8 replicate pairs of 

fathead minnows were exposed to effluent, or to the negative (control) or positive control 

(+ve control; 20 ng EE2/L). The bars represent mean values ± standard deviation. 

Statistically different from control values; *p<0.05. 
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the male FHM control VTG concentrations and any of the effluent-exposed male fish for both 

the standard and GAC effluent Pair Breeding Tests.  

Similarly, for the female fish, there were also no significant differences between the control 

VTG concentrations and the values for the fish exposed to standard (Figure 24C) and GAC 

effluent (Figure 24D). Also, there was no significant difference between the EE2 exposed 

female FHM (9,641,076 ± 8,834,021 ng/ml VTG) compared with the control female FHM 

(5,989,596 ± 2,051,597 ng/ml VTG) in the standard effluent Pair Breeding Test (Experiment 

3). However, the EE2 exposed female FHM in the GAC Pair Breeding Study (Experiment 4) 

had significantly elevated VTG concentrations (approximately 10-fold higher) compared with 

the control female FHMs (61,276,798 ± 57,547,003 ng/ml VTG compared with 5,675,081 ± 

1,707,044 ng/ml VTG; H=7.980, n1=n2=n3=8, p=0.0218). 

Fatpad Index 

The FPIs were not significantly different from the control values for male fish exposed in the 

Pair Breeding Test with standard effluent (Experiment 3; Figure 25A) and also for the male 

fish exposed to GAC effluent (Experiment 4; Figure 25B). 

Tubercle number 

The tubercle numbers for the male fish exposed in both the standard (Experiment 3) and 

GAC effluent Pair Breeding Tests (Experiment 4) were not significantly different from the 

values for the control FHM (Figure 26). 



74 
 

 

 

Figure 22. Condition factor of male and female fathead minnows measured after being 

exposed in the Pair Breeding Test for 21 days to the standard effluent (A, males; C, females) 

and GAC treated effluent (B, males; D, females). During the exposure period 8 replicate 

pairs of fathead minnows were exposed to effluent, or to the negative (control) or positive 

control (+ve control; 20 ng EE2/L). The bars represent mean values ± standard deviation. 

None of the treatments produced a significant effect compared with the control values. 
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Figure 23. Gonadosomatic Index (GSI) of male and female fathead minnows measured after 

being exposed in the Pair Breeding Test for 21 days to the standard effluent (A, males; C, 

females) and GAC treated effluent (B, males; D, females). During the exposure period 8 

replicate pairs of fathead minnows were exposed to effluent, or to the negative (control) or 

positive control (+ve control; 20 ng EE2/L). The bars represent mean values ± standard 

deviation. None of the treatments produced a significant effect compared with the control 

values. 
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Figure 24. Vitellogenin concentrations measured in the plasma of fathead minnows after 21 

days in the Pair Breeding Test exposed to the standard effluent (A; males, C; females) and 

GAC treated effluent (B; males, D; females). During the exposure period 8 replicate pairs of 

fathead minnows were exposed to effluent, or to the negative (control) or positive control 

(+ve control; 20 ng EE2/L). The scatter dot plots show individual values and the whiskers 

represent mean VTG concentration ± standard deviation. Statistically different from control 

values; *p<0.05, ***p<0.001. 
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Figure 25. Mean Fatpad Indices (FPI) measured in male fathead minnows after 21 days in 

the Pair Breeding Test in which they were exposed to the standard effluent (A) and GAC 

treated effluent (B). During the exposure period 8 replicate pairs of fathead minnows were 

exposed to effluent or to the negative (control) or positive control (+ve control; 20 ng EE2/L). 

The scatter dot plots show individual values and the whiskers represent mean FPI ± 

standard deviation. None of the treatments produced a significant effect compared with the 

control values. 

 

 

Egg counts 

In the Pair Breeding Test with the standard effluent (Experiment 3), there were reductions in 

mean cumulative egg production in the exposure period relative to the pre-exposure period 

for pairs of fish in all treatments except for the 25% standard effluent treatment (Control, 

45.4% reduction, D=0.3810, n=21, p=0.0949; 25% effluent, 2.7% increase, D=0.1905, n=21, 

p=0.8407; 50% effluent, 32% reduction, D=0.1905, n=21, p=0.8407; 100% effluent, 33.6% 

reduction, D=0.3333, n=21, p=0.1938; Figure 27).  Only in the positive control treatment (20 

ng/L EE2), however, was the reduction in egg production statistically different from that seen 

before the start of the exposure (63.2% reduction, D=0.4662, n=19, p=0.0262).   

 



78 
 

 

Figure 26. Mean tubercle number measured in male fathead minnows after 21 days in the 

Pair Breeding Test in which they were exposed to the standard effluent (A) and GAC treated 

effluent (B). During the exposure period 8 replicate pairs of fathead minnows were exposed 

to effluent, or to the negative (control) or positive control (+ve control; 20 ng EE2/L). The 

scatter dot plots show individual values and the whiskers represent mean tubercle number ± 

standard deviation. None of the treatments produced a significant effect compared with the 

control values. 

 

In the GAC effluent in Experiment 4, there was a reduction (33.7%) in the mean cumulative 

egg production relative to the pre-exposure period for pairs of fish exposed to the control 

treatment, although this difference was not statistically significant (D=0.3810, n=21, 

p=0.0949; Figure 28). Similarly, both the undiluted GAC effluent and the positive control 

treatments caused reductions in mean cumulative egg production (100% effluent, 35.9% 

reduction, D=0.3333, n=21, p=0.1938; EE2, 46.4% reduction, D=0.3810, n=21, p=0.0949) 

relative to the pre-exposure period.  

For raw data for both Pair Breeding Tests (standard and GAC effluent) see Appendix Tables 

A 19 – A 22 (length, weight, condition factor, GSI, VTG, FPI and tubercle number) and 

Tables A 23 and A 24 (egg counts).  
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Figure 27. Experiment 3; cumulative egg production in Pair Breeding Test fathead minnows 

over a 21-day pre-exposure period (all FHMs exposed to control water; filled symbols) and 

then over a 21-day exposure period (unfilled symbols). During the exposure period 8 

replicate pairs of FHMs were exposed to 100%, 50% and 25% effluent, or to the negative 

(control) or positive control (+ve control; 20 ng EE2/L). Statistically different from pre-

exposure period; *p<0.05. 
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Figure 28. Experiment 4; cumulative egg production in Pair Breeding Test fathead minnows 

over a 21-day pre-exposure period (all FHMs exposed to control water; filled symbols) and 

then over a 21-day exposure period (unfilled symbols). During the exposure period 8 

replicate pairs of FHMs were exposed to 100% GAC treated effluent, or to the negative 

(control) or positive (20 ng EE2/L) control. None of the treatments produced a significant 

effect. 
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2.3.2. Field based studies – wild roach collected from the River Ray downstream of the 

Swindon WwTW 

2.3.2.1. Biological measurements 

The male and female fork lengths of roach collected in 2013 were significantly longer 

(t66=2.305, p=0.0243 and U= 994.5, n1=92, n2=36, p=0.0004, respectively) than those 

collected in 2005 (Figure 29). The fork length for the roach sampled in 2013 were between 

113-237 mm, and whilst these were significantly longer, they fitted within the broader range 

of the fish lengths from the 2005 sampling; namely 63-286 mm. The mean weights of the 

male and female roach sampled in 2005 were 71.2 g and 112.7 g, respectively. Both male 

and female roach sampled in 2013 weighed significantly more than those sampled in 2005 

(95.6 g, U=293.5, n1=48, n2=20, p=0.0113 and 145.5 g, U=1074, n1=91, n2=36, p=0.0023, 

respectively; Figure 30).  

The condition factor for fish collected in 2013 were compared with those collected in 2005 

and the values were not significantly different (U=3943, n1=144, n2=56, p=0.8087; Figure 

31).  
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Figure 29. Fork lengths of male and female roach sampled from the River Ray in 2005 

(dotted plots) and 2013 (striped plots). The bars represent mean values ± standard 

deviation. Statistically different from the 2005 sampling values; *p<0.05, ***p<0.001.  
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Figure 30. Weights of male and female roach sampled from the River Ray in 2005 (dotted 

plots) and 2013 (striped plots). The bars represent mean values ± standard deviation. 

Statistically different from the 2005 sampling values; *p<0.05, **p<0.01.  
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Figure 31. Condition factor of roach sampled from the River Ray in 2005 (dotted plot) and 

2013 (striped plot). The bars represent mean values ± standard deviation. Not statistically 

different from the 2005 sampling values. 
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2.3.2.2. Age structure of River Ray roach 

The age structure of the roach caught at the 2005 sampling sites appeared to have a normal 

distribution and ranged from 1+ to 8+ years old. (Table 6). The age structure of the roach 

caught in 2013 ranged from 3+ to 6+ years (Table 7).  

The fish length and age structures of the fish sampled in 2013 were compared with those 

sampled in 2005 in Figure 32. 

 

Table 6. Mean length and age of wild roach sampled from the River Ray in 2005. One fish 

could not be aged. 

Age 
1+ 

2004 

2+ 

2003 

3+ 

2002 

4+ 

2001 

5+ 

2000 

6+ 

1999 

7+ 

1998 

8+ 

1997 

Mean length 

(mm) 
63 127 154 186 206 233 258 286 

Standard 

deviation 
 9 18 15 14 18   

Number 1 28 37 38 33 5 1 1 

 

 

Table 7. Mean length and age of wild roach sampled from the River Ray in 2013. One fish 

could not be aged. 

 

 

1+ 

2012 

2+ 

2011 

3+ 

2010 

4+ 

2009 

5+ 

2008 

6+ 

2007 

7+ 

2006 

8+ 

2005 

Mean length 

(mm) 
  163 193 212 218   

Standard 

deviation 
  28 49 17 13   

Number   12 22 17 4   
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Figure 32. Age structure and length of roach sampled from the River Ray in 2005 (red 

circles) and 2013 (blue triangles).  

 

 

2.3.2.3. Sex ratio, gonadal histology and gonad growth of River Ray roach 

In the 2005 survey, a total of 145 fish were sampled and it was possible to sex 140 

individuals; 92 females and 48 males. Of the male fish, 27.1% were intersex (n=13) and the 

ages of these intersex fish ranged from 2 to 6 years. In 2013, 56 fish were sampled; 36 

females and 20 males. Of these male fish, 15% were intersex (n=3; all collected from Site 2) 

and were either 3 or 4 years of age. Although the overall percentage of males with intersex 

was lower in 2013, this reduced proportion of intersex fish was not significantly different from 

proportion of intersex fish observed in 2005 (p=0.3594; Fisher’s exact test). The fish 

sampled in 2005 had a sex ratio of 66% female: 9% intersex: 25% male compared with a 

sex ratio of 64% female: 5% intersex: 30% male for those sampled in 2013 (Figure 33). 

For the intersex roach sampled in 2005, the Intersex Index ranged from 0.167 (a few primary 

oocytes on one gonadal section of one gonad only) to 2 (all sections with oocyte numbers 

ranging from 1-21 oocytes per section) and averaged 0.513 ± 0.56. The distribution of these 

oocytes was multifocal rather than focal (Nolan et al., 2001). In 2013, there were only 3 

intersex fish collected these had Intersex Index scores of 0.167, 0.167 and 0.5, and  
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Figure 33. Sex ratio of the fish collected from the River Ray downstream of the Swindon 

WwTW; (A) in 2005, and (B) in 2013. The percentage of fish that were intersex was 9% 

(2005 sampling; n=13) and 5% (2013 sampling; n=3). The percentage of male fish that were 

intersex are indicated in brackets; 27.1% in 2005 and 15% in 2013. 

 

 

averaged 0.278 ± 0.19. These Intersex Index scores were not significantly different from the 

2005 scores (U= 9.500, n1=11, n2=3, p=0.3159). The severity of intersex from the two 

samplings was compared in Figure 34. Whilst some of the male fish collected in 2005 had a 

feminised sperm duct with 2 points of attachment (i.e. an ovarian cavity), all male fish 

collected in 2013 had normal sperm ducts with only one point of attachment. 

The GSI for the male testes were significantly higher for the fish collected in November 2013 

than for the fish collected in spring 2005 (t50=2.878, p=0.0059; Table 8). Unlike the male fish, 

the GSI for the female ovaries were significantly lower for the fish collected November 2013 

than for the fish collected spring 2005 (U=1259, n1=91, n2=36, p=0.0421; Table 8). The GSIs 

of the intersex fish collected in 2013 were not significantly different from the intersex fish 

sampled in 2005 (U=11, n1=13, n2=3, p=0.2964). 
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Figure 34. Severity of intersex of the male roach with intersex gonads (testicular oocytes 

and/or an ovarian cavity). In 2005, 13 male fish were found to be intersex and in 2013, 3 of 

the male fish were intersex. The scatter dot plot shows individual values and the whiskers 

represent the mean ± standard deviation.  

 

 

Table 8. Gonadosomatic indices (GSIs) of wild roach sampled from the River Ray in 2005 

and 2013 (mean ± standard deviation). The 2013 GSI values which are significantly different 

from respective 2005 values are denoted by stars; *p<0.05, **p<0.01. 

GSI 
Roach sampled in 2005 

(n=139) 

Roach sampled in 2013 

(n=56) 

Male 4.298 ± 1.333 5.299 ± 0.74 ** 

Intersex 4.089 ± 1.519 5.086 ± 0.658 

Female 16.128 ± 11.004 12.580 ± 3.264 * 
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Most studies investigating endocrine endpoints in fish gonads focus primarily on intersex 

occurrence, intersex severity and feminised reproductive ducts (Bahamonde et al., 2013; 

Sumpter, 2005). However, additional assessments on gonad development in both males and 

females can also shed light on reproductive health.   

In 2005, 79% of males had spermiating gonads (Stage V), whereas in 2013 100% of males 

had less mature Stage II gonads (Figure 35). These findings are typical of both the 

month/season they were sampled (Geraudie et al., 2010). 

In 2005, just over 80% of the females had ‘typical’ gonads for their age and time of sampling 

(Figure 36). Of the 92 females sampled in 2005, 59 female fish were in the final stages of 

maturation with a high GSI (Figure 37) and greater than 50% vitellogenic oocytes (Stage V)  

and one female was spent (Stage VI), as might be expected for the mid-April sampling time 

(Geraudie et al., 2010) . A further sixteen females were 1 or 2 years old and ranged from 

Stage II (only primary oocytes) to Stage IV (mainly cortical alveolus stage oocytes), typical of 

younger fish (Geraudie et al., 2010). However, another sixteen females of mature age (3-7 

years of age) had gonads that were uncharacteristically immature in appearance (Stage I-IV; 

17.4%; Figure 38) (Jobling et al., 2002a; Tyler and Sumpter, 1996). Whilst two of these 

uncharacteristically immature female fish were 3 years old and the developmental stage may 

be linked to the young age, the remaining 14 fish were 4+ years old. In Figure 38, the dotted 

line indicates the 3+ age that one would expect female roach to have reached maturity 

(stage V-VI) (Epler et al., 2005), and for fish sampled in 2005 many 3+ fish had 

uncharacteristically immature (stage I-IV) gonads.  

In 2013, one female had immature Stage II ovaries, and this developmental stage may be 

linked to the fish’s relatively young age of 3 years (Figure 38). None of the other females in 

the 2013 sampling had under-developed for age gonads as seen in the 2005 samples. The 

remainder of the females (97.2%) had ovaries with greater than 50% vitellogenic oocytes 

(Stage V). On comparing the proportion of uncharacteristically immature female roach, there 

was a significant difference between the number of female fish in 2005 (n=16, 17.4%) and 

the single female fish (n=1, 2.8%) in 2013 (p=0.0394, Fisher’s exact test). 
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Figure 35. Male histology. Image A shows a normal testis sampled April 2005, at x 20 

magnification. It is close to spermiation with the arrow indicating the sperm duct (SD). Image 

B at x 100 magnification is an example of a testis collected from a fish in November 2013, 

and at stage II the predominant cells are spermatogonia. Image C at x 100 magnification is 

an example of a testis collected from a fish in 2005, and at stage V the predominant cells are 

spermatozoa. Image D at 400 x magnification shows an intersex gonad section (Intersex 

Score 1) from a roach testis collected in 2005. A few scattered oocytes (shown with arrows) 

were visible in amongst the testicular tissue.  



88 
 

 

Figure 36. Female histology. Images showing normal immature ovary at x 20 (A) and x 100 

(B) magnification. The ovarian cavity can be observed in image A (OC) and a developing 

cortical alveolus oocyte can be observed in image B (CA). Image C shows a mature ovary at 

x 20 with many vitellogenic oocytes (filled with yolk and surrounded by a thick cell wall or 

zona radiata) compared with an ovary from a fish of a similar age but with immature and 

degenerating oocytes (x 20; D). All images are of ovaries from the 2005 sampling.   
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Figure 37. Gonadal stage of maturity of female roach sampled from the River Ray in 2005 

(A) and 2013 (B) plotted against GSI. The scatter dot plots show individual values and the 

whiskers represent the mean ± standard deviation.  
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Figure 38. Gonadal stage of maturity of female roach sampled from the River Ray in 2005 

(red circles) and 2013 (blue triangles) plotted against fish age. The dotted line indicates the 

age that one would expect female roach to have reached maturity (Epler et al., 2005). Note 

that for fish sampled in 2005, many 3+ fish had immature stage I-IV oocytes. 
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Many of the female roach sampled in both 2005 and 2013 contained atretic oocytes, and in 

2005 the average number of atretic oocytes per section ranged from 0 to 48.3, whereas in 

2013 the number ranged from 0 to 15 (Table 9). Whilst there were lower numbers in the 

ovaries of the roach sampled in 2013 than for those sampled in 2005, this difference was not 

significant (U=939, n1=67, n2=35, p=0.1002).  

 

Table 9. Number of atretic oocytes (average of 6 sections) found in the ovaries of wild roach 

sampled from the River Ray downstream of Swindon WwTW in 2005 and 2013 (mean ± 

standard deviation). The 2005 sampling was prior to the installation of GAC to the WwTW, 

and the 2013 sampling was 5 years after GAC was installed to the WwTW. 

Atretic oocytes  

(average per 6 sections) 
Roach sampled in 2005 Roach sampled in 2013 

Range 0 - 48.3 0 - 15 

Mean ± standard deviation 5.564 ± 8.813 5.443 ± 4.613 

 

 

2.3.2.4. Plasma vitellogenin of River Ray roach 

For the quantification of plasma samples collected in 2013, a commercial carp VTG ELISA 

kit based on the assay developed by Tyler et al. (1999) was utilised (Biosense Laboratories 

AS, Bergen, Norway). For an example standard curve see Appendix Figure A 8. 

The quantification of VTG in plasma samples used two different ELISA methods (the pre-

commercialisation method by Tyler et al. (1999) and the Biosense commercial kit) and also 

took place over a number of years. To determine comparability of VTG data, subsamples of 

plasma from 2005 and male plasma from 2013 were also included (reanalysed) in the ELISA 

used to determine the 2013 female plasma VTG concentrations; the VTG values were 

adjusted accordingly. The VTG concentrations of the six 2005 samples reanalysed at a later 

date were significantly different from the values obtained when analysed at the time of 

collection (rs= 0.8286, n=6, p=0.0313; Table 10 and Appendix Figure A 9). These 2013 

concentrations were on average around 5-fold lower, and the 2005 plasma sample values 

were adjusted to enable comparisons to be made.  

Additionally, a significant difference in VTG concentrations was found when a subsample of 

9 male samples from the 2013 sampling were reanalysed with the 2013 female plasma 
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samples at a later date (the male samples analysed in the first instance were on average 

0.65 lower than when reanalysed with the female samples; rs= 0.9833, n=9, p=0.0195; Table 

11 and Appendix Figure A 9).  

Unadjusted VTG concentrations can be seen in Table 12 and Appendix Figure A 10, and 

adjusted VTG concentrations can be seen in Table 13 and Figure 39.  

 

 

Table 10. Comparison of 2005 plasma sample vitellogenin concentrations analysed by the 

two different carp ELISA methods (a carp VTG ELISA, previously validated for use with 

roach (Tyler et al., 1996) and the commercial Biosence ELISA). The regression coefficient 

R2 = 0.979 (see Appendix Figure A 9). The concentrations were significantly different 

(p=0.0313) and the 2005 sample concentrations were adjusted by a factor of 5.1 to take into 

account this difference. 

Fish 

no. 

Mean vitellogenin concentration (ng/ml) 

Roach sampled 2005, analysis based 

on Tyler et al. (1999) ELISA 

Roach sampled 2005, reanalysed in 

2017 using Biosense ELISA kit 

10 4,300,000 992,834 

17 81 12 

24 2,500,000 1,111,732 

49 2,755,000 664,000 

111 16,794 1,463 

117 84 61 
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Table 11. Comparison of 2013 male plasma sample vitellogenin concentrations analysed 

using the same method (Biosense carp VTG ELISA kit) but in different years (2015 and 

2017). The regression coefficient R2 = 0.9916 (see Appendix Figure A 9). The 

concentrations were significantly different (p=0.0195) and the 2013 male sample 

concentrations were adjusted by 0.65 to take into account this difference. 

Fish 

no. 

Mean vitellogenin concentration (ng/ml) 

Male roach sampled 2013, analysed 

in 2015 using Biosense ELISA 

Male roach sampled 2013, 

reanalysed in 2017 using Biosense 

ELISA 

1 23 25 

3 208 545 

8 385 933 

11 12 12 

16 45,133 118,156 

25 198 519 

26 12,801 33,750 

27 12 12 

29 48 47 

 

 

Table 12. Comparison of unadjusted VTG concentrations measured in wild roach samples 

collected from the River Ray in 2005 and 2013. Unadjusted mean values are expressed ± 

standard deviation. VTG values significantly different from respective 2005 values are 

denoted by stars; **p<0.01, ***p<0.001, ****p<0.0001. 

Histological  

Sex 

Mean vitellogenin concentration (ng/ml) 

Roach sampled 2005 

(n=118) 

Roach sampled 2013  

(n=56) 

Male  722,009 ± 1,518,246 3,560 ± 11,142 ** 

Intersex 1,759,236 ± 2,048,997 1,056 ± 1,763 

Male and intersex 993,663 ± 1,709,877 3,185 ± 10,281 *** 

Female 2,128,028 ± 2,186,094 7,785,099 ± 3,842,592 **** 
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Table 13. Comparison of adjusted VTG concentrations measured in wild roach samples 

collected from the River Ray in 2005 and 2013. Adjusted mean values are expressed ± 

standard deviation. VTG values significantly different from respective 2005 values are 

denoted by stars; ****p<0.0001. 

Histological  

Sex 

Mean adjusted VTG concentration (ng/ml) 

Roach sampled 2005 

(n=118) 

Roach sampled 2013 

(n=56) 

Male  142,689 ± 300,049 5,477 ± 17,141 

Intersex 347,675 ± 404,940 1,625 ± 2,713 

Male and intersex 196,376 ± 337,920 4,900 ± 15,817 

Female 420,559 ± 432,034 7,785,099 ± 3,842,592 **** 

 

 

 

In 2005, prior to the GAC upgrade, the average plasma VTG concentration for male 

(including intersex) roach was 196,376 ± 337,920 ng/ml, whereas in the 2013 survey, after 

the GAC upgrade, the mean male (including intersex) roach plasma VTG concentration was 

4,900 ± 15,817 ng/ml; although this reduction was not significant (U=394, n1=42, n2=20, p= 

0.7008; Table 13; Figure 39).  

In contrast to the males, there was a significant increase in female VTG concentrations in 

2013 (7,785,099 ± 3,842,592 ng/ml) when compared with those females sampled in 2005 

(420,559 ± 432,034 ng/ml, U=73, n1=76, n2=36, p<0.0001; Table 13; Figure 39).  

When GSIs were plotted against VTG concentrations for the fish collected in 2005, there 

appear to be two different populations of VTG concentrations (‘low responders’ and ‘high 

responders’), but these did not correlate with GSI (Figure 40). When comparing the 2013 fish 

GSI and plasma VTG concentrations, two distinct populations were not observed (Figure 

41).  
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Figure 39. Adjusted plasma VTG concentrations in male (including intersex) and female 

roach sampled from the River Ray in 2005 (dotted plots; prior to the GAC installation) and in 

2013 (striped plots; after the GAC WwTW upgrade). The violin plots include lines at the 

median and quartiles. VTG values significantly different from respective 2005 values are 

denoted by stars; ****p<0.0001. 

 

 

 

 

Figure 40. Comparing plasma VTG concentrations in (A) male and (B) female roach 

sampled from the River Ray in 2005 (prior to the GAC WwTW upgrade) plotted against GSI. 

Scattered dot plots represent individual values. 
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Figure 41. Comparing plasma VTG concentrations in (A) male and (B) female roach 

sampled from the River Ray in 2013 (after the GAC WwTW upgrade) plotted against the 

GSI. Scattered dot plots represent individual values. 

 

 

2.3.2.5. Oestrogenic and anti-androgenic activity of River Ray roach bile  

In 2005, bile concentrations were not determined for the female roach, so comparisons can 

only be made between male and intersex fish.  

When male and intersex fish bile E2EQ concentrations were compared, there were no 

significant differences between the 2005 male bile concentrations and the 2005 intersex bile 

concentrations. Similarly, the E2EQ concentrations did not differ significantly between the 

2013 male bile and 2013 intersex bile concentrations. However, in the 2013 samples the bile 

E2EQ concentrations were significantly higher for both male (U=35, n1=25, n2=15, p<0.0001) 

and intersex fish (U=3, n1=11, n2=3, p=0.0385) than those collected in 2005 (Figure 42). For 

bile anti-androgenic activity quantification, the FLUTEQ concentrations in around 90% of the 

samples were below the DL of the assays carried out in 2005 and 2013 (2005; DL=0.30 

ng/ml and 2013; DL=0.34 ng/ml) and therefore statistical comparisons cannot be made. 

For raw data for the roach sampled from the River Ray in 2005 and 2013, see Appendix 

Tables A 25 and A 26. 

The results from the in vivo lab-based exposure studies with FHM and the roach collected 

from the River Ray in 2005 and 2013 are summarised in Table 14. 
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Figure 42. Bile oestradiol equivalent (E2EQ) concentrations collected from male and intersex 

fish in 2005 (dotted plots; prior to the GAC WwTW upgrade) and 2013 (striped plots; after 

the GAC WwTW upgrade). The bars represent mean values ± standard deviation. 

Statistically different from the 2005 sampling values; *p<0.05, ****p<0.0001.  

 

2.4. Discussion 

2.4.1. Lab-studies - Fathead minnow flow-through exposure studies to WwTW effluents 

2.4.1.1. Oestrogenic content of the standard and GAC effluents 

It has been previously demonstrated that the FHM tests can be used to assess the effects of 

oestrogenic chemicals and oestrogenic effluents on reproduction (Ankley et al., 2001; Brian 

et al., 2007; Harries et al., 2000; Kramer et al., 1998; Thorpe et al., 2007). 

Measurement of the natural steroidal oestrogens, E1 and E2, the synthetic oestrogen EE2, 

and the in vitro assessment of total oestrogenic activity (E2EQ YES measurements) showed 

that there were low levels of steroid oestrogens in both the standard and the GAC effluents. 

As observed by others, E1 was often the most abundant oestrogen of those measured 

(Ekman et al., 2018). Indeed, Liu et al. (2020) detected E1, E2 and EE2 in 96%, 81 and 68% 

of Chinese surface water samples, respectively. Due to the lower potency of E1 (Lange et 

al., 2012) this steroid has been less of an environmental concern, but recent work suggests 

that fish are able to metabolise E1 back into the more potent E2 (Ankley et al., 2017; Tapper 

et al., 2020) and overlooking it could underestimate risk to the environment. 
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Table 14. Summary table of changes (one arrow) and statistically significant changes (two arrows) of different parameters. Endpoints following 

exposure of fathead minnow (FHM) to standard and GAC-treated effluent were compared with dilution water (control) in two in vivo studies 

(Vitellogenin Assay and Pair Breeding Assay). Endpoints were also compared for roach collected from the River Ray in 2013 after the addition 

of GAC to the Swindon Wastewater Treatment Works with fish collected before the GAC plant was installed in 2005. NC; no change. 

Endpoints 
FHM - Vitellogenin Assay FHM - Pair Breeding Assay 

Roach from the 

River Ray Experiment 1 

Standard 

Experiment 2 

GAC 

Experiment 3 

Standard 

Experiment 4 

GAC 

Length NC NC NC NC  

Weight NC NC NC NC  

Condition Factor NC NC NC NC NC 

GSI NC NC NC NC  

Tubercle number NC NC NC NC  

Fatpad Index  NC  NC  

Intersex incidence      

Uncharacteristically 

immature 
     

Atretic eggs      

Vitellogenin NC NC NC NC  

Egg counts   NC NC  

Bile E2EQ      
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The higher E2 and EE2 concentrations in the GAC effluent than the standard effluent, was 

not seen when the total oestrogenic activity (E2EQ) was measured via the in vitro YES. 

However, the concentrations of steroids in the standard treated effluent are likely to be 

underestimated due to matrix effects (Itzel et al., 2017; Taylor, 2005) or because the steroids 

were present as conjugates/metabolites (Kumar et al., 2011). The use of the YES bioassay 

gives an estimate of total oestrogenicity whereas the analytical methods look to identify the 

individual steroids and do not necessarily detect metabolites. The E2EQ YES values are 

therefore more likely to give a better prediction of in vivo effects than the analytical chemistry 

results (Volker et al., 2016). Direct comparisons of the absolute levels of oestrogens in the 

standard and GAC effluents as measures of removal efficiency are not possible here though 

because the standard and GAC effluent exposures were conducted at different times of the 

year.  

Panter et al. (2002) exposed FHMs to EE2 and their tank concentrations were between 40 

and 50% of nominal values, and it was established that the low measured EE2 

concentrations were at least in part due to losses because of adsorption to the test system. 

Our positive control EE2 tank concentrations were similarly about half the nominal values 

and may also be due to adsorption to the test system. Despite the sometimes biologically 

active concentrations of steroid oestrogens present in the effluents leaving the storage tank, 

particularly at the end of the batch, the concentrations measured in the aquaria were often 

below biologically active concentrations and sometimes even below DLs. This could be due 

to adsorption but might also be due to uptake by the fish (Panter et al., 2002).  

2.4.1.2. The sensitive biomarker, vitellogenin, was not induced by the standard or 

GAC effluent  

Male FHMs were exposed to either control, effluent (both standard and GAC), or positive 

control (EE2) in the VTG Test (Experiments 1 and 2) and the Pair Breeding Test 

(Experiment 3 and 4) for a period of 21 days.  Whilst the male fish exposed to EE2 had a 

significant induction of plasma VTG in all four experiments, none of the male fish exposed to 

effluent (either standard or GAC) showed induction of plasma VTG, indicating insufficient 

levels of oestrogens in the Swindon effluent to elicit this well-known biomarker of oestrogenic 

activity. This result was unexpected, given that the analytical chemistry reported 

concentrations of EE2 ≥1 ng/L in the effluent storage tank feeding the test aquaria that are 

known to induce VTG in male FHM (Flick et al., 2014; Lange et al., 2001; Pawlowski et al., 

2004). Because the effluent failed to induce a VTG response in male FHM, it seems that 

either the analytical measurements in the effluent of >1 ng/L EE2 were overestimated or the 

vitellogenic response was underestimated because the EE2 was in a form that was not 
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bioavailable to the fish (e.g. conjugated or bound to particles). This shows the importance of 

using a combination of chemical analysis and biological endpoints for assessing the effects 

of sewage effluents.  

In the Pair Breeding Test (Experiment 3 and 4), exposure of the female FHMs to the EE2 

positive control did not increase the plasma VTG in Experiment 3 (standard effluent) but 

caused a 10-fold increase (p=0.0218) in the females exposed to EE2 in Experiment 4 (GAC 

effluent). The females used in Experiment 3 (7 months) were younger than those used in 

Experiment 4 (11 months), but if this was the reason for the different sensitivities, the 

younger female FHM might have been expected to be more sensitive. However, some fish 

did die in these EE2 tanks in Experiment 3 and the remainder were sampled 2 days early, 

and this is likely to have affected the mean VTG concentration. 

2.4.1.3. Observed reductions in fecundity may have been due to lower feeding rates 

rather than the oestrogenic effects of effluent 

Decreases in egg production following exposure to steroidal oestrogen are often seen at 

concentrations of the oestrogen that induce VTG concentrations in males above a threshold 

of 1 mg/ml (Kramer et al., 1998; Thorpe et al., 2007). In this investigation, concentrations of 

plasma VTG were often 10 times higher than this 1 mg/ml and so the suppression of egg 

production seen in the Experiment 3 positive control (EE2) was as expected. 

Surprisingly, there were also reductions in the egg production in the control tanks with both 

standard (Experiment 3) and GAC effluent (Experiment 4) Pair Breeding Tests. This may 

have been due to alterations to the prescribed feeding regime, which were introduced to 

prevent the build-up of nitrite and ammonia (both toxic to fish) with the low flows to the fish 

tanks. There was also a reduction in egg production seen with the 50% and 100% standard 

effluent and as all replicates and treatments were fed in the same way, this reduction could 

have been due to the reduced feed too. Interestingly, the 25% effluent exposed fish was the 

only treatment where the cumulative egg production was not lower than the pre-exposure 

period. Others have reported an increase in fecundity following exposure of FHM to 20% 

WwTW effluent (Cavallin et al., 2016), and whilst it is possible that the extra nutrients in the 

25% standard effluent were sufficient for egg production to be sustained, this was not 

reflected in the biological parameters, such as, fish weight and condition factor. Filby et al. 

(2010) carried out pair-breeding exposures with FHMs using standard and GAC effluent and 

found that with both effluents there was a similar inhibition of egg production but no inhibition 

with the EE2 positive control. They therefore considered this fall in egg production to be due 

to the chemical/physical properties of the effluent and not due to the oestrogenicity of the 

effluent. 
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For the pair-breeding test with the GAC effluent (Experiment 4), there was a similar 

reduction in egg production in all treatments. This reduction was most pronounced (although 

not significant) with the EE2 treatment. 

2.4.1.4. The development/suppression of SSCs were variable 

For the VTG Test (Experiment 1 and 2), the male FHM FPI (Experiment 1, standard effluent; 

p<0.0001) and tubercle number (Experiment 2, GAC; p=0.0027) increased significantly 

during the exposure period. This was as expected as the FHM in the male-only tanks would 

have had a further 3 weeks to set up social hierarchies of dominance leading to increased 

SSCs (Ivanova et al., 2017). The increase in FPI (only significant in standard effluent VTG 

Test, Experiment 1) and tubercle number (only significant in GAC effluent VTG Test, 

Experiment 2) during the exposure period may also be due to fish of two different ages being 

used for the exposures; 7 months old male FHM for Experiment 1 and 11 months old for 

Experiment 2. However, Coady et al. (2017) found SSCs to be correlated with body weight 

and one would therefore have expected to see the significant increases in the 11 months old 

FHM. Increases in FPI and tubercle number might also have been more likely in the younger 

FHM than the older fish, but these endpoints did not develop consistently.  

Whilst standard effluent did not induce VTG production in male fish (Experiment 1), the male 

fish exposed to the standard effluent had a significant suppression of fatpad development 

(Experiment 1; with 50% and 100% effluent) compared with the control fish during the 

exposure period. There was no suppression of the fatpad growth in the EE2 exposed fish in 

this experiment, indicating that the disruption to normal fatpad development could be due to 

the presence of other EDCs in effluent, such as anti-androgens (Bahamonde et al., 2013; 

Filby et al., 2010; Gross-Sorokin et al., 2004).  

In the Pair Breeding Tests, both the FPI and the tubercle number values were higher than for 

the VTG Test fish, and this was as expected due to the presence of female fish. In both the 

VTG Tests (Experiments 1 and 2) and the Pair Breeding Tests (Experiments 3 and 4), there 

were no reductions in number of tubercles with either the standard or GAC effluent. 

Therefore, the FPI was a more sensitive endpoint than the tubercle number, as has been 

observed by others (Filby et al., 2010; Harries et al., 2000; Miles-Richardson et al., 1999). 

We did see a significant repression in the growth of tubercles in Experiment 2 (VTG Test) 

with the EE2 compared with the control males, such that they did not develop in line with the 

tubercle development of the control fish between the start and the end of the 21-day 

exposure period. This was not observed with the Pair Breeding Test EE2 treatment, perhaps 

because the males were actively breeding at the start of this test, and therefore likely to have 

higher tubercle numbers before the exposure period started.  
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Although fish from all experiments were within the age range specified in the EDDP protocol 

(between 4 and 12 months at the start of the study), the OECD 21-day Fish Assay (OECD, 

2018a) does specify a FHM age of 20 ± 2 weeks, and for all experiments the FHM were 

older than OECD guidelines. Age and timing of exposure could be critical when assessing 

SSC and as for others (Armstrong et al., 2016; Harries et al., 2000; Panter et al., 2012), the 

age and timing of maturity may have affected our FPI and tubercle number results. 

Additionally, here all-male tanks were used whereas the OECD guidelines specify mixed sex 

tanks (2 male and 4 female FHM) and this ratio was chosen to optimise reproduction 

(Armstrong et al., 2016) and may also lead to more consistent SSC scores. It is also worth 

noting that the OECD fish test guidelines (OECD, 2018a; b) give details for rating tubercles, 

but whilst the guidelines cite the size of the fatpad as a potentially important SSC, no 

guidance is given and standard practise is to limit assessments to visual observations 

(Wheeler et al., 2020).  

2.4.2. Field studies – wild roach collected from the River Ray downstream of the Swindon 

WwTW 

2.4.2.1. Roach sampled following addition of GAC at the WwTW were longer and 

heavier 

When comparing the biological parameters of the wild fish collected in 2013 from the River 

Ray with those collected in 2005, there was no statistical difference in condition factor. 

However, for the fish collected in 2013, both males and females were significantly longer and 

heavier than those collected in 2005 were. Fish collected downstream of sewage discharges 

have been found by others to have greater growth (longer and heavier; McMaster et al., 

2005; Tetreault et al., 2011) and this was thought to be due to nutrient enrichment in 

nutrient-limited rivers. However, we observed greater growth following the addition of the 

GAC where the nutrients were likely to have been lower. It is possible that following the 

GAC, cleaner river water meant a healthier river with more macroinvertebrates for the roach 

to feed on, although Johnson et al. (2019) did not observe any noticeable impact on River 

Ray macroinvertebrates during this period of GAC treatment.  

Although there are differences between the two samples, prevalence and severity of intersex 

increase with age and size (Gross-Sorokin et al., 2006; Jobling et al., 2006), therefore it is 

unlikely we have underestimated possible endocrine disrupting effects in 2013. Pottinger et 

al. (2011), investigating non-reproductive endpoints in sticklebacks collected from the River 

Ray both before and after the GAC addition to the Swindon WwTW, also found a higher 

growth rate post-remediation, and proposed that factors present in the effluent before the 

GAC addition influenced the health of the stickleback populations downstream. 
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2.4.2.2. Improved male roach reproductive health following the installation of GAC at 

the WwTW 

Spermatogonia were the most abundant cell type in the testes of fish sampled in late 

November 2013 and spermatozoa were the most abundant cell type in April to June 2005, 

as observed by Billard (1986).  

The percentage of female fish was very similar when comparing the sex ratios of the fish 

collected in 2013 (64%) with those collected in 2005 (66%).  

When Geraudie et al. (2010) sampled roach from a low contaminated site, 54.5% were 

found to be female fish and this value was not considered significantly different from the 

expected 1:1 ratio. Pottinger et al. (2011) observed a female-skewed sex ratio of 

sticklebacks sampled from the River Ray before the GAC addition but following the addition 

of the GAC to the Swindon WwTW this ratio was not significantly different to unity. However, 

using a genetic sex probe (Lange et al., 2020), Baynes et al. (2020) found female-skewed 

sex ratios in roach at many sites in the UK with various WwTW effluent inputs, and the sex 

ratio observed in our study of the River Ray is therefore not atypical. 

For the fish sampled in 2013, 15% of male fish were intersex compared with 27.1% of the 

male fish collected in 2005. Unfortunately, because only 20 of the fish caught in 2013 were 

males, even though there was a reduction in the number of intersex males, this was not 

significant. In a study carried out by Jobling et al. (1998), between 4% and 100% of male fish 

in different UK rivers were found to be intersex, and later Jobling et al. (2002a) found 

approximately 10 percent of fish from reference sites to be intersex. In addition, Bjerregaard 

et al. (2006) examined male roach collected from Danish reference sites and found a 

background presence of 4.8% intersex, and roach collected from the site with the highest 

proportion of sewage effluent were found to be 26.5% intersex. Lukšienė et al. (2000) found 

only one intersex fish out of 949 roach sampled in Sweden and in another study by Geraudie 

et al. (2010), where 474 roach were collected, no intersex fish were recorded. Geraudie et 

al. concluded that the incidence of intersex is extremely low (below 0.5%) under natural 

conditions. The intersex incidence seen in 2013 could therefore represent continued 

exposure to low concentrations of oestrogens and/or anti-androgens, even following the 

addition of GAC to the WwTW. As with the fish collected in 2013, the fish collected from 

reference sites by Jobling et al. (2002a) had a very low Intersex Index scores (<1). At this 

low incidence observed in 2013, it is unlikely that this intersex condition alone would lead to 

population level effects (Harris et al., 2011), especially as Hamilton et al. (2014) found roach 

populations living in effluent-contaminated rivers with widespread feminisation to be self-

sustaining. 
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The roach collected in 2013 were from 2008 to 2011-year classes. As the GAC at the 

WwTW was installed in 2008, some of these roach from the River Ray may have been 

exposed to standard effluent, especially the 6+ fish. However, our 6+ year old fish collected 

in 2013 did not have feminised ducts (thought to be permanent, indicating early exposure; 

Jobling et al., 1998). Also, whilst some have observed the severity of intersex to be 

influenced by age (Gross-Sorokin et al., 2006; Jobling et al., 2009; Lange et al., 2011), for 

both sets of roach sampled in 2005 and 2013 there was no indication that the severity was 

linked to age (i.e. length of exposure to the effluent in the river). 

2.4.2.3. Improved female reproductive health following the installation of GAC at the 

WwTW 

Ovarian atresia is a common degenerative process and can be observed at all stages of the 

reproductive cycle, but normally occurs most frequently post spawning (Lange et al., 2011), 

and these residual oocytes (atretic) are then digested and absorbed by macrophages 

invading the ovaries (Geraudie et al., 2010). Not surprisingly, atresia is thought to be largely 

a result of environmental stress, but reduced feeding also causes a progressive increase in 

atresia (Tyler and Sumpter, 1996). Investigators have reported ovarian disruption with 

oestrogenic compounds (Kiparissis et al., 2003) and anti-androgens (Makynen et al., 2000), 

as well as exposure to high concentrations of WwTW effluent (100% effluent, ovaries 

contained degenerative primary and secondary oocytes; Lange et al. (2011) and effluent 

contaminated rivers had a greater level of ovarian atresia; Jobling et al. (2002a)). Atretic 

oocytes were seen in several of the 2005 females and for some gonads the atretic oocytes 

predominated. This atresia may therefore be the result of oestrogenic and/or anti-androgenic 

activity in the River Ray prior to the addition of the GAC at the WwTW. There was a 

significant reduction in the number of female roach with uncharacteristically immature 

ovaries in the 2013 roach collected following the addition of the GAC at the WwTW. This 

result could be due to a reduced EDC concentrations in the GAC effluent. In the 2013 

females there were small numbers of atretic oocytes on the edges of the gonad sections. 

Geraudie et al. (2010) observed biphasic development of ovaries and considered that this 

indicated that gonadal maturation was interrupted, and oocytes were probably partially 

absorbed in December. The presence of degenerating oocytes in the 2013 ovaries collected 

at the end of November may therefore be part of a normal process, and not be linked to the 

presence of EDCs in the river.  

 



104 
 

2.4.2.4. Reduced male plasma vitellogenin concentrations following addition of GAC 

to the WwTW, but concentrations were still elevated 

The VTG concentration measured in the male roach collected in 2013 from Site 1 was 241 

ng/ml and in the male (including intersex) roach collected from Site 2 was 6,064 ng/ml, with 

an average of 4,900 ng/ml (Site 1 plus Site 2). Considering that Site 1 was closer to Swindon 

WwTW, one might have expected to see intersex fish and the plasma VTG concentrations to 

have been higher here. However, as only four male fish were collected from this site one 

cannot draw any conclusions, but it is possible that other waste streams enter the River Ray 

between the two sites. 

The fish collected from the River Ray in 2005 were collected at a different time of year (late 

April to early June) to those collected in 2013 (late November). Since the season has been 

shown to affect the oestrogenic potency of effluents (Harries et al., 1999), comparisons were 

made between the 2013 male plasma VTG concentrations and with the potable water control 

male fish sampled at the same time of year as part of another study (Baynes et al., 2012). 

The 2013 male fish were found to have significantly lower VTG concentrations than the 

potable water control fish, but Baynes et al. noted that their VTG concentrations were higher 

than expected and linked these to exposure to natural oestrogens present in the fish tanks. 

Jobling et al. (2002a) measured VTG concentrations in roach from two reference sites 

collected at the end of October, and found the concentrations to be 100 and 15 ng/ml. 

Jobling et al. (2002a) considered that the concentration at 100 ng/ml was above basal 

concentrations, and was possibly a result of exposure to endogenous oestrogens via the diet 

and/or water, but also considered that the difference may be due to normal interpopulation 

variability. Geraudie et al. (2010) measured roach VTG concentrations over a period of 18 

months and found male plasma basal concentrations to be 24 ng/ml and rising to 120 ng/ml 

during the spawning period (February to April). Our male (including intersex) plasma VTG 

concentrations of 4,900 ng/ml are over an order of magnitude higher than typical basal 

concentrations, indicating that the fish may still be being exposed to EDCs even after the 

addition of the GAC treatment to the WwTW. Therefore, these elevated VTG concentrations 

may be due to water soluble EDCs not being retained by the GAC (Snyder et al., 2007) or 

breakthrough due to saturation of the GAC (Baynes et al., 2012).  

Kidd et al. (2007) reported a positive correlation between increased hepatic VTG expression 

and plasma VTG and intersex incidence following exposure of FHMs to EE2 in a whole lake 

experiment. However, we observed no such correlation between plasma VTG and intersex 

with either the fish sampled in 2005 or those sampled in 2013, and the driver for the intersex 

that we observed may therefore be non-oestrogenic mediated pathways, as suggested by 

Bahamonde et al. (2013). The 2005 male plasma VTG concentrations were highly variable 
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and seemed to fall into two different populations irrespective of GSI, with some fish being 

more sensitive than others to oestrogenic contaminants in the river water. This has been 

reported previously by Beresford et al. (2011), who found FHM VTG to be highly variable in 

lab-based studies, even within the same treatment group. Biales et al. (2007) thought that 

this variation could be due to genetic variation in the degree of the response of the fish as, of 

the genes examined, only the VTG gene was variable. Purdom et al. (1994) also looked at 

plasma VTG in wild rainbow trout exposed to effluents and found the concentrations were 

raised above the baseline by 500 to 50,000 times. Similarly, the ‘high male responders’ 

collected from the River Ray in 2005 had plasma VTG values about 10,000 times higher 

than the ‘low male responder’ values. More recently, Wheeler et al. (2019) examined control 

data from 49 FHM studies and found high intra- and inter-laboratory variability for VTG and 

therefore considered this endpoint to be of limited use during study interpretation. 

The female roach had significantly higher plasma VTG concentrations when collected in 

November 2013 than in spring 2005. Whilst the spring 2005 concentrations were similar to 

concentrations reported by Geraudie et al. (2010) and Scott et al. (2013) for female roach 

sampled at this time of year, these same authors reported lower VTG concentrations when 

they sampled female fish in November. Whilst different methods were used for the detection 

of the VTG at the two different times of the year, both methods were based on work by Tyler 

et al. (1996) and are not likely to be the reason for this discrepancy. Other factors (e.g. water 

temperature) may also be playing a part here, but due to the different seasons, it is not 

possible to make any definite conclusions. 

The male GSIs were significantly different between the two samplings and one would have 

expected the testes collected in 2005 to have a higher GSI than those collected in 

November, in preparation for spawning. Oestrogenic and/or anti-androgenic effluent entering 

the river could also have led to lower circulating plasma T concentrations in the fish, 

resulting in reduced GSIs. However, as many of the sperm ducts of the 2005 male fish were 

full of sperm, it is just as likely that the lower GSIs were because some were part spent. 

2.4.2.5. Bile E2EQ and FLUTEQ values do not reflect the intersex or vitellogenin 

results 

In 2005, bile E2EQ and FLUTEQ values were only determined for the male and intersex fish. 

The method utilised separate glucuronidase and sulphatase enzymes and the efficiencies of 

these enzymes had been previously determined using nitrophenyl glucuronide and 

nitrophenol sulphate (Gibson et al., 2005).  However, when analysing the bile samples 

collected in 2013 using E2-G and E2-S, the sulphatase from Aerobacter aerogenes did not 

deconjugate the E2-S. Steroid sulphates are known to be difficult to deconjugate using 
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enzymatic hydrolysis and some authors have used acid hydrolysis (Hauser et al., 2008) or 

digestive juice from Helix pomatia instead (Pedersen et al., 2017). Therefore, for the later 

samples analysed in 2013, H. pomatia digestive ‘snail juice’ was used for deconjugations. 

Whilst the ‘snail juice’ sulphatase activity has the broadest specificity and is commonly used 

in bioanalysis for hydrolysing both glucuronide and sulphatase conjugates (Gomes et al., 

2009), our results show that the sulphate hydrolysis was still incomplete; only 23.7% 

deconjugation occurred. However, as most conjugates are thought to be in the glucuronide 

moiety (Gomes et al., 2009), we did not try to further improve this sulphate deconjugation 

efficiency. 

Houtman et al. (2004) carried out bioassay-directed fractionation of bile and identified many 

xenobiotic compounds at relatively high concentrations but found that the majority of the 

oestrogenic activity in the bile was due to the presence of E2. Female E2EQs from bile 

collected in 2013 were significantly higher than the males E2EQ values, and this higher 

activity is thought to be due to the natural oestrogens present in the female bile. 

The male and intersex E2EQ determined for the 2005 samples averaged 53.43 and 61.91 

ng/ml, respectively, and these are lower than values determined by Gibson et al. (2005) for 

fish exposed to WwTW effluents, but higher than values from their reference fish bile. Values 

from fish collected following the GAC treatment in 2013 were significantly higher both for the 

male and intersex fish (120.5 and 103.0 ng/ml, respectively), but these values may be higher 

due to the improved enzymatic hydrolysis method used.  

Some authors have found a correlation between plasma VTG induction and bile E2EQ (e.g. 

Legler et al., 2002) but others have not (e.g. Ros et al., 2015). We found no correlation 

between plasma VTG induction and bile E2EQ in male and intersex fish collected in both 

2005 and 2013. This suggests that the incidence of intersex is not the result of oestrogens 

but of EDCs with non-oestrogenic activity.  

Many of the endpoints that we have examined suggest that anti-androgens are present in 

the effluent, particularly in the standard effluent. For FLUTEQ, we were unable to compare 

our results with previously reported values as so many were below the DL (only 12% (2005) 

and 15% (2013) had detectable concentrations). For our bile samples with anti-androgenic 

activity, no efforts were made to identify the anti-androgenic culprits as this was beyond the 

scope of this work, but even when chemicals have been identified these often only account 

for a proportion of the activity seen (Hill et al., 2010; Rostkowski et al., 2011). 

2.4.3. Has the reproductive health of the fish living in the river improved following the 

addition of the GAC to the WwTW? 
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Grover et al. analysed the oestrogen content of the final effluent entering the River Ray prior 

to the installation of the GAC plant, and found the E2EQ concentration to be unexpectedly 

low at <5 ng/L (Grover et al., 2011a; Grover et al., 2011b). Balaam et al. (2010) also found 

the concentration of oestrogens in the River Ray to be lower than concentrations predicted 

by a model utilised by Johnson and Williams (2004), and Balaam et al. thought that this was 

due to biological nutrient removal leading to better than expected performance at the 

WwTW. Following the addition of GAC to the Swindon WwTW, Grover et al. (2011b) could 

not detect E1, E2 and EE2 analytically, and there was a significant reduction in many of the 

pharmaceuticals determined (84-99%) although for some of the pharmaceuticals the 

removal efficiency by the GAC was poor (e.g. 17% for propranolol).  

In addition, Katsiadaki et al. (2012) measured spiggin concentrations (a biomarker of 

androgenic exposure) in wild female stickleback fish collected from the River Ray. When the 

stickleback fish were collected from the River Ray prior to the addition of the GAC at the 

WwTW, the spiggin concentration increased with distance from the effluent discharge point, 

indicative of the effluent containing anti-androgenic compounds that were suppressing the 

spiggin production closer to the WwTW. In addition, following the addition of the GAC 

treatment, the spiggin concentrations in female fish returned to the levels seen in the fish 

collected from the control site. Pottinger et al. (2011) measured the activity of 

monooxygenase cytochrome P4501A (to determine exposure to PAHs) in sticklebacks 

collected from the River Ray, but did not find a decline in the activity following the addition of 

GAC to the Swindon WwTW, and considered that the primary route of exposure was not via 

the water column but attached to particles. 

From this work, it seems there may have been a reduction of oestrogenicity in the Swindon 

WwTW effluent even before the GAC addition, as reflected by the low VTG concentrations 

measured in the male FHM in 2009 compared with the high plasma VTG concentrations 

measured in male roach in 2005. Before the installation of the GAC, disc filters were 

introduced at the Swindon WwTW, and this may have been the reason for the reduced 

oestrogenic activity before the GAC addition. Post addition of the GAC, roach collected from 

the River Ray in 2013 had much reduced plasma VTG concentrations and a reduction in the 

incidence (and severity) of intersex. However, it is clear from some of the FHM results seen 

(e.g. Fatpad Indices), that there were chemicals in the standard effluent with other modes of 

action present (i.e. not oestrogens and more likely anti-androgens). When Grover et al. 

(2011a) carried out spot water sampling of the River Ray, the anti-androgenic activity 

reduced from 148.8 to 22.4µg FLUTEQ/L following addition of the GAC. Grover et al. also 

found that the YES and AYAS values were related to each other, suggesting a coexistence 

of both types of activities. However, we did not find any VTG induction in any of our FHM lab 
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tests to be able to relate VTG concentrations with the oestrogenic content of the effluent. 

Where the VTG concentrations were elevated in the roach, even after the addition of the 

GAC, these did not mirror the bile E2EQ or FLUTEQ. Recent work by Hamilton et al. (2020) 

looked for evidence of adaptation to oestrogenic pollution but found none for selection in 

oestrogen-dependent genes. However, Hamilton et al. found an allele shift at the AR in the 

River Lee population (historically contaminated with WwTW effluents) and thought that this 

resulted from historical contamination with endocrine disrupting pesticides, i.e. due to anti-

androgens and not oestrogens. 

Volker et al. (2016) examined advanced water treatments for the removal of EDCs and 

found that activated sludge removed >59-91%. However, high anti-androgenic activity 

persisted in the final effluent following activated sludge treatment, despite the fact that 

several of the known anti-androgens are hydrophobic and hence should be well removed by 

sorption to the sludge particles, e.g. the antibacterial and antifungal agent, triclosan. Not only 

was anti-androgenic activity ineffectively removed by the activated sludge, but at some of the 

sampling periods anti-androgenic activity was formed; either activity pre-treatment was 

masked by androgens or degradation resulted in more active compounds. Similarly, Bain et 

al. (2014) also found an increase in anti-androgenic activity after secondary treatment 

compared with influent and concluded that androgens masked the anti-androgenic activity in 

the influent. There are also reports of androgenic and oestrogenic activity being almost 

completely removed by the wastewater treatment process but that anti-androgenic 

compounds resist removal and are more likely to then enter our rivers, even with the addition 

of advanced treatments (Gehrmann et al., 2018). As for the bile samples where glucuronide 

conjugates were easy to deconjugate and sulphates were harder, so glucuronide steroid 

conjugates in effluent will be completely transformed in wastewater treatment whilst sulphate 

conjugates will only be partially removed (Kumar et al., 2011).  

Chemicals are present in the Swindon WwTW effluent and are having effects on fish. The 

most pronounced effects on FHM in the lab-based studies were the demasculinising effects 

(reduced male FPI) when exposed to the standard effluent in the lab. In the absence of 

plasma VTG induction in these male fish, the culprits are likely to be anti-androgenic rather 

than oestrogenic compounds. In the wild roach collected from the River Ray, there was a 

marked improvement following the GAC treatment; a reduction in the incidence and severity 

of intersex and a reduction in the plasma VTG concentration. Both are indicative of a marked 

decrease in the amount of oestrogens entering the River Ray, but a low incidence of intersex 

is still present and male VTG concentrations are still at least an order of magnitude above 

baseline concentrations.  This work considers that chemicals enter the River Ray solely from 

the Swindon WwTW, but chemicals may also enter via non-point routes. These include 
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chemicals associated with agricultural land (e.g. herbicides, veterinary pharmaceuticals; 

Fairbairn et al., 2016) and chemicals associated with buildings and roads (e.g. PAHs; Zgheib 

et al., 2012), that may enter the River Ray through runoff. In addition, in February 2005 

9800L of diesel spilled into the River Ray upstream of the sampling site (Smith et al., 2010). 

Thus, both before and after the addition of the GAC to the WwTW, chemicals present in the 

river may also come from non-point sources.  

In 2014, the GAC plant at the Swindon WwTW was switched off; GAC plants are expensive 

and energy intensive to run and their utility as a cost-effective treatment have been 

questioned (Baynes et al., 2012; Gilbert, 2012a). It remains to be seen if endocrine 

disruption in fish living downstream of the effluent outfall will return to the levels seen in 

2005. My next chapter sets out to identify anti-androgenic compounds that are present in 

WwTW effluents and river water and to use the AYAS to determine how potent the 

compounds present are.  
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3. In vitro testing of chemicals for (anti-)androgenic activity 

3.1. Introduction 

Endocrine disrupting chemicals in the environment are a cause for concern as they may be 

inadvertently affecting the reproductive health of wildlife and humans (reviewed by Colborn 

et al., 1993; Hotchkiss et al., 2008). For example, in humans, exposure to EDCs has been 

associated with delayed onset of puberty and cancer in women (Colborn et al., 1993) and 

reduced sperm counts and increased rates of testicular cancer in men (Sharpe and 

Skakkebaek, 1993; Toppari et al., 1996).  

Most of the early research in this field concentrated on natural and man-made chemicals that 

mimic steroidal oestrogens (called xenoestrogens). However, the field of EDCs has now 

developed beyond oestrogens, and chemicals with other types of endocrine activity are also 

being studied (reviewed by Sumpter, 2005). Androgens are a major class of steroid 

hormones in vertebrates that have key functions in the development and maintenance of the 

male reproductive system, acting through binding to nuclear ARs or by interfering with the 

production of steroidogenic enzymes that catalyse the production of steroids (Gray et al., 

2006). Environmental chemicals can interfere with androgen action and disrupt these 

processes. For example, Howell et al. (1980) discovered that pulp mill effluent was 

responsible for the masculinisation of female mosquitofish, Gambusia affinis holbrooki, living 

downstream of where the effluent entered the river. Due to the complex nature of pulp mill 

effluent, the exact chemical(s) responsible for this masculinisation, an elongation of the anal 

fin, have yet to be identified (Kamali et al., 2016; Parks et al., 2001; Singh and Chandra, 

2019). In another study, Larsson and Forlin (2002) observed male-biased sex ratios of 

eelpout collected from close to another pulp mill, and suggested this to be due to 

masculinising agents in the pulp mill effluent. Similarly, Orlando et al. (2004) reported that 

cattle feedlot effluent (containing 17 β-trenbolone, the active metabolite of the androgenic 

growth promotor trenbolone acetate) entering rivers was responsible for significant 

alterations in the reproductive biology of wild FHM, with a demasculinisation of male fish and 

a defeminisation of female fish. The demasculinisation of the male reproductive system has 

also been observed in the aquatic environment. For example, following a spill of DDT, which 

was metabolised to the potent anti-androgen p,p’-DDE, male alligators in Lake Apopka 

(Florida, USA) were found to be have a reduction in penis size and plasma T concentrations 

(Guillette et al., 1996).  

An increasing number of structurally diverse non-steroidal compounds are now being 

identified as AR agonists and/or antagonists (able to bind to the AR but block its 

transcriptional activity) in vertebrates. Whilst the modes of action of oestrogens and anti-
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androgens differ, they can result in similar phenotypic effects (Filby et al., 2007; Sohoni and 

Sumpter, 1998). Androgen antagonists that competitively bind to the AR and block the action 

of the endogenous androgens can disrupt the fine balance of oestrogens and androgens, 

resulting in an oestrogenic internal environment where androgenic activity is reduced, and 

oestrogens predominate (Sohoni and Sumpter, 1998). The resulting effects are suggestive 

of oestrogenic exposure. Many of these compounds are extensively used every day in 

personal care products, fire retardants, pesticides, food products and pharmaceutical 

products, and their high volume use has led to detectable concentrations in the environment 

(Liscio et al., 2014; Urbatzka et al., 2007). This has raised interest in characterising and 

identifying further contaminants that might interact with the AR, especially as there are 

growing concerns over the possible impacts on human health, such as reduced sperm 

production and altered genital development in males (Skakkebaek et al., 2001). Whilst fewer 

chemicals appear to possess androgenic activity than possess oestrogenic activity, many 

oestrogen mimics, e.g. bisphenol A, have also been shown to have some structural features 

that give them anti-androgenic activity as well (Paris et al., 2002; Sohoni and Sumpter, 

1998). 

Traditional animal-based testing methods are slow and costly, and the low efficiency and 

high cost have generated a huge backlog of untested existing chemicals, and untested new 

chemicals awaiting approval prior to entering production (Zhang et al., 2018). There is a 

need to develop new approach methodologies that satisfy the regulatory requirements and 

are acceptable and affordable to society (Fischer et al., 2020).  

New approaches that support the humane treatment of experimental animals through the 3R 

principles (reduction, refinement, and replacement; Russell and Burch, 1959), with a shift 

away from traditional animal studies to target-specific, mechanism-based, biological 

observations, are largely obtained using in vitro assays (Tice et al., 2013). Although in vivo 

assays such as the rat pubertal and Hershberger assay remain “gold standard” for 

determining androgenic activity, multiple in vitro assays for detecting endocrine activity have 

now been developed for assessing chemical toxicity and health risk (Szafran et al., 2020). In 

vitro studies include fewer confounding factors, and are suitable for determining the direct 

effects of chemicals on a specific tissue or cell type (Celino-Brady et al., 2021). Whilst in 

vitro methods can be carried out using HTP screening and are cheaper in comparison with 

animal models, they must be used in conjunction with in vivo testing as existing in vitro 

systems cannot fully take into account bioaccumulation, metabolism, and availability to the 

target cell, or alternative pathways for endocrine disruption. 
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Most in vitro methods of compound screening use receptor-ligand binding assays, transient 

reporter gene assays (nucleic acids introduced into transfected cells that are not 

permanently incorporated into the cellular genome), mammalian cell lines that have been 

stably transfected with the androgen-responsive reporter gene (the plasmid DNA 

successfully integrated into the cellular genome and passed on to future generations of the 

cell), or recombinant yeast assays. All these assays have limitations. Screening for receptor-

ligand binding is not able to discern whether a chemical has the ability to act as an agonist or 

an antagonist (Schapaugh et al., 2015). Transient reporter gene assays do not reflect 

physiological conditions because target DNA sequences are overexpressed, and the 

transfections maintain their responsiveness for only a limited time (Terouanne et al., 2000). 

These assays often produce highly variable results due to different transfection efficiencies 

from replicate to replicate (Wilson et al., 2002).  

Currently there are several reliable in vitro tests for (anti-)androgenic activity, and these are 

generally based on either stably transfected mammalian cell lines (Korner et al., 2004) or 

yeast cells (Sohoni and Sumpter, 1998). Mammalian cell lines have been stably transfected 

with androgen-responsive reporter genes and are widely used, for example, the human 

prostatic PALM cell line (Terouanne et al., 2000), the human AR CALUX cell line (Sonneveld 

et al., 2005), and the MDA-kb2 cells stably expressing the androgen responsive luciferase 

reporter gene (Wilson et al., 2002). Stable reporter gene assays have been described for 

androgens but these sometimes use slow growing prostatic cell lines or are not selective in 

their response because of expression of other nuclear receptors (Sonneveld et al., 2005; 

Szafran et al., 2020), for example, the expression of PRs or GRs in addition to the AR (CHO-

AR-Luc, Roy et al., 2004; PALM, Terouanne et al., 2000; MDA-kb2, Wilson et al., 2002). 

Yeast assay systems have some advantages, for example, increased robustness, easier 

handling and low cost of reagents (Lopreside et al., 2019). They do also have some 

drawbacks, such as the poor transport of substances across the cell wall (Gaido et al., 1997) 

and limited metabolic capability, although Beresford et al. (2000) found their YES to have the 

means to metabolise methoxychlor. Whilst some chemicals can be converted to either more 

or less active metabolites, neglecting to determine metabolism can lead to both false 

negative and false positive results. The relevance of metabolic activation is widely 

recognised, especially as most immortalised cell lines have very low metabolic competence 

(van Vugt-Lussenburg et al., 2018). This was addressed by van Vugt-Lussenburg et al. 

(2018) who successfully incorporated metabolic enzymes to improve predictability of reporter 

gene assay results with the CALUX system, and found the endocrine activity of 23 of the 27 

chemicals tested to be affected by metabolism.  
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Yeast-based assays can have lower sensitivity than similar assays using vertebrate cells 

(Lopreside et al., 2019; Wangmo et al., 2018). Therefore, extraction/preconcentration is 

generally required and this increases the assay time and may cause higher specific toxicity 

that could cause artefacts (Lopreside et al., 2019). However, whilst Leusch et al. (2017) 

found that yeast-based assays were somewhat less sensitive than their mammalian 

counterparts, the higher tolerance of yeast-based assays to solvents meant that the most 

sensitive yeast assay (Sohoni and Sumpter, 1998) was comparable to the mammalian 

reporter gene assays. 

When testing some samples for antagonistic activity using the YAS and AR-CALUX assay, 

significant differences were seen between the YAS and AR-CALUX results, with the YAS 

showing strong antagonistic activity that was not replicated using the AR-CALUX (Mertl et 

al., 2014). Mertl et al. (2014) considered the YAS results to be false positives resulting from 

interference with the yeast cell. Mansouri et al. (2020) found a significant discrepancy 

between in vitro AR activity and the results of the in vivo Hershberger assay, especially in 

the antagonist mode, and most of the discrepancies were because the in vivo activity 

occurred at internal concentrations well above the upper limit of testing in the in vitro assays. 

Challenging chemicals that give false positives (e.g. caused by cell stress, or only active in 

metabolically competent cells) are problematic when only a few assays are carried out, and 

a battery of tests is therefore required (Judson et al., 2017). 

In 1998, the OECD set about revising and developing a new Test Guidelines Programme for 

testing and assessing chemicals for endocrine disrupting activity (Huet, 2000). The 

framework consisted of five levels, each corresponding to a different level of biological 

complexity; Level 1 using existing data and non-test information, Level 2 utilising in vitro 

assays to provide mechanistic information and Levels 3-5 using in vivo test systems for a 

more definitive understanding of the effects. This OECD guidance document on 

standardised tests was updated in 2018 to reflect scientific advances in the use of test 

methods and assessment of the endocrine activity of chemicals (OECD, 2018d). The Level 2 

in vitro assays provide data about selected endocrine mechanism(s)/pathway(s) using 

mammalian and non-mammalian methods. Assays to determine oestrogenic and androgenic 

activity use stably transfected mammalian cell lines; ER (ERα-HeLa-9903 and VM7Luc4E2 

human cell lines) and AR (AR-EcoScreen, derived from a Chinese hamster ovary cell line). 

Recently, three bioassays for the determination of oestrogenic activity in water and 

wastewater have been standardised and have resulted in international standards (two yeast-

based assays using Saccharomyces cerevisiae and Arxula adeninivorans, and one human 

cell-based reporter assay (ER-CALUX); Wangmo et al, 2018). 
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To more quickly and cost effectively evaluate potential EDCs, in vitro screening is shifting 

towards HTP screening, potentially as replacements for lower-throughput in vitro and in vivo 

tests (reviewed in Fischer et al., 2020). These HTP screening techniques are now routinely 

used in combination with computational methods and information technology to investigate 

how chemicals interact with biological systems both in vitro and in vivo (e.g. Huang et al., 

2016; Szafran et al., 2020; Thomas et al., 2019). HTP assays, though, can be used to better 

capture the diverse array of chemicals currently in use and to allow the development of 

computational models to better predict in vivo EDC activity (Szafran et al., 2020). 

Recent work with ToxCast/Tox21 mammalian HTP assays showed a high degree of 

conservation between human and vertebrate ARs (McArdle et al., 2020). The high degree of 

cross-species conservation of structural and functional aspects of key endpoints (e.g. ER 

and AR) suggests that these systems should also be useful for nonmammalian vertebrates, 

at least at the level of screening and prioritising chemicals for endocrine activity (Ankley et 

al., 2016). Translating in vitro results to in vivo has been found to be complicated and 

Wangmo et al. (2018) found good correlations were only observed for those compounds 

acting via direct binding to the sex steroid receptor. 

However, whilst HTP screening represents an efficient and standardised approach to 

chemical testing, there is uncertainty as to applicability of the data for hazard identification 

and risk assessments (Fay et al., 2018). The adverse outcome pathway (AOP) framework 

has been proposed as a means to help provide this linkage (Kleinstreuer et al., 2016).  

Knowledge of physiological and toxicological pathways has allowed the development of 

AOPs, which consist of a series of key events linking a molecular initiating event (e.g. 

receptor binding) to an adverse outcome (e.g. individual/population response) via a series of 

causal key event relationships (e.g. organ/tissue responses) (Martyniuk et al., 2020). The 

AOP framework combines relevant information and defines how measurable perturbations in 

response to environmental stressors lead to an adverse outcome or an event of regulatory 

concern (Fischer et al., 2020). One adverse outcome of concern is the interference of 

chemicals with sex hormone synthesis, regulation, and function, potentially disturbing 

reproduction and foetal development (WHO-UNEP, 2013).  

The REACH legislation entered into force in 2007 and is a regulation of the EU adopted to 

increase the protection of human health and the environment from the risks that can be 

posed by chemicals. The REACH deadline for registering existing substances manufactured 

or imported in quantities from 1 to 100 tonnes per year in the EU was on 31 May 2018. Pre-

registration a total of 145,297 unique substances/entries were submitted to the European 

Chemicals Agency, and since 2008 a total of 23,118 substances have been registered 
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(https://echa.europa.eu/information-on-chemicals/, downloaded 22/12/2020). Similarly, the 

US EPA TSCA Chemical Substance Inventory, first published in 1979, now lists more than 

86,000 chemicals (https://www.epa.gov/tsca-inventory/about-tsca-chemical-substance-

inventory). 

These EDCs enter the aquatic environment via WwTW, and endocrine activity is regularly 

found when river water and sediments are extracted and tested in in vitro assays (reviewed 

in Wangmo et al., 2018). Some have sought to identify the chemicals responsible for the 

observed endocrine activity, but the chemicals identified often only account for a proportion 

of the activity (for example, Hill et al., 2010; Rostkowski et al., 2011; Tousova et al., 2017). It 

would not be feasible to test environmental samples for all the registered substances in an 

attempt to identify the substances responsible for the endocrine disrupting activity, so a 

different approach needs to be adopted. As a result of the wide range of potential EDCs and 

the fact that they will be present in water as a complex mixture of contaminants, chemical 

analysis alone is insufficient to monitor EDCs. Instead, in vitro bioassays indicative of 

hormonal activity can be applied to assess endocrine activity in environmental waters 

(Leusch et al., 2017). Some environmental contaminants can act as antagonists which, if 

present in a sample, can reduce the agonist response in vitro, emphasising the importance 

of evaluating both agonism and antagonism in environmental samples. Further sample 

processing, such as fractionation, may help to separate the effect of agonists and 

antagonists (Leusch et al., 2017). 

Prior to my thesis, Green (2014) set out to identify the anti-androgenic chemicals responsible 

for anti-androgenic activity observed in WwTW effluent and river samples from the UK, using 

an EDA approach (Desbrow et al., 1998). The samples were extracted by solid phase 

extraction and then fractionated by HPLC. The fractions were subsequently tested in the 

YAS and AYAS, and positive fractions then underwent a broad scan by GC-MS to tentatively 

identify the constituent chemicals. The highest number of chemicals were detected in two of 

the effluent samples (1,063 and 982 chemicals), but only 16% and 25% of the chemicals 

could be identified by this analytical method and the mass spectral library. Many of the 

chemicals were of domestic origin, and included fatty acids, fragrances and flavourings, 

personal care products, and pharmaceuticals. Other industrial chemicals were also identified 

such as flame retardants and plasticisers. 

In total 109 chemicals found in the river water and effluent samples were identified by Green 

(2014), and this chapter of my thesis aims to further characterise these chemicals; to find out 

what individual chemicals from WwTW effluents have (anti-)androgenic activity and how 

potent these chemicals are. 
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3.2. Materials and methods 

3.2.1. Chemicals 

All chemicals were purchased from Sigma-Aldrich (Dorset, UK), with the exception of diethyl 

phthalate (DEP), DEHP and dibutyl phthalate (DBP) that were purchased from Greyhound 

Chemical Service (Birkenhead, UK). 

Positive control chemicals, DHT (≥99% pure) and flutamide (99% pure) were prepared in 

etOH (>99.7%, Hayman Speciality Products, Essex, UK), at 10-6M and 10-3M, respectively. 

Details of test chemicals are listed in Table 15. At the time of purchase, two of the chemicals 

were not available through Sigma-Aldrich, 12-methyl tetradecanoic acid methyl ester and 11-

H-benzo(b)fluorene, and these chemicals were therefore not tested.  

Unless otherwise stated, all test chemicals were prepared at a starting concentration of 10-

2M in etOH. Four chemicals were not soluble in 100% etOH and methyl nonadecanoate, 

carbamazepine and carbamazepine 10,11-epoxide were dissolved in 50:50 etOH:ethyl 

acetate (stock at 5x10-3M), and chrysene was dissolved in 25:75 etOH:ethyl acetate (stock 

at 2.5x10-3M). Ethyl acetate is known to dissolve some plastics at high concentrations. To 

mitigate this issue, the chemicals prepared in etOH:ethyl acetate were diluted in the first well 

of the plate into etOH to give a further 1:2 dilution of the stock, leading to concentrations of 

either 2.5x10-3M or 1.25x10-3M. 

In initial yeast (anti-)androgen screens, some chemicals caused a reduction in yeast turbidity 

(i.e. they were toxic) and were diluted for repeat testing. Dodecanoic acid, 1H-

benzimidazole, 2,4-di-tert-butylphenol, 4-chloro-3,5-dimethyl-phenol, 9H-fluorene, 

dehydroabietic acid, dihydromethyl jasmonate, diphenylacetic acid methyl ester and N-ethyl-

4-methyl benzenesulphonamide were further diluted in etOH to a stock concentration of 10-

3M, and chlorophene, N,N-dimethyl-1-dodecanamine and terbutryn were diluted to a stock 

concentration of 10-4M. For other chemicals, strong anti-androgenic activity in the initial 

screen was such that the chemical also had to be diluted to 10-3 or 10-4M to be able to obtain 

the full dose-response curve (fluoranthene, triclosan, triphenyl phosphate and methyl 

triclosan). 

All stocks were stored in sealed glass vials at 4 oC.  
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3.2.2. Recombinant yeast (anti-)androgen screens 

The recombinant hAR yeast strain was developed by Glaxo Wellcome and details of the 

YAS and AYAS have been described previously (Sohoni and Sumpter, 1998; Tyler et al., 

2000). 

In brief, yeast cells were transfected with the human AR gene together with expression 

plasmids; the androgen response element and the lac-Z gene encoding the enzyme β-gal. In 

the screen for agonistic activity, the yeast cells were incubated in medium containing the test 

chemical and substrate (chlorophenol red-β-D- galactopyranoside; CPRG), and active 

ligands induced β-gal expression. The β-gal was then secreted into the medium and caused 

the substrate to change colour from yellow to red, and this was measurable by absorbance. 

When screening for antagonist activity, DHT was added to the assay medium and the ability 

of the test chemical to inhibit the colour change was determined. 

3.2.3. Recombinant yeast (anti-)androgen screen procedure 

The medium components were prepared, and the standard assay procedure was followed 

(Sohoni and Sumpter, 1998; Tyler et al., 2000). Chemicals were serially diluted in etOH and 

10 µl volumes were transferred to 96-well flat-bottom plates (Sarstedt AG & Co, Nümbrecht, 

Germany) where the etOH was allowed to evaporate to dryness. Then, 200 µl medium 

containing CPRG and yeast (final cell number of 5 x 105 cells/ml) were added to each well. 

Included with every assay were two negative controls; plus and minus etOH. For the 

androgen screen the positive control, DHT, was included in each assay (stock concentration 

at 10-6M and serially diluted in etOH to achieve final concentrations from 5x10-8M to 2.44x10-

11M). Test chemicals, when diluted in the assay medium, resulted in a maximum well 

concentration of 5x10-4M (those with solubility issues had a maximum well concentration of 

2.5x10-4M or 1.25x10-4).  

For antagonistic screens, DHT was added to all wells at a non-saturating concentration that 

raised the background to 65% of the maximal response (2x10-9M) so as to distinguish 

between agonistic and antagonistic activity. The pharmaceutical anti-androgen, flutamide, 

was included as the positive control in every AYAS (stock solution at 10-3M and serially 

diluted in etOH to achieve final concentrations of 5 x 10-5M to 2.44 x 10-8M in the wells after 

the addition of the medium). Three negative controls were included; plus and minus etOH 

with medium including DHT, and plus etOH and medium without DHT. 
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Table 15. This table gives details of all the chemicals tests, including alternate names, a description, the Catalogue Number, CAS Number, 

molecular weight, and purity: 

No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

1 Dimethyl adipate Hexanedionic acid dimethyl 

ester 

Fatty acid 186252 627-93-0 174.19 ≥99% 

2 Methyl heptadecanoate Heptadecanoic acid methyl 

ester 

Fatty acid H4515 1731-92-6 284.48 ≥99% 

3 Methyl nonadecanoate Nonadecanoic acid methyl 

ester 

Fatty acid N5377 1731-94-8 312.53 ≥98% 

4 Methyl Palmitate Hexadecanoic acid methyl 

ester 

Fatty acid P5177 112-39-0 270.45 ≥99% 

5 Monomethyl phthalate Methyl phthalate Plasticiser 36926 4376-18-5 180.16 
 

6 Methyl palmitoleate 9-Hexadecanoic acid methyl 

ester 

Fatty acid P9667 1120-25-8 268.43 ≥99% 

7 Methyl octanoate 
 

Fatty acid 260673 111-11-5 158.24 99% 

8 Benzophenone 
 

Photo initiator/UV absorber 442842 119-61-9 182.22 
 

9 12-Methyl tetradecanoic 

acid methyl ester 

 
Fatty acid M3664 5502-94-3 242.4 ≥98% 

10 N-Butylbenzene 

sulfonamide 

NBSS Plasticiser B90653  3622-84-2 213.3 99% 

11 Myristic acid Tetradecanoic acid Fatty acid M3128 544-63-8 228.37 ≥99% 

12 Decanoic acid 
 

Fragrance/flavouring C1875 334-48-5 173.26 ≥98% 

13 Tris (2-butoxyethyl) 

phosphate 

 
Plasticiser/flame retardant 130591 78-51-3 398.47 94% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

14 Triphenylphosphine oxide  Flame retardant T84603 791-28-6 278.28 98% 

15 Dodecanoic acid Lauric acid Personal care product L556 143-07-7 220.32 98% 

16 Fluoranthene  PAH 423947 206-44-0 202.25 98% 

17 Triclosan 5-chloro-2-(2-4-

dichlorophenoxy) phenol 

Antimicrobial 72779 3380-34-5 289.54 ≥97% 

18 Triphenyl phosphate  Plasticiser/flame retardant 241288 115-86-6 326.28 ≥99% 

19 Pyrene  PAH 82648 129-00-0 202.25 ≥99% 

20 Methyl triclosan  Metabolite/Antimicrobial 34228 4640-01-1 303.57  

21 HHCB Galaxolide 1 and 2 isomers Fragrance W520608 1222-05-5 258.4 50% in 

diethyl 

phthalate 

22 Pentadecanoic acid 
 

Fatty acid P6125 1002-84-2 242.4 ~99% 

23 Methyl myristate Tetradecanoic acid methyl 

ester 

Flavouring/detergent 

intermediate/surfactant 

M3378 124-10-7 242.4 ≥99% 

24 Methyl decanoate Decanoic acid methyl ester Fatty acid W505501 110-42-9 186.29 ≥99% 

25 Methyl pentadecanoate Pentadecanoic acid methyl 

ester 

Fatty acid P6250 7132-64-1 256.42 98.5% 

26 Methyl stearate Octadecanoic acid methyl 

ester 

Fatty acid S5376 112-61-8 298.5 ~99% 

27 3-Methylphenol 
 

Precursor to pesticides 442391 108-39-4 108.14 
 

28 2-Ethyl-1-hexanol 
 

Precursor for 

DEHP/emollient 

08607 104-76-7 130.23 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

29 Triethyl phosphate  Flame retardant/plasticiser 538728 78-40-0 182.15 ≥99.8% 

30 Phthalic anhydride 
 

Precursor compound for 

plasticisers 

320064 85-44-9 148.12 ≥99% 

31 Tributyl phosphate 
 

Flame retardant/plasticiser 00675 126-73-8 266.31 ≥99% 

32 2-Ethylhexanoic acid 
 

Paint and varnish driers/ 

plasticisers/stabilisers for 

PVC 

538701 149-57-5 144.21 ≥99% 

33 Tris(2-chloroethyl) 

phosphate 

 
Flame retardant 119660 115-96-8 285.49 97% 

34 Benzo(a)pyrene 
 

PAH B1760 50-32-8 252.31 96% 

35 Methyl oleate cis-9-Octadecenoic methyl 

ester 

Fatty acid O4754 112-62-9 296.49 ≥99% 

36 Diethyl phthalate DEP Plasticiser PT-20 84-66-2 222.24 97-99% 

37 Chrysene 
 

PAH 245186 218-01-9 228.29 98% 

38 Isoproturon 
 

Herbicide 36137 34123-59-6 206.28 
 

39 Di(2-ethylhexyl) phthalate DEHP Plasticiser PT-7 117-81-7 390.56 97-99% 

40 Dibutyl phthalate DBP Plasticiser PT-17 84-74-2 278.34 97-99% 

41 Chlorophene 2-Benzyl-4-chlorophenol Preservative 548618 204-385-8  218.68 95% 

42 11-H-benzo(b)fluorene 
 

PAH 123595 243-17-4 216.28 98% 

43 Phenobarbital  Barbiturate - sedative-

hypnotic/ anticonvulsant 

P1636 50-06-6 232.24 ≥99% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

44 Diclofenac sodium salt 
 

Non-steroidal anti-

inflammatory 

D6899 15307-79-6 318.13 ≥98% 

45 Ibuprofen 
 

Non-steroidal anti-

inflammatory 

I4883 15687-27-1 206.28 ≥98% 

46 Methyl 2-(4-isobutyl 

phenyl)propanoate 

Ibuprofen methyl ester Photoproduct of ibuprofen CDS017839 61566-34-5 220.31 
 

47 Carbamazepine 
 

Anticonvulsant/analgesic C4024 298-46-4 236.27 ≥98% 

48 Carbamazepine 10,11-

epoxide 

 
Active metabolite of 

carbamazepine 

C4206 36507-30-9 252.27 ≥98% 

49 1-(4-aminophenyl)-

ethanone 

1-(4-Aminophenyl) 

ethanone hydrochloride 

 
CDS000448 41784-08-1 171.62 

 

50 1,4 Dioxane 
 

Stabilizer for 1,1,1-

trichloroethane used in 

aluminium containers 

296309 123-91-1 88.11 99.8% 

51 1-[4-(hydroxy-1-

methylethyl)phenyl] 

ethanone 

  
CDS011908 54549-72-3 180.2 

 

52 10-oxo-octadecanoic acid 

methyl ester 

Methyl 10-undecenoate Flavouring/odour removal 115126 111-81-9 198.3 96% 

53 12-Methyl tetradecanoic 

acid methyl ester 

Methyl 12-methylmyristate Fatty acid M3789 5129-66-8 256.42 ≥97% 

54 1-Butoxy-2-propanol 1-tert-Butoxy-2-propanol Industrial solvent, cleaner, 

degreaser 

433845 57018-52-7 132.2 99% 

55 1H-Benzimidazole 
 

Fungicide 194123 51-17-2 118.14 98% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

56 2-(methylthio)benzothiazole 
 

Vulcanisation accelerator/ 

degradation product of a 

biocide 

168653 615-22-5 181.28 97% 

57 2-(Methylthio)pyridine 
  

07655 18438-38-5 125.19 ≥95% 

58 2,4,7,9-Tetramethyl-5-

dicyne-4,7-diol 

2,4,7,9-Tetramethyl-5-

decyne -4,7-diol, mixture of 

(±) and meso 

Surfactant 278386 126-86-3 226.36 98% 

59 2,4-Di-tert-butylphenol 2,4-Di-tert-butylphenol Intermediate in 

manufacture of UV 

stabiliser, pharmaceuticals 

& fragrances 

137731 96-76-4 206.32 99% 

60 2,6-Di-tert-butyl-p-

benzoquinone 

 
Agent to improve 

germination, plant health 

and yield 

153931 719-22-2 220.31 98% 

61 2-Ethylhexyl diphenyl 

phosphate 

 
Plasticiser/Flame retardant 34064 1241-94-7 362.4 

 

62 2-Methyl butanoic acid 

methyl ester 

Methyl 2-methylbutyrate Flavouring W271918 868-57-5 116.16 ≥98% 

63 2-Methyl-5-(1-

methylethenyl)-2-

cyclohexen-1-one 

(R)-(−)-Carvone Fragrance/flavouring 124931 6485-40-1 150.22 98% 

64 2-Methyl-5-(1-methyl 

ethenyl)-2-cyclohexen-1-

one 

(S)-(+)-Carvone Fragrance/flavouring 435759 2244-16-8 150.22 96% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

65 2-Methylbutanoic acid Isovaleric acid Fragrance/flavouring 129542 503-74-2 102.13 99% 

66 2-Phenyl-2-propanol 
 

Fragrance/catalyst/solvent P30802 617-94-7 136.19 97% 

67 2-Toluene sulphonamide o-Toluenesulfonamide Intermediate for production 

of saccharin/plasticiser 

257990 88-19-7 171.22 99% 

68 3-(4-methoxyphenyl)-2-

propenoic acid 2ethylhexyl 

ester 

2-Ethylhexyl trans-4-

methoxycinnamate 

UV absorber 437174 83834-59-7 290.4 98%, 

contains 

BHT as 

stabiliser 

69 3,3,5-Trimethyl-2-

cyclohexen-1-one 

Isophorone Solvent in printing inks, 

paints etc./ intermediate 

I18709 78-59-1 138.21 97% 

70 3,4-Dimethyl-2,5-furandione 2,3-Dimethylmaleic 

anhydride 

Intermediate D167800 766-39-2 126.11 98% 

71 3,7-Dimethyl-1,6-Octadien-

3-ol 

Linalool Fragrance L2602 78-70-6 154.25 97% 

72 4-Chloro-3,5-dimethyl-

phenol 

 
Antimicrobial C38303 88-04-0 156.61 99% 

73 4-hydroxy-3-methoxy-

benzaldehyde 

Vanillin Flavouring/fragrance V1104 121-33-5 152.15 99% 

74 4-Methoxycinnamic acid 
 

Synthesis of 

pharmaceutical 

intermediates/cosmetics 

UV absorption 

65420 943-89-5 178.18 ≥98% 

75 4-Methoxymethylphenol 
 

Flavouring W267104 93-51-6 138.16 ≥98% 

76 4-tert-Butylcyclohexanone 
 

Fragrance B92303 98-53-3 154.25 99% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

77 6,10-Dimethyl-5,9-

undecadien-2-one 

 
Fragrance/flavouring W354201 3796-70-1 194.31 ≥97% 

78 9,12-Octadecadienoic acid 

methyl ester 

trans-9,12-Octadecadienoic 

acid methyl ester 

Fatty acid 46951-U 2566-97-4 294.5 10 mg/ml 

in heptane 

79 9H-Fluorene 
 

PAH 128333 86-73-7 166.22 98% 

80 Acetyl tri-n-butyl citrate Tributyl O-acetylcitrate Plasticiser/flavouring 388378 77-90-7 402.48 98% 

81 Acetylcedrene Methyl cedryl ketone Fragrance W522805 32388-55-9 246.39 
 

82 alpha cedrol Cedrol Fragrance W521418 77-53-2 222.37 
 

83 Benzaldehyde 
 

Flavouring B1334 100-52-7 106.12 ≥99% 

84 Benzeneacetaldehyde Phenylacetaldehyde Fragrance/flavouring 107395 122-78-1 120.15 ≥90% 

85 Benzothiazole 
 

Precursor of vulcanisation 

accelerator, flavouring, 

antimicrobial 

101338 95-16-9 135.19 96% 

86 Butanedioic acid dimethyl 

ester 

Dimethyl succinate Flavouring W239607 106-65-0 146.14 98% 

87 Camphor 
 

Preparation of mothballs/ 

plasticiser 

148075 76-22-2 152.23 96% 

88 Dehydroabietic acid 
 

Synthesis of plastics (PP), 

surfactants 

SMB00089 1740-19-8 300.44 ≥95% 

89 Dihydromethyl jasmonate Methyl dihydrojasmonate, 

mixture of cis and trans 

Fragrance W340804 24851-98-7 226.31 ≥96% 

90 Dihydromyrcenol Dihydromyrcenol Fragrance W516406 18479-58-8 156.27 ≥99% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

91 Diphenylacetic acid methyl 

ester 

Methyl diphenylacetate Chemical, organic 

intermediate 

386359 3469-00-9 226.27 99% 

92 Hexamethylbenzene 
 

Pharmaceutical 

intermediate 

322377 87-85-4 162.27 99% 

93 Hexamethyldisiloxane 
 

Solvent in organic synthesis 52630 107-46-0 162.38 ≥98.5% 

94 Hexanal dimethyl acetal 1,1-Dimethoxyhexane Fragrance/flavouring 547174 1599-47-9 146.23 98% 

95 Ketoisophorone 4-Oxoisophorone Fragrance/flavouring W342106 1125-21-9 152.19 ≥98% 

96 Methyl propyl ketone 2-Pentanone Surface coating/flavouring 471194 107-87-9 86.13 99.5% 

97 Methylbenzaldehyde p-Tolualdehyde Fragrance/flavouring/ 

pharmaceutical & dyestuff 

intermediate 

W306800 104-87-0 120.15 ≥97% 

98 N,N-Dimethyl-1-

dodecanamine 

N,N-

Dimethyldodecylamine 

Raw material for 

surfactants, germicides, and 

bactericides 

284386 112-18-5 213.4 97% 

99 N-ethyl-4-methyl 

benzenesulphonamide 

N-Ethyl-p-

toluenesulfonamide 

Plasticiser 415367 80-39-7 199.27 98% 

100 Nonanal 
 

Fragrance N30803 124-19-6 142.24 95% 

101 Nonanoic acid methyl ester Methyl nonanoate Fragrance/flavouring 76368 1731-84-6 172.26 
 

102 N-tert-Butylacrylamide 
 

Production of polymers/ 

indirect food additive 

411779 107-58-4 127.18 97% 

103 Octamethylcyclotetrasiloxane 
 

Used in production of 

silicone/ textiles/personal 

care products 

235695 556-67-2 296.62 98% 
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No. Chemical Alternate name Description Cat. no. CAS no. Mol. wt. Purity 

104 Phenoxyacetic acid methyl 

ester 

Methyl phenoxyacetate Pharmaceutical 

intermediate 

275638 2065-23-8 166.17 99% 

105 Propyl benzene (2,2-Dimethyl-1-propyl) 

benzene 

Fuel/fuel additive 359076 1007-26-7 148.24 ≥97% 

106 Squalene 
 

Moisturiser in cosmetics/ 

adjuvant in vaccines 

S3626 111-02-4 410.72 ≥98% 

107 Terbutryn 
 

Herbicide/pesticide 45677 886-50-0 241.36 
 

108 Tridecanoic acid methyl 

ester 

Methyl tridecanoate Fatty acid T0627 1731-88-0 228.37 ≥97% 

109 Xylene isomer  Xylenes Fuel/solvent in 

pharmaceutical, printing, 

rubber, and leather industries 

247642 1330-20-7 106.17 ≥98.5% 
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The plates were taped closed and shaken for 2 mins on a plate shaker. The plates were 

then incubated at 32 oC for 36 hours followed by 36 hours at room temperature. After the 

incubation period, absorbance readings were taken at 540 and 620 nm using a 

Spectramax 340PC microplate reader (Molecular Devices Limited, Wokingham, UK). 

The second absorbance (620 nm) was a measure of cell density and hence yeast 

growth, and this was especially important as high concentrations of some chemicals can 

inhibit the growth of the yeast cells or cause cell lysis (producing clear yellow wells). The 

absorbance values were corrected for cell density using to the following equation:  

Corrected value = chemical540nm-(chemical620nm-etOH blank620nm). 

All chemicals were tested in duplicate. For initial screenings, chemicals were not tested 

in the androgen screen, because in the AYAS, by raising the background to 65% of the 

maximal response, it is possible to distinguish between agonistic and antagonistic 

activity. For later experiments, chemicals were tested in both the YAS and AYAS.  

Where activity was observed in the first test, the chemicals were retested. Active 

chemicals were tested between 2 and 7 times in a total of 13 YAS and 16 AYAS.  

The EC50 for the positive control, DHT, was calculated using 4-parameter plot equations 

produced with SoftMax Pro version 5.0.1 (Molecular Devices Limited, Wokingham, UK). 

Similarly, the IC50 was calculated as the concentration of flutamide producing 50% 

inhibition of the DHT-induced activity.  

Potency values were calculated by dividing the flutamide IC50 by the chemical IC50, 

and the higher the number the more potent the chemical relative to flutamide. 

Potencies for anti-androgens are given the following symbols: 

+  very weak; <0.02 times the potency of flutamide 

++  weak; 0.02-0.199 times the potency of flutamide  

+++  moderate; 0.2-5 times the potency of flutamide 

++++  strong; >5 times the potency of flutamide 

The anti-androgenic activity of both 9H-fluoranthene and acetylcedrene ‘crept’ across 

the assay plate (i.e. activity was found in wells not directly exposed to the test chemical) 

and these 2 chemicals had to be retested on separate plates to make sure this 

behaviour did not impact on other test chemicals or controls. 

Where chemicals were toxic, resulting in clear yellow wells, the stocks were further 

diluted, and the chemicals were retested at a lower concentration.  
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3.3. Results 

Photos to demonstrate typical multiwell plates with positive control standard curves 

(YAS; DHT, AYAS; flutamide) and negative control (etOH) can be seen in Figure 43.  

The mean EC50 for the 13 androgen experiments was 9.49x10-10M ± 4.87x10-11M or 275 

± 14 ng/L, as indicated by the dotted line in Figure 44. The mean IC50 for the 16 AYAS 

experiments was 3.78x10-6M ±3.13x10-7M or 1066 ± 118µg/L, as indicated by the dotted 

line in Figure 45. See Appendix Tables A 27 and A 28 for raw data. 

Examples of the 4-parameter plots used to calculate DHT positive control EC50s and 

flutamide positive control IC50s are shown in Figure 46. 

 

Figure 43. Photos showing typical yeast screen results after 3 days incubation with the 

chromogenic substrate CPRG. (A) Androgen screen; the positive control, 

dihydrotestosterone (DHT), standard curve with red wells (left hand side) at highest 

concentrations caused by β-gal converting the yellow CPRG substrate to chlorophenol 

red, and the negative control, ethanol (etOH) remaining yellow in the absence of β-gal. 

(B) Anti-androgen screen (all well containing DHT); the positive control, flutamide 

(FLUT) standard curve, with red wells at all but the highest flutamide concentrations 

where the flutamide is blocking the AR receptor so that no β-gal is released, and the 

wells remain yellow. For the negative control (etOH) all the wells have turned red due to 

the presence of DHT.  
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Figure 44. Response of the yeast androgen screen to dihydrotestosterone (DHT) 

positive control and ethanol negative control (mean ± SE). The mean EC50 for the 13 

experiments was 9.49x10-10M ± 4.87x10-11M or 275 ± 14 ng/L, as indicated by the dotted 

line (see Appendix Table A 28 for raw data).  

 

 

Figure 45. Response of the yeast anti-androgen screen to flutamide positive control and 

ethanol negative controls (ethanol and ethanol minus DHT in the medium) (mean ± SE; 

mean ± SE). The IC50 for the 16 experiments was 3.78x10-6M ±3.13x10-7M or 1066 ± 

118 µg/L, as indicated by the dotted line (see Appendix Table A28 for raw data).   
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Figure 46. Examples of standard curves produced using SoftMax Pro version 5.0.1 

(Molecular Devices Limited, Wokingham, UK). (A) Androgen screen positive control DHT 

standard curve and (B) Anti-androgen screen positive control flutamide standard curve. 

A 4-parameter fit has been applied to each curve. The C-value gives the point of 

inflection; (A) the EC50, and (B) the IC50. 
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3.3.1. Possible androgens 

The results of all yeast experiments are presented in Table 16. Of the 107 chemicals 

tested, only three showed androgenic activity in the YAS; methyl decanoate, 2-

ethylhexanoic acid and ibuprofen (Figure 47). All three chemicals were very weak 

androgens with a maximal absorbance below the DHT EC50 and therefore potency 

measurements could not be calculated, although by extrapolation of the curves the 

potencies of these chemicals would have been at least a million times less than that of 

DHT. The highest ibuprofen concentrations (above 10-4M) showed a reduction in 540nm 

absorbance readings and this was accompanied by a reduction in turbidity (620nm) in 

these wells, indicating toxicity. 

 

 

Figure 47. Yeast androgen results showing plots for the DHT positive control, ethanol 

negative control, and the 3 test chemicals showing very weak androgenic activity; methyl 

decanoate, 2-ethylhexanoic acid and ibuprofen. Each plot is the mean of duplicate 

values ± standard error.   
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3.3.2. Possible anti-androgens 

In the AYAS, there was a reduction in the yeast turbidity at the highest concentrations 

for 18 chemicals and when this was observed it is mentioned in Table 16. Twelve of 

these 18 chemicals (tris (2-butoxyethyl) phosphate, triphenylphosphine oxide, HHCB, 

tributyl phosphate, 1H-benzimidazole, 2,4-di-tert-butylphenol, 4-chloro-3,5-dimethyl-

phenol, dihydromethyl jasmonate, N,N-Dimethyl-1-dodecanamine, N-ethyl-4-methyl 

benzenesulphonamide, terbutryn, and tridecanoic acid methyl ester) appeared to be 

anti-androgenic, although the raised background was accompanied by a noticeable 

reduction in turbidity, indicating that the chemicals were likely to be toxic. This was 

confirmed when these chemicals were retested at a lower (non-toxic) concentration and 

the apparent anti-androgenic activity was no longer present. 

Twenty of the chemicals showed anti-androgenic activity (Table 16; benzophenone, N-

butylbenzene sulphonamide, myristic acid, dodecanoic acid, fluoranthene, triclosan, 

triphenyl phosphate, pyrene, methyl triclosan, chlorophene, 1-[4-(hydroxy-1-

methylethyl)phenyl] ethanone, 2-(methylthio)benzothiazole, 9,12-octadecadienoic acid 

methyl ester, 9H-fluorene, acetylcedrene, alpha cedrol, benzeneacetaldehyde, 

dehydroabietic acid, diphenylacetic acid methyl ester, and hexamethylbenzene), 

although for two of these chemicals repeat assays gave inconsistent results (N-

butylbenzene sulphonamide and triphenyl phosphate).  

Of the chemicals showing anti-androgenic activity, fluoranthene, triclosan, methyl 

triclosan and chlorophene were the most potent, with a potency great than the positive 

control, flutamide. Triphenyl phosphate, pyrene, 9H-fluorene, and dehydroabietic acid 

had similar potency values to flutamide. Benzophenone, N-butylbenzene sulphonamide, 

myristic acid, dodecanoic acid, 2-(methylthio)benzothiazole, acetylcedrene, alpha cedrol, 

and diphenylacetic acid methyl ester were less potent than flutamide, and 1-[4-(hydroxy-

1-methylethyl)phenyl] ethanone, 9,12-octadecadienoic acid methyl ester, 

benzeneacetaldehyde, and hexamethylbenzene had only very weak activity. 

An example of four of these chemicals with anti-androgenic activity in the AYAS can be 

seen in Figure 48. 
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Figure 48. Yeast anti-androgen results showing plots for the flutamide positive control 

and ethanol (etOH) negative control, together with 4 of the test chemicals showing anti-

androgenic activity; fluoranthene, triphenyl phosphate, triclosan and methyl triclosan. 

Each plot is the mean of duplicate values ± standard error. 

 

3.3.3. Possible superagonists 

For twelve of the chemicals, when co-administered with DHT in the AYAS, there was a 

heightened response above the raised background, suggesting that these 12 chemicals 

possessed androgenic activity. As the purpose of this testing was to look for (anti-

)androgenic activity, the chemicals were then tested in the YAS and not retested in the 

AYAS. On testing these twelve chemicals in the YAS, no androgenic activity was 

observed. This heightened response above the DHT raised background is normally 

indicative of androgenic activity, and hence here we term this response as 

‘superagonism’ (Table 16; dimethyl adipate, methyl heptadecanoate, methyl palmitate, 

monomethyl phthalate, methyl octanoate, decanoic acid, methyl myristate, methyl 

pentadecanoate, 2-ethyl-1-hexanol, methyl oleate,4-methoxycinnamic acid, and 

methylbenzaldehyde). 
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Table 16. Results of all chemicals tested in the yeast (anti-)androgen. Potencies for anti-

androgens are given the following symbols; + (very weak; <0.02 times the potency of 

flutamide), ++ (weak; 0.02-0.199 times the potency of flutamide), +++ (moderate; 0.2-5 

times the potency of flutamide), and ++++ (strong; >5 times the potency of flutamide), 

and for inconsistent results the symbols are in brackets. 

No. Chemical Cas no. Androgen 

screen 

Anti-

androgen 

screen 

Comments 

1 Dimethyl adipate 627-93-0 No activity Superagonist 
 

2 Methyl heptadecanoate 1731-92-6 No activity Superagonist 
 

3 Methyl nonadecanoate 1731-94-8 No activity No activity 
 

4 Methyl Palmitate 112-39-0 No activity Superagonist 
 

5 Monomethyl phthalate 4376-18-5 No activity Superagonist 
 

6 Methyl palmitoleate 1120-25-8 Not tested No activity 
 

7 Methyl octanoate 111-11-5 No activity Superagonist 
 

8 Benzophenone 119-61-9 Not tested ++ Reduced 

turbidity at 10-

2M 

9 12-Methyl tetradecanoic 

acid methyl ester 

5502-94-3 
  

Not tested 

10 N-Butylbenzene 

sulfonamide 

3622-84-2 Not tested (++) Inconsistent 

results 

11 Myristic acid 544-63-8 Not tested ++ Toxic at 10-2M 

12 Decanoic acid 334-48-5 No activity Superagonist 
 

13 Tris (2-butoxyethyl) 

phosphate 

78-51-3 Not tested No activity at 

10-3M 

Top 2 wells at 

10-2M - 

reduction in 

turbidity 

14 Triphenylphosphine oxide 791-28-6 Not tested No activity at 

10-3M 

Top 2 wells at 

10-2M - 

reduction in 

turbidity 

15 Dodecanoic acid 143-07-7 Not tested ++ Toxic at 10-2M 

16 Fluoranthene 206-44-0 Not tested ++++ 
 

17 Triclosan 3380-34-5 Not tested ++++ 
 

18 Triphenyl phosphate 115-86-6 Not tested (+++) Inconsistent 

results 

19 Pyrene 129-00-0 Not tested +++ 
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No. Chemical Cas no. Androgen 

screen 

Anti-

androgen 

screen 

Comments 

20 Methyl triclosan 4640-01-1 Not tested ++++  

21 HHCB 1222-05-5 Not tested No activity at 

10-3M 

Top 2 wells at 

10-2M - 

reduction in 

turbidity 

22 Pentadecanoic acid 1002-84-2 No activity No activity 
 

23 Methyl myristate 124-10-7 No activity Superagonist  

24 Methyl decanoate 110-42-9 + No 

antagonistic 

activity 

 

25 Methyl pentadecanoate 7132-64-1 No activity Superagonist  

26 Methyl stearate 112-61-8 Not tested No activity  

27 3-Methylphenol 108-39-4 No activity No activity  

28 2-Ethyl-1-hexanol 104-76-7 No activity Superagonist  

29 Triethyl phosphate 78-40-0 No activity No activity  

30 Phthalic anhydride 85-44-9 No activity No activity  

31 Tributyl phosphate 126-73-8 Not tested No activity at 

10-3M 

Top 2 wells at 

10-2M - 

reduction in 

turbidity 

32 2-Ethylhexanoic acid 149-57-5 + No 

antagonistic 

activity 

 

33 Tris(2-chloroethyl) 

phosphate 

115-96-8 Not tested No activity  

34 Benzo(a)pyrene 50-32-8 Not tested No activity  

35 Methyl oleate 112-62-9 No activity Superagonist  

36 Diethyl phthalate 84-66-2 Not tested No activity  

37 Chrysene 218-01-9 Not tested No activity  

38 Isoproturon 34123-59-

6 

Not tested No activity  

39 Di(2-ethylhexyl) phthalate 117-81-7 Not tested No activity  

40 Dibutyl phthalate 84-74-2 Not tested No activity  

41 Chlorophene 204-385-8  Not tested ++++ Toxic at 10-3M 
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No. Chemical Cas no. Androgen 

screen 

Anti-

androgen 

screen 

Comments 

42 11-H-benzo(b)fluorene 243-17-4   Not tested 

43 Phenobarbital 50-06-6 Not tested No activity  

44 Diclofenac sodium salt 15307-79-6 Not tested No activity  

45 Ibuprofen 15687-27-1 + No 

antagonistic 

activity 

 

46 Methyl 2-(4-isobutyl 

phenyl)propanoate 

61566-34-5 Not tested No activity  

47 Carbamazepine 298-46-4 Not tested No activity  

48 Carbamazepine 10,11-

epoxide 

36507-30-9 Not tested No activity  

49 1-(4-aminophenyl)-

ethanone 

41784-08-1 No activity No activity  

50 1,4 Dioxane 123-91-1 No activity No activity  

51 1-[4-(hydroxy-1-

methylethyl) phenyl] 

ethanone 

54549-72-3 No activity +  

52 10-oxo-octadecanoic acid 

methyl ester 

111-81-9 No activity No activity  

53 12-Methyl tetradecanoic 

acid methyl ester 

5129-66-8 No activity No activity  

54 1-Butoxy-2-propanol 57018-52-7 Not tested No activity  

55 1H-Benzimidazole 51-17-2 No activity No activity at 

10-3M 

Reduced 

turbidity at  

10-2M.  

56 2-

(methylthio)benzothiazole 

615-22-5 No activity ++  

57 2-(Methylthio)pyridine 18438-38-5 No activity No activity  

58 2,4,7,9-Tetramethyl-5-

dicyne-4,7-diol 

126-86-3 No activity No activity  
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No. Chemical Cas no. Androgen 

screen 

Anti-

androgen 

screen 

Comments 

59 2,4-Di-tert-butylphenol 96-76-4 Toxic at 10-

2M. Retest 

at 10-3M. 

No activity 

when diluted 

to 10-3M 

Creeps/toxic at  

10-2M 

60 2,6-Di-tert-butyl-p-

benzoquinone 

719-22-2 No activity No activity  

61 2-Ethylhexyl diphenyl 

phosphate 

1241-94-7 No activity No activity  

62 2-Methyl butanoic acid 

methyl ester 

868-57-5 No activity No activity  

63 2-Methyl-5-(1-

methylethenyl)-2-

cyclohexen-1-one 

6485-40-1 No activity No activity  

64 2-Methyl-5-(1-

methylethenyl)-2-

cyclohexen-1-one 

2244-16-8 No activity No activity  

65 2-Methylbutanoic acid 503-74-2 No activity No activity  

66 2-Phenyl-2-propanol 617-94-7 No activity No activity  

67 2-Toluene sulphonamide 88-19-7 No activity No activity  

68 3-(4-methoxyphenyl)-2-

propenoic acid 

2ethylhexyl ester 

83834-59-

7 

No activity No activity  

69 3,3,5-Trimethyl-2-

cyclohexen-1-one 

78-59-1 No activity No activity  

70 3,4-Dimethyl-2,5-

furandione 

766-39-2 No activity No activity  

71 3,7-Dimethyl-1,6-

Octadien-3-ol 

78-70-6 No activity No activity  

72 4-Chloro-3,5-dimethyl-

phenol 

88-04-0 Toxic at 

10-2M. 

Retest at 

10-3M. 

No activity 

when diluted 

to 10-3M 

Toxic at 10-2M 

73 4-hydroxy-3-methoxy-

benzaldehyde 

121-33-5 No activity No activity  

74 4-Methoxycinnamic acid 943-89-5 No activity Superagonist  
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No. Chemical Cas no. Androgen 

screen 

Anti-

androgen 

screen 

Comments 

75 4-Methoxymethylphenol 93-51-6 No activity No activity 
 

76 4-tert-

Butylcyclohexanone 

98-53-3 No activity No activity 
 

77 6,10-Dimethyl-5,9-

undecadien-2-one 

3796-70-1 No activity No activity 
 

78 9,12-Octadecadienoic 

acid methyl ester 

2566-97-4 No activity + 
 

79 9H-Fluorene 86-73-7 No activity +++ Creeps 

80 Acetyl tri-n-butyl citrate 77-90-7 No activity No activity 
 

81 Acetylcedrene 32388-55-9 No activity ++ Creeps 

82 alpha cedrol 77-53-2 No activity ++ 
 

83 Benzaldehyde 100-52-7 No activity No activity 
 

84 Benzeneacetaldehyde 122-78-1 No activity + 
 

85 Benzothiazole 95-16-9 No activity No activity 
 

86 Butanedioic acid dimethyl 

ester 

106-65-0 No activity No activity 
 

87 Camphor 76-22-2 No activity No activity 
 

88 Dehydroabietic acid 1740-19-8 Toxic at 

10-2M. 

Retest at 

10-3M. 

+++ Toxic at 10-2M 

89 Dihydromethyl jasmonate 24851-98-7 No activity No activity 

when 

diluted to 

10-3M 

Reduced turbidity 

at 10-2M.  

90 Dihydromyrcenol 18479-58-8 No activity No activity 
 

91 Diphenylacetic acid 

methyl ester 

3469-00-9 No activity ++ Reduced turbidity 

at 10-2M 

92 Hexamethylbenzene 87-85-4 No activity + 
 

93 Hexamethyldisiloxane 107-46-0 No activity No activity 
 

94 Hexanal dimethyl acetal 1599-47-9 No activity No activity 
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No. Chemical Cas no. Androgen 

screen 

Anti-

androgen 

screen 

Comments 

95 Ketoisophorone 1125-21-9 No activity No activity  

96 Methyl propyl ketone 107-87-9 No activity No activity  

97 Methylbenzaldehyde 104-87-0 No activity Superagoni

st 

 

98 N,N-Dimethyl-1-

dodecanamine 

112-18-5 No activity No activity 

when 

diluted to 

10-4M 

Creeps/toxic at  

10-2M 

99 N-ethyl-4-methyl 

benzenesulphonamide 

80-39-7 Retest at 

10-3M 

No activity 

at 10-3M 

Reduced turbidity 

at 10-2M 

100 Nonanal 124-19-6 No activity No activity  

101 Nonanoic acid methyl 

ester 

1731-84-6 No activity No activity  

102 N-tert-Butylacrylamide 107-58-4 No activity No activity  

103 Octamethylcyclotetra-

siloxane 

556-67-2 Need to 

retest due 

to creeping 

on plate 

No activity  

104 Phenoxyacetic acid 

methyl ester 

2065-23-8 No activity No activity  

105 Propyl benzene 1007-26-7 No activity No activity  

106 Squalene 111-02-4 No activity No activity  

107 Terbutryn 886-50-0 Toxic at 10-

2M. Retest 

at 10-4M. 

No activity 

at 10-4M 

Toxic at 10-2M 

108 Tridecanoic acid methyl 

ester 

1731-88-0 Need to 

retest due 

to creeping 

on plate 

No activity 

at 10-3M 

Reduced turbidity 

at 10-2M 

109 Xylene isomer  1330-20-7 Need to 

retest due 

to creeping 

on plate 

No activity  
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3.4 Discussion 

The European Chemicals Agency currently contains information on around 145,000 

chemicals, and this list is continuously growing. It is not possible to test all of these as 

individual chemicals and what has been monitored for so far represents only a small 

proportion of the chemicals potentially present in the environment (Heiger-Bernays et al., 

2018; Scott et al., 2018). When Alygizakis et al. (2019) examined WwTW effluent 

samples across 9 countries, of the 280 chemicals detected, 25–67% were 

pharmaceuticals, 5-30% were industrial chemicals, 3-21% were pesticides, 3-23% were 

psychoactive drugs and 2-17% antibiotics. Due to the structurally diverse nature of these 

chemicals many end up in the aquatic environment, and undetectable concentrations 

often means that chemical analysis is not sufficiently sensitive rather than that the 

chemicals are absent (Itzel et al., 2019). 

Our yeast YAS was only able to detect androgenic activity in three of the 107 chemicals 

tested (<3%) and found anti-androgenic activity in 20 of the chemicals tested (19%). In a 

study by Kojima et al. (2004), 200 pesticides were tested for (anti-)androgenic activity by 

a reporter gene assay using Chinese hamster ovary cells. Of the chemicals tested, none 

were found to have androgenic activity, but 66 were found to have anti-androgenic 

activity (33%) with 34 of these having both oestrogenic and anti-androgenic activity 

(17%). Araki et al. (2005), in another study, screened 253 industrial chemicals using AR-

EcoScreen cells but only found two AR agonists (<1%) and nine AR antagonists (3.6%). 

Our results are very much in agreement with these findings; that is, more chemicals 

possessed anti-androgenic activity than possessed androgenic activity.  

3.4.1. Possible androgens 

In my chemical set, the three androgenic chemicals had only very weak (unquantifiable) 

activity, and of these, ibuprofen produced the highest response. Ibuprofen is a widely 

used non-steroidal anti-inflammatory drug, and a study by Kristensen et al. (2011) found 

an association between intrauterine exposures and risk factors for developing male 

reproductive disorders. In an in vitro yeast luciferase assay, Ezechias et al. (2016) found 

ibuprofen to exhibit a dose-dependent antagonism towards the AR, rather than the 

agonism seen in this study. Ji et al. (2013) also tested ibuprofen in adult zebrafish and, 

following a 14-day exposure, found that females had increased concentrations of E2 and 

T and males had decreased T concentrations, although this effect was not thought to be 

due to androgenic activity but rather by alteration of aromatase activity, a steroidogenic 

enzyme involved in converting androgens to oestrogens. 



141 
 

Whilst no reports of methyl decanoate having androgenic activity could be found in the 

literature, 2-ethyl hexanoic acid has been linked with developmental toxicity, although 

being positive to the peroxisome proliferator-activated receptor-alpha rather than the AR 

in the CALUX assay (Kroese et al., 2015).   

3.4.2. Possible anti-androgens 

Twelve of our test chemicals caused a reduction in the raised background alongside a 

reduction in the turbidity (i.e. the number of yeast cells). We concluded that this 

reduction was due to toxicity, because when these chemicals were diluted to remove the 

toxicity, there was no activity. Of these twelve chemicals, dihydromethyl jasmonate has 

also been reported by others to have no anti-androgenic activity (Araki et al., 2005). 

Similar to our results, Simon et al. (2016) found 2,4-di-tert-butylphenol to be inactive, 

whereas Mertl et al. (2014) reported anti-androgenic activity. However, tris (2-

butoxyethyl) phosphate, HHCB, 4-chloro-3,5-dimethyl-phenol and terbutryn have all 

been reported in the literature as having anti-androgenic activity. Some of these results 

may be actually a misinterpretation of toxicity, as no tests for toxicity were carried out 

during the in vitro testing for anti-androgenic activity of tris (2-butoxyethyl) phosphate 

(Liscio et al., 2014), 2,4-di-tert-butylphenol (Mertl et al., 2014), and 4-chloro-3,5-

dimethyl-phenol (Liscio et al., 2014). Likewise, when Huang et al. (2011b) examined 

data from the screening of approximately 3000 chemicals against a panel of 10 human 

nuclear receptors, more compounds were active in the antagonist mode than the agonist 

mode, and the authors considered this due to cytotoxicity interfering with results in the 

antagonist mode. However, others did carry out parallel tests for toxicity (terbutryn, Araki 

et al., 2005; HHCB, Ermler et al., 2011) and the different results observed may therefore 

be due to differences in the test systems used, i.e. mammalian versus yeast cells. For 

two of our toxic chemicals (2,4-di-tert-butylphenol and N,N-Dimethyl-1-dodecanamine), 

this toxicity did ‘creep’ across the plate to affect other wells. Previously, oestrogenic 

activity of alkylphenols, in the YES, has also been reported to creep across plates to 

wells not dosed with the compound, but the toxicity at the higher concentrations did not 

creep in these oestrogenic compounds (Beresford et al., 2000). 

In agreement with others, we found no anti-androgenic activity for 3-methyl phenol 

(Satoh et al., 2005), 2-ethyl-1-hexanol (Araki et al., 2005), 2,6-Di-tert-butyl-p-

benzoquinone (Simon et al., 2016), 2-phenyl-2-propanol (Simon et al., 2016), 3-(4-

methoxyphenyl)-2-propenoic acid 2ethylhexyl ester (Vinggaard et al., 2008), 3,3,5-

trimethyl-2-cyclohexen-1-one (Araki et al., 2005; Simon et al., 2016), benzaldehyde 

(Araki et al., 2005), and camphor (Araki et al., 2005; Simon et al., 2016). Likewise, we 
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found no activity with isoproturon and this is in agreement with Vinggaard et al. (2008) 

and Ait-Aissa et al. (2010), but not with Orton et al. (2009) where the ‘Brunel’ yeast 

AYAS was also used. However, this chemical when tested by Orton et al. showed a 

sharp decline in response at the higher concentrations (often indicative of toxicity), and 

this apparent activity may therefore not in be real. We also saw no anti-androgenic 

activity when testing carbamazepine, whereas Liscio et al. (2014) found weak anti-

androgenic activity. 

For one of the groups of chemicals tested, phthalates, there are mixed reports in the 

literature regarding anti-androgenic activity, depending on the paper or test method 

employed. In our yeast-based assay, DEP, DEHP and DBP did not show any anti-

androgenic activity, which is in agreement with Roy et al. (2004), Vinggaard et al. 

(2008), Simon et al. (2016), and Freyberger et al. (2010). However, Tamura et al. (2006) 

and Christen et al. (2010) did find DEP to show anti-androgenic activity using MDA-kb2 

cells, and Lorenzetti et al. (2010) did observe a weak effect that was considered 

indicative of a mixed agonist/antagonist effect with LNCaP cells. As no anti-androgenic 

activity was observed by other laboratories using different mammalian cell lines (PALM, 

Freyberger et al., 2010; CHOK1, Roy et al., 2004; TARM-Luc, Simon et al., 2016; 

Vinggaard et al., 2008), the lack of activity is not restricted to yeast-based assays. 

There have also been discrepancies in the in vivo literature (reviewed in Svechnikov et 

al., 2016), and whilst some phthalates alter reproductive development in an anti-

androgenic fashion, the mechanism of action does not appear to involve either the ER or 

AR (Gray et al., 2001; Marcoccia et al., 2017). The presence of anti-androgenic activity 

in other in vitro assays could therefore be false positive results or involve other 

mechanisms of action that are not AR receptor mediated.  

Twenty of our test chemicals showed anti-androgenic activity, although for two of these 

chemicals this activity was inconsistent. Triphenol phosphate produced inconsistent anti-

androgenic results in our repeat assays, although others have also observed anti-

androgenic activity in vitro (Liscio et al., 2014) and in vivo it has also been shown to 

significantly decrease fecundity following a 21-day adult zebrafish exposure study (Liu et 

al., 2013). Our anti-androgenic activity was observed with triphenol phosphate only in 

our first testing, and it is possible that this chemical became inactive during storage due 

to degradation. Additionally, N-butylbenzene sulphonamide gave inconsistent results in 

our AYAS assay and this compound has been reported by others (Simon et al., 2016) to 

be inactive. However, the assay utilised by Simon et al., derived from the human 
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mammary gland adenoma T47-D cell line, appears to be less sensitive than our yeast 

assay because, whilst they saw oestrogenic activity with benzophenone, they saw no 

anti-androgenic activity with benzophenone. However, in support of our benzophenone 

results, others have similarly reported anti-androgenic activity (Suzuki et al., 2005; 

Tamura et al., 2006). 

For a number of the active chemicals tested by us, others have also reported anti-

androgenic activity in the literature. We found fluoranthene to be a potent anti-androgen 

(more potent than flutamide) and this has also been reported by both Vinggaard et al. 

(2008) and Araki et al. (2005). Triclosan is also a potent androgen antagonist in our 

study and many other publications have previously reported similar activity. For 

example, Vinggaard et al. (2008) reported an IC25 of 3-10 µM and Tamura et al. (2006) 

reported an IC50 of 7.5µM. However, Christen et al. (2010) observed an enhancement 

of DHT induced activity (superagonism) using MDA-kb2 cells and this activity could be 

blocked by flutamide. In this study we found chlorophene to be a potent antagonist 

(more potent than flutamide) and similarly Rostkowski et al. (2011) found chlorophene to 

be more potent than flutamide. However, Lange et al. (2015) carried out an in vitro study 

of 11-ketotesterone (an androgen found in fish) induced activation of stickleback ARα 

and ARβ but saw no inhibition with chlorophene. Lange et al. considered that the lack of 

an inhibition was due to the relatively low sequence identity between the human AR and 

stickleback AR. Pyrene was of a similar anti-androgenic potency to flutamide and has 

also been found to be anti-androgenic by others (Tamura et al., 2006; Vinggaard et al., 

2008). We also found 9H-fluorene to have a similar potency to flutamide, although no 

activity was seen when it was tested by Araki et al. using AR-EcoScreenTM cells derived 

from a Chinese hamster ovary cell line (Araki et al., 2005).  

Many of our results are similar to those already reported by others in the literature. 

However, whilst both Vinggaard et al. (2008) and Tamura et al. (2006) found chrysene to 

be very weakly anti-androgenic, no activity was seen by ourselves. Also, when 

benzo[a]pyrene was tested for anti-androgenic activity, we found no activity. This is 

different to results reported by both Ermler et al. (2011) and Tamura et al. (2006), who 

found benzo[a]pyrene to be androgenic at higher concentrations and anti-androgenic at 

lower concentrations using MDA-kb2 cells, although Ermler et al. did encounter solubility 

issues. Others report benzo[a]pyrene to have only anti-androgenic activity (i.e. no 

androgenic activity at the higher concentrations; Charles et al., 2005; Vinggaard et al., 

2008). However, whilst many cite the anti-androgenic effect of benzo[a]pyrene in vitro, 

Charles et al. (2005) found no activity in the Hershberger assay. Additionally, an in vivo 
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zebrafish exposure study linked the developmental outcomes to aromatase inhibition 

(i.e. less androgens were converted to oestrogens; Alharthy et al. (2017), so the in vitro 

activity reported in the literature may in fact be artefactual. 

Where others have reported seeing anti-androgenic activity in in vitro based assays, 

often these reports have used mammalian cell-based assays rather than yeast cell-

based assays. In addition to the cells potentially behaving differently (including having 

different susceptibilities to chemical toxicity), many mammalian cell-based assays 

deliver the chemical in dimethyl sulphoxide (DMSO), and solubilities (and therefore 

availability) of chemicals may thus be different to yeast-based assays typically using 

etOH as solvent. Additionally, some report using higher chemical stock concentrations 

than tested by myself (1M; Araki et al., 2005) and this may also account for 

discrepancies when lower concentrations were tested. 

3.4.3. Possible superagonists 

In androgen responsive mammalian tissues, T is converted to the more potent DHT by 5 

α-reductase enzymes, and inhibiting these enzymes leads to a reduction in DHT 

synthesis (Aggarwal et al., 2010). Liang and Liao (1992) discovered that certain naturally 

occurring unsaturated fatty acids were able to inhibit 5 α-reductase in cultured cells. Liu 

et al. (2009a) further found fatty acids were able to inhibit the proliferation of LNCaP 

prostate cancer cells. The most potent was dodecanoic acid, followed by myristic acid 

and then pentadecanoic acid. In our yeast screen for anti-androgenic activity we saw 

anti-androgenic activity with dodecanic acid and myristic acid, but not with 

pentadecanoic acid. However, as T was not present in our yeast assay, it is not clear 

how blocking the conversion of T to DHT would create an anti-androgenic effect.  

As it is unlikely that the conversion of T to DHT is the reason for the superagonism, 

another possibility might be due to an alteration in the yeast cell membrane fluidity. 

When Alexandre et al. (1996) exposed Saccharomyces cerevisiae to decanoic acid, a 

medium-chain fatty acid, the plasma membrane H+-ATPase activation induced by the 

decanoic acid correlated with an alteration in membrane lipid constituents, with a 

resultant increase in membrane fluidity. It is therefore conceivable that in our studies 

fatty acids behaving as superagonists might alter the yeast cell membrane and allow the 

DHT to more readily enter the cell. S. cerevisiae do possess 3-oxo-5-alpha-steroid 4-

dehydrogenase that contributes to dolichol-linked oligosaccharide biosynthesis and 

polyprenol degradation and is homologous to human SRD5A3 steroid 5 alpha-reductase 

3 (www.yeastgenome.org). These compounds might therefore be interfering with this 

pathway and as dolichol is an important cellular membrane component may be altering 
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the ability of the DHT to enter though the yeast cell wall. Additionally, there is evidence 

showing that the fatty acids methyl palmitate and methyl oleate have an androgenic 

effect in the Hershberger rat assay (Seres et al., 2014), but when we tested these two 

chemicals in the absence of DHT, no androgenic activity was seen. However, it could be 

that these fatty acids both affect the permeability of the cell wall and act as very weak 

androgens, but it is only in the presence of the DHT that this ‘superagonism’ is apparent. 

Many of the chemicals that behaved as superagonists were fatty acids, although 

monomethyl phthalate, 4-methoxycinnamic acid and methylbenzadlehyde were not. 

Others have similarly seen superagonism, for example, Ermler et al. (2010) found that 

genistein had little to no activity when tested on its own but when tested with DHT 

induced an androgenic response greater than that of DHT. In the MDA-kb2 cell line, 

Christen et al. (2010) found the flame retardant BDE-100 and antimicrobials triclosan 

and triclocarbon to have no or weak agonistic activity, but they enhanced the DHT-

dependent activation of AR-responsive gene expression by 150%, 180% and 130%, 

respectively. This superagonism is not specific to the AR, and superagonism when 

testing genistein has also been observed by Legler et al. (1999), Sonneveld et al. (2005) 

and Berckmans et al. (2007), in different oestrogen responsive reporter gene assays. 

Additionally, the potentiation of the feminising effects of EE2 have been observed in vivo 

in stickleback fish and also rats exposed to EDCs (triclosan, chlorophene and 

dichlorophene; Lange et al. (2015), and triclosan; Stoker et al. (2010).  

These examples of previously reported superagonism are not with fatty acids, and whilst 

there are reports of superagonism with triclosan (Christen et al., 2010; Lange et al., 

2015; Stoker et al., 2010), we saw strong anti-androgenic activity with our yeast-based 

assay instead. Araki et al. (2005) suggested that superagonism could be due to 

synergism via AR and GR transcriptional mechanisms, although our yeast cells do not 

have a GR receptor, and therefore this mechanism cannot explain our results. Stoker et 

al. (2010) also proposed that triclosan either enhanced the interaction of the EE2 with 

the ER or it increased endogenous oestrogen concentrations by inhibiting their 

clearance or catabolism. As our test system did not have an ER or EE2 to interact with 

it, triclosan might be capable of directly inhibiting the AR and having feminising effects.  

3.4.4. Further work 

In addition to checking for toxicity, the potential for false positives can be reduced by 

checking that a strong antagonist is able to block the ability of an agonist to bind to a 

receptor, i.e. whether the response is specific or non-specific (Dent et al., 2019; Juberg 

et al., 2014). For chemicals with anti-androgenic activity, the addition of DHT would 
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enable recovery of the signal if the response was mediated through the AR (Fic et al., 

2014). Parallel inhibition of activity in YES and YAS would also indicate that there was 

non-specific inhibition of induction, i.e. not mediated through the receptor (Fic et al., 

2014).  

These tests were not investigated as part of this study, although they might have helped 

to clarify where toxicity was confounding results. Especially as inconsistencies were 

evident, both when retesting chemicals and also when comparing our results in the 

literature. Instead, for chemicals that tested positive, these were then retested in a 

modification of the yeast (anti-)androgen screen, for confirmation of activities. This work 

is presented in Chapter 4. 
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4. Comparison of two in vitro assays for the determination of (anti-) 

androgenic activity of environmental chemicals 

4.1. Introduction 

As outlined earlier (Chapter 3, Section 3.1), the OECD conceptual framework for testing 

EDCs consists of five levels of testing, investigating different levels of biological 

complexity and sources of data, including in vitro assays (Level 2) which provide vital 

foundation data prior to higher level tests (Levels 3-5) using animal models (OECD, 

2018d). 

In Chapter 3, I tested a large number of chemicals (>100) identified from WwTW 

effluent, for androgenic and anti-androgenic activity using a yeast-based in vitro assay 

system. Whilst testing these chemicals for (anti-)androgenic activity, I came across 

several unexpected results (inconsistencies when retesting chemicals with the AYAS, 

and also some inconsistencies with results published by others) that highlighted some of 

the difficulties that can arise when interpreting results from yeast-based in vitro screens. 

These issues could affect data interpretation and lead to the mislabelling of some of the 

chemicals as EDCs, and a false positive result might lead to in vivo investigations 

leading to unnecessary costs and wasted resources. In contrast, false negatives might 

mean that chemicals do not get investigated further, leading to exposure to the 

environment and people.  

The primary issues identified in Chapter 3 were 1) possible false positives for anti-

androgenic activity which may be caused by chemical toxicity reducing cell viability, or 

‘edge effect’ caused by evaporation, both leading to an altered colourmetric response in 

the assay (presented in Sections 3.3.2 and 3.4.2), and 2) the possibility that some 

chemicals may be ‘superagonists’ (presented in Sections 3.3.3 and 3.4.3).   

Therefore, to refine these results, the in vitro assay was modified, and the results from 

the two assays were then compared to find out which was the most reliable. In this 

Chapter, I used the modified yeast-based assay system to retest all of the androgenic, 

anti-androgenic and superagonist chemicals to confirm the activity observed in Chapter 

3. Additionally, the issues of cytotoxicity and the ‘edge effect’ were investigated further 

to see if they could lead to false positive anti-androgenic activity.  

As found in Chapter 3, Sections 3.3.3, some chemicals had no androgenic activity but 

were able to enhance the activity of DHT, thus acting as ‘superagonists’. We do not yet 

know how superagonists might function, but it is possible that these chemicals are able 

to alter the yeast cell wall permeability and enhance the transport of the chemical into 
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the cell. For example, many of the ‘superagonists’ were fatty acids and this group of 

compounds have been described as ‘penetration enhancers’ (Williams and Barry, 2004). 

Methoxyacetic acid, the active metabolite of ethylene glycol, is an established testicular 

toxicant (Bagchi et al., 2011). In co-transfection studies by Jansen et al. (2004) using 

human hepatic carcinoma (HepG2) cells, two short-chain fatty acids (methoxyacetic acid 

and valproaic acid) were found to markedly increase cellular sensitivity to nuclear 

hormone receptor ligands by enhancing the transcriptional efficiency of ligand activated 

nuclear hormone receptors. The short-chain fatty acids did not affect the EC50 of the 

receptor ligands in the presence of methoxyacetic acid, so Jansen et al. (2004) 

concluded that the effect was not exerted at the ligand binding step. Other short-chain 

fatty acids were also tested, and the carboxylic acid component was found to be 

important for the enhanced hormone activity. Bagchi et al. (2011) also investigated the 

effects of methoxyacetic acid using an androgen-responsive mouse testicular Leydig cell 

line, either on its own or in combination with T. Methoxyacetic acid was able to both 

enhance and antagonise AR activity, and affected many cellular processes including ion 

transport, apoptosis, cell adhesion, phosphorylation and transcription. 

Assays for cytotoxicity measure whether a compound or sample is toxic to cells and in 

most assays either the cell number, cell proliferation or cell viability are measured. The 

determination of cell number in yeast-based assays is usually carried out by monitoring 

absorbance at 600 or 620nm and looking for a reduction in turbidity indicative of toxicity 

(Archer and van Wyk, 2015; Liscio et al., 2014; Ma et al., 2014). Yeast cells have also 

been observed microscopically for damage as an indication of toxicity (Tamura et al., 

2006). 

There are a number of tests available for toxicity that measure different end points of cell 

death. The tryphan blue exclusion assay relies on the fact that viable cells are 

selectively permeable to certain dyes, and membranes of dead cells lack this selectivity. 

The ratio of live cells (clear cytoplasm) to dead cells (blue cytoplasm) is determined 

visually by use of a haemocytometer (Strober, 1997). Another parameter for cell death is 

the integrity of the cell membrane, which can be measured by the leakage of lactate 

dehydrogenase (LDH) by damaged cells. In addition, the metabolic activity of viable cells 

is the basis of a number of colourimetric assays, for example, the ‘MTT assay’ relies on 

the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by 

the mitochondrial dehydrogenase of viable cells to a blue formazan product that can be 

measured spectrophotometrically (Mosmann, 1983).  
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It is more common to use an assay to directly determine cytotoxicity, but often this 

involves setting up plates in parallel (one for antagonist and one for cytotoxic activity), 

although Berckmans et al. (2007) developed a method using transgenic MELN for 

testing for oestrogenicity and LDH-leakage using a single plate. Weyermann et al. 

(2005) used the LDH, MTT, neutral red and adenosine triphosphate cytotoxicity assays 

to determine the toxicity of triton X-100, chloroquine, sodium azide and ketamine on 

fibroblast cells. The results seen with triton X-100 were comparable with all four assays. 

However, for chloroquine and sodium azide major differences were found with the four 

assays. Assays like LDH and MTT, which rely on enzymatic reactions, could be 

influenced by enzyme inhibitors, leading to misleading results. Hamid et al. (2004) 

compared alamar blue and MTT assays for the HTP screening of 177 drugs using the 

hepatoma cell line, HepG2. Both assays performed consistently, although the 

alamarBlue® assay was slightly more sensitive for most of the drugs tested. 

Cellular screening experiments are often carried out in 96-well plates and multiple day 

incubations can lead to loss of growth medium due to evaporation, particularly in the 

outer wells (Berg et al., 2001; Zimmermann et al., 2003). This can lead to an ‘edge 

effect’ or ‘hook effect’ to the elevated background around the edge of the plate and, 

depending on the size of the ‘edge effect’, this could be misled for anti-androgenic 

activity (anti-androgenic activity also leads to a reduction in colour).  

Prior to testing anticancer drugs, Faessel et al. (1999) characterised the statistical 

properties of an in vitro cell growth inhibition assay. Multiwell plate row and column 

parabolic growth patterns were seen with the most pronounced being the column effect. 

Faessel et al. examined several different parameters, e.g. different multiwell plates, 

multichannel pipette, plate reader, position in incubator, and differential evaporation. 

However, the underlying cause was not discovered so a randomisation step was 

developed for the growth assay. Others have also reported methods, for example, 

removing controls from the periphery plates, to eliminate edge effects (Juberg et al., 

2014).  

Similarly, Patel et al. (2005), using a 3-(4,5-dimethylthiazol-2-yl)-5(3-

carboxymethonyphenol)-2-(4-sulfophenyl)-2 H-tetrazolium assay, found that with 

evaporation in the outer wells there was an increase in absorbance compared to the 

inner wells. When the cells were counted, though, there was no difference in the cell 

numbers between the rows, and the decreased volume was consistent with the 

increased absorbance. However, whilst there may not be a quantifiable difference in cell 

number in these outer wells, Walzl et al. (2012) found significantly different cell 
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metabolism when using the alamarBlue® assay; both an increase in dye concentration 

and a reduction in cellular metabolic activity. Walzl et al. (2012) managed to restore 

these differential effects with the use of a humidity chamber to reduce evaporation.  

It is often hard to compare results of different in vitro assays, as their responses can 

vary due to use of different cell lines and protocols. Therefore, International Organisation 

for Standardisation (ISO) standardised bioassay protocols have been developed, 

including two for yeast-based assays for oestrogenic activity: 

• ISO 19040-1. Water quality – Determination of the estrogenic potential of water 

and wastewater – Part 1: Yeast estrogen screen (YES, Saccharomyces 

cerevisiae) 

• ISO 19040-2. Water quality – Determination of the estrogenic potential of water 

and wastewater – Part 2: Yeast estrogen screen (A-YES, Arxula adeninivorans; 

Hettwer et al., 2018)  

The former of these yeast-based assays uses a similar recombinant yeast strain as used 

for my research outlined in Chapter 3. However, both of these assays are for testing for 

oestrogens and none have yet been developed for (anti-)androgenic assessment. 

In this chapter, the chemicals identified in Chapter 3 with androgenic (3 chemicals, 

Section 3.3.1), anti-androgenic (20 chemicals; Section 3.3.2) or superagonistic activity 

(able to enhance activity of DHT in the AYAS; 12 chemicals; Section 3.3.3), were 

retested using a modified method based on the International Organization for 

Standardization protocol; ISO 19040-1:2018.  

In addition, the issues highlighted in Chapter 3 have been further scrutinised to try to 

identify the reason for the observed results: 

• toxic chemicals can lead to reduction in the colourimetric response that can be 

misinterpreted as anti-androgenic activity. Nystatin (a fungicide) was used to kill 

the yeast cells to assess its effect on the DHT-elevated background in both the 

AYAS and the MTT assay. Comparisons were then made between colourimetric 

absorbance readings and the absorbance readings for turbidity. 

• the ‘edge effect’ (a reduction in the colourimetric absorbance around the 

periphery of the multiwell plate) can be misdiagnosed as anti-androgenic activity. 

Different sealing tapes, to prevent evaporation during the 3 day incubation 

period, were used to see if the ‘edge effect’ could be minimised. 
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• the position that a chemical is pipetted into a multiwell plate may affect the 

response due to the ‘edge effect’. The well position in multiwell plate and its 

effect on anti-androgenic potency relative to flutamide was investigated. 

This investigation illustrates potential issues encountered which may affect data 

interpretation and lead to the mislabelling of certain chemicals as EDCs.  

 

4.2. Materials and methods 

4.2.1. Chemicals 

All chemicals used to prepare medium and components for the assays were purchased 

from Sigma-Aldrich (Dorset, UK) unless stated otherwise. 

Positive control chemicals, namely DHT (≥99% pure) and flutamide (99% pure), were 

purchased from Sigma-Aldrich. DHT and flutamide were prepared at stock 

concentrations of 10-6M and 10-3M in etOH (>99.7%; Hayman Speciality Products, 

Essex, UK), respectively. All test chemicals were prepared at a starting concentration of 

10-2M unless otherwise stated (see Chapter 3 for further details). All stocks were stored 

in sealed glass vials at 4 oC. 

4.2.2. Recombinant yeast (anti-)androgen procedures 

4.2.2.1. Yeast (anti-)androgen assay without yeast cell lysis 

Using the standard YAS (Sohoni and Sumpter, 1998), in the presence of androgens β-

gal was secreted into the medium, causing the substrate, CPRG, to change colour from 

yellow to red and this was measurable by reading the absorbance at 540 nm. For the 

standard AYAS, DHT was added to all the wells and where anti-androgens were present 

this blocked the colour development and the substrate remained yellow. Both standard 

methods are described in Chapter 3. 

4.2.2.2. Yeast (anti-)androgen assay with yeast cell lysis (adapted from ISO 

19040-1:2018 Water quality - Determination of the estrogenic potential of water and 

wastewater - Part 1: Yeast estrogen screen (Saccharomyces cerevisiae)) 

The preparation of medium and buffers is described in Chapter 2, Section 2.2.3.2.4.3.  

For the modified YAS the positive control, DHT, was included in each assay (stock 

concentration at 10-6M and serially diluted in etOH to achieve final concentrations from 

5x10-8M to 2.44x10-11M).  
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The positive control, flutamide, was included in every modified AYAS (stock solution at 

10-3M and serially diluted in etOH to achieve final concentrations of 5 x 10-5M to 2.44 x 

10-8M in the wells). For antagonistic screens, DHT at 2x10-9M was also added to the 

medium prior to addition to all wells.  

The assay procedure is described in Chapter 2, Section 2.2.3.2.4.3. In brief, chemicals 

were serially diluted in etOH and 10 µl volumes were transferred to 96-well flat-bottom 

plates where the etOH was allowed to evaporate to dryness. Then, 200 µl exposure 

medium containing yeast (final cell number of 5 x 105 cells/ml) was added to each well, 

and the plates were sealed and incubated at 32 oC. After incubation the yeast cells are 

lysed with freeze/thaw cycles and assay buffer containing the substrate oNPG was 

added to all wells. Any β-gal in the cell lysate caused the clear medium to turn yellow 

and plate readings were taken at 420 nm (colour) and 620 nm (turbidity) after 30, 60, 

and 90 mins incubation. The 90 min readings were used for all analyses. 

4.2.2.3. Investigation of issues with the potential to cause false positive results 

when screening for anti-androgenic activity 

4.2.2.3.1. MTT assay for investigating the effects of toxicity on anti-androgenic 

activity 

Nystatin was used to observe the effects of toxicity on the DHT response in the AYAS. 

Nystatin was prepared at 120 mg/L in meOH and stored in a sealed vial at 4 oC. MTT 

(used to measure metabolic activity), was prepared at 5 mg/ml in PBS, filter sterilised 

and stored in aliquots at -20 oC.  

For the MTT assay, the nystatin was serially diluted in etOH at 1/1.3 dilutions to elongate 

the transition from toxic to non-toxic concentrations, and this gave final well 

concentrations of 6 to 0.3 mg/L. As described in Chapter 3, 10 µl volumes were then 

transferred to the assay plate and allowed to evaporate to dryness. Then, 180 µl 

medium containing yeast (final cell number of 5 x 105 cells/ml) and DHT at 2x10-9M was 

added to each well. The plates were taped closed and shaken for 2 mins on a plate 

shaker. The plates were then incubated at 32 oC for 68 ± 1 hours. 

After the 3 day incubation period, 20 µl of MTT was added to each well containing 180 µl 

medium (total volume 200 µl). Plates were covered with foil and incubated at 32 oC for 3 

hours (shaking after 0, 1 and 2 hours) and during this time yellow tetrazolium MTT was 

reduced by metabolically active cells into intracellular purple formazan crystals. The 

medium was carefully aspirated from each well (150 µl) so as not to disturb the cells, 

and this was replaced with 150 µl DMSO. The plates were then shaken for 30 mins to 
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solubilise the crystals prior to reading at 570 nm (colour) and 620 nm (turbidity) on a 

plate reader. 

Alongside this MTT assay plate, a further two plates were set up with the same serial 

dilutions of nystatin for running in the standard AYAS, with absorbance reading at 540 

nm (colour) and 620 nm (turbidity), and the modified AYAS with cell lysis with 

absorbance readings at 420 nm (colour) and 620 nm (turbidity). 

4.2.2.3.2. Different sealing tapes to prevent evaporation causing the ‘edge effect’ 

that can be misdiagnosed as anti-androgenic activity 

To investigate if possible ‘edge effect’ can be influenced by different sealing tapes, both 

the standard AYAS and the modified method with lysis were performed with just etOH 

(normally negative control), i.e. no additional chemicals were included in these assays. 

Ethanol was added to all wells in a 96-well plate and was allowed to evaporate to 

dryness. Media containing DHT was then added to all wells and plates were sealed with 

the different tapes, namely tape (i), Browne autoclave indicator tape, and tape (ii) Bel-

Art® Write-on™ Label Tape, prior to incubation at 32 oC. 

4.2.2.3.3. Well position in multiwell plate and its effect on anti-androgenic potency 

relative to flutamide 

Benzeneacetaldehyde was chosen to investigate the issue of well position, as it had a 

clear dose-response curve in the AYAS with no indication of toxicity. 

Benzeneacetaldehyde along with the positive control (flutamide) and negative control 

(etOH) were tested in the AYAS using the method without lysis. The two chemicals 

(flutamide and benzeneacetaldehyde) were pipetted to different rows in multiwell plates; 

into the outer rows or inner rows (see Figure 60 insets illustrating plate layouts). Sealing 

tape (i) was used to seal the plates prior to incubation at 32 oC for 3 days. 

4.2.3. Data Analysis 

All test chemicals were tested in duplicate in every experiment, and each chemical was 

tested in at least two separate experiments. Plotted values are means ± standard error. 

The absorbance values were corrected for cell density using the following equation: 

Corrected value = chemical420 or 540nm-(chemical620nm-etOH blank620nm). 

The EC50s and IC50s were calculated using 4-parameter plot equations with SoftMax 

Pro version 5.0.1. Potency values were calculated by dividing the flutamide IC50 by the 

chemical IC50, and the higher the number the more potent the chemical relative to 

flutamide. 
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4.3. Results 

Photos illustrating typical standard curves can be seen in Figure 49. The EC50 for the 

YAS using the method with lysis was 8.89x10-10 ± 4.51x10-11M or 258 ± 13 ng/L (n=6, 

Figure 50). The IC50 for the AYAS using the method with lysis was 1.03x10-5 ± 8.59x10-

7M or 3834 ± 237 µg/L (n=11, Figure 51). See Appendix Tables A 29 and A 30 for raw 

data. 

 

Figure 49. Photos showing typical yeast screen results after 3 days incubation followed 

by cell lysis and incubation with the chromogenic substrate oNPG. Chemicals were 

diluted from left (high concentration) to right (low concentration). (A) androgen screen; 

the positive control, dihydrotestosterone (DHT), standard curve with yellow wells at 

highest concentrations caused by β-gal converting the clear oNPG substrate to the 

yellow o-nitrophenol, and the negative control, ethanol (etOH) remaining clear in the 

absence of β-gal. (B) anti-androgen screen (all wells containing DHT); the positive 

control, flutamide (FLUT) standard curve, with yellow wells at all but the highest 

flutamide concentrations where the flutamide is blocking the AR receptor so that no β-

gal is released, and the wells remain clear. For the negative control (etOH) all the wells 

have turned yellow due to the presence of DHT. 
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Figure 50. Mean ± SEM of the positive control, DHT, and the negative control, ethanol, 

from 6 androgen screens using the cell lysis method. The DHT EC50 for the 6 

experiments was 8.89x10-10M ± 4.51x10-11M, as indicated by the dotted line (see 

Appendix Table A 30 for raw data). 

 

 Figure 51. Mean ± SEM of the positive control, flutamide, and the ethanol negative 

controls (ethanol and ethanol minus DHT in the medium) from 11 anti-androgen screens 

using the cell lysis method. The IC50 for the 11 experiments was 1.03x10-5M ± 8.59x10-

7M, as indicated by the dotted line (see Appendix Table A 30 for raw data). The ethanol 

minus DHT in the medium is included and note that flutamide does not fully block the 

DHT.  
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4.3.1. Comparison of the standard YAS with the lysis method for detecting androgenic, 

anti-androgenic and superagonism activity 

Over 100 chemicals were tested in the standard AYAS (presented in Chapter 3, Section 

3.2.1). Where chemicals tested positive for (anti-)androgenic activity or behaved as 

superagonists, these were repeated in the modified AYAS with yeast cell lysis.  

4.3.1.1. Androgenic activity 

Using the standard YAS with no lysis, three chemicals were found to have very weak 

androgenic activity (methyl decanoate, 2-ethyl hexanoic acid and ibuprofen; Figure 52A). 

The activity of these 3 androgens was too weak to quantify. At the higher ibuprofen 

concentrations (>10-4M) there was a reduction in the androgenic activity due to a 

reduction in the yeast turbidity (i.e. at these test concentrations this chemical was toxic). 

When these 3 chemicals were tested for androgenic activity using the modified method 

with cell lysis, no androgenic activity was seen (Figure 52B), although there was a 

reduction in absorbance with ibuprofen due to toxicity at concentrations above 10-5M 

(the top 6 wells). 

4.3.1.2. Anti-androgenic activity 

Thirty two chemicals showed anti-androgenic activity in the standard AYAS with no lysis. 

For twelve of these chemicals there was a distinct reduction in turbidity and on diluting 

these chemicals to non-toxic concentrations, anti-androgenic activity was no longer 

observed. Therefore, twenty chemicals were anti-androgenic using the method without 

lysis, with no apparent reduction in the turbidity readings. Of these twenty chemicals, 18 

also showed anti-androgenic activity in the assay with cell lysis and the potencies using 

the two methods correlated well (R2 = 0.8789; Table 17 and Figure 53). Two chemicals 

were anti-androgenic using the standard method with no lysis but had no activity using 

the modified method with cell lysis; myristic acid and triphenyl phosphate. The structures 

of the eighteen chemicals showing (anti-)androgenic activity with both methods are 

shown in Figure 54. The chemical properties and environmental concentrations of the 

most potent of these anti-androgens (moderate and strong potency) are shown in Table 

18. 
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Figure 52. Androgen screen results seen in (A) the standard androgen screen with no 

cell lysis and (B) the modified anti-androgen screen with cell lysis. The plots are for 

mean values ± SEM for dihydrotestosterone (DHT) positive control, negative control 

(ethanol) and the three test chemicals; methyl decanoate, 2-ethyl hexanoic acid and 

ibuprofen.  
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Table 17. Comparison of potency values for 20 chemicals possessing anti-androgenic 

activity using the standard yeast anti-androgen screen without cell lysis and the modified 

method with cell lysis. Potency values are relative to the positive control, flutamide, and 

values above 1 are more potent than flutamide. The results are colour coded; strong in 

red (>5 times the potency flutamide), moderate in orange (0.2-5 times the potency of 

flutamide), weak in yellow (0.02-0.199 times the potency of flutamide) and very weak in 

white <0.02 times the potency of flutamide). See Appendix Tables A 31 and A 32 for raw 

data. 

Chemical 

no. 
Chemical Cas no. 

Anti-androgenic potency 

relative to flutamide 

No lysis 

with CPRG 

Lysis with 

oNPG 

17 Triclosan 3380-34-5 9.865 15.736 

41 Chlorophene 120-32-1 12.662 10.166 

20 Methyl triclosan 4640-01-1 8.488 8.859 

16 Fluoranthene 206-44-0 5.113 6.768 

88 Dehydroabietic acid 1740-19-8 1.158 2.194 

19 Pyrene 129-00-0 3.268 1.520 

79 9H-Fluorene 86-73-7 0.485 0.475 

81 Acetylcedrene 32388-55-9 0.151 0.294 

91 
Diphenylacetic acid methyl 

ester 
3469-00-9 0.161 0.237 

82 alpha cedrol 77-53-2 0.030 0.144 

84 Benzeneacetaldehyde 122-78-1 0.034 0.134 

56 2-(methylthio)benzothiazole 615-22-5 0.063 0.129 

10 N-Butylbenzene sulfonamide 3622-84-2 0.172 0.117 

8 Benzophenone 119-61-9 0.020 0.104 

15 Dodecanoic acid 143-07-7 0.081 0.102 

78 
9,12-Octadecadienoic acid 

methyl ester 
2566-97-4 0.032 0.072 

51 
1-[4-(hydroxy-1-methylethyl) 

phenyl] ethanone 
54549-72-3 0.016 0.071 

92 Hexamethylbenzene 87-85-4 0.018 0.014 

18 Triphenyl phosphate 115-86-6 0.517 0.000 

11 Myristic acid 544-63-8 0.086 0.000 
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Figure 53. Anti-androgen screen results; mean potency values (± SEM; n≥2) for 20 

chemicals (see Table 17 for chemical details) using the standard anti-androgen screen 

with no cell lysis (red bars) and the modified method with cell lysis (blue bars).  

Potency values are relative to the positive control, flutamide, and values above 1 are 

more potent than flutamide. R2 = 0.8789. See Appendix Tables A 31 and A 32 for raw 

data.  
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Anti-androgens – potent: 

Fluoranthene   Triclosan                       Methyl triclosan           Chlorophene 

 

 

 

Anti-androgens – moderate: 

Pyrene   9H-Fluorene   Dehydroacietic acid 

 

 

 

Anti-androgens – weak: 

Benzophenone N-Butylbenzene sulphonamide 2-(methylthio)benzothiazole  

 

 

Acetylcedrene   Alpha cedrol   Dodecanoic acid 

     

 

Myristic acid 

 

Anti-androgens – very weak: 

1-[4-(hydroxyl-1-methylethyl)phenyl]  Benzeneacetaldehyde Hexamethylbenzene 

ethanone 

 

 

9,12-Octadecadienoic acid methyl ester 
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Figure 54. Structures of the eighteen anti-androgenic chemicals with activity observed 

using both yeast screen methods, grouped in order of activity; strong to very weak 

activity. Most have one or more benzene ring within the structure and below are 

examples of different side chain structures that can be attached to the ring. 
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Table 18. Chemical characteristics of the most potent anti-androgens (strong and moderate activity) together with their reported environmental 

concentrations (no information was available for methyl triclosan as this is a metabolite and not a parent compound). 

Chemical 

no. 
Chemical  Cas no. 

Anti-

androgenic 

potency 

relative to 

flutamide 

Solubility 

(mg/L) 

Log 

Kow 

Log 

BCF a 

Half-life 

(days) b 

Environmental 

concentrations 

(surface water) 

(ng/L) 

17 Triclosan 3380-34-5 15.736 4.621 4.76 2.81 3.29 <3-135c 

41 Chlorophene 120-32-1 10.166 112 3.6 2.04 0.268 86-191c 

20 Methyl triclosan 4640-01-1 8.859      

16 Fluoranthene 206-44-0 6.768 0.1297 5.16 3.07 2.57 <1-29.6d 

88 Dehydroabietic acid 1740-19-8 2.194 2.412 4.8 0.5 5.69 130-170e 

19 Pyrene 129-00-0 1.520 0.2249 4.88 2.89 0.556 -840f and 750-4890g 

79 9H-Fluorene 86-73-7 0.475 1.339 4.18 2.42 1.37  

81 Acetylcedrene 32388-55-9 0.294 1.278 5.02 2.98 7.82 <10h 

91 
Diphenylacetic acid 

methyl ester 
3469-00-9 0.237 21.41 3.72 2.12 0.067 

 

a – Log bioconcentration factor (LogBCF) = 0.6598 LogKow - 0.333 + correction 

b - normalised for 10g fish 

c – Arlos et al. (2015); d – Tousova et al. (2017); e – McMartin et al. (2002); f – Kolpin et al. (2002); g – Kotti et al. (2018); h – Klaschka et al. 

(2013) 

Values for LogKow, LogBCF and Half-life were taken from the Environmental Protection Agency Estimation Program Interface™ Suite v4.11 

https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411
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4.3.1.3. Chemicals able to enhance activity of DHT in anti-androgen screen 

(superagonists) 

In 2013 and 2014 when the chemicals were initially tested in the standard AYAS with no 

lysis, twelve chemicals (many being fatty acids) had no obvious androgenic activity in 

the YAS but in the AYAS they were able to heighten the response above the raised 

background in the presence of DHT, normally suggestive of androgenic activity (see 

Chapter 3, Section 3.3.3). In the absence of androgenic activity, these 12 chemicals 

were enhancing the DHT response, i.e. behaving as superagonists.  

At a later date in 2017, four of the more active fatty acids (dimethyl adipate, methyl 

heptadecanoate, methyl palmitate and methyl octanoate) were used as examples in the 

AYAS to compare the results observed using the method without lysis (Figure 55A) and 

the method with lysis (Figure 55B). 

In 2016 and later in 2018, assays were run to try to get a better understanding for the 

reason for the enhanced activity in the AYAS but in these years no superagonism was 

apparent. That is, the earlier results did not repeat. 

4.3.1.4. Investigation of issues with the potential to cause false positive results 

when screening for anti-androgenic activity 

4.3.1.4.1. MTT assay for investigating the effects of toxicity on anti-androgenic 

activity 

Nystatin was used to observe if toxicity could induce false positive results in the 

standard AYAS, i.e. cause a reducing effect on the DHT-elevated absorbance readings. 

Results are shown for the standard AYAS (540 nm and 620 nm absorbance readings 

are compared; Figure 56A), and the modified AYAS with lysis (420 nm and 620 nm 

absorbance readings are compared; Figure 56C). The standard AYAS 540 nm 

absorbance readings are also compared with the MTT assay 570 nm readings (Figure 

56B). For the MTT assay, at the top four nystatin concentrations (wells 1-4; 6-2.7 mg/L; 

Figure 56B) the 570 nm absorbance readings are low, due to toxicity. When the 540 nm 

absorbance results from the standard AYAS were overlaid with the MTT 570 nm results 

(Figure 56B), where there was a lack of metabolic activity due to the nystatin’s toxicity at 

570 nm, there was also no colour development at 540nm that would normally be seen 

with DHT in the AYAS. At the nystatin concentration that was partially toxic (well 5; 2.1 

mg/L) there was an increase in both the 540nm (standard AYAS) and 570 nm (MTT 

assay) absorbance readings, and at the other nystatin concentrations (wells 6-12; 1.6-

0.3 mg/L) none of the absorbance readings were affected by the nystatin and developed 
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Figure 55. Superagonist results seen in (A) the standard anti-androgen screen with no 

cell lysis and (B) the modified anti-androgen screen with cell lysis. The plots are for 

mean values ± SEM for the flutamide positive control, the negative control (ethanol), and 

four fatty acids; dimethyl adipate, methyl heptadecanoate, methyl palmitate and methyl 

octanoate. Also included is an ethanol standard curve from the androgen screen run 

alongside the anti-androgen screen (ethanol minus DHT). 
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Figure 56. Results from screens monitoring yeast turbidity using nystatin as a positive 

control to kill the yeast (highest concentration in Well 1 (6 mg/L nystatin) diluting to 

lowest concentration in Well 12 (0.3 mg/L nystatin)). The background absorbance was 

raised by adding DHT to the medium in all wells and at the highest nystatin 

concentrations, there was a drop in both colour and turbidity; (A) anti-androgen screen 

using the standard method without lysis, (B) standard anti-androgen screen compared 

with the MTT assay, and (C) the modified anti-androgen screen with lysis. The bars 

represent the colourimetric absorbance at 3 different wavelengths (CPRG; 540 nm, 

MTT; 570 nm, oNPG; 420 nm) and the lines shown the yeast turbidity read at 620 nm (A 

and C) or 540 nm colour (B). In (A) the oval marks the discrepancy between the CPRG 

(540 nm) and turbidity (620 nm) readings when using the standard method without lysis. 

In (A) this drop in the 540 nm reading without a corresponding drop in turbidity could be 

interpreted as anti-androgenic activity, whereas in the modified yeast method with lysis 

(C) the corresponding drop in turbidity indicates the toxicity observed in the MTT assay 

(B).   
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as would be expected due to the DHT present in the wells. Similarly, for the modified 

AYAS with lysis, the nystatin was toxic in the first 4 wells (620 nm and 420 nm; Figure 

56C) and at the more dilute nystatin concentrations there was a decrease in the toxicity 

matched by an increase colourimetric response due to the DHT in the wells.  

However, for the standard AYAS without lysis, in well 5 (Figure 56A) the nystatin was 

not visibly toxic (no reduction in the 620 nm absorbance), but there was less colour 

development at 540 nm. That is, in the standard screen the nystatin did not appear to be 

toxic but there was less colour development that might indicate anti-androgenic activity, 

if only turbidity was used as an indicator of toxicity (which it frequently is). 

 

4.3.1.4.2. Different sealing tapes to prevent evaporation causing the ‘edge effect’ 

that can be misdiagnosed as anti-androgenic activity 

In the standard screen the ‘edge effect’ (measured by absorbance at 540 nm) was a 

pronounced reduction in the 540 nm absorbance reading with sealing tape (i) (Figure 

57A), as well as a visible reduction in the well volume around the edge of the plate. This 

‘edge effect’ around the edge of the plate was not accompanied by a reduction in yeast 

turbidity (measured by absorbance at 620 nm; Figure 57B).  

For the standard AYAS and the method with lysis, two different sealing tapes were 

compared to determine if they influenced ‘edge effect’ (a drop in the raised absorbance 

around the edge of the plate). The sealing tapes were used for the duration of the 3 day 

incubation. For the sealing tape (i), the ‘edge effect’ was obvious (540 nm absorbance; 

Figure 58A) and similarly, there was no reduction of the turbidity readings around the 

edge of the plate (620 nm absorbance; Figure 58B). For the sealing tape (ii), the ‘edge 

effect’ was not obvious (540 nm absorbance; Figure 58C) and similarly, there was no 

reduction of the turbidity readings around the edge of the plate (620 nm absorbance; 

Figure 58D). 

The two types of sealing tape were also tested in the modified AYAS with cell lysis. The 

‘edge effect’ with tape (i) was much reduced (420 nm absorbance; Figure 59A), and 

similarly there was no effect on the turbidity readings (620 nm absorbance; Figure 59B). 

When carrying out the AYAS with lysis, for the plate sealed with tape (ii) there was no 

‘edge effect’ (420 nm absorbance; Figure 59C), or effect on the turbidity readings 

(620nm absorbance; Figure 59D). 
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Figure 57. The influence of the plate column and plate row on the ‘edge effect’ at 540 

nm (colourimetric) and 620 nm (turbidity) absorbance values using the standard anti-

androgen screen method without lysis. All wells contained ethanol (evaporated to 

dryness) and media containing DHT, and plates were sealed with tape (i), to prevent 

evaporation during the 3 day incubation. (A) shows a pronounced ‘edge effect’ with a 

reduction in the 540 nm absorbance reading, most visible in the outside rows; Row A 

and H, and also the outside columns; Column 1 and 12. Each well has the same 

concentration of DHT, however the lower 540 nm absorbance in the outer rows/columns, 

could be misinterpreted as anti-androgenic activity. (B) shows the turbidity, 620 nm 

absorbance readings, in the same plate. The turbidity (620 nm) does not have the same 

reduction as the colourmetric (540 nm) readings. Both plots represent individual values 

from one 96-well plate.
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Figure 58. Different sealing tapes and their influence on the ‘edge effect’ values in the standard AYAS without cell lysis. All wells contain 

ethanol (evaporated to dryness) and media containing DHT, and plates were sealed with tape to prevent evaporation during the 3 day 

incubation. (A) shows the 540 nm absorbance readings for the plate sealed with sealing tape (i) and (B) the 620 nm absorbance values 

(turbidity) for the same plate. (C) shows the 540 nm absorbance readings for the plate sealed with sealing tape (ii) and (D) the 620 nm 

absorbance values (turbidity) for the same plate. Plots represent individual well values. 
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Figure 59. Different sealing tapes and their influence on the ‘edge effect’ values in the modified AYAS with cell lysis. All wells contain ethanol 

(evaporated to dryness) and media containing DHT, and plates were sealed with tape to prevent evaporation during the 3 day incubation. (A) 

shows the 420 nm absorbance readings for the plate sealed with sealing tape (i) and (B) the 620 nm absorbance values (turbidity) for the same 

plate. (C) shows the 420 nm absorbance readings for the plate sealed with sealing tape (ii) and (D) the 620 nm absorbance values (turbidity) 

for the same plate. Plots represent individual well values. 
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4.3.1.4.3. Well position in multiwell plate and its effect anti-androgenic potency 

relative to flutamide 

When flutamide was pipetted into outer rows A and H, the maximum absorbance value 

was 2.373 and the IC50 was 2.76x10-6M (Figure 60A), whereas when flutamide was 

pipetted in to middle rows D and E the maximum absorbance value was 2.529 and the 

IC50 was 2.58x10-6M (Figure 60B). The reverse was true when the positions of the 

positive control and the test chemical were swapped, and when benzeneacetaldehyde 

was pipetted into middle rows D and E, the maximum absorbance was 2.474  and the 

IC50 was 7.37x10-5M (Figure 60A), whereas when benzeneacetaldehyde was pipetted 

in to outer rows A and H the highest absorbance was 2.421 and the IC50 was 4.87x10-

5M (Figure 60B). That is, the outer rows have lower maximal absorbance values as they 

are affected by the ‘edge effect’ and chemicals are less affected when they are pipetted 

into the middle rows. The position that the chemical was pipetted on the plate did also 

alter the position of the slope of the curves and the potency of benzeneacetaldehyde 

relative to flutamide in plate layout A (Figure 60) was 0.037 and for plate layout B the 

potency of benzeneacetaldehyde relative to flutamide was 0.054. 
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Figure 60. Pipetting to different positions in the multiwell plate and effect on chemical 

potency. Plots describing how the position of the chemical on a 96-well plate can 

influence perceived activity in the standard anti-androgen screen method without cell 

lysis.The positive control (flutamide; blue diamonds), the negative control (ethanol; red 

squares), and the example test chemical (benzeneacetaldehyde; green triangles) were 

pipetted into different positions in the multiwell plate (see insets). In (A) flutamide is 

pipetted at the edge of the plate in rows A and H and benzeneacetaldehyde is pipetted 

to rows D and E. In (B) the positions are reversed and flutamide is pipette to rows D and 

E and benzeneacetaldehyde is pipetted to rows A and H. Sealing tape (i) was used to 

seal the plates prior to incubation. For both plate layouts, ethanol is pipetted to rows C 

and F. The plots are for mean values ± SEM.
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4.4. Discussion 

4.4.1. Comparison of the standard YAS with the lysis method for detecting androgenic, anti-

androgenic and superagonism activity 

There are a number of reliable in vitro tests for (anti-)androgenic activity and these are 

generally based on either mammalian cell lines (Korner et al., 2004) or yeast cells (Sohoni 

and Sumpter, 1998). When testing chemicals for (anti-)androgenic activity in this thesis using 

the standard YAS and AYAS (Sohoni and Sumpter, 1998), a number of issues were 

encountered that had the potential to influence the results and could lead to a chemical 

being wrongly labelled. 

4.4.1.1. Androgenic activity 

Using the standard YAS to test 107 chemicals for activity, only three had androgenic activity 

(methyl decanoate, 2-ethyl hexanoic acid and ibuprofen) and all gave sub-maximal 

responses that were too weak to quantify. There are no reports in the literature of methyl 

decanoate or 2-ethylhexanoic acid possessing either in vitro or in vivo androgenic activity 

(latest Web of Science search 22/12/2020) and a search of PubChem 

(https://pubchem.ncbi.nlm.nih.gov/, downloaded 22/12/2020) of HTP screens utilising AR 

bioassays with MDA cells showed either no activity or inconclusive activity for both methyl 

decanoate or 2-ethylhexanoic acid. Differences in activity when using different test systems 

have been explained by others as being due to a difference in toxicity, different permeability 

of the cell wall/membrane, or the fact that yeast cells lack mammalian-specific coactivators 

(Christiaens et al., 2005). However, yeast cells would be more likely to underestimate activity 

rather than overestimate it, due to the less permeable cell wall (Soto et al., 2006). Given that 

no androgenic activity was seen when using the modified YAS with cell lysis, the results 

seen here may be due to artefacts. 

For ibuprofen, at concentrations above 10-4 M there was a reduction in turbidity, and this 

meant that the curve did not attain its maximal absorbance. However, even by extrapolating 

the curve, the potency would have been at least a million times less than the potency of 

DHT. No androgenic activity was seen with ibuprofen when using the modified yeast screen 

with cell lysis, but the ibuprofen was toxic to the yeast cells at the highest concentrations, so 

androgenic activity may not have been seen for this reason. Why the ibuprofen would be 

more toxic using the method with cell lysis is unclear, as whilst the preparation of the 

medium was different, the concentrations of the individual components were almost 

identical. I could find no reports in the literature of ibuprofen possessing androgenic activity 

(latest Web of Science search 22/12/20), but ibuprofen has been demonstrated to have anti-

androgenic activity in a bioluminescent yeast assay (Ezechias et al., 2016) and has been 
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linked with anti-androgenic effects in humans (depression of T production; Kristensen et al., 

2018). As ibuprofen is able to interact with the AR, the yeast may have behaved differently to 

the chemical (as an agonist and not an antagonist) due to the near toxic concentrations, or 

produced false positive androgenic activity triggered by cell stress at concentrations 

approaching toxicity (Escher et al., 2019; Fay et al., 2018; Judson et al., 2017). 

4.4.1.2. Anti-androgenic activity 

For some of the chemicals tested in this thesis, other laboratories found them to have anti-

androgenic activity, but we did not. For example, tris (2-butoxyethyl) phosphate and triphenyl 

phosphate (Liscio et al., 2014), HHCB (Orton et al., 2014), benzo[a]pyrene (Tamura et al., 

2006; Vinggaard et al., 2008), DEP (Christen et al., 2010; Tamura et al., 2006), chrysene 

(Vinggaard et al., 2008) and (Tamura et al., 2006), and carbamazepine (Liscio et al., 2014). 

For a number of these chemicals we noticed toxicity that might have been misinterpreted as 

antagonistic activity by others, e.g. tris (2-butoxyethyl) phosphate. At concentrations close to 

toxicity cells activate numerous defence mechanisms (described as cytotoxic burst), and 

these can potentially lead to non-specific activation of reporter genes (Escher et al., 2019). 

However, for other chemicals, e.g. benzo[a]pyrene, we did not notice any sign of toxicity, but 

in this case it is worth noting that the benzo[a]pyrene was poorly soluble and may not have 

been taken up by the yeast cells.  

On searching PubChem (https://pubchem.ncbi.nlm.nih.gov/, downloaded 22/12/2020) for 

confirmation of AR antagonistic activity, the results were a mix of inactive, inconclusive and 

active for a number of these chemicals. The HTP bioassays mainly use MDA-kb2 cells with 

the test chemicals dissolved in DMSO, and therefore even with similar bioassay protocols, 

consistent results are limited. 

4.4.1.3. Chemicals able to enhance activity of DHT in anti-androgen screen 

(superagonists) 

Using the standard AYAS method, twelve chemicals produced an enhanced response above 

that produced by baseline DHT. However, in the YAS, in the absence of DHT, these 

chemicals had no androgenic activity and hence we term them ‘superagonists’. Some of the 

‘superagonist’ compounds were fatty acids. These chemicals could be acting as penetration 

enhancers rather than actually enhancing the activity at the AR, i.e. the fatty acid could be 

aiding DHT entry into the cells or the secretion of β-gal into the medium.  

This superagonism was seen with both our standard and modified AYAS methods (without 

cell lysis and with cell lysis) but the results were not reliable in that the superagonism was 

noticed in 2013, 2014, and 2017, but not in 2016 and 2018. Fresh chemicals were 
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purchased at the start of this work in 2013 and 2014, and again in 2017 when the 

superagonists were repeated in the modified AYAS with cell lysis. It is therefore possible that 

the superagonism was observed when the chemicals were fresh but not after they had been 

stored. However, due to the long periods between assays, there would have been different 

batches of yeast and media used for many of the experiments, making it difficult to be 

consistent despite following a Standard Operating Procedure. These differences may have 

impacted on the sensitivity of the cells to the various chemicals, and perhaps the cell wall 

was more/less penetrable at different times, depending on this sensitivity. Unfortunately, due 

to time constraints I was not able to investigate this phenomenon further. 

This potentiation of the response has also been observed with genistein using both gene 

reporter assays for anti-oestrogens (Legler et al., 1999; Sonneveld et al., 2005) and for anti-

androgens (Ermler et al., 2010). Similarly, the potentiation of the response has also been 

observed with triclosan in gene reporter assays for both anti-oestrogens (Ahn et al., 2008) 

and for anti-androgens (Ahn et al., 2008; Christen et al., 2010).  

Superagonism observed in vitro has also been observed in vivo. For example, when Knag et 

al. (2013) exposed stickleback fish to naphthenic acids, no androgenic effect was observed 

when tested alone, but when tested with DHT there was a potentiation of the spiggin 

induction (androgenic) response in a dose-dependent manner. But when this experiment 

was repeated with seawater rather than freshwater, there was no longer a potentiation of the 

spiggin signal, and Knag et al. (2013) suggested that possibly the composition of the 

naphthenic acids was different when in the saltwater. The potentiation of the feminising 

effects of EE2 have also been observed in vivo in roach (Lange et al., 2015) and rats 

exposed to EDCs (Stoker et al., 2010), and given that this phenomenon has been observed 

in a number of different instances (with different chemicals, different cell lines, different 

receptors, in vitro and in vivo) it seems likely that the response is not receptor mediated.   

4.4.1.4. MTT assay for investigating the effects of toxicity on anti-androgenic activity 

Toxic effects of chemicals in vitro can cause misleading results in the AYAS, as both anti-

androgenic activity and toxicity cause a drop in the DHT-elevated absorbance, either 

because the action of DHT is blocked (anti-androgenic) or cell death means that the cells no 

longer respond to the DHT (toxic), and both lead to a reduction in β-gal.  In vitro testing is 

therefore often carried out alongside tests for toxicity. Using the standard AYAS (see 

Chapter 3, Section 3.3.2), a number of the chemicals that we tested were either toxic (giving 

a clear yellow well with no red colour developing) or caused a reduction in the yeast turbidity 

at the higher concentrations (together with an inhibition in the development of the red 

colour). Hence where anti-androgenic activity was observed for chemicals that were toxic at 
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the higher concentrations, the results may in fact be due to cytotoxicity. Similarly, when 

Huang et al. (2011a) examined data for approximately 3000 environmental chemicals from 

the Tox21 pilot-phase collection against a panel of 10 nuclear receptors including the AR, a 

total of three hundred and twenty three compounds were identified as potentially cytotoxic. 

False positive activities are often caused by cell stress at concentrations approaching toxicity 

(Judson et al., 2016). 

Due to the potential for chemicals at/close to cytotoxic concentrations to cause false positive 

results, the antifungal nystatin was used to see how ‘killing’ the yeast cells affected the DHT 

enhanced colourimetric absorbance readings. The reduction in the DHT colourimetric 

response in the AYAS due to nystatin (Figure 56B) and modified method with lysis (Figure 

56C), was compared with the respective turbidity readings at 620 nm and the absorbance at 

570 nm in the MTT assay.  

In the MTT assay (a measure of metabolic activity), the four highest concentrations of 

nystatin (6-2.7 mg/L) caused toxicity and these same results were mirrored in the standard 

AYAS (Figure 56B). Similarly, for the modified AYAS with cell lysis, the toxicity was mirrored 

by low colourimetric values (Figure 56C). Therefore, a drop in the MTT values in the MTT 

assay and the turbidity values in the modified AYAS with lysis both gave a good indication of 

toxicity. However, for the standard AYAS, whilst there was a lack of colour change at 540 nm 

due to the toxicity of nystatin, this was not reflected at almost toxic concentrations (Figure 

56A), where there was little alteration in the yeast turbidity absorbance value. Because the 

standard AYAS relies on the secretion of the β-gal into the medium, under mildly toxic 

conditions or prior to cell death, β-gal secretion could continue even as the cells are being 

killed by the nystatin, and hence false positive anti-androgenic activity might be observed.  

Chemicals may also be non-toxic but exert their effects in other ways. For example, Liscio et 

al. (2014) used a yeast-based assay to identify two antifungal agents with high relative 

potency in anti-androgenic fractions following fractionation of river water samples; these 

were propiconazole and miconazole. However, when using the AR-CALUX assay, which 

uses mammalian cells, these two compounds were found to have very weak anti-androgenic 

activity. Conazole fungicides inhibit ergosterol synthesis, which is necessary for creating 

yeast cell wall membranes, and although Liscio et al. observed no effects on yeast growth, it 

is possible that the antifungal agents affected the yeast cell function in other ways. Kjaerstad 

et al. (2010) examined the effects of conazole antifungals using a panel of in vitro assays 

and found the critical mechanism for endocrine disruption to be the disturbance of steroid 

biosynthesis, rather than receptor binding. 
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4.4.1.5. Different sealing tapes to prevent evaporation causing the ‘edge effect’ that 

can be misdiagnosed as anti-androgenic activity 

Using the standard AYAS procedure using autoclave tape (i) to seal the 96-well assay 

plates, we observed a distinct ‘edge effect’ or ‘hook effect’ to the 540nm absorbance 

readings. Similar to Patel et al. (2005), we saw no reduction in turbidity across the plate but 

there was a visible reduction in the volume in the outer wells of the plate. In the standard 

AYAS, this ‘edge effect’ causes a reduction in colour in the outer wells that could be 

misinterpreted as anti-androgenic activity. On using a different, less porous tape to seal the 

plate, this ‘edge effect’ was much reduced. For the modified screen where the cells are 

lysed, only a proportion (25%) of the well contents was removed from the assay plate and 

transferred to a fresh plate for cell lysis, and using this method the ‘edge effect’ was also 

much reduced with both tapes. Zimmermann et al. (2003) also examined different tapes and 

materials to compare their ability to minimise water evaporation from a 96-well plate while 

maintaining oxygen supply as high as possible. Evaporation was quantified by weighing the 

plate filled with water but an optimal product with high oxygen permeability and low 

evaporation was not found.   

Whilst a tighter seal did reduce evaporation in our AYAS and resulted in a reduced ‘edge 

effect’, by using a less porous tape it is possible that less oxygen was available for aerobic 

growth. Snoek and Steensma (2007) compared the composition of yeast cell walls when 

growing under aerobic and anaerobic conditions, and under anaerobic conditions the yeast 

cells could no longer synthesise sterols but instead required them to be added to the media. 

As sterol is necessary for producing the cell wall, there is a possibility that the cell wall could 

have been altered when using the less porous tape, but nevertheless there did not appear to 

be any difference in the turbidity measurements with the second less porous tape.  

4.4.1.6. Well position in multiwell plate and its effect anti-androgenic potency relative 

to flutamide 

The position that a chemical is pipetted into a plate did alter the potency of that chemical 

relative to flutamide. This was due to the ‘edge effect’ with the standard AYAS and with 

sealing tape (i). Reducing the ‘edge effect’ by using the less porous tape to seal the plate 

and/or the modified method with cell lysis rather than the standard AYAS, is likely to 

minimise this difference in potency depending on the pipetting position (although due to time 

constraints this was not confirmed). Alternatively, the outer wells could be left unused 

(although this does not make good use of the wells) or chemicals pipetted into different 

positions when retesting chemicals. 
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4.4.2. Advantages and disadvantages of the two different yeast screens for (anti-) 

androgenic activity 

The standard yeast screen methods without cell lysis has the advantage that the colour 

development of the screen can easily be monitored over a period of time, because the yeast 

secretes the β-gal into the medium, whereas with the modified cell lysis method no colour 

development is seen until after lysis and incubation with the substrate. The standard method 

without lysis is a quicker screen to perform, as the method with cell lysis requires transferring 

a proportion of the medium in each well to another plate for lysing. This transfer process can 

also increase variability if the cells are not well resuspended. The cell lysis method, though, 

could be sped up by lysing the cells with lyticase rather than freeze/thawing, and this might 

additionally produce less variable readings.  

The standard screen method could lead to misinterpretations due to toxicity, as it did for two 

of the chemicals presented in Chapter 3. Also, when comparing the two methods (with or 

without cell lysis) in the YAS, three chemicals were shown to be androgens in the standard 

YAS method (methyl decanoate, 2-ethylhexanoic acid and ibuprofen) but not in the modified 

method with cell lysis, and hence these activities were possibly false positives. I found the 

modified method with cell lysis to be less prone to false positives for both androgenic and 

anti-androgenic activity, and therefore believe it to be a more robust method.  

4.4.3. Are the most potent anti-androgens likely to cause harm to the environment? 

The structures of chemicals containing AR antagonist properties are extremely diverse 

(Vinggaard et al., 2008). During AR binding, the H12 functions as a lid, which closes 

(agonist) or moves away from the LBP (antagonist), and AR antagonists are therefore 

usually bulkier than agonists and thus require a wider binding pocket than agonists 

(presented in Chapter 1, Section 1.2).  

The most potent of the anti-androgens that I tested were four carbon ring structures (as for 

DHT) (Table 17 and Figure 54). In general, the smaller the structure the less the activity 

(most of the compounds with moderate activity had a 3-ring structures, those with weak 

activity had a 2-ring structures and those with very weak activity had a single-ring. An 

aromatic side chain has been shown to have a significant role in the anti-androgenic potency 

of parabens (Ding et al., 2017), and for many of the more potent anti-androgen that I tested 

this was also the case. Three of the potent chemicals had one or more chlorines and this 

has also been shown to increase AR binding (Singh et al., 2000). Ding et al. (2017), reported 

that larger side chains were unable to dock into the AR LBD, and perhaps for the three fatty 

acids that only had weak activity this was due to their longer chain length. 
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The most potent anti-androgens were assessed for their ability to cause harm to the 

environment. For these chemicals, the potency, the water solubility, octanol/water partition 

coefficient (LogKow), log bioconcentration factor (LogBCF), and half-life are presented in 

Table 18.  

Chemicals with a high water solubility (>1 g/L) will partition to water and not to particles such 

as sludge, sediments, and soil, and vice versa for chemicals with low solubility (<0.1 g/L). 

Highly soluble chemicals are more likely to present a potential exposure concern for aquatic 

organisms in surface waters, and for humans via drinking water, but the more potent 

compounds identified in this chapter were only slightly soluble (e.g. triclosan, has a solubility 

of 4.621 mg/L). In addition, chemicals with a LogKow greater than 4 are hydrophobic and are 

again more likely to partition with particles, as was the case for the LogKow for most of our 

compounds. Of more concern are compounds with a LogKow between 2 and 4 (e.g. 

chlorophene and diphenylacetic acid), as these can be readily absorbed and are more likely 

to accumulate in aquatic organisms; Meador et al. (2016) found most of the compounds 

detected in fish to have high LogKow values. Stackelberg et al. (2007) also found the 

primary route of removal for hydrophobic analytes (LogKow > 4) was adsorption onto GAC 

during the wastewater treatment process and in surface waters it was the most hydrophilic 

classes that were detected, namely pharmaceuticals with LogKow value less than 1. 

According to the Sustainable Futures/P2 Framework Manual, 2012 (EPA-748-B12-001), any 

compound with a LogBCF ≥ 3.7 has a high bioconcentration potential, a value of 3 has a 

moderate bioconcentration potential and below 3 has a low bioconcentration potential. Many 

of our active compounds have a LogBCF close to 3 (triclosan, pyrene and acetylcedrene; 

Table 18) but only one exceeded 3 (fluoranthene; Table 18).  

Another chemical property is the half-life; anything with a value greater than 2 days meets 

the Persistence Criteria set by the EPA for new chemicals 

(http://www.epa.gov/oppt/newchems/pubs/pbtpolcy/htm). Four of the anti-androgenic 

compounds identified in this chapter fall into this category; triclosan, fluoranthene, 

dehydroabietic acid and acetylcedrene. Longer half-life means that triclosan, fluoranthene, 

dehydroabietic acid and acetylcedrene are more likely to bioaccumulate in in animals and 

bioconcentrate through the food chain (Wangmo et al., 2018), although the LogBCF for 

dehydroabietic acid is very low (Table 18). The most soluble of our active compounds, 

chlorophene and diphenylacetic acid methyl ester, did have very short half-lives but, despite 

this, chlorophene has been detected in surface waters at concentrations from 86-191ng/L 

(Arlos et al., 2015). In addition, whilst acetylcedrene has a long half-life, it is only at low 

concentrations in the aquatic environment and therefore not such a concern. 
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Fluoranthene is one of the 48 compounds on the List of Priority Substances in the Field of 

Water Policy, with an EQS of 6.3 ng/L (WFD (Classification, Priority Substances and 

Shellfish Waters) Regulations (Northern Ireland) 2015). However, fluoranthene is only on 

this list as an indicator of other, more dangerous, PAHs. About 817,800 tonnes of high 

temperature coal tar pitch, which contains fluoranthene and pyrene, was produced in one 

year and production leads to PAH emissions (Fluoranthene EQS dossier, 2011). Given the 

production volume, potency, chemical properties, and the environmental concentrations of 

fluoranthene and pyrene, these compounds should be considered as hazardous. Especially 

as, whilst they are likely to be associated with particles rather than partitioned to water, 

zebrafish exposed to freely dissolved fluoranthene and pyrene in the presence of suspended 

particles had an elevated uptake rate due to exposure via ingestion (Zhai et al., 2018). 

Triclosan and its metabolite, methyl triclosan, were both potent anti-androgens and methyl 

triclosan is more persistent and toxic and found more commonly in fish than triclosan (Rudel 

et al., 2013). Due to its potency, the US Food and Drug Administration has banned triclosan 

from some household products and it is being considered for banning and/or replacement in 

products around the world (Cavanagh et al., 2018). Since this ban the production of triclosan 

has dropped and in 2013, 4,760 tonnes were produced worldwide compared with 6,581 

tonnes in 2011 (Triclosan Market Report, 2016). Triclosan has been widely detected in 

surface water (e.g. Arlos et al., 2015; Fuzzen et al., 2016; Kolpin et al., 2002; Meador et al., 

2016; Scott et al., 2018) and in human urine (mean of spot samples 23.3 µg/L; Pollack et al., 

2016). Whilst I found triclosan to be a potent anti-androgen in vitro, Pernoncini et al. (2018) 

found no evidence of (anti-)androgenic activity in the in vivo Hershberger assay at a dose as 

high as 8 mg/kg. Furthermore, Mihaich et al. (2017) weighted up the evidence in over 35 

peer-reviewed in vitro and in vivo studies for an assessment of the endocrine activity of 

triclosan, and concluded that their assessment indicated that triclosan was not acting as an 

agonist or antagonist within the oestrogen, androgen, thyroid or steroidogenic pathway. 

Considering that triclosan is able to bioconcentrate (900 - 2100 times in algae; Coogan et al., 

2007) and has a long half-life with a potent metabolite, this chemical is still a potential 

concern despite the questionable in vivo activity. Indeed, due to the frequency of detection in 

surface waters and exceedance of the PNEC (30 ng/L; Liu et al., 2020), triclosan appears on 

several priority lists as a high to moderate risk to the environment (Liu et al., 2020; Tousova 

et al., 2017; Zhou et al., 2019)  

Whilst several of the chemicals tested in this chapter possessed anti-androgenic activity that 

was weaker than the potent anti-androgen, flutamide, it is important to consider that the 

chemicals present in the environment will occur as a mixture. For compounds that exhibit the 
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same mode of action one would expect additive effects (Ermler et al., 2011), and many weak 

anti-androgenic chemicals might together be sufficient to cause disruption. 

In this chapter I have looked extensively at two in vitro tests for (anti-)androgenic activity. 

However, no single assay can be expected to be ‘the best’ and any activity seen in vitro 

needs to be confirmed in vivo to ensure that the bioaccumulation, metabolism, and 

availability to the target cell, or alternative pathways for endocrine disruption of the 

compounds, and thus the final health effects, are assessed. Only by using a suite of assays, 

as described in the OECD conceptual framework for evaluating chemicals for endocrine 

disruption (OECD, 2018d), is it possible to lower the likelihood of mislabelling chemicals as 

EDCs. Currently there are no validated fish tests for anti-androgens, and although the 

Androgenised Female Stickleback Screen (AFSS; a variant of the 21-Day Fish Assay; 

OECD, 2018c) has more power to identify anti-androgens than the OECD TG 229 or TG 230 

(OECD, 2018a; b), this test has a more limited range of endpoints. The AFSS is an assay for 

identifying endocrine active chemicals with (anti-)androgenic activity in fish using sexually 

mature female sticklebacks, that are specifically dosed with DHT to induce spiggin 

production (androgenised females). Chemicals blocking the AR receptor reduce this spiggin 

production, indicating anti-androgenic effect (Katsiadaki et al., 2006). An alternative in vivo 

assay with the ability for identifying anti-androgens is the Juvenile Medaka Anti-Androgen 

Screening Assay (OECD, 2018c), but this assay awaits validation.  

In Chapter 5, next I investigate potential biomarkers for (anti-)androgenic activity in the FHM, 

a species regularly used in OECD test guidelines to identify oestrogenic, androgenic, and 

steroidogenic activity of chemicals in vivo. 
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5. Do fathead minnows possess a spiggin-like protein that could be used as 

a sensitive bio-marker of (anti-)androgen exposures?  

5.1. Introduction 

Small-bodied freshwater fish are commonly used in regulatory testing for EDCs. Currently 

there are only a few fish tests that assess chemicals for (anti-)androgenic activity, and these 

do so by monitoring for changes in SSCs; gonopodial development in mosquito fish (Howell 

and Denton, 1989), papillary process development in medaka (Seki et al., 2006), and 

tubercle number and size of fatpad in FHM (Ankley et al., 2001). These endpoints often lack 

sensitivity (i.e. are not responsive to low concentrations of androgenic compounds; Muldoon 

and Hogan, 2016) and some are scored on a subjective scale so may be subject to bias 

(Ankley et al., 1998). SSCs can also be affected by the hierarchical status of the fish, making 

it difficult to attribute a change in appearance to exposure to an EDC (Muldoon and Hogan, 

2016).  

To date there is only one adequate androgen dependant biomarker that has been developed 

in fish for the screening of (anti-)androgens (Katsiadaki et al., 2006; Katsiadaki et al., 2002). 

This screen uses the three-spined stickleback (Gasterosteus aculeatus), a fish native to 

most inland coastal waters north of 30°N. The kidney of the male stickleback hypertrophies 

during the breeding season, when the secondary proximal epithelial cells synthesise a glue 

glycoprotein, spiggin (the Swedish name for the three-spined stickleback being spigg). The 

spiggin is secreted into the urinary bladder and is then used to stick plant material together 

to form a nest (Borg, 1994). Following fertilisation of the eggs, the male subsequently cares 

for the eggs until shortly after they hatch.  

Androgen-dependent spiggin can also be induced in the kidneys of female stickleback fish in 

response to endogenous androgens, where it can be determined by measuring the KEH or 

by using an ELISA for spiggin (Katsiadaki et al., 2002). European bullhead exposed to 

trenbolone acetate also had dose-dependent kidney hypertrophy (linked to the production of 

glycoprotein containing mucus), which was quantified using the KEH measurement (Villeret 

et al., 2013). However, the bullhead KEH measurement was a less sensitive endpoint than 

stickleback KEH. Androgenised female stickleback fish can also be used to screen for 

endogenous anti-androgens (Katsiadaki et al., 2006) and is partially validated as an OECD 

test (OECD, 2018c). More recently, spiggin transcription was significantly down regulated 

when stickleback fish were exposed to the anti-androgen flutamide although surprisingly the 

flutamide did not affect the transcription of AR receptors (Fitzgerald et al., 2020). 

Jones et al. (2001) characterised three different spiggin subunits (α, β and γ), and these 

spiggin subunits were found to have highest similarity to Xenopus mucin B.1 (28%), rat 



185 
 

MUC2 (27%), human MUC5AC (27%), human von Willebrand factor (VWF; 26%) and 

murine otogelin (25%). Later, a phylogenetic study by Kawahara and Nishida (2006) showed 

that spiggin was related to vertebrate mucins, avian ovomucins, zebrafish otogelins, and 

mammalian zonadhesin, although more closely so to mucins than otogelins (Kawahara and 

Nishida, 2006).  

Mucins are major glycoprotein components of mucus and are either membrane bound (in 

humans and mice; MUC1, MUC3, MUC4, MUC12, MUC13, MUC15, MUC16 and MUC17) or 

secreted (in human and mice; MUC2, MUC5B, MUC5AC, MUC6 and MUC19) (Lang et al., 

2007). The secreted mucins are large glycoproteins that cover the epithelial cell surfaces of 

the respiratory, digestive and urogenital tracts, forming gel-like structures, thereby protecting 

against harmful molecules and microorganisms (Lang et al., 2007). Most vertebrates have 5 

to 6 secreted gel-forming mucin genes and these share a similar structure with considerable 

sequence homology in the conserved regions (Perez-Vilar and Hill, 1999). A characteristic 

protein structural domain of the gel-forming mucins is the von Willebrand factor type D 

domain (VWD) named after its occurrence in the VWF (Figure 61).  

The MUC2, MUC5AC, MUC5B have a domain architecture which is –  

(VWD-C8-TIL)-( VWD-C8-TIL)-(VWD-C8-TIL)-PTS-(VWD-C8-TIL) 

The MUC6 and MUC19 have the same domain structure but lack the C-terminal VWD-C8-

TIL unit. There is a highly variable region in the 5’ end of the MUC19 that is lacking in other 

gel-forming mucins.  

Although MUC19 is present in fish, amphibians, and mammals, it does not appear to be 

present in birds. In contrast, MUC6 is present in birds but is missing in most teleost species 

(Lang et al., 2016). Whilst spiggin is found in the kidney of male stickleback fish (Kawahara 

and Nishida, 2006), human and mouse MUC19, the most closely related mucin to spiggin, 

are found in the sub-maxillary gland (Chen et al., 2004). Phylogenetic analysis revealed 

porcine sub-maxillary gland mucin to be the same as pMUC19 (Zhu et al., 2011). Thus, the 

expression pattern of the spiggin gene may have changed after the divergence of tetrapods 

and fish (Kawahara and Nishida, 2006). 

More recent work by Kawahara and Nishida (2007) using the genome sequence of the 

three-spined stickleback showed that there are at least five spiggin genes and analyses of 

these sequences suggested that an ancestral spiggin gene originated from a member of the 

mucin gene family. The occurrence of a single spiggin homologue was also demonstrated in 

zebrafish, medaka, torafugu and spotted green puffer fish (Kawahara and Nishida, 2006; 

Kawahara and Nishida, 2007). Expression analysis was carried out on zebrafish and 

torafugu, and whilst spiggin was not expressed in zebrafish, kidney-specific expression was 
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Figure 61. Gel-forming mucins are evolutionarily related to the von Willebrand factor and possess domain structures that are highly conserved 

(D1-D4). Organisms represented are human (hMUC2, hMUC5AC, hMUC6, hMUC19, hOtogelin, hVWF and hZonadhesin) and the stickleback 

G. aculeatus (Spiggin α).  

Abbreviations: PTS; proline, threonine, serine rich domains, VWD; von Willebrand factor type D domain, Cys-knot; C-terminal cystine knot-like 

domain, C8; Cysteine rich C8 domains, TIL; Trypsin Inhibitor like cystine rich domain, VWC; von Willebrand factor type C domain, VWA; von 

Willebrand factor type A domain, MAM; meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu, AbfB; Apha-L-arabinofuranosidase 

B, PhaB; Large exoprotein involved in heme utilisation or adhesion 
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found in both male and female torafugu. No glue-like protein produced in the torafugu kidney 

has been reported, which suggests that the function of this spiggin differs from that in the 

stickleback. All the spiggins and the medaka spiggin homologue shared the VWD domain 

structure, but no other domains characteristic of the translated products of secreted mucins 

(MUC2, 5AC, 5B and 19) were identified (Kawahara and Nishida, 2006).  

In addition to male stickleback fish producing spiggin, several other fish species have 

sexually dimorphic mucus production as part of their reproductive processes, generally 

involving parental care. For example, the male grass goby has a pair of sperm-duct glands 

that produce mucus bands in which sperm are embedded (Giacomello et al., 2006), the male 

Bristlenose catfish has snout mucin-producing goblet cells whilst females have none 

(Giacomello et al., 2008), and the pharyngeal organ of the Siamese fighting fish produces 

mucus to aid nest building by male fish (Kang and Lee, 2010). Specialised renal mucus 

production has also been identified in the Australian catfish, but the presence of the mucus 

was not seasonal, so the function was thought not to be related to reproduction (Kelly and 

Gibson-Kueh, 2017). 

Since spiggin is androgen dependent, one would expect to find higher AR expression in 

male kidney compared with other tissues, and no difference in kidney AR expression 

compared to other tissues in species without spiggin. Indeed, for most fish species, no 

sexual dimorphism in AR expression in the kidney is known, however, in the stickleback, 

zebrafish, half-smooth tongue sole and rice field eel, AR expression is higher in the kidney 

than in other tissues (Hoffmann et al., 2012). 

In North America, the FHM is the most common small model fish used to assess oestrogenic 

and androgenic chemicals.  Sexually mature male fish develop large nuptial tubercles on the 

snout and a dorsal fatpad that is rich in mucus (Smith and Murphy, 1974). Breeding males 

are territorial and actively defend against other males intruding on their nest site. Following 

spawning, the male guards the eggs from predation as well as rubbing its fatpad against the 

spawning substrate to clean the eggs. In the FHM, exposure of female fish to androgenic 

chemicals results in an induction of nuptial tubercles (Smith and Murphy, 1974). The adult 

males and females are easily distinguished from one another when in breeding condition; 

the males are usually larger and darker than the females. The FHM has a rapid lifecycle, 

reaching reproductive maturity in four to five months post hatch, and the reproductive cycle 

can be controlled with temperature and photoperiod manipulation (Harries et al., 2000). In 

the FHM, several endpoints are responsive to oestrogens (vtg, sex-steroid production, 

decreased nuptial counts in males, delayed maturation and decreased fecundity and fertility) 

and to androgens (SSCs – nuptial tubercle growth, alterations in size of the dorsal fatpad, 

alterations in shape, colouration and breeding behaviours); for example, Miles-Richardson et 
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al. (1999) and Ankley et al. (2003). In terms of oestrogen responsiveness, the FHM, medaka 

and zebrafish may be more suitable species with more established test methods. However, 

the stickleback can be used to simultaneously assess androgen and oestrogen exposure in 

a single fish using fully quantitative endpoints (Muldoon and Hogan, 2016). In addition, 

Katsiadaki et al. (2006) found the spiggin endpoint measured by the ELISA to be 400-4000x 

more sensitive than FHM nuptial tubercle formation following MT exposure, and is the 

preferred method for determining spiggin concentration because KEH measurements are 

more time consuming. 

Expression of the male SSCs in fish is under the control of the AR (Borg, 1994). In teleost 

fish, 11-KT is generally considered to be the major circulating androgen as well as the most 

potent one (Borg, 1994) although it has recently been demonstrated that DHT plays a role in 

early development and reproduction (Martyniuk et al., 2013). Female fish seem to be more 

strongly affected by androgen exposure than males (Ekman et al., 2011; Martinovic et al., 

2008; Pawlowski et al., 2004). Martinovic et al. (2008) hypothesised that this was due to the 

lower concentrations of endogenous T in females, making it easier for androgen mimics to 

compete. Similarly, juveniles with lower circulating androgen concentrations should be more 

sensitive than adults, although Sone et al. (2005) found adults to be more sensitive than 

fry/juveniles. Whilst females appear to be more sensitive to androgens than male fish, this 

may not necessarily be true for anti-androgens. Indeed, (Martinovic-Weigelt et al., 2011) 

found zebrafish male reproductive systems to be more extensively impacted following 

exposure to the known anti-androgens vinclozolin and flutamide. 

Spiggin induction in female stickleback fish is currently the best test for (anti-)androgens, but 

spiggin is specific to stickleback fish and cannot be used as an endpoint in the any other 

laboratory test species. For studies where several endpoints have been measured, 

molecular endpoints appear to be among the most sensitive (Scholz and Mayer, 2008). 

However, when examining molecular end-points, the changes in gene expression are 

transient (Ankley and Johnson, 2004; Sone et al., 2005) and proteins are therefore expected 

to be more stable biomarkers of EDCs (Denslow et al., 2012). FHM also have sexually 

dimorphic mucus production as part of their reproductive process, and FHM may possess a 

spiggin-like protein that could be used as a sensitive bio-marker of (anti-)androgen 

exposure, to provide an additional endocrine endpoint to commonly used OECD regulatory 

fish tests. This spiggin-like protein, if found, could be collected non-invasively, and fish would 

therefore not need to be sacrificed (Bahamonde et al., 2019; Barkowski and Haukenes, 

2014; Tarnawska et al., 2019). 

Whilst my long-term aim was to find a new protein biomarker, the preliminary work described 

in this chapter looked for the sexually dimorphic expression of spiggin-like targets in different 
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tissues collected from male and female FHM. The tissues chosen were external tissues 

where sexually dimorphic features have been previously described (dorsal fin, snout, 

fatpad), other tissues where publications have reported sexually dimorphic mucus production 

(kidney, mouth), and positive control tissues (brain, gonad, liver). Gene expression was 

quantified using qPCR. Of interest, were spiggin-like genes with low expression in females 

and higher expression in male FHM. Tubercle number and FPI were also determined, to 

enable a comparison of these SSCs with the molecular expression data. 

 

5.2. Materials and methods 

5.2.1. Bioinformatics; Basic Local Alignment Search Tool searching and phylogenetic 

analysis 

The National Center for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov) was checked for spiggin and spiggin-like genes using the 

search term ‘spiggin’. Cluster analysis of the ‘spiggin’ sequences was then carried out using 

the Welcome Sanger Institute SeqTools (https://www.sanger.ac.uk/science/tools/seqtools). 

One spiggin sequence from each cluster was then used to search for FHM ‘spiggin-like’ 

sequences using the translated Basic Local Alignment Search Tool (BLAST; 

www.blast.ncbi.nlm.nih.gov/). Potential FHM nucleotide sequences were then translated 

using ExPASy (www.web.expasy.org/translate/), and reverse BLAST to confirm similarity to 

spiggin. 

The NCBI website (www.ncbi.nlm.nih.gov/) was then searched for mucin and mucin-like 2, 

5AC, 5B, 6 and 19 protein sequences in human, mouse, and different fish species. These 

sequences together with the translated FHM ‘spiggin’ sequences were aligned using the 

multiple sequence alignment program Clustal Omega, available from the European 

Bioinformatics Institute (https://www.ebi.ac.uk/Tools/msa/clustalo/).  

Geneious Prime 2019 (version 2019.0.4; https://www.geneious.com/geneious-prime-faq/) 

was used to build a distance-based Neighbour Joining tree, and this tree was rooted to 

Human MUC2. 

The bioinformatics work carried out in 2013 was repeated in 2018, just prior to starting the 

practical aspect of this chapter. 
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5.2.2. Fish sampling 

5.2.2.1. First sampling of different tissue from male and female fathead minnows 

An actively reproducing pair of FHMs (approx. 14 months old) kept under flow-through 

conditions were humanely sacrificed according to UK Home Office procedures using a lethal 

dose of MS222 (500 mg/L adjusted to pH 7.4; Sigma-Aldrich, Gillingham, UK) followed by 

trans-spinal severance. The following tissues were collected; snout, mouth area, fatpad, 

dorsal fin, brain, gonad, liver. Between obtaining samples, dissection instruments were 

cleaned with RNase AWAY® (Sigma-Aldrich). Following collection, the tissues were 

immediately snap frozen in cryovials in liquid nitrogen and then transferred to -80 oC for 

long-term storage. 

5.2.2.2. Second sampling of snout tissues from male and female fathead minnows 

Fathead minnows (10 male and 10 female fish, approx. 16 months old) were obtained from 

Scymaris (Brixham, UK). The male fish were kept in separate flow-through tanks due to 

aggressive behaviour towards the females, and whilst not reproductively active, the males 

did have obvious SSCs (fatpads; Figure 62, and tubercles; Figure 63). Fish were humanely 

sacrificed according to UK Home Office procedures using a lethal dose of benzocaine (500 

mg/L; Alfa Aesar by Thermo Fisher Scientific, Heysham, UK), followed by trans-spinal 

severance. Measurements were taken of fork length, wet weight, and the male fish nuptial 

tubercles and fatpads were photographed. Dissection instruments were cleaned between 

fish tissues using sequential washes of 10% household bleach, MilliQ water and 70% etOH. 

The snout, mouth area, and dorsal fin were dissected. The fatpad was also dissected from 

male fish and weighed, and the FPI calculated (FPI = [fatpad weight/body weight] × 100). 

Tissues were then transferred to cryovials containing 5-10 volumes of RNAlater® Solution 

(Life Technologies, Carlsbad, USA). Further tissues were collected; namely brain, gonad, 

liver and kidney. The gonad was weighted and the GSI calculated (GSI = [gonad 

weight/body weight] × 100). Similarly, these were transferred to cryovials containing 

RNAlater® Solution, but due to the size of the ovaries, after weighing only one was 

transferred to the cryovial for storage. 

All cryovials were stored at 4 oC overnight and were then transferred to -20 oC for longer-

term storage. 

The male fish nuptial tubercles photographs were examined using ImageJ 

(https://imagej.nih.gov/ij/) and this software was used to count the number of tubercles.  
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Figure 62. Photograph showing tank of male FHMs with dorsal fatpads of varying sizes. 

(taken at Scymaris, Brixham, UK) 

 

 

 

Figure 63. Photograph of male FHM snout showing raised nuptial tubercles. (Panasonic 

Lumix DC Vario camera, macro setting)  
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5.2.3. Ribonucleic acid extraction and complementary deoxyribonucleic acid synthesis 

All surfaces were routinely decontaminated using 1% Distel (Tristel Solutions Ltd., Snailwell, 

UK) to prevent DNA contamination. 

Ribonucleic acid (RNA) extractions were carried out using the NucleoSpin® RNA Plus kit 

(Macherey Nagel Bioanalysis™, Düren, Germany). Tissue homogenisation and lysis utilised 

5 mm stainless steel beads (Qiagen, Manchester, UK) that were prepared by washing with 

100% etOH and autoclaving. Eppendorf 2 ml Safe-Lock centrifuge tubes (Stevenage, UK) 

were used and into each tube, one sterile bead and 350 µl kit Lysis Buffer were added. The 

FHM tissues were then added to the tubes (tissues stored in RNAlater® were blotted on 

tissue to remove excess liquid) and immediately homogenised using a TissueLyser II 

(Qiagen) for 1 min at 30 Hz followed by a further 1 min after inverting the tube inserts in the 

holders. 

Homogenised lysates were added to the NucleoSpin® gDNA Removal Column and after 

spinning, the column (together with the bound genomic DNA; gDNA) was discarded. Binding 

solution (100 µl) was added to each of the flow-through samples and was mixed well by 

pipetting up and down. This mix was then transferred to the NucleoSpin® RNA Plus Column 

and after spinning the column, the bound RNA was then washed twice with Wash Buffer. 

The bound RNA was then eluted with two 20 µl volumes of RNase-free water. RNA was then 

quantified spectrophotometrically using a Nanodrop One (Thermo Fisher Scientific, Paisley, 

UK), and purity was assed using a ratio of absorbance at A260nm and A280nm. Ratios above 1.8 

indicated good quality RNA that was devoid of contamination.  

To further check the structural integrity of the extracted RNA (i.e. to check the RNA was not 

degraded), an aliquot was run on a 0.8% agarose gel. To 100 ml 1 x Tris-borate EDTA buffer 

(TBE; Sambrook and Russell, 2001), 0.8 g of agarose (Sigma-Aldrich) was added and was 

melted using a microwave. Once cooled to hand-hot, 2 µl of GelRed™ Nucleic Acid Gel 

Stain (Biotium, Hayward, CA, USA) was added and the gel was cast in a gel mould with a 

comb in position. 

Equal volumes of RNA (2 µl) and 2 x RNA Loading Buffer (2 µl; Thermo Fisher Scientific) 

were pipetted to microfuge tubes and heat denatured at 72 oC for 2 mins on a Dri-Block® 

(Techne, Cole-Parmer, Stone, UK), then immediately transferred to ice. The denatured 

samples were run on an agarose gel along with lanes containing 2 µl of 1kb ladder (Bioline 

Reagents Ltd., London, UK), for 30 mins at 110 Volts. Structural integrity was confirmed by 

visual inspection of the 28S and 18S rRNA bands using a BioDoc-It™ imaging system 

(Analytik Jena AG, Jena, Germany). For most of the samples extracted, the RNA quality was 

good and two distinct ribosomal RNA bands were seen (28S and 18S; Figure 64). 
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Unfortunately, the RNA quality for the testis and ovary were poor and the two ribosomal 

bands were not clear, possibly due to overloading of the NucleoSpin® column. Additionally, 

the quantity of RNA extracted from the female fatpad was too low (<50 ng/µl). No qPCR 

results are therefore available for these three tissues. 

To remove any residual gDNA, the RNA samples were further treated with DNase I 

recombinant (Roche Diagnostics, Mannheim, Germany), a DNA-specific endonuclease that 

hydrolyses DNA. The following volumes were used: 

 40 µl RNA in RNase free H2O 

 4 µl 10x Incubation Buffer (included with DNase I recombinant) 

 1 µl DNase I recombinant (10 units) 

The tubes were then incubated on a dry block at 37 oC for 10 mins. 

Following DNase I treatment, the RNA was precipitated overnight as follows, using the co-

precipitant, GlycoBlue™ (Invitrogen, Thermo Fisher Scientific) to aid RNA precipitation and 

increase the pellet visibility: 

 1 µl GlycoBlue  

4 µl 5M sodium acetate (0.1 x volume) 

125 µl 100% etOH (2.5 x volume; stored at -20 oC) 

 

Figure 64. Image of RNA samples run on a 0.8% agarose gel alongside a 1 kb 

HyperLadder™. The 28S and 18S bands indicate good quality RNA. The lane indicated by 

the white asterisk shows a sample with poor quality RNA. 

 

 

* 
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The tubes were then stored at -20 oC overnight. The following day, the tubes were spun for 

30 mins at 13,000 rpm in a microfuge pre-cooled to 4 oC. The supernatants were then 

carefully removed and 150 µl 70% etOH (stored at -20 oC) was added to wash the RNA 

pellet. Following a further spin for 15 mins at 13,000 rpm and at 4 oC, the supernatants were 

carefully removed, and the pellet air-dried for 10 mins. Depending on the size of the pellet, 

between 20 and 60 µl RNase-free water was added and the pellet gently resuspended. The 

RNA was again quantified using the Nanodrop One, and a total of 2 µg RNA was required 

for complementary DNA (cDNA) synthesis. 

For first-strand cDNA synthesis, the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Thermo Fisher Scientific) was used. RNA samples were diluted to 1 µg in 10 µl 

diethyl pyrocarbonate (DEPC) H2O (Life technologies, Paisley, UK) in duplicate, for minus 

(no reverse transcriptase control; NRT) and plus reverse transcriptase. 

Into a PCR tube strip (BRAND GmbH, Wertheim, Germany) aliquots of the 2x RT master mix 

were added, each containing: 

2 µl 10x RT Buffer 

0.8 µl 25x dNTP Mix (100mM) 

2 µl 10x RT Random Primers 

1 µl MultiScribe™ Reverse transcriptase (or 1µl DEPC H2O for NRT control) 

4.2 µl DEPC H2O 

To this PCR tube strip, the 10 µl diluted RNA samples were added, followed by pipetting up 

and down two times to mix the contents (total volume 20 µl). The tube strips were then 

sealed and briefly centrifuged to spin down contents and eliminate air bubbles. 

The tube strips were subsequently loaded onto the thermal cycler (Biometra GmbH, 

Göttingen, Germany) and the program was run using the following conditions: 

Settings Step 1 Step 2 Step 3 Step 4 

Temperature (oC) 25 37 85 4 

Time (minutes) 10 120 5 ∞ 

 

At the end of the program, 130 µl DEPC H2O was added to all tubes (150 µl total volume) 

and they were then stored at -20 oC until ready for qPCR. 
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5.2.4. Primer design 

Previously reported reference gene primers were used for ribosomal protein l8 (rpl8), 

hypoxanthine phosphoribosyltransferase 1 (hprt1) and tata box binding protein (tbp) (Filby 

and Tyler (2007); Table 19), for normalising for differences in the amount of starting template 

between samples.  

Two sex specific primers were also chosen; VTG primers specific to female fish (Cavallin et 

al., 2015), and Hushi tarazu factor-1 (FTZ-F1) homologue primers specific to male fish (ff1d, 

previously reported as male specific in zebrafish; von Hofsten and Olsson, 2005). The ff1d 

primers together with the spiggin-like primers were designed using NCBI Primer-BLAST to 

have a melting temperature (Tm) of 60 oC and an amplicon size between 70 and 120bp 

(Table 20). 

5.2.5. Quantitative PCR 

For qPCR, the following controls were included on each plate: 

• no template control (NTC; cDNA was substituted with DEPC H2O) to check 

buffers and solutions for DNA contamination and to assess for primer-dimers 

• NRT prepared in Section 5.2.3 to check that there was no amplification due to the 

presence of gDNA in the sample 

• inter-plate calibrator (IPC; a common sample used in every plate with the hpbt 

primer set) 

Primer pairs were prepared by diluting each 1 in 100: 

1 µl Forward primer + 1 µl Reverse primer + 98 µl DEPC H2O (total volume 100 µl) 

qPCR reactions were performed using iTaq™ Universal SYBR Green® Supermix (Bio-Rad, 

Mercules, CA, USA), and a master mix was prepared as follows: 

 5 µl SYBR® Green 

 2.5 µl diluted primer pair 

 1.5 µl DEPC H2O 
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Table 19. qPCR primers and product size for FHM reference genes (Filby and Tyler, 2007) 

Target 

gene 
Forward primer (5’-3’) Reverse primer (5’-3’) 

Product 

(bp) 

rpl8 CTCCGTCTTCAAAGCCCATGT TCCTTCACGATCCCCTTGATG 102 

hprt1 GATGAAGAGCAAGGTTATGAC ACACAGAGCAACGATATGG 165 

tbp CTCAAGGGCTGGCTTCTC ACTGGCTGTGGTGTAAGAC 97 

 

Table 20. qPCR primers and product size for FHM ff1d, vtg and spiggin-like ESTs designed using NCBI Primer-BLAST 

Target gene 
Accession 

number 
Forward primer (5’-3’) Reverse primer (5’-3’) 

Product 

(bp) 

ff1d DT343801.1 GGCCCCATGTACAAACGAGA TGGTGATGACAGCAAAGGGG 105 

vtg AF13034 TCACCACATACGCCAAAAAGC CAAGTCTAAAGCCCGTCTGGTT 69 

Spiggin-like? DT131813.1 AGAAGACCCCCTGAAACCCT GGGGTGGAGGTGGAGGTATT 80 

Spiggin-like? DT267220.1 AAGGCACTTGTACTGAGCCC CTCCTTGAAGGGCACACACT 89 

Spiggin-like? DT347638.1 ACCACTACCAGGGAGCGTAT GACACTGAAAGGGGTGAGGG 77 
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The Master Mix was pipetted to each well (9 µl per well) of the qPCR plate (Bio-Rad) using a 

multichannel pipette. The cDNA (1 µl) was then added, pipetting samples in triplicate, to give 

a final volume of 10 µl. Plates were sealed with optically transparent film (Bio-Rad) and spun 

briefly to 4000 rpm to remove any air bubbles and to spin contents down. All reactions were 

carried out using a CFX96™ Real-Time System (Bio-Rad).  

The first qPCR runs did not include a melt curve so that the products could be run on a 2% 

agarose gel (as previously described) to check that the amplicon was the expected size. 

Following qPCR, when products were run on an agarose gel, these all produced a single 

band of the correct size (see Figure 65 for an example of an amplification plot and Figure 66 

for an example of qPCR products run on a gel).  

Later, melt curve analyses were performed to validate the specificity of the PCR amplicons 

and the following cycling protocol was used: 

 

Polymerase 

activation and DNA 

denaturation at  

95 oC 

Denaturation at  

95 oC 

Annealing/ 

extension and plate 

read at 60 oC 

Melt curve analysis 

(0.5 oC increments) 

3 mins 10 secs 30 secs 65-95 oC 

 

For all tested genes, the dissociation (melt curve) analysis demonstrated that only one peak 

existed at the corresponding melting temperature, indicating specific amplification ( 

Figure 67). 

 

 

Amplification (40 cycles)  
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Figure 65. An example of an amplification plot; NTC (no amplification), inter-plate calibrator 

(IPC; FHM liver; Cq ~25) and FHM snout samples with one primer set (Cq ~20). The 

horizontal line indicates the quantification cycle (Cq).  

 

 

Figure 66. Image of qPCR products run on a 2% agarose gel alongside a 50 bp 

HyperLadder™ (loaded into the outer and middle wells). The arrows indicate the ladder’s 

100bp band. 
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Figure 67. Typical denaturation curve (melt peak) performed after qPCR cycling; NTC (no 

melt peak), inter-plate calibrator (IPC; FHM liver) and FHM snout samples with one primer 

set with melt peak at approximately the same temperature (~79 oC).  

 

Guidelines for Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) were considered (Bustin et al., 2009; Taylor et al., 2010). 

The qPCR data were analysed using the gene study option in the CFX ManagerTM software 

(Bio-Rad). The quantification cycle (Cq), the cycle at which the amplification plot crosses the 

threshold, was set automatically by the software. Amplification curves were checked to 

confirm that the Cq for each sample occurred in the log-linear phase of amplification. 

The NRTs and NTCs were evaluated on each plate to rule out contamination, and plots were 

checked for amplification occurring before a Cq of 35, thus indicating contamination. Target 

stability was calculated as coefficient of variance and the expression stability, M value. 

Relative quantification was carried out with normalisation against three reference targets 

genes (rpI8, hprt1 and tbp) to account for loading differences or other variations represented 

in each sample. The IPC was used to calculate inter-plate variability (coefficient of variance). 

The normalised expressions of the Genes of Interest (GOIs) were analysed to determine 

differences in expression between different tissues. Normalised gene expression was 

calculated using CFX Manager™ software equations as follows: 
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The Relative Quantity (RQ; ΔCq) for each GOI was calculated with the formula: 

RQ sample (GOI) = E 
(Cq

(MIN)
 – Cq

(sample)
)

 

Where: 

• E = Efficiency of primer and probe set. This efficiency was calculated with the 

formula (% Efficiency * 0.01) + 1, where 100% efficiency = 2 

• Cq (MIN) = Average Cq for the Sample with the lowest average Cq for GOI 

• Cq (sample) = Average Cq for the Sample 

• GOI = Gene of interest (one target) 

The Normalised Expression (ΔΔCq) was the RQ of target normalised to the quantities of the 

reference targets in the biological system. This calculation for normalised expression used 

the calculated RQ: 

Normalised Expression sample (GOI) =                          RQ sample (GOI) 

Where: 

• RQ = Relative Quantity of a sample 

• Ref = Reference target in a run that includes one or more reference targets in each 

sample 

• GOI = Gene of interest (one target) 

5.2.6. Statistics 

For the first FHM sampling, only one male and one female were examined, and no statistical 

comparisons were therefore made.  

For the second FHM sampling, t-tests with GraphPad Prism 8 were used to compare male 

and female data. Where data was not normally distributed and could not be transformed, the 

Mann-Whitney  test was employed. Correlation analysis was used to investigate the 

relationship between the SSCs and the normalised expressions of the GOIs. Differences 

were statistically significant when p<0.05. 

 

GOI 

(RQ sample (Ref 1) x RQ sample (Ref 2) x ..... x RQ sample (Ref n))1/n 
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5.3. Results 

5.3.1. Bioinformatics; BLAST searching and phylogenetic analysis 

On checking the NCBI website in 2013, there were found to be 27 spiggin nucleotide 

sequences (21 for the three-spined stickleback Gasterosteus aculeatus and 6 for nine-

spined stickleback Pungitius pungitius). When cluster analysis was carried out using the 

Welcome Sanger Institute SeqTools there were eight unique sequences amongst the 27 

sequences retrieved, which could be organised into three clusters.  

In 2013, Taxonomy Browser on the NCBI website identified 391 nucleotide Entrez records 

and 258,504 nucleotide expressed sequence tag (EST) records for FHM. When the 

TBLASTN was used to look for FHM nucleotide sequences with similarities to the spiggin 

sequences (one from each cluster; spiggin α, spiggin β and spiggin 4), there were no 

relevant nucleotide hits. However, there was one potential FHM spiggin-like EST hit 

(Accession Number DT131813). This FHM EST was 722 base pairs long and following 

translation using ExPASy, a BLAST search to check for similarity with spiggin mainly came 

up with mucin-19-like hits, the most closely related mucin to spiggin. Whilst the DT131813 

appears to be aligning with the mouse and human MUC-19 in a non-conserved domain in 

the multisequence alignments, when doing a BLAST search for FHM ESTs, there was poor 

alignment/no hits. With the multiple sequence alignment, and therefore also the phylogenetic 

tree, the DT131813 may not be in the correct position. However, when doing a BLAST 

search looking for FHM ESTS against spiggin α and β, the DT131813 aligned with spiggin α 

in a VWD domain (36% identity; see Appendix Figure A 11) and with spiggin β there was 

alignment with two different VWD domains (43% identity and 25% identity, see Appendix 

Figure A 12). The DT131813 also aligned well with mucin-19-like from the cyprinid 

Sinocyclocheilus graham (81% identity; Appendix Figure A 13). 

In 2018, further searches of the NCBI website came up with two more potential FHM 

spiggin-like EST hits (Accession Numbers DT267220 (826 base pairs) and DT347638 (797 

base pairs)). Following translation using ExPASy, BLAST searches to check for similarity to 

spiggin came up with zonadhesin as well as mucins hits. 

The NCBI website was then searched for mucin and mucin-like 2, 5AC, 5B, 6 and 19 protein 

sequences in human, mouse and different fish species (see Table 21 for Accession 

Numbers). For two of the spiggin homologues identified by Kawahara and Nishida (2007), 

the torafugu and medaka ‘spiggin’, were almost identical to torafugu and medaka mucin-19-

like hits (98 and 94% identity, respectively) found on the NCBI website, and they were 

therefore assumed to be mucin-19 rather than spiggin. However, the zebrafish ‘spiggin’ was 

less similar (65% identity) to muc-19-like and was included in the phylogenetic analysis. The  
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Table 21. Accession numbers for mucin and spiggin protein sequences found on the NCBI 

website. 

Species Protein Abbreviation Accession no. 

Homo sapiens MUC2 HS__MUC2 NP_002448.4 

MUC5B HS_MUC5B NP_002449.2 

MUC5AC HS_MUC5AC NP_001291288.1 

MUC6 HS_MUC6 NP_005952.2 

MUC19 HS_MUC19 NP_775871.2 

Mus musculus MUC2 MM_MUC2 NP_076055.3 

MUC5B MM_MUC5B NP_083077.2 

MUC5AC MM_MUC5AC NP_034974.1 

MUC6 MM_MUC6 NP_001316930.1 

MUC19 MM_MUC19 NP_997126.2 

Maylandia zebra mucin-2-like MZ_MUC2 XP_024659054.1 

mucin-5AC-like MZ_MUC5AC XP_024655160.1 

mucin-19-like MZ_MUC19 XP_014262801.2 

Danio rerio mucin-2-like DR__MUC2 XP_021326453.1 

mucin-5B-like DR_MUC5B XP_021333301.1 

mucin-19-like DR_MUC19 XP_002667130.6 

Takifugu rubripes mucin-2-like TR__MUC2 XP_011605972.1 

mucin-5B-like TR_MUC5B XP_011605978.1 

mucin-5AC-like TR_MUC5AC XP_011618317.1 

mucin-19-like TR_MUC19 XP_011617030.1 

Oryzias latipes mucin-19-like OL_MUC19 XP_023808397.1 

Oreochromis 

niloticus 

mucin-2-like ON_MUC2 XP_025758309.1 

mucin-5B-like ON_MUC5B XP_019202525.1 

mucin-5AC-like ON_MUC5AC XP_019210361.2 

Gasterosteus 

aculeatus 
 

Spiggin α GA_SPIG_ALPHA AAK15297.1 

Spiggin β GA_SPIG_B BAS02336.1 

Spiggin 4  GA_SPIG_4 BAE92625.1 

Pungitius pungitius Spiggin α PP_SPIG_ALPHA AAY52022.1 
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mucin-2s, mucin-5ACs, mucin-5Bs, mucin-6s, mucin-19s and zebrafish ‘spiggin’ sequence, 

together with the four spiggin sequences (three Gasterosteus aculeatus spiggin sequences 

(one from each cluster) and one Pungitius pungitius spiggin sequence), were aligned with 

the translated FHM ESTs using the multiple sequence alignment program, Clustal Omega, 

available from the European Bioinformatics Institute. 

Trimming, so that poorly aligned regions are eliminated, can increase the accuracy of 

resulting sequence alignments (Talavera and Castresana, 2007). However, the FHM ESTs 

aligned with different conserved regions, and it was therefore decided to carry out 

phylogenetic analysis on untrimmed sequences.  

The gel-forming mucin genes had strong consensus in the region of the three conserved 

(VWD-C8-TIL)-(VWD-C8-TIL)-(VWD-C8-TIL) domain structures from approximately 500-

2000 amino acids (Illustrated by red box; Figure 68). Most of the fish mucin proteins map to 

this specific VWD region and their amino acid sequences do not extend beyond this part, 

including the zebrafish ‘spiggin’. Also, two of the three FHM ESTs (DT267220 and 

DT347638) aligned within this conserved region although in different positions, and the third 

EST (DT131813) aligned with human and mouse MUC19, at a less conserved region.  

Spiggin proteins aligned best with the mucin-19 proteins including the zebrafish ‘spiggin-like 

protein’. 

The distance-based Neighbour Joining tree rooted to Human MUC2 contained a side-branch 

with the mammalian MUC19 proteins, M. zebra mucin 19-like, O. niloticus mucin-5B like, and 

the FHM EST DT131813. The DT131813 ‘branch’ of the phytogenetic tree was very long, 

indicating that there was much genetic difference between the DT131813 and the M. zebra 

mucin 19-like. The mammalian MUC6 was only weakly linked to the mucin-19 proteins. 

The EST clone DT267220 clustered with the mucin-2 proteins, and DT347638 with the 

mucin 5B and 5AC proteins. 
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Figure 68. Multiple alignments of gel-forming mucin sequences together with the three FHM spiggin-like ESTs (DT131813, DT347638 and 

DT267220, highlighted in blue), created using Clustal Omega with default settings. The red box indicates the first three conserved VWDs and 

the ruler indicates amino acid length. For abbreviations see Table 21. 
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Figure 69. Phylogenetic tree analysis of the gel-forming mucins together with the three FHM 

spiggin-like ESTs, created with Geneious Tree Builder using the Neighbour-Joining method. 

The tree is rooted to Homo sapiens MUC2. The highlighted box in yellow indicates the 

spiggin/MUC19 cluser. The scale bar indicates genetic change; the number of substitutions 

per site. For abbreviations, see Table 21. 
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5.3.2. Gene expression results for fathead minnow tissue samples 

5.3.2.1. First sampling; comparing expression levels in different tissues from a male 

and female fathead minnow  

5.3.2.1.1. Quality control and positive controls for sex specificity 

For the different male and female FHM tissues with the positive control and spiggin-like 

genes of interest, a total of 7 plates were run, and the inter-run calibrator had a Cq of 26.31 

± 0.014. The mean coefficient of variance for the three housekeeping genes (hprt1, tbp and 

rpI8) was 0.4763, and the mean expression stability (M value) was 1.2126. The mean 

coefficient of variance values for these heterogeneous samples were within the acceptable 

range of <0.5, but the M value was slightly higher than the acceptable upper limit of 1.0 

(Hellemans et al., 2007). 

The highest expression of the ff1d was with the male brain tissue, with some expression also 

in the female brain and male mouth tissues (Figure 70A and Appendix Table A 33). 

Vitellogenin was strongly expressed in female liver tissue and not in any other tissue (Figure 

70B and Appendix Table A 33).  

5.3.2.1.2. Spiggin-like primers 

Of interest was expression that was sexually dimorphic where expression was higher in male 

tissues than female tissues. For primer set DT131813 (Figure 71A and Appendix Table A 

34), highest expression was in the female kidney (only low expression in the male kidney). In 

addition, DT131813 showed higher expression in the male snout compared with the female 

snout, although this difference was not as apparent. For both the spiggin-like FHM primer 

sets, developed for the DT267220 and DT347638 ESTs (Figure 71B and C and Appendix 

Table A 34), expression was highest in the male snout tissues. As only one male and one 

female fish were sampled for this preliminary work, no statistical analysis was carried out. 

Future work looked solely at FHM snout tissue from male and female fish and 20 snout 

tissues (10 from male FHM and 10 from female FHM) were examined. 

5.3.2.2. Comparing expression levels in snout tissues from male and female FHM 

5.3.2.2.1. Biological results 

The biological endpoints (weight, fork length, condition factor and GSI) of the 10 male FHM 

and 10 female FHM from the second sampling can be seen in Table 22 and Table 23, 

respectively. The male FHM weighed significantly more than the female FHM (6.46 ± 2.26 g 

compared with 3.39 ± 0.44 g; p<0.0001). Similarly, the male FHM fork lengths were 

significantly longer than the female fork lengths (69.10 ± 5.38 mm compared with 59.90 ± 

3.03 mm; <0.0001). For the condition factor, the male values were also significantly higher  
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Figure 70. Bar chart showing normalised expression (ΔΔCq) of two positive control genes of 

interest (A; ff1d and B; vtg) in different tissues from one male (blue bars) and one female 

(red bars) FHM. Bars represent the mean of triplicate values ± SEM. See Appendix Table A 

33 for raw data. 

 

B
ra

in

Fat
pa

d
Fin

K
id
ne

y

Li
ve

r

M
ou

th

S
no

ut

0

1

2

3

4

5

N
o

rm
a

li
s

e
d

 e
x

p
re

s
s

io
n

 (
Δ

Δ
C

q
)

A

B
ra

in

Fat
pa

d
Fin

K
id
ne

y

Li
ve

r

M
ou

th

S
no

ut

0

1

2

3

4

5

FHM tissue

N
o

rm
a

li
s

e
d

 e
x

p
re

s
s

io
n

 (
Δ

Δ
C

q
)

B



209 
 

 

Figure 71. Bar chart showing normalised expression (ΔΔCq) of three spiggin-like genes (A; 

DT131813, B; DT267220 and C; DT347638) in different tissues from one male FHM (blue 

bars) and one female FHM (red bars). Bars represent the mean of triplicate values ± SEM. 

See Appendix Table A 34 for raw data. 
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Table 22. Biological endpoints for the ten male FHM fish including the secondary sexual characteristics; tubercle number and Fatpad Index 

(FPI). 

Fish 

no. 
Sex Wet wt. (g) 

Fork Length 

(mm) 

Gonad 

weight (mg) 

Condition 

factor 
GSI* 

Dorsal 

fatpad 

weight (mg) 

Tubercle 

number 
FPI 

1 M 3.92 62 47 1.427 1.199 342 17 8.724 

2 M 6.88 74 133 1.507 1.933 329 17 4.782 

3 M 5.33 65 79 1.695 1.482 388 15 7.280 

4 M 4.10 65 80 1.304 1.951 229 15 5.585 

5 M 7.00 71 186 1.659 2.657 885 14 12.643 

6 M 5.08 65 69 1.616 1.358 280 12 5.512 

7 M 4.63 64 75 1.539 1.620 379 18 8.186 

8 M 10.76 75 189 2.267 1.757 1581 17 14.693 

9 M 8.90 76 124 1.805 1.393 788 18 8.854 

10 M 7.99 74 102 1.750 1.277 701 20 8.773 

Mean 6.46 69.10 108.40 1.657 1.663 590.20 16.30 8.503 

Standard 

Deviation 
2.26 5.38 48.89 0.262 0.437 416.60 2.31 3.138 

* Gonadosomatic Index 
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Table 23. Biological endpoints for the ten female FHM fish. 

Fish no. Sex Wet wt. (g) 
Fork Length 

(mm) 

Gonad weight 

(mg) 

Condition 

factor 
GSI* 

1 F 3.48 60 457 1.328 13.132 

2 F 3.84 60 534 1.398 13.906 

3 F 3.34 62 463 1.216 13.862 

4 F 3.52 60 444 1.343 12.614 

5 F 3.84 59 669 1.611 17.422 

6 F 2.80 56 494 1.363 17.643 

7 F 2.48 54 271 1.208 10.927 

8 F 3.62 64 426 1.204 11.768 

9 F 3.68 63 446 1.280 12.120 

10 F 3.28 61 283 1.194 8.628 

Mean 3.39 59.90 448.70 1.314 13.202 

Standard Deviation 0.44 3.03 114.36 0.128 2.751 

* Gonadosomatic Index 
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Figure 72. Graphs for the biological endpoints (weight, fork length, condition factor and Gonadosomatic Index (GSI)) of the ten male (blue bars) 

and ten female (red bars) FHM fish. Bars represent mean and standard deviation. Statistical comparisons between male and female 

measurements; ***p<0.001, ****p<0.0001. 
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than the female values; 1.657 ± 0.262 and 1.314 ± 0.128, respectively (p=0.007). The 

female FHM ovaries were large and filled with ripe eggs and, as a result, the GSI values 

were significantly higher than the male FHM GSI values (13.202 ± 2.751 compared with 

1.663 ± 0.437; p<0.0001). 

The plots for the biological endpoints (weight, fork length, condition factor and GSI) are 

presented in Figure 72.  

Correlation analysis was carried out on the male tubercle number and FPI, but there was no 

significant relationship between these two endpoints (p=0.6184) (Figure 73). 

5.3.2.2.2. Molecular results 

5.3.2.2.2.1. Quality control 

For three of the female snout tissues there was either not enough RNA or the RNA quality 

was too poor to proceed further. The n-values were therefore ten for male snout tissues but 

only seven for female snout tissues. 

For the snout tissues, a total of 7 plates were run, and the inter-run calibrator (a different 

sample to that used for the first sampling) had a Cq of 24.72 ± 0.04616. The mean target 

stability value of the three housekeeping genes (rpI8, hprt1, and tbp) was 0.1721 and the 

mean M value was 0.4418. The mean coefficient of variance and M value for these 

homogeneous samples were within the acceptable range of <0.25 and <0.5, respectively 

(Hellemans et al., 2007). 
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Figure 73. Plot of tubercle number against Fatpad Index (FPI) for the ten male FHM fish. 

Correlation analysis p=0.6184, Pearson r=0.1802, R2=0.0325. 
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5.3.2.2.2.2. Spiggin-like primers 

DT131813 gene expression was significantly greater in female FHM snout than male FHM 

snout (p=0.0001; Figure 74). With the DT267220 primer set, there appeared to be higher 

expression of this target in the male snout tissue than the female snout tissue, but due to 

biological variation this was not significant (p=0.2295; Figure 74). There was also no 

significant difference between the expression of the DT347638 target in male and female 

snout tissues (p=0.9623; Figure 74). 

Correlation analysis was carried out between the tubercle numbers and the normalised 

expression with the three ESTs (DT131813, p=0.3279; DT267220, p=0.4680; DT347638, 

p=0.7257; Appendix Figure A 14) and also between the FPIs and the normalised expression 

with the three ESTs (DT131813, p=0.5367; DT267220, p=0.6321; DT347638, p=0.5135; 

Appendix Figure A 15), but no significant relationships were found. 
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Figure 74. Bar chart showing normalised expression (ΔΔCq) of the three spiggin-like genes 

(DT131813, DT267220 and DT347638 primer sets) in snout tissues from ten male FHM 

(blue bars) and seven female FHM (red bars). The bars represent mean ± standard 

deviation. For statistical comparisons between male and female values for each primer set; 

***p<0.001. See Appendix Table A 35 for raw data. 
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5.4 Discussion 

5.4.1 Bioinformatics; BLAST searching and phylogenetic analysis 

The release of 250,000 FHM ESTs deposited in the NCBI GenBank in 2005 stimulated the 

development of high-density microarray tools for FHM, and the sequencing and assembly of 

the FHM genome reported by Burns et al. (2016) was an important step in advancing 

molecular characterisation of the FHM. However, compared with zebrafish and medaka, 

there is still a lack of molecular information for the FHM (Burns et al., 2016; Lavelle et al., 

2018).  

Because of this poorly characterised FHM genome, the best approach was to look to see if 

any of the available FHM ESTs showed similarity to spiggin. However, due to the highly 

conserved nature of mucin and related proteins, the use of other teleost species to identify 

spiggin-like proteins in FHM were likely to fit within conserved regions of mucins (Martyniuk 

et al., 2012), and therefore likely to amplify related proteins as well. As expected, there was 

high sequence consensus with the fish and mammalian mucins, and whilst two of the FHM 

ESTs (DT267220 and DT347638) aligned within the conserved (VWD-C8-TIL)-(VWD-C8-

TIL)-(VWD-C8-TIL) domain structure, the DT131813 did not. The phylogenetic tree analysis 

showed that the DT267220 and DT347638 were located with the MUC2 and MUC5 clusters, 

respectively.  

The DT131813 was in a separate cluster from spiggin and was located with M. zebra mucin 

19-like and O. niloticus mucin 5B-like. From the multiple alignments comparison as well in 

the phylogenetic tree, the O. niloticus mucin 5B-like clustered with M. zebra MUC-19 and 

could be wrongly annotated as MUC-5B. Genbank does contain a significant proportion of 

erroneous protein sequences (Lang et al., 2016) and a protein may be missed/ wrongly 

annotated because it was overlooked in the process of genome annotation. When collecting 

additional information by analysing the genomic sequence more carefully against other 

mucin 5s and mucin 19s, the O. niloticus mucin 5B-like had been misannotated and was in 

fact mucin 19-like.  

As reported by (Kawahara and Nishida, 2006), in the phylogenetic tree analysis the mucin-6 

genes clustered with mucin-19 genes, and the mucin-19 genes clustered closely with 

spiggin. Therefore, the FHM EST DT131813 was the most similar to spiggin, based on its 

relationship with mucin 19 in both the sequence alignments and the phylogenetic analysis.  

 



216 
 

5.4.2 Gene expression 

5.4.2.1 First sampling; comparing expression levels in different tissues from male and female 

FHM  

The mean stability value (M) for the qPCR reference genes with the different tissues from a 

male and female FHM was slightly above the highest value expected for heterogeneous 

samples. Due to the wide range of tissues from different sexes, the samples were highly 

heterogenous and this slightly higher value might therefore have been expected. In any 

case, the mean coefficient of variation for the reference genes was within range. 

The expression of ff1d in adult zebrafish is restricted to brains, gonads and liver with higher 

expression in testis than ovary (von Hofsten and Olsson, 2005). Ff1d is highly expressed in 

testicular tissue, suggesting an involvement in gonadal steroid synthesis. Unfortunately, the 

quality of the RNA from FHM testis and ovary was insufficient to be able to carry out qPCR 

and therefore looking for testis-specific expression was not possible. Despite the lack of 

gonad tissue due to RNA degradation, there was still higher expression of ff1d in the male 

brain than female brain, as seen in zebrafish (von Hofsten and Olsson, 2005). 

For the female-specific positive control, the VTG expression was restricted to the liver. This 

agrees with other publications where expression was almost exclusively in the liver 

(zebrafish; Islinger et al., 2003). 

For the different tissue samples, there was female specific expression with the DT131813 

target in the kidney, but as this thesis focuses on male specific biomarkers this was not 

considered to be of interest for this study. In contrast, for both the DT267220 and DT347638 

targets, with the snout tissues there was male-specific expression, although as only one fish 

of each sex was sampled, more fish samples need to be collected before any conclusions 

can be drawn. This was of interest because it is possible to sample mucus from fish snouts 

non-invasively (Mosley et al., 2018). In addition, whilst biofluids (e.g. blood, urine, mucus) 

are generally thought to have higher variability than tissues, Ekman et al. (2015) did find that 

the range of variability for the FHM mucus metabolome was similar to other biofluids and 

therefore snout mucus could be a potential biofluid for monitoring influences of (anti-

)androgens. 

5.4.2.2 Second sampling; comparing biological endpoints and expression levels in snout 

tissues from male and female FHM 

As expected, the male FHM fish were both heavier and longer than the female FHM. The 

female GSI was significantly higher than the male GSI, and this is probably also why the 

female condition factor was lower for the female fish, as energy was being put into egg 
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production. Compared with the FHM used in the Pair Breeding Test in Chapter 2, these FHM 

were older and subsequently larger (both heavier and longer). 

There was no significant correlation between tubercle number and FPI. The FHM were 

photographed at the time of the sampling as the traditional method for counting tubercles 

(freezing snouts in liquid nitrogen just before counting by eye) was not used so as not to 

destroy the tissues required for molecular work. Due to the three-dimensional nature of the 

snout, counting the tubercles using photographs was not easy, as not all were in focus. This 

might be the reason why there was no correlation between our tubercle numbers and FPIs. 

However, the two endpoints do not always respond in parallel; Miles-Richardson et al. 

(1999) found the FHM tubercle endpoint in male fish to be more sensitive to E2 exposure 

compared with the fatpad.  In contrast, (Filby et al., 2010) found the male fatpad to be more 

responsive than the tubercles following exposure to WwTW effluent, so the mechanism for 

response may be different. 

The DT131813 target had significantly higher expression in the female snout tissue than the 

male snout tissue. This was not reflective of the first sampling, although in the first instance 

only one male and one female fish were sampled, and conclusions should therefore not be 

drawn from the preliminary work. Seear et al. (2014) speculated that coding for the different 

spiggin genes might be selected to suit local conditions and found that spiggin α was more 

highly expressed than other spiggins in flow-through conditions compared with static 

conditions. More recent analysis of spiggin transcripts found spiggin α to have diverged the 

least from the ancestral MUC19 gene, and Seear et al. (2015) predicted that spiggin α and β 

are secreted as long mucin-like polymers but that further spiggins (C1 and C2) are secreted 

as short monomers, with putative antimicrobial properties. Thus, spiggin α and β are more 

likely to be the ‘glue’ proteins and further spiggins may have different functional properties. 

This DT131813 EST did align better with spiggin β and not so well with α (see Appendix 

Figures A 11 and A 12), and perhaps this is why the expression pattern was not as 

expected, i.e. as the fish were from flow-through tanks, the conditions perhaps selected for 

spiggin α and not β. As this thesis focussed on male specific biomarkers this was not 

considered to be relevant for monitoring for (anti-)androgenic activity but might be suitable 

for (anti-)oestrogenic activity. This difference in expression with the target most closely 

related to spiggin (DT131813) is unlikely to be spiggin-like and more likely to be another 

mucin, especially considering the conserved nature of mucins. Unfortunately, due to the 

highly conserved nature of mucin and related proteins, without additional sequence 

information it would not be possible to further identify this FHM EST DT131813. 

The expression pattern for the other two targets (DT267220 and DT347638) looked 

promising in the preliminary sampling, as snout expression looked to be sexually dimorphic, 



218 
 

i.e. had higher expression levels in male than female tissue. However, when more FHM 

were sampled there was no significant difference in the expression levels between snout 

tissues collected from male and female FHM. Particularly with the male expression there 

was high variability, and whilst there was higher expression in the male snout tissues with 

the DT267220 target, this was not significant. 

For none of the ESTs was there correlation with either the tubercle number or the FPI as 

might have been expected, although due to the males being separate from the females and 

not actively breeding, the SSCs could have been reflective of territoriality and not 

reproduction. 

Transcript variability can be high and Cowie et al. (2015) estimated that a sample size of 

greater than 20 FHM would be required to detect a 2-fold change (0.8 power). Cowie et al. 

considered that variability in the gene expression of reproductive transcripts might be more 

pronounced for individuals actively undergoing sex maturation and be less variable in older 

individuals. Our n-values of ten (male FHM) and seven (female FHM) may have been too 

small, although all were sexually mature. For the first sampling, the male and female FHM 

fish pair were set up in a single tank with a spawning tile and were breeding prior to the 

sampling. Unfortunately, for the second sampling the male FHM were kept in separate tanks 

from the female fish due to the aggressive behaviour of the male FHM. Whilst SSCs were 

evident, the expression levels for these fish may have been different, as they were not 

actively breeding. 

Both DT267220 and DT347638 targets were similar to zonadhesin as well as mucin when 

carrying out BLAST searches. Zonadhesin is homologous to both mucins and VWF and is a 

sperm membrane protein that mediates sperm adhesion to the extracellular matrix (zona 

pellucida) of the egg (Hardy and Garbers, 1995). Hardy and Garbers (1995) detected 

porcine zonadhesin mRNA only within the testis, where it was expressed primarily in haploid 

spermatids. Hunt et al. (2005) has also identified a zonadhesin-like gene (ZLG) in fish. 

Unlike mammalian zonadhesin, zebrafish and salmon ZLG were expressed in the gut and 

not the testes and although the function of fish ZLG is not known, expression in the gut and 

absence in the testes, combined with their similarity to gut-expressed genes of the mucosal 

immune system (i.e. FCG Binding Protein and mucin), suggests a non-reproductive function 

for the ZLG. However, when Skillman et al. (2006) exposed rainbow trout to EE2 and 

measured changes in expression of vtg and zlg in liver tissues, a 10.42 fold induction in vtg 

and a 5.05 fold reduction of zlg following the exposure were observed. From the results seen 

here, it is unlikely that the expression seen for DT267220 and DT347638 targets are spiggin-

like. Instead, it is more likely that they are zonadhesin-like.  
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Unfortunately, ESTs only contain partial cDNA sequences and not full-length sequences. As 

a result, it is not possible to design primers that span exons, and without this the primers can 

also bind to gDNA. Designing primers to span exons would make the qPCR step easier, as 

otherwise gDNA can amplify alongside the cDNA. ESTs are also highly likely to be in 

conserved regions of proteins and this makes it difficult to identify specific proteins. For 

future work it would be better to PCR the FHM GOI first from gDNA and to have performed a 

5’RACE to get a full-length sequence. Primers could then be designed to span exons and 

also to avoid conserved domains. Amplification would then be specific to the GOI and not 

pick up similar spiggin-like genes. 

Could there be a zonadhesin-like protein produced in the male snout tissues used to help 

glue the eggs to substrate? For future research with larger numbers of actively breeding 

FHM, it would be interesting to determine if DT267220 and DT347638 increase in female 

FHMs following exposure to androgens.   
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6. Conclusions 

6.1. Overall aims and approach: 

Firstly, to determine if the addition of a full scale GAC, advanced wastewater treatment plant, 

could mitigated endocrine disrupting effects frequently observed in fish exposed to standard 

treated WwTW effluents.  

• Both laboratory and field-based assessments of the same effluent were conducted to 

investigate the impacts of the traditional and advanced treatment processes on well 

characterised markers of endocrine disruption in fish, namely, occurrence of intersex 

phenotypes (both eggs and sperm in the gonad) (field assessment), VTG induction in 

male fish (laboratory and field assessments), and disruption to reproductive output 

and SSCs (laboratory assessment).      

To determine if chemicals found in WwTW effluents possessed (anti-)androgenic activity. 

• Over 100 chemicals were investigated via an in vitro yeast test system. 

Thirdly, to identify possible biomarkers which could provide promising additional endpoints 

for detecting (anti-)androgenic activity in a sexually dimorphic fish species i.e. for 

subsequent addition to ecotoxicology regulatory assays. 

• Bioinformatic searches and expression analysis were conducted for male-specific 

molecular markers in a sexually dimorphic fish species. 

 

6.2. Research questions and findings: 

These aims were addressed through 4 research questions, the first being ‘Does the 

addition of an advanced treatment process to a full-scale wastewater treatment plant 

lead to a reduction in endocrine disruption in fish?’ (investigated in Chapter 2). This 

question was addressed using short-term in vivo laboratory exposure studies and a field 

collection of wild roach exposed under natural conditions, to see if the wild fish analysis 

supported the lab-based studies. Whilst a few papers have been published following the 

addition of the GAC to the Swindon WwTW, none looked at long-term effects (5 years after 

the addition of GAC) on fish living downstream of the WwTW.  

Prior to the addition of the GAC treatment, the WwTW effluent had significant 

demasculinising effects on FHM in the lab-based studies. These were not observed post 

GAC. The chemical monitoring of the standard/GAC effluents for E1, E2 and EE2 in the 

FHM tests gave inconsistent results, but the yeast bioassay used to determine the E2EQ did 

not give any better predictions of in vivo effects than the analytical chemistry results, as the 
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total oestrogenic content was at concentrations likely to induce VTG, but no VTG induction 

was observed. This was unexpected as, when roach were sampled from the River Ray in 

2005 to assess the suitability of the site for the end-of-pipe GAC plant at the Swindon 

WwTW, the VTG concentrations in males were elevated to concentrations similar to those 

found in female roach, indicating the presence of oestrogens. However, the FHM exposure 

studies did take place in 2009, 4 years after the 2005 sampling of roach from the River Ray, 

and during this time other modifications that resulted in better treatment of the effluent prior 

to the installation of the GAC plant at the Swindon WwTW, may have occurred. Additional 

monitoring for chemicals with other activities (e.g. anti-androgens) would have made it easier 

to identify what type of activity was responsible for the observed demasculinising effects. In 

the absence of VTG induction, the culprits were thought to be anti-androgens. 

For the lab-based Pair Breeding Test with FHM, only the positive control (EE2) significantly 

reduced egg production; no effects on egg production were observed with the effluent 

treatments. This was unexpected, as it was hypothesised that EDCs thought to be present in 

the effluent would have reduced breeding (in a similar way to the positive control). There are 

a couple of possible explanations as to why egg laying was not reduced by the effluent 

exposures. Firstly, that the effluent did not contain enough oestrogens to inhibit egg laying in 

the FHM (which is supported by the lack of VTG induction in the male FHMs), or secondly, 

that the reduced feeding (to minimise ammonia issues) lowered the reproductive output in 

the control fish (effluent tanks had additional organic matter in comparison), thus reducing 

the ability to detect any subtle effects of the effluent. Increasing the feeding regime for the 

FHM, so that egg production remained constant for control fish during both the pre-exposure 

and exposure period, might have improved the sensitivity of this test. 

Ideally, short-term fish studies assessing effluents should take place at the WwTW, so that 

the effluent does not have to be transported/stored, although the Pair Breeding Test is 

labour intensive, and it would not be practical to carry out such tests at the WwTW. Carrying 

out testing at the WwTW would have allowed for the parallel testing of the standard and 

GAC effluent (not possible at Brunel University London due to the availability of only one 

cooled storage tank) and enabled easier comparisons, especially if enough of the same age 

FHMs were used for both effluent studies. Unfortunately, because FHM are not native to the 

UK, they require a water temperature of 25 oC, and this would add to the expense of 

experiments if sited at the WwTW. 

On comparing the endpoints for the roach collected from the River Ray in 2013 with results 

from the historic sampling in 2005, whilst there were reductions in the biomarkers of 

oestrogen exposure in male roach (VTG, intersex), they were not significant. This lack of 

statistical significance was probably because neither the VTG concentrations nor the 
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proportion of intersex in male fish had reduced to baseline “natural” levels following the GAC 

addition to the WwTW. However, it could also be due to the smaller number of fish collected 

in 2013, as well as the variability of some of the endpoints (e.g. VTG). Comparisons between 

the 2005 and 2013 roach samplings were also complicated because the fish were sampled 

at different times of the year. In contrast, for the female endpoints investigated, there were 

significantly less uncharacteristically immature female roach after the GAC addition, 

indicating an improvement in female reproductive health.  

Whilst there were improvements in the female roach reproductive health, it was not clear if 

this was due to reduced oestrogen concentrations in the river and/or reductions in chemicals 

possessing other type of activities (e.g. anti-androgens). This is because the sampling of the 

roach from the River Ray was not accompanied by any measurements of EDCs (analytical 

chemistry or total activity using bioassays), and this lack of water analytical 

chemistry/bioassay data made it harder to interpret the results. Also, whilst it was important 

to monitor the reproductive health of roach over a longer period of time, this did mean that 

some of the methods used at the first sampling were not exactly the same as the second 

sampling (e.g. the VTG ELISA technique), making comparisons between the different results 

even more challenging. 

On comparing the VTG endpoint in the short-term (lab) and long-term (field) tests, whilst the 

male FHM in 2009 did not have elevated concentrations when exposed to either standard or 

GAC effluent, in 2013 after the GAC addition the male roach still had VTG concentrations 

about an order higher than baseline concentrations. This may have been due modifications 

to the Swindon WwTW between 2005 and 2009 having an effect on the quality of the 

effluent, but may also be because the FHM exposures were to effluent alone compared with 

the field sampling where the river water would have also contain chemicals from non-point 

sources, such as agricultural run-off. The lab-based studies therefore simplify the exposure 

and make the identification of the presence of non-oestrogenic compounds possible and 

helped to pin-point the likely chemicals to anti-androgens. Comparing the short-term and 

long-term tests was not so easy as many of the endpoints were different, however, this was 

also advantageous as it helped to build a bigger picture. By combining the short-term and 

long-term tests, it was possible to consider that the effects on the female roach reproductive 

health could just as likely be due to the presence of other chemicals. 

In fish, EDCs are linked to reproductive disorders, and whilst some studies show that roach 

with mild intersex are able to successfully reproduce (Hamilton et al., 2015), others have 

linked severe intersex in rainbow darter with poor reproductive success (Fuzzen et al., 

2015). Post addition of the GAC, the reproductive effects appear to be minor, but early life 

adverse effects may not manifest until later life, or even later generations (Hamilton et al., 
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2016). The use of advanced treatments such as GAC are expensive and whilst the GAC did 

succeed in removing the possible anti-androgenic effect of the effluent seen in the FHM, 

perhaps other less intensive methods, such as increasing retention times or tertiary 

treatments such as sand filtration, might have also been sufficient to reduce risks to 

acceptable levels. Especially as it seems, from the FHM study, that even before the addition 

of the GAC in 2009, the oestrogenic effect of the effluent was already much reduced 

compared with when the historic sampling of the roach took place in 2005. 

My second research question, ‘Which individual chemicals from wastewater treatment 

work effluents have (anti-)androgenic activity and how potent are these chemicals?’, 

was addressed by testing 107 chemicals found in WwTW effluent and river water using a 

yeast-based (anti-)androgen screen (investigated in Chapter 3). When testing the chemicals 

in the (A)YAS, some of the results were inconsistent (on retesting chemicals and compared 

with results published by others) and toxicity was considered a possible reason for false 

positives. Therefore, the active chemicals were then retested using a modification of the 

standard method that utilised a final cell lysis step (based on the ISO 19040-1 protocol). The 

results related to the third question ‘Do both in vitro assays for (anti-)androgenic activity 

produce the same results and, if not, which is the most reliable, i.e. least likely to 

produce false positive results?’ (investigated in Chapter 4) are summarised in the 

following table: 

                                   Assay 

Activity       
Standard (A)YAS Modified (A)YAS 

Androgenic 3 0 

Anti-androgenic 20 18 

Superagonist Inconsistent Inconsistent 

 

Whilst three of the 107 chemicals were very weakly androgenic (methyl decanoate, 2-

ethylhexanoic acid and ibuprofen) using the standard YAS method (investigated in Chapter 

3), this activity was not repeatable when the YAS was modified with an additional cell lysis 

step (investigated in Chapter 4). Whilst the most potent of the androgenic chemicals, 

ibuprofen, is widely used for its pain-relieving and anti-inflammatory effects, the potency was 

over a million times less potent than DHT (positive control) and the discrepancy between the 

standard YAS method and the modified assay was therefore small. These results seen with 

the standard YAS were thought to be false positives. 
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Additionally, in the standard AYAS, twenty of the chemicals tested (19%) were found to be 

anti-androgenic, some more potent than the pharmaceutical flutamide. However, for two of 

the chemicals (triphenyl phosphate and myristic acid) identified in the standard AYAS, the 

anti-androgenic activity could not be repeated when the assay was modified, probably 

because toxicity was interfering with the results in the standard assay. Some of the anti-

androgenic chemicals were more potent than the pharmaceutical flutamide (triclosan and its 

metabolite methyl triclosan, chlorophene, fluoranthene and pyrene, and the resin acid 

dehydroabietic acid) used as the anti-androgenic standard. Whilst the most potent of the 

anti-androgens have already been reported in the literature, for many of the less potent 

chemicals these results were novel, for example, acetylcedrene, diphenylacetic acid methyl 

ester, alpha cedrol, benzeneacetaldehyde, 2-(methylthio)benzothiazole. 

Chemicals identified as anti-androgenic in the modified (A)YAS 

Strong 

(more potent than flutamide) 

Moderate 

(similar potency to flutamide) 

Weak/very weak 

(less potent than flutamide) 

Triclosan Dehydroabietic acid alpha cedrol 

Chlorophene Pyrene Benzeneacetaldehyde 

Methyl triclosan 9H-Fluorene 2-(methylthio)benzothiazole 

Fluoranthene Acetylcedrene 
N-Butylbenzene 

sulfonamide 

 
Diphenylacetic acid methyl 

ester 
Benzophenone 

  Dodecanoic acid 

  
9,12-Octadecadienoic acid 

methyl ester 

  

1-[4-(hydroxy-1-

methylethyl)  

phenyl] ethanone 

  Hexamethylbenzene 

 

For the anti-androgenic activity thought to be the result of toxicity, the modified AYAS with 

cell lysis was much less likely to give false positive results, and this was especially important 

as many of the chemicals tested were toxic at higher concentrations. This was because with 
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the modified assay with cell lysis, the reduction in colourimetric absorbance due to toxicity 

mirrored the reduction in turbidity readings, but this was not the case with the standard 

assay where toxicity led to reductions in colour before turbidity was reduced. Some 

laboratories routinely carry out assays for toxicity in parallel with the assays for (anti-

)androgenic activity, but this often doubles both the time and the cost of running the assay. 

This modified assay was more complex and lengthier to run, particularly at the cell lysis step 

at the end of the incubation period, but was also more robust, i.e. less prone to false 

positives. This is beneficial as a false positive result might lead to in vivo investigations, 

leading to unnecessary costs, wasted resources and unnecessary use of animals. 

Some chemicals were able to enhance the activity of DHT in the anti-androgen screen rather 

than block the activity, i.e. were superagonists and not anti-androgens. As pollutants in the 

natural environment are most often present as mixtures rather than discrete chemicals, 

chemicals present that enhance the activity of androgens (and possibly chemicals with other 

types of activity), yet have no activity when tested singly, may get overlooked. In fact, most 

regulatory testing is of single chemicals and not mixtures and this type of activity might go 

unnoticed yet has the potential to increase the potency of other chemicals. In this case the 

activity of the steroid DHT was enhanced, which is important as steroids are a major group 

of chemicals found in WwTW effluents. 

In terms of limitations, due to the part-time nature of my PhD, the in vitro yeast assays were 

carried out over a five-year period, and this meant that there was less consistency in the 

assay components. This might also have been the reason for the variable superagonist 

activity. For cost saving, I also used freeze/thawing to lyse the yeast cells rather than 

lyticase, as detailed in the ISO 19040-1:2018 protocol, and this meant that the final stages of 

the assay took longer and smaller assays had to be run, again possibly reducing the 

consistency. 

In stickleback, a sexually dimorphic fish species, males secrete spiggin under the control of 

androgens, which is used to build a nest in preparation for female egg laying. The presence 

of spiggin in female sticklebacks indicates exposure to environmental androgens, and a 

reduction in spiggin in male fish can indicate exposure to environmental anti-androgens. The 

Androgenised Female Stickleback Screen (AFSS) is now partially validated as an OECD 

test. However, spiggin as a biomarker is only applicable to sticklebacks, and this led to my 

fourth and final question, ‘Do FHMs, another sexually dimorphic fish species exhibiting 

paternal parental care, possess a similar spiggin-like protein that could be used as a 

sensitive biomarker of (anti-)androgen exposure, to provide an additional endocrine 

endpoint to commonly used OECD regulatory test guidelines?’. To answer this 

question, I designed primers to FHM ESTs with similarity to spiggin, and carried out qPCRs 
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to look for sexually dimorphic expression in tissues where sexually dimorphic features/ 

mucus production have previously been described. Whilst a spiggin-like protein was not 

discovered, two zonadhesin-like targets were identified in the FHM snout tissues (providing 

potential for non-invasive sampling). As zonadhesin is another glue-like protein that 

mediates sperm adhesion, if sexually dimorphic in FHM, it could be used to provide an 

additional endocrine endpoint to commonly used OECD regulatory test guidelines. The initial 

results looked promising, albeit zonadhesin-like and not spiggin-like gene expression, but on 

repeating the work with larger fish numbers, whilst the expression levels were higher in the 

male FHM, these levels were not significantly different from the female FHM snout 

expression levels.  

Whilst the FHM used for my first expression analysis work were available at Brunel 

University London, this was not the case when it came to analysing these tissues or for my 

second sampling. This meant that, when I was not able to get enough RNA or the RNA was 

degraded, I was not easily able to collect further tissues, and important tissues (testis and 

ovary) were missing from the first analysis. As we no longer had FHM at Brunel University 

London for my second sampling, I was able to obtain the FHM for this expression analysis 

work from another aquatic ecotoxicology facility; Scymaris, Brixham, but as these were 

supplied off site, it was not possible to set these fish up as breeding pairs. This may have 

been why results that initially looked promising for the first sampling were not significant for 

the second sampling with larger fish numbers.  

Whilst there are several fish species used to measure the effects of oestrogenic chemicals in 

the environment (e.g. zebrafish, medaka, fathead minnow), for anti-androgens the 

stickleback is still the recommended species (OECD, 2018c). Sebillot et al. (2014) has also 

thought to use the biomarker ‘spiggin’ in another fish species and developed a sensitive 

specific transgenic medaka model bearing an androgen responsive fluorescent reporter 

construct (green fluorescent protein gene driven by the spiggin promoter) for whole organism 

based environmental screening of (anti-)androgens. This assay (RADAR: Rapid Androgen 

Disruption Adverse Outcome Reporter Assay) is now being considered as an OECD test for 

AR agonists and antagonists.  

The effects of EDCs have only been investigated in a few fish species, mainly because of 

limited genomic information for non-model species including the FHM. Whilst this OECD 

RADAR test looks to be a reliable test for (anti-)androgens, this uses freshly hatched 

medaka that may have limited metabolic capability compared with adult fish. As FHM are 

one of the three recommended species for two OECD tests (OECD TG 229: Fish Short-

Term Reproduction Assay and OECD TG 230: 21-Day Fish Assay), both using adult fish, it 



227 
 

would be beneficial to add endpoints to this species rather than add extra species/tests for 

different endpoints (3Rs). If sexually dimorphic ‘zonadhesin-like’ expression was found to be 

androgen dependent, it could be a useful endpoint for monitoring for (anti)-androgens, 

especially as there is the possibility it could be sampled non-invasively. 

 

6.3. Recommendations for future work 

For future work it would be very interesting to investigate the superagonists further. As a 

starting point it would be important to purchase the 12 superagonists once more and to carry 

out the testing with fresh yeast assay components, to determine if the inconsistent activity 

was because they had reached the end of their shelf-life. It would also be interesting to run 

the same chemicals through the yeast anti-oestrogen screen to see if these 12 chemicals 

were similarly able to enhance the activity of the oestradiol present in the medium. If these 

chemicals were then consistently active as superagonists, it would be important to get a 

better understanding of the mechanism by which one chemical is able to enhance the 

activity of another, as this would help to understand if the issue could also be affecting other 

assays, e.g. HTP assays. As the real concern regarding these superagonists is that they 

enhance the uptake of chemicals into fish, assuming that the superagonist response was 

consistent, it would be interesting to determine whether these chemicals were able to affect 

the uptake of other chemicals into fish. 

Because the snout tissue has the potential to be sampled non-invasively, it would be of 

interest to look further at zonadhesin-like expression in FHM, with larger numbers of sexually 

active FHMs, as well as looking at differences in expressions levels in tissues of female fish 

treated with androgens. Further information is now available regarding a FHM zonadhesin-

like gene on the NCBI website, and this would enable the design of primers to span introns 

and avoid amplifying gDNA or other mucins with conserved domains. 

 

6.4. Final conclusions  

There is a need to discover and apply new approaches to replace, reduce and refine the use 

of animals in scientific procedures. The use of in vitro assays can reduce the need for in vivo 

testing, but inappropriate in vitro assays could affect data interpretation and lead to the 

mislabelling of some of the chemicals as EDCs. Modifying and improving the robustness of 

this standard (A)YAS could lead to a reduction in false positive results and subsequent 

reduction in in vivo investigations, thus reducing unnecessary costs/wasted resources along 

with reducing animal usage.  
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Currently there are no validated fish tests for anti-androgens, and although the AFSS (a 

variant of the 21-Day Fish Assay) has more power to identify anti-androgens than the 21-

Day Fish Assay (utilising zebrafish, FHM or medaka), this test has a more limited range of 

endpoints. In the 21-Day Fish Assay, this protocol describes SSC measurements as 

biomarkers of exposure to (anti-)androgens, yet these endpoints often lack sensitivity and 

some are scored on a subjective scale, so may be subject to bias (Ankley et al., 1998; 

Muldoon and Hogan, 2016). An additional biomarker for (anti-)androgens in the FHM would 

greatly enhance this fish test and could reduce the need for the AFSS. This would reduce 

the number of fish tests required when testing chemicals. The zonadhesin-like also looked to 

have the potential to be sampled non-invasively, and this would refine the in vivo test by 

reducing stress/suffering.  
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APPENDIX - FIGURES 

  

Figure A 1. Fish tank room set ups with standard treated effluent. (A) Experiment 1; VTG 

Test, dilution water, positive control (10ng/L EE2) and 100%, 50% or 25% effluent, and (B) 

Experiment 3, Pair Breeding Test, dilution water, positive control (20ng/L EE2) and 100%, 

50% or 25% effluent, sets of 6 or 8 tanks fed dilution water/EE2/effluent via 6- or 8-hole 

mixing chambers.  
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Figure A 2. Fish tank room set ups with GAC treated effluent. (A) Experiment 2; VTG Test, 

dilution water, positive control (10ng/L EE2) and 100% effluent, and (B) Experiment 4; Pair 

Breeding Test, dilution water, positive control (20ng/L EE2) and 100% effluent, sets of 6 or 8 

tanks fed dilution water/EE2/effluent via 6- or 8-hole mixing chambers.  
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Figure A 3. VTG Test fish tank room set up with 20L tanks. Eight male fathead minnows 

were housed per tank. 

 

 

Figure A 4. Pair Breeding Test fish tank room set up with sets of 8L tanks fed dilution 

water/EE2/effluent via 6- or 8-hole mixing chambers. Each tank contained a spawning 

chamber and housed a pair of fathead minnows. 
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Figure A 5. 2013 sampling – Seine netting the River Ray down stream of Swindon Waste 

Water Treatment Works. 

 
 

 

 
 

Figure A 6. 2013 sampling – electrofishing upstream of the Seine net. 
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Figure A 7. Yeast oestrogen screen results showing percentage deconjugation for oestradiol 

(E2), oestradiol sulphate (E2-S) and oestradiol glucuronide (E2-G) with the enzymes 

sulphatase (type VI from Aerobacter aerogenes; Sigma-Aldrich) and β-glucuronidase (type 

VII-A from E. coli; Sigma-Aldrich). 

 

 

 

Figure A 8. An example of a standard curve using the Biosense commercial carp VTG 

ELISA kit for the analysis of the 2013 roach plasma samples.  
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Figure A 9. The quantification of VTG in plasma samples used two different Enzyme-linked 

immunosorbent assay (ELISA) methods (the pre-commercialisation method by Tyler et al. 

(1999) and the Biosense commercial carp VTG ELISA kit) and took place over a number of 

years. To determine comparability of VTG data, subsamples of plasma from 2005 (blue 

circles) and male plasma from 2013 (red circles) were reanalysed in the ELISA used to 

determine the 2013 female plasma VTG concentrations (ng/ml). The regression models for 

the reanalysed 2005 and male 2013 plasma samples, had R2 values of 0.8429 and 0.9981, 

respectively.  
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Figure A 10. Unadjusted plasma VTG concentrations in male (including intersex) and female 

roach sampled from the River Ray in 2005 (dotted plots; prior to GAC installation) and in 

2013 (striped plots; after the GAC WwTW upgrade). The violin plots include lines at the 

median and quartiles. VTG values significantly different from respective 2005 values are 

denoted by stars; ***p<0.001 and ****p<0.0001. 

 

 

 

Figure A 11. Alignment of DT131813 with spiggin α (Accession number AAK15297) showing 

36% identity. 
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Figure A 12. Alignment of DT131813 with spiggin β (Accession number BAS02336) showing 

46% and 25% identity. 

 

 

 

 

Figure A 13. Alignment of DT131813 with mucin-19-like [Sinocyclocheilus grahami] 

(Accession number XP_016126944.1) showing 81% identity. 
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Figure A 14. Correlation analysis was carried out between the tubercle numbers and the 

normalised expression with the three ESTs (DT131813, p=0.3279; DT267220, p=0.4680; 

DT347638, p=0.7257) but no significant relationships were found. 
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Figure A 15. Correlation analysis was carried out between the FPIs and the normalised 

expression with the three ESTs (DT131813, p=0.5367; DT267220, p=0.6321; DT347638, 

p=0.5135), but no significant relationships were found. 
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APPENDIX - TABLES 

Table A 1. Raw fish tank water quality data from Experiment 1, VTG exposure study with 

standard effluent. Ammonia measurements in parts per million (ppm) taken with test strips 

(Precision Laboratories, Moulton, UK).

 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

21-May-09 Ac 1

22-May-09 Ac 2 0 0 0 0 0

23-May-09 Ac 3 0.5 0.5 0.5 0.5 0.5

24-May-09 Ac 4 0.5 0.5 0 0.5 0.5

25-May-09 Ac 5 0.5 0.5 0.5 0.5 0.5

26-May-09 Ac 6 0.5 0.5 0.5 0.5 0.5

27-May-09 Ac 7 0.5 0.5 0.5 0.5 0.5

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 -21 0.5 0.5 0.5 0.5 0.5

29-May-09 -20 0 0 0 0 0

30-May-09 -19 0 0 0 0 0

31-May-09 -18 0 0 0 0 0

01-Jun-09 -17 0 0 0 0 0

02-Jun-09 -16 0 0 0 0 0.5

03-Jun-09 -15 0 0 0 0 0

04-Jun-09 -14 0 0 0 0 0

05-Jun-09 -13 0.5 0.5 0.5 0 0

06-Jun-09 -12 0 0 0.5 0.5 0.5

07-Jun-09 -11 0.5 0.5 0.5 0.5 0.5

08-Jun-09 -10 0.5 0.5 0.5 0.5 0

09-Jun-09 -9 0.5 0.5 0.5 0.5 0.5

10-Jun-09 -8 0.5 0.5 0.5 0.5 0.5

11-Jun-09 -7 0.5 0.5 0.5 0.5 0.5

12-Jun-09 -6 0.5 0.5 0.5 0 0.5

13-Jun-09 -5 0.5 0.5 0.5 0.5 0.5

14-Jun-09 -4 0 0 0 0 0

15-Jun-09 -3 0 0 0 0 0

16-Jun-09 -2 0.5 0.5 0.5 0 0.5

17-Jun-09 -1 0 0.5 0.5 0.5 0.5

18-Jun-09 0 0 0 0.5 1

Ammonia (ppm)

Date Day Study day

Acclimation Period

Date Day Study day

Pre Exposure period (Weeks 1 to 3)
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Table A 2. Raw fish tank water quality data from Experiment 1, VTG exposure study with 

standard effluent. Nitrite measurements in parts per million (ppm) taken with test strips 

(Precision Laboratories, Moulton, UK).

 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

21-May-09 Ac 1

22-May-09 Ac 2 0 0 0 0 0

23-May-09 Ac 3 0 0 0 0 0

24-May-09 Ac 4 0 0 0 0 0

25-May-09 Ac 5 0 0 0 0 0

26-May-09 Ac 6 0 0 0 0 0

27-May-09 Ac 7 0 0 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 -21 0 0 0 0 0

29-May-09 -20 0 0 0 0 0

30-May-09 -19 0 0 0 0 0

31-May-09 -18 0 0 0 0 0

01-Jun-09 -17 0 0 0 0 0

02-Jun-09 -16 0 0 0 0 0

03-Jun-09 -15 0 0 0 0 0

04-Jun-09 -14 0 0 0 0 0

05-Jun-09 -13 0 0 0 0 0

06-Jun-09 -12 0 0 0 0 0

07-Jun-09 -11 0 0 0 0 0

08-Jun-09 -10 0 0 0 0 0

09-Jun-09 -9 0 0 0 0 0.5

10-Jun-09 -8 0 0 0 0 0.5

11-Jun-09 -7 0 0 0 0 0

12-Jun-09 -6 0 0 0.5 0.5 0.5

13-Jun-09 -5 0 0 0.5 0.5 0.5

14-Jun-09 -4 0 0 0 0 0.5

15-Jun-09 -3 0 0 0 0 0

16-Jun-09 -2 0.5 0.5 0.5 0.5 0.5

17-Jun-09 -1 0.5 0.5 0.5 0.5 0.5

18-Jun-09 0.5 0.5 0.5 0.5 0.5

Nitrite (ppm)

Date Day Study day

Acclimation Period

Pre Exposure period (Weeks 1 to 3)

Date Day Study day
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Table A 3. Raw fish tank water quality data from Experiment 1, VTG exposure study with 

standard effluent. Nitrate measurements in parts per million (ppm) taken with test strips 

(Precision Laboratories, Moulton, UK).

 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

21-May-09 Ac 1

22-May-09 Ac 2 0 10 10 10 0

23-May-09 Ac 3 10 10 10 10 10

24-May-09 Ac 4 10 25 10 10 10

25-May-09 Ac 5 10 25 25 10 25

26-May-09 Ac 6 0 10 10 10 10

27-May-09 Ac 7 0 0 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 -21 10 10 0 10 10

29-May-09 -20 0 10 10 10 25

30-May-09 -19 0 10 10 10 10

31-May-09 -18 10 10 10 10 10

01-Jun-09 -17 0 0 10 10 25

02-Jun-09 -16 0 0 10 25 50

03-Jun-09 -15 10 10 25 25 50

04-Jun-09 -14 0 10 25 25 25

05-Jun-09 -13 10 10 25 25 50

06-Jun-09 -12 0 0 10 10 25

07-Jun-09 -11 10 10 25 25 50

08-Jun-09 -10 0 10 10 10 10

09-Jun-09 -9 10 10 25 10 25

10-Jun-09 -8 0 10 0 0 10

11-Jun-09 -7 0 10 10 25 25

12-Jun-09 -6 10 10 10 10 25

13-Jun-09 -5 10 10 10 25 25

14-Jun-09 -4 10 10 25 25 25

15-Jun-09 -3 0 10 10 10 10

16-Jun-09 -2 10 10 10 25 25

17-Jun-09 -1 10 10 10 10 25

18-Jun-09 10 10 10 10 25

Nitrate (ppm)

Date Day Study day

Acclimation Period

Date Day Study day

Pre Exposure period (Weeks 1 to 3)
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Table A 4. Raw fish tank water quality data from Experiment 2, VTG exposure study with 

GAC effluent. Ammonia measurements in parts per million (ppm) taken with test strips 

(Precision Laboratories, Moulton, UK).

 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

09-Mar-09 Ac 1 0.5 0 0.5

10-Mar-09 Ac 2 0.5 0.5 0.5

11-Mar-09 Ac 3 0.5 0 0.5

12-Mar-09 Ac 4 0 0.5 0.5

13-Mar-09 Ac 5 0 0 0

14-Mar-09 Ac 6 0 0 0

15-Mar-09 Ac 7 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Mar-09 -21 0 0 0

17-Mar-09 -20 0 0 0.5

18-Mar-09 -19 0 0 0

19-Mar-09 -18 0 0 0

20-Mar-09 -17 0 0.5 0

21-Mar-09 -16 0 0.5 0

22-Mar-09 -15 0.5 1 1

23-Mar-09 -14 0 0 0

24-Mar-09 -13 0 0 0

25-Mar-09 -12 0 0 0

26-Mar-09 -11 0 0 0

27-Mar-09 -10 0 0 0

28-Mar-09 -9 0 0 0

29-Mar-09 -8 0.5 0.5 0.5

30-Mar-09 -7 0 0 0

31-Mar-09 -6 0 0 0

01-Apr-09 -5 0 0 0

02-Apr-09 -4 0 0 0

03-Apr-09 -3 0 0 0

04-Apr-09 -2 0 0 0

05-Apr-09 -1 0 0 0.5

06-Apr-09

Ammonia (ppm)

Date Day Study day

Acclimation Period

Pre Exposure period (Weeks 1 to 3)

Date Day Study day
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Table A 5. Raw fish tank water quality data from Experiment 2, VTG exposure study with 

GAC effluent. Nitrite measurements in parts per million (ppm) taken with test strips 

(Precision Laboratories, Moulton, UK).

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

09-Mar-09 Ac 1 0 0 0

10-Mar-09 Ac 2 0 0 0

11-Mar-09 Ac 3 0 0 0

12-Mar-09 Ac 4 0 0 0

13-Mar-09 Ac 5 0 0 0

14-Mar-09 Ac 6 0 0 0

15-Mar-09 Ac 7 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Mar-09 -21 0 0 0

17-Mar-09 -20 0 0 0

18-Mar-09 -19 0 0 0

19-Mar-09 -18 0 0 0

20-Mar-09 -17 0 0 0

21-Mar-09 -16 0 0 0

22-Mar-09 -15 0 0 0

23-Mar-09 -14 0 0 0

24-Mar-09 -13 0 0 0

25-Mar-09 -12 0 0 0

26-Mar-09 -11 0 0 0

27-Mar-09 -10 0 0 0

28-Mar-09 -9 0 0 0

29-Mar-09 -8 0 0 0

30-Mar-09 -7 0 0 0

31-Mar-09 -6 0 0 0.5

01-Apr-09 -5 0 0.5 0.5

02-Apr-09 -4 0.5 0.5 0.5

03-Apr-09 -3 0.5 0.5 0.5

04-Apr-09 -2 0.5 0.5 0.5

05-Apr-09 -1 0 0 0.5

06-Apr-09

Nitrite (ppm)

Day Study day

Date Day Study day

Pre Exposure period (Weeks 1 to 3)

Acclimation Period

Date
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Table A 6. Raw fish tank water quality data from Experiment 2, VTG exposure study with 

GAC effluent. Nitrate measurements in parts per million (ppm) taken with test strips 

(Precision Laboratories, Moulton, UK).

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

09-Mar-09 Ac 1 0 0 0

10-Mar-09 Ac 2 10 0.5 10

11-Mar-09 Ac 3 0 10 0

12-Mar-09 Ac 4 0 0 10

13-Mar-09 Ac 5 0 0 0

14-Mar-09 Ac 6 0 0 0

15-Mar-09 Ac 7 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Mar-09 -21 0 0 0

17-Mar-09 -20 0 0 10

18-Mar-09 -19 0 0 10

19-Mar-09 -18 0 0 10

20-Mar-09 -17 0 0 10

21-Mar-09 -16 0 0 25

22-Mar-09 -15 0 0 0

23-Mar-09 -14 0 0 0

24-Mar-09 -13 0 0 0

25-Mar-09 -12 0 0 0

26-Mar-09 -11 0 0 10

27-Mar-09 -10 0 0 10

28-Mar-09 -9 0 0 10

29-Mar-09 -8 0 0 10

30-Mar-09 -7 0 0 10

31-Mar-09 -6 0 0 10

01-Apr-09 -5 0 10 10

02-Apr-09 -4 0 10 10

03-Apr-09 -3 0 10 10

04-Apr-09 -2 0 10 10

05-Apr-09 -1 0 10 5

06-Apr-09

Nitrate (ppm)

Date Day Study day

Date

Acclimation Period

Day Study day

Pre Exposure period (Weeks 1 to 3)
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Table A 7. Raw fish tank water quality data from Experiment 3, Pair Breeding exposure 

study with standard effluent. Ammonia measurements in parts per million (ppm) taken with 

test strips (Precision Laboratories, Moulton, UK). 

  

1 +ve Control 25% Effluent 50% Effluent 100% Effluent

30-Apr-09 Ac 1 0.5 0.5 0.5 0.5 0.5

01-May-09 Ac 2 0.5 0.5 0.5 0.5 0.5

02-May-09 Ac 3 0.5 0.5 0.5 0 0.5

03-May-09 Ac 4 0 0 0 0 0

04-May-09 Ac 5 0 0 0 0 0

05-May-09 Ac 6 0.5 0 0 0.5 0

06-May-09 Ac 7 0 0 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

07-May-09 -21 0.5 0.5 0 0.5 0.5

08-May-09 -20 0.5 0.5 0 0.5 0.5

09-May-09 -19 0.5 0.5 0.5 0.5 0.5

10-May-09 -18 0.5 0.5 0.5 0.5 0.5

11-May-09 -17 0.5 0.5 0.5 0.5 0.5

12-May-09 -16 0 0 0 0 0

13-May-09 -15 0 0 0 0 0

14-May-09 -14 0.5 0 0 0 0

15-May-09 -13 0 0 0 0 0

16-May-09 -12 0 0 0.5 0 0

17-May-09 -11 0 0 0.5 0 0

18-May-09 -10 0.5 0.5 0.5 0.5 0.5

19-May-09 -9 0.5 0.5 0 0 0

20-May-09 -8 0.5 0.5 0.5 0.5 0.5

21-May-09 -7 0.5 0.5 0.5 0.5 0.5

22-May-09 -6 0.5 0.5 0.5 0.5 0.5

23-May-09 -5 0.5 0.5 0.5 0.5 0.5

24-May-09 -4 0 0 0 0 0

25-May-09 -3 0.5 0 0 0.5 0.5

26-May-09 -2 0.5 0.5 0.5 0.5 0.5

27-May-09 -1 0 0 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 1 0 0 0 0 0

29-May-09 2 0 0 0 0 0

30-May-09 3 0 0 0 0 0

31-May-09 4 0 0 0 0 0

01-Jun-09 5 0 0 0 0.5 0.5

02-Jun-09 6 0 0 0 0 0

03-Jun-09 7 0 0 0 0 0

04-Jun-09 8 0 0 0 0 0

05-Jun-09 9 0 0.5 0.5 0.5 0.5

06-Jun-09 10 0 0.5 0.5 0.5 0.5

07-Jun-09 11 0 0.5 0.5 0.5 0.5

08-Jun-09 12 0 0 0.5 0.5 0.5

09-Jun-09 13 0 0 0 0 0

10-Jun-09 14 0 0 0 0 0

11-Jun-09 15 0 0 0 0 0

12-Jun-09 16 0 0.5 0 0 0.5

13-Jun-09 17 0 0 0 0 0.5

14-Jun-09 18 0 0 0 0 0.5

15-Jun-09 19 0 0 0.5 0.5 1

16-Jun-09 20 0.5 0.5 0.5 0.5 1

17-Jun-09 21 0.5 0.5 0.5 0.5 0.5

Date

Ammonia (ppm)

Acclimation Period

Date Day Study day

Study dayDate Day

Day Study day

Exposure period (Weeks 4 to 6)

Pre Exposure period (Weeks 1 to 3)
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Table A 8. Raw fish tank water quality data from Experiment 3, Pair Breeding exposure 

study with standard effluent. Nitrite measurements in parts per million (ppm) taken with test 

strips (Precision Laboratories, Moulton, UK).

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

30-Apr-09 Ac 1 0 0 0 0 0

01-May-09 Ac 2 0 0 0 0 0

02-May-09 Ac 3 0 0 0 0 0

03-May-09 Ac 4 0 0 0 0 0

04-May-09 Ac 5 0 0 0 0 0

05-May-09 Ac 6 0 0 0 0 0

06-May-09 Ac 7 0 0 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

07-May-09 -21 0 0 0 0 0

08-May-09 -20 0 0 0 0 0

09-May-09 -19 0 0 0 0 0

10-May-09 -18 0 0 0 0 0

11-May-09 -17 0 0 0 0 0

12-May-09 -16 0 0 0 0 0

13-May-09 -15 0 0 0 0 0

14-May-09 -14 0 0 0 0 0

15-May-09 -13 0 0 0 0 0

16-May-09 -12 0 0 0 0 0

17-May-09 -11 0 0 0 0 0

18-May-09 -10 0 0 0 0 0

19-May-09 -9 0 0.5 0 0 0

20-May-09 -8 0 0 0 0 0

21-May-09 -7 0 0 0 0 0

22-May-09 -6 0 0 0 0 0

23-May-09 -5 0 0 0 0 0

24-May-09 -4 0 0 0 0 0

25-May-09 -3 0 0.5 0 0 0

26-May-09 -2 0 0 0 0 0

27-May-09 -1 0 0.5 0 0 0

.

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 1 0 0 0.5 0.5 0

29-May-09 2 0 0 0.5 0.5 0.5

30-May-09 3 0 0 0 0.5 0.5

31-May-09 4 0.5 0.5 0.5 0.5 0.5

01-Jun-09 5 0.5 0.5 0.5 0.5 0.5

02-Jun-09 6 0 0.5 0.5 0.5 0.5

03-Jun-09 7 0.5 0.5 0.5 0.5 0.5

04-Jun-09 8 0.5 0.5 0.5 0.5 0.5

05-Jun-09 9 0 0 0 0.5 0

06-Jun-09 10 0 0 0 0 0.5

07-Jun-09 11 0 0 0 0 0.5

08-Jun-09 12 0 0.5 0 0 0.5

09-Jun-09 13 0 0.5 0 0.5 0.5

10-Jun-09 14 0 0.5 0 0.5 0.5

11-Jun-09 15 0 0.5 0 0 0

12-Jun-09 16 0.5 0.5 0 0 0

13-Jun-09 17 0.5 0.5 0 0 0

14-Jun-09 18 0.5 0.5 0 0 0

15-Jun-09 19 0.5 0.5 0 0 0

16-Jun-09 20 0.5 0 0 0 0

17-Jun-09 21 0.5 0 0 0 0

Date Day Study day

Exposure period (Weeks 4 to 6)

Nitrite (ppm)

Date Day Study day

Acclimation Period

Date Day Study day

Pre Exposure period (Weeks 1 to 3)
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Table A 9. Raw fish tank water quality data from Experiment 3, Pair Breeding exposure 

study with standard effluent. Nitrate measurements in parts per million (ppm) taken with test 

strips (Precision Laboratories, Moulton, UK). 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

30-Apr-09 Ac 1 10 0 10 0 0

01-May-09 Ac 2 0 0 0 0 0

02-May-09 Ac 3 0 0 0 0 0

03-May-09 Ac 4 0 0 0 0 0

04-May-09 Ac 5 0 0 0 0 0

05-May-09 Ac 6 0 0 0 0 0

06-May-09 Ac 7 0 0 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

07-May-09 -21 10 10 10 10 10

08-May-09 -20 0 0 0 0 0

09-May-09 -19 0 0 0 0 0

10-May-09 -18 0 0 0 0 0

11-May-09 -17 0 0 0 0 0

12-May-09 -16 0 10 0 10 0

13-May-09 -15 0 10 0 10 0

14-May-09 -14 10 10 10 0 10

15-May-09 -13 0 0 0 10 10

16-May-09 -12 0 0 0 10 0

17-May-09 -11 0 0 10 10 10

18-May-09 -10 0 0 10 0 10

19-May-09 -9 0 10 10 10 10

20-May-09 -8 10 0 0 10 10

21-May-09 -7 10 10 10 10 10

22-May-09 -6 0 10 10 10 10

23-May-09 -5 0 0 10 10 0

24-May-09 -4 10 10 10 10 10

25-May-09 -3 10 10 10 10 10

26-May-09 -2 10 0 10 10 10

27-May-09 -1 0 10 10 10 10

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 1 0 10 10 25 25

29-May-09 2 10 10 25 25 25

30-May-09 3 0 0 10 25 10

31-May-09 4 10 10 10 25 25

01-Jun-09 5 10 10 25 50 50

02-Jun-09 6 10 10 25 50 50

03-Jun-09 7 10 10 25 50 100

04-Jun-09 8 10 10 50 50 50

05-Jun-09 9 10 10 25 50 5

06-Jun-09 10 10 10 10 25 0

07-Jun-09 11 10 10 10 25 50

08-Jun-09 12 10 10 10 25 50

09-Jun-09 13 10 10 10 25 25

10-Jun-09 14 10 10 0 25 25

11-Jun-09 15 0 10 0 10 10

12-Jun-09 16 0 0 10 10 0

13-Jun-09 17 10 10 10 10 10

14-Jun-09 18 25 25 25 10 25

15-Jun-09 19 10 10 10 10 25

16-Jun-09 20 25 0 10 25 50

17-Jun-09 21 10 10 25 25 25

Exposure period (Weeks 4 to 6)

Pre Exposure period (Weeks 1 to 3)

Nitrate (ppm)

Date Day Study day

Study day

Acclimation Period

Date Day

DayDate

Study day
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Table A 10. Raw fish tank water quality data from Experiment 4, Pair Breeding exposure 

study with GAC effluent. Ammonia measurements in parts per million (ppm) taken with test 

strips (Precision Laboratories, Moulton, UK). 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Feb-09 Ac 1 0.5 0.5 0.5

17-Feb-09 Ac 2 0.5 0.5 0.5

18-Feb-09 Ac 3 0.5 0.5 0.5

19-Feb-09 Ac 4 0.5 0.5 0.5

20-Feb-09 Ac 5 0.5 0.5 0.5

21-Feb-09 Ac 6 0.5 0.5 1.0

22-Feb-09 Ac 7 0.5 0.5 0.5

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

23-Feb-09 -21 0.5 0.5 0.5

24-Feb-09 -20 0.5 0.5 0.5

25-Feb-09 -19 0.5 0.5 0.5

26-Feb-09 -18 0.5 0.5 0.5

27-Feb-09 -17 0.5 0 0

28-Feb-09 -16 1 0.5 0.5

01-Mar-09 -15 0.5 0 0.5

02-Mar-09 -14 0 0.5 0.5

03-Mar-09 -13 0.5 0.5 0.5

04-Mar-09 -12 0.5 0.5 0.5

05-Mar-09 -11 0 0 0.5

06-Mar-09 -10 0.5 0.5 0.5

07-Mar-09 -9 0.5 0.5 0.5

08-Mar-09 -8 0.5 0 0.5

09-Mar-09 -7 0.5 0.5 0.5

10-Mar-09 -6 0.5 0.5 0.5

11-Mar-09 -5 0.5 0.5 0.5

12-Mar-09 -4 0.5 0.5 0.5

13-Mar-09 -3 0.5 0.5 0.5

14-Mar-09 -2 0.5 0.5 0.5

15-Mar-09 -1 0.5 0.5 0.5

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Mar-09 1 0.5 0.5 0.5

17-Mar-09 2 0.5 0 0.5

18-Mar-09 3 0.5 0.5 1

19-Mar-09 4 1 1 0.5

20-Mar-09 5 0.5 0.5 1

21-Mar-09 6 0.5 1 0.5

22-Mar-09 7 0.5 0.5 1

23-Mar-09 8 0.5 0.5 1

24-Mar-09 9 0.5 0.5 1

25-Mar-09 10 1 0.5 0.5

26-Mar-09 11 0.5 1 0.5

27-Mar-09 12 0.5 0.5 1

28-Mar-09 13 0 0.5 0.5

29-Mar-09 14 0.5 0.5 0.5

30-Mar-09 15 0 0.5 1

31-Mar-09 16 0.5 0.5 1

01-Apr-09 17 0.5 0.5 0.5

02-Apr-09 18 0.5 0.5 0.5

03-Apr-09 19 0 0.5 0.5

04-Apr-09 20 0.5 0.5 0.5

05-Apr-09 21 0.5 0.5 0.5

Date Day Study day
Exposure period (Weeks 4 to 6)

Date Day Study day
Pre Exposure period (Weeks 1 to 3)

Ammonia (ppm)

Date Day Study day
Acclimation Period
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Table A 11. Raw fish tank water quality data from Experiment 4, Pair Breeding exposure 

study with GAC effluent. Nitrite measurements in parts per million (ppm) taken with test 

strips (Precision Laboratories, Moulton, UK). 

 

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Feb-09 Ac 1 0 0 0

17-Feb-09 Ac 2 0 0 0

18-Feb-09 Ac 3 0 0 0

19-Feb-09 Ac 4 0 0 0

20-Feb-09 Ac 5 0 0 0

21-Feb-09 Ac 6 0 0 0

22-Feb-09 Ac 7 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

23-Feb-09 -21 0 0 0

24-Feb-09 -20 0 0 0

25-Feb-09 -19 0 0 0

26-Feb-09 -18 0 0 0

27-Feb-09 -17 0 0 0

28-Feb-09 -16 0 0 0

01-Mar-09 -15 0 0 0

02-Mar-09 -14 0 0 0

03-Mar-09 -13 0 0 0

04-Mar-09 -12 0 0 0

05-Mar-09 -11 0 0 0

06-Mar-09 -10 0 0 0

07-Mar-09 -9 0 0 0

08-Mar-09 -8 0.5 0.5 0.5

09-Mar-09 -7 0.5 0 0

10-Mar-09 -6 0 0 0

11-Mar-09 -5 0 0 0

12-Mar-09 -4 0 0 0

13-Mar-09 -3 0 0 0

14-Mar-09 -2 0 0 0

15-Mar-09 -1 0 0 0

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Mar-09 1 0 0 0

17-Mar-09 2 0.5 0 0.5

18-Mar-09 3 0.5 0.5 0.5

19-Mar-09 4 0 0.5 0.5

20-Mar-09 5 0 0 0

21-Mar-09 6 0 0 0

22-Mar-09 7 0 0 0.5

23-Mar-09 8 0 0 0.5

24-Mar-09 9 0 0 0

25-Mar-09 10 0 0 0

26-Mar-09 11 0 0 0

27-Mar-09 12 0 0 0

28-Mar-09 13 0 0 0

29-Mar-09 14 0 0 0.5

30-Mar-09 15 0 0 0.5

31-Mar-09 16 0 0 0

01-Apr-09 17 0 0 0.5

02-Apr-09 18 0 0 0.5

03-Apr-09 19 0 0.5 0.5

04-Apr-09 20 0 0.5 0.5

05-Apr-09 21 0 0 0.5

Date Day Study day

Date Day Study day
Exposure period (Weeks 4 to 6)

Acclimation Period

Pre Exposure period (Weeks 1 to 3)

Date Day Study day

Nitrite (ppm)
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Table A 12. Raw fish tank water quality data from Experiment 4, Pair Breeding exposure 

study with GAC effluent. Nitrate measurements in parts per million (ppm) taken with test 

strips (Precision Laboratories, Moulton, UK). 

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Feb-09 Ac 1 10 10 0

17-Feb-09 Ac 2 0 10 0

18-Feb-09 Ac 3 0 0 0

19-Feb-09 Ac 4 0 0 0

20-Feb-09 Ac 5 0 0 10

21-Feb-09 Ac 6 0 0 0

22-Feb-09 Ac 7 10 10 25

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

23-Feb-09 -21 25 25 25

24-Feb-09 -20 25 10 25

25-Feb-09 -19 25 25 25

26-Feb-09 -18 25 25 10

27-Feb-09 -17 10 10 10

28-Feb-09 -16 25 10 10

01-Mar-09 -15 10 10 10

02-Mar-09 -14 10 10 10

03-Mar-09 -13 10 10 10

04-Mar-09 -12 10 10 10

05-Mar-09 -11 10 10 10

06-Mar-09 -10 0 10 0

07-Mar-09 -9 10 10 0

08-Mar-09 -8 10 10 10

09-Mar-09 -7 10 10 10

10-Mar-09 -6 10 10 10

11-Mar-09 -5 10 10 10

12-Mar-09 -4 25 25 10

13-Mar-09 -3 25 25 10

14-Mar-09 -2 0 0 0

15-Mar-09 -1 10 10 10

Control +ve Control 25% Effluent 50% Effluent 100% Effluent

16-Mar-09 1 0 0 0

17-Mar-09 2 0 0 25

18-Mar-09 3 10 10 100

19-Mar-09 4 10 10 50

20-Mar-09 5 0 10 10

21-Mar-09 6 0 10 10

22-Mar-09 7 0 0 10

23-Mar-09 8 10 0 10

24-Mar-09 9 0 0 10

25-Mar-09 10 0 0 0

26-Mar-09 11 0 0 10

27-Mar-09 12 0 0 10

28-Mar-09 13 10 10 25

29-Mar-09 14 0 0 25

30-Mar-09 15 10 10 25

31-Mar-09 16 10 10 25

01-Apr-09 17 10 10 25

02-Apr-09 18 10 10 25

03-Apr-09 19 10 10 25

04-Apr-09 20 0 10 25

05-Apr-09 21 0 0 25

Study day
Exposure period (Weeks 4 to 6)

Date Day

Date Day Study day
Pre Exposure period (Weeks 1 to 3)

Day Study day
Acclimation Period

Nitrate (ppm)

Date
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Table A 13. Raw physicochemistry data for fish tank water from Experiment 1, VTG exposure study with standard effluent.  

Flow in ml per minute; temperature in oC; dissolved oxygen in mg/L 

  

2 5

40ml/min

38hr 25
o
C

Actual SD Actual SD Actual SD Actual SD Actual SD Actual SD

21.00 0.35 20.13 0.53 20.13 1.59 19.75 0.35 20.38 0.53

8.13 0.03 8.22 0.04 8.29 0.07 8.28 0.07 8.22 0.04 8.35 0.05

25.05 0.14 25.35 0.21 25.33 0.11 25.08 0.18 25.23 0.04 25.25 0.07

7.16 0.13 7.48 0.34 7.51 0.06 7.33 0.17 7.18 0.14 7.58 0.19

Actual SD Actual SD Actual SD Actual SD Actual SD Actual SD

5.15 0.17 10.29 0.27 19.92 0.43

20.50 0.52 20.13 0.53 15.08 0.47 10.08 0.43

0.20 0.20

8.17 0.10 8.19 0.09 8.21 0.12 8.23 0.12 8.28 0.09

25.44 50.51 100.00

25.06 0.60 25.26 0.21 24.96 0.21 25.08 0.17 24.84 0.09

7.42 0.35 7.14 0.30 7.28 0.38 7.29 0.40 7.40 0.30

Mean PH

Mean % Effluent

Mean Temperature

Mean Dissolved Oxygen

Protocol Number

25% Effluent 50% Effluent 100% Effluent

Mean Actual effluent flow rate

Mean Actual dilution water flow rate

Mean Positive control flow rate

Mean Temperature

Mean Dissolved Oxygen

Exposure period (Weeks 4 to 6)

Baseline Control "+ve" control

100% Effluent

Mean Actual effluent flow rate

Mean Actual dilution water flow rate

Mean Positive control flow rate

Mean PH

Mean % Effluent

Pre Exposure period (Weeks 1 to 3)

EXPT 1 - VTG STANDARD Start Date: 21-May-09

Treatment Tank Size 20L Number of Replicate Tanks per Treatment Number of Treatments

Baseline Control "+ve" control 25% Effluent 50% Effluent

Types of Treatment Control, +ve control, 25, 50 & 100% final effluent Photo Period16hrs light : 8 hrs darkTotal Flow Rate

Replacement Water Time Temperature of Water
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Table A 14. Raw physicochemistry data for fish tank water from Experiment 2, VTG exposure study with GAC effluent.  

Flow in ml per minute; temperature in oC; dissolved oxygen in mg/L 

 

2 3

40ml/min

38hr 25
o
C

Actual SD Actual SD Actual SD Actual SD Actual SD Actual SD

41.13 1.24 41.75 1.06 41.50 0.71

8.22 0.02 8.18 0.01 8.31 0.01 8.27 0.01

24.95 0.21 25.13 0.04 24.98 0.04 25.43 0.04

7.00 0.12 6.83 0.21 7.16 0.19 7.01 0.03

Actual SD Actual SD Actual SD Actual SD Actual SD Actual SD

43.67 0.75

42.67 1.66 40.54 1.14

0.40 0.41

8.31 0.07 8.33 0.03 8.16 0.07

100.00

25.00 0.09 24.93 0.17 25.12 0.22

7.46 0.42 7.42 0.30 7.52 0.30

100% Effluent

100% Effluent

50% Effluent

Day Zero Control "+ve" control 25% Effluent 50% Effluent

Baseline Control "+ve" control 25% Effluent

Protocol Number

Mean Actual dilution water flow rate

Pre Exposure period (Weeks 1 to 3)

Exposure period (Weeks 4 to 6)

Mean Actual effluent flow rate

Mean Actual dilution water flow rate

Mean Positive control flow rate

Mean Temperature

Number of Treatments

Total Flow Rate

Replacement Water Time Temperature of Water

Types of Treatment Control, +ve control & 100% GAC effluent Photo Period 16hrs light : 8 hrs dark

EXPT 2 - VTG GAC Start Date: 9-Mar-09

Treatment Tank Size 20L Number of Replicate Tanks per Treatment

Mean % Effluent

Mean Temperature

Mean Dissolved Oxygen

Mean PH

Mean % Effluent

Mean PH

Mean Positive control flow rate

Mean Dissolved Oxygen

Mean Actual effluent flow rate
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Table A 15. Raw physicochemistry data for fish tank water from Experiment 3, Pair Breeding exposure study with standard effluent.  

Flow in ml per minute; temperature in oC; dissolved oxygen in mg/L 

 

8 5

20ml/min

32hr 25
o
C

Flow rate SD Flow rate SD Flow rate SD Flow rate SD Flow rate SD

21.40 0.88 19.89 1.30 20.24 1.48 19.82 1.28 19.99 1.41

8.30 0.06 8.21 0.08 8.23 0.05 8.36 0.05 8.39 0.06

25.15 0.36 25.07 0.39 24.95 0.44 25.06 0.38 25.43 0.40

7.71 0.18 7.65 0.19 7.71 0.15 7.71 0.14 7.65 0.15

Flow rate SD Flow rate SD Flow rate SD Flow rate SD Flow rate SD

5.36 0.10 9.98 0.06 20.54 0.45

20.06 1.44 19.47 1.39 15.46 1.43 10.00 0.64

0.20 0.02

8.26 0.10 8.13 0.10 8.16 0.08 8.32 0.06 8.31 0.08

25.76 49.95 100.00

25.20 0.23 25.43 0.14 24.87 0.22 24.62 0.19 24.86 0.19

7.68 0.27 7.48 0.18 7.54 0.30 7.67 0.22 7.66 0.17

Number of Treatments

Mean Actual dilution water flow rate

Mean Positive control flow rate

Mean PH

Mean % Effluent

Mean Temperature

Mean Temperature

Mean Dissolved Oxygen

100% Effluent

Mean Actual effluent flow rate

Mean Actual dilution water flow rate

Mean Positive control flow rate

Mean PH

Mean % Effluent

Mean Dissolved Oxygen

100% Effluent

Types of Treatment Control, +ve control, 25%, 50% & 100% final effluent Photo Period 16 hrs light : 8 hrs dark Total Flow Rate

Replacement Water Time Temperature of Water

Pre Exposure period (Weeks 1 to 3)

Control "+ve" control 25% Effluent 50% Effluent

Exposure period (Weeks 4 to 6)

Control "+ve" control 25% Effluent 50% Effluent

Mean Actual effluent flow rate

EXPT 3 - PAIR STANDARD Start Date: 30-Apr-09

Treatment Tank Size 8.5L Number of Replicate Tanks per Treatment

Protocol Number
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Table A 16. Raw physicochemistry data for fish tank water from Experiment 4, Pair Breeding exposure study with GAC effluent.  

Flow in ml per minute; temperature in oC; dissolved oxygen in mg/L 

 

  

8 3

20ml/min

32hr Temperature of Water 25
o
C

Flow rate SD Flow rate SD Flow rate SD Flow rate SD Flow rate SD
22.71 0.78

23.05 1.77 23.20 1.86

8.19 0.11 8.20 0.09 8.37 0.09
100.00

24.84 0.24 25.32 0.28 25.29 0.23
7.54 0.20 7.52 0.21 7.76 1.09

Flow rate SD Flow rate SD Flow rate SD Flow rate SD Flow rate SD
21.49 0.45

22.00 1.45 21.35 1.46
0.21 0.01

8.30 0.05 8.26 0.04 8.34 0.09
100.00

24.42 0.34 24.71 0.27 24.73 0.35
8.20 0.35 8.11 0.31 8.11 0.35

Total Flow Rate

Replacement Water Time

EXPT 4 - PAIR GAC Start Date: 16-Feb-09

Treatment Tank Size 8.5L Number of Replicate Tanks per Treatment Number of Treatments

Protocol Number

Types of Treatment Control, +ve control & 100% final effluent Photo Period 16 hrs light : 8 hrs dark

Pre Exposure period (Weeks 1 to 3)
Control "+ve" control

100% Effluent

Mean Actual effluent flow rate
Mean Actual dilution water flow rate
Mean Positive control flow rate
Mean PH
Mean % Effluent

Mean Dissolved Oxygen

Exposure period (Weeks 4 to 6)
Control "+ve" control

Mean Temperature
Mean Dissolved Oxygen

50% Effluent

100% Effluent50% Effluent

Mean Actual effluent flow rate
Mean Actual dilution water flow rate
Mean Positive control flow rate
Mean PH
Mean % Effluent
Mean Temperature

25% Effluent

25% Effluent
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Table A 17. Raw male fish data from Experiment 1, VTG exposure study with standard effluent.  

Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight (mg) 

FPI 
Vitellogenin 

(ng/ml) 

Baseline 1 M 2.931 57 23 1.583 0.785 0 0 0 0 5 

Baseline 2 M 1.935 54 14 1.229 0.724 2 8 0 0 38 

Baseline 3 M 2.128 48 22 1.924 1.034 1 10 0 0 1,075 

Baseline 4 M 1.831 51 22 1.380 1.202 3 10 0 0 512 

Baseline 5 M 2.209 54 20 1.403 0.905 2 12 22 0.996 116 

Baseline 6 M 2.645 58 43 1.356 1.626 2 12 0 0 103 

Baseline 7 M 2.259 57 31 1.220 1.372 3 14 20 0.885 1,161 

Baseline 8 M 1.636 51 13 1.233 0.795 1 10 0 0 11 

Baseline 9 M 3.599 65 35 1.311 0.972 1 8 0 0 29 

Baseline 10 M 1.583 51 10 1.193 0.632 0 0 0 0 13 

Baseline 11 M 2.037 54 23 1.294 1.129 3 14 0 0 216 

Baseline 12 M 2.116 56 18 1.205 0.851 1 11 0 0 10 

Baseline 13 M 3.051 59 43 1.486 1.409 2 12 77 2.524 169 

Baseline 14 M 2.519 57 13 1.360 0.516 0 0 0 0 10 

Baseline 15 M 2.661 59 50 1.296 1.879 2 12 0 0 12 

Baseline 16 M 1.899 54 13 1.206 0.685 0 0 0 0 8 

Control 17 M 2.06 52 52 1.465 2.524 4 17 84 4.078 9 

Control 18 M 2.72 51 48 2.050 1.765 4 11 83 3.051 67 

Control 19 M 2.12 54 16 1.346 0.755 3 11 42 1.981 793 

Control 20 M 2.57 58 36 1.317 1.401 2 9 32 1.245 41 

Control 21 M 1.7 53 28 1.142 1.647 2 8 18 1.059 89 

Control 22 M 2.79 59 47 1.358 1.685 4 13 38 1.362 16 

Control 23 M 2.75 60 44 1.273 1.600 1 2 40 1.455 44 

Control 24 M 1.88 51 49 1.417 2.606 4 12 26 1.383 32 

Control 25 M 1.92 53 34 1.290 1.771 2 10 48 2.500 11 

Control 26 M 2.52 56 54 1.435 2.143 2 12 112 4.444 13 

Control 27 M 2.22 52 63 1.579 2.838 4 14 24 1.081 34 

Control 28 M 3.06 60 54 1.417 1.765 1 12 20 0.654 5 

Control 29 M 2.82 57 76 1.523 2.695 4 12 72 2.553 785 

Control 30 M 2.54 55 57 1.527 2.244 4 15 64 2.520 62 

Control 31 M 2.46 56 59 1.401 2.398 4 15 42 1.707 30 

Control 32 M 2.28 53 57 1.531 2.500 3 12 155 6.798 49 
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Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight (mg) 

FPI 
Vitellogenin 

(ng/ml) 

+ve Control 33 M 2.64 58 80 1.353 3.030 4 15 48 1.818 57,543,617 

+ve Control 34 M 3.89 62 77 1.632 1.979 2 9 98 2.519 59,064,708 

+ve Control 35 M 2.03 54 36 1.289 1.773 1 7 45 2.217 41,781,339 

+ve Control 36 M 2.41 57 27 1.301 1.120 0 0 39 1.618 44,387,158 

+ve Control 37 M 2.39 54 50 1.518 2.092 2 14 39 1.632 55,047,387 

+ve Control 38 M 2.69 57 67 1.453 2.491 4 15 59 2.193 31,109,061 

+ve Control 39 M 2.4 55 37 1.443 1.542 1 8 40 1.667 87,930,275 

+ve Control 40 M 1.78 51 27 1.342 1.517 2 13 128 7.191 72,626,635 

+ve Control 41 M 2.9 61 46 1.278 1.586 4 13 170 5.862 41,478,646 

+ve Control 42 M 2.73 58 39 1.399 1.429 1 1 58 2.125 33,664,747 

+ve Control 43 M 1.72 52 22 1.223 1.279 0 0 0 0 47,178,078 

+ve Control 44 M 2.4 55 55 1.443 2.292 2 13 68 2.833 42,328,885 

+ve Control 45 M 3.18 55 53 1.911 1.667 1 6 0 0 45,478,549 

+ve Control 46 M 2.25 56 27 1.281 1.200 0 0 20 0.889 69,584,531 

+ve Control 47 M 1.74 52 27 1.237 1.552 4 15 77 4.425 63,078,799 

+ve Control 48 M 2.52 57 45 1.361 1.786 2 14 56 2.222 72,776,270 

25% Effluent 49 M 1.82 50 38 1.456 2.088 2 10 39 2.143 462 

25% Effluent 50 M 2.78 59 48 1.354 1.727 4 12 17 0.612 656 

25% Effluent 51 M 3.19 60 72 1.477 2.257 4 13 50 1.567 532 

25% Effluent 52 M 2.52 59 36 1.227 1.429 1 7 18 0.714 795 

25% Effluent 53 M 2.99 59 73 1.456 2.441 4 15 82 2.742 93 

25% Effluent 54 M 2.53 54 50 1.607 1.976 4 17 132 5.217 653 

25% Effluent 55 M 1.98 54 26 1.257 1.313 1 2 10 0.505 328 

25% Effluent 56 M 2.35 53 68 1.578 2.894 4 12 54 2.298 74 

25% Effluent 57 M 3.24 60 70 1.500 2.160 4 13 120 3.704 9,270 

25% Effluent 58 M 2.43 60 19 1.125 0.782 0 0 0 0 26 

25% Effluent 59 M 2.5 58 45 1.281 1.800 4 15 30 1.200 27 

25% Effluent 60 M 2.27 56 17 1.293 0.749 0 0 13 0.573 6 

25% Effluent 61 M 3.23 60 69 1.495 2.136 4 12 75 2.322 270 

25% Effluent 62 M 2.27 58 46 1.163 2.026 4 16 33 1.454 941 

25% Effluent 63 M 2.14 56 32 1.219 1.495 1 9 0 0 28 

25% Effluent 64 M 2.8 59 44 1.363 1.571 4 16 57 2.036 41 
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Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight (mg) 

FPI 
Vitellogenin 

(ng/ml) 

50% Effluent 65 M 3.69 65 47 1.344 1.274 2 17 26 0.705 4,822 

50% Effluent 66 M 3.37 59 62 1.641 1.840 4 15 36 1.068 6 

50% Effluent 67 M 2.68 60 34 1.241 1.269 0 0 0 0 12 

50% Effluent 68 M 1.97 51 46 1.485 2.335 1 5 0 0 79 

50% Effluent 69 M 2.62 55 48 1.575 1.832 4 16 68 2.595 18 

50% Effluent 70 M 1.84 51 31 1.387 1.685 4 13 19 1.033 597 

50% Effluent 71 M 2.23 57 24 1.204 1.076 0 0 0 0 3 

50% Effluent 72 M 2.3 52 62 1.636 2.696 3 11 58 2.522 8 

50% Effluent 73 M 2.49 57 31 1.345 1.245 0 0 0 0 38 

50% Effluent 74 M 1.99 53 48 1.337 2.412 3 11 44 2.211 152 

50% Effluent 75 M 2.2 54 35 1.397 1.591 3 14 22 1 12 

50% Effluent 76 M 2.12 54 20 1.346 0.943 0 0 0 0 14 

50% Effluent 77 M 3.79 64 90 1.446 2.375 4 15 83 2.190 150 

50% Effluent 78 M 2.47 58 33 1.266 1.336 0 0 0 0 10 

50% Effluent 79 M 2.48 56 38 1.412 1.532 4 15 28 1.129 73 

50% Effluent 80 M 2.69 60 46 1.245 1.710 2 13 9 0.335 28 

100% Effluent 81 M 1.99 54 30 1.264 1.508 0 0 0 0 771 

100% Effluent 82 M 2.5 57 48 1.350 1.920 3 17 28 1.120 8 

100% Effluent 83 M 3.06 60 38 1.417 1.242 2 13 31 1.013 1,430 

100% Effluent 84 M 2.3 57 29 1.242 1.261 0 0 0 0 9 

100% Effluent 85 M 1.88 53 40 1.263 2.128 2 13 14 0.745 374 

100% Effluent 86 M 2.08 53 36 1.397 1.731 2 12 20 0.962 35 

100% Effluent 87 M 2.74 58 49 1.404 1.788 3 13 0 0 34 

100% Effluent 88 M 2.53 58 40 1.297 1.581 0 0 0 0 3 

100% Effluent 89 M 2.4 55 29 1.443 1.208 0 0 0 0 43 

100% Effluent 90 M 2.47 57 34 1.334 1.377 3 16 25 1.012 13 

100% Effluent 91 M 3.76 65 66 1.369 1.755 1 6 25 0.665 8 

100% Effluent 92 M 2.4 55 57 1.443 2.375 2 14 25 1.042 56 

100% Effluent 93 M 3.82 63 60 1.528 1.571 2 16 68 1.780 66 

100% Effluent 94 M 3.06 62 45 1.284 1.471 1 8 27 0.882 43 

100% Effluent 95 M 1.76 53 12 1.182 0.682 0 0 0 0 21 

100% Effluent 96 M 2.62 59 44 1.276 1.679 1 11 0 0 75 
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Table A 18. Raw male fish data from Experiment 2, VTG exposure study with GAC effluent. 

Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight (mg) 

FPI 
Vitellogenin 

(ng/ml) 

Baseline 1 M 2.435 60 27 1.127 1.109 0 0 0 0 52 

Baseline 2 M 3.616 64 53 1.379 1.466 2 14 100 2.765 56 

Baseline 3 M 2.829 59 63 1.377 2.227 3 12 152 5.373 554 

Baseline 4 M 2.846 54 46 1.807 1.616 0 0 0 0.000 68 

Baseline 5 M 2.098 55 27 1.261 1.287 1 6 20 0.953 130 

Baseline 6 M 4.005 66 49 1.393 1.223 1 8 22 0.549 144 

Baseline 7 M 2.025 54 50 1.286 2.469 0 0 0 0 7 

Baseline 8 M 3.089 64 60 1.178 1.942 0 0 0 0 18 

Baseline 9 M 3.529 65 33 1.285 0.935 0 0 0 0 39 

Baseline 10 M 2.735 60 36 1.266 1.316 0 0 0 0 289 

Baseline 11 M 3.368 58 63 1.726 1.871 2 14 124 3.682 1,569 

Baseline 12 M 2.448 57 16 1.322 0.654 0 0 0 0 12 

Baseline 13 M 3.719 65 52 1.354 1.398 2 8 24 0.645 27,176 

Baseline 14 M 2.618 61 25 1.153 0.955 0 0 0 0 773 

Baseline 15 M 2.457 60 25 1.138 1.018 0 0 0 0 100 

Baseline 16 M 1.899 54 23 1.206 1.211 0 0 0 0 202 

Control 17 M 2.337 58 36 1.198 1.540 2 10 0 0 28 

Control 18 M 2.384 60 15 1.104 0.629 0 0 0 0 21 

Control 19 M 3.482 65 52 1.268 1.493 4 12 75 2.154 2,373 

Control 20 M 4.495 69 69 1.368 1.535 2 12 0 0 114 

Control 21 M 3.195 58 81 1.638 2.535 3 16 99 3.099 865 

Control 22 M 2.773 61 71 1.222 2.560 0 0 0 0 12 

Control 23 M 2.433 58 18 1.247 0.740 0 0 0 0 86 

Control 24 M 2.493 58 41 1.278 1.645 1 10 0 0 85 

Control 25 M 2.462 59 62 1.199 2.518 2 15 32 1.300 82 

Control 26 M 2.179 55 34 1.310 1.560 4 16 20 0.918 226 

Control 27 M 3.045 58 65 1.561 2.135 3 20 9 0.296 1,941 

Control 28 M 3.792 67 77 1.261 2.031 3 16 26 0.686 2,216 

Control 29 M 2.488 59 14 1.211 0.563 0 0 0 0 69 

Control 30 M 3.582 63 64 1.433 1.787 4 16 70 1.954 23,963 

Control 31 M 3.519 63 74 1.407 2.103 2 26 24 0.682 1,440 

Control 32 M 2.165 52 38 1.540 1.755 2 11 0 0 19 



303 
 

Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight (mg) 

FPI 
Vitellogenin 

(ng/ml) 

+ve Control 33 M 3.259 64 27 1.243 0.828 0 0 0 0 59,635,414 

+ve Control 34 M 2.138 57 29 1.154 1.356 0 0 0 0 68,930,469 

+ve Control 35 M 2.318 57 30 1.252 1.294 1 4 0 0 157,586,483 

+ve Control 36 M 1.534 48 27 1.387 1.760 2 8 38 2.477 76,558,716 

+ve Control 37 M 2.816 63 23 1.126 0.817 0 0 0 0 108,667,416 

+ve Control 38 M 2.877 62 33 1.207 1.147 0 0 0 0 81,137,478 

+ve Control 39 M 1.993 54 23 1.266 1.154 0 0 0 0 92,357,497 

+ve Control 40 M 2.717 58 51 1.393 1.877 1 4 0 0 126,152,125 

+ve Control 41 M 2.101 58 19 1.077 0.904 1 6 0 0 54,989,002 

+ve Control 42 M 3.315 59 50 1.614 1.508 1 12 0 0 81,324,693 

+ve Control 43 M 3.332 61 40 1.468 1.200 2 14 50 1.501 12,944,459 

+ve Control 44 M 3.468 65 51 1.263 1.471 0 0 0 0 102,704,225 

+ve Control 45 M 2.295 58 28 1.176 1.220 1 10 0 0 34,490,268 

+ve Control 46 M 2.568 59 41 1.250 1.597 0 0 0 0 212,986,175 

+ve Control 47 M 3.718 65 60 1.354 1.614 0 0 0 0 135,599,654 

+ve Control 48 M 3.033 63 29 1.213 0.956 1 8 62 2.044 52,390,732 

100% Effluent 81 M 3.388 64 80 1.292 2.361 3 16 36 1.063 4,366 

100% Effluent 82 M 3.169 64 66 1.209 2.083 4 16 14 0.442 169 

100% Effluent 83 M 3.881 68 62 1.234 1.598 2 18 0 0 85 

100% Effluent 84 M 2.187 54 12 1.389 0.549 1 6 0 0 182 

100% Effluent 85 M 4.638 67 64 1.542 1.380 2 16 0 0 136 

100% Effluent 86 M 3.575 64 71 1.364 1.986 3 14 65 1.818 525 

100% Effluent 87 M 2.937 61 52 1.294 1.771 3 12 29 0.987 781 

100% Effluent 88 M 3.118 62 77 1.308 2.470 4 16 42 1.347 593 

100% Effluent 89 M 3.82 64 87 1.457 2.277 3 20 0 0 119 

100% Effluent 90 M 2.888 63 31 1.155 1.073 1 12 0 0 92 

100% Effluent 91 M 4.319 69 71 1.315 1.644 2 16 0 0 82 

100% Effluent 92 M 2.336 58 39 1.197 1.670 1 4 0 0 112 

100% Effluent 93 M 2.553 57 44 1.379 1.723 2 10 0 0 501 

100% Effluent 94 M 3.205 63 34 1.282 1.061 2 14 0 0 21 

100% Effluent 95 M 2.915 61 59 1.284 2.024 0 0 0 0 273 

100% Effluent 96 M 3.234 61 51 1.425 1.577 3 12 31 0.959 54 
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Table A 19. Raw male fish data from Experiment 3, Pair Breeding exposure study with standard effluent.  

Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight 

FPI 
Vitellogenin 

(mg/ml) 

Control 1 M 3.5 59 39 1.704 1.114 3 15 172 4.914 222  
Control 2 M 4.9 63 106 1.960 2.163 4 17 366 7.469 4,198  
Control 3 M 3.35 56 79 1.908 2.358 3 15 208 6.209 397  
Control 4 M 3.96 58 78 2.030 1.970 3 12 554 13.990 678  
Control 5 M 4.45 64 87 1.698 1.955 4 17 311 6.989 1,085  
Control 6 M           
Control 7 M 3.5 63 47 1.400 1.343 4 18 366 10.457 792  
Control 8 M 3.95 64 66 1.507 1.671 3 16 120 3.038 3,001  

+ve Control 9 M 2.83 53 58 1.901 2.049 3 11 194 6.855 47,958,541  
+ve Control 10 M 3.37 60 61 1.560 1.810 3 15 173 5.134 50,048,316  
+ve Control 11 M 2.81 54 52 1.785 1.851 2 14 160 5.694 31,364,653  
+ve Control 12 M 4.62 61 69 2.035 1.494 1 12 253 5.476 56,265,761  
+ve Control 13 M 2.63 57 28 1.420 1.065 1 9 141 5.361 42,326,354  
+ve Control 14 M 3.97 61 61 1.749 1.537 1 14 177 4.458 99,993,245  
+ve Control 15 M 4.48 63 60 1.792 1.339 2 17 239 5.335 44,488,688 
+ve Control 16 M                    
25% Effluent 17 M 3.64 58 97 1.866 2.665 4 18 172 4.725 21,311  
25% Effluent 18 M 3.63 57 57 1.960 1.570 3 13 411 11.322 541  
25% Effluent 19 M 5.32 67 86 1.769 1.617 4 17 278 5.226 6,784  
25% Effluent 20 M 3.68 64 50 1.404 1.359 3 15 54 1.467 3,877  
25% Effluent 21 M 3.17 60 48 1.468 1.514 4 15 72 2.271 42,187  
25% Effluent 22 M 4.05 65 99 1.475 2.444 3 13 71 1.753 941  
25% Effluent 23 M 4.03 62 63 1.691 1.563 4 20 228 5.658 821  
25% Effluent 24 M 3.89 60 83 1.801 2.134 3 9 162 4.165 4,900  

50% Effluent 25 M 3.99 60 85 1.847 2.130 4 15 93 2.331 6,660  
50% Effluent 26 M 3.49 60 74 1.616 2.120 4 14 133 3.811 775  
50% Effluent 27 M 3.39 56 48 1.930 1.416 4 16 264 7.788 582  
50% Effluent 28 M 3.14 60 65 1.454 2.070 4 15 137 4.363 5,414  
50% Effluent 29 M 3.53 61 69 1.555 1.955 3 14 154 4.363 910  
50% Effluent 30 M 4.06 62 86 1.704 2.118 4 16 157 3.867 10,271  
50% Effluent 31 M           
50% Effluent 32 M 2.36 52 41 1.678 1.737 3 14 157 6.653 11,166  
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Treatment 
Fish 
no. 

Sex 
Wet 

weight (g) 
Total length 

(mm) 
Gonad 

weight (mg) 
Condition 

factor 
GSI 

Tubercles 
- stage 

Tubercles 
- number 

Fatpad 
weight 

FPI 
Vitellogenin 
(mg/ml) 

100% Effluent 33 M 3.87 64 73 1.476 1.886 3 15 185 4.780 371  
100% Effluent 34 M 2.23 50 37 1.784 1.659 3 13 114 5.112 3,871  
100% Effluent 35 M 2.81 57 62 1.517 2.206 3 13 176 6.263 999  
100% Effluent 36 M 3.29 55 73 1.977 2.219 3 14 181 5.502 32,709  
100% Effluent 37 M 3.03 60 54 1.403 1.782 3 13 93 3.069 311  
100% Effluent 38 M 3.67 58 77 1.881 2.098 4 15 131 3.569 698  
100% Effluent 39 M 2.73 53 96 1.834 3.516 2 10 74 2.711 1,202  
100% Effluent 40 M 4.07 65 83 1.482 2.039 2 14 111 2.727 93,073  

 

  



306 
 

Table A 20. Raw female fish data from Experiment 3, Pair Breeding exposure study with standard effluent.  

Treatment 
Fish 
no. 

Sex 
Wet weight 

(g) 
Total length 

(mm) 
Gonad weight 

(mg) 
Condition 

factor 
GSI 

Vitellogenin 
(mg/ml) 

Control 1 F 1.44 47 150 1.387 10.417 8,056,983 
Control 2 F 1.05 41 201 1.523 19.143 3,203,821 
Control 3 F 1.79 50 205 1.432 11.453 3,269,313 
Control 4 F 2.7 57 297 1.458 11.000 7,372,679 
Control 5 F 1.37 46 142 1.407 10.365 5,645,720 
Control 6 F       

Control 7 F 1.89 48 310 1.709 16.402 7,863,811 
Control 8 F 1.47 47 176 1.416 11.973 6,514,843 

+ve Control 9 F       

+ve Control 10 F 1.86 49 235 1.581 12.634 26,881,449 
+ve Control 11 F 1.42 49 196 1.207 13.803 2,980,511 
+ve Control 12 F       

+ve Control 13 F 1.91 52 205 1.358 10.733 8,528,242 
+ve Control 14 F 1.18 45 135 1.295 11.441 5,288,824 
+ve Control 15 F 1.42 46 116 1.459 8.169 9,853,673 
+ve Control 16 F 1.19 49 347 1.011 29.160 4,313,757 

25% Effluent 17 F 1.66 50 147 1.328 8.855 5,884,171 
25% Effluent 18 F 1.21 47 132 1.165 10.909 4,616,504 
25% Effluent 19 F 1.89 53 218 1.270 11.534 4,152,276 
25% Effluent 20 F 1.78 50 198 1.424 11.124 6,300,294 
25% Effluent 21 F 1.58 50 181 1.264 11.456 4,519,199 
25% Effluent 22 F 1.74 49 235 1.479 13.506 1,351,816 
25% Effluent 23 F 1.8 49 228 1.530 12.667 6,715,822 
25% Effluent 24 F 1.45 46 147 1.490 10.138 4,662,980 

50% Effluent 25 F 1.38 49 147 1.173 10.652 2,760,326 
50% Effluent 26 F 1.76 53 170 1.182 9.659 5,913,898 
50% Effluent 27 F 1.77 52 163 1.259 9.209 7,487,300 
50% Effluent 28 F 1.68 44 292 1.972 17.381 1,835,315 
50% Effluent 29 F 2.14 57 282 1.156 13.178 6,911,821 
50% Effluent 30 F 1.98 50 304 1.584 15.354 6,784,438 
50% Effluent 31 F       

50% Effluent 32 F 1.24 45 155 1.361 12.500 5,753,703 
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Treatment 
Fish 
no. 

Sex 
Wet weight 

(g) 
Total length 

(mm) 
Gonad weight 

(mg) 
Condition 

factor 
GSI 

Vitellogenin 
(mg/ml) 

100% Effluent 33 F 1.59 49 145 1.351 9.119 8,226,767 
100% Effluent 34 F 1.45 47 205 1.397 14.138 6,615,049 
100% Effluent 35 F 1.27 42 186 1.714 14.646 6,032,801 
100% Effluent 36 F 1.58 47 200 1.522 12.658 5,450,322 
100% Effluent 37 F 1.95 52 286 1.387 14.667 6,830,483 
100% Effluent 38 F 1.66 50 106 1.328 6.386 313,309 
100% Effluent 39 F 1.71 48 299 1.546 17.485 3,822,243 
100% Effluent 40 F 1.61 48 225 1.456 13.975 5,230,163 
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Table A 21. Raw male fish data from Experiment 4, Pair Breeding exposure study with GAC effluent.  

Treatment 
Fish 
no. 

Sex 
Wet weight 

(g) 

Total 
length 
(mm) 

Gonad 
weight 
(mg) 

Condition 
factor 

GSI 
Tubercles 

- stage 
Tubercles 
- number 

Fatpad 
weight 
(mg) 

FPI 
Vitellogenin 

(mg/ml) 

Control 1 M 3.64 60 55 1.685 1.511 3 12 313 8.599 277 
Control 2 M 5.558 70 66 1.620 1.187 3 18 192 3.454 101 
Control 3 M 4.723 63 81 1.889 1.715 2 14 368 7.792 349 
Control 4 M 2.541 59 31 1.237 1.220 2 20 82 3.227 116 
Control 5 M 4.138 64 68 1.579 1.643 3 20 210 5.075 970 
Control 6 M 3.429 63 32 1.371 0.933 3 14 186 5.424 95 
Control 7 M 5.32 69 109 1.619 2.049 4 12 172 3.233 4,963 
Control 8 M 3.257 61 59 1.435 1.811 3 12 241 7.399 207 

+ve Control 9 M 3.091 61 48 1.362 1.553 2 14 132 4.270 194,626,684 
+ve Control 10 M 2.476 58 30 1.269 1.212 1 14 99 3.998 157,051,897 
+ve Control 11 M 4.194 63 88 1.677 2.098 2 12 283 6.748 101,689,057 
+ve Control 12 M 1.996 51 32 1.505 1.603 2 12 25 1.253 176,257,134 
+ve Control 13 M 3.165 61 33 1.394 1.043 2 16 197 6.224 100,487,199 
+ve Control 14 M 2.866 59 38 1.395 1.326 2 10 113 3.943 143,697,115 
+ve Control 15 M 1.899 54 21 1.206 1.106 2 10 165 8.689 81,199,884 
+ve Control 16 M 3.342 64 106 1.275 3.172 1 6 36 1.077 149,399,636 

100% Effluent 33 M 3.666 61 59 1.615 1.609 3 14 85 2.319 35,521 
100% Effluent 34 M 4.355 64 82 1.661 1.883 2 12 125 2.870 903 
100% Effluent 35 M 2.426 53 42 1.630 1.731 2 16 66 2.721 269 
100% Effluent 36 M 3.015 59 59 1.468 1.957 2 16 185 6.136 336 
100% Effluent 37 M 5.348 72 96 1.433 1.795 2 12 156 2.917 278 
100% Effluent 38 M 3.379 62 38 1.418 1.125 3 10 220 6.511 118 
100% Effluent 39 M 3.707 64 63 1.414 1.699 4 16 107 2.886 1,054 
100% Effluent 40 M 2.896 60 52 1.341 1.796 2 14 135 4.662 1,770 
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Table A 22. Raw female fish data from Experiment 4, Pair Breeding exposure study with GAC effluent.  

Treatment 
Fish 
no. 

Sex 
Wet weight 

(g) 
Total length 

(mm) 
Gonad weight 

(mg) 
Condition 

factor 
GSI VTG 

Control 1 F 1.46 51 179 1.101 12.260 4,511,492 

Control 2 F 1.302 42 149 1.757 11.444 5,343,656 

Control 3 F 1.337 47 132 1.288 9.873 4,377,164 

Control 4 F 1.191 42 193 1.608 16.205 4,271,379 

Control 5 F 1.348 46 245 1.385 18.175 8,091,481 

Control 6 F 1.54 50 150 1.232 9.740 4,089,753 

Control 7 F 1.894 53 118 1.272 6.230 8,152,686 

Control 8 F 1.361 49 140 1.157 10.287 6,563,039 

+ve Control 9 F 1.995 55 123 1.199 6.165 91,552,710 

+ve Control 10 F 1.479 50 40 1.183 2.705 102,240,129 

+ve Control 11 F 1.737 54 118 1.103 6.793 153,576,805 

+ve Control 12 F 1.367 48 139 1.236 10.168 7,476,980 

+ve Control 13 F 1.44 48 191 1.302 13.264 4,476,343 

+ve Control 14 F 0.989 43 107 1.244 10.819 14,510,280 

+ve Control 15 F 1.296 49 42 1.102 3.241 101,042,185 

+ve Control 16 F 1.095 44 113 1.285 10.320 15,198,074 

100% Effluent 33 F 1.144 47 111 1.102 9.703 4,779,665 

100% Effluent 34 F 1.078 43 130 1.356 12.059 3,457,706 

100% Effluent 35 F 1.71 52 175 1.216 10.234 3,143,121 

100% Effluent 36 F 1.837 53 276 1.234 15.024 19,897,363 

100% Effluent 37 F 1.201 46 113 1.234 9.409 7,873,889 

100% Effluent 38 F 2.307 54 173 1.465 7.499 8,154,752 

100% Effluent 39 F 1.002 43 87 1.260 8.683 1,767,562 

100% Effluent 40 F 1.546 51 218 1.165 14.101 8,105,935 
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Table A 23. Raw egg production data from Experiment 3, Pair Breeding exposure study with 

standard effluent. Data collected over a 6 week period; 3 weeks pre-exposure and 3 weeks 

exposure to control (dilution water), positive control (+ve control; 20 ng/L EE2), or to 100%, 

50% or 25% standard effluent. 

 

 

 

  

Control +ve Control 25% Effluent 50% Effluent 100% Effluent Control +ve Control 25% Effluent 50% Effluent 100% Effluent

07-May-09 -21 45 63 76 200 167 07-May-09 -21 45 63 76 200 167

08-May-09 -20 49 90 6 55 112 08-May-09 -20 95 153 81 255 279

09-May-09 -19 48 0 136 3 0 09-May-09 -19 142 153 217 258 279

10-May-09 -18 95 127 0 0 115 10-May-09 -18 238 280 217 258 394

11-May-09 -17 0 75 43 20 31 11-May-09 -17 238 355 260 278 425

12-May-09 -16 83 56 60 238 0 12-May-09 -16 321 410 320 515 425

13-May-09 -15 7 49 70 0 57 13-May-09 -15 328 459 390 515 482

14-May-09 -14 82 30 67 3 106 14-May-09 -14 409 489 457 518 588

15-May-09 -13 73 89 50 110 77 15-May-09 -13 483 578 506 629 665

16-May-09 -12 52 134 26 64 24 16-May-09 -12 535 711 532 693 689

17-May-09 -11 27 36 26 43 61 17-May-09 -11 561 748 558 736 750

18-May-09 -10 34 75 112 38 24 18-May-09 -10 596 823 669 774 774

19-May-09 -9 0 0 94 78 106 19-May-09 -9 596 823 763 852 879

20-May-09 -8 126 129 0 48 72 20-May-09 -8 721 952 763 900 951

21-May-09 -7 69 9 32 71 0 21-May-09 -7 790 961 795 971 951

22-May-09 -6 0 71 30 16 20 22-May-09 -6 790 1032 825 987 971

23-May-09 -5 38 92 133 81 115 23-May-09 -5 828 1124 958 1068 1086

24-May-09 -4 20 66 85 54 59 24-May-09 -4 848 1190 1042 1121 1145

25-May-09 -3 47 0 0 40 89 25-May-09 -3 895 1190 1042 1162 1234

26-May-09 -2 12 41 26 0 0 26-May-09 -2 907 1231 1069 1162 1234

27-May-09 -1 89 57 75 31 52 27-May-09 -1 996 1287 1143 1192 1285

Control +ve Control 25% Effluent 50% Effluent 100% Effluent Control +ve Control 25% Effluent 50% Effluent 100% Effluent

28-May-09 1 22 47 68 77 36 28-May-09 1 22 47 68 77 36

29-May-09 2 28 95 0 46 49 29-May-09 2 50 142 68 123 85

30-May-09 3 0 36 77 49 89 30-May-09 3 50 178 146 173 174

31-May-09 4 36 0 75 12 50 31-May-09 4 86 178 220 185 224

01-Jun-09 5 79 0 97 126 0 01-Jun-09 5 165 178 317 311 224

02-Jun-09 6 0 76 28 0 0 02-Jun-09 6 165 254 345 311 224

03-Jun-09 7 11 39 48 0 140 03-Jun-09 7 176 293 393 311 363

04-Jun-09 8 84 0 71 47 61 04-Jun-09 8 260 293 465 358 424

05-Jun-09 9 0 4 53 118 36 05-Jun-09 9 260 297 517 476 460

06-Jun-09 10 57 6 56 50 12 06-Jun-09 10 316 302 573 526 472

07-Jun-09 11 4 56 0 51 9 07-Jun-09 11 320 358 573 577 481

08-Jun-09 12 25 1 111 0 0 08-Jun-09 12 346 359 684 577 481

09-Jun-09 13 6 0 18 0 0 09-Jun-09 13 352 359 702 577 481

10-Jun-09 14 32 0 45 3 122 10-Jun-09 14 383 359 747 580 603

11-Jun-09 15 52 53 104 107 6 11-Jun-09 15 435 412 851 687 609

12-Jun-09 16 32 5 38 0 21 12-Jun-09 16 467 417 888 687 630

13-Jun-09 17 0 2 17 43 23 13-Jun-09 17 467 420 905 730 653

14-Jun-09 18 67 0 35 70 46 14-Jun-09 18 535 420 941 800 699

15-Jun-09 19 23 18 99 0 63 15-Jun-09 19 558 438 1040 800 761

16-Jun-09 20 29 0 98 121 29 16-Jun-09 20 587 1137 921 790

17-Jun-09 21 53 0 38 5 64 17-Jun-09 21 640 1175 926 854

Cumulative egg productionMean egg production/day

Study 

day

Exposure period (Weeks 4 to 6)
Date

Study 

day

Exposure period (Weeks 4 to 6)
Date

Date
Study 

day

Pre Exposure period (Weeks 1 to 3)
Date

Study 

day

Pre Exposure period (Weeks 1 to 3)
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Table A 24. Raw egg production data from Experiment 4, Pair Breeding exposure study with 

GAC effluent. Data collected over a 6 week period; 3 weeks pre-exposure and 3 weeks 

exposure to control (dilution water), positive control (+ve control; 20 ng/L EE2) or to 100% 

GAC effluent. 

 

Control +ve Control 100% Effluent Control +ve Control 100% Effluent

23-Feb-09 -21 35 52 32 23-Feb-09 -21 35 52 32

24-Feb-09 -20 63 61 44 24-Feb-09 -20 99 113 76

25-Feb-09 -19 32 0 87 25-Feb-09 -19 130 113 163

26-Feb-09 -18 0 0 16 26-Feb-09 -18 130 113 179

27-Feb-09 -17 67 66 35 27-Feb-09 -17 197 179 214

28-Feb-09 -16 51 0 20 28-Feb-09 -16 249 179 234

01-Mar-09 -15 13 48 50 01-Mar-09 -15 262 227 283

02-Mar-09 -14 47 63 20 02-Mar-09 -14 309 290 303

03-Mar-09 -13 24 11 106 03-Mar-09 -13 333 301 409

04-Mar-09 -12 0 11 20 04-Mar-09 -12 333 312 429

05-Mar-09 -11 29 31 25 05-Mar-09 -11 362 343 454

06-Mar-09 -10 18 44 0 06-Mar-09 -10 380 387 454

07-Mar-09 -9 35 0 56 07-Mar-09 -9 415 387 509

08-Mar-09 -8 28 39 22 08-Mar-09 -8 443 426 532

09-Mar-09 -7 25 38 22 09-Mar-09 -7 468 464 554

10-Mar-09 -6 48 43 42 10-Mar-09 -6 516 507 596

11-Mar-09 -5 15 26 34 11-Mar-09 -5 531 533 629

12-Mar-09 -4 37 24 34 12-Mar-09 -4 568 557 663

13-Mar-09 -3 19 7 9 13-Mar-09 -3 587 564 672

14-Mar-09 -2 27 0 18 14-Mar-09 -2 613 564 690

15-Mar-09 -1 5 9 8 15-Mar-09 -1 618 573 698

Exposure period (Weeks 4 to 6) Exposure period (Weeks 4 to 6)

Control +ve Control 100% Effluent Control +ve Control 100% Effluent

16-Mar-09 1 0 13 28 16-Mar-09 1 0 13 28

17-Mar-09 2 18 0 21 17-Mar-09 2 18 13 49

18-Mar-09 3 9 0 0 18-Mar-09 3 27 13 49

19-Mar-09 4 45 9 0 19-Mar-09 4 71 22 49

20-Mar-09 5 20 38 22 20-Mar-09 5 91 60 71

21-Mar-09 6 0 27 3 21-Mar-09 6 91 87 74

22-Mar-09 7 21 0 52 22-Mar-09 7 112 87 125

23-Mar-09 8 26 54 42 23-Mar-09 8 138 141 167

24-Mar-09 9 22 0 0 24-Mar-09 9 160 141 167

25-Mar-09 10 23 0 17 25-Mar-09 10 184 141 184

26-Mar-09 11 0 0 63 26-Mar-09 11 184 141 247

27-Mar-09 12 47 15 28 27-Mar-09 12 231 156 275

28-Mar-09 13 0 31 0 28-Mar-09 13 231 187 275

29-Mar-09 14 39 0 3 29-Mar-09 14 269 187 278

30-Mar-09 15 6 18 41 30-Mar-09 15 275 204 319

31-Mar-09 16 37 16 17 31-Mar-09 16 312 220 335

01-Apr-09 17 9 25 0 01-Apr-09 17 321 245 335

02-Apr-09 18 0 0 21 02-Apr-09 18 321 245 357

03-Apr-09 19 17 0 37 03-Apr-09 19 338 245 394

04-Apr-09 20 67 24 54 04-Apr-09 20 404 269 448

05-Apr-09 21 5 38 0 05-Apr-09 21 410 307 448

Date Study day Date Study day
Pre Exposure period (Weeks 1 to 3)

Cumulative egg production

Pre Exposure period (Weeks 1 to 3)

Mean egg production/day

Date Study day Date Study day
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Table A 25. Roach sampled from the River Ray in April 2005. Of the 145 fish sampled, only 140 fish were included in analyses as it was not 

possible to sex five fish due to missing gonads. 

Fish 
no. 

Se
x 

Age 
Year 
clas

s 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF 
Gonad 
weight 

(g) 
GSI 

Ovarian 
cavity 

No. of 
oocytes 

Intersex 
Index 

Microscopic sex 
Histologica

l score 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
(ng/ml) 

1 F 5 2000 168 218 1.62 11.9 7.62 y   arrested/ 
inhibited female 

IV   600 

2 F 5 2000 132.9 195 1.79 19.8 17.51 y   female V   2,600,000 

3 F 5 2000 164.6 210 1.78 37.2 29.20 y   female V   2,575,000 

4  4 2001 43.4 135 1.76 1.4 3.33 y   Missing Missing   73 

5 F 1 2004  63    y   immature 
female 

II   67 

6 F 5 2000 134.8 197 1.76 22.5 20.04 y   female V   3,020,000 

7 F 5 2000 117.9 198 1.52 16.5 16.27 y   female V   3,410,000 

8 F 4 2001 166.9 207 1.88 40.3 31.83 y   female V   1,150 

9 F 4 2001 122 196 1.62 23 23.23 y   female V   2,300,070 

10 M 3 2002 65.8 164 1.49 4 6.47 n 1,0,0,0,1,0 0.333 intersex    4,300,000 

11 F 4 2001 95.4 178 1.69 16.4 20.76 y   female V   800 

12 F 8 - 347.1 286 1.48 7 2.06 y   arrested/ 
inhibited female 

II 4.00 <300 54 

13 F 5 2000 186.1 214 1.90 48.8 35.54 y   female V   530 

14 F 4 2001 111.3 184 1.79 22.5 25.34 y   female V   750 

15 F 5 2000 152 205 1.76 30.2 24.79 y   female V   1,105,000 

16 F 6 1999 321.7 249 2.08 74.7 30.24 y   female V   no blood 

17 M 4 2001 82.6 180 1.42 2.3 2.86 n 0,0,0,0,0,0 0 male VI 60.00 N/A 81 

18 F 4 2001 126.1 205 1.46 1.8 1.45 y   Arrested 
/inhibited female 

II 21.00 <300 2,840,000 

19 F 7 - 250.3 258 1.46 6.3 2.58 y   arrested/ 
inhibited female 

I 26.00 710.00 1,125,000 

20 M 5 2000 113.5 198 1.46 6.7 6.27 n 2,0,2,3,2,2 0.833 intersex  80.00 <300 4,350,000 

21 M 3 2002 47.1 145 1.54 1.5 3.29 n 0,0,0,0,0,0 0 male V 110.00 <300 328 

22 F 5 2000 165.5 217 1.62 3.1 1.91 y   arrested/ 
inhibited female 

II 27.00 1138.00 205 

23 F 4 2001 111.5 190 1.63 2.3 2.11 y   arrested/ 
inhibited female 

II 19.00 1785.00 3,750,000 

24 M 5 2000 94.1 184 1.51 4.2 4.67 n 0,0,0,0,0,0 0 male V 26.00 <300 2,500,000 

25 M 4 2001 114.4 185 1.81 5.7 5.24 n 0,0,2,1,3,0 0.5 intersex  47.00 <300 591 
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Fish 
no. 

Se
x 

Age 
Year 
clas

s 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF 
Gonad 
weight 

(g) 
GSI 

Ovarian 
cavity 

No. of 
oocytes 

Intersex 
Index 

Microscopic sex 
Histologica

l score 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
(ng/ml) 

26 M 5 2000 79 172 1.55 3.4 4.50 n 0,0,0,0,0,0 0 male V 47.00 <300 597 

27 F 4 2001 111.4 191 1.60 5.1 4.80 y   arrested/ 
inhibited female 

II   590 

28 M 5 2000 132.5 210 1.43 6.5 5.16 n 0,0,0,0,0,0 0 male V 50.00 <300 447 

29 M 3 2002 35.6 130 1.62 1.5 4.40 n 0,0,0,0,0,0 0 male V 59.00 <300 no blood 

30 M 4 2001 99.6 188 1.50 3.8 3.97 n 0,0,0,0,0,0 0 male V 60.00 2454.00 901 

31 F 2 2003 39.6 135 1.61 0.2 0.51 y   immature 
female 

II   2,400 

32 F 5 2000 201.3 220 1.89 41.5 25.97 y   female V   980 

33 F 5 2000 203.7 219 1.94 45.4 28.68 y   female V   650,000 

34 F 3 2002 70.9 160 1.73 15 26.83 y   female V   3,355,000 

35 F 5 2000 124.2 195 1.68 26.1 26.61 y   female V   no blood 

36 F 4 2001 105.3 182 1.75 19.5 22.73 y   female V   2,250 

37 F 4 2001 167.9 215 1.69 3.1 1.88 y   
arrested/ 

inhibited female 
II 20.00 2363.00 3,950,000 

38 F 3 2002 73.5 165 1.64 14.9 25.43 y   female V   610 

32 F 5 2000 201.3 220 1.89 41.5 25.97 y   female V   980 

33 F 5 2000 203.7 219 1.94 45.4 28.68 y   female V   650,000 

34 F 3 2002 70.9 160 1.73 15 26.83 y   female V 8.00 N/A 3,355,000 

35 F 5 2000 124.2 195 1.68 26.1 26.61 y   female V   no blood 

36 F 4 2001 105.3 182 1.75 19.5 22.73 y   female V   2,250 

37 F 4 2001 167.9 215 1.69 3.1 1.88 y   
arrested/ 

inhibited female 
II   3,950,000 

38 F 3 2002 73.5 165 1.64 14.9 25.43 y   female V 14.00 1675.00 610 

39 F   163 211 1.74 28.4 21.10 y   female V 4.00 6987.00 5,510,000 

40 F 4 2001 158.5 206 1.81 34.5 27.82 y   female V 24.00 N/A 2,050 

41 M 4 2001 86.4 182 1.43 4 4.85 n 0,0,0,0,0,0 0 male V 47.00 <300 118 

42 F 5 2000 179.2 215 1.80 38.4 27.27 y   female V   3,200 

43 F 5 2000 182.9 219 1.74 39 27.10 y   female V 50.00 <300 590 

44 F 5 2000 130.6 195 1.76 25.9 24.74 y   female V 59.00 <300 500 

45 F 5 2000 151.1 211 1.61 3.4 2.30 y   
arrested/ 

inhibited female 
II 60.00 2454.00 43 

46 F 5 2000 118.9 204 1.40 4.4 3.84 y   
arrested/ 

inhibited female 
II   2,800 

47 M 4 2001 88.5 176 1.62 4.6 5.48 n 0,0,0,0,0,0 0 male V   30 
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Fish 
no. 

Sex Age 
Year 
class 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF 
Gonad 
weight 

(g) 
GSI 

Ovarian 
cavity 

No. of 
oocytes 

Intersex 
Index 

Microscopic 
sex 

Histological 
score 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
(ng/ml) 

48 F 4 2001 124 194 1.70 24.7 24.87 y   female V   300 

49 M 4 2001 70.5 169 1.46 3.5 5.22 n 0,0,0,0,0,0 0 male V 73.00 <300 2,755,000 

50 F 3 2002 75.2 168 1.59 12.6 20.13 y   female V   1,500,000 

51 F 6 1999 348.9 254 2.13 84.6 32.01 y   female V   3,655,000 

52 F 4 2001 146.3 198 1.88 31 26.89 y   female V   300 

53 F 5 2000 228 225 2.00 52 29.55 y   female V   1,360,000 

54 F 4 2001 170.6 215 1.72 37.6 28.27 y   female V   2,690,000 

55 M 6 1999 206 230 1.69 7.7 3.88 n 2,3,4,1,11,1 1.1667 intersex  35.00 <300 no blood 

56 M 3 2002 78.3 175 1.46 3.2 4.26 n 0,1,0,2,0,0, 0.333 intersex  65.00 <300 3,590,000 

57 M 5 2000 94.9 193 1.32 2.7 2.93 y 4,0,0,0,0,0 0.1667 intersex  37.00 <300 4,030,000 

58 F 3 2002 89 175 1.66 18.3 25.88 y   female V   735,000 

59 F 4 2001 77.7 171 1.55 12.2 18.63 y   female V   2,020,000 

60 F 4 2001 99.1 172 1.95 18.8 23.41 y   female V   3,760,000 

61 F 3 2002 115.3 186 1.79 30.6 36.13 y   female V   3,860,000 

62 F 4 2001 112.3 194 1.54 21.2 23.27 y   female V   3,610,000 

63 M 5 2000 100.3 191 1.44 3 3.08 y 0,0,0,0,0,0 0 intersex  54.00 <300 743 

64 M 4 2001 66.2 169 1.37 3.4 5.41 n 0,0,0,0,0,0 0 male V 49.00 <300 489 

65 M 4 2001 71.8 165 1.60 4.1 6.06 n 0,0,0,0,0,0 0 male IV 143.00 <300 103 

66 M 4 2001 82.7 180 1.42 1.6 1.97 n 6,8,1,8,21,9 2 intersex  64.00 <300 3,080,000 

67 M 4 2001 104.5 189 1.55 4.8 4.81 n 0,0,0,0,0,0 0 male V 61.00 <300 2,320 

68 M 4 2001 128.2 198 1.65 7.7 6.39 n 0,0,0,0,0,0 0 male IV 
Not 

enough 
N/A 1,905,000 

69 F 2 2003 19.6 108 1.56 0.4 2.08 y   
immature 

female 
II 55.00 1262.00 1,640,000 

70 F 5 2000 152.5 205 1.77 23.3 18.03 y   female V   no blood 

71 F 2 2003 28.7 124 1.51 0.7 2.50 y   
immature 

female 
III 13.00 1946.00 4,750,000 

72 F 2 2003 28.2 117 1.76 0.6 2.17 y   
immature 

female 
II 20.00 2063.00 450 

73 F 2 2003 22.2 109 1.71 1.7 8.29 y   female V   no blood 

74 F 4 2001 80 177 1.44 1.3 1.65 y   
arrested/ 
inhibited 
female 

II 56.00 1195.00 no blood 

75 F 2 2003 41.2 134 1.71 3.5 9.28 y   
immature 

female 
IV   7,325,000 

76 F 4 2001 123.4 192 1.74 27.6 28.81 y   female V   2,500,000 
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Fish 
no. 

Sex Age Year 
class 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF Gonad 
weight 

(g) 

GSI Ovarian 
cavity 

No. of 
oocytes 

Intersex 
Index 

Microscopic sex Histological 
score 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
(ng/ml) 

77 F 4 2001 95.3 180 1.63 17.8 22.97 y   female V   3,100,000 

78 F 5 2000 107 190 1.56 17.4 19.42 y   female V   6,700 

79 F 4 2001 126 200 1.58 18.5 17.21 y   female V   1,685,000 

80 F 5 2000 167.7 210 1.81 29.5 21.35 y   female V   no blood 

81 F 5 2000 263.4 234 2.06 54.8 26.27 y   female V   825 

82 F 3 2002 61.8 157 1.60 9 17.05 y   female V   no blood 

83 M 3 2002 49.6 155 1.33 1.5 3.12 n 0,0,0,0,0,0 0 male V 71.00 <300 366 

84 M 5 2000 104 194 1.42 3.3 3.28 n 0,0,0,0,0,0 0 male V 57.00 2351.00 465 

85 M 3 2002 41 144 1.37 1.6 4.06 n 0,0,0,0,0,0 0 male V 54.00 <300 3,625,000 

86 F 2 2003 26.3 122 1.45 4 17.94 y   female V   5,950,000 

87 M 3 2002 55.4 162 1.30 2.6 4.92 n 0,0,0,0,0,0 0 male V 49.00 <300 1,255,000 

88 F 3 2002 53.7 153 1.50 9.1 20.40 y   female V   3,575,000 

89 M 6 1999 158.9 214 1.62 3.3 2.12 n 0,0,1,1,6 0.666 intersex  
Not 

enough 
 18 

90 M 2 2003 50.1 146 1.61 0.9 1.83 n 0,0,0,0,0,0 0 male V 27.00 <300 5,810,000 

91 M 3 2002 30.2 130 1.37 0.8 2.72 n 0,0,0,0,0,0 0 male V   no blood 

92 F 2 2003 23 115 1.51 0.9 4.07 y   immature 
female 

II   21,000 

93 F 4 2001 107.4 194 1.47 3 2.87 y   arrested/ 
inhibited female 

II 6.00 <300 15 

94 M 3 2002 42.5 147 1.34 1.7 4.17 n 0,0,0,0,0,0 0 male V 74.00 <300 408 

95 M 3 2002 16.1 106 1.35 0.6 3.87 n 0,0,0,0,0,0 0 male V 
Not 

enough 
 4,400,000 

96 M 3 2002 35.4 138 1.35 1.4 4.12 n 0,0,0,0,0,0 0 male V 49.00 <300 629 

97 F 2 2003 38.5 136 1.53 0.8 2.12 y   immature 
female 

II 109.00 5759.00 100 

98 F 4 2001 92.7 184 1.49 0.6 0.65 y   spent female VI 18.00 583.00 62 

99 F 2 2003 34.3 135 1.39 1.2 3.63 y   immature 
female 

II   3,750,000 

100 M 3 2002 65.5 163 1.51 2.8 4.47 n 0,0,0,0,0,0 0 male V   106,000 

101 M 2 2003 32.2 130 1.47 1.4 4.55 n 0,0,0,0,0,0 0 male V   591 

102 M 3 2002 44.4 144 1.49 2.2 5.21 n 0,0,0,0,0,0 0 male V   234 

103 F 3 2002 69.7 172 1.37 1.5 2.20 y   
arrested/ 

inhibited female 
II 19.00 1361.00 4,225,000 
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Fish 
no. 

Sex Age 
Year 
class 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF 
Gonad 
weight 

(g) 
GSI 

Ovarian 
cavity 

No. of 
oocytes 

Intersex 
Index 

Microscopic sex 
Histological 

score 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
(ng/ml) 

104 M 3 2002 39.3 139 1.46 1.8 4.80 n  0 male V 11.00 <300 no blood 

105 F 5 2000 185.8 229 1.55 4.7 2.60 y   arrested/ 
inhibited female 

II 21.00 4105.00 no blood 

106 F 2 2003 32.4 130 1.47 0.7 2.21 y   immature female II 40.00 848.00 119 

107 M 4 2001 74.6 177 1.35 4 5.67 n 0,0,0,0,0,0 0 male V 
Not 

enough 
N/A 141 

108 M 2 2003 31.4 129 1.46 1.8 6.08 y 0,0,0,0,0,0 0 intersex  79.00 <300 no blood 

109 F 2 2003 27.6 123 1.48 0.4 1.47 y   immature female II 47.00 1116.00 no blood 

110 M 2 2003 32.1 130 1.46 0.6 1.90 n 0,0,0,0,0,0 0 male V Missing Missing 254 

111 M 3 2002 57.4 154 1.57 3.8 7.09 n 0,0,0,0,0,0 0 male IV 21.00 <300 16,794 

112 M 3 2002 40.8 142 1.42 1.3 3.29 n 0,0,0,0,0,0 0 male V 75.00 <300 273 

113 M 4 2001 63.6 167 1.37 2.5 4.09 n 2,1,0,0,0,0 0.333 intersex  56.00 <300 71 

114 M 3 2002 46 149 1.39 1.6 3.60 n 1,0,0,0,0,0 0.1667 intersex  95.00 <300 68 

115 M 3 2002 42.7 144 1.43 1.3 3.14 n 0,0,0,2,0,0 0.1667 intersex  69.00 <300 107 

116 M 2 2003 23.4 121 1.32 1.3 5.88 n  0 male V 
Not 

enough 
Not 

enough 
119 

117 M 4 2001 81.8 174 1.55 1.8 2.25 n  0 male V 43.00 <300 84 

118 M 5 2000 94.2 185 1.49 4.3 4.78 n  0 male V 
Not 

enough 
 495 

119 F 3 2002 51.6 154 1.41 7.9 18.08 y   female V   2,580,000 

120 M 2 2003 22.1 111 1.62 0.3 1.38 n 0,0,0,0,0,0 0 male I 43.00 1538.00 no blood 

121 F 3 2002 68 162 1.60 1.09 1.63 y   female V   6,800,000 

122 F 3 2002 102.2 178 1.81 21.8 27.11 y   female V   5,750,000 

123 F 2 2003 40 125 2.05 3.7 10.19 y   immature female IV   no blood 

124 F 3 2002 70.9 159 1.76 14.6 25.93 y   female V   6,040,000 

125 F 5 2000 181.6 220 1.71 28.1 18.31 y   female V   7,250,000 

126  2 2003 31.3 125 1.60 0.6 1.95    Missing Missing 45.00 2226.00 no blood 

127  2 2003 35.9 129 1.67 4.8 15.43 y   Missing Missing   no blood 

128 F 3 2002 73.4 164 1.66 16.8 29.68 y   female V   1,105,000 

129 F 3 2002 76 165 1.69 12.7 20.06 y   female V   4,710,000 

130 F 3 2002 79 168 1.67 15.6 24.61 y   female V   4,065,000 

131 F 2 2003 38.1 137 1.48 1 2.70 y   immature female II 33.00 4475.00 no blood 

132 F 3 2002 17.6 103 1.61 0.3 1.73 y   
arrested/ 

inhibited female 
II 40.00 2576.00 no blood 

133 F 2 2003 42.4 138 1.61 1.4 3.41 y   female V   4,990,000 
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Fish 
no. 

Sex Age 
Year 
class 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF 
Gonad 
weight 

(g) 
GSI 

Ovarian 
cavity 

No. of 
oocytes 

Intersex 
Index 

Microscopic sex 
Histological 

score 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
(ng/ml) 

134 F 3 2002 63.6 158 1.61 11.4 21.84 y   female V   5,960,000 

135 F 2 2003 31.1 128 1.48 0.7 2.30 y   immature female II 62.00 1751.00 no blood 

136 F 2 2003 23.4 119 1.39 0.5 2.18 y   immature female II 
Not 

enough 
 no blood 

137 F 2 2003 33 126 1.65 6.5 24.53 y   female V   no blood 

138 F 2 2003 38.5 134 1.60 6.3 19.57 y   female V   no blood 

139 F 2 2003 38.6 134 1.60 3.9 11.24 y   immature female IV   940,000 

140 F 3 2002 74.2 164 1.68 13.1 21.44 y   female V   5,075,000 

141 F 5 2000 147.4 207 1.66 4.5 3.15 y   arrested/ 
inhibited female 

II 
Not 

enough 
 4,320,000 

142 F 4 2001 132.8 192 1.88 14 11.78 y   female V   3,175,000 

143 F 5 2000 183.6 211 1.95 42.1 29.75 y   female V   1,040,000 

144  6 1999 191.3 218 1.85 39 25.61 y   Missing Missing   9,025,000 

145  3 2002 94.3 172 1.85 12.3 15.00 y   Missing Missing   3,575,000 
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Table A 26. Roach sampled from the River Ray in November 2013.  

Fish 
no. 

Sex Age Year 
class 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF Gonad 
weight 

(g) 

GSI Ovarian 
cavity 

Number of 
oocytes 

Intersex 
index 

Microscopic 
sex 

Histological 
scoring 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
ng/ml 

1 M 4 2010 67.6 168 1.43 3.18 4.93 n 0,0,0,0,0,0 0 male II 66.14 <DL 23 

2 F 6 2008 169.8 212 1.78 22.00 14.89 y   female V 287.55 <DL 9,086,221 

3 M 3 2011 47.4 148 1.46 2.30 5.10 n 0,0,0,0,0,0 0 male II 57.64 <DL 208 

4 F 5 2009 156.5 212 1.64 15.79 11.22 y   female V 779.38 0.46 2,057,824 

5 F 4 2010 64.5 165 1.44 4.26 7.08 y   female V 378.62 <DL 2,128,342 

6 F 5 2009 113.2 192 1.60 12.99 12.96 y   female V 217.21 <DL 16,369,566 

7 F 5 2009 169.7 208 1.89 22.58 15.35 y   female V 200.17 1.00 7,827,507 

8 M 4 2010 53.6 158 1.36 1.91 3.69 n 0,0,0,0,0,0 0 male II 109.87 0.859 385 

9 F 3 2011 51.6 153 1.44 4.32 9.15 y   female V 188.66 <DL 6,780,351 

10 F 5 2009 188.4 220 1.77 21.34 12.78 y   female V 536.01 <DL 5,645,739 

11 M 3 2011 23.7 118 1.44 1.12 4.96 n 0,0,0,0,0,0 0 male II 61.54 <DL 12 

12 F 3 2011 18.9 113 1.31 0.36 1.94 y   female II 
Not 

enough 
Not 

enough 
12 

13 F 4 2010 222.9 228 1.88 28.04 14.39 y   female V 735.61 <DL 8,894,592 

14 F 4 2010 109.4 193 1.52 10.95 11.12 y   female V 519.60 <DL 7,395,979 

15 F 5 2009 207.3 233 1.64 21.76 11.73 y   female V 795.01 <DL 6,042,602 

16 M 5 2009 130.7 203 1.56 7.03 5.68 n 0,0,0,0,0,0 0 male II 177.74 <DL 45,131 

17 F 5 2009 212.3 227 1.81 25.29 13.53 y   female V 776.08 <DL 12,315,044 

18 F 5 2009 190.3 222 1.74 26.31 16.05 y   female V 945.55 <DL 11,686,033 

19 F 4 2010 224 232 1.79 28.63 14.66 y   female V 546.75 <DL 7,271,278 

20 F 3 2011 105 193 1.46 9.09 9.48 y   female V 134.39 <DL 3,411,269 

21 F 4 2010 187.1 223 1.69 20.56 12.35 y   female V 386.99 <DL 7,794,625 

22 F 4 2010 188.3 220 1.77 21.13 12.64 y   female V 197.23 <DL 6,998,899 

23 F 5 2009 207.2 227 1.77 27.02 14.99 y   female V 1975.80 <DL 7,781,379 

24 F 3 2011 111.8 187 1.71 14.15 14.48 y   female V 1460.16 <DL 4,925,665 

25 M 4 2010 101 188 1.52 5.10 5.32 n 0,0,0,0,0,0 0 male II 113.66 <DL 198 

26 M 4 2010 91.5 178 1.62 4.81 5.55 n 0,0,0,0,0,0 0 male II 96.73 <DL 12,801 

27 M 4 2010 72.1 172 1.42 2.93 4.24 n 0,0,0,0,0,0 0 male II 
Not 

enough 
<DL 12 

28 F 4 2010 103.5 193 1.44 10.44 11.22 y   female V 632.73 <DL 7,700,488 
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Fish 
no. 

Sex Age Year 
class 

Wet 
weight 

(g) 

Fork 
length 
(mm) 

CF Gonad 
weight 

(g) 

GSI Ovarian 
cavity 

Number of 
oocytes 

Intersex 
index 

Microscopic 
sex 

Histological 
scoring 

E2EQ 
ng/ml 
bile 

FLUTEQ 
mg/ml 

bile 

VTG 
ng/ml 

29 M 4 2010 130.1 203 1.56 7.73 6.32 n 0,0,0,0,0,0 0 male II 141.27 <DL 48 

30 M 5 2009 106.2 183 1.73 6.96 7.02 n 0,0,0,0,0,0 0 male II 94.44 <DL 76 

31 F 6 2008 231.7 237 1.74 41.10 21.56 y   female V 1108.24 0.87 6,252,489 

32 F 4 2010 87 178 1.54 8.73 11.15 y   female V 1048.53 <DL 2,709,333 

33 M 4 2010 112.4 192 1.59 5.42 5.07 n 0,0,0,0,0,0 0 male II 190.26 <DL 31 

34 M 4 2010 89.8 182 1.49 4.38 5.12 n 0,0,0,0,0,0 0 male II 
Not 

enough 
<DL 12 

35 F 5 2009 184.8 223 1.67 20.30 12.34 y   female V 690.31 <DL 8,888,113 

36 M 6 2008 178.3 217 1.74 8.84 5.22 n 0,0,0,0,0,0 0 male II 163.86 <DL 451 

37 F 5 2009 144 216 1.43 13.98 10.75 y   female V 534.08 0.36 4,589,736 

38 F  2010 218.1 236 1.66 22.24 11.36 y   female V 1636.40 0.39 6,818,972 

39 F 5 2009 92 182 1.53 10.86 13.39 y   female V 605.79 <DL 6,636,719 

40 M 5 2009 183.8 218 1.77 9.30 5.33 n 0,0,0,0,0,0 0 male II 93.55 0.35 168 

41 F 3 2011 96.5 180 1.65 9.25 10.60 y   female V 372.69 <DL 10,630,607 

42 F 6 2008 155.7 206 1.78 16.04 11.48 y   female V 527.21 <DL 13,889,598 

43 M 4 2010 115.7 193 1.61 6.28 5.74 n 2,0,0,0,0,0 0.167 intersex  77.05 0.421 3,092 

44 F 4 2010 150.5 213 1.56 19.69 15.05 y   female V 1213.07 <DL 15,877,763 

45 F 5 2009 207.9 227 1.78 28.63 15.97 y   female V 1218.42 0.45 8,668,414 

46 F 5 2009 186.9 225 1.64 28.44 17.94 y   female V 1014.61 <DL 5,200,926 

47 M 4 2010 85.2 182 1.41 4.13 5.10 n 0,1,0,0,0,0 0.167 intersex  129.07 <DL 64 

48 F 4 2010 127.8 198 1.65 11.19 9.59 y   female V 621.73 <DL 16,548,915 

49 F 4 2010 83 174 1.58 9.69 13.22 y   female V 550.07 <DL 7,103,383 

50 M 3 2011 64.2 166 1.40 3.44 5.66 n 0,0,0,0,0,0 0 male II 220.98 <DL 323 

51 M 4 2010 110.8 192 1.57 6.11 5.84 n 0,0,0,0,0,0 0 male II 79.60 <DL 12 

52 M 3 2011 48.1 156 1.27 2.04 4.42 n 2,1,0,0,2,0 0.500 intersex  102.95 <DL 12 

53 F 3 2011 126.8 203 1.52 13.90 12.31 y   female V 497.17 <DL 9,373,810 

54 M 5 2009 100.3 188 1.51 4.80 5.03 n 0,0,0,0,0,0 0 male II 140.63 <DL 635 

55 F 3 2011 78.1 176 1.43 9.69 14.17 y   female V 1507.28 0.67 8,474,891 

56 F 3 2011 66.1 166 1.45 6.02 10.02 y   female V 680.59 0.45 6,486,493 
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Table A 27. Standard curves were produced using SoftMax Pro version 5.0.1 (Molecular Devices Limited, Wokingham, UK) and were used to 

calculate EC50s and IC50s. The response of the standard yeast androgen screen (YAS) to dihydrotestosterone (DHT) positive control gave a 

mean EC50 of 9.49x10-10M ± 4.87x10-11M (n=13) and the response of the standard yeast anti-androgen screen (AYAS) to flutamide positive 

control gave a mean IC50 of 3.78x10-6M ±3.13x10-7M (n=16). 

 

  

Standard YAS Standard AYAS

DHT EC50 values (M) FLUT IC50 values (M)

8.43E-10 3.75E-06

1.11E-09 4.53E-06

1.10E-09 6.46E-06

1.23E-09 4.92E-06

1.10E-09 3.64E-06

9.30E-10 3.87E-06

9.37E-10 3.92E-06

6.22E-10 3.42E-06

6.52E-10 3.42E-06

9.02E-10 2.59E-06

1.01E-09 1.97E-06

8.96E-10 3.02E-06

1.01E-09 4.65E-06

2.02E-06

5.67E-06

2.60E-06

Mean 9.49E-10 3.78E-06

SE 4.87E-11 3.13E-07

No. of experiments 13 16
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Table A 28. The response of the standard yeast androgen screen (YAS) to dihydrotestosterone (DHT) positive control (final concentrations 

from 5x10-8M to 2.44x10-11M; mean ± SE; n=13) and the response of the standard yeast anti-androgen screen (AYAS) to flutamide positive 

control (final concentrations of 5 x 10-5M to 2.44 x 10-8M; mean ± SE; n=16). Absorbance readings were taken using a plate reader at 540nm 

and corrected for yeast turbidity at 620nm (Spectramax 340PC microplate reader (Molecular Devices Limited, Wokingham, UK)). 

 

 

  

Mean corrected 

absorbance (540nm) DHT SEM

Mean corrected 

absorbance (540nm) Flutamide SEM

5.00E-08 2.5852 0.0371 5.00E-05 1.1972 0.0528

2.50E-08 2.5675 0.0400 2.50E-05 1.1749 0.0512

1.25E-08 2.5465 0.0404 1.25E-05 1.2254 0.0595

6.25E-09 2.5325 0.0403 6.25E-06 1.4092 0.0656

3.13E-09 2.5163 0.0417 3.13E-06 1.6633 0.0657

1.56E-09 2.2627 0.0653 1.56E-06 1.8314 0.0631

7.81E-10 1.6827 0.0640 7.81E-07 1.9465 0.0607

3.91E-10 1.2761 0.0424 3.91E-07 2.0049 0.0565

1.95E-10 1.1605 0.0330 1.95E-07 2.0375 0.0590

9.77E-11 1.1433 0.0342 9.77E-08 2.0424 0.0561

4.88E-11 1.1440 0.0347 4.88E-08 2.0198 0.0560

2.44E-11 1.1116 0.0438 2.44E-08 1.8630 0.0744

DHT conc 

(M)

Standard YAS (n=13)
Flutamide 

conc (M)

Standard AYAS (n=16)
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Table A 29. Standard curves were produced using SoftMax Pro version 5.0.1 (Molecular Devices Limited, Wokingham, UK) and were used to 

calculate EC50s and IC50s. The response of the modified yeast androgen screen (YAS) to dihydrotestosterone (DHT) positive control gave an 

EC50 of 8.89x10-10M ± 4.51x10-11M (mean ± SE; n=6) and the of the modified standard yeast anti-androgen screen (AYAS) to flutamide 

positive control gave an IC50 of 1.03x10-5M ±8.59x10-7M (mean ± SE; n=11). Included in the table are the results from the standard assays for 

comparison. 

 

 

Standard YAS Modified YAS Standard AYAS Modified AYAS

8.43E-10 9.08E-10 3.75E-06 9.45E-06

1.11E-09 7.57E-10 4.53E-06 9.54E-06

1.10E-09 8.55E-10 6.46E-06 9.49E-06

1.23E-09 7.97E-10 4.92E-06 7.18E-06

1.10E-09 9.56E-10 3.64E-06 1.04E-05

9.30E-10 1.06E-09 3.87E-06 8.81E-06

9.37E-10 3.92E-06 1.11E-05

6.22E-10 3.42E-06 8.81E-06

6.52E-10 3.42E-06 1.09E-05

9.02E-10 2.59E-06 9.00E-06

1.01E-09 1.97E-06 1.82E-05

8.96E-10 3.02E-06

1.01E-09 4.65E-06

2.02E-06

5.67E-06

2.60E-06

Mean 9.49E-10 8.89E-10 3.78E-06 1.03E-05

SE 4.87E-11 4.51E-11 3.13E-07 8.59E-07

No. of experiments 13 6 16 11

DHT EC50 values (M) FLUT IC50 values (M)
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Table A 30. The response of the modified yeast androgen screen (YAS) to dihydrotestosterone (DHT) positive control (final concentrations from 

5x10-8M to 2.44x10-11M; mean ± SE; n=6) and the response of the modified yeast anti-androgen screen (AYAS) to flutamide positive (final 

concentrations of 5 x 10-5M to 2.44 x 10-8M; mean ± SE; n=11). Absorbance readings were taken using a plate reader at 420nm and corrected 

for yeast turbidity at 620nm (Spectramax 340PC microplate reader (Molecular Devices Limited, Wokingham, UK)). 

 

  

Mean corrected 

absorbance (420nm)
DHT SEM

Mean corrected 

absorbance (420nm)
Flut SEM

5.00E-08 2.4509 0.0372 1.1769 0.0339

2.50E-08 2.3859 0.0387 1.2300 0.0276

1.25E-08 2.4471 0.0245 1.4935 0.0311

6.25E-09 2.3669 0.0372 1.7736 0.0279

3.13E-09 2.2095 0.0546 1.9270 0.0218

1.56E-09 1.9983 0.0538 2.0297 0.0248

7.81E-10 1.5195 0.0524 2.0444 0.0274

3.91E-10 0.9795 0.0292 2.0335 0.0265

1.95E-10 0.7946 0.0259 2.0521 0.0268

9.77E-11 0.7559 0.0270 2.0858 0.0242

4.88E-11 0.7300 0.0152 2.0558 0.0151

2.44E-11 0.7355 0.0268 2.0205 0.0353

DHT conc 

(M)

Modified YAS (n=6) Modified AYAS (n=11)
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Table A 31. Potency values for the 20 anti-androgenic chemicals in the standard yeast anti-androgen screen (AYAS; mean ± SE). Potencies 

were calculated by dividing the flutamide IC50 by the chemical IC50, and the higher the number the more potent the chemical relative to 

flutamide. 

  

Chemical 

number 
Chemical name 

Chemical 

CAS number 
Potency relative to flutamide in the standard AYAS 

Mean 

potency 

Potency 

SEM 

Number of 

times tested 

8 Benzophenone 119-61-9 0.013 0.021 0.007 0.032 0.025   0.020 0.004 5 

10 N-Butylbenzene sulfonamide 3622-84-2 0.419 0.078 0.020     0.172 0.124 3 

11 Myristic acid 544-63-8 0.155 0.179 0.019 0.055 0.040 0.130 0.021 0.086 0.025 7 

15 Dodecanoic acid 143-07-7 0.203 0.183 0.034 0.065 0.009 0.072 0.001 0.081 0.031 7 

16 Fluoranthene 206-44-0 9.370 8.098 1.739 1.245    5.113 2.109 4 

17 Triclosan 3380-34-5 13.192 12.313 11.163 2.790    9.865 2.394 4 

18 Triphenyl phosphate 115-86-6 0.858 1.193 0.015 0.000    0.517 0.302 4 

19 Pyrene 129-00-0 2.847 4.230 2.726     3.268 0.482 3 

20 Methyl triclosan 4640-01-1 8.675 6.274 7.669 11.332    8.488 1.068 4 

41 Chlorophene 204-385-8 14.330 19.765 8.305 8.246    12.662 2.765 4 

51 
1-[4-(hydroxy-1-

methylethyl)phenyl] ethanone 
54549-72-3 0.012 0.019      0.016 0.004 2 

56 2-(methylthio)benzothiazole 615-22-5 0.013 0.073 0.102     0.063 0.026 3 

78 
9,12-Octadecadienoic acid 

methyl ester 
2566-97-4 0.063 0.022 0.011     0.032 0.016 3 

79 9H-Fluorene 86-73-7 0.065 0.426 0.641 0.447 0.845   0.485 0.129 5 

81 Acetylcedrene 32388-55-9 0.239 0.190 0.230 0.046 0.052   0.151 0.043 5 

82 alpha cedrol 77-53-2 0.038 0.021      0.030 0.009 2 

84 Benzeneacetaldehyde 122-78-1 0.030 0.037      0.034 0.004 2 

88 Dehydroabietic acid 1740-19-8 2.255 0.060      1.158 1.098 2 

91 
Diphenylacetic acid methyl 

ester 
3469-00-9 0.250 0.160 0.072     0.161 0.051 3 

92 Hexamethylbenzene 87-85-4 0.003 0.032      0.018 0.015 2 
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Table A 32. Potency values for the 20 anti-androgenic chemicals retested in the modified yeast anti-androgen screen (AYAS; mean ± SE). 

Potencies were calculated by dividing the flutamide IC50 by the chemical IC50, and the higher the number the more potent the chemical 

relative to flutamide. 

Chemical 

number
Chemical name

Chemical 

CAS number

Mean 

potency

Potency 

SEM

Number of 

times tested

8 Benzophenone 119-61-9 0.099 0.108 0.104 0.0045 2

10 N-Butylbenzene sulfonamide 3622-84-2 0.144 0.090 0.117 0.0270 2

11 Myristic acid 544-63-8 0.000 0.000 0.000 0.0000 2

15 Dodecanoic acid 143-07-7 0.044 0.160 0.102 0.0580 2

16 Fluoranthene 206-44-0 4.921 3.923 11.459 6.768 2.3633 3

17 Triclosan 3380-34-5 18.685 9.808 18.715 15.736 2.9640 3

18 Triphenyl phosphate 115-86-6 0.000 0.000 0.000 0.0000 2

19 Pyrene 129-00-0 0.782 2.257 1.520 0.7375 2

20 Methyl triclosan 4640-01-1 8.601 9.117 8.859 0.2580 2

41 Chlorophene 204-385-8 13.752 6.580 10.166 3.5860 2

51 1-[4-(hydroxy-1-methylethyl)phenyl] ethanone 54549-72-3 0.090 0.051 0.071 0.0195 2

56 2-(methylthio)benzothiazole 615-22-5 0.133 0.124 0.129 0.0045 2

78 9,12-Octadecadienoic acid methyl ester 2566-97-4 0.090 0.054 0.072 0.0180 2

79 9H-Fluorene 86-73-7 0.706 0.243 0.475 0.2315 2

81 Acetylcedrene 32388-55-9 0.358 0.230 0.294 0.0640 2

82 alpha cedrol 77-53-2 0.171 0.116 0.144 0.0275 2

84 Benzeneacetaldehyde 122-78-1 0.028 0.24 0.134 0.1060 2

88 Dehydroabietic acid 1740-19-8 1.865 2.522 2.194 0.3285 2

91 Diphenylacetic acid methyl ester 3469-00-9 0.281 0.192 0.237 0.0445 2

92 Hexamethylbenzene 87-85-4 0.010 0.017 0.014 0.0035 2

Potency relative to flutamide 

in the modified AYAS
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Table A 33. qPCR expression analysis using positive control targets (ff1d and vtg) with 

different tissues (dorsal fin, brain, kidney, liver, mouth, snout, brain) from one male and one 

female FHM. Expression levels were normalised to three reference genes (rpI8, hprt I and 

tbp). 

Target Sample Expression Expression SEM Mean Cq Cq SEM 

ff1d Female dorsal fin 0.00947 0.00504 37.15 0.76641 

ff1d Female brain 0.90796 0.05273 29.88 0.05489 

ff1d Female kidney 0.01409 0.00035 34.89 0.00000 

ff1d Female liver 0.20210 0.01928 32.58 0.13460 

ff1d Female mouth 0.01800 0.00220 35.21 0.17511 

ff1d Female snout 0.01971 0.00581 35.26 0.42422 

ff1d Male brain 1.30033 0.03331 28.15 0.01333 

ff1d Male dorsal fin 0.03194 0.00075 35.01 0.00000 

ff1d Male fatpad 0.01875 0.00832 36.05 0.63986 

ff1d Male kidney 0.00239 0.00170 37.22 1.02900 

ff1d Male liver 0.01973 0.00093 37.77 0.04498 

ff1d Male mouth 0.71620 0.06663 30.73 0.12794 

ff1d Male snout 0.00742 0.00105 37.43 0.20263 

vtg Female dorsal fin 0.00000 0.00000 36.50 1.13013 

vtg Female brain 0.00000 0.00000 32.65 0.29402 

vtg Female kidney 0.00162 0.00005 22.97 0.04379 

vtg Female liver 4.34537 0.11164 13.11 0.02331 

vtg Female mouth 0.00000 0.00000 35.27 0.51828 

vtg Female snout 0.00000 0.00000 36.23 0.44308 

vtg Male brain 0.00000 0.00000 33.06 1.37545 

vtg Male dorsal fin 0.00005 0.00000 29.30 0.08782 

vtg Male fatpad 0.00000 0.00000 34.17 0.51282 

vtg Male kidney 0.00001 0.00000 30.44 0.11085 

vtg Male liver 0.00002 0.00000 32.78 0.21776 

vtg Male mouth 0.00000 0.00000 35.70 0.74822 

vtg Male snout 0.00000 0.00000 36.37 0.93835 
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Table A 34. qPCR expression analysis using three spiggin-like targets (DT131813, 

DT267220 and DT347638) with different tissues (dorsal fin, brain, kidney, liver, mouth, 

snout, brain) from one male and one female FHM. Expression levels were normalised to 

three reference genes (rpI8, hprt I and tbp). 

Target Sample Expression Expression SEM Cq SEM 

DT131813 female brain 0.11108 0.01319 0.16460 

DT131813 female dorsal fin 0.09943 0.00539 0.07126 

DT131813 female kidney 1.49912 0.06373 0.05296 

DT131813 female liver 0.03991 0.00372 0.13210 

DT131813 female mouth 0.02644 0.00413 0.22439 

DT131813 female snout 0.79400 0.02230 0.01184 

DT131813 male brain 0.16800 0.01527 0.12135 

DT131813 male fatpad 0.04481 0.00356 0.11105 

DT131813 male dorsal fin 0.06200 0.00892 0.20562 

DT131813 male kidney 0.14003 0.00650 0.06089 

DT131813 male liver 0.12308 0.01365 0.15147 

DT131813 male mouth 0.04982 0.00220 0.05168 

DT131813 male snout 1.25998 0.04477 0.03212 

DT267220 female brain 0.23023 0.07544 0.47034 

DT267220 female dorsal fin 0.05831 0.01238 0.30457 

DT267220 female kidney 0.01677 0.00122 0.09991 

DT267220 female liver 0.04195 0.01440 0.49474 

DT267220 female mouth 0.02144 0.01075 0.72346 

DT267220 female snout 0.03104 0.00304 0.13603 

DT267220 male brain 0.18739 0.03310 0.24992 

DT267220 male fatpad 0.05608 0.01733 0.44492 

DT267220 Male dorsal fin 0.08240 0.02095 0.36578 

DT267220 male kidney 0.04275 0.00875 0.29390 

DT267220 male liver 0.02185 0.00219 0.13488 

DT267220 male mouth 0.04005 0.01280 0.45948 

DT267220 male snout 3.23179 0.17763 0.06850 

DT347638 female brain 0.70485 0.05320 0.09807 

DT347638 female dorsal fin 0.12321 0.01782 0.20609 

DT347638 female kidney 0.06280 0.00367 0.07831 

DT347638 female liver 0.24103 0.02390 0.14081 

DT347638 female mouth 0.21583 0.03224 0.21457 

DT347638 female snout 0.19951 0.03238 0.23089 

DT347638 male brain 1.11835 0.08526 0.09814 

DT347638 male fatpad 1.04255 0.06223 0.08111 

DT347638 male dorsal fin 0.13092 0.00836 0.08754 

DT347638 male kidney 0.23033 0.02121 0.12990 

DT347638 male liver 0.27145 0.05817 0.30482 

DT347638 male mouth 0.48105 0.11001 0.32781 

DT347638 male snout 3.23179 0.45866 0.20081 
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Table A 35. qPCR expression analysis using spiggin-like targets (DT131813, DT267220 and 

DT347638) with snout tissues from ten male and seven female FHM. Expression levels were 

normalised to three reference genes (rpI8, hprt I and tbp). 

Target Sample Expression Expression SEM 
Mean 

Cq 
Cq SEM 

DT131813 Snout F1 0.49725 0.02351 22.62 0.05679 

DT131813 Snout F2 0.62864 0.01607 22.07 0.02630 

DT131813 Snout F6 1.49682 0.08089 20.84 0.07161 

DT131813 Snout F7 0.54625 0.00690 22.06 0.01391 

DT131813 Snout F8 0.45893 0.01368 22.28 0.03891 

DT131813 Snout F9 0.48240 0.01130 22.40 0.02216 

DT131813 Snout F10 0.70964 0.01088 22.08 0.01883 

DT131813 Snout M1 0.13387 0.00309 24.03 0.00725 

DT131813 Snout M2 0.25582 0.00713 24.11 0.02842 

DT131813 Snout M3 0.18036 0.00592 24.02 0.03443 

DT131813 Snout M4 0.08363 0.00387 24.85 0.04401 

DT131813 Snout M5 0.05122 0.00183 26.28 0.04127 

DT131813 Snout M6 0.10515 0.00303 24.63 0.03324 

DT131813 Snout M7 0.14343 0.01501 24.46 0.14618 

DT131813 Snout M8 0.18779 0.00474 23.82 0.01216 

DT131813 Snout M9 0.02951 0.00116 26.62 0.05315 

DT131813 Snout M10 0.19706 0.00477 23.74 0.02300 

DT267220 Snout F1 0.00382 0.00090 33.78 0.33740 

DT267220 Snout F2 0.00419 0.00171 33.43 0.58737 

DT267220 Snout F6 0.00310 0.00100 33.89 0.46558 

DT267220 Snout F7 0.00317 0.00066 33.62 0.30036 

DT267220 Snout F8 0.08431 0.00422 28.86 0.06976 

DT267220 Snout F9 0.05654 0.00471 29.62 0.11743 

DT267220 Snout F10 0.00614 0.00007 33.07 0.01040 

DT267220 Snout M1 0.02792 0.00101 30.43 0.04074 

DT267220 Snout M2 0.01982 0.00403 31.93 0.29223 

DT267220 Snout M3 0.00214 0.00035 34.55 0.23024 

DT267220 Snout M4 0.06123 0.00719 29.43 0.16176 

DT267220 Snout M5 0.00574 0.00261 33.57 0.65650 

DT267220 Snout M6 0.03224 0.00174 30.47 0.07364 

DT267220 Snout M7 0.30499 0.01553 27.50 0.06313 

DT267220 Snout M8 0.07161 0.00499 29.34 0.09451 

DT267220 Snout M9 1.62473 0.07396 24.97 0.06276 

DT267220 Snout M10 0.00393 0.00017 33.52 0.05482 
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Target Sample Expression Expression SEM Mean Cq Cq SEM 

DT347638 Snout F1 0.03283 0.00599 31.51 0.26036 

DT347638 Snout F2 0.03757 0.00271 31.10 0.10099 

DT347638 Snout F6 0.01916 0.00350 32.09 0.26147 

DT347638 Snout F7 0.01498 0.00319 32.21 0.30715 

DT347638 Snout F8 0.13411 0.01111 29.02 0.11808 

DT347638 Snout F9 0.07096 0.01190 30.13 0.24061 

DT347638 Snout F10 0.03059 0.00280 31.59 0.13176 

DT347638 Snout M1 0.02561 0.00186 31.38 0.09980 

DT347638 Snout M2 0.01587 0.00298 33.08 0.26984 

DT347638 Snout M3 0.01003 0.00053 33.16 0.06879 

DT347638 Snout M4 0.05912 0.00370 30.32 0.07491 

DT347638 Snout M5 0.01866 0.00258 32.70 0.19726 

DT347638 Snout M6 0.03939 0.00155 31.01 0.05088 

DT347638 Snout M7 0.33068 0.01333 28.22 0.04438 

DT347638 Snout M8 0.09596 0.00372 29.75 0.04418 

DT347638 Snout M9 1.62473 0.02854 25.80 0.01638 

DT347638 Snout M10 0.00920 0.00122 33.12 0.18983 

 

 


