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Abstract 1 

Supercapacitor (SC) is one of the most trending energy storage solutions. The SCs equivalent circuit 2 

models have been extensively applied to energy management because of their accuracy and simplicity. 3 

However, there is a difficulty in solving the conventional differential equation-based model used to 4 

characterize the electrical behavior of SCs operating in constant power applications. Hence, numerical 5 

or metaheuristic techniques have been used in the literature to derive SC’s internal voltage at any time. 6 

In this work, a thorough mathematical analysis that enables a precise calculation of the electrical variables 7 

implied in the charge/discharge processes of SCs operated at constant power as a function of time is 8 

presented. First, the transcendental discharge voltage expression of SCs operating at constant power is 9 

formulated, and then it was solved using the Special Trans Function theory (STFT). The precision of 10 

calculation of the method used for solving the transcendental expression is presented and discussed. 11 

Second, the transcendental voltage of charging expression of SCs operating at constant power as a 12 

function of time is also formulated, and then it was solved using Lambert W equation. Third, a 13 

comparison of different methods for solving mentioned equations is presented. Fourth, the electrical 14 

variables involved in the charge/discharge processes of SCs – voltage, current, power, energy, state of 15 

charge, and power loss are investigated. Furthermore, the results obtained for the variation of parameters 16 

and their operating conditions demonstrate the proposed equations’ applicability and accuracy. Finally, 17 

the results obtained validate that the closed-form expressions suggested in this paper are accurate and 18 

straightforward, which can contribute to proper modeling, investigation, sizing, regulation, and control 19 

of constant power SCs in modern energy systems.  20 

 21 

Keywords— Charge and discharge processes; constant power applications; Lambert W function; 22 

mathematical analysis; parameter estimation; supercapacitors; transcendental equations.  23 
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Abbreviations 24 

PECE  Predictor-corrector method 25 
RC  Series-connected resistance (R) and capacitance (C) that represents the SC model 26 
RESs  Renewable energy sources 27 
SC  Supercapacitor 28 
SoC  State of charge 29 
TS  Taylor series 30 
STFT  Special Trans Function Theory 31 
 

Nomenclature 32 

a   Arbitrary positive real number 33 
C   Capacitance of the SC (kF) 34 
Edischarge  Discharge energy (J) 35 
Estored   Energy stored in the SC (J) 36 
i   Discharge current (A) 37 
G> and G<  Error functions  38 
M   Positive integer 39 
R   Internal resistance of the SC (mΩ) 40 
P   Constant power (W) 41 
Ploss  Power losses of the SC 42 
Pr   Calculation precision 43 
t  Time needed by the internal voltage to reach a current value from the initial one (ms) 44 
u   Internal voltage (v) 45 
U0  Initial starting voltage 46 
uco   External voltage (v) 47 
[x]   The largest integer that is less than or equal to x 48 
α      Coefficient of the transcendental expression of the SC charge equation 49 
β   Coefficient of the transcendental expression of the SC discharge equation 50 
θ  Variable of the transcendental expression of the SC discharge equation 51 
Ψ   Variable of the transcendental expression of the SC charge equation  52 
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1. Introduction 53 

Energy generation from renewable energy sources (RESs) is emerging across the world 54 

rapidly in response to technical, economical, environmental, political, and social requirements 55 

under the umbrella of curbing the usage of high-carbon conventional fossil energy resources to 56 

droop the increasing rate of global warming [1]. However, many factors affect the operation of 57 

modern power systems with high penetration of RESs, such as the intermittent nature of 58 

renewables and geographic constraints, and incomplete flexibility for power system operators 59 

to reduce frequency fluctuations and balance generation and demand in the long term [2], 60 

particularly with the increased RESs share in global energy markets. Therefore, there is an 61 

imperative need to store energy using the developing energy storage (ES) technologies [3], [4]. 62 

There is no doubt that ES is the primary driver towards achieving emission-free power 63 

generation that can accelerate the conversion of energy systems from fossil fuel-based sources 64 

to renewable-based sources [5], [6]. 65 

In the broadest sense, energy storage is one of the good facilities that can increase 66 

resiliency and enhance reliability of modern energy systems and enable the integration of clean 67 

renewable energy sources into these systems. Many ES technologies with various energy 68 

capacities that rely on chemical, thermal, electrical, mechanical, or electrochemical solutions 69 

can be connected to energy systems [7]. One of the most interesting ES applications that need 70 

rapid charge/discharge cycles is the supercapacitors (SCs). They are a particular type of 71 

capacitors with a capacitance value much higher than the traditional capacitors [8]. SCs can 72 

store 10 to 100 times more energy per unit volume than electrolytic capacitors, accept charge 73 

much faster than any batteries [9], [10]. SCs are frequently used to improve power quality, 74 

afford backup power, and support voltage since their long cyclability, high efficiency, and rapid 75 

response characterize them [5]. For instance, they are widely employed in several applications 76 

such as hybrid electric vehicles [11], induction generators and energy storage applications [12], 77 

[13], power supplies [14], wireless sensors nodes [15], [16], oscillator circuits [17] and others. 78 

However, SCs have a lower voltage limit and are characterized by low energy density and high 79 

self-discharge loss and cost [5]. Because the research interest in SC modeling is growing, 80 

accurate SC models are essential for developing management systems to investigate electrical, 81 

aging, and thermal concerns accurately [18]. So, it is imperative to form a simple but accurate 82 

mathematical model to simulate the SC’s performance [19].  83 

In the available literature, several models of these devices have been developed [18]. 84 

From the electrical perspective, in [18], Zhang et al. presented an overview of various SC 85 

models – electrochemical, equivalent circuit, intelligent-based, and fractional-order. The 86 
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equivalent SC models of Zhang are widely recognized and used due to their simplicity and 87 

accuracy. Moreover, comprehensive research about SC models was offered by Grbovic et al. 88 

in [20]. Unlike Zhang et al.’s investigation, Grbovic et al. in [20] have treated the SC as a 89 

varying capacity. Hereafter, the third usually used model for SC representation was presented 90 

by Musolino et al. in [21]. However, Musolino SC models are complex as they consider many 91 

factors to parameterize low and high-frequency currents’ effects on SC cells. 92 

A series-connected resistance (R) and capacitance (C) represent the classical SC model, 93 

known as the RC model [22–24], which is widely used in all studies dealing with the charge 94 

and discharge process of the SC. Some research works have promoted an adapted SC model 95 

by including a parallel resistance to account for the leakage current [25]; it can be used when 96 

the self-discharge phenomenon is the primary motivator. It can be concluded that the RC model 97 

modification does not significantly impact the model accuracy, although it gives a better SC 98 

representation. What makes the SC modeling problem more difficult is unknown or missing 99 

parameters or the incomplete data in the datasheets offered by the vendors and manufacturers. 100 

Also, sometimes, SC parameters can be found in the manufacturer datasheet, but it is needed 101 

to estimate them based on other data or certain operating conditions [26].  This is why it is not 102 

simple to model the SC characteristics precisely with the missing data. However, the positive 103 

point that strengthens the use of the RC model is that its parameters could be considered 104 

constant in normal operating conditions, particularly the temperature, without significant errors 105 

[27], [28]. SCs usually operate in the charge/discharge process at constant current, impedance, 106 

and power [29]. The time-domain analytical expressions for all electrical characteristics of SCs 107 

under these modes of operations are presented in [29]. However, SCs have been used in most 108 

practical applications through the charge/discharge process at constant power or constant 109 

current [26]. In this regard, because the RC-based models in constant power applications have 110 

a complex mathematical solution, the authors in [29] have solved the SC modeling problem 111 

numerically using the predictor-corrector (PECE) method. Namely, the mentioned method 112 

extends Adams-Bashforth-Moulton's procedure for solving ordinary differential equations by 113 

fractional differential derivatives [30]. Closed-form expressions of SC electrical variables 114 

using Lambert W function in constant power applications are presented by Joaquín Pedrayes 115 

et al. in [26]. Both charge and discharge processes are formulated using the Lambert W function 116 

without solving complex differential equations. However, the discharge process results are only 117 

presented. Much additional mathematical formulation is given and added in the mathematical 118 

representation of this process, complicating its entire screen. Furthermore, no comments were 119 

made or discussed on the analytical solution of the proposed equations.  Moreover, both charge 120 
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and discharge processes were presented in terms of the standard Lambert W function without 121 

sufficient feedback on the solutions' number, accuracy, and complexity. 122 

In this paper, a thorough mathematical time-domain analysis that enables a precise 123 

calculation of all electrical variables involved in charge/discharge processes of SCs (voltage, 124 

current, power, and energy) operated at constant power is presented. Knowing the time-current 125 

and time-voltage (and vice-versa) curves during charge or discharge processes of SCs, accurate 126 

information can be obtained on SC’s voltage value or SC’s value at any time interval. These 127 

expressions can be useful in control loops where it is needed to control the value of 128 

current/voltage during the charge/discharge process of SCs or to calculate the SC’s internal 129 

voltage value at any time. The proposed analytical closed-form expressions permit a direct 130 

calculation of all electrical variables involved in charge/discharge processes of SCs as a 131 

function of time, in addition to permit calculating the interrelations between these electrical 132 

variables in a straightforward matter, which can advance a good base for proper modeling, 133 

investigation, sizing, regulation, and control of constant power SCs in modern energy systems.   134 

Mathematically speaking, the discharge process of SCs operating at constant power can 135 

be represented as a function of the type x=β(exp(x)). This equation has two solutions. However, 136 

taking into account the physical constraints, only one is acceptable. Also, the charging process 137 

of SCs operating at constant power can be represented as a function of the type z=α(exp(-z)), 138 

which also has one solution. In this regard, both the derived transcendental equations and 139 

corresponding expressions for electrical variables involved in SCs’ charge/discharge processes 140 

in constant power applications as a function of time are solved analytically. The mathematical 141 

expressions derived are accurate and straightforward and do not require any other mathematical 142 

formulations. Furthermore, a comparison of different methods for solving mentioned equations 143 

is presented.  144 

The rest of the work is organized as follows: In Section 2, a mathematical analysis of 145 

SCs that operate in constant power applications is presented. The proposed analytical methods 146 

for solving transcendental equations that describe both charge and discharge processes are 147 

presented and discussed in Section 3. A comparison of different methods for solving mentioned 148 

equations is presented. Results of the charge-discharge operations are presented and discussed 149 

in Section 4. Other key performance metrics as the state of charge (SoC) and power loss (Ploss), 150 

are derived in different operating conditions, and the results are visualized. Lastly, the 151 

concluding notes and future work directions are given in Section 5. This paper also includes an 152 

appendix to show how the closed-form expressions derived in this contribution were solved 153 
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(Mathematica codes for expressing the discharging and charging processes of a SC at constant 154 

power), which may be valuable for researchers who want to develop a model of SCs operating 155 

in constant power applications. 156 

2. Mathematical investigation and analysis of supercapacitors operated at constant 157 

power 158 

The conventional RC model of the SC comprises a capacitance C, internal resistance R, 159 

discharged at constant power P as illustrated in Fig. 1 [26]. In this figure, u denotes the internal 160 

voltage, uco denotes the external voltage, while i denotes the discharge current.  161 

 162 

 163 

 164 

 165 

 166 

 167 

Fig. 1. Discharge of a SC at constant power (P). 168 

In the mathematical sense, the power balance equation of this model can be described as 169 

follows: 170 
2P Ri ui+ =  (1) 

where P>0 in the discharge process and P<0 in the charge one.  171 

2.1 Discharge process of a SC at constant power 172 

The internal voltage (u) of the SC bank can be represented as follows: 173 

cou u Ri= +  (2) 
Taking into account the relation between the current and voltage of the SC bank, one 174 

can find that:   175 

du iu
dt C

′ = = −  (3) 

Eq. (3) can be expressed in terms of Eq. (1); thus: 176 

2
2 0u Pu u

RC RC
′ ′+ + =  (4) 

Even though Eq. (4) has two solutions, only one solution is acceptable, which is the 177 
positive one; thus: 178 

2 4
2 2

u u PRu
RC RC

−′ = − +  (5) 

P 

R 

C 
u uco 

i 
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Solving Eq. (5) to get the time t needed by the internal voltage u to reach a current 179 

value, from initial voltage U0, has the following expression: 180 

2
0 02 2 2 2

0 0 0 2

4
4 4 4 log

4 4

U U PRCt U U U PR u u u PR PR
P u u PR

  + −  = + − − − − −
  + −  

 (6) 

From the previous equation, Eq. (6), the following u expression can be derived. Thus: 181 

( )2 2 24 4 log 4u u u PR PR u u PR h+ − − + − =  (7) 

where 182 

( )2 2 2
0 0 0 0 0

44 4 log 4 Pth U U U PR PR U U PR
C

= + − − + − −  (8) 

From the previous equations, Eqs. (7) and (8), u expression can be formulated as a 183 

transcendental equation as follows: 184 

( )expθ = β θ  (9) 
where 185 

1 2exp
4 2

PR h
PR PR

− β =  
 

 (10) 

Hence, the voltage expression can be written as follows: 186 

1u PR + θ 
=  θ 

 (11) 

Derivation of Eq. (11) is explained in detail in Appendix A. It should be noted that 187 

transcendental expression ( )expθ = β θ  has two solutions [31]. One of the solutions is less than 188 

1, denoted as θ<, and the second solution is greater than 1, denoted as θ>. Both solutions are 189 

illustrated in Fig. 2.  190 
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θ=
βe

xp
(θ

) 

 
θ 

Fig. 2. Graphical representation of solutions of the transcendental expression ( )expθ = β θ . 191 

During the discharge process, i.e., P>0, the voltage decreases. On the other side, 192 

observing the hth equation (Eq. (8)), it can be seen that h decreases with the rise in time. In this 193 

case, the coefficient β increases. Hence, by observing Fig. 2, it can be seen that with the increase 194 

in coefficient β, we can find a rise in θ< and a decrease in θ>. Solution θ< ranges between 0 and 195 

1, while θ> is greater than 1. Observing the graph for u as a function of θ shown in Fig. 3, it can 196 

be seen that a decrease in θ causes the reduction in u for θ>. Therefore, it is clear that for the 197 

discharge process, we should consider the solution θ>. 198 
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u 

 
θ 

Fig. 3. Variation of the voltage u versus θ 199 

The discharge current can be calculated in the following manner:  200 

du du di C C
dt d dt

θ    = =    θ    
 (12) 

After some mathematical manipulations, the mathematical expression for the current is 201 

derived as follows: 202 

Pi
R

=
θ

 (13) 

Derivation of Eq. (13) is explained in detail in Appendix A.  203 

Eqs. (14) and (15) represent the derived closed-form expressions of the instantaneous 204 

energy stored in the SC (Estored) and the energy discharged (Edischarge), respectively. 205 

( )
2

21 1 1 12
2 2 2stored

PRCE Cu C PR + θ   = = = + θ+   θθ   
 (14) 

( )
2

2 2 0
0

1 12
2 2discharege

UPRCE C U u
PR

 
= − = − −θ− θ 

 (15) 
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2.2 Charge process of a SC at constant power 206 

During a charging process, the power is less than zero, i.e., P<0. Hence, it can be 207 

considered that P1=-P, and the following expressions can be deduced: 208 

( )2 2 2 1
0 0 0 1 1 0 0 1

44 4 log 4 Pth U U U PR PR U U PR
C

= + + + + + +  (16) 

Also, we can write the following: 209 

( )2 2 2
1 1 14 4 log 4u u u PR PR u u PR h+ + + + + =  (17) 

Eq. (17) can be transformed to the following form: 210 

( )expΨ = α −Ψ  (18) 

Eq. (18) has one acceptable solution. In which the coefficient α is given as 211 

1

1 1

21 exp
4 2

PR h
PR PR

  +
α =   

  
 (19) 

Therefore, the voltage u can be derived as follows: 212 

1
1u PR Ψ −

=
Ψ

 (20) 

Finally, the mathematical expression for the charge current i is derived as follows: 213 

1Pi
R

=
Ψ

 (21) 

Derivations of Eqs. (20) and (21) are explained in detail in Appendix A.  214 

3. Proposed analytical solutions 215 

The proposed methods for solving the transcendental equations representing charge and 216 

discharge are presented and discussed in this section. A comparison of different methods for 217 

solving the obtained equations is presented. 218 

3.1 Analytical solutions of the discharging equation of the SC at a constant power  219 

The transcendental expression ( )expθ = β θ can be solved using the Special Trans 220 

Function theory (STFT) [31], [32]. The lower value of the solution (θ<) has the following form: 221 

( ) ( )[ ]

rP
0

1
!

nnx
n

n

x n
n<

=

β −
θ = −∑  (22) 
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where [x] denotes the largest integer that is less than or equal to x, while Pr represents calculation 222 
precision.  223 

The value of the higher solution (θ>) can be calculated as follows: 224 

r rP P
K> <θ = θ +  (23) 

where 225 

( )
( )
,

log
,

F u a
K

F u
>

>

 β −
=   β 

 (24) 

( ) ( ) ( ) ( ) ( ), , exp , expF u bR b u bu R b u bu> ′β = +  (25) 

So that 226 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( )

/

0

exp( )
, 1

!
, exp ,

n nu a
n

n

b ab u na
R b u

n
R b u b ab R b u a

=

− −
= −

′ = − − −

∑  (26) 

 227 

b
a
<θ=  (27) 

In the previous equation, Eq. (27), a is an arbitrary positive real number. 228 

The accuracy of the calculation can be expressed in the following manner for both 229 

solutions: 230 

( )
( )

1 log

1 log
r

r

P G

P G
> >

< <

= −

= −
 (28) 

where the error functions G> and G< can be calculated as follows: 231 

( )( )
( )( )

G exp

G exp

> > > >

< < < <

= θ −θ θ

= θ −θ θ
 (29) 

The solutions of the equation ( )expθ = β θ  are presented in Table 1. Also, the solutions 232 

obtained are shown in Table 2 in terms of accuracy Pr. It can be noted that for all the considered 233 

values of β, the calculation error is very small, or approximately zero, particularly because of 234 

the kind of physical problem solved in this work. 235 

 236 
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Table 1. Solutions obtained for ( )expθ = β θ at x=100 237 

β θ< G< u θ> G> 

1/10 0.111832559158962965 1.056×10-152 
100a 

3.5771520639572 
9.863×10-38 

200a 1.075×10-75 
300a 9.885×10-114 

1/5 0.259171101819073745 5.600×10-101 
100a 

2.54264135777352 
2.373×10-51 

150a 5.471×10-77 
200a 5.514×10-100 

1/3 0.619061286735945112 1.696×10-40 
20a 

1.5121345516578 
7.876×10-15 

50a 9.492×10-37 
150a 4.145×10-40 

 238 

3.2 Analytical solutions of the charging equation of the SC at a constant power  239 

The graphical representation of the equation ( )expΨ = α −Ψ is presented in Fig. 4. The 240 

transcendental expression ( )expΨ = α −Ψ  represents the well-known Lambert W equation 241 

[33–36]. The conventional methods for solving the Lambert W function are numerical and 242 

iterative. The numerical methods are presented in many different domains (for example, 243 

Fritsch’s iteration, Halley’s iteration, etc.). The iterative techniques, unlike analytical solutions, 244 

are somewhat complicated. 245 

Table 2. Solutions obtained in solving ( )expθ = β θ  at x=100 in terms of Pr 246 

β x Pr < u Pr > 

1/200 

100 321 
100a 16 
200a 30 
300a 47 

200 637 
100a 16 
200a 30 
300a 47 

300 953 
100a 16 
200a 30 
300a 47 

1/100 

100 285 
100a 19 
200a 38 
300a 56 

200 566 
100a 19 
200a 38 
300a 56 

300 846 
100a 19 
200a 38 
300a 56 

1/10 100 153 100a 38 
200a 76 
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β x Pr < u Pr > 
300a 115 

200 303 
100a 38 
200a 76 
300a 115 

300 453 
100a 39 
200a 76 
300a 115 

1/4 

100 80 
100a 59 
200a 117 
300a 176 

200 157 
100a 59 
200a 117 
300a 176 

300 236 
100a 59 
200a 117 
300a 176 

Numerous program packages, such as Python, Mathematica, MATLAB, Maple, and 247 

others, have developed a solver for solving the Lambert W function. For instance, the Lambert 248 

W function is implemented as LambertW in Maple, lambertw in Matlab, Python, Octave, 249 

lambert_w in Maxima, and ProductLog in Mathematica. The main drawback of all the 250 

implemented solvers is that they do not enable control of solution accuracy.  251 

Ψ
=α

ex
p(

-Ψ
) 

 
Ψ 

Fig. 4. The graphical representation of equation ( )expΨ = α −Ψ  252 
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Two analytical methods for solving the Lambert W function can be found in the 253 

literature. The first method is based on the Taylor series (TS) usage, while the second is based 254 

on the use of STFT [34,36]. The TS of W0 around 0 can be found using the Lagrange inversion 255 

theorem as follows: 256 

( ) ( ) 1

1 !

n
n

n

n
W

n

−∞

=

−
=∑α α  (30) 

For practical implementation and simplicity, Eq. (30) can be rewritten in the following 257 

form: 258 

( ) ( ) 1

1 !

nM
n

n

n
W

n
α α

−

=

−
=∑  (31) 

where M represents a positive integer.  259 

For a large value of α, an asymptotic formula for solving the Lambert W equation will 260 

have the following formulation: 261 

( )
( )

( ) ( )
1 2 1 2

0 1

2
2 2 22 22

1 2 2 3
1 1 1

1
1

!

6 9 22
2 6

l

l m m

l m

l m
l

W L L L L
m

L L LL LLL L
L L L

∞ ∞
− −

= =

+ 
−  + = − +

− +− +
= − + + + +…

∑∑α
 (32) 

where L1=ln(B) and L2=ln(ln(α)), 
1

l m
l
+ 

 + 
 are non-negative Stirling numbers of the first kind 262 

[36].  263 

Eq. (18) can also be solved by using STFT [36], in which the solution can be written 264 

as follows: 265 

( )

( )
0

1

0

!
1
!

nn
M

n

nn
M

n

M n
n

M n
n

=

+

=

−

Ψ =
+ −

∑

∑

α

α
α

 (33) 

Hence, to solve Eq. (18), Eqs. (31) – (33) can be used, in which the calculation error 266 

(G) can be represented as follows: 267 

G e−Ψ= Ψ −α  (34) 
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The precision Pr reflects the accuracy. The accuracy of the solution is high for the high 268 

values of Pr, in which Pr is defined as: 269 

( )1 logP G= −  (35) 

In order not to lose generality, specific examples of solving the Lambert equation using 270 

Eqs. (31) and (32) are presented in Tables 3 and 4 for different values of α. In this calculation, 271 

Mathematica is used to solve the equations. The realized Mathematica code based on the 272 

previously noted equations is given in Appendix B. Based on the presented results, it can be 273 

concluded that a higher value of the integer M results in a higher precision of calculations. 274 

Higher accuracy can also be obtained if STFT is used to solve the Lambert equation. However, 275 

for considerable values of α, using Eq. (33) is the best choice.  276 

To sum up, all of the tested methods for Lambert W solving have good accuracy. 277 

Furthermore, for small values of α, this accuracy is extremely high for both STFT and TS. On 278 

the other side, for a higher value of α, the asymptotic formula has better accuracy. Because of 279 

the physical nature of the problem solved in this work, both methods can be effectively used. 280 

4. Numerical results and discussion 281 

The electrical parameters used in this case study for the discharge and charge processes 282 

of a SC at constant power are presented in Table 5, where U0 denotes the initial starting voltage 283 

used. 284 

Table 3. Solutions of Eqs. (31) and (33) for small values of α   285 

α  M Ψ  GSTFT GTAYLOR 

1e-6 

3 

9.9999900000149999 
7333338541655866 

4.16×10-32 2.66×10-24 
10 2.50×10-80 6.49×10-64 
20 1.58×10-152 5.44×10-120 
35 7.41×10-261 7.94×10-204 
50 3.09×10-369 1.54×10-287 

0.001 

3 
0.0009990014973385 
3088995782787410 

 

4.13×10-17 2.66×10-12 
10 1.66×10-44 6.50×10-31 
20 4.95×10-85 5.45×10-57 
35 3.17×10-144 7.95×10-96 
50 4.66×10-204 1.53×10-134 

0.02 

3 

0.0196115893374056 
2729168248268298 

1.13×10-10 4.18×10-7 
5 1.11×10-15 6.75×10-10 
10 2.33×10-26 1.36×10-16 
30 7.91×10-80 1.48×10-42 
50 2.21×10-120 3.58×10-60 

0.3 5 0.2367553107885593 3.91×10-8 5.93×10-3 
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10 1687136699131310 8.36×10-16 8.31×10-4 
50 1.06×10-67 8.22×10-8 
100 4.75×10-134 1.15×10-12 
200 3.09×10-266 1.49×10-22 

 286 
Table 4. Solutions of Eqs. (32) and (33) for large values of α   287 

α  M Ψ  PSTFT PASYMPTOTIC_FORMULA 

100 

30 

3.38563014029005018 
48882443645297 

8 8 
60 15 13 
100 25 20 
300 74 50 
500 122 80 

1000 

50 

5.24960285240159622 
71260563196973 

7 24 
100 15 43 
150 22 63 
200 29 82 
250 37 102 

10000 

60 
7.2318460380933727 
064756185001412538 

840306 

5 38 
90 8 55 
120 11 72 
150 14 89 
210 19 122 

100000 

100 9.28457142862210898 
3205132234759581939 
3169616724220653050 
6106135740393299602 

2127668743 

6 74 
120 7 87 
140 9 101 
160 10 115 
180 11 125 

 288 

Table 5. Electrical parameters of the SC 289 

U0 (V) C (kF) R (mΩ) 
2.7 1.2 0.58 

 290 

Table 6 shows the values of the coefficients β, θ as well as the voltage u, current i, 291 

stored and discharged energy during the discharge process for different discharge power values. 292 

Besides, Figs. 5 and 6 show the variation of i, u, t, and power loss values for different discharge 293 

power values. It can be noted that for a higher discharge power value, the voltage u faster 294 

decreases, while the current and power losses increase. 295 

Table 6. Results obtained during the discharge process for different discharge power values 296 

P  t  h  β θ u  i  Estored  Edischarge  
(W) (ms) (V) (A) (J) (J) 

100 
35 2.4070191 1.14057×10-8 21.350207 1.164915 89.8638 814.2162 3559.8 
36 2.0736857 2.01881×10-7 18.323783 1.087172 97.0014 709.1658 3664.8 
37 1.7403524 3.57330×10-6 15.267764 1.002661 106.266 603.1974 3770.8 
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P  t  h  β θ u  i  Estored  Edischarge  
(W) (ms) (V) (A) (J) (J) 

38 1.4070191 0.000063247 12.167201 0.909100 119.039 495.8777 3878.1 
39 1.0736857 0.001119476 8.9911329 0.802456 138.477 386.3614 3987.6 
40 0.7403524 0.019814706 5.6536284 0.673920 174.631 272.5009 4101.5 

80 

46 1.9081321 1.72128×10-8 20.918198 1.032289 81.2023 639.3735 3734.6 
47 1.6414654 3.04667×10-7 17.888185 0.961980 87.8107 555.2434 3818.8 
48 1.3747988 5.39261×10-6 14.826925 0.885380 96.4507 470.3393 3903.7 
49 1.1081321 0.000095449 11.718047 0.800298 108.493 384.2863 3989.7 
50 0.8414654 0.001689446 8.5265379 0.702761 127.187 296.3239 4077.7 
51 0.5747988 0.029903154 5.1484959 0.583697 163.678 204.4215 4169.6 

60 

64 1.4759871 1.20419×10-8 21.293250 0.901243 69.7012 487.3434 3886.7 
65 1.2759871 2.13142×10-7 18.266366 0.840936 75.2550 424.3040 3949.7 
66 1.0759871 3.7726×10-6 15.209673 0.775360 82.4710 360.7099 4013.3 
67 0.8759871 0.000066775 12.108048 0.702733 92.4324 296.3002 4077.7 
68 0.6759871 0.001181920 8.9300353 0.619888 107.630 230.5567 4143.4 
69 0.4759871 0.020919955 5.5876019 0.519881 136.065 162.1658 4211.8 

 297 
Besides, the results obtained for the SC charging process are presented in Table 7. In 298 

this Table, the obtained results are presented for three values of the charge power in the initial 299 

time interval. It can be seen that α has a high value, and therefore for solving Lambert W 300 

equation, both the proposed solution methods can be used. Also, it is clear that the accuracy of 301 

a few digits is enough because of the physical nature of the problem solved.  302 

Also, the results of the calculation of α, Ψ, u, and i are shown. Visualization of the 303 

results obtained is given in Figs. 7 and 8. It should be noted that the initial value uo was set to 304 

1 V in the simulation of charging of the SC. The higher value of the charging current increases 305 

the voltage value, and vice versa. Also, it can be seen that the current values increase with the 306 

high values of the charging powers, and in this case, the initial value of α decreases for high 307 

values of charging power. However, α and Ψ values begin to increase overtime at the same 308 

level of charging power. 309 
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 310 

Fig. 5. Voltage changes with time for different values of power discharge 311 

 312 
Fig. 6. Current changes with time for different values of power discharge 313 
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Table 7. Results obtained for SC charging process 316 

P (W) Time (s) α Ψ u (V) i (a) 

-200 

0.0 0.3922×106 10.5257 1.0000 180.9989 
0.1 0.5228×106 10.7884 1.0150 178.7816 
0.2 0.6968×106 11.0516 1.0298 176.6395 
0.3 0.9287×106 11.3154 1.0444 174.5685 
0.4 1.2379×106 11.5797 1.0589 172.5650 
0.5 1.6500×106 11.8444 1.0732 170.6255 
0.6 2.1993×106 12.1096 1.0873 168.7467 
0.7 2.9314×106 12.3753 1.1013 166.9257 
0.8 3.9073×106 12.6414 1.1152 165.1596 
0.9 5.2080×106 12.9079 1.1288 163.4458 
1.0 6.9418×106 13.1748 1.1424 161.7818 

-400 

0.0 0.2875×104 6.1477 1.0000 334.9348 
0.1 0.3832×104 6.3955 1.0276 328.3811 
0.2 0.5108×104 6.6447 1.0547 322.1660 
0.3 0.6808×104 6.8950 1.0813 316.2628 
0.4 0.9074×104 7.1466 1.1075 310.6474 
0.5 1.2095×104 7.3992 1.1331 305.2984 
0.6 1.6121×104 7.6528 1.1583 300.1962 
0.7 2.1488×104 7.9074 1.1832 295.3234 
0.8 2.8641×104 8.1630 1.2076 290.6640 
0.9 3.8176×104 8.4194 1.2316 286.2034 
1.0 5.0885×104 8.6767 1.2553 281.9286 

-600 

0.0 0.4916×103 4.6589 1.0000 471.2148 
0.1 0.6553×103 4.8965 1.0388 459.6394 
0.2 0.8734×103 5.1361 1.0766 448.7909 
0.3 1.1642×103 5.3775 1.1136 438.6011 
0.4 1.5517×103 5.6207 1.1497 429.0099 
0.5 2.0683×103 5.8654 1.1851 419.9642 
0.6 2.7568×103 6.1116 1.2198 411.4173 
0.7 3.6746×103 6.3593 1.2537 403.3272 
0.8 4.8979×103 6.6082 1.2870 395.6569 
0.9 6.5284×103 6.8584 1.3196 388.3731 
1.0 8.7017×103 7.1098 1.3517 381.4460 

 317 
Other closed-form expressions of crucial key performance metrics as the state of charge 318 

(SoC) and power loss (Ploss) are derived for SC discharging and charging.  319 

Firstly, the mathematical expressions for the SOC and Ploss are given in Eqs. (36) and 320 

(37) for the SC discharge process at constant P. 321 

2
max

12stored

N

e PRSOC
e U

 = = + θ+ θ 
 (36) 
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loss
PP =
θ

 (37) 

 322 

 323 
Fig. 7. Change of voltage versus time for different value of charging power 324 

 325 
Fig. 8. Change of current versus time for different values of charging power 326 
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Figs. 9 and 10 show the SOC and Ploss values for different discharge power values. It 327 

can be noted that the current and power losses increase for a higher discharge power value, and 328 

the SOC rapidly decreases with time. 329 

 330 
Fig. 9. SOC change with time for different values of power during SC discharge 331 

 332 
Fig. 10. Power losses change with time for different values of power during SC discharge 333 
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Secondly, the mathematical expressions for the SOC and Ploss are given in Eqs. (38) 334 

and (39) for the SC charge process at constant P1. 335 

( )2

1
2

max

1stored

N

e PRSOC
e U

Ψ −
= =

Ψ
 (38) 

1
loss

PP =
Ψ

 (39) 

Figs. 11 and 12 illustrate the SOC and Ploss values for different charge power values. It 336 

can be noted that the current and power losses considerably increase for a higher charge power 337 

value, and the SOC rapidly increases with time. 338 

Thirdly, the expressions proposed in this work enable accurate estimating of the 339 

investigated metrics as SOC and Ploss under different conditions or parameters’ variations. For 340 

illustration, Figs. 13 and 14 show the SOC and Ploss values during SC discharge at constant P 341 

set to 100 W, U0 set to 2.7 V, C=1200 F, and various internal resistance values ranging from 342 

0.4 to 0.7 mΩ.  343 

 344 

Fig. 11. SOC change with time for different values of power while charging the tested SC  345 
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 346 

Fig. 12. Power losses change with time for different values of power while charging the 347 

tested SC  348 

 349 
Fig. 13. SOC versus time with different R values during SC discharge 350 
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 351 
Fig. 14. Power losses versus time with different R values during SC discharge 352 

 353 

Besides, Figs. 15 and 16 show the SOC and Ploss values during SC discharge at constant 354 

P set to 100 W, U0 set to 2.7 V, R=0.58 mΩ, and various capacitance values ranging from 1000 355 

to 1400 F. 356 

Also, Figs. 17 and 18 show the SOC and Ploss values during SC charge at constant P set 357 

to 100 W, U0 set to 1.0 V, C=1200 F, and various internal resistance values ranging from 0.4 358 

to 0.7 mΩ. In addition, Figs. 19 and 20 show the SOC and Ploss values during SC charging at 359 

constant P set to 100 W, U0 set to 1.0 V, R=0.58 mΩ, and various capacitance values ranging 360 

from 1000 to 1400 F.  361 

It can be noted from Figs. 13 – 16 that when the R-value increases, the SOC tends to 362 

decrease, while the power losses increase at the same C. However, when the C-value decreases, 363 

the SOC decreases, while the power losses increase at the same R. Similarly, it is realized from 364 

Figs. 17 – 20 that when the R-value decreases, the SOC increases and the power losses decrease 365 

at the same C. However, when the C-value increases, the SOC decreases, while the power 366 

losses increase at the same R. 367 
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 369 
Fig. 15. SOC versus time with different capacitance values during SC discharge 370 

 371 
 372 

Fig. 16. Power losses versus time with different capacitance values during SC discharge 373 
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 375 
Fig. 17. SOC versus time with different R values during SC charging 376 

 377 
Fig. 18. Power losses versus time with different R values during SC charging 378 
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 379 

Fig. 19. SOC versus time with different capacitance values during SC charging 380 

 381 

Fig. 20. Power losses versus time with different capacitance values during SC charging 382 
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5. Conclusions 383 

In this work, a mathematical time-domain analysis that enables the explicit finding of 384 

the electrical variables involved in the charge/discharge processes of SCs – voltage, current, 385 

power, energy, SOC, and Ploss – operated at constant power is investigated. The mathematical 386 

expressions for these variables are transcendental. In the literature, transcendental equations 387 

are rarely solved using iterative methods. The discharge process of SCs operating at constant 388 

power can be represented as a function of the type ( )expθ = β θ . This equation has two 389 

solutions. However, taking into account the physical constraints, only one is acceptable. Also, 390 

the charging process of SCs operating at constant power can be represented as a function of the 391 

type ( )expΨ = α −Ψ which also has one solution. In this regard, the analytical solutions for 392 

the charging and discharging equations are derived in the form of the Lagrange inversion 393 

theorem of the Lambert W function in its asymptotic formula and the form of STFT. 394 

Furthermore, numerical results obtained by using all mentioned methods are presented. 395 

The mathematical expressions derived are accurate and straightforward and do not require any 396 

other mathematical formulations. Comprehensive simulation results obtained at the parametric 397 

variation of the parameters are presented to demonstrate the proposed equations’ applicability 398 

and accuracy. The closed-form expressions suggested in this paper are accurate and 399 

straightforward, which can advance a good base for proper modeling, investigation, sizing, 400 

regulation, and controlling constant power SCs in modern energy systems.   401 

Our future research will focus on the mathematical description of SCs’ charging and 402 

discharging in practical applications under different modes of operation. 403 
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Appendix A 404 

Derivation of Eq. (11): the internal voltage expression 405 

One can consider the combinatorial variable z as given in Eq. (A.1); thus Eq. (7) can be 406 

rewritten as given in Eq. (A.2): 407 

2 4z u u PR= + −  (A.1) 
 408 

( )2 24 4 log 2z PR PR z h+ − =  (A.2) 
Also, one can consider the combinatorial variable y as given in Eq. (A.3), then Eq. (A.2) can 409 

be rewritten as given in Eq. (A.4): 410 
2 4 2y z PR h= + −  (A.3) 

 411 

4 2 4
y
PRe y h PR= + −  (A.4) 

Hence, one can reformulate Eq. (A.4) as follows: 412 
 413 

2 4 2 4
4 41 2 4

4 4

y h PR h PR
PR PR y h PRe e

PR PR

+ − −
− + −

=  (A.5) 

Thus: 414 
4 2

41
4

2 4
4

PR h
PRe

PR
y h PR

PR

−

β =

+ −
θ =

 (A.6) 

Finally, from Eqs. (A.1)- (A.6), one can derive u expression as follows: 415 
2 4

2
2

2 2 4
2 4 4

2 2 4
4 4

2 4
1

z PRu
z
y hu

y h PR
y h PR PRu

y h PR
PR PRu

PR

u PR

+
=

+
=

+ −

+ − +
=

+ −

θ+
=

θ
+ θ 

=  θ 

 (A.7) 

Derivation of Eq. (13): the discharge current expression. 416 

The discharge current can be expressed as given in Eq. (12). Substituting Eq. (A.7) into 417 

Eq. (12), thus: 418 
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( ) 11
12

2
du PR PR
d

 θ − + θ  θ− θ= =   θ θ θ θ   
 

 (A.8) 

Also, one can express d
dt
θ  as follows: 419 

d d d
dt d dt
θ θ β
=

β
 (A.9) 

As ( )expθ = β θ , i.e., ( )expθ −θ = β , one can write the following expression 420 

 421 

( )

1
1 1 1

1

e e

e e e

−θ −θ

−θ −θ −θ

′ ′θ − θ θ =
θ′θ = = = =

β−θ −β β −θ−β
θ

 (A.10) 

On the other side, as 
4 2

41
4

PR h
PRe

PR

−

β = , one can derive the following expressions 422 

 423 
4 2

41 1 4
4 2

2

PR h
PRd Pe

dt PR PR C
d
dt RC

−β   =   
  

β  = β 
 

 (A.11) 

Hence, one can derive the current expression as follows: 424 

( )
1 2

12

du di C
d dt

i C PR
RC

Pi
R

θ  =   θ  
   θ − θ   = β        β −θθ θ         

= −
θ

 (A.12) 

where the negative sign in Eq. (A.12) indicates the discharge process. 425 
 426 
Derivation of Eq. (20): the voltage during charging expression  427 

During a charging process, the power is less than zero. Hence, one can consider P1=-P. One 428 

can consider the combinatorial variable z as given in Eq. (A.13); thus Eq. (17) can be rewritten 429 

as given in Eq. (A.14): 430 

2 4z u u PR= + −  (A.13) 
 431 

( )2 2
1 14 4 log 2z PR PR z h− + =  (A.14) 
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Also, one can consider the combinatorial variable y as given in Eq. (A.15), then Eq. (A.14) can 432 

be rewritten as given in Eq. (A.16): 433 
2

14 2y z PR h= − −  (A.15) 
 434 

14
12 4

y
P Re y h PR

−

= + +  (A.16) 

Hence; 435 
1 1

1 1

2 4 2 4
4 4 1

1 1

2 41
4 4

y h P R h P R
P R P R y h PRe e

PR PR

+ + +
− + +

=  (A.17) 

Thus: 436 
1

1

4 2
4

1

1

1

1
4

2 4
4

P R h
P Re

PR
y h PR

PR

+

α =

+ +
ψ =

 (A.18) 

As 2
14z u u PR= + +  then; 437 

2
1

1

1 1

1

1 1

1

4
2

2
2 2 4

2 4 4
2 2 4

4 4
2 4

1

z PRu
z
y hu

y h PR
y h PR PRu

y h PR
PR PRu

PR

u PR

−
=

+
=

+ +

+ + −
=

+ +

ψ −
=

ψ

 ψ −
=   ψ 

 (A.19) 

Derivation of Eq. (21): the charging current expression. 438 

From Eq. (A.19), one can find that: 439 

( )
1 1

11
2 1

2
du PR PR
d

 ψ − ψ −   ψ ψ + = =   ψ ψ  ψ ψ  
 

 (A.20) 

Also, one can distribute  d
dt
ψ  as follows: 440 

d d d
dt d dt
ψ ψ α
=

α
 (A.21) 

Now, as ( )expψ = α −ψ , i.e., ( )expψ ψ = α .Thus: 441 
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( )

1
1 1 1

1

e e

e e e

ψ ψ

ψ ψ ψ

′ ′ψ +ψ ψ =
ψ′ψ = = = =

ψ+ψ +α α ψ ++α
α

 (A.22) 

On the other side, as 
1

1

4 2
4

1

1
4

P R h
P Re

PR

+

α = ,  one can write the following: 442 

1

1

4 2
4 1

1 1

41 1
4 2

2

P R h
P R Pd e

dt PR PR C
d
dt RC

+  α  =   
  

α
= α

 (A.23) 

Hence, one can derive the current expression as follows: 443 

( )1

1

1 2
12

du di C
d dt

i C PR
RC

Pi
R

  ψ =   ψ   
  ψ + ψ  = α      α ψ +ψ ψ    

=
ψ

 (A.24) 
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Appendix B 444 

B.1 Mathematica code for expressing the discharging process of a SC at constant power 445 

For solving ( )expθ = β θ , the following Mathematica code can be used. 446 

 447 

 448 
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B.2 Mathematica code for expressing the charging process of a SC at constant power 449 

For solving ( )expΨ = α −Ψ , Lambert W equation, the following Mathematica code can 450 

be used. 451 

 452 

Funding sources  453 

This research did not receive any specific grant from funding agencies in the public, 454 

commercial, or not-for-profit sectors. 455 

 456 

 457 

 458 



  

36 
 

References 459 

[1] S.H.E. Abdel Aleem, A.F. Zobaa, H.M. Abdel Mageed, Assessment of energy credits 460 

for the enhancement of the Egyptian Green Pyramid Rating System, Energy Policy. 87 461 

(2015) 407–416. doi:10.1016/j.enpol.2015.09.033. 462 

[2] M.H. Mostafa, S.H.E.A. Aleem, S.G. Ali, A.Y. Abdelaziz, P.F. Ribeiro, Z.M. Ali, 463 

Robust energy management and economic analysis of microgrids considering different 464 

battery characteristics, IEEE Access. 8 (2020) 54751–54775. 465 

doi:10.1109/ACCESS.2020.2981697. 466 

[3] S. Lepszy, Analysis of the storage capacity and charging and discharging power in 467 

energy storage systems based on historical data on the day-ahead energy market in 468 

Poland, Energy. 213 (2020) 118815. doi:10.1016/j.energy.2020.118815. 469 

[4] N.V. Quynh, Z.M. Ali, M.M. Alhaider, A. Rezvani, K. Suzuki, Optimal energy 470 

management strategy for a renewable-based microgrid considering sizing of battery 471 

energy storage with control policies, Int. J. Energy Res. 45 (2021) 5766–5780. 472 

doi:10.1002/er.6198. 473 

[5] M.H. Mostafa, S.H.E. Abdel Aleem, S.G. Ali, Z.M. Ali, A.Y. Abdelaziz, Techno-474 

economic assessment of energy storage systems using annualized life cycle cost of 475 

storage (LCCOS) and levelized cost of energy (LCOE) metrics, J. Energy Storage. 29 476 

(2020) 101345. doi:10.1016/j.est.2020.101345. 477 

[6] M. Khosravi, S. Afsharnia, S. Farhangi, Optimal sizing and technology selection of 478 

hybrid energy storage system with novel dispatching power for wind power integration, 479 

Int. J. Electr. Power Energy Syst. 127 (2021) 106660. doi:10.1016/j.ijepes.2020.106660. 480 

[7] M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems, Renew. 481 

Sustain. Energy Rev. 75 (2017) 1187–1197. doi:10.1016/j.rser.2016.11.102. 482 

[8] W. Jing, C.H. Lai, S.H.W. Wong, M.L.D. Wong, Battery-supercapacitor hybrid energy 483 

storage system in standalone DC microgrids: A  review, IET Renew. Power Gener. 11 484 

(2017) 461–469. doi:10.1049/iet-rpg.2016.0500. 485 

[9] A. Kuperman, I. Aharon, Battery-ultracapacitor hybrids for pulsed current loads: A 486 

review, Renew. Sustain. Energy Rev. 15 (2011) 981–992. 487 

doi:10.1016/j.rser.2010.11.010. 488 

[10] S. Lemofouet, A. Rufer, Hybrid energy storage systems based on compressed air and 489 

supercapacitors with maximum efficiency point tracking, in: 2005 Eur. Conf. Power 490 

Electron. Appl., IEEE, 2005: pp. 10 pp.-P.10. doi:10.1109/epe.2005.219203. 491 



  

37 
 

[11] F. Naseri, E. Farjah, T. Ghanbari, An efficient regenerative braking system based on 492 

battery/supercapacitor for electric, hybrid, and plug-in hybrid electric vehicles with 493 

BLDC motor, IEEE Trans. Veh. Technol. 66 (2017) 3724–3738. 494 

doi:10.1109/TVT.2016.2611655. 495 

[12] C. Abbey, G. Joos, Supercapacitor energy storage for wind energy applications, IEEE 496 

Trans. Ind. Appl. 43 (2007) 769–776. doi:10.1109/TIA.2007.895768. 497 

[13] L. Qu, W. Qiao, Constant power control of DFIG wind turbines with supercapacitor 498 

energy storage, IEEE Trans. Ind. Appl. 47 (2011) 359–367. 499 

doi:10.1109/TIA.2010.2090932. 500 

[14] A. Lahyani, P. Venet, A. Guermazi, A. Troudi, Battery/Supercapacitors Combination in 501 

Uninterruptible Power Supply (UPS), IEEE Trans. Power Electron. 28 (2013) 1509–502 

1522. doi:10.1109/TPEL.2012.2210736. 503 

[15] R. Chai, Y. Zhang, A Practical Supercapacitor Model for Power Management in 504 

Wireless Sensor Nodes, IEEE Trans. Power Electron. 30 (2015) 6720–6730. 505 

doi:10.1109/TPEL.2014.2387113. 506 

[16] Z. Li, X. Huang, K. Song, J. Jiang, C. Zhu, Z. Du, Constant Current Charging and the 507 

Maximum System Efficiency Tracking for Wireless Charging Systems Employing 508 

Dual-side Control, 2018 Int. Power Electron. Conf. IPEC-Niigata - ECCE Asia 2018. 509 

33 (2018) 84–87. doi:10.23919/IPEC.2018.8507468. 510 

[17] A.S. Elwakil, A. Allagui, B.J. Maundy, C. Psychalinos, A low frequency oscillator using 511 

a super-capacitor, AEU - Int. J. Electron. Commun. 70 (2016) 970–973. 512 

doi:10.1016/j.aeue.2016.03.020. 513 

[18] L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, 514 

estimation, and applications: A control/management perspective, Renew. Sustain. 515 

Energy Rev. 81 (2018) 1868–1878. doi:10.1016/j.rser.2017.05.283. 516 

[19] A. Fathy, H. Rezk, Robust electrical parameter extraction methodology based on Interior 517 

Search Optimization Algorithm applied to supercapacitor, ISA Trans. 105 (2020) 86–518 

97. doi:10.1016/j.isatra.2020.05.016. 519 

[20] P.J. Grbović, P. Delarue, P. Le Moigne, P. Bartholomeus, Modeling and control of the 520 

ultracapacitor-based regenerative controlled electric drives, IEEE Trans. Ind. Electron. 521 

58 (2011) 3471–3484. doi:10.1109/TIE.2010.2087290. 522 

[21] V. Musolino, L. Piegari, E. Tironi, New full-frequency-range supercapacitor model with 523 

easy identification procedure, IEEE Trans. Ind. Electron. 60 (2013) 112–120. 524 

doi:10.1109/TIE.2012.2187412. 525 



  

38 
 

[22] N. Gyawali, Y. Ohsawa, Integrating fuel cell/electrolyzer/ultracapacitor system into a 526 

stand-alone microhydro plant, IEEE Trans. Energy Convers. 25 (2010) 1092–1101. 527 

doi:10.1109/TEC.2010.2066977. 528 

[23] H. Yu, D. Cao, Multi-objective Optimal Sizing and Real-time Control of Hybrid Energy 529 

Storage Systems for Electric Vehicles, IEEE Intell. Veh. Symp. Proc. 2018-June (2018) 530 

191–196. doi:10.1109/IVS.2018.8500629. 531 

[24] C. Zhao, H. Yin, Z. Yang, C. Ma, Equivalent series resistance-based energy loss analysis 532 

of a battery semiactive hybrid energy storage system, IEEE Trans. Energy Convers. 30 533 

(2015) 1081–1091. doi:10.1109/TEC.2015.2418818. 534 

[25] R.L. Spyker, Classical equivalent circuit parameters for a double-layer capacitor, IEEE 535 

Trans. Aerosp. Electron. Syst. 36 (2000) 829–836. doi:10.1109/7.869502. 536 

[26] J.F. Pedrayes, M.G. Melero, J.M. Cano, J.G. Norniella, S.B. Duque, C.H. Rojas, G.A. 537 

Orcajo, Lambert W function based closed-form expressions of supercapacitor electrical 538 

variables in constant power applications, Energy. 218 (2021) 119364. 539 

doi:10.1016/j.energy.2020.119364. 540 

[27] O. Abdel-Baqi, P. Miller, Dynamic performance improvement and peak power limiting 541 

using high power ultracapacitor system for hydraulic mining shovels, AABC 2014 - 542 

Adv. Automot. Batter. Confernce, LLIBTA Symp. Track A Cell Mater. Chem. Track B 543 

Batter. Eng. Large Lithium Ion Batter. Technol. Appl. ECCAP Symp. - Large EC 544 

Capacit. Technol. Appl. 62 (2014) 3173–3181. 545 

[28] M. Technologies, Maxwell Technologies, 2014. 546 

[29] M.E. Fouda, A. Allagui, A.S. Elwakil, A. Eltawil, F. Kurdahi, Supercapacitor discharge 547 

under constant resistance, constant current and constant power loads, J. Power Sources. 548 

435 (2019) 226829. doi:10.1016/j.jpowsour.2019.226829. 549 

[30] J.F. Gómez-Aguilar, H. Yépez-Martínez, R.F. Escobar-Jiménez, C.M. Astorga-550 

Zaragoza, J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits 551 

described by fractional derivatives, Appl. Math. Model. 40 (2016) 9079–9094. 552 

doi:10.1016/j.apm.2016.05.041. 553 

[31] S.M. Perovich, M. Orlandic, M. Calasan, Concerning exact analytical STFT solutions 554 

to some families of inverse problems in engineering material theory, Appl. Math. Model. 555 

37 (2013) 5474–5497. doi:10.1016/j.apm.2012.10.052. 556 

[32] M.P. Calasan, S.M. Perovich, On an exact analytical solution in Weibull probability 557 

distribution domain, in: ENERGYCON 2014 - IEEE Int. Energy Conf., IEEE, 2014: pp. 558 

1218–1222. doi:10.1109/ENERGYCON.2014.6850578. 559 



  

39 
 

[33] M. Ćalasan, S.H.E. Abdel Aleem, A.F. Zobaa, A new approach for parameters 560 

estimation of double and triple diode models of photovoltaic cells based on iterative 561 

Lambert W function, Sol. Energy. 218 (2021) 392–412. 562 

doi:10.1016/j.solener.2021.02.038. 563 

[34] M. Ćalasan, S.H.E. Abdel Aleem, A.F. Zobaa, On the root mean square error (RMSE) 564 

calculation for parameter estimation of photovoltaic models: A novel exact analytical 565 

solution based on Lambert W function, Energy Convers. Manag. 210 (2020) 112716. 566 

doi:10.1016/j.enconman.2020.112716. 567 

[35] M.P. Ćalasan, Analytical solution for no-load induction machine speed calculation 568 

during direct start-up, Int. Trans. Electr. Energy Syst. 29 (2019) e2777. 569 

doi:10.1002/etep.2777. 570 

[36] M. Calasan, A. Nedic, Experimental Testing and Analytical Solution by Means of 571 

Lambert W-Function of Inductor Air Gap Length, Electr. Power Components Syst. 46 572 

(2018) 852–862. doi:10.1080/15325008.2018.1488012. 573 

 574 


