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the maximum initial amplitude of submarine 
landslide‑generated waves

Abstract  The accurate prediction of landslide tsunami amplitudes 
has been a challenging task given large uncertainties associated 
with landslide parameters and often the lack of enough informa-
tion of geological and rheological characteristics. In this context, 
physical modelling and empirical equations have been instru-
mental in developing landslide tsunami science and engineering. 
This study is focused on developing a new empirical equation for 
estimating the maximum initial landslide tsunami amplitude for 
solid-block submarine mass movements. We are motivated by the 
fact that the predictions made by existing equations were divided 
by a few orders of magnitude (10−1–104 m). Here, we restrict our-
selves to three main landslide parameters while deriving the new 
predictive equation: initial submergence depth, landslide volume 
and slope angle. Both laboratory and field data are used to derive 
the new empirical equation. As existing laboratory data was not 
comprehensive, we conduct laboratory experiments to produce new 
data. By applying the genetic algorithm approach and considering 
non-dimensional parameters, we develop and examine 14 empiri-
cal equations for the non-dimensional form of the maximum ini-
tial tsunami amplitude. The normalized root mean square error 
(NRMSE) index between observations and calculations is used to 
choose the best equation. Our proposed empirical equation suc-
cessfully reproduces both laboratory and field data. This equation 
can be used to provide a preliminary and rapid estimate of the 
potential hazards associated with submarine landslides using lim-
ited landslide parameters.

Keywords  Experimental fluid mechanics · Hydraulic 
engineering · Landslide · Landslide-generated waves · Tsunami

Introduction and literature review
Landslide-generated tsunamis have been at the centre of attention 
within the scientific community in recent years; this is particularly 
true following the September 2018 Palu (Indonesia) (Takagi et al. 
2019; Gusman et al. 2019) (Fig. 1b) and December 2018 Anak Kraka-
tau tsunamis (Grilli et al. 2019; Heidarzadeh et al. 2020), which 
together left more than 2000 deaths. Another significant landslide 
tsunami occurred in Papua New Guinea (PNG) in July 1998, which 
generated a maximum run-up of 15 m, causing more than 2100 
casualties (Synolakis et al. 2002; Tappin et al. 2008) (Fig. 1c). In 
addition, an on-land earthquake in Pakistan generated a landslide 
tsunami in September 2013 (Fig. 1a; Heidarzadeh and Satake 2014).

The accurate prediction of the maximum initial amplitude of 
landslide waves around the source region is an important hazard 
indicator for coastal impact assessment and proper modelling of the 
propagation and inundation of landslide tsunamis. In general, there 

are three different approaches to characterize the waves generated 
by submarine failures, comprising numerical simulations (e.g. Sassa 
et al. 2016; Løvholt et al. 2020), analytical calculations (e.g. Harbitz 
and Pedersen 1992) and physical modelling (e.g. Gómez et al. 2016). 
Due to the complexities associated with two-phase flows including 
water and solid involved in the evolution of landslide-generated 
waves, empirical equations proved beneficial for predicting the 
initial maximum amplitudes of the waves (Synolakis 2003; Watts 
et al. 2005; Sabeti and Heidarzadeh 2020). A large body of research 
on the subject is associated with physical modelling of the phenom-
enon through two-dimensional solid blocks sliding down a plane 
slope (e.g. Wiegel 1955; Iwasaki 1982; Heinrich 1992; Watts 1998; Grilli 
and Watts 2005; Najafi-Jilani and Ataie-Ashtiani 2008; Fernández-
Nieto et al. 2008; Tinti and Tonini 2013). In addition, other research-
ers conducted three-dimensional physical modelling (e.g. Synolakis 
and Raichlen 2003; Liu et al. 2005).

A few researchers have proposed empirical equations for the pre-
diction of the maximum initial landslide tsunami amplitudes ( �max ); 
this is the maximum amplitude, either negative, �max,n , or positive, 
�max,p , of the landslide-generated waves around the source region 
after the generation phase. The majority of submarine landslide 
studies have considered �max,n for investigating the subject (Fig. 2). 
Table 1 presents a few such predictive equations while the full list is 
given in Sabeti and Heidarzadeh (2020). There are six main land-
slide parameters that affect �max,n : the slide specific gravity ( �s ), initial 
submergence depth ( d ), slide length ( B ), width ( w ), thickness ( T ) 
and slope angle ( � ) (Fig. 2b). Murty’s (2003) equation requires only 
three of these initial landslide parameters, whereas those equations 
of Watts et al. (2005) and Harbitz and Pedersen (1992) require four/
five input parameters. The performance of the existing predictive 
equations was assessed by Sabeti and Heidarzadeh (2020). It was 
shown that the �max,n predictions made by different equations are 
divided by a few orders of magnitude (10−1–104 m); therefore, it is 
essential to conduct further studies on this topic.

The objective of this research is to develop a new empirical 
equation for predicting the maximum initial wave amplitude gen-
erated by a solid-block submarine landslide incorporating a few 
main landslide parameters. A motivation for this research is the 
lack of credible empirical equations in the literature for submarine 
landslide tsunamis, although more works have been done on suba-
erial landslides in the past decades. We use available experimental 
and field data from the literature along with some new laboratory 
data generated by our physical experiments to derive the new equa-
tion. In comparison to a previous study by Sabeti and Heidarzadeh 
(2020), in which they solely used field data from past landslide tsu-
namis, in the current study, we conduct new laboratory experiments 
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to add to the existing data, use a more comprehensive dataset com-
prising a mix of field and laboratory data, employ non-dimensional 
forms of landslide parameters and apply a sophisticated regression 
tool. Moreover, the slope angle ( � ), which is an important param-
eter contributing to landslide-generated waves, is added to our new 
equation. The performance of the new equation is evaluated by 
reproducing the wave amplitude of three real landslide tsunamis.

Data and methods
Our approach is to fit an empirical equation to the data of the 
maximum negative initial amplitude of landslide-generated waves 
( �max,n ). The dataset is partially from published physical experi-
ments (i.e. Watts 1997; Enet and Grilli 2007; Najafi-Jilani and Ataie-
Ashtiani 2008; Ataie-Ashtiani and Najafi-Jilani 2008) and partially 
from laboratory experiments conducted in this study as well as 
some field data from past landslide tsunamis.

We consider a submarine slide as a moving rigid body along a 
straight incline (Fig. 2b) with the centre of mass motion ( St) parallel 
to the incline and subject to external forces from added mass, drag 

force, gravity and dissipation (Table 2). Therefore, we apply the fol-
lowing relationships for estimating the terminal velocity ( ut ), initial 
acceleration ( a0 ) and motion of slide ( St) (Watts 2000):

where mb is the solid mass; w is the width of the slide; B is the 
length of the slide; m0 is the displaced mass of water which can 
be obtained from the water density ( �0 ) and the solid block vol-
ume ( V  ) through the following equation: m0 = �0V  ; Cm is the 
added mass coefficient; Cn is the Coulombic friction, which is 
influenced by the solid block and incline materials; Cd is the drag 

(1)a0 =

(

mb −m0

)

g(sin � − Cncos �)

mb + Cmm0

(2)ut =

√

2
(

mb −m0

)

g(sin � − Cncos �)

Cd�0wBsin �

(3)St = S0

[

lncos(
t

t0
)

]

Fig. 1   The initial waves generated by worldwide submarine land-
slide tsunamis (a) in the Makran region of the NW Indian Ocean dur-
ing the 2013 Pakistan tsunami, (b) in Palu, Indonesia, during the Sep-
tember 2018 tsunami and (c) in Papua New Guinea during the 1998 

tsunami. The data of the panels (a) and (c) are based on Heidarzadeh 
and Satake (2014) and (2015), respectively. The maximum initial ele-
vation and depression waves are marked in each panel
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coefficient depending on the solid block shape; and St is an 
approximation of centre of mass motion along the slope over 
time. The characteristic distance ( s0 ) and characteristic time ( t0 ) 

of landslide motion are derived directly from the equation of 
solid block motion (Eq. 3) as s0 =

ut
2

a0
 and t0 =

ut

a0
.

Fig. 2   (a) Photo showing the 
wave flume, the two wave 
gauges (WG-1, WG-2), the slope 
and the sliding mass used in this 
study. (b) Sketch showing the 
landslide parameters. The thin-
dashed line shows the rope used 
for holding and releasing the 
block. (c) A photo of the largest 
solid block

Table 1   A few existing predictive equations for estimating the maximum initial wave amplitude of submarine landslides ( �max or �max,n)

*�max is the wave zero-to-trough (or zero to crest) amplitude; �max,n is the wave zero-to-trough amplitude. For Murty (2003), the input value for 
V  must be in 106 m3; � is the angle of the slope; S0 is the characteristic distance of landslide motion; dref = Bsin� is the reference thickness; Xf  is 
the shifted distance of two families of free waves; tr is the running time of slide; Fr is the Froude number ( Fr = U∕C0 ; where U is the slide velocity 
and C0 =

√

gh is the water phase speed with h as the water depth); � the is shear stress; C0 is the wave speed; �s = �s∕�w is the slide specific grav-
ity; �s is the solid block density and �w is the water density.

Equation* Range of validity Author

�max =
�tr

2�C0
   Xf < x − B − C0 Harbitz and Pedersen 

(1992)
�max =

�B

2�C0
2
|
1−Fr|

   Xf > B

�max = 0.3945V N/A Murty (2003)

�max,n = S0(0.05741 − 0.0431sin�)
(

T

B

)(

Bsin�

d

)1.25 � ∈ [5,30]
◦

d∕dref ∈ [0.06,3]

T∕B ∈ [0.008,0.2]

Watts et al. (2005)
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To determine the kinematic coefficients ( Cn , Cd , Cm ), we used 
Eqs. (1) and (2). In particular, for determining the Coulombic fric-
tion coefficient (Cn = tan�) , first, we measured the critical incline 
angle (�) by increasing the slope angle in the laboratory until the 
block starts to slide. The test was repeated three times for each 
solid block, and the average value of � was taken. Measurements 
of the terminal velocity (ut) and initial acceleration (a0) were done 
by using an accelerometer (model: 3-Axis Vibration/Acceleration 
Data Logger OM-VIB-101; https://​www.​omega.​co.​uk/). The results 
were then applied to Eqs. (1) and (2) in order to calculate Cd and Cm . 
For every solid block, the measurements of velocity and accelera-
tion were repeated three times, and the average values were taken. 
Based on the measurements, the mean drag coefficient of Cd ≅ 1.32 
and Cm ≅ 0.84 were obtained.

The characteristic tsunami wavelength ( �0 ) is given by the follow-
ing equation (Watts 1998; Grilli and Watts 2005):

where g is the gravitational acceleration and d is the initial submer-
gence depth. To cope with the downscaling effect of real events into 
laboratory size, Froude similarity has been applied in this study. We 
note that Froude similarity may work best for situations where the 
friction effects are negligible. For submarine landslides, dispersive 
effects can be expressed by the relative depth parameter, � = d∕�0 
(Table 3). The values of � higher than ∼ 0.5 indicate fully dispersive 
deep-water waves, whereas a value of less than ∼ 0.05 shows non-
dispersive long waves (Dean and Dalrymple 1991). The Froude num-
ber ( Fr ) is a measure of the terminal landslide velocity ( ut ) relative 
to the speed of a shallow-water wave in water depth ( h) . In general, 
for experimental studies of submarine slides, Fr was defined with 
the maximum slide velocity reached during the submarine slide 
motion ( ut ) (Watts 1997):

Typical real-world submarine landslide-generated tsunamis are 
in the range of Fr < 1 (McFall and Fritz 2016).

Figure 3 presents some of existing landslide laboratory data. The 
data are from Watts (1997) (abbreviated as WTS-97 hereafter), Enet 
and Grilli (2007) (ENT-07) and Najafi-Jilani and Ataie-Ashtiani 
(2008) (JIL-08). WTS-97 used only triangular prisms in their experi-
ments whereas ENT-07 employed elliptic blocks. A range of geomet-
rical shapes (square, triangle and circle) was used by JIL-08 to model 
submarine landslides. Due to the gaps in existing experimental data 
(Fig. 3), some complementary experiments were required to pro-
vide a satisfactory dataset for deriving our new predictive equation, 

(4)�0 = to
√

gd

(5)Fr =
ut

√

gh

which would help to fill the gap in data. While the distribution of 
data over submergence depth appears to be satisfactory (Fig. 3a), 
there are major data gaps for other parameters such as the slide vol-
ume (Fig. 3b) and slope angle (Fig. 3c). Although the data range for �  
in existing literature varies from 15° to 60°, it covers only four values 
of 15°, 30°, 45° and 60° with very limited data points for each angle. 
Accordingly, we focused on producing data for V  and � by consider-
ing three different slide volumes (from 1 × 10−12 km3 to 3 × 10−12 km3) 
(Table 2) and five slope angles ( � = 20°, 30°, 38°, 45° and 50°). The 
three values for V  and three values for � in our experiments are new 
as compared to existing data. Two values of � , however, have been 
available from past experiments; the reason for using these values 
of � was to produce a range of values for � enabling us to establish a 
relationship between � and �max,n . As seen in Fig. 3, the existing data 
indicate an inverse correlation between d and �max,n (Fig. 3a) and a 
direct relationship between V  and �max,n (Fig. 3b). The relationship 
between V  and �max,n can be seen by looking at a particular dataset 
(for example white-open circles) at a time (Fig. 3b). Regarding � , our 
new experimental data (open circles in Fig. 3c) give a direct relation-
ship between � and �max,n.

A series of physical tests were performed in a 0.26 m wide, 
0.50  m deep and 4.0  m long wave tank at Brunel University 
London (UK). The experimental set-up included five different 
inclined planes (i.e. 20°, 30°, 38°, 45° and 50°). The solid blocks 
had three different volumes (Table 2; 2.600 × 10−12 km3, 1.292 × 
10−12 km3 and 0.7303 × 10−12 km3). Other specifications of the solid 
blocks are given in Table 2. We used a hook on the solid block 
and a rope to move the solid block in position prior to release. 
The initial submergence ( d ) and water depth ( h ) in the tank were 
adjusted to constant values of d = 0.08 ± 0.005 m and h = 0.375 m 
as we aimed at producing more laboratory data for the set-up 
previously used by Watts (1997). Overall, we conducted 15 physical 
experiments by varying slope angles and slide volumes (Table 2) 
whose resulting waveforms are shown in Figs. 4 and 5.

The generated surface waves were measured using two preci-
sion capacitance wave gauges (twin wire wave probe; HRIA-1016: 
http://​equip​it.​hrwal​lingf​ord.​com/): one located at the top of the 
submerged slides and the other at a distance of 1.6 m from the 
first gauge (Fig.  2a). Only the gauge located on the top of the 
mass is used in the present study. The gauge recordings were col-
lected through an acquisition system at 50 Hz with an accuracy 
of ± 0.1 mm. The waveforms resulted from our experiments are 
sorted into five groups based on the slope angles (Figs. 4 and 5). Fig-
ures 4 and 5 demonstrate that by increasing the slope angle ( � ) and 
slide volume ( V  ), the maximum initial amplitude ( �max,n ) increases. 
Increasing the initial submergence depth ( d ) causes a decrease in 

Table 2   Characteristics of the 
three solid concrete blocks 
used for landslide experiments 
in this study

*Parameters are as follows: B , slide length (m); w , slide width (m); T  , slide thickness (m); V  , slide volume 
(km3); mb , solid block mass (kg); m0 the displaced mass of water (kg) and �s , slide specific gravity

Solid block* B(m) w(m) T(m) V(km3) mb(kg) m0(kg) γs
Concrete triangular prism I 0.200 0.260 0.100 2.600 × 10−12 6.760 2.600 2.60

Concrete triangular prism II 0.141 0.260 0.071 1.292 × 10−12 3.355 1.292 2.60

Concrete triangular prism III 0.106 0.260 0.053 0.730 × 10−12 1.900 0.730 2.60
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�max,n . Therefore, the highest �max,n is generated by the largest con-
crete prism over the 50° slope (Fig. 4a, red).

Based on Sabeti and Heidarzadeh (2020), the slide volume ( V  , 
initial submergence depth (d) and slope angle (θ) are among  
the most important parameters for predicting the initial wave 
amplitude. Hence, we define the non-dimensional maximum  
initial tsunami amplitude ( 

�max,n

d
 ) as a function of  non- 

dimensional forms of  these most important parameters 
( sin�; V

d3
;
V

Bd2
;
d

B
;
d

h
and

mb

�wBd
2
 ) as previously adapted by Watts (1997), 

Watts et al. (2005) and Najafi-Jilani and Ataie-Ashtiani (2008). 
We developed and examined 14 empirical equations using the 
aforementioned non-dimensional parameters. These non- 
dimensional forms have been inspired by previous research 
including Fritz et al. (2004), Heller and Spinneken (2015) and 
Slingerland and Voight (1982). The powers and coefficients of the 
empirical equations are obtained using curve fitting of the exper-
imental data applying the polynomial fitting toolbox of the  
MATLAB software (MathWorks 2020). However, the final predic-
tive equation for estimating × are achieved through the stochastic 
optimization technique of genetic algorithm (GA) (MathWorks 
2020). The GA toolbox uses a cost function to build a set of ver-
satile routines for implementing a wide range of GA methods 
(Chipperfield et al. 1994). To quantify the quality of fit between 
observations (i.e. experimental and field data) and the calcula-
tions from the predictive equations, we used the normalized root 
mean square error (NRMSE) equation (Aida 1978; Heidarzadeh 
et al., 2016):Ta
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Fig. 3   Existing experimental data on submarine landslide-generated 
waves. Experimental data relating the maximum initial wave ampli-
tude ( � = ) with (a) the initial submergence depth, V  ; (b) the vol-
ume of the sliding mass, � ; and (c) the angle of the slope ( � ). Abbre-
viations: WTS-97, Watts (1997); ENT-07, Enet and Grilli (2007); JIL-08, 
Najafi-Jilani and Ataie-Ashtiani (2008)
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where i = 1, 2,… ,N refers to the number of observations/calcula-
tions; obs stands for observations (experimental/field data); cal is 
calculated values from predictive equations; and obs is the average 
of observations. In an ideal case, if the agreement between observa-
tions and calculations is perfect, the NRMSE becomes zero.

(6)NRMSE =

�

∑N

i=1
(obsi − cali)

2

�

∑N

i=1
(obsi − obs)

2

Analysing the effects of individual landslide parameters
In this section, we use the experimental data to establish a relation-
ship between �max,n and different landslide parameters, based on 
dimensional parameters.

To determine the power of the relationship between d and �max,n , 
we fitted three curves to the experimental data of WTS-97, ENT-07 
and JIL-08 (Fig. 6a). The initial submergence depth varies in the 
range of 0.025–0.189 m for these experimental data. We observed 
an inverse relationship between d and �max,n ; however, the rate of 

Fig. 4   Recordings of the 
landslide-generated waves at 
WG-1 (see Fig. 2 for its loca-
tion) in laboratory experiments 
for cases of slopes � = 38°, 45° 
and 50°. The parameters for 
each experiment are shown as 
legends in the panels. (a) For 
slope angle 50 degrees. (b) For 
slope angle 45 degrees. (c) For 
slope angle 38 degrees
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change was different for various experimental data (Fig. 6a). The 
powers of the relationship obtained for the experimental data of 
WTS-97 and JIL-08 were in a similar range whereas that of ENT-
07 was different. This could be attributed to the different landslide 
geometry used by ENT-07 and its 3D nature (Heller and Hager 2011; 
Ruffini et al. 2019). Our experimental set up is similar to the data 
of JIL-08 and WTS-97. Accordingly, we consider the effects of the 
initial submergence, d, with the average relationship power of WTS- 
97 and JIL-08 data as follows:

For V  , we used the existing experimental data of WTS-97 and 
JIL-08 along with our own physical tests (Fig. 6b). These data, with 
V  in the range of 0.35 × 10−12–7.80 × 10−12 km3, indicated a direct 
relationship between V  and �max,n . The solid lines and the equations 
associated with them (Fig. 6b) were considered for deriving the 
relationship. The average powers obtained through fitting equations 
to the experimental data of JIL-08, and this study were employed to 
provide the power of V  as follows:

The direct relationship between �max,n and � was demonstrated 
through our physical experiments and that of JIL-08 (Fig. 7). The 
effect of � was examined by changing the slope angle in the range 

(7)�max,n ∝ d−1.095

(8)�max,n ∝ V 0.295

of 15–60°. We obtained the power of sin� by calculating the average 
of the powers of the fitted equations using experimental data of this 
study and JIL-08 as follows:

The new predictive equation
The curve fitting on the existing experimental data indi-
cates that V  and � are directly related to �max,n (Figs. 6b and 
7) while �max,n is inversely correlated (Fig. 6a). By considering 
the non-dimensional forms of these three essential landslide 
parameters, here, 14 equations are developed for predicting 
�max,n (Eqs. 10-23 in Table 4). Equations (10), (13), (16) and (19) 
are inspired by equations for individual parameters in the 
“Analysing the effects of individual landslide parameters” 
section while the structures of Eqs. (11), (14), (17) and (20) 
are encouraged by Sabeti and Heidarzadeh (2020). For Eqs. 
(12), (15), (18) and (21), we followed the format of a previous 
equation by Murty (2003); and finally, the two Eqs. (22) and 
(23) are inspired by Heller and Spinneken (2015). For deriv-
ing these equations, we have applied three sets of available 
experimental data (Watts 1998; Enet and Grilli 2007; Najafi-
Jilani and Ataie-Ashtiani 2008), the present experimental data 
(Figs. 4 and 5), and some field data from past landslide tsunami 
events (Table 5). These 14 equations are compared based on  

(9)�max,n ∝ (sin�)1.650

Fig. 5   Recordings of the 
landslide-generated waves at 
WG-1 (see Fig. 2 for its loca-
tion) in laboratory experiments 
for cases of slopes � = 20° 
and 30°. The parameters for 
each experiment are shown as 
legends in the panels. (a) For 
slope angle 30 degrees. (b) For 
slope angle 20 degrees
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the NRMSE index (Eq. 6). Among the nominated equations in 
Table 4, Eq. (19) gives the minimum NRMSE indicating a better 
agreement between calculations and observations (Table 4, last 
column). The performance of the derived equations (Eqs. 10–23) 
is shown by comparing the calculated maximum negative ini-
tial wave amplitude using various equations ( �max,n_cal ) and the 
observed experimental and field data ( �max,n_obs ) (Fig. 8). Equa-
tion (19) is able to predict �max,n_cal with acceptable accuracy (i.e. 
NRMSE < 0.2) for both experimental and field data (Fig. 8).

In order to further evaluate the performance of Eq. (19), it is 
applied to three past landslide tsunami events whose data were 
not used for developing this equation (Table 6; the events of 
2018 Palu, 2013 Pakistan and 1998 PNG). The observed values 
(Table 6; column 7) are the initial wave amplitudes on the top 
of the landslide locations (Fig. 2) which were numerically esti-
mated by Synolakis et al. (2002) and Heidarzadeh and Satake 

(2017) for the PNG and Pakistan events, respectively. For the 
2018 Palu event, the estimation of the maximum initial wave 
is based on the bathymetric survey of Frederik et al. (2019) 
and applying empirical equations of Watts et al. (2005). The 
results in Table 6 indicate a relatively good agreement between 
the calculated values using Eq. (19) and the observed data. The 
average prediction errors, based on percentage of deviations 
between observations and predictions, are 70%, 20% and 24% 
for the 1998, 2013 and 2018 events, respectively, indicating that 
the observations and calculations are in the same range for 
the 2013 and 2018 events while the equation slightly overes-
timates for the 1998 event. Prior to this study, the estimates 
from existing equations for �max,n were divided by a few orders 
of magnitudes (factors of thousands) from actual observation 
data (Sabeti and Heidarzadeh 2020). Although predictions by 
Eq. (19) are associated with some errors, it is a step forward in 

Fig. 6   Curve fitting on the 
experimental data of the maxi-
mum initial wave amplitude 
( d ) versus (a) initial submer-
gence depth, �max,n , and (b) 
volume of the sliding mass, 
�max,n . Abbreviations: WTS-97, 
Watts (1997); ENT-07, Enet and 
Grilli (2007); JIL-08, Najafi-Jilani 
and Ataie-Ashtiani (2008). The 
solid red circles show the data 
points obtained through the 
experimental works of this 
study
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estimating the maximum amplitudes of the landslide generated 
waves. This improvement could be attributed to our use of both 
experimental and field data while deriving the new predictive 
equations.

A challenge for landslide tsunami hazard assessment is often 
the lack of credible information on different landslide param-
eters. Although high-quality numerical models are available, 
they are not useful without detailed information about the loca-
tion, geometry and rheology of the landslides. In this context, 

empirical equations, such as Eq. (19), can be helpful for prelimi-
nary hazard investigations. In particular, at the early stages of 
landslide tsunami hazard studies, empirical equations can help 
to provide valuable information for future detailed numerical 
modelling. The new predictive equation (Eq. 19) is capable of 
supplying a rapid and fair estimate of potential hazard associ-
ated with submarine landslides given the limited information 
available about submarine landslides.

Fig. 7   Curve fitting on 
the experimental data of 
the maximum initial wave 
amplitude ( �max,n ) and slope 
angle ( � ). JIL-08 is the acronym 
for Najafi-Jilani and Ataie-
Ashtiani (2008). Panel (a) is 
for the experimental data of 
JIL-08 while panel (b) is for our 
experimental work
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Table.4   The candidate non-dimensional equations used in this study for estimating the maximum initial amplitude of landslide waves ( �max,n)

*Based on Eq. (6)

Candidate equations Equation 
number

NRMSE*

����,�

d
= 0.023 ×

(
V

d3
)
0.295

×����1.650

(
d

B
)
1.095

(10) 0.40

����,�

d
= 0.068×(

V

d3
.����

d

B

)
0.33 (11) 0.49

����,�

d
= 0.049 × (

V

d3
.����

d

B

)
(12) 0.59

����,�

d
= 0.0080 ×

(
V

d3
)
0.295

×����1.650

(
d

h
)
1.095

(13) 0.34

����,�

d
= 0.032×(

V

d3
.����

d

h

)
0.39 (14) 0.37

����,�

d
= 0.0024 × (

V

d3
.����

d

h

)
(15) 0.50

����,�

d
= 0.014 ×

(
V

Bd2
)
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×����1.650

(
d
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)
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(16) 0.35
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)
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d
= 0.016 × (

V
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.����

d

B

)
(18) 0.49

����,�

d
= 0.048 ×
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Table 5   Field data of actual landslide tsunami events used in this study to extract the predictive equations

Event name Slide 
volume 
(km3)

Initial 
submergence 
depth (m)

Water depth 
(m)

Slide length 
(m)

Slope angle (°) Maximum 
observed initial 
amplitude (m)

References

1975 Kitimat (Canada) 0.023 80–120 160–180 274–1000 11 4.2 Murty (1979); Kirby et al. (2015)

1979 Nice (France) 0.0022 47 50–100 346–652 11 1.4 Murty (2003); Dan et al. (2007); 
Ioualalen et al. (2010)

1994 Skagway (USA) 0.0032 26–40 55–72 180–600 17.5 1.5 Watts et al. (2003); Rabinovich et al. 
(1999)

1999 Izmit (Turkey) 0.0052 25 55 140–160 15 1.5 Tinti et al. (2006)

Fig. 8   Comparison of 
experimental and field data 
( �max,n_obs ) with estimates made 
by various predictive equa-
tions ( �max,n_cal ) (see Table 4 
for Eqs. 10–23). Panel (a) is for 
Equations 10-16 and panel (b) 
is for Equations 17–23
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Conclusions
In this study, we developed a new predictive equation for the maxi-
mum negative initial wave amplitude ( �max,n ) generated by subma-
rine solid-block landslide tsunamis. This study was motivated by 
the fact that results from existing equations for 

����,�

d
= 0.068×(

V

d3
.����

d

B

)
0.33

 were divided 
by a few orders of magnitudes from observation data. Here, we used 
existing experimental and field data and applied the genetic algo-
rithm to develop a new predictive equation. Due to a gap in existing 
experimental data and lack of sufficient data on the relationship 
between initial landslide tsunami amplitude and landslide param-
eters, we generated some data points through laboratory experi-
ments. We used the non-dimensional forms of three main land-
slide parameters for the new equation: initial submergence depth, 
landslide volumes and slope angle. Fourteen candidate equations 
with different formats were developed in this study, and their per-
formances in reproducing experimental and field data were exam-
ined. Finally, the best equation was chosen based on the criterion of 
minimum Normalized Root Mean Square Error between observa-
tions and calculations. The proposed equation is capable of repro-
ducing both experimental and field data with satisfactory accuracy.
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