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Two Approaches to Partial-nodes-based State
Estimation for Delayed Complex Networks with

Intermittent Measurement Transmissions
Fuad E. Alsaadi, Zidong Wang, and Abdulhameed F. Alkhateeb

Abstract—This paper is concerned with the state estimation
problem for delayed complex dynamic networks with non-
identical local dynamical systems. The state estimation iscon-
ducted based on constrained information of the measurement
outputs. Specifically, the network outputs are available only from
a portion of network nodes, and such outputs are transmitted
from the network nodes to the estimator in an intermittent
way. By utilizing the Halanay inequality method as well as the
average dwell-time approach, two sets of sufficient conditions are
established that ensure the error dynamics of the state estimation
to converge to zero exponentially, and explicit expressions of the
estimator gains are further characterized. Finally, a numerical
example is presented to demonstrate the effectiveness of the
proposed approaches.

Index Terms—State estimation; complex networks; partial-
nodes-based measurement; intermittent transmission.

I. I NTRODUCTION

In the past few decades, complex networks have attracted
increasing attention from both science and engineering fields.
Mathematically, a network is represented as a graph that
consists of nodes (or vertices) representing the objects or
agents in the network, and a set of edges (links or connections)
representing the interactions (or relations) of the nodes [1], [5],
[17], [18], [28], [29]. Common examples of networks include
the Internet, the World Wide Web, and social networks. Due
to complicated links and interactions between nodes, complex
networks exhibit abundant dynamical behaviors (e.g. syn-
chronization and spatiotemporal chaos) that have receiveda
constant research interest [2], [8], [16], [31], [46].

In practical applications, the knowledge of the states of a
system is crucially important for certain tasks or purposes.
Unfortunately, the system states are not always easy to be
measured (or observed) directly. Instead of the system states,
in most cases, what can be accessed are system output-
s/measurements. Thus, the state estimation problem arises
out of the desire to estimate unmeasurable system states by
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utilizing the available output information. Generally speak-
ing, the Luenberger observerand the recursive estimator
are two common structures of the state estimators [3], [4],
[15], [19], [40]–[42]. The former requires constructing an
observer to track system states, while the latter gives optimal
state estimates. In recent years, state estimation problems for
complex networks have aroused considerable research interest
[14], [20], [21], [25]–[27], [44], and inspiring results have
been reported for various complex networks, e.g. delayed
complex networks [25], [47], stochastic complex networks [9],
[37], [38], and complex networks subject to network-induced
phenomena [10].

It is worth noting that, in the aforementioned work, an
implicitly assumption is that the measurement outputs are
available fromall network nodes for the state estimation tasks.
This assumption might hold for low-dimensional systems or
complex networks with small amount of nodes, where the
measurement outputs are easily accessible from economic
reasons. Unfortunately, for complex networks of large scale
with an excessive number of nodes, measuring the outputs of
all network nodes can be expensive and sometimes impractical.
In fact, it is often the case that we can only acquire network
outputs from just a small portion of nodes. Thus, it is desirable
to estimate all network states via measurements of a fraction
of nodes, which results in the so-called partial-nodes-based
(PNB) state estimation, and a number of results have been
available in the literature [7], [20], [21], [26], [39].

On the other hand, communication constraint is ubiquitous
in control systems. In the implementation of system controlor
state estimation, a common case is that the signal is transmitted
in an intermittentway, which is either for the sake of saving
resources or due to hardware limitations [12], [32]–[35]. Quite
a few results on control/estimation with intermittent measure-
ments have been published in the literature on various topics
such as synchronization control [24], [44], [45] and Kalman
filtering [11], [14], [22], [30], [48]. Nevertheless, to thebest
of our knowledge, little progress has been made on the PNB
estimation problem for complex networks with communication
constraints, and this constitutes our main motivation.

The main contribution of this paper can be highlighted as
follows.

1) A novel state estimation framework is developed where
the estimator is constructed based on the outputs just
form a fraction of network nodes (rather than all the
nodes), and the output signals are transmitted to the
estimator in an intermittent way.
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2) The desired estimators are designed by separately using
the Halanay inequality approach and the average dwell-
time (ADT) approach. In both cases, sufficient condi-
tions are derived to ensure the exponential stability of
the corresponding error dynamics.

3) A comparison is made between sufficient conditions
derived from the Halanay inequality approach and the
ADT approach.

II. PROBLEM FORMULATION

Consider the following delayed dynamical complex network
with N nodes described by

dxi(t)

dt
=Aixi(t) + f(xi(t)) + g(xi(t− τ)) − c

N
∑

l=1

lijΓxj(t),

i = 1, 2, · · · , N, (1)

where xi(t) =
(

xi1(t), xi2(t), · · · , xin(t)
)T

denotes the n-
dimensional state vector of theith node;Ai is a real constant
matrix; f, g : R

n → R
n are continuous nonlinear vector-

valued functions;τ is the time delay; andL ,
(

li,j
)

is the
Laplacian matrix of the network (1) withli,j ≤ 0 (j 6= i) and
li,i = −

∑

j 6=i li,j . It is well-known thatli,j < 0 if there is
a directed edge from nodej to nodei, otherwiseli,j = 0.
Γ = diag(γ1, γ2, · · · , γn) ≥ 0 is an inner-coupling diagonal
matrix linking thejth state variable of each node ifγj 6= 0.

Remark 1:Notice that the individual local dynamical nodes
in network (1) are heterogeneous. Therefore, in this paper,the
state estimation problem will be coped with in a more general
scenario. Our goal is to estimate states of network (1) via
measurements from a portion of network nodes.

Assume that the outputs of the firstl0 nodes are available.
To reduce unnecessary consumption of limited communication
resource or for other reasons, it is also assumed that the output
signals are transmitted in anintermittentway. To be specific,
the output of nodei (1 ≤ i ≤ l0) is described as

yi(t) =







Cixi(t), t ∈ [sT, sT + T1), 1 ≤ i ≤ l0;
0 t ∈ [sT + T1, (s+ 1)T ), 1 ≤ i ≤ l0;
0, t ∈ [sT, (s+ 1)T ), l0 + 1 ≤ i ≤ N,

(2)
whereyi(t) = (yi1(t), yi2(t), · · · , yimi

(t)) ∈ R
mi (1 ≤ mi ≤

n) is the output of theith node,Ci ∈ R
mi×n is known,T

stands for the output transmission period,T1 is the duration
time of output transmission over a period, andT −T1 denoted
by T2 is the transmission intermission.

For network (1) and measurement (2), we construct the
following state estimator.

dx̂i(t)

dt
=Aix̂i(t) + f(x̂i(t)) + g(x̂i(t− τ)) − c

N
∑

l=1

lijΓx̂j(t)

+Ki(yi(t)− Cix̂i(t)),

t ∈ [sT, sT + T1], 1 ≤ i ≤ l0, (3a)

dx̂i(t)

dt
=Aix̂i(t) + f(x̂i(t)) + g(x̂i(t− τ)) − c

N
∑

l=1

lijΓx̂j(t),

t ∈ [sT + T1, (s+ 1)T ], 1 ≤ i ≤ l0, (3b)

dx̂i(t)

dt
=Aix̂i(t) + f(x̂i(t)) + g(x̂i(t− τ)) − c

N
∑

l=1

lijΓx̂j(t),

l0 + 1 ≤ i ≤ N, (3c)

wherex̂i(t) is the estimate ofxi(t), andKi ∈ R
n×mi is the

estimator gain matrix to be designed.
Denote byεi(t) = x̂i(t)− xi(t) the estimation error. Then,

from (1) and (3), it is clear that the estimation errorεi(t)
satisfies

dεi(t)

dt
=(Ai −KiCi)εi(t) + f̃(εi(t)) + g̃(εi(t− τ))

− c

N
∑

l=1

lijΓεj(t), t ∈ [sT, sT + T1], 1 ≤ i ≤ l0,

(4a)

dεi(t)

dt
=Aiεi(t) + f̃(εi(t)) + g̃(εi(t− τ))− c

N
∑

l=1

lijΓεj(t),

t ∈ [sT + T1, (s+ 1)T ], 1 ≤ i ≤ l0, (4b)

dεi(t)

dt
=Aiεi(t) + f̃(εi(t)) + g̃(εi(t− τ))− c

N
∑

l=1

lijΓεj(t),

i = l0 + 1 ≤ i ≤ N, (4c)

where f̃(εi(t)) = f(x̂i(t)) − f(xi(t)), and g̃(εi(t − τ)) =
g(x̂i(t− τ)) − f(xi(t− τ)).

For (4), we denoteE(t) =
(

εT1 (t), ε
T
2 (t), · · · , ε

T
N(t)

)T
.

Definition 1: Estimator (3) is said to be anexponential state
estimatorof the complex network (1) if there exist constants
M0 > 0, µ > 0 such that (4) satisfies

lim
t→∞

|E(t)| ≤ M0 exp(−µt).

In this paper, our objective is to design the exponential state
estimator for network (1). All the measurement information
available to us is just from a fraction of network nodes. Be-
sides, the measurement outputs are received in an intermittent
way. By means of the Halanay inequality method and the ADT
approach, respectively, the sufficient conditions are established
such that the error dynamical system (4) is exponentially
stable. Furthermore, the corresponding gain matrices are given
explicitly.

III. M AIN RESULTS AND PROOFS

In this section, we shall deal with the PNB estimation
problem of network (1) by the Halanay inequality method and
the ADT approach, respectively.

For a vector-valued functionϕ defined over the interval[t−
τ, t], denoteϕt by ϕt(s) = ϕ(t + s),−τ ≤ s ≤ 0, with the
norm |ϕt| , sup−τ≤s≤0 |ϕ(t+ s)|.

The following two lemmas are used in the derivation of the
main results.

Lemma 1 ( [13], [45]): Let t ≥ t0 andu : [t0 − τ,+∞) →
[0,+∞) be a continuous function. Suppose thatp > q ≥ 0
andu satisfy the following scalar differential inequality:

du(t)

dt
≤ −pu(t) + q|ut|, (5)
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then

u(t) ≤ |ut0 | exp(−γ(t− t0)), t ≥ t0, (6)

whereγ is the unique positive solution of the equation

γ − p+ q exp(γτ) = 0.

Lemma 2 ( [13], [45]): Let t ≥ t0 andu : [t0 − τ,+∞) →
[0,+∞) be a continuous function. Suppose thatp > 0, q > 0
andu satisfy the following scalar differential inequality:

du(t)

dt
≤ pu(t) + q|ut|, (7)

then

u(t) ≤ ut0 exp((p+ q)(t− t0)), t ≥ t0. (8)

Assumption 1:The nonlinear vector-valued functionsf and
g are continuous and satisfy

|f(x)− f(y)| ≤ ϑ1|x− y|, ∀x, y ∈ R
n, (9)

|g(x)− g(y)| ≤ ϑ2|x− y|, ∀x, y ∈ R
n, (10)

whereϑ1 andϑ2 are known constant scalars.

A. Halanay inequality method

In this subsection, we will discuss the existence of the
exponential state estimator based on the Halanay inequality
method.

In the sequel, for notational convenience, we denote

A =diag(A1, A2, · · · , AN ),

Ω =diag(ω1, ω2, · · · , ωl0),

K =diag(K1,K2, · · · ,Kl0),

C =diag(C1, C2, · · · , Cl0),

K̄ =

[

K

0

]

,

AK =A− K̄C.

Theorem 1:Assume thatτ ≤ min{T1, T − T1}. Then,
under Assumption 1, estimator (3) is an exponential state
estimator for network (1) if there exist a matrixK, scalar
parametersϑ0 > 0, and ϑ̄0 > 0 such that

AK +AT
K − c(L ⊗ Γ)

− c(LT ⊗ Γ) +
(

ϑ0 + 2ϑ1 + ϑ2

)

I < 0, (11)

A+AT − c(L⊗ Γ)− c(LT ⊗ Γ)

+
(

− ϑ̄0 + 2ϑ1 + ϑ2

)

I < 0, (12)

γ(T1 − τ)− ̺(T − T1) > 0, (13)

whereγ is the unique positive solution of the equation

γ − ϑ0 + ϑ2 exp(γτ) = 0, (14)

and

̺ = ϑ̄0 + ϑ2. (15)

Proof: To begin with, choose the following Lyapunov
function

V(t) = |E(t)|2 =
N
∑

i=1

εi(t)ε
T
i (t). (16)

Then, the time derivative ofV(t) along the trajectory of (4)
can be piecewisely calculated as follows.

1) Whent ∈ [sT, sT + T1], one has

V̇(t) = 2

l0
∑

i=1

εTi (t)ε̇i(t) + 2

N
∑

i=l0+1

εTi (t)ε̇i(t)

= 2

l0
∑

i=1

εTi (t)
[

(Ai −KiCi)εi(t) + f̃(εi(t))

+ g̃(εi(t− τ)) − c

N
∑

l=1

lijΓεj(t)
]

+ 2

N
∑

i=l0+1

εTi (t)
[

Aiεi(t) + f̃(εi(t))

+ g̃(εi(t− τ)) − c

N
∑

l=1

lijΓεj(t)
]

= 2

l0
∑

i=1

εTi (t)(Ai −KiCi)εi(t) + 2

N
∑

i=l0+1

εTi (t)Aiεi(t)

+ 2
N
∑

i=1

εTi (t)
[

f̃(εi(t)) + g̃(εi(t− τ))
]

− 2c
N
∑

i=1

εTi (t)
N
∑

l=1

lijΓεj(t). (17)

Utilizing the Cauchy inequality and Assumption 1, we
obtain

2εTi (t)f̃ (εi(t)) ≤ 2|εi(t)|
∣

∣f̃(εi(t))
∣

∣ ≤ 2ϑ1|εi(t)|
2, (18)

and

2εTi (t)g̃(εi(t− τ)) ≤ 2|εi(t)|
∣

∣g̃(εi(t− τ))
∣

∣

≤ 2ϑ2|εi(t)||εi(t− τ)|

≤ ϑ2(|εi(t)|
2 + |εi(t− τ)|2). (19)

Therefore, it follows that

2εTi (t)
[

f̃(εi(t)) + g̃(εi(t− τ))
]

≤
(

2ϑ1 + ϑ2

)

εTi (t)εi(t) + ϑ2ε
T
i (t− τ)εi(t− τ). (20)

Substituting (20) into (17) yields

V̇(t) ≤ 2

l0
∑

i=1

εTi (t)(Ai −KiCi)εi(t) + 2

N
∑

i=l0+1

εTi (t)Aiεi(t)

+

N
∑

i=1

[

(

2ϑ1 + ϑ2

)

εTi (t)εi(t) + ϑ2ε
T
i (t− τ)εi(t− τ)

]

− 2c

N
∑

i=1

εTi (t)

N
∑

l=1

lijΓεj(t). (21)



REVISED 4

Note that
N
∑

i=1

εTi (t)
N
∑

l=1

lijΓεj(t) = ET (t)(L ⊗ Γ)E(t),

then (21) can be rewritten as

V̇(t) ≤ ET (t)
[

AK +AT
K − c(L ⊗ Γ)− c(LT ⊗ Γ)

+
(

ϑ0 + 2ϑ1 + ϑ2

)

I
]

E(t)

− ϑ0E
T (t)E(t) + ϑ2E

T (t− τ)E(t − τ). (22)

Applying the condition (11) to (22) leads to

V̇(t) ≤ −ϑ0E
T (t)E(t) + ϑ2E

T (t− τ)E(t− τ),

which implies

V̇(t) ≤ −ϑ0V(t) + ϑ2V(t− τ). (23)

2) Whent ∈ [sT +T1, (s+1)T ], similar to previous steps,
we have

V̇(t) = 2

N
∑

i=1

εTi (t)ε̇i(t)

= 2

N
∑

i=1

εTi (t)
[

Aiεi(t) + f̃(εi(t), εi(t− τ))

− c

N
∑

l=1

lijΓεj(t)
]

≤ 2
N
∑

i=1

εTi (t)Aiεi(t) +
N
∑

i=1

[

(

2ϑ1 + ϑ2

)

εTi (t)εi(t)

+ ϑ2ε
T
i (t− τ)εi(t− τ)

]

− 2c
N
∑

i=1

εTi (t)
N
∑

l=1

lijΓεj(t)

= ET (t)
[

A+AT − c(L ⊗ Γ)− c(LT ⊗ Γ)

+
(

− ϑ̄0 + 2ϑ1 + ϑ2

)

I
]

E(t)

+ ϑ̄0E
T (t)E(t) + ϑ2E

T (t− τ)E(t − τ). (24)

Substituting the condition (12) to (24) yields

V̇(t) ≤ ϑ̄0E
T (t)E(t) + ϑ2E

T (t− τ)E(t − τ),

which implies

V̇(t) ≤ ϑ̄0V(t) + ϑ2V(t− τ). (25)

Now we can proceed with the estimate on the asymptotical
behavior ofV(t) based on the results of the steps 1) and 2).

First, notingϑ0 > ϑ2 and using Lemma 1, one has from
(23) that

V(t) ≤ Vt0 exp(−γ(t− t0)), t ≥ t0 ≥ 0, (26)

whereγ is an unique positive solution to

γ − ϑ0 + ϑ2 exp(γτ) = 0.

Also, from (25) and Lemma 2, we obtain

V(t) ≤ Vt0 exp(̺(t− t0)), t ≥ t0 ≥ 0, (27)

where̺ = ϑ̄0+ϑ2. Then, as in [13], [45], the evolution law of
V(t) can be obtained by means of the mathematical induction.

In fact, it follows from (26) that

V(t) ≤ |V0| exp(−γt), for t ∈ [0, T1]. (28)

Whent ∈ [ T1, T ], from (27) and (28), it is also clear that,

V(t) ≤ |VT1
| exp(̺(t− T1))

≤ |V0| exp(̺(t− T1)− γ(T1 − τ)). (29)

In general, it can be derived by induction that, fort ∈
[sT, sT + T1],

V(t) ≤ |V0| exp(−γ(t− sT )− sγ(T1 − τ) + s̺(T − T1)),
(30)

and for t ∈ [sT + T1, (s+ 1)T ],

V(t) ≤ |V0| exp(̺(t− sT − T1)

− (s+ 1)γ(T1 − τ) + s̺(T − T1)). (31)

For all t ∈ [0, +∞), one infers from (30) and (31) that

V(t) ≤ |V0| exp
(

−
γ(T1 − τ)− ̺(T − T1)

T
t

+
γT1(T1 − τ)

T

)

. (32)

Noticing thatV(t) = |E(t)|2, we arrive at

|E(t)| ≤ |E0| exp
(

−
γ(T1 − τ) − ̺(T − T1)

2T
t

+
γT1(T1 − τ)

2T

)

= M0 exp
(

−
γ(T1 − τ)− ̺(T − T1)

2T
t
)

, (33)

whereM0 = |E0| exp
(

γT1(T1−τ)
2T

)

.

Remark 2: In Theorem 1, sufficient conditions for the ex-
istence of an exponential estimator are derived based on a
given Lyapunov function. Such an Lyapunov function might
cause some conservatism. Therefore, how to reduce such
conservatism is a topic of practical significance that is worth
further study.

Remark 3: In Theorem 1, condition (13) can be rewritten
asγ(T1

T
− τ

T
) − ̺(1 − T1

T
) > 0, from which we can see that

condition (13) requires the time of the output transmissionto
take a great proportion, which is in agreement of the common
sense.

B. Average Dwell-Time approach

In the previous subsection, the existence of an exponential
estimator is discussed via the Halanay inequality method. In
Theorem 1, a restricted condition (τ ≤ min{T1, T − T1} )
is imposed on time delays, which might limit the application
of the results in Theorem 1. This restriction is lifted in the
following theorem based on the ADT approach.

Theorem 2:Let matricesKi(1 ≤ i ≤ 3) and constant scalar
α > 0 be given. Then, under Assumption 1, estimator (3) is
an exponential estimator of network (1) if there exist two sets
of positive matricesPi = diag

(

P1i, P2i, ..., PNi

)

andQi =
diag

(

Q1i, Q2i, ..., QNi

)

, two positive diagonal matrices∆ =
diag(δ1, δ2, ..., δN) andΣ = diag(σ1, σ2, ..., σN ), and scalar
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constantsκ1 > 0, κ2 > 0, ̟ > 0, µ > 1 such that the
following inequalities hold:

Q1 ≤ κ1I, Q2 ≤ κ2I, (34)

Pi ≤ µPj , Qi ≤ µQj , for i, j = 1, 2, (35)

Φ ,

[

Π P1

P1 −eατQ1

]

≤ 0, (36)

Φ̄ ,

[

Π̄ P2

P2 −eατQ2

]

≤ 0, (37)

αT1

2T
−

lnµ

T
−

β

2
(1−

T1

T
) > 0, (38)

where

Π = P1AK +AT
KP1 + αP1 + P1(∆

−1 ⊗ I)P1

+ ϑ2
1(∆⊗ I) + κ1ϑ

2
2I − cP1(L ⊗ Γ)− c(LT ⊗ Γ)P1,

Π̄ = P2A+ATP2 + (α−̟)P2 + P2(Σ
−1 ⊗ I)P2

+ ϑ2
1(Σ⊗ I) + κ2ϑ

2
2I − cP2(L⊗ Γ)− c(LT ⊗ Γ)P2,

β =− α+̟,

andK,AK are defined as before.
Proof: Rewrite (4) in the following compact form:

dE(t)

dt
=AKE(t) + F̃ (E(t)) + G̃(E(t− τ))

− c(L ⊗ Γ)E(t), t ∈ [sT, sT + T1), (39a)

dE(t)

dt
=AKE(t) + F̃ (E(t)) + G̃(E(t− τ))

− c(L ⊗ Γ)E(t), t ∈ [sT + T1, (s+ 1)T ), (39b)

where F̃ (E(t)) =
(

f̃T (ε1(t)), f̃
T (ε2(t)), ..., f̃

T (εN (t))
)T

,

and G̃(E(t)) =
(

g̃T (ε1(t)), g̃
T (ε2(t)), ..., g̃

T (εN (t))
)T

.

Different from the Lyapunov function in Theorem 1, con-
struct the following piecewise Lyapunov-Krasovskii functional

V̂(t) = V̂1(t) + V̂2(t) (40)

where, fort ∈ [sT, sT + T1),

V̂1(t) =ET (t)P1E(t) =

N
∑

i=1

εTi (t)Pi1εi(t), (41)

V̂2(t) =

∫ t

t−τ

eα(θ−t)G̃T (E(θ))Q1G̃(E(θ))dθ, (42)

and for t ∈ [sT + T1, (s+ 1)T ),

V̂1(t) =ET (t)P2E(t) =
N
∑

i=1

εTi (t)Pi2εi(t), (43)

V̂2(t) =

∫ t

t−τ

eα(θ−t)G̃T (E(θ))Q2G̃(E(θ))dθ, (44)

Then, the time derivative ofV(t) along the trajectory of (39)
can be piecewisely calculated as

1) Whent ∈ [sT, sT + T1), one has

˙̂
V(t) =

˙̂
V1(t) +

˙̂
V2(t), (45)

where

˙̂
V1(t) =2ET (t)P1Ė(t)

=2ET (t)P1

[

AKE(t) + F̃ (E(t)) + G̃(E(t− τ))

− c(L⊗ Γ)E(t)
]

, (46)

and

˙̂
V2(t) =− α

∫ t

t−τ

eα(θ−t)G̃T (E(θ))Q1G̃(E(θ))dθ

+ G̃T (E(t))Q1G̃(E(t))

− eατ G̃T (E(t− τ))Q1G̃(E(t− τ))

=− αV̂2(t) + G̃T (E(t))Q1G̃(E(t))

− eατ G̃T (E(t− τ))Q1G̃(E(t− τ)). (47)

In (46), it is clear that

2ET (t)P1F̃ (E(t))

= 2
N
∑

i=1

εTi (t)Pi1f̃(εi(t))

≤

N
∑

i=1

[δ−1
i εTi (t)Pi1Pi1ε

T
i (t) + δif̃

T (εi(t))f̃ (εi(t))]

≤

N
∑

i=1

[δ−1
i εTi (t)Pi1Pi1ε

T
i (t) + ϑ2

1δiε
T
i (t)εi(t)]

(with Lemma 1)

= ET (t)P1(∆
−1 ⊗ I)P1E(t) + ϑ2

1E
T (t)(∆⊗ I)E(t). (48)

Similarly, in (47), one has fromQ1 < κ1I that

G̃T (E(t))Q1G̃(E(t)) ≤κ1G̃
T (E(t))Q1G̃(E(t))

≤ κ1ϑ
2
2E

T (t)E(t). (49)

Substituting (46)–(49) into (45) leads to

˙̂
V(t) + αV̂(t)

= ET (t)
[

P1AK +AT
KP1 + αP1 + P1(∆

−1 ⊗ I)P1

+ ϑ2
1(∆⊗ I) + κ1ϑ

2
2I − cP1(L ⊗ Γ)

− c(LT ⊗ Γ)P1

]

E(t) + 2ET (t)P1G̃(E(t− τ))

− eατ G̃T (E(t − τ))Q1G̃(E(t− τ))

= ξT (t)Φξ(t) ≤ 0, (50)

whereξ(t) =
[

ET (t), G̃T (E(t − τ))
]T

.

2) When t ∈ [sT + T1, (s + 1)T ), the time derivative of
V(t) along the trajectory of (39) can be calculated as follows:

˙̂
V1(t) =2ET (t)P2

[

AE(t) + F̃ (E(t)) + G̃(E(t− τ))

− c(L⊗ Γ)E(t)
]

, (51)

and

˙̂
V2(t) =− αV̂2(t) + G̃T (E(t))Q2G̃(E(t))

− eατ G̃T (E(t − τ))Q2G̃(E(t− τ)). (52)

Similar to (48) and (49), we have

2ET (t)P2F̃ (E(t))

≤ ET (t)P2(Σ
−1 ⊗ I)P2E(t) + ϑ2

1E
T (t)(Σ⊗ I)E(t), (53)
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and

G̃T (E(t))Q2G̃(E(t)) ≤ κ2ϑ
2
2E

T (t)E(t). (54)

From (51)–(54), one infers

˙̂
V(t) + (α −̟)V̂(t)

= ET (t)
[

P2A+ATP2 + αP2 + P2(Σ
−1 ⊗ I)P2

+ ϑ2
1(Σ⊗ I) + κ2ϑ

2
2I −̟P2 − cP2(L ⊗ Γ)

− c(L⊗ Γ)P2

]

E(t) + 2ET (t)P2G̃(E(t− τ))

− eατ G̃T (E(t− τ))Q2G̃(E(t− τ))

= ξT (t)Φ̄ξ(t) ≤ 0. (55)

Now, we can analyze the convergence ofV(t). First, from
(50) and (55), we have

˙̂
V(t) ≤ −αV̂(t), t ∈ [sT, sT + T1), (56)
˙̂
V(t) ≤ βV̂(t) t ∈ [sT + T1, (s+ 1)T ), (57)

whereβ = ̟ − α, which implies that

V̂(t) ≤ V̂sT exp(−α(t− sT )), t ∈ [sT, sT + T1), (58)

V̂(t) ≤ V̂sT+T1
exp(β(t− sT − T1)),

t ∈ [sT + T1, (s+ 1)T ). (59)

Thus, whent ∈ [0, T1), one has

V(t) ≤ V̂0 exp(−αt). (60)

DenoteVt
−

0

= limt→t
−

0

Vt. Noting (35), it is clear that

VsT+T1
≤ µVsT+T

−

1

, (61)

and

V(s+1)T ≤ µV(s+1)T− . (62)

Then, whent ∈ [T1, T ), it follows from (1) that

V̂(t) ≤ V̂T1
exp(β(t− T1))

≤ µV̂T
−

1

exp(β(t− T1))

≤ µV̂0 exp(−αT1) exp(β(t− T1))

= µV̂0 exp(−αT1 + β(t− T1)). (63)

Similarly, whent ∈ [T, T + T1),

V̂(t) ≤ V̂T exp(−α(t− T ))

≤ µV̂T− exp(−α(t− T ))

≤ µ2V̂0 exp(−α(t− T )− αT1 + β(T − T1)), (64)

and whent ∈ [T + T1, 2T ),

V̂(t) ≤ V̂T+T1
exp(β(t − T − T1))

≤ µV̂T+T−

1

exp(β(t− T − T1))

≤ µ3V̂0 exp(β(t− T − T1)− 2αT1 + β(T − T1)).
(65)

By induction, we have the following results

V̂(t) ≤ µ2sV̂0 exp(−α(t− sT )− sαT1 + sβ(T − T1)),

t ∈ [sT, sT + T1), (66)

V̂(t) ≤ µ2s+1V̂0 exp(β(t − sT − T1)− (s+ 1)αT1

+ sβ(T − T1)), t ∈ [sT + T1, (s+ 1)T ) (67)

From (66), it follows that, fort ∈ [sT, sT + T1),

V̂(t) ≤ V̂0 exp
(2 lnµ

T
t− sT

αT1

T
+ sTβ(1−

T1

T
)
)

≤ V̂0 exp
(

−
(αT1

T
−

2 lnµ

T
− β(1−

T1

T
)
)

t+
αT 2

1

T

)

.

(68)

Next, from (67), it is not difficult to see that, fort ∈ [sT +
T1, (s+ 1)T ),

V̂(t) ≤ µ2s+1V̂0 exp(β(t− sT − T1)− (s+ 1)αT1

+ sβ(T − T1))

≤ µV̂0 exp
(

−
(αT1

T
−

2 lnµ

T
− β(1−

T1

T
)
)

t
)

. (69)

From (68) and (69), we obtain

V̂(t) ≤ µV̂0 exp
(

−
(

α
T1

T
−

2 lnµ

T
− β(1−

T1

T
)
)

t+ α
T 2
1

T

)

.

(70)

Setting

M0 =

√

µV̂0 exp(α
T 2

1

T
)

min{λmin(P1), λmin(P2)}
,

we can conclude that

E(t) ≤ M0 exp
(

−
(αT1

2T
−

lnµ

T
−

β

2
(1−

T1

T
)
)

t
)

. (71)

Therefore, the estimation errors converge exponentially to
zero, and the proof of this theorem is now complete.

In Theorem 2, the exponential convergence of the estimator
has been analyzed with known gains. Now, let us turn to the
design problem of estimator (3).

Theorem 3:Under Assumption 1, for a given constant
scalarα > 0, estimator (3) is an exponential state estimator of
network (1) if there exist two sets of positive matricesPi =
diag

(

P1i, P2i, ..., PNi

)

, Qi = diag
(

Q1i, Q2i, ..., QNi

)

, two
positive diagonal matrices∆ = diag(δ1, δ2, ..., δN ) andΣ =
diag(σ1, σ2, ..., σN ), a matrix X = diag(X1, X2, ..., Xl0),
constant scalarsκ1 > 0, κ2 > 0, ̟ > 0, µ > 1 such that
the following inequalities hold:

Q1 ≤ κ1I, Q2 ≤ κ2I, (72)

Pi ≤ µPj , Qi ≤ µQj , for i, j = 1, 2, (73)

Ψ ,





Ξ P1 P1

P1 −eατQ1 0
P1 0 −∆⊗ I



 ≤ 0, (74)

Ψ̄ ,





Ξ̄ P2 P2

P2 −eατQ2 0
P2 0 −Σ⊗ I



 ≤ 0, (75)

αT1

2T
−

lnµ

T
−

β

2
(1 −

T1

T
) > 0, (76)

where

Ξ = PX + PT
X + αP1 + ϑ2

1(∆⊗ I)

+ κ1ϑ
2
2I − cP1(L⊗ Γ)− c(LT ⊗ Γ)P1,
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Ξ̄ = P2A+ATP2 + (α −̟)P2 + ϑ2
1(Σ⊗ I)

+ κ2ϑ
2
2I − cP2(L⊗ Γ)− c(LT ⊗ Γ)P2,

β =− α+̟

with PX = PA− X̄C, X̄ ,

[

X

0

]

. In this case, the estimator

gainKi is designed by

Ki = P−1
i Xi. (77)

Proof: The result follows readily from Theorem 2, and
the proof is therefore omitted here.

Remark 4: In this paper, the state estimation problem has
been investigated under the circumstance that the outputs
are available only from a fraction of network nodes, and
signals are transmitted in an intermittent way. Two approaches
have been applied to establish the conditions ensuring the
existence of an exponential estimator. It should be pointed
out that, though both conditions obtained are sufficient, they
don’t contain each other, which is illustrated in the numerical
example later.

IV. A N UMERICAL EXAMPLE

For the sake of simplicity, we consider a delayed complex
dynamical network with five nodes and non-identical local dy-
namical systems, where outputs of three nodes are availablefor
the purpose of estimation, i.e.,l0 = 3. The other parameters
are

A1 = A2 = A3 =





3 8 −2
−8 3 3
1 2 −5



 ,

A4 = A5 =





−4.4 −0.2 0.6
−0.4 −4 0.5
−1 −0.0667 −4.3



 ,

c = 2, τ = 3, Γ = I,

L =













2.5 −1.5 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 1 0
−1 0 0 −1 2













,

C1 = C2 = C3 =

[

1 0 0
0 1 0

]

,

f(x) = g(x) =
(

0.3(|x1 + 2| − |x1 − 2|), 0.2x2, 0.3x3

)T
.

For the functions given above, a direct calculation yields that
ϑ1 = ϑ2 = 0.6.

With these parameters, we proceed with the numerical sim-
ulations to confirm the theoretical results based on the Halanay
inequality method and the ADT approach, respectively.

(i) Simulation via Halanay inequality method

Solve the LMIs (11) and (12) to obtain the following
feasible solutions:

K1 =





8.5403 −0.0403
−0.0403 8.5940
−1.0559 5.0605



 , K2 =





9.2243 0.2512
−0.2254 9.2071
−0.9851 4.9839



 ,

K3 =





9.4155 −0.0316
−0.0472 9.4680
−1.0462 5.0500



 , ϑ0 = 3.8672, ϑ̄0 = 7.6271.

By the Newton-Raphson method for solving transcendental
equation (14), we obtain an approximation of the unique
positive solution:γ = 0.5682. TakeT = 49, T1 = 46, τ = 3.
Then, it can be verified that condition (13) is satisfied. There-
fore, from Theorem (1), the estimation error approaches to
zero exponentially.

In fact, the numerical simulation is in agreement with the
theoretical result perfectly. To be more specific, we randomly
choose two sets of initial values for the network and the
estimator, and then the evolution of the network state and
its estimate are shown in Fig. 1 and Fig 2, respectively.
Furthermore, estimation errors are depicted in Fig. 3, which
show such errors converge to 0 exponentially.

Fig. 1. Evolution of network states

(ii) Simulation via ADT approach

Settingα = 0.3, µ = 3, and ̟ = 9.5, and solving the
LMIs (72)-(75), we have feasible solutions with estimator
gains given as follows:

K1 =





4.8949 0.4967
0.1599 5.4727
1.2388 1.5266



 , K2 =





6.8527 0.6352
0.2132 7.5351
1.7183 1.9758



 ,

K3 =





5.6592 0.5286
0.1733 6.4753
1.4541 1.6957



 .

Noting β = −α+̟ = 9.2, we find that inequality (13) is
violated if the parametersT andT1 are the same as before.
Now, we takeT = 20 andT1 = 19.6. Then, it can be verified
that inequality (13) is satisfied with these new parameters.
According to Theorem 3, the estimation errors converge to
zero exponentially ast tends to infinity. The simulation result
is shown in Fig 4, which is completely consistent with the
developed theory.



REVISED 8

Fig. 2. Evolution of the state estimate
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Fig. 3. Evolution of the state estimate

Remark 5: It should be mentioned that parameters in sim-
ulation (i) satisfies the conditions of Theorem 1, but do not
satisfy all conditions of Theorem 3. However, it should alsobe
pointed out that Theorem 3 is not applicable to the parameters
in simulation (i) sinceτ ≤ min{T1, T−T1} does not hold any
more. Therefore, Theorem 1 and Theorem 3 are applicable to
different situations, and cannot be substituted with each other.

Remark 6:What is worth pointing out is that our ap-
proaches developed in this paper arenon-trivial. In fact, as
shown in Fig 1 and Fig 2, even though the concerned target
network is unstable, the estimation errors are still convergent.
The numerical simulation confirms the effectiveness of the
theoretical results.
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4
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Fig. 4. Evolution of state estimation error (ii)

V. CONCLUSIONS

In this paper, we have investigated the estimation problem
for delayed complex networks with non-identical nodes, where
the network output information is only from a fraction of
nodes, and the output signals are transmitted intermittently
over communications channels. By exploiting the Halanay
inequality method and the ADT approach, respectively, some
sufficient criteria have been established to guarantee thatthe
error dynamics is exponentially stable. Finally, a numerical
example has been presented to demonstrate the effectiveness
of the given estimator.In addition, related topics for further
research work can be listed as follows. 1) The Kalman filtering
problems for delayed systems with measurement missing,
quantization and censoring; and 2) TheH∞ control problems
for delayed systems with state saturations, measurement fading
and sensor failures [6], [23], [36], [43].
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