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Abstract

We consider reaction-diffusion systems for which the trivial solu-
tion simultaneously becomes unstable via a short-wave Turing and a
long-wave Hopf instability. Brusseletor, Gierer-Meinhardt system and
Schnakenberg model are prototype biological pattern forming systems
which show this kind of behavior for certain parameter regimes. In
this paper we prove the validity of the amplitude system associated to
this kind of instability. Our analytical approach is based on the use
of mode filters and normal form transformations. The amplitude sys-
tem allows us an efficient numerical simulation of the original multiple
scaling problems close to the instability.

1 Introduction

We consider reaction-diffusion systems

∂tu = D∂2
xu+ f(u), (1)

with space variable x ∈ R, time variable t ≥ 0, solution vector u(x, t) ∈ Rm,
diffusion matrix D ∈ Rm×m, and smooth nonlinearity f : Rm → Rm. We

1

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and 
Continuous Dynamical Systems: Series S following peer review. The definitive publisher-authenticated 
version Guido Schneider, Matthias Winter. The amplitude system for a Simultaneous short-wave Turing 
and long-wave Hopf instability. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/
dcdss.2021119 is available online at: https://www.aimsciences.org/article/doi/10.3934/dcdss.2021119. ©: 
2021 Published by AIMS. All rights reserved.



assume that (1) depends on a control parameter α ∈ R. Moreover, we assume
that System (1) possesses a trivial stationary spatially homogeneous solution
u = u∗ ∈ Rm for all values of α ∈ R. The linearization around u = u∗ is
given by

∂tv = D∂2
xv +∇f(u∗)v,

and it is generically solved by

v(x, t) = eλj(k)tϕj(k)eikx,

with eigenvectors ϕj(k) ∈ Cm and eigenvalues λj(k) ∈ C for j = 1, . . . ,m and
k ∈ R. We assume that the trivial solution u = u∗ simultaneously becomes
unstable via a short-wave Turing and a long-wave Hopf instability, i.e., we
assume

Hypothesis A: There are kc > 0, α = αc, and ω0 > 0 with λ1(kc, αc) = 0,
λ1(0, αc) = iω0, and λ2(0, αc) = −iω0. For all other values of (j, k) we have
Reλj(k, αc) < 0.

Remark 1.1. Hypothesis A includes systems with m ≥ 3, too. We assume
that the other eigenvalues (except for the three eigenvalues stated in Hy-
pothesis A) have negative real part and are uniformly bounded away from
the imaginary axis near the bifurcation point. A consequence of Hypothesis
A is that in leading order the dynamics is in the direction of the correspond-
ing eigenvectors, see (2). Other scenarios which are possible in the general
case m ≥ 3 have been excluded by assuming Hypothesis A.

Brusselator, Gierer-Meinhardt system and Schnakenberg model are ex-
amples of reaction-diffusion systems possessing this kind of spectral picture
in certain parameter regimes, see Section 4. There are other examples falling
into this class such as the the Gray-Scott model.

In order to derive the amplitude system for the description of the dynam-
ics close to the bifurcation point α = αc we introduce the small bifurcation
parameter ε2 = α−αc and set α2 = ∂αλ1(kc, αc) and β2 = ∂αλ1(0, αc). Using
the reflection symmetry of the problem, we can conclude from Hypothesis A
that the spectral picture is as plotted in Figure 1.

Then for small 0 < ε2 � 1 we make the ansatz

u(x, t)− u∗ ≈ εΨapp(x, t),
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Figure 1: The spectrum of the linearization around the trivial solution be-
coming simultaneously unstable via a short-wave Turing instability (red) and
a long-wave Hopf instability (blue).

with

εΨapp(x, t) = εA(εx, ε2t)eikcxϕ1(kc) + εB(εx, ε2t)eiω0tϕ1(0) + c.c., (2)

with (short-wave Turing) amplitude function A(X,T ) ∈ C and (long-wave
Hopf) amplitude function B(X,T ) ∈ C. Inserting this ansatz into (1) and
equating the coefficients in front of ε3eikcxϕ1(kc) and in front of ε3eiω0tϕ1(0)
to zero yields a system of coupled Ginzburg-Landau equations

∂TA = α1∂
2
XA+ α2A+ α3A|A|2 + α4A|B|2, (3)

∂TB = β1∂
2
XB + β2B + β3B|B|2 + β4B|A|2, (4)

with coefficients α1, . . . , α4 ∈ R and β1, . . . , β4 ∈ C. It is the goal of this
paper to prove the following approximation theorem:

Theorem 1.2. Let (A,B) ∈ C([0, T0], (H4
l,u)

2) be a solution of (3)-(4). Then
there exist ε0, C > 0 such for all ε ∈ (0, ε0) we have solutions u of (1) with

sup
t∈[0,T0/ε2]

sup
x∈R
|u(x, t)− u∗ − εΨapp(x, t)| ≤ Cε2.

Remark 1.3. The space of uniformly local Sobolev functionsHθ
l,u is equipped

with the norm
‖u‖Hθ

l,u
= sup

y∈R
‖u‖Hθ(y,y+1)

and is the completion of C∞ w.r.t. this norm. In contrast to functions in
Sobolev spaces Hθ, functions in Hθ

l,u need not decay to zero for |x| → ∞.
See [SU17, §8.3.1] for more details.

3



Remark 1.4. The approximation result is non-trivial because solutions of
order O(ε) have to be controlled on a time scale of order O(1/ε2). There
exist various counter-examples where amplitude equations make wrong pre-
dictions although they are derived through a correct expansion w.r.t. a small
perturbation parameter 0 < ε2 � 1, cf. [Sch95, SSZ15, BSSZ20, HS20].

Remark 1.5. The introduction of only one small parameter 0 < ε � 1 is
no restriction. The parameters α1, . . . , β4 appearing in the amplitude system
(3)-(4) allow us to exhaust a neighborhood of the origin.

Remark 1.6. The situation of a trivial solution, which becomes simulta-
neously unstable via a short-wave Turing and a long-wave Hopf instability,
has not been considered before in the mathematical literature about the
justification of modulation equations. The validity of the Ginzburg-Landau
approximation in case of a short-wave Turing instability has been considered
for instance in [CE90, vH91, Sch94a, Sch94b]. The validity of the Ginzburg-
Landau approximation in case of a long-wave Hopf instability has been con-
sidered in [Sch98]. In fact, the proof of Theorem 1.2 is a combination of the
proofs given in [Sch94a] and [Sch98] based on the use of mode filters and
normal form transformations.

Remark 1.7. The kind of instability considered in this paper appears in all
systems, where the parameter regime, in which a short-wave Turing instabil-
ity occurs, and the parameter regime, in which a long-wave Hopf instability
occurs, have a common boundary. Besides Brusselator, Gierer-Meinhardt
system and Schnakenberg model, which are discussed in Section 4, various
other reaction-diffusion systems show this kind of instability. The scenario
around these bifurcation points, which are sometimes called Turing-Hopf
points, has been analyzed in the case of systems on bounded spatial domains,
see for instance [LI80, ADG85, DWLDB96, MDWBS97, JBB+01, PLNW20].
We remark that in case x ∈ Rd with d > 1 for the modes at k = kc no
degenarated Ginzburg-Landau equation can be derived due to the rotational
symmetry of (1).

Remark 1.8. Similar to the analysis which we will make subsequently at the
beginning of Section 3.1, by adding higher order terms to the approximation,
the approximation error can be made arbitrarily small. The construction of
such an improved approximation is possible because the group velocities at
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the wave numbers k = 0 and k = kc are the same, namely zero. Making the
approximation error arbitrarily small is for instance not possible in case of a
Hopf bifurcation at k = kc because then the group velocities in general are
different leading to a non-consistent perturbation ansatz.

Remark 1.9. In case that the coefficients α3, α4, β3, and β4 in (3)-(4) allow
to prove the existence of an exponentially absorbing ball for (3)-(4) in some
Hθ
l,u-space, the combination of approximation results, like Theorem 1.2, with

attractivity results allows to prove the global existence of the solutions of (1)
in a small O(1)-neighborhood of u∗ in some Hθ

l,u-space. See [MS95, SU17]
for the description of the approach for a single Ginzburg-Landau equation as
amplitude equation. Attractivity results show that the set of solutions which
is described by (3)-(4) is attractive for initial conditions of order O(δ) with
0 < ε ≤ δ small. The first attractivity result has been established in [Eck93].

Remark 1.10. The system of coupled Ginzburg-Landau equations (3)-(4)
allows an efficient numerical simulation of the original reaction-diffusion sys-
tem (1) close to the threshold of instability through a discretization of (3)-
(4). Error estimates for this numerical approximation of the multiple scaling
problem (1) close to the threshold of instability can be obtained through the
triangle inequality, similar to the analysis given in [FS14]. This approach
based on the amplitude equations (3)-(4) avoids a very expensive discretiza-
tion of the original system. The oscillations in time and space occurring in
the original system no longer have to be resolved and so instead of discretiz-
ing a spatial domain of size O(1/ε) and a time domain of size O(1/ε2) a
discretization of the amplitude system is sufficient, i.e., a spatial domain and
a time domain of size O(1).

Notation. The Fourier transform of a function u is denoted by û. Con-
stants which can be chosen independently of the small perturbation param-
eter 0 < ε� 1 are denoted with the same symbol C.

Acknowledgement. The work of Guido Schneider is partially supported
by the Deutsche Forschungsgemeinschaft DFG through the cluster of excel-
lence ’SimTech’ under EXC 2075-390740016. Matthias Winter thanks the
IADM at Universität Stuttgart for their kind hospitality. We thank the ref-
erees for carefully reading the paper and making valuable suggestions for
improvement.
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2 Some preparations

In order to prove Theorem 1.2 we introduce the deviation v of the stationary
solution u∗ through

u = u∗ + v.

The deviation v satisfies

∂tv = D∂2
xv + g(v) = D∂2

xv +B1v +B2(v, v) +B3(v, v, v) +N4(v), (5)

with g(v) = f(u∗+v), B1 a linear mapping, B2 a symmetric bilinear mapping,
B3 a symmetric trilinear mapping, and N4 satisfying N4(v) = O(‖v‖4) for
v → 0. The major difficulty to come to the long time scale of order O(1/ε2)
with our error estimates are the quadratic terms B2 which could lead to
an exponential growth of order O(eεt) for solutions of order O(ε). In order
to prove that such a growth does not occur, we have to use the oscillatory
character of the modes at k = 0 associated to the eigenvalues ±iω0 and the
fact that the quadratic interaction of the modes with wave numbers k = ±kc
gives non-resonant terms at k = 0 and exponentially damped modes at k =
±2kc, but no modes at k = ±kc. In order to use these properties, in Section
2.1 we separate the critical modes, i.e., the modes with positive or only weakly
negative growth rates, from the exponentially damped modes. Then, in
Section 2.2 we make a number of near identity change of variables eliminating
various quadratic interactions of these critical modes. Background on the
functional analytic approach will be provided in Section 2.3.

2.1 Separation of the modes

In Fourier space (5) is given by

∂tv̂ = −Dk2v̂ + ĝ(v̂) (6)

= −Dk2v̂ +B1v̂ + B̂2(v̂, v̂) + B̂3(v̂, v̂, v̂) + N̂4(v̂).

The spectral assumptions from the introduction allow us to make some nor-
mal form transformations which simplify (6) near k = 0 and near k = ±kc.
In order to extract the modes in a neighborhood of the wave numbers k = 0
and k = ±kc, we introduce a C∞0 -function

χ(k)


= 1, for |k| ≤ 1,
∈ [0, 1], for |k| ∈ (1, 2),

= 0, for |k| ≥ 2.
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Near k = 0 we will use new scalar variables ŵ1(k, t) ∈ C and ŵ−1(k, t) ∈ C,
corresponding to the eigenvalues iω0 and −iω0 and to the eigenvectors ϕ1(k)
and ϕ2(k), where ŵ−1(k, t) = ŵ1(−k, t) and ϕ2(k) = ϕ1(−k) near k = 0.
Near k = kc and k = −kc we will use the new scalar variables ẑ1(k, t) ∈ C
and ẑ−1(k, t) ∈ C corresponding to the eigenvalues λ1(k) and the eigenvectors
ϕ1(k), where ẑ−1(k, t) = ẑ1(−k, t) and ϕ1(k) = ϕ1(−k) near k = −kc. Since
we consider a real-valued system, by controlling ŵ1 and ẑ1 we also get control
of ŵ−1 and ẑ−1.

We define mode filters Ew and Ez to extract the critical modes, i.e., the
modes with positive or weakly negative growth rates. Moreover, we define
the complementary mode filter Es which extracts the remaining part of the
solution which is linearly damped with some exponential rate. In detail, the
mode filters Ew and Ez are defined through their actions in Fourier space,
namely

Êw(k)v̂(k) = χ(
k

r
)ϕ∗1(k)T v̂(k),

Êz(k)v̂(k) = χ(
k − kc
r

)ϕ∗1(k)T v̂(k),

Ês(k)v̂(k) = I − χ(
k

r
)ϕ∗1(k)T v̂(k)ϕ1(k)− χ(

k

r
)ϕ∗2(k)T v̂(k)ϕ2(k)

−χ(
k − kc
r

)ϕ∗1(k)T v̂(k)ϕ1(k)− χ(
k + kc
r

)ϕ∗1(k)T v̂(k)ϕ1(k),

for an r > 0 sufficiently small, but independent of the small perturbation
parameter 0 < ε� 1. The ϕ∗j(k) are the adjoint eigenvectors. Since we work
in Hθ

l,u-spaces, we need operators which are smooth multipliers in Fourier
space, like χ, cf. Lemma 2.1. Since the eigenvalues are simple for fixed
k ∈ R, the associated eigenvectors and adjoint eigenvectors depend smoothly
on k near k = 0 and near k = ±kc.

We introduce the new variables ŵ1 and ẑ1 as the solutions of the system

∂tŵ1(k, t) = λ1(k)ŵ1(k, t) + ĝw(ŵ1, ẑ1, v̂s)(k, t), (7)

∂tẑ1(k, t) = λ1(k)ẑ1(k, t) + ĝz(ŵ1, ẑ1, v̂s)(k, t), (8)

∂tv̂s(k, t) = Λ̂s(k)v̂s(k, t) + ĝs(ŵ1, ẑ1, v̂s)(k, t), (9)
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where

ĝw(ŵ1, ẑ1, v̂s)(k, t) = Êw(k)(ĝ(v̂)−B1v̂)(k, t),

ĝz(ŵ1, ẑ1, v̂s)(k, t) = Êz(k)(ĝ(v̂)−B1v̂)(k, t),

ĝs(ŵ1, ẑ1, v̂s)(k, t) = Ês(k)(ĝ(v̂)−B1v̂)(k, t),

Λ̂s(k)v̂s(k, t) = Ês(k)(−Dk2 +B1)v̂s(k, t).

We obtain the equations (7)-(9) by applying the mode filters Êw(k), Êz(k)

and Ês(k) to (6), respectively. The solution v can be reconstructed through

v̂(k, t) = ŵ1(k, t)ϕ1(k)+ŵ−1(k, t)ϕ2(k)+ẑ1(k, t)ϕ1(k)+ẑ−1(k, t)ϕ1(k)+v̂s(k, t).

2.2 Change of variables

In order to prove our approximation result we have to control the quadratic
interactions of the critical modes ŵ±1 and ẑ±1. We do so by using the fact
that the quadratic interactions are non-resonant in time or in space. The
terms which are non-resonant in time will be eliminated by a number of
change of variables. A quadratic interaction term is called non-resonant in
space if it is exponentially damped, for instance the quadratic interaction of
ẑ1-modes is located in Fourier space at k = 2kc for which the linear modes
are damped with an exponential rate.

In this section we explain the interaction structure and why near identity
transformations allow to eliminate various quadratic interactions. Functional
analytic details underpinning the approach will be provided in Section 2.3.

Since the nonlinear terms in (7)-(8) have a convolution structure w.r.t.
ẑ1 and ŵ1 we need to investigate how terms of the type ûj1(k− l)ûj2(l) in the
equation for ûj(k) can be eliminated by a near identity change of variables.
It is well known that elimination is possible if the non-resonance condition

λj(k)− λj1(k − l)− λj2(l) 6= 0,

is satisfied where λj(k) is the eigenvalue associated to the variable ûj(k).
As an example we consider the term ŵ1(k − l)ŵ1(l) in the equation for

ŵ1(k). The eigenvalue associated to ŵ1(k) is iω0 +O(k2) for small |k|, such
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that

λj(k)− λj1(k − l)− λj2(l)
= iω0 +O(k2)− iω0 +O((k − l)2)− iω0 +O(l2)

= −iω0 +O(k2 + (k − l)2 + l2) 6= 0,

i.e., ŵ1(k− l)ŵ1(l) can be eliminated in the equation for ŵ1(k) for k2 + (k−
l)2 + l2 sufficiently small.

We use this idea to eliminate a number of terms in the equations for (7)
and (8). In the following table we collect the temporal and spatial wave
numbers of the quadratic terms w.r.t. ŵ±1 and ẑ±1. Let us consider one
example. Since the quadratic interaction ŵ1(k − l)ŵ1(l) has a support in
Fourier space located around 0kc and oscillates in time approximately as
e2iω0t, we write 0kc, 2iω0 at the position labelled horizontally and vertically
with w1.

w1 w−1 z1 z−1

w1 0kc, 2iω0 0kc, 0ω0 kc, iω0 −kc, iω0

w−1 0kc, 0ω0 0kc,−2iω0 kc,−iω0 −kc,−iω0

z1 kc, iω0 kc,−iω0 2kc, 0ω0 0kc, 0ω0

z−1 −kc, iω0 −kc,−iω0 0kc, 0ω0 −2kc, 0ω0

i) In the ŵ1-equation by a near identity change of variables all terms
can be eliminated if they do not have a 0kc, iω0 in the previous table. In the
following table the terms which can be eliminated in the ŵ1-equation by such
a procedure are denoted with NF . The terms which are not present in the
ŵ1-equation due to disjoint supports in Fourier space are denoted with DS:

w1 w−1 z1 z−1

w1 NF NF DS DS
w−1 NF NF DS DS
z1 DS DS DS NF
z−1 DS DS NF DS

Hence, in the ŵ1-equation all quadratic interactions of critical modes are
gone after such near identity changes of variables.
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ii) In the ẑ1-equation by a near identity change of variables terms can
be eliminated if they do not have a kc, 0ω0 in the previous table. In the
following table the terms which can be eliminated in the ẑ1-equation by such
a procedure are denoted with NF . The terms which are not present in the
ẑ1-equation due to disjoint supports in Fourier space are denoted with DS:

w1 w−1 z1 z−1

w1 DS DS NF DS
w−1 DS DS NF DS
z1 NF NF DS DS
z−1 DS DS DS DS

Hence, in the ẑ1-equation all quadratic interactions of critical modes are
gone after such near identity changes of variables.

After these change of variables, for details see Section 2.3.2, our system
is of the form

∂tŴ1(k, t) = λ1(k)Ŵ1(k, t) + ĥw(Ŵ1, Ẑ1, V̂s)(k, t), (10)

∂tẐ1(k, t) = λ1(k)Ẑ1(k, t) + ĥz(Ŵ1, Ẑ1, V̂s)(k, t), (11)

∂tV̂s(k, t) = Λ̂s(k)V̂s(k, t) + ĥs(Ŵ1, Ẑ1, V̂s)(k, t), (12)

where formally

ĥ∗(Ŵ1, Ẑ1, V̂s) = O(|Ŵ1|3 + |Ẑ1|3 + |Ŵ1|‖V̂s‖+ |Ẑ1|‖V̂s‖+ ‖V̂s‖2),

ĥs(Ŵ1, Ẑ1, V̂s) = O(|Ŵ1|2 + |Ẑ1|2 + ‖V̂s‖2),

for ∗ = w, z. In order to simplify the notations in the following we introduce
Vc = (W1, Z1) such that (10)-(12) can be written, with a slight abuse of
notation, as

∂tV̂c(k, t) = Λ̂c(k)V̂c(k, t) + ĥc(V̂c, V̂s)(k, t),

∂tV̂s(k, t) = Λ̂s(k)V̂s(k, t) + ĥs(V̂c, V̂s)(k, t),

For estimating the solutions we consider this system in physical space

∂tVc = ΛcVc + hc(Vc, Vs), (13)

∂tVs = ΛsVs + hs(Vc, Vs), (14)
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where Λj = F−1Λ̂jF for j = c, s and where the nonlinear terms obey the
estimates

‖hc(Vc, Vs)‖Hθ
l,u
≤ C(‖Vc‖3

Hθ
l,u

+ ‖Vc‖Hθ
l,u
‖Vs‖Hθ

l,u
+ ‖Vs‖2

Hθ
l,u

),

‖hs(Vc, Vs)‖Hθ
l,u
≤ C(‖Vc‖2

Hθ
l,u

+ ‖Vs‖2
Hθ
l,u

),

in a neighborhood of the origin for θ ≥ 1.

2.3 Some functional analytic details

So far all calculations in Section 2 have been made in Fourier space. In order
to work with (13)-(14) in physical space and to prove Theorem 1.2 we need

estimates for the mode filters Ej = F−1ÊjF in Hθ
l,u-spaces. They are given

in Section 2.3.1. Details and bounds for the normal form transformations
used in Section 2.2 are provided in Section 2.3.2.

2.3.1 The mode filters

The mode filters Ew, Ez, and Es are bounded linear mappings in every Hθ
l,u-

space due to the following multiplier lemma, cf. [Sch94b].

Lemma 2.1. Let m ∈ Z, q ∈ N0 with m+q ≥ 0, and k 7→ (1+k2)m/2M̂(k) ∈
C2
b (R,L(Rd,Rd)). Then M = F−1M̂F : Hq

l,u → Hq+m
l,u is bounded with norm

≤ C(q,m)‖k 7→ (1 + k2)m/2M̂(k)‖C2
b (R,L(Rd,Rd)),

where C(q,m) does not depend on M.

2.3.2 The near identity change of variables

The near identity change of variables which transforms (7)-(9) into (10)-(12)
is of the form

ŵ1 = Ŵ1 + M̂1(ŵ1, ŵ1) + M̂2(ŵ−1, ŵ−1) + M̂3(ŵ1, ŵ−1) + M̂4(ẑ1, ẑ−1),

ẑ1 = Ẑ1 + M̂5(ẑ1, ŵ−1) + M̂6(ẑ1, ŵ1),

and similarly for ŵ−1 and ẑ−1, where the M̂j are suitably chosen symmetric

bilinear mappings. Let us consider one example. Let Q̂1(ŵ1, ŵ1) be the
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bilinear terms in the ŵ1-equation. In Fourier space this term is of the form

Q̂1(ŵ1, ŵ1)(k, t) =

∫
q(k, k − l, l)ŵ1(k − l, t)ŵ1(l, t)dl,

with a bounded kernel q = q(k, k − l, l). Following [SU17, §11.4] we have to
choose

M̂1(ŵ1, ŵ1)(k, t) =

∫
(λ1(k)−λ1(k−l)−λ1(l))−1q(k, k−l, l)ŵ1(k−l, t)ŵ1(l, t)dl

in order to eliminate Q̂1(ŵ1, ŵ1) in the ŵ1-equation. Since all bilinear terms
in the transformations have compact support in Fourier space and since as
an example (λ1(k)−λ1(k− l)−λ1(l))−1q(k, k− l, l) is smooth w.r.t. the wave
numbers k and l in a neighborhood of the Fourier support of ŵ1 the bilinear
terms are arbitrarily smooth as a mapping from Hθ

l,u to Hθ
l,u and so in a

neighborhood of the origin (w1, z1, vs) = (0, 0, 0) the normal form transform
can be inverted using Neumann’s series. Therefore, we have

Theorem 2.2. For each θ ≥ 1 we have %, ε0, C > 0 such that for all ε ∈
(0, ε0) the following holds: There exists a smooth change of coordinates φ :
Hθ
l,u∩{‖u‖Hθ

l,u
≤ %} → Hθ

l,u such that the inverse Fourier transform of (7)-(9)

transforms into the inverse Fourier transform of (10)-(12). The transform
V = Φ(v) fulfills ‖Φ(v)− v‖Hθ

l,u
≤ C‖v‖2

Hθ
l,u

.

3 The error estimates

By adding higher order terms to the approximation Φ(εΨapp), with εΨapp

defined in (2), we can construct an approximation εΨ for which the terms
which do not cancel after inserting the improved approximation εΨ into the
equations (13)-(14), are sufficiently small for our purposes. The terms which
do not cancel are collected in the residual

Resc(Vc, Vs) = −∂tVc + ΛcVc + hc(Vc, Vs),

Ress(Vc, Vs) = −∂tVs + ΛsVs + hs(Vc, Vs).

For our purposes it is sufficient to have an approximation εΨ with the fol-
lowing properties:
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Lemma 3.1. For (A,B) ∈ C([0, T0], (H4
l,u(R))2) there exists an approxima-

tion εΨ = (εΨc, ε
2Ψs) with

i) sup
t∈[0,T0/ε2]

‖Resc(εΨ)‖H1
l,u
≤ Cresε

4,

ii) sup
t∈[0,T0/ε2]

‖Ress(εΨ)‖H1
l,u
≤ Cresε

3,

and
sup

t∈[0,T0/ε2]

‖εΨ− Φ(εΨapp)‖H1
l,u

= O(ε2).

Proof. We start with the approximation for (7)-(9) and set A1 = A, A−1 =
A, B1 = B, and B−1 = B. The approximation is then given by

εΨz1(x, t) = εA1(εx, ε2t)eikcx

+ε2A11(εx, ε2t)eikcxeiω0t + ε2A1−1(εx, ε2t)eikcxe−iω0t

+ε3A111(εx, ε2t)eikcxe2iω0t + ε3A1−1−1(εx, ε2t)eikcxe−2iω0t,

εΨw1(x, t) = εB1(εx, ε2t)eiω0t + ε2B0(εx, ε2t)

+ε2B2(εx, ε2t)e2iω0t + ε2B−2(εx, ε2t)e−2iω0t

+ε3B3(εx, ε2t)e3iω0t + ε3B−1∗(εx, ε
2t)e−iω0t + ε3B−3(εx, ε2t)e−3iω0t,

ε2Ψs(x, t) = ε2S2(εx, ε2t)e2ikcx + ε2S−2(εx, ε2t)e−2ikcx + ε2S0(εx, ε2t)

+ε2S2∗(εx, ε
2t)e2iω0t + ε2S−2∗(εx, ε

2t)e−2iω0t

+ε2S11(εx, ε2t)eikcxeiω0t + ε2S1−1(εx, ε2t)eikcxe−iω0t

+ε2S−11(εx, ε2t)e−ikcxeiω0t + ε2S−1−1(εx, ε2t)e−ikcxe−iω0t

and similarly for εΨz−1 and εΨw−1 . Inserting this ansatz into (7)-(9) and
equating the coefficients in front of ε2e2ikcx, ε2e−2ikcx, ε2, ε2e2iω0t and ε2e−2iω0t

to zero yields equations of the form

0 = B0 + b0(A1, A−1) + b0(B1, B−1),

0 = B2 + b2(B1, B1),

0 = B−2 + b−2(B−1, B−1),

0 = A11 + a11(A1, B1),

0 = A1−1 + a1−1(A1, B−1),

0 = A−11 + a−11(A−1, B1),

0 = A−1−1 + a−1−1(A−1, B−1),

13



where a2, . . . , a−1−1 are smooth bilinear mappings,

0 = S2 + s2(A1, A1),

0 = S−2 + s−2(A−1, A−1),

0 = S0 + s0(A1, A−1) + b0(B1, B−1),

0 = S2∗ + s2∗(B1, B1),

0 = S−2∗ + s−2∗(B−1, B−1),

0 = S11 + s11(A1, B1),

0 = S1−1 + s1−1(A1, B−1),

0 = S−11 + s−11(A−1, B1),

0 = S−1−1 + s−1−1(A−1, B−1),

where s2, . . . , s−1−1 are smooth bilinear mappings and

0 = B3 + b3(B1, B1, B1),

0 = B−1∗ + b−1∗(B1, B−1, B−1) + b−1∗∗(A1, A−1, B−1),

0 = B−3 + b−3(B−1, B−1, B−1),

0 = A111 + a111(A1, B1, B1),

0 = A1−1−1 + a1−1−1(A1, B−1, B−1),

0 = A−111 + a−111(A−1, B1, B1),

0 = A−1−1−1 + a−1−1−1(A−1, B−1, B−1),

where the b3, . . . , a−1−1−1 are smooth trilinear mappings. By construction we
canceled in the w1-equation and in the z1-equation all terms of order O(ε3).
Moreover, in the vs-equation all terms of order O(ε2) are canceled. The state-
ment follows by defining εΨ as Φ applied to the constructed approximation
for (w1, z1, vs). In order to derive the Ginzburg-Landau equations in Fourier
space we have to expand λ1 at k = kc and k = 0 up to quadratic terms. In
order to estimate the error made by this approximation we use Lemma 2.1
and so there is a loss of three derivatives.

Proof of Theorem 1.1. We set εΨc = Ec(εΨ) and ε2Ψs = Es(εΨ).
By construction we have that εΨc = O(ε) and ε2Ψs = O(ε2) in H4

l,u. By
Sobolev’s embedding theorem the same is true in C1

b .
We introduce the error made by the improved approximation (εΨc, ε

2Ψs)
through

(Vc, Vs) = (εΨc, ε
2Ψs) + (ε2Rc, ε

3Rs).

14



Inserting this into (13)-(14) shows that the error functions satisfy

∂tRc = ΛcRc +Nc(εΨc, ε
2Rc, ε

2Ψs, ε
3Rs), (15)

∂tRs = ΛsRs +Ns(εΨc, ε
2Rc, ε

2Ψs, ε
3Rs), (16)

where

‖Nc‖H1
l,u
≤ C1,cε

2(‖Rc‖H1
l,u

+ ‖Rs‖H1
l,u

)

+C2,c(Mc,Ms)ε
3(‖Rc‖H1

l,u
+ ‖Rs‖H1

l,u
)2 + Cresε

2,

‖Ns‖H1
l,u
≤ C1,s(‖Rc‖H1

l,u
+ ε‖Rs‖H1

l,u
)

+C2,s(Mc,Ms)ε(‖Rc‖H1
l,u

+ ‖Rs‖H1
l,u

)2 + Cres,

as long as ‖Rc‖H1
l,u
≤ Mc and ‖Rs‖H1

l,u
≤ Ms for any ε-independent, but

fixed constants Mc and Ms. We apply the variation of constants formula to
the equations for the error (15)-(16) and obtain

Rc(t) = eΛctRc(0) +

∫ t

0

eΛc(t−τ)Nc(εΨc, ε
2Rc, ε

2Ψs, ε
3Rs)(τ)dτ, (17)

Rs(t) = eΛstRs(0) +

∫ t

0

eΛs(t−τ)Ns(εΨc, ε
2Rc, ε

2Ψs, ε
3Rs)(τ)dτ, (18)

where the semigroups obey the estimates

‖eΛct‖H1
l,u→H

1
l,u
≤ CΛe

σcε2t and ‖eΛst‖H1
l,u→H

1
l,u
≤ CΛe

−σst,

with σc > 0 and σs > 0. We introduce

Sc(t) = sup
0≤τ≤t

‖Rc(τ)‖H1
l,u

and Ss(t) = sup
0≤τ≤t

‖Rs(τ)‖H1
l,u
.

Using the semigroup estimates we find the inequalities

‖Rc(t)‖H1
l,u
≤ CΛe

σcT0Sc(0) +

∫ t

0

CΛe
σcT0(C1,cε

2(Sc(τ) + Ss(τ))

+C2,c(Mc,Ms)ε
3(Sc(τ) + Ss(τ))2)dτ + T0CΛe

σcT0Cres,

‖Rs(t)‖H1
l,u
≤ CΛSs(0) + CΛCσ(C1,sSc(t) + C1,sεSs(t)

+C2,s(Mc,Ms)ε(Sc(t) + Ss(t))
2) + CΛCσCres,
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where Cσ = supt∈[0,T0/ε2]

∫ t
0
e−σs(t−τ)dτ < ∞ is independent of 0 ≤ ε � 1.

The functions C2,c(Mc,Ms) and C2,s(Mc,Ms) are smooth functions w.r.t.
Mc, Ms. This is now exactly the set of inequalities which appeared in [SU17,
p.342], and so the rest of the proof of Theorem 1.2 follows line for line as
in [SU17, §10.4]. The sup-estimate stated in Theorem 1.2 follows from the
H1
l,u-estimate by a generalization of Sobolev’s embedding theorem.

Remark 3.2. For completeness we recall the underlying idea of the rest of
the proof. Since the right-hand sides of the last estimates increase monotoni-
cally w.r.t. t we can replace ‖Rc(t)‖H1

l,u
and ‖Rs(t)‖H1

l,u
on the left-hand side

by Sc(t) and Ss(t), respectively. From the second inequality we then obtain
an estimate Ss(t) ≤ CSc(t) +C for ε > 0 sufficiently small. Inserting this in
the first inequality yields

Sc(t) ≤ C + ε2

∫ t

0

CSc(τ)dτ,

again for ε > 0 sufficiently small. Gronwall’s inequality immediately yields
the required estimate. We refer to [SU17, §10.4] for the missing details.

4 Examples

In this section we show that the Brusselator, the Gierer-Meinhardt sys-
tem and the Schnakenberg model are three examples of systems for which
the trivial solution becomes simultaneously unstable via a short-wave Tur-
ing and a long-wave Hopf instability. The Gierer-Meinhardt system is of
activator-inhibitor type, whereas the Brusselator and Schnakenberg model
are activator-substrate systems. Our presentation of the Brusselator is based
on [Kur84] and our presentation of Gierer-Meinhardt system is based on
[HO78].

4.1 The Brusselator

The Brusselator [Kur84] is a two component system given by

∂tξ = d1∂
2
xξ + a− (b+ 1)ξ + ξ2η,

∂tη = d2∂
2
xη + bξ − ξ2η,
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where a, b, d1, d2 are non-negative constants. The two components ξ and η
are real-valued functions of t ≥ 0 and x ∈ R. There exists a unique spatially
homogeneous trivial solution (ξ0, η0) = (a, b/a). The deviation

(u, v) = (ξ − ξ0, η − η0)

from (ξ0, η0) satisfies the system

∂tu = (b− 1)u+ a2v + d1∂
2
xu+ f(u, v), (19)

∂tv = −bu− a2v + d2∂
2
xv − f(u, v), (20)

with nonlinear terms

f(u, v) = (b/a)u2 + 2auv + u2v.

The stability of the trivial solution (u, v) = (0, 0) is determined by the lin-
earization of (19)-(20) which is solved by

(u, v) = (û, v̂)eikx+λ(k)t.

The eigenvalues λ are the roots of the quadratic equation

λ2 + α(k)λ+ β(k) = 0,

where

α(k) = 1 + a2 − b+ (d1 + d2)k2,

β(k) = a2 + (a2d1 + (1− b)d2)k2 + d1d2k
4.

In the following we fix d1, d2, and a, and take b as a control parameter.
i) The long-wave Hopf instability occurs at the critical wave vector k = 0

and for b = bhopf (a) = 1 + a2

ii) The short-wave Turing instability occurs at the critical wave number

k = kc =
√
a/
√
d1d2 if b = bturing(a,D) = (1 + a/

√
D)2 for the control

parameter, where D = d2/d1.
In this paper we are interested in the case when both instabilities occur

simultaneously, i.e., when bturing(a,D) = bhopf (a), or equivalently when

√
D = a/(

√
1 + a2 − 1).

We introduce the small bifurcation parameter ε2 = (b−bhopf )/bhopf . Drawing
the curves of eigenvalues λ1,2 gives a figure similar to Figure 1.
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4.2 The Gierer-Meinhardt system

The normalized Gierer-Meinhardt model [GM72] is given by

∂ta = d1∂
2
xa+

a2

h
− µa+ ρ, (21)

∂th = d2∂
2
xh+ a2 − h, (22)

where d1, d2, µ, and ρ are non-negative constants. The activator a and the
inhibitor h are real-valued functions of t ≥ 0 and x ∈ R. There exists a
unique spatially homogeneous trivial solution (a, h) = (a0, h0), with

a0 =
1

µ
(ρ+ 1), h0 = a2

0.

The deviation (q1, q2) = (a − a0, h − h0) from the trivial solution (a0, h0)
satisfies

∂tq1 = d1∂
2
xq1 + µ(

2

ρ+ 1
− 1)q1 −

µ2

(ρ+ 1)2
q2 +N1(q1, q2),

∂tq2 = d2∂
2
xq2 +

2

µ
(ρ+ 1)q1 − q2 +N2(q1, q2),

with |Nj(q1, q2)| = O(q2
1 + q2

2). The linearization yields the eigenvalues

λ± =
α(k)

2
±
√
α2(k)

4
− β(k),

where

α (k) = − (d1 + d2) k2 +
2µ

ρ+ 1
− µ− 1,

β (k) =
(
d1k

2 + µ
) (

1 + d2k
2
)
− 2µd2k

2

ρ+ 1
.

i) Therefore, a long-wave Hopf instability at k = 0 occurs if

α(0) = 0 and
α2(0)

4
− β(0) = −µ < 0.

This leads to

ρhopf (µ) =
µ− 1

µ+ 1
and λ±(0) = ±i√µ.
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ii) A short-wave Turing instability at k = kc occurs if λ+(kc) = 0. Hence,
we immediately obtain the condition β = 0. Additionally we have to satisfy
∂kλ+(kc) = 0. This finally leads to

ρturing(µ,D) =
2
√
µD

2 +
√
µD +

1√
µD

− 1 and kc = 4

√
µ

d1d2

,

where D = d2/d1. As before, we are interested in the case when both instabil-
ities occur simultaneously, i.e., when ρturing(µ,D) = ρhopf (µ), or equivalently
when √

D =
√
µ+

√
µ+ 1.

We introduce the small bifurcation parameter ε2 = (ρ−ρhopf )/ρhopf . Drawing
the curves of eigenvalues λ± gives a figure similar to Figure 1.

4.3 The Schnakenberg model

As the third example we consider the Schnakenberg model [Sch79] (see also
[GM72]) which is given by

∂tξ = d1∂
2
xξ − aξ + ξ2η,

∂tη = d2∂
2
xη + b− ξ2η,

where a, b, d1, d2 are non-negative constants. The two components ξ and η
are real-valued functions of t ≥ 0 and x ∈ R. There exists a unique spatially
homogeneous trivial solution (ξ0, η0) = (b/a, a2/b). The deviation

(u, v) = (ξ − ξ0, η − η0)

from (ξ0, η0) satisfies the system

∂tu = d1∂
2
xu+ au+

b2

a2
v + f(u, v), (23)

∂tv = d2∂
2
xv − 2au− b2

a2
v − f(u, v), (24)

with nonlinear terms

f(u, v) = (a2/b)u2 + 2(b/a)uv + u2v.
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The stability of the trivial solution (u, v) = (0, 0) is determined by the lin-
earization of (23)-(24) which is solved by

(u, v) = (û, v̂)eikx+λ(k)t.

The eigenvalues λ are the roots of the quadratic equation

λ2 + α(k)λ+ β(k) = 0,

where

α(k) =
b2

a2
− a+ (d1 + d2)k2

β(k) =
b2

a
+ (

b2

a2
d1 − ad2)k2 + d1d2k

4.

In the following we fix d1, d2, and a, and take b as a control parameter.
i) The long-wave Hopf instability occurs at the critical wave vector k = 0

and for b = bhopf (a) = a3/2.
ii) The short-wave Turing instability occurs at the critical wave number

kc =
√
a/(d1(1 +

√
2)) if

b = bturing(a,D) = (1 +
√

2)−1
√
Da3/2

for the control parameter, where D = d2/d1.
In this paper we investigate the case when both instabilities occur simul-

taneously, i.e., when bturing(a,D) = bhopf (a), or equivalently when

√
D = 1 +

√
2.

We introduce the small bifurcation parameter ε2 = −(b−bhopf )/bhopf . Draw-
ing the curves of eigenvalues λ1,2 gives a figure similar to Figure 1.
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tiotemporal dynamics near codimension-two Turing-Hopf bi-
furcations. Phys. Rev. E, 55:6690–6697, Jun 1997.

[MS95] Alexander Mielke and Guido Schneider. Attractors for modu-
lation equations on unbounded domains – existence and com-
parison. Nonlinearity, 8(5):743–768, 1995.

[PLNW20] Frédéric Paquin-Lefebvre, Wayne Nagata, and Michael J.
Ward. Pattern Formation and Oscillatory Dynamics in a Two-
Dimensional Coupled Bulk-Surface Reaction-Diffusion System.
https://arxiv.org/pdf/1810.00251.pdf, 2020.

[Sch79] J. Schnakenberg. Simple chemical reaction systems with limit
cycle behaviour. Journal of Theoretical Biology, 81(3):389–400,
1979.

[Sch94a] G. Schneider. A new estimate for the Ginzburg-Landau ap-
proximation on the real axis. J. Nonlinear Sci., 4(1):23–34,
1994.

[Sch94b] Guido Schneider. Error estimates for the Ginzburg-Landau
approximation. ZAMP, 45:433–457, 1994.

[Sch95] Guido Schneider. Validity and limitation of the Newell-
Whitehead equation. Math. Nachr., 176:249–263, 1995.

[Sch98] Guido Schneider. Hopf bifurcation in spatially extended
reaction-diffusion systems. J. Nonlinear Sci., 8(1):17–41, 1998.

[SSZ15] Guido Schneider, Danish Ali Sunny, and Dominik Zimmer-
mann. The NLS approximation makes wrong predictions for
the water wave problem in case of small surface tension and
spatially periodic boundary conditions. J. Dyn. Differ. Equa-
tions, 27(3-4):1077–1099, 2015.

22



[SU17] Guido Schneider and Hannes Uecker. Nonlinear PDEs. A dy-
namical systems approach., volume 182. Providence, RI: Amer-
ican Mathematical Society (AMS), 2017.

[vH91] A. van Harten. On the validity of the Ginzburg-Landau equa-
tion. J. Nonlinear Sci., 1(4):397–422, 1991.

23


