The Complex Grothendieck for 2×2 matrices

by
Andrew Tonge

Summary. We show that the complex Grothendieck constant for 2×2 matrices is 1

Grothendieck's inequality asserts that if $\left(a_{i j}\right)$ is an $n \times n$ matrix and if $x_{1} \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are elements of the unit ball of a Hilbert space, then there is an absolute constant K such that

$$
\left|\sum_{i, j=1}^{n} a_{i j}<x_{i}, y_{j}>\right| \leq k\|a\|_{\infty, 1}
$$

We have written $\|a\|_{\infty, 1}$ for the norm of the matrix $\left(a_{i j}\right)$ considered as a linear operator from $\ell_{\infty}{ }^{n}$ to $\ell_{1}{ }^{n}$. Thus

$$
\|\mathrm{a}\| \infty, 1=\sup \left\{\left|\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{~s}_{\mathrm{i}} \mathrm{t}_{\mathrm{j}}\right|:\left|\mathrm{s}_{\mathrm{i}}\right| \leq 1,\left|\mathrm{t}_{\mathrm{j}}\right| \leq^{1}, 1 \leq^{\mathrm{i}}, \mathrm{j} \leq \mathrm{n}\right\}
$$

When we say that K is an absolute constant, we mean that K is independent of n, of the matrix $\left(a_{i j}\right)$ and of the vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$. The reader may consult [2] for a proof of Grothendieck's inequality and for supplementary information.

The best value of K is unknown, and there are differences between the real and complex cases. However, in both cases it is known that $\mathrm{K}>1 \cdot$ More precise regults may be found in [1] and [3].

Allan Sinclair (Edinburgh) has suggested that it would be of interest to determine the best universal constants $K_{m, n}$ such that if $\left(a_{i j}\right)$ is an $n \times n$ matrix and if $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are elements of the unit ball of a Hilbert space, then

$$
\left|\sum_{i, j=1}^{n} a_{i j}<x_{i}, y_{j}>\right| \leq k m, n\|a\|_{\infty, 1}
$$

For example, this would be a way to obtain information about the best value of K .

Sinclair has obtained various estimates for $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ (private communication) and has conjectured that in the complex case $\mathrm{K}_{2,2}=1$. (Results from [1] show that in the real case $\mathrm{K}_{2, \mathrm{n}}=\sqrt{ } 2$ for every $\mathrm{n}>1$.) We prove this conjecture and show, more generally, that in the complex case $K_{m, 2}=1$ for every m .

THEOREM. Let $\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a complex 2×2 matrix and let x_{1}, x_{2}, y_{1} and y_{2} be elements of the unit ball of a complex Hilbert space. Then

$$
\left|\sum_{\mathrm{i}, \mathrm{j}=1}^{2} \mathrm{a}_{\mathrm{ij}}<\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}>\right| \leq\|\mathrm{a}\|_{\infty, 1}
$$

Proof. Simple manipulations reduce the problem to that of proving

$$
\begin{aligned}
& \sup \left\{\left\|\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{21} \mathrm{x}_{2}\right\|+\left\|\mathrm{a}_{12} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}\right\|:\left\|\mathrm{x}_{1}\right\|=\mid \mathrm{x}_{2} \|=1\right\} \\
& \leq \sup \left\{\left|\mathrm{a}_{11} \mathrm{~s}_{1}+\mathrm{a}_{21} \mathrm{~s}_{2}\right|+\left|\mathrm{a}_{12} \mathrm{~s}_{1}+\mathrm{a}_{22} \mathrm{~s}_{2}\right|:\left|\mathrm{s}_{1}\right|=\left|\mathrm{s}_{2}\right|=1\right\}
\end{aligned}
$$

Writing norms (and absolute values) in terms of inner products, this inequality becomes

$$
\begin{aligned}
& \sup \left\{\sqrt{u+\operatorname{Rev}<x_{1}, x_{2}>}+\sqrt{p+\operatorname{Req}<x_{1}, x_{2}>}:\left\|x_{1}\right\|=\left\|x_{2}\right\|=1\right\} \\
\leq & \sup \left\{\sqrt{u+\operatorname{Rev}<s_{1}, \overline{s_{2}}>}+\sqrt{p+\operatorname{Reqs} s_{1}, \overline{s_{2}}>}:\left|s_{1}\right|=\left|s_{2}\right|=1\right\},
\end{aligned}
$$

where $\mathrm{u}=\left|\mathrm{a}_{11}\right|^{2}+\left|\mathrm{a}_{21}\right|^{2}, \mathrm{v}=2 \mathrm{a}_{11} \overline{\mathrm{a}_{21}}, \mathrm{p}=\left|\mathrm{a}_{12}\right|^{2}+\left|\mathrm{a}_{22}\right|^{2}$ and $\mathrm{q}=2 \mathrm{a} \overline{12^{\mathrm{a}} 22}$. The result will therefore follow if we can show that

$$
\begin{aligned}
& \quad \sup \{\sqrt{u+\operatorname{Revz}}+\sqrt{p+\operatorname{Reqz}}:|z| \leq 1\} \\
& =\sup \{\sqrt{u+\operatorname{Revz}}+\sqrt{p+\operatorname{Reqz}}:|z|=1\} .
\end{aligned}
$$

Now write v, q and z in terms of their real and imaginary parts, so that $v=\alpha+i \beta, q=\lambda+i \mu$ and $z=x+i y$. Then if we set

$$
f(x, y)=\sqrt{u+\alpha x-\beta y}+\sqrt{p+\lambda x-\mu y}
$$

we have to prove that

$$
\sup \left\{f(x, y): x^{2}+y^{2} \leq 1\right\}=\sup \left\{f(x, y): x^{2}+y^{2}=1\right\} .
$$

[Note that when $x^{2}+y^{2} \leq 1, f(x, y)$ is well-defined as a real number, since $u>|v|$ and $p>|q|$.]

This identity will certainly follow if we can show that f has no local maximum in the open disc $\mathrm{x}^{2}+\mathrm{y}^{2}<1$. In this disc f is continuously differentiable, provided that $u \geq|v|>0$ and $\mathrm{P} \geq|\mathrm{q}|>0$. The partial derivatives are

$$
\begin{aligned}
& \partial f / \partial x=\frac{1}{2} \alpha(u+\alpha x-\beta y)^{-\frac{1}{2}}+\frac{1}{2} \lambda(p+\lambda x-u y)^{-\frac{1}{2}} \text { and } \\
& \partial f / \partial y=-\frac{1}{2} \beta(u+\alpha x-\beta y)^{-\frac{1}{2}}-\frac{1}{2} u(p+\lambda x-u y)^{-\frac{1}{2}} .
\end{aligned}
$$

A local maximum can only occur if $\partial \mathrm{f} / \partial \mathrm{x}=\partial \mathrm{f} / \partial \mathrm{y}=0$, and this is impossible when the following conditions are satisfied.
(i) α, β, λ and μ are all non-zero, and
(ii) $\alpha u \neq \beta \lambda$.

However, if these conditions are not satisfied, then for any given $\varepsilon>0$ we can select a matrix $\quad\left(a_{i}{ }_{j}\right)$ such that

$$
\left|\mathrm{a}_{\mathrm{ij}}-\mathrm{a}_{\mathrm{i}}^{\prime} \mathrm{j}\right| \leq \varepsilon / 8 \quad(1 \leq \mathrm{i}, \mathrm{j} \leq 2)
$$

and such that the numbers $\alpha^{\prime}, \beta^{\prime}, \lambda^{\prime}$ and μ^{\prime} associated with $\left(\mathrm{a}_{\mathrm{i}} \mathrm{j}\right)$ are all non-zero and do satisfy $\alpha^{\prime} \mu^{\prime} \neq \beta^{\prime} \lambda^{\prime}$. But then

$$
\sup \left\{\left|\sum_{i, j=1}^{2} a_{i j}<x_{i}, y_{j}\right\rangle \mid:\left\|x_{i}\right\| \leq 1,\left\|y_{j}\right\| \leq 1, \quad 1 \leq \mathrm{i}, \mathrm{j} \leq 2\right\}
$$

$\leq \frac{1}{2} \varepsilon+\sup \left\{\left|\sum_{\mathrm{i}, \mathrm{j}=1}^{2} \mathrm{a}_{\mathrm{ij}}^{\prime}<\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}>\right|:\left\|\mathrm{x}_{\mathrm{i}}\right\| \leq 1,\left\|\mathrm{y}_{\mathrm{j}}\right\| \leq 1, \quad 1 \leq \mathrm{i}, \mathrm{j} \leq 2\right\}$
$\leq \frac{1}{2} \varepsilon+\left\|\mathrm{a}^{\prime}\right\|_{\infty, 1}$
$\leq \varepsilon+\|\mathrm{a}\|_{\infty, 1}$
Let $\varepsilon \rightarrow 0$ to get the result we want.

References.

[1] J.L.Krivine. Constantes de Grothendieck et fonctions de type positif sur les spheres. Adv. in Math, 31 (1979) 16-30.
[2] J. Lindenstrauss and L.Tzafriri. Classical Banach spaces I. Springer (1977).
[3] G.Pisier. Grothendieck's theorem for non-cotntnutative C^{*}-algebras with an appendix on Grothendieck's constants. J. Funct. Anal. 29 (1978) 397-415.

