A Program To Reorder And Solve Sparse Unsymmetric Linear Systems Using the Envelope Method
J. J. Judice
G. Mitra
M. Tamiz

A PROGRAM TO RECRDER AND SOLVE SPARSE UNSYMMETRIC LINEAR

SYSTEMS USING THE ENVELOPE METHOD

J.J. JUDICE ${ }^{+}$
G. MITRA*
M. TAMIZ*

[^0]
Abstract

The envelope data structure and the Choleski based (bordering) method for the solution of symmetric sparse systems of linear equations have been extended by the authors to solve unsymmetric systems of linear equations. The data structures used in this general linear equation Solver and a set of FORTRAN 77 subroutines are described. Some test data (extracted from LP problems as basis matrices) together with experimental results are presented.

A PROGRAM TO REORDER AND SOLVE SPARSE UNSYMMETRIC LINEAR SYSTEMS USING THE ENVELOPE METHOD

J.J. JUDICE
Departamento de Matematica, Universidade de Coimbra, Portugal.

G. MITRA and M. TAMIZ

Department of Mathematics and Statistics, Brunel University, England.

1. Introduction

Direct methods for solving sparse linear systems use Gaussian Elimination method in a combination with reordering of the coefficient matrix to preserve sparsity. When the matrix is symmetric positive definite then there are a number of algorithms to reorder the rows and columns of the matrix (for a description of the main algorithms see [6]). After the ordering has been found the so called ANALYSE PHASE terminates and the data structure for FACTOR PHASE is set up. In this phase the L^{T} or LDL $^{\mathrm{T}}$ decomposition of the matrix is obtained. At this stage solving the system amounts to solving two triangular systems (this is called the SOLVE PHASE). The process of obtaining this decomposition is "static", that is, the data structure remains unaltered after being set up at the end of the ANALYSE PHASE.

If the matrix is unsymmetric then a "dynamic" process has to be used to factorize the matrix A. The permutations of the rows and columns of the matrix are dictated by sparsity and stability requirements during the factorization [2]. It is, in general, not possible to predict where fill-in occurs and the initial data structure is modified during the process in order to allocate storage for this fill-in as the factorization proceeds.

The advantage of the static processes over the dynamic schemes and of the separation of the phases ANALYSE and FACTOR is nowadays well accepted (see for instance $[2,5]$). One of the main static schemes for symmetric positive definite systems is the so-called ENVELOPE METHOD [6, chapter 4]. In [8] we have developed a generalization of this method to unsymmetric matrices. As in the symmetric case the method uses a preassigned sequence of diagonal pivots and exploits static data structures. The occurence of a zero diagonal pivot is overcome by a novel method based on the Schur Complement update. In this paper our main interest is to describe a program which carries out the general solution process.

The contents of the paper are organized in the following way. In Section 2 we provide a summary description of the different algorithmic phases of the procedure and in section 3 the function and use of the important subroutines of the program are described. The data structures are considered in section 4 and finally, in section 5, we present the experimental results together with the test data.

2. The Main Algorithmic Phases

In this section we briefly describe the three phases of the whole procedure. The ANALYSE PHASE is carried out by a method which is an extension of the envelope method for unsymmetric matrices. This procedure reorders the matrix A by a symmetric permutation P so that all the nonzero elements of the permuted matrix $\mathrm{B}=\mathrm{P}^{\mathrm{T}} \mathrm{AP}$ are brought nearest to the diagonal. For a symmetric matrix A this consists of two combinatorial algorithms (GPS and RCM) which operate on the undirected graph associated with A. These algorithms employ the degree of a
node. For unsymmetric matrices this measure is replaced by the "directed degree" which we define as

$$
\operatorname{deg}\left(\mathrm{V}_{\mathrm{k}}\right)=100 *(\text { outdeg } * \text { indeg })+(\text { outdeg }+ \text { indeg }),
$$

where outdeg and indeg are the number of arcs of the directed graph leaving and entering the node V_{k}. This is a nominal extension of the celebrated Markowitz criterion and is designed to break ties which occur quite often if the latter is adopted in its original form. This measure is used to extend the GPS and RCM algorithms which produce the desired symmetric permutation of the matrix A. In the last step of the ANALYSE PHASE the static envelope data structure is constructed for the permuted matrix.

In the FACTOR PHASE we apply the bordering method [6, page 89] and try to obtain the LU decomposition of the permuted matrix. In each iteration a row of the matrix L and a column of the matrix U are computed. The procedure may break down if the leading diagonal element takes the value zero (in the program an absolute value less than the chosen pivot tolerance XTOL) is found. In this situation we add +1 (unity) to the leading (zero) diagonal element and continue with the factorization. Let p denote the number of such occurences (in the program the value of p is stored in the variable ADCL). At the end of the factorization phase we obtain the LU decomposition of the matrix $\mathrm{B}+\mathrm{D}$ where D is a diagonal matrix with unit diagonal elements in those positions which required addition of unit coefficients. The solution of the system

$$
\begin{equation*}
B x=b \tag{1}
\end{equation*}
$$

is equivalent to solving the augmented system

$$
\begin{align*}
& (B+D) x-E y=b \\
& -E^{T} x+I y=0 \tag{2}
\end{align*}
$$

where I is the identity matrix of order p, and $E \in R^{\operatorname{nxp}}$ is a rectangular matrix with unit columns which match the unit entries of D in the row positions.

The solution of (2) is obtained by solving two systems with the matrix $(\mathrm{B}+\mathrm{D})$ and one system with the Schur Complement matrix of order p given by

$$
\begin{equation*}
S_{c}=I-E^{T}\{B+D)-{ }^{1} E . \tag{3}
\end{equation*}
$$

The system set out in (2) is only considered implicitly. The value p is usually quite small and the Schur Complement matrix S_{c} is computed explicitly. To obtain S_{c} the already computed LU decomposition of $\mathrm{B}+\mathrm{D}$ is used together with the integer array INDMAT of dimension p which compactly represents the matrix E . The LU decomposition of S_{c} is obtained by partial pivoting [4] and this completes the FACTOR PHASE.

The SOLVE PHASE consists of solving the system (1) and two cases may occur as presented below.
(i) If $\mathrm{p}=0$ then system (1) is solved by using the computed LU decomposition of B .
(ii) If $p>0$ then system (2) is solved implicitly as explained before by using the computed LU decompositions of the matrices $\mathrm{B}+\mathrm{D}$ and S_{c}.

3. Description of the Subroutines

The program assumes that the matrix has a zero-free diagonal. This is a reasonable assumption since well known graph theoretic algorithms exist that perform row and column permutations to put the matrix in this form $[1,3]$. The program starts by calling the subroutine INPUT, which reads the nonzero matrix elements and constructs the column-wise representation of the matrix.

The next subroutine to be called is named ROWISE and obtains the data structure for the row-wise nonzero representation of the matrix [7]. Using the column-wise and row-wise representations of the matrix we can find the adjacency lists of the innergraph and outergraph associated with the matrix [8]. This is performed by the subroutines FDINGR and FDOUGR respectively.

The ANALYSE PHASE is carried out next and consists of finding an ordering for the columns and rows of the matrix. We do this by modifying the process described in [6, Chapter 4] and our method is an extension to this procedure. This algorithm is fully explained in [8] and is performed by the subroutine GENRCM, which in turn calls the four subroutines FDDEG, FDROOT, ROOTLS, RCMS. The calling sequence and dependencies are shown in Display 1.

DISPLAY 1

The subroutine FDDEG, finds the "directed degree" of the nodes of the directed graph associated with the matrix. These quantities are stored in the real vector DEG and we have used this measure to extend the Cuthill Mckee (CM) and Reverse Cuthill McKee (RCM) algorithms to directed graphs [8], These extended algorithms are presented in the subroutine RCMS which needs a starting node ROOT. This node is obtained by the extension of GPS algorithm [6, Chapter 4] to directed graphs. This is achieved by the subroutines FDROOT and ROOTLS which are minor extensions of similar routines presented in [6 , Chapter 4].

The ordering process is made for each connected component of the directed graph associated with A , that is, for each diagonal block of the matrix. These connected components are specified by an integer vector MASK in the same way as explained in [6, Chapter 4]. The final ordering is given by an integer array PERM, where

$$
\begin{equation*}
\operatorname{PERM}(\mathrm{i})=j \tag{4}
\end{equation*}
$$

means that the jth initial row and column of the matrix is the ith row and column of the permuted matrix.

The ANALYSE PHASE is completed by constructing the envelope data structure of the permuted matrix. To achieve this the subroutines FENVRW and FENVCL are first called, which yield the (pointer) vectors XENVRW and XENVCL respectively. These subroutines use the adjacency lists of the inner and outer graphs and the integer array INVP. INVP represents the inverse of the permutation defined by PERM, whereby,

$$
\begin{equation*}
\operatorname{INVP}(\operatorname{PERM}(i))=i, \text { for all } i \tag{5}
\end{equation*}
$$

The subroutine INVRSE constructs INVP. Subsequently, the remaining vectors EVRW, EVCL, and DIAG are constructed by the subroutine ENVMAT.

The subroutine FACTOR carries out the LU decomposition of the FACTOR PHASE. When necessary the Schur Complement matrix is computed by the subroutine SCHCOM. These two subroutines call LOWSOL since each needs to solve lower triangular systems. The subroutine DECOMP computes the LU decomposition of the Schur Complement matrix S_{c}.

In order to establish the correctness and accuracy of the decompositions a VERIFICATION PHASE is incorporated. This phase consists of solving the system

$$
\begin{equation*}
B x=b \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{b}=\mathrm{Ae} \tag{7}
\end{equation*}
$$

and e is a vector with unit components.
If \bar{x} is the computed solution then the accuracy of the decomposition is measured by the quantity

$$
\begin{equation*}
\text { ERROR }=\|\overline{\mathrm{x}}-\mathrm{e}\|_{\infty}=\max _{\mathrm{i}}\left|\overline{\mathrm{x}}_{\mathrm{i}}-1\right| \tag{8}
\end{equation*}
$$

and smaller value of ERROR implies better accuracy. For this purpose a subroutine INIVER is first called in which the vector $b=A e$ is calculated by using the data structure of the initial matrix and the array INVP. The subroutine GETRHS solves the system (6) by the method outlined in Section 2 and calls the subroutines LOWSOL, UPSOL and SOLVE. The first two subroutines carry out solution of lower and upper triangular systems using the envelope data structure. The subroutine SOLVE processes the two triangular systems which are given by the dense LU decomposition of S_{c}.

It is quite straightforward to adopt this suite of subroutines to solve a linear system $A x=b$, where b is any right hand side vector. It is sufficient to modify the subroutine INIVER so that it reads the vector b and constructs the vector RHS in the order induced by the array PERM defined earlier in this section.

4. Description of the Data Structures

In this section we describe the main data structures referred to in section 2 and section 3 . These data structures include the column-wise and row-wise representations of the original matrix, the adjacency lists of the inner and outer graphs associated with the original matrix, the level tree which is used by the GPS algorithm and finally the envelope representation of the permuted matrix. A number of one dimensional arrays of integer (INTEGER*2) and real (REAL*4) words are used. These arrays are dimensioned by global variables which are defined below.

$$
\left\{\begin{aligned}
\text { MROW }= & \text { number of rows (and columns) of the matrix. } \\
\text { NONZER }= & \text { number of nonzero elements of the original } \\
& \text { matrix. } \\
\text { NZNDG }= & \text { NONZER - MROW = number of non-zero } \\
& \text { off - diagonal elements of the original matrix. }
\end{aligned} \quad \begin{array}{rl}
\text { ENVRW (ENVCL) }= & \text { number of elements which are stored in } \\
& \text { strictly lower (upper) part of the envelope of } \\
& \text { the permuted matrix. }
\end{array}\right.
$$

The column-wise representation of the original matrix is given by two integer arrays PTCL and ELCL of dimensions (MROW+1) and NONZER respectively and a real array VMATCL of dimension NONZER. The arrays ELCL and VMATCL contain the row positions and the numerical values of the nonzero elements of the original matrix. The array PTCL is such that PTCL(k) points to the location of the first nonzero element of column k represented in the arrays ELCL and VMATCL.

The row-wise representation of the matrix structure is given by two integer arrays PTRW and ELRW which are comparable to PTCL and ELCL respectively. The actual coefficient values are not given in this representation as this would lead to unnecessary duplication. For the matrix shown in Display 2 the data structures are illustrated by the contents of these arrays set out in Display 3.

The inner graph and the outer graph of a matrix are represented by the adjacency lists stored in arrays ADJNCL, ADJNRW. These arrays locate the row and column positions of the off-diagonal elements. Two arrays of pointers XADJCL, XADJRW which are comparable to PTCL and PTRW are also required. The contents of these arrays for the example are shown in Display 4.

The level tree for the GPS algorithm is given by the two integer arrays XLS and LS, which are explained in [6, Chapter 4], The envelope representation of the permuted matrix consists of five different arrays. DIAG is a real array of dimension MROW, and contains all the diagonal elements of the permuted matrix in the order induced by the array PERM. The arrays EVRW and EVCL are real arrays of dimensions ENVRW and ENVCL respectively. ENVRW, ENVCL contain the number of words reserved to store the rows of the strictly lower triangular part and the columns of the strictly upper triangular part of the permuted matrix. XENVRW and XENVCL are integer arrays of dimension (MROW+1) and their contents point to the first nonzero position of each row and column as contained in ENVRW and ENVCL respectively. If we assume that the matrix in Display 2 is already permuted then its envelope data structure is given by the arrays shown in Display 5 .

The program has been designed in such a way that all the arrays are created in contiguous work space provided by the user and consists of an integer (INTEGER*2) array ISTOR and a real (REAL*4) array RSTOR. The dimension of these two arrays has been set to 10,000 but obviously can be modified if required.

Since the three phases ANALYSE, FACTOR and VERIFY are processed sequentially, some of the arrays required in one phase may not be used subsequently. This permits overlaying of storage and reduces the total amount of storage needed. This is easily achieved by the use of suitable start pointers and this strategy is followed in different parts of the program. The integer and real storage areas, together with their overlays, are shown in Display 6.

The matrix data is input by following the coordinate scheme for specifying the nonzero element values. The output is designed to provide a number of useful statistics. These include ERROR, MROW, NONZER, ENVSZE, INTSPA, RELSPA, and also the growth factor GROWTH [8]. The number of multiplications/divisions required to perform the LU decompositions is also computed and is given by the double precision variable OPSF.

$$
\mathrm{A}=\left[\begin{array}{llllll}
2.0 & & 1.0 & & & \\
& 5.0 & 3.0 & 2.0 & & 2.0 \\
& 3.0 & 4.0 & 1.0 & & 6.0 \\
3.0 & & & 6.0 & & \\
& & & & 1.0 & 1.0 \\
& 5.0 & 2.0 & 3.0 & & 3.0
\end{array}\right]
$$

DISPLAY 2

MROW=6 NONZER=18 NZNDG=12

```
PTCL = 1 3 3 6 10}1014151
ELCL = 1 4 2 3 3 6 1 1 2 3 6 6 2 3 4 4 6 5 2 % 3
VMATCL=2.0 3.0 5.0 3.0 5.0 1.0 3.0 4.0 2.0 2.0 1.0 6.0 3.0}1.
PTRW = 1 3 3 7 11 131519
ELRW = 1 3 2 2 3 4 6 2 % 3 4 6 6 1 4 4 5 6 2 2 3
```

DISPLAY 3

```
ADJNCL = 4 3 6 12 6 2 362 35
XADJCL = 12 4 7 1010 13
ADJNRW=3 34624616234
XADJRW=1 2 5 8 9 1013
```

DISPLAY 4

```
ENVRW=8 ENVCL=8
ENVRW=8 ENVCL=8
```

DIAG $=2.05 .04 .06 .01 .03 .0$
XENVRW $=1112559$
XENVCL $=1113559$
EVRW $=3.03 .00 .00 .05 .02 .03 .00 .0$
EVCL $=1.03 .02 .01 .02 .06 .00 .01 .0$

DISPLAY 5

INTEGER ARRAY ARRA(ARRAY ISTOR)

real array aria(array rstor)

6. Test Data and Experimental Results

The investigation reported in this section was carried out with test matrices taken from a real life linear programming model. The model represents an oil company refinery planning operation and consists of 315 rows and 458 columns. In course of solving this problem by The FORTLP system [10] a set of seven basis matrices at the time of reinversion were written out to a data file. These basis matrices were then restructured to the Lower Block Triangular form with a nonsingular bump matrix having a zero free diagonal [1]. The present set of experiments were carried out for these bump matrices.

An IBM PC/AT working at 8 MHz and with an 80287 floating point processor was used for our experiments. The programs were compiled and linked using the Professional Fortran compiler and linker.

A number of important statistics were compiled: These are set out in Table 1. The columns of Table 1 are labelled by variables which are already defined in section 4 . The test runs were carried out following three alternative strategies, namely,

Strategy 1: \quad RCM ordering and $\mathrm{XTOL}=0.1$
Strategy 2: \quad RCM ordering and $\mathrm{XTOL}=0.001$
Strategy 3: $\quad \mathrm{CM}$ ordering and $\mathrm{XTOL}=0.001$

The main purpose of introducing the high tolerance value XTOL=0.1 was to force pivot rejection in the LU decomposition phase. In this way the use of Schur Complement update to deal with zeros in the leading pivot positions could be fully tested.

M1	24	60	1	108	1	329	218	121	1.23	1×10^{-5}
			2	108	0	329	192	75	1.23	1×10^{-5}
			3	103	0	329	187	101	0.78	1×10^{-5}
M2	49	174	1	512	3	821	796	3199	1.06	1×10^{4}
			2	512	0	821	735	1249	6.71	2×10^{4}
			3	788	0	821	1011	3744	23.42	8×10^{4}
M3	61	235	1	633	8	1076	1062	12654	1.00	7×10^{-4}
			2	633	1	1076	992	1675	75.30	2×10^{4}
			3	811	1	1076	1170	3543	67.70	1×10^{4}
M4	92	326	1	1163	5	1535	1703	7972	6.77	2×10^{-5}
			2	1163	0	1535	1581	3708	19.15	1×10^{4}
			3	1690	0	1535	2108	9522	24.09	4×10^{-5}
M5	117	400	1	1696	7	1907	2386	38133	30.39	3×10^{4}
			2	1696	0	1907	2213	6178	25.55	6×10^{4}
			3	2406	0	1907	2923	14216	12.32	9×10^{4}
M6	130	461	1	2035	3	2168	2768	9836	26.74	3×10^{-5}
			2	2035	0	2168	2626	7283	18.21	4×10^{4}
			3	2788	1	2168	3511	17621	57.36	1×10^{-3}
M7	141	504	1	2469	3	2363	3267	13095	20.55	2×10^{-5}
			2	2469	0	2363	3114	10542	13.99	$3 \times 10{ }^{4}$
			3	3519	1	2363	4307	26510	44.07	1×10^{-3}

TABLE 1
page 15

6. Acknowledgements

Dr. M. Tamiz is supported by an SERC grant and Dr, J. Judice's visit to Brunel University was made possible by a fellowship also offered by the SERC. We are grateful to Dr. I. Duff and Dr. N. Gould of AERE, Harwell, who discussed with us some aspects of this research work.

REFERENCES

[1] K. DARBY-DOWMAN and G. MITRA, An investigation of algorithms used in restructuring of linear programming basis matrices prior to inversion, Studies of Graphs and Discrete Programming, Ed. P. Hanson, North Holland, (1981) 69-93.
[2] I.S. DUFF, Direct methods for solving sparse systems of linear equations, SIAM Journal of Scientific and Statistical Computing 5(1984) 605-619.
[3] I.S. DUFF, On algorithms for obtaining a maximum transversal, ACM Transactions on Mathematical Software 7 (1981) 315-330 and 387-390.
[4] G.E. FORSYTHE and C.B. MOLER, Computer solution of linear algebraic systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
[5] W.M. GENTLEMEN and A. GEORGE, Sparse matrix software, in "sparse matrix computations", edited by J.R. Bunch and D.J. Rose, Academic Press, New York, 1976, pp 243-261.
[6] A. GEORGE and J.W.H. LIU, Computer solution of large sparse positive definite systems, Prentice Hall, Englewood Cliffs, New Jersey, 1981.
[7] F.G. GUSTAVSON, Two fast algorithms for sparse matrices: multiplication and permuted transposition, ACM Transactions on Mathematical Software 4(1978) 250-269.
[8] J.J. JUDICE, and G. MITRA, Extension of envelope method for the solution of unsymmetric systems, Technical Report, Department of Mathematics and Statistics, Brunel University (in preparation), 1987.
[9] J.J. JUDICE, G. MITRA and M. TAMIZ, Application of envelope method to LP reinversion, Technical Report, Department of Mathematics and Statistics, Brunel University (in preparation), 1987.
[10] G. MITRA, and M. TAMIZ, FORTLP user manual, Department of Mathematics and Statistics, Brunel University, 1985 (Revised 1987).

1) SYMBOLIC PHASE

C 2) FACTORIZATION PHASE
C IN THE SYMBOLIC PHASE THE ROWS AND COLUMNS OF THE MATRIX ARE ORDERED
C BY USING THE CUTHILL-MCKEE METHOD (RCM=0) OR THE REVERSE CUTHILL-MCKEE
C METHOD (RCM=1).THEN THE ENVELOPE DATA STRUCTURE IS CONSTRUCTED FOR THE C FACTORIZATION PHASE.
C IN THE FACTORIZATION PHASE THE LU DECOMPOSITION OF THE PERMUTED MATRIX C IS OBTAINED BY USING THE BORDERED METHOD.

```
INTEGER*2 ISTCR (10000), NI, NO, MROW, NONZER, NZNDG, INTSPA, RELSPA,
    BANDRW, BANDCL, ENVRW, ENVCL, ENVSZE, RCM, NSINGL, NCOFP,
    ADCL, L, M, HOUR, MIN, SEC, HSEC, IDIAG, NZRENV
REAL RSTOR(10000),ERROR, MAXINP, MAXVAL, GROWTH, XTOL
REAL*8 OPS,CPSF
``` COMMON /ISNO/ NO CCMMON /ISROM/ ROM COMMON /RSOPS/ OPS COMMON /RSXTOL/ XTCL COM'MON /RSOPSF/ CPSF
\(\mathrm{NE}=13\)
OPEN (NE, FILE='INPT')
OPEN (NE, FILE='INPT')
OPEN (NI, FILE='INP')
OPEN (NI, FILE='INP')
OPEN (NO, FILE = 'OUT ')
OPEN (NO, FILE = 'OUT ')
FORMAT (15,F10.5)
100 READ (NI, 200) MROW
200 FORMAT (I 5)
IF (MROW.E, Q) STOP

MEANINGS OF VARIABLES:
NI - INPUT CHANNEL
NO -OUTPUT CHANNEL
MROW - NUMBER OF ROWS AND COLUMNS OF THE MATRIX
NONZER - NUMBER OF NONZEROS OF THE MATRIX
NZNDG - NUMBER OF NONZEROS OFF DIAGONAL ELEMENTS
INTSPA - INTEGER STORAGE REQUIRED
RELSPA - REAL STORAGE REQUIRED
BANDRW - LOWER BANDWIDTH
BANDCL - UPPER BANDWIDTH
ENVRW - LOWER ENVELOPE SIZE
ENVCL - UPPER ENVELOPE SIZE
ENVSZE - ENVELOPE SIZE (=MROW+ENVRW+ENVCL)
NCOMP - NUMBER OF CONNECTED COMPONENTS OF MATRIX GRAPH = NUMBER OF NONSINGLETON DIAGONAL BLOCKS
NSINGL - NUMBER OF SINGLETONS,
ADCL - NUMBER OF COLUMNS TO BE ADDED FOR FACTORIZATION TO BE POSSIBLE
ERROR - IT MEASURES THE ACCURACY OF THE DECOMPOSITION AND IS EQUAL TO MAX (ABS(X(I)-1.)), WHERE X(I) ARE COMPONENTS OF THE COMPUTED SOLUTION OF SYSTEM LU*X=B WHERE B=A*1 WITH 1 A VECTOR OF ONES
OPSF - NUMBER OF OPERATIONS(MULTIPLICATIONS + DIVISIONS) IN FACTORIZATION
OPS - TOTAL NUMBER OF OPERATIONS OF FACTOR AND VERIFY
MAXINP - MAXIMUM ABSOLUTE VALUE OF ORIGINAL MATRIX ELEMENTS
MAXVAL - MAXIMUM ABSOLUTE VALUE OF L AND U MATRICES ELEMENTS
GROWTH - GROWTH FACTOR = MAXVAL / MAXINP
NZRENV - NUMBER OF NONZEROS INSIDE ENVELOPE
XTOL - TOLERANCE FOR ZERO
POINTERS ..
INTEGER*2 PTVMCL, PTVMRW, PTPTCL, PTELCL, PTPTRW, PTELRW, PTXVRW, PTDEG, PTMASK, PTXVCL, PTPERM, PTINVP, PTXARW, PTADRW, PTXACL, PTADCL, PTDIAG, PTEVRW, PTEVCL, PTXLS, PTNCP, PTRHS, PTAURW,PTAUCL,PTYRHS,PTSCPL,PTAUX,PTAUY, PTIMAT, PTDPER
```

C INPUT THE MATRIX COLUMNWISE
C
PTVMCL=1
PTPTCL=1
PTELCL=PTPTCL +MROW+1
CALL INPUT (MROW, NONZER, ISTOR (PTPTCL), ISTOR (PTELCL),
RSTOR (PTVMCL) ,MAX INP)
NZNDG = NONZER-MROW
C
C INITIALIZE POINTERS FOR OTHER SUBROUTINES
C
PTDEG = PTVMCL + NONZER
PTRHS=PTDEG
PTXVRW=PTELCL+NONZER
PTMASK=PTXVRW
PTXLS=PTMASK +MROW
PTXVCL=PTXLS+1
PTPERM=PTXVCL+MROW+1
PT INVP = PTPERM+MROW
PTXARW=PTINVP+MROW
PTADRW = PTXARW +MROW +1
PTXACL=PTADRW+NZNDG
PTADCL = PTXACL+MROW +1
PTPTRW=PTXACL
PTELRW=PTADCL
PTNCP=PTADCL+NZNDG
PTIFAT = PTXARW
C
C DETERMINE THE ROWISE R EPRE SENTATION OF THE MATRIX
C
1
CALL ROWISE (MROW, NONZER, ISTOR (PTPTCL), ISTOR (PTELCL),
ISTCR (PTPTRW), ISTOR (PTELRW))
C
C FIND THE OUTERGRAPH OF THE MATRIX
CALL FDOUGR (MROW, ISTOR (PTPTRW), ISTOR (PTELRW),
ISTOR (PTXARW), ISTOR (PTADRW))
C
C FIND THE INNERGRAPH OF THE MATRIX
C
CALL FDINGR (MROW, ISTOR (PTPTCL), ISTOR (PTELCL),
1
ISTOR (FTXACL), ISTOR (PTADCL))
C
C SWITCH ON TIME
C
CALL GETTIM (HOUR, MIN, SEC, HSEC)
WRITE (NO, 300) HCLR, MN, SEC, HSEC
300 FORMAT (TX, I2,' :',I2,' :', I2)
C
C DETERMINE ORDERING FOR THE MATRIX
C
CALL GENRCM (MROW, ISTOR (PIPERM), ISTOR (PTXARW), ISTOR (PTADRW)
1 ISTOR (PTXACL), ISTOR (PTADCL), RSTOR (PTDEG),
2 I S TOR (PTMAS K), I STOR (P TX L S), N C O M P, I S T O R (P T N C P ),
3 NSINGL)
C
C DETERMINE INVERSE OF PERMUTATION
C
CALL INVRSE (MROW, ISTOR (PTPERM), ISTOR (PTINVP))
C
C DETERMINE THE ENVELOPE STRUCTURE OF THE LOWER PART OF THE MATRIX
C
CALL FENVRW(MROW,ISTOR(PTXARW),ISTOR(PTADRW),ISTOR(PTPERM),
1
ISTOR(PTINVP), ISTOR (PTXVRW), ENVRW, BANDRW)
C
C DETERMINE THE ENVELOPE STRLCTURE OF THE UPPER PART OF THE MATRIX
C
CALL FENVCL(MROW,ISTOR(PTXACL),ISTOR(PTADCL),ISTOR(PTPERM),
1
ISTOR(PTINVP),ISTOR(PTXVCL),ENVOL,BANDCL)
C
C DETERMINE THE NUMBER OF ELEMENTS STORED BY THE ENVELOPE METHOD
C AND TOTAL STORAGE FOR INTEGER AND REAL ARRAYS
C
ENVSZE=MROW+ENVRL+ENVCL
RELSPA = NONZER+ENVSZE+MROW
INTSPA=PTELRW+NCNZER-1
C DETERMINE THE ENVELOPE REPREESNTATION OF THE MATRIX
PTEVRW=PTDEC+MROW

```
```

            PTEVCL=PTEVRW+ENVRW
            PTDIAG=PTEVOL + ENVOL
            PTYRHS=PTDIAG+MROW
            CALL ENVMAT(MROW, ISTOR (PTPTCL), ISTOR (PTELCL), RSTOR (PTVMCL),
                ISTOR (PTINVP),ENVRW,ENVCL,ISTOR (PTXVRW),
                                    ISTOR(PTXVCL), RSTOR(PTEVRW), RSTOR(PTEVCL),
                                    RSTOR (PTDIAG))
    C
C FACTORIZE MATRIX INTO L*U
C
OPSF=0.D0
OPS=0.D0
CALL FACTOR (MROW, ISTOR (PRTXVRW),RSTOR (PTEVRW), ISTOR (PTXVCL),
RSTOR (PTEVCL),RSTOR (PTDIAG), NSINGL, ADCL,
ISTOR (PTIMAT), MAXVAL, NZRENV)
C
IF (ADCL.EQ.O) GO TO 400
C
C CALCULATE SCHUR COMPLEMENT MATRIX
C
RELSPA=RELSPA+MROW +ADCL*(ADCL+1)
PTAURW=PTDEG
PTAUCL=PTYRHS
PTAUX=PTAUCL
PTYRHS=PTAUCL+MROW
PTSCPL=PTYRHS +ADCL
PTDPER=PTIMAT+ADCL
CALL SCHCCM (MROW, ISTOR (PTXVRW), ISTOR (PTXVCL), RSTOR (PTEVRW),
RSTOR (PTEVCL), RSTOR (PTDIAG), ADCL, ISTOR (PTIMAT),
RSTOR (PTAUCL), RSTOR (PTAURW), RSTOR (PTSCPL), MAXVAL,
ISTOR (PTDPER))
C
C CALCULATE GROWTH FACTOR AND SWITCH OFF TIME
C
400 GROWTH = MAXVAL/MAXINP
CALL GETTITM (HOUR, MIN, SEC, HSEC)
WRITE (N0, 300) HOUR, MIN, SEC, HSEC
OPSP=OPS
C
C VERIFY ACCURACY OF DECOMPOSITION
C
CALL INIVER (MROW, ISTOR (PTPTCL), ISTOR (PTELCL), RSTOR (PTVMCL),
ISTOR (FTINVP),RSTOR (PTRHS))
C
1
1
2
3
IDIAG=1
CALL LOWSOL (MROW, ISTOR (PTXVRW), RSTOR (PTEVRW), RSTOR (PTDIAG)
1
RSTOR (PTRHS), IDIAG)
C
IF (ADCL.EQ.O)GO TO 500
CALL GETRHS (MROW, ISTOR (PTXVRW), ISTOR (PTXVCL), RSTOR (PTEVRW),
RSTOR (PTEVCL), RSTOR (PTDIAG), RSTOP (PTRHS),
RSTOR (PTAUX), RSTOR (PTYRHS), ISTCR (FTIMAT),
RSTOR(PTSCPL), ISTOR(PTDPER), ADCL)
C
500 CALL UPSOL (MROW, ISTOR (PTXVCL), RSTOR (PTEVCL),RSTOR (PTDIAG),
1
C
RSTOR (PTRHS))
CALL GETERR(MROW,RSTOR(PTRHS),RSTOR(PTYRHS),ADCL,ERROR)
C
C OUTPUT AND FINISH
C
CALL OUTPUT (MROW, NONZER, ENVSZE, BANDRW, BANDCL, INTSPA, RELSPA, NCCMP, ISTCR (PTNCP), NSINGL, ACCL, ERRCR, GROWTH, NZRENV)
GO TO 100
END

```
C
C
C THIS ROUTINE CALCULATES THE VECTOR RHS=A*1,WHERE 1 IS A VECTOR OF ONES
C
C MEANING OF VARIABLE:
C RHS(NEGNS) - THE DESIRED VECTOR
C
 INTEGER*2 PTCL (1),ELCL(1),INVP(1),NEQNS, I, ISUB, JSTRT,JSTOP
 REAL VMATCL (1), RHS(1)
C
10
DO 100 I=1, NEGNS
 RHS (I)=0.
CONTINUE
C
DO 300 I=1, NEGNS
 JSTRT=PTCL (I)
 JSTOP = PTCL (I+1)-1
 DO 200 J=JSTRT, JSTOP,
 ISUB=ELCL (J)
 ISUB=INVP (ISUB)
 RHS (ISUB)=RHS (ISUB)+VMATCL (J)
 200 CONTINUE
 300 CONTINUE
RETURN
END
C
SUBROUTINE GETRHS (NEQNS, XENVRW,XENVCL,EVCW,EVCL,DIAG,RHS,
1 AUXRHS, YRHS, INDMAT, SCOMPL, DPERM, ADCL)
C
C
C THIS ROUTINE GETS THE RHS TO SOLVE THE SYSTEM U*X=RHS WHEN AT LEAST C ACOLUMN HAD TO BE ADDED TO GET THE FACTORIZATION
C
```


## C MEANINGS OF VARIABLES:

```
C YRHS (ADCL) - VECTOR OF THE VARIABLES COPRESPONDING TO ADDED
```

C YRHS (ADCL) - VECTOR OF THE VARIABLES COPRESPONDING TO ADDED
AUXRHS (NEQNS) - AUXILIAR VECTOR
INTEGER*2 XENVRW (1), XENVCL (1), INDMAT (1), DPERM (1), NEQNS, ADCL,
IDIAG, NEG, I, IFIRST,IPERM
REAL EVRW(1) EVCL(1),RHS(1),AUXRHS(1),YRHS(1),DIAG(1),
SCOMPL (ADCL,ADCL)
C
C SOLVE U*X=AUXRHS
C
DO 100 I=1, NEQNS
AUXRHS (I)= RHS(I)
100 CONTINUE
CALL UPSCL (NEQNS, XENVCL, EVCL, DIAG, AUXRHS)
C
C CALCULATE AUYRHS=F*AUXRHS, WHERE F IS THE MATRIX OF THE ADDED ROWS
C
DO 200 I = 1, ADCL
L= INDMAT (I)
YRHS (I)= AUXRHS (L)
200 CONTINUE
C
C SOLVE SCOMPL*Y=YRHS
C
DO 300 I=1, ADCL
DPERM (I)=1
300 CONTINUE
CALL SOLVE (ADCL, DPERM, YRHS, SCOMPL)
C
C CALCULATE AUXRHS=E*YRHS, WHERE E IS THE MATRIX OF THE ADDED COLUMNS
C
225 DO 600 1=1, NEQNS
AUXRHS (I)=0.
600 CONTINUE
IFIRST =0
DO 700 I=1, ADCL
L= INDMAT (I)

```
```

                            IFERM=DPERM (I)
                            AUXRHS (L)=-YRHS (IPERM)
                            IF (IFIRST.EQ.O) IF IRST = L
    700 CONTINUE
    C
C SOLVE L*X=AUXRHS
IDIAG=1
NEQ=NEQNS-IFIRST + 1
CALL LOWSOL (NEQ, XENVRW (IFIRST), EVRW, DIAG (IFIRST),
1
C
C CALCULATE
C
RHS
DO 800 I =1, NEQNS
RHS (I) = RHS (I)-AUXRHS (I)
CONTINUE
RETURN
END
C
C
C--------------------------------------------------------------------------------------------------------------
C
SUBROUTINE GETERR (NEQNS, RHS, YRHS, ADCL, ERROR)
C
C
C THIS ROUTINE CALCULATES THE ERROR OF THE COMPUTED SOLUTION
C
INTEGER*2 NEQNS, I, ADCL
C
ERROR = C.
DO 100 I=1, NEQNS
S=RHS (I)-1.
S=ABS (S)
IF (S.GT.ERROR) ERROR = S
CONTINUE
C
IF (ADCL.EQ.O) RETURN
DO 200 I=1, ADCL
S = YRHS (I)-1.
S=ABS (S)
IF (S.GT.ERROR) ERROR=S
CONTINUE
RETURN
END

```
```

C
SUBROUTINE UPSOL (NEQNS, XENVCL, EVCL, DIAG, RHS)
C
C
THIS ROUTINE SOLVES AN UPPER TRIANGULAR SYSTEM U*X=RHS, WHERE U IS
C STORED IN ENVELOPE FORMAT REPRESENTATION
C
INTEGER*2 XENVCL (1 ),NEQNS, I, IBAND, JSTRT, JSTOP,J, L
REAL EVCL (1 ), DIAG (1), RHS (1),S
REAL* 3 COUNT, CPS
C
COMMON /RSOPS/ OPS
C
1 0 0
I = NEQNS + 1
I=I-1
IF (I .E Q. 0) RETERN
IF (RHS (I).E Q.O.) GO TO 100
S = RHS (I) /DIAG (I)
RHS (I) = S
OPS = OPS+1 .D C
IBAND=XCNVCL (I+1)-XENV0L (I)
IF (IBAND.EQ. 0) GO TO 100
IF (IBAND. GE.I) IBAND=I-1
L = XENVCL (I + 1)- IBAND
JSTRT=I-IBAND
JSTOP=I-1
DO 200 J=JSTRT, JSTOP
RHS (J ) = RHS (J)-S*EVOL (L)
L = L+1
200
CONTINUE
COUNTINUE=IBAND
OPS=OPS+COUNT
GO TO 100
END

```
```

C
C
1
2
C
C
C THIS ROUTINE PROVIDES THE OVERALL RESULTS
C
1
C
C
100
C
200
C
300
C
400
500
600
700
C
800
C
900
950
C
1000
C
1200
C
1300
C
WRITE (NO,1400) OPSF
FORMAT (1X, 'NUMBER OF OPERATIONS IN FACTOR , D20.10)
WRITE (NO,1450) OPS
FORMAT (1 X, ' TOTAL NUMBER OF OPERATIONS ',D20. 10)
WRITE (NO, 1500) GROWTH
1500 FORMAT (1X, 'GROWTH FACTOR ',F15.5)
C
WRITE (NO, 1600) ERROR
1600
C
1700
C
1600 FORMAT (1X,' ERROR OF COMPUTED SOLUTION ',F15.12)
IF (ADCL.GT.0) WRITE (NO, 1700) ADCL
FORMAT ( 1X, I4, ' COLUMNS TO ADD TO GET FACTORIZATION')
RETURN
END
C
C-
SUBROUTINE DGNINT (ARRAY,NDIM, ITOP, IBOT, A8)
C
C
C THIS ROUTINE PRINTS THE INTEGER CONTFWTS OF AN INTEGER ARRAY

```
```

C
C MEANIGS OF VARIABLES:
C ARRAY - ARRAY TO BE PRINTED
C NDIM - NUMBER .OF ITEMS TO BE PRINTED
C ITOP, IBOT - FIRST AND LAST ELEMENTS OF ARRAY TO BE PRINTED
C A8 - NAME OF APRAY CONTAINING AT MOST 6 LETTERS
C
INTEGER*2 ARRAY(1),NO,NDIM,ITOP,IBOT,I
CHARACTER*8 A8
C
C
COMMON/ ISNO/ NO
C
FORMAT (1X,'ELEMENTS OF ',A8,'ARRAY FROM ',16,' TO ',16 )
WRITE(NO,200)(ARRAY(I),I=ITOP,IBOT)
200 FORMAT (2014)
C
C
FORMAT (IX,'DIMENSION OF', A8,'ARRAY : ',16)
RETURN
END
C
C--------------------------------------------------------------------------------------------------------------------
C
SUBROUTINE DGNRELCARRAY,NDIM,ITOP,IBOT,A 8)
C
C
C
C THIS ROUTINE PRINTS THE REAL CONTENTS OF A REAL ARRAY
C
INTEGER*2 NO, NDIM, ITOP, IBOT, I
REAL ARRAY (1)
CHARACTER*8 A8
C
C
NRITE(,NO,100)A8,ITOP,IBOT
100 FORMAT (1X,' ELEMENTS OF ', A8, 'ARRAY FROM', 16,' TO ',16)
C
WRITE (NO,200)(ARRAY(I),I=ITOP, IBOT)
C
FORMAT (8F10.5)
WRITE (NO, 300) A 8, NDIM
C
FORMAT (1X,'DIMENSION OF,A8,'ARRAY:',16)
RETURN
END

```
```

C
C
C
C this RoUtine SOlVES A LOWER TRIANGULAR SYSTEM L*X= RHS, WHERE L IS
C STORED IN ENVELOPE FORMAT REPRESENTATION. IT IS ASSUMED THAT THE
C FIRST RHS ELEMENT IS NONZERO
C
C MEANINGS OF VARIABLES:
NEQNS - NUMBER OF SYSTEM EQUATIONS
XENV, ENV, DIAG - ARRAYS OF ENVELOP MATRIX REPRESENTATION
RHS - SYSTEM RIGHT-HAND SIDE VECTOR.IN FACTORIZATION IT IS
A ROW OR COLUMN OF THE MATRIX TO BE FACTORIZED
IDIAG - INTEGER VARIABLE WHICH TAKES VALUE 1 IF ALL DIAGONAL
ELEMENTS OF THE LOWER TRIANGULAR MATRIX ARE E QUAL TO
ONE AND ZERO OTHERWISE
INTEGER*2 XENV (1), NEQNS, IDIAG, IFIRST, LAST, IBAID, JSTRT,
JSTOP, I, J, L
REAL ENV(1)DIAG(1),RHS(1),S
REAL*3 OPS, COUNT
C
COMMON/RSOPS/ CFS
C
IFIRST=1
LAST=0
C
C LAST CONTAINS THE POSITION OF THE MOST RECENTLY COMPUTED NONZERO
C COMPONENT OF THE SOLUTION
C
DO 300 I = IFIRST,MEQNS
IBAND=XENV(I+1)-XENV (I)
IF (IBAND.GE.I) IBAND=I-1
S=RHS (I)
L=I - IBAND
RHS (I)=0.
C
C IF ENVELOPE ROW IS EMPTY OR CORRESPONDING COMPONENTS OF SOLUTION
C ARE ALL ZEROS THEN ONLY DIVISION BY DIAGONAL ELEMENT IS DONE
C
IF (BAND. EQ.O OR. LAST.LT.L) GO TO 200
JSTRT = XENV (1+1)-IBAND
JSTOP=XENV (I+1)-1
DO 100 J=JSTRT, JSTOP
S=S-ENV(J)*RHS (L)
L}=\textrm{L}+
100
CONTINUE
COUNT= IBAND
OPS=OPS+COUNT
C
200 IF (S.EQ.C.)GO TO 300
LAST=I
RHS (I)=S
IF (IDIAG. EQ.1) GO TO 300
RHS (I)=S /DIAG(I)
OPS=OPS +1.DO
CONTINUE
RETURN
END

```
```

C
SUBROUTINE DECOMP(N, DPERM,A,MAXVAL)
C
C THIS ROUTINE FINDS THE LU DECOMPOSITION OF A DENSE MATRIX A BY USING
C PARTIAL PIVOTING.THE LU DECOMPOSITION OVERWRITES THE MATRIX A.
C
C MEANINGS OF VARIABLES:
C N - ORDER OF THE MATRIX
C A (N,N) - MATRIX TO BE FACTORIZED
C DPERM (N) - INTEGER VECTOR WHICH GIVES THE ROW PERMUTATION
C TOL - TOLERANCE FOR ZERO FIVOT
C
INTEGER* 2 DPERM(1) ,N,-NM1,K,KPERM,KP1 ,I,IPERM,J ,IND, ITEHP,NO
REAL A(N,N),VAL,MAXVAL,PIVOL,TOL,,S,MAX
REAL*8 OPS,COUNT
C
COMMON /RSOPS/ OPS
COMMON /ISNO/ NO
TOL=1.E-4
C
IF (N.GT.1) GO TO 100
VAL=ABS (A(1,1))
IF (VAL.LT.TOL) GO TO 700
RETURN
NM1 = N-1
DO }600\textrm{K}=1,NM
C PARTIAL PIVOTING IN OPERATION...
C
C
KPERM = DPERM (K)
PIVOT=A (KPEM, K)
MAX=ABS (PIVOT)
IND = K
KP1= K + 1
DO 200 I=KP1,N
IPERM = DPERM (I)
VAL=ABS (A(IPERM,K))
IF (VAL, LE, MAX) GO TO 200
MAX = VAL
IND = I
200 CONTINUE
IF (IND.EQ.K) GO TO 300
ITEMP=DPERM (IND)
DPERM (IND) = DPERM (K)
DPERM (K) = ITEMP
KPERM= DPERM (K)
PIVCT=A(KPERM,K)
C
C EFECTUE DECOMPOSITION STEP...
C
300 IF(MAX.LT.TOL)GO TO 700
DO 500 I=KP1,N
IPERM=DPERM (I)
VAL = A(IPERM,K)/PIVOT
A (IPERM, J)=VAL
DO 400 J=KP1,N
S=A (IPERM,J) - VAL*A(KPERM, J)
A (IPERM, J)=S
S=ABS (S)
IF (S. GT. MAXVAL) MAXVAL=S
400 CONTINUE
COUNT=N-K+1
OPS=OPS+COUNT
CONTINUE
500 CONTIN
600 CONTINU
C
C MATRIX IS SINGULAR
C
700 WRITE (NO, 300)
800 FORMAT (1X, MATRIX IS NONSINGULAR')
RETURN
END
C
C
SUBROUTINE SOLVE (N, DRERM, A, B)

```
```

C
C---
C MEANINGS OF VARIABLES
C N-ORDER OF SYSTEM
C A (N,N) - LU DECOMPOSITION OF MATRIX A
DPERM (N) - INTEGER VECTOR THAT GIVES THE ROW PERMUTATION
E (N) - R.H.S. VECTOR
INTEGER*2 DPERM (1),N, NM1, NPERM, K, KM1, KPERM, J, JPERM
REAL A (N, N),B(1 ), SUM
REAL*8 COUNT, OPS
C
C
COMMON /RSOPS/ OPS
IF (N. EQ. 1) GO TO 300
C
C SOLVE THE SYSTEM L*Y=B
C
DO 200 K=2, N
KPERM=DPERM (J)
KM1=K-1
SUM=B (KPERM)
DO 100 J=1, KM1
JPERM= DPERM (J)
SUM = SUM-A (KPERM, J )* B (JPERM)
100 CONTINUE
B (KPERM)= SUM
COUNT=KM1
OPS=OPS+COUNT
200 CONTINUE
C
C
300 NPERM=DPFRM(N)
B (NPERM)= B(NPERM)/A(NPERM,N)
OPS = OPS + 1.DO
IF (N.EQ.1) RETURN
NM1=N-1
DO 500 K=NM1, 1,-1
KPERM=DPERM (K)
KP1=K+1
SUM=B (KPERM)
DO 400 J=KP1,N
JPERM=DPERM (J)
SUM = SUM-A(KPERM, J)* B ( JPERM)
CONTINUE
B (KPERM)=SUM/A(KFERM,K)
COUNT=N-K+1
OPS=OPS+COUNT
CONTINUE
RETURN
END

```
```

C
SUBROUTINE SCHCOM (NEQNS, XENVRW, XENVCL, EVRW, EVCL, DIAG, ADCL,
1
INDMAT, AUXCL, AUXRW, SCOMPL, MAXVAL, DPERM)
C
C
C THIS ROUTINE CALCULATES THE SCHUR COMPLEMENT MATRIX FOR THE CASE
C IN WHICH AT LEAST A COLUMN HAS TO BE ADDED TO GET THE FACTORIZATION
C
C MEANINGS OF VARIABLES:
C NEQCL - NUMBER OF ELEMENTS OF COLUMN ADDED WHICH ARE NECESSARY
NEQCL - NUMBER OF ELEMENTS OF COLUMN ADDED WHICH ARE NECESSARY
NEQRW - NUMBER OF ELEMENTS OF ROW ADDED WHICH ARE NECESSARY TO
CALCULATE A ROW OF SOOMPL MATRIX (NEQRW <= NEQNS)
SCOMPL (ADCL, ADCL) - SCHUR COMPLEMENT MATRIX
AUXCL (NEQCL) - AUXILIAR VECTOR FOR ADDED COLUMNS
AUXRW (NEQRW) - AUXILIAR VECTOR FOR ADDED ROWS
C
1
INTEGER*2 XNVRW(1), XENVCL (1),INDMAT(1),DPFRM(1),NEQNS,I,J,L,K,
JFIRST, IFIRST, IDIAG, NEQRW, NEQCL, ADCL
REAL SCOMPL (ADCL, ADCL), EVRW(1), EVCL(1), DIG(1), AUXCL(1),
AUXRW (1), S, MAXVAL
REAL*8 COUNT, OPS
C
C
C INITIALISE SCOMPL
C
100
DO 200 I=1, ADCL
DO 100 J=1, ADCL
SCOMPL (I, J)=0.
CONTINUE
200 CONTINUE
C
C CALCULATE SCOMPL MATRIX COLUMN BY COLUMN
C
C
C COLUMNJ...
C
JFIRST=INDMAT (J)
NEQCL=NEQNS-JFIRST+1
AUXCL (1) =-1.
DO 300 K = 2, NEQCL
AUXCL (K)=0.
300
CONTINUE
IDIAG=1
CALL LOWSOL (NEQCL, XENVRW (JFIRST), FVRW, DIAG (JFIRST),
AUXCL, IDIAG)
DO }900\mathrm{ I=1, ADCLC
C
C ROW I ...
C
IFIRST=INDMAT (I)
NEQRW=NEQNS-IFIRST+1
AUXRW (1)=-1.
DO 400 K=2, NEQRW
AUXRW (K)=0.
400 CONTINUE
IDIAG=0
CALL LOWSOL (NEQRW, XENVCL (IFIRST), EVCL, DIAG (IFIRST),
1
AUXRW, IDIAG)
C
C CALCULATE ELEMENT IN (I, J) POSITION
C
S=0.
IF (IFIRST.GE.JFIRST) GO TO 600
L= JFIRST- IFIRST +1
DO 500 K=1, NEQCL
S=S+ALXCL (K) * AUXRW (L)
L=L + 1
5 0 0
CONTINUE
COUNT = NEQCL
OPS=OPS+COUNT
GO TO }80
C
6 0 0
L= IFIRST-JFIRST+1
DO 700 K =1, NEQRW
S=S+ ALXCL (L) * AUXRW (K)

```
```

                                    L=L+1
    7 0 0
                    COUNTINUE
                    COUNT=NEQRW
                    OPS=OPS+COUNT
    C
800 IF (I. EQ. J) S=S-1.
SCOMPL (I, J)=-S
S=ABS (S)
IF (S.GT.MAXVAL) MAXVAL=S
900
CONTINUE
CONTINUE
C
C FIND LU DECOMPOSITION OF SCHUR COMPLEMENT MATRIX USING PRATIAL
C PIVCTING
C
C
C CALL DECOMP (ADCL, DPERM, SCOMPL, MAXVAL)
RETURN
END

```

C
C
C THIS ROUTINE FINDS THE INCERSE PERMUTATION OF PREM
C MEANING OF VARIABLE:
C INVP (NEQNS) - ARRAY OF THE IN VERSE PERMUTATION OF PERM

INTEGER*2 PERM (1), INVP (1), I, IPERM, NEQNS
C
DO 100 I = 1, NEQNS
IPERI=PE RM (I)
\(\operatorname{INVP}(1\) PERM \()=\mathrm{I}\)
100
CONTINUE
RETURN
END
```

C
SUBROUTINE INPUT (NEQNS,NONZER,PTCL,ELCL,VMATCL, MAXINP)
C
C
C THIS ROUTINE READS THE NONZERO ELEMENTS OF THE MATRIX AND GENERATES
C THE COLUMNWISE REPRESENTATION OF THE MATRIX
C
C MEANINGS OF VARIABLES:
C NEQNS - NUMBER OF ROWS AND COLUMNS OF THE MATRIX
C PTCL (NEQNS+1) - ARRAY OF POINTERS OF THE DATA STRUCTURE
C ELCL (NONZER) - ARRAY OF ROW INDICES OF NONZERO ELEMENTS
C VMATCL (NONZER) -ARRAY OF THE VALUES OF THE NONZERO ELEMENTS
WHOSE INDICES ARE ELCL (NCNZER)
INTEGER*2 PTCL (1),ELCL (1),NEQNS,NONZER,NI
INTEGER*2 NODE, ISUB,JSUB,K,M
REAL VMATCL (1),VALUE,MAXINF
C
C
COMMON /ISNI/ NI
MAXINP=0.
NONZER=0
NODE=0
100 READ (NI, 150) JSUB,I SUB,VALUE
150 FORMAT (2I5, F10.5)
C
C GET ELCL AND VMATCL ARRAYS
C
IF (JSUB.EQ.O)GO TO 300
NONZER=NONZER+1
ELCL(NONZER)=ISUE
VMATCL(NONZER)=VALUE
VALUE = ABS (VALUE)
IF (VALUE.GT.MAXINP)MAXINP = VALUE
C
C GET PTCL ARRAY
C
IF (J SUB.EQ.NODE)GO TO 100
NODE=NODE +1
DO 200 K=KODE,JSUB
PTCL(K) = NONZER
200 CONTINUE
NODE = JSUB
GO TO 100
C
C LAST ELEMENT OF PTCL ARRAY
C
300 NODE=NODE+1
M=NEQNS+1
DO 400 K=NODE, M
PTCL (K) = NONZER+1
CONTINUE
RETURN
END
C
C
SUBROUTINE ROWISE (NEQNS,NONZER,PTCL,ELCL,PTRW,ELRW)
C
C
THIS ROUTINE INPUTS THE MATRIX IN COLUMNWISE FORMAT AND FINDS ITS
C ROWISE FORMAT REPRESENTATION
C
C MEANINGS OF VARIABLES:
C PTRW (NEQNS+1) - ARRAY OF POINTERS OF ROW DATA STRUCTURE
C ELRW (NONZER) - ARRAY OF COLUMN INDICES OF NONZERO ELEMENTS
INTEGER*2 PTCL (1)ELCL(1),PTRW(1),ELRW(1),NEQNS,NONZER,
1
I,J,K,M,JP, FIRST, ILAST
C
C INITIALIZE POINTERS FOR ROWISE FORMAT
C
M=NEQNS+1
DO 100 I=1, M
PTHW (I) = 0
100
cONTINUE

```
```

C
C DETERMINE POINTERS FOR ROWISE FORMAT
C
DO 200 I=1, NONZER
J= ELCL (I) + 2
IF (J.LE.M) PTRW (J)=PTRW(J)+1
200 CONTINUE
C
PTRW (1) =1
PTRW (2)=1
IF (NEQNS.EQ.1) GO TO 400
DO 300 I=3, M
PTRW (I)=PTRW (I)+PTRW (I-1)
300 CONTINUE
C
C DEtERMINE THE COLUMN INDICES AND THE MATRIX VALUES OF ROWISE FORMAT
C
4 0 0
DO 600 I=1, NEQNS
IFIRST=PTCL (I)
ILAST = PTCL (I+1)-1
IF (ILAST.LT.IFIRST) GO TO 600
DO 500 JP= IFIRST, ILAST
J = ELCL (JF)+1
K=PTRW (J)
ELRW (K)=I
PTRW (J) = K+1
CONTINUE
CONTINUE
RETURN
END

```
```

C
SUBROUTINE ENVMAT (NERNS,PTCL,ELCL,VMATCL,INVF,ENVRW,ENVCL,
1
C
C
C THIS ROUTINE GETS THE ENCELOPE REPRESENTATION OF THE MATRIX FROM
C ITS ENVELOPE STRUCTURE AND COLUMNWISE REPRESENTATION
C
C MEANINGS OF VARIABLES:
C EVRW (ENVRW) - ARRAY WITH THE ENVELOPE ELEMENTS OF THE MATRIX
C LOWER TRMNGULAR PART
C EVCL (ENVCL) - ARRAY WITH THE ENVELOPE ELEMENTS OF THE MATRIX
DIAG (NEQNS) - ARRAY WITH THE MATRIX DIAGONAL ELEMENTS
INTEGER*2 PTCL (1), ELCL(1)INVP(1),XENVRW(1), XENVCL(1),
NEQNS, ENVRW, ENVCL
INTEGER*2 ISUE, JSUE, JSTRT, JSTOP, I,J,K
REAL VMATCL (1),EVRW (1),EVCL(1),DIAG(1)
C
C INITIALIZATION
C
DO 100 I=1, ENVRW
EVRW (I)=C.
CONTINUE
DO 200 I=1, ENVCL
EVCL (I)=0.
200 CONTINUE
C
C INTRODUCE MATRIX ELEMENTS COLUMN BY COLUMN INTO THE ENVELOPE
C FORMAT REPRESENTATION OF THE MATRIX
C
DO 600 J=1, NEGNS
JSUB=INVP (J)
JSTRT=PTCL(J)
JSTOP=PTCL (J+1)-1
DO 500 I=JSTRT, JSTOP
ISUB=ELCL (I)
ISUB=INVP (ISUB)
IF (ISUB. EQ.JSUB) GO TO 400
IF (ISUB.LT.JSUE) GO TO 300
C
C ELEMENT OF THE MATRIX LOWER TRIANGULAR PART
C
K=XENVCL (JSUE+1)-JSUE+ISUB
EVRW (K)=VMATCL(I)
GO TO 500
C ELEMENT OF THE MATRIX UPPER TRIANGULAR PART
C
300 K=XENVCL (JSUE+1)-JSUE+ISUB
EVCL (K)=VMATCL(I)
GO TO 500
C
C ELEMENT OF THE MATIX DIGONAL
C
400 DIAS (ISUE)=VMATCL(I)
5 0 0 ~ C O N T I N U E
600 CONTINUE
RETURN
END

```
```

        SUBROUTINE FACTOR(NEQNS,XENVRW,EVRW,XENVCL,EVCL,DIAG,NSINGL,
    ```
 1
 ADCL,INDMT,MXVAL,NZRNV)
C
C
C
C
C THIS ROUTINE FACTORS A MATRIX OF ORDER GREATER THAN ONE INTC L* U .
C THE MATRIX IS STORED IN THE NONSYMMETRIC ENVELOPEFORMAT AND THE
 METHOD USED IS THE BORDERING METHOD.
C
 INTEGER*2 XENVRW(1), XENVCL(1)INDMAT(1), NEONS, ADCL, IXENRW, IBANRW,
 1
2
 IXENCL, IBNCL, IFIRST, MINBAN, I, J, L, JSTRT, JSTOP, ISTRT,
 NSINGL, IDIAG, NZRENV
 REAL EVRW(1), EVCL(1),DIAG(1),TEMP, XTOL, S, MAXVAL
 REAL*8 OPS,COUNT
C
 COMMON /RSOPS/ OPS
 COMMON /RSXTOL/ XTOL
C
 MAXVAL=0.
 NZRENV=0
 ADCL=0
 ISTRT \(=\) NSINGL+1
 DO 400 I=ISTRT, NEQNS
C
C COMPUTE I-TH ROW OF LOWER TRIANGULAR FACTOR
C
 IXENRW=XENVRW(I)
 IBANRW=XENVRW \((I+1)-\) IXENRW
 IF (BANRW.EQ.C) GO TO 100
 IFIRST=I-IBANRW
 IDIAG=0
 CALL LOWSOL (IBNRW,XENVCL(IFIRST),EVCL,DIAG(IFIRST),
 1 EVRW (IXENRW),IDIAG)
C
C CALCULATE NUMBER OF NONZEROS IN I-TH ROW AND UPDATE MAXIMUM
C ABSOLUTE VALUE OF FACTORS IF NECESSARY
C
 L=IXENRW+IBANRW-1
 DO \(50 \mathrm{~J}=\mathrm{IX}\) ENRW, L
 \(\mathrm{S}=\mathrm{EVRW}(\mathrm{J})\)
 IF (S.EQ.O.)GO TO 50
 NZRENV=NZRENV+1
 S=ABS (S)
 IF (S.GT.MAXVAL) MAXVAL=S
 CONTINUE
C
C COMPUTE I-TH COLUMN OF UPPER TRIANGULAR FACTOR
C
 100 IXENCL=XENVCL (I)
 IBANCL=XENVCL (I+1)-IXENCL
 IF (IBNCL. EQ .0)GO TO 400
 IFIRST=I-IBNCL
 IDIAG=1
 CALL LOWSOL (IBANCL,XENVRW(IFIRST), EVRW, DIAG(IFIRST),
 1
 EVCL (IXENCL), IDIAG)
C
C CALCULATE NUMBER OF NONZEROS IN I-TH COLUMN AND UPDME MAXIMUM
C ABSOLUTE VALUE IF NECESSARY
C
 L=IXENCL+IBANCL-1
 DO 150 J=IXENCL, L
 S=EVCL(J)
 IF(S.EQ.C.)GO TO 150
 NZRENV=NZRENV+1
 S=ABS(S)
 IF (S.GT.MAXVAL)MAXVAL=S
 150
 CONTINUE
 C
C COMPUTE I-TH DIAGONAL ELEMENT OF MATRIX U
C
 IF (IBANRW.EQ.O)GO TO 400
 MINBAN = IBANRW
 IF (IBNCL.LT. IBANRW)MINBAN=IBANCL
 TEMP = DIAG(I\()\)
 L=XENVCL (I+1)-MINBAN
 JSTRT = XEMVRW \((1+1)\)-MINBAN
 JSTOP \(=\) XENVRW \((I+1)-1\)
 DO \(200 \mathrm{~J}=\mathrm{JSTRT}\), JSTOP
 TEMP=TEMP-EVRW (J)* EVCL (L)
 \(\mathrm{L}=\mathrm{L}+1\)
 200
 CONTINUE
C
C CHECK IF DIAGONAL ELEMENT OF U IS NONZERO
C
 DIAG (I)=TEMP
 COUNT=MINBAN
 OPS=OPS+COUNT
 S=ABS (TEMP)
 IF (S.GT.MAXVAL) MAXVAL=S
 IF (S.GE.XTCL) GO TO 400
 DIAG (I)=TEMP+1.
 ADCL \(=\) ADCL +1
 INDMAT (ADCL) \(=\) I
 400 CONTINUE
 RETURN
 END
C THIS ROUTINE FINDS THE ENVELOPE STRUCTURE OF THE LOWER PART OF THE
C PERMUTED MATRIX
C
C MEANINGS OF VARIABLES :
C XENVRW (NEQNS-1) - ARRAY OF POINTERS OF ENVELOPE DATA STRUCTURE
 INTEGER*2 XADJRW(1), ADJNRW(1), PERM(1), INVP(1) , XENVRW(1),
 1
 NEQNS, BANDRW, ENVRW
 INTEGER*2 NABOR,I,J,BAND,IFBST,IPERM,JSTRT,JSTOP
C
 BANDRW=0
 ENVRW=1
 DO 200 I=1, NEQNS
 XENVRW (I)=ENVRW
 IPERM=PERM (I)
 JSTRT = XADJRW (IPERM)
 JSTOP = XADJRW \((\) IPERM +1\()-1\)
 IF (JSTOP .LT. JSTRT) GO TO 200
c
C FIND THE FIRST NONZERO IN ROW I, CALCULATE THE I-TH LOWER
C BANDWIDTH AND UPDATE THE LOWER BANDWIDTH IF NECESSARY
C
 IFIRST=I
 DO 100 J=JSTRT, JSTOP
 NFABOR= ADJNRW(J)
 NABOR \(=\) INVP (NABOR)
 IF (NABCR. LT. IFIRST)IFIRST=NABOR
 100
 CONTINUE
 IBAND=I-IFIRST
 ENVRW=ENVRW+IBAND
 IF (BANDRW.LT.IBAND)BANDRW=IBAND
 200
 CONTINUE
C
C FIND THE LAST ELEMENT OF THE VECTOR XENVRW OF THE DATA STRUCTURE
C
 XENVRW (NEQNS-1) =ENVRW
 ENVRW=ENVRW-1
 RETURN
 END
C
C
 SUBROUTINE FENVCL (NEQNS,XADJCL,ADJNCL, PERM,INVP,XENVCL,
 1
 ENVCL,BANDCL)
C
C-
C
C THIS ROUTINE FINDS THE ENVELOPE STRUCTURE OF THE UPPER PART OF
C THE PERMUTED MATRIX
C
C MEANIGS OF VARIABLES:
C \(\quad\) XENVCL (NEQNS+1) - ARRAYOF POINTERS OF ENVELOPE DATA STRUCTURE
C
 INTEGER*2 XADJCL (1), ADJNCL(1), PERM(1) IMVP(1) XENVCL(1)
NEQNS, BANDCL, ENVCL
INTEGER* 2 NABOR,I,J,IBAND, IFIRST,IPERM,JSTRT, JSTOP
 1
C
 BANDCL=0
 ENVCL=1
 DO 200 I=1, NEQNS
 XENVCL (I)=ENVCL
 IPERM=PERM (I)
 JSTRT=XADJCL (IPERM)
 JSTOP = XADJCL (IPERM+1)-1
 IF (JSTOP.LT.JSTRT) GO TO 200
C
C FIND THE FIRST NONZERO IN COLUMN I, CALCULATE THE I-TH UPPER
 BANDWIDTH AND UPDATE THE UPPER BANDWIDTH IF NECESSAPY
C
 IFIRST \(=\) I
 DO 100 J=JSTRT, JSTOP
 NABOR=ADJNCL (J)

NABCR= INVF (NABOR)
IF (NABOR..LT.IFIRST) IFIRST=NABOR
CONTINUE IBAND=I-IFIRST ENVCL=ENVCL+IBAND IF(BANDCL.LT.IBAND)=IBAND OL= IBAND 200 CONTINUE

C FIND THE LAST ELEMENT OF THE VECTOR XENVCL OF DATA STRUCTURE C

XENVCL(NEQNS+1)=ENVOL
ENVCL=ENVCL-1
RETURN
END

SUBROUTINE FDOUGR(NFQNS, PTRW,ELRW, XADJRW,ADJNRW)
C
C-
\begin{tabular}{l}
C \\
C \\
C \\
\hline
\end{tabular}
this routine finds the outer adjacency list of the matrix graph
C MEANINGS OF VARIABLES:
C XADJRW (NEQNS + 1) - ARRAY OF POINTERS OF OUTER ADJACENCY LIST
C ADJNRW (NZNDG) - ARRAY OF NODES OF OUTER ADJACENCY LIST
C
INTEGER*2 PTRW(1), ELRW(1), XADJRW(1)ADJNRW(1),NEGNS, I,
1
C
LROW=1
XADJRW (1) =1
DO \(300 \mathrm{I}=1\), NEGNS
JSTRT=PTRW (I)
JSTOP=PTRW (1+1)-1
IF (JSTOP.LT.JSTRT)GO TO 200
DO \(100 \mathrm{~J}=\mathrm{JSTRT}\), JSTOP
\(\mathrm{L}=\mathrm{ELRW}(\mathrm{J})\)
IF (L.EQ.I)GO TO 100 ADJNRW \((\) LROW \()=\) L LROW=LROW+l
CONTINUE
XADJRW \((\mathrm{I}+1)=\) LROW
CONTINUE
RETURN
END
\begin{tabular}{l}
C \\
C \\
C \\
\hline
\end{tabular}
C
C
\(\mathrm{C}-\mathrm{-}\)
C
SUBROUTINE FDINGR (NEQNS, PTCL, ELCL, XADJCL,ADJNCL)
C
C-
C THIS ROUTINE FINDS THE INNER ADJACENCY LIST OF THE MATRIX GRAPH
C
C MEANINGS OF VARIABLES:
C XADJCL (NEQNS+1) - ARRAY OF POINTERS OF INNER ADJACENCY LIST
C ADJNCL (NZNDG) - ARRAY OF NODES OF INNER ADJACENCY LIST
C
```

INTEGER*2 PTCL(1),ELCL(1),XADJCL(1),ADJNCL(1),NEQNS,

1
C

$$
\mathrm{LCOL}=1
$$

XADJCL (1)=1
DO $300 \mathrm{I}=1$, NEGNS
JSTRT=PTOL (I)
JSTOP = PTOL (1+1)-1
IF (JSTOP.LT. JSTRT) GO TO 200
DO $100 \mathrm{~J}=\mathrm{JSTRT}$, JSTOP L=ELCL (J)
IF (L.EQ.I)GO TO 100
ADJNCL $(L C O L)=L$
$\mathrm{LCOL}=\mathrm{LCOL}+1$
CONTINUE
100
200
XADJOL $(\mathrm{I}+1)=\mathrm{LCOL}$
300
CONTINUE
RETURN
END


INTEGER*2 XADJRW (1), XADJCLW(1), MASK(1), PERM(1), NEQNS, I, NSINGL REAL DEG (1), SUMDEG, OUTDEG, INDEG

MEANINGS OF VARIABLES:
OUTDEG - OUTER-DEGREE OF A NODE INDEG - OUTER-DEGREE OF A NODE

```
NSINGL =0
DO 300 I=1, NEQNS
 OUTDEG = XADJRW (I+1)-XADJRW (I)
 INDEG = XADJCL (I+1)-XADJCL (I)
 DEG (I)=OUTDEG*INDEG
 SUMDEG=OUTDEG*INDEG
 DEG (I)=100.*DEG(I)+SUMDEG
 IF (SUMDEG.GT.O) GO TO 300
 NSINGL=NSING=1
 PERM (NSINGL)=1
 MASK (I)=0
 CONTINUE
 RETURN
 END
```

C
C
C
C
C
SUBROUTINE FDROOT (ROOT, XADJW, ADJNRW,XADJCL,ADJNCL,MASK,
1
NLVL, XLS, LS, DEG)
C
C-
C THis ROUTINE IMPLEMENTS A MODIFIED VERSION OF THE GPS SCHEME TO
C FIND PSEUDO-PERIPHERAL NODES
C
INTEGER*2 XADJRW (1), ADJNRW(1), XADJCL (1), ADJNCL(1), LS(1),
MASK (1), XLS(1), ROOT,NLVL
1
INTEGER *2 COSIZE, JSTRT,NODE, NUNLVL, J
REAL DEG (1) MINDEG
C
C Determine the level structure rooted at root
C
CALL ROOTLS (ROOT, XADJRW, ADJRW, XADJCL, ADJNCL, MASK, NLVL,
XLS, LS)
C
1
COSIZE $=X L S(N L V L+1)-1$
IF (NLVLEQ. 1 .OR. NLVL.EQ.COSIZE) RETURN
C
C PICK A NODE WITH MINIMUM DEGREE OF THE LAST LEVEL
C
100 JSTRT=XLS (NLVL)
ROOT=LS (JSTRT)
IF (CCSIZE.EQ.JSTRT) GO TO 300
MINDEG=DEG (ROOT)
JSTRT=JSTRT+1
DO 200 J=JSTRT, CCSIZE
NODE=LS (J)
IF (DEG(NOOE).GE.MINDEG) GO TO 200
ROOT $=$ NODE
MINDEG=DEG (NODE)
200 CONTINUE
C
C AND GENERATE ITS LEVEL STRUCTURE
C
300 CALL ROOTLS (ROOT, XADJRW,ADJNRW, XADJCL,ADJNCL MASK,NUNLVL
1
XLS, LS)
IF (NUNLVL.LE.NLVL) RETURN
NLVL = NUNLVL
IF (NLVL.LT.CCSIZE) GO TO 100
RETURN
END
C

| C |
| :--- |
| C |
| C |
| C |

C SUBROUTINE ROOTLS (ROOT,XADJRW,ADJNRW,XADJCL,,ADJNCL, MASK,
1
NLVL, XLS, LS)
C

C ROOT FOR THE CONNECTED COMPONENT SPECIFIED BY MASK

```
INTEGER*2 XADJRW(1),ADJNRW(1),XADJCL(1)ADJNCL(1),MASK(1),
 XLS(1),LS (1),ROOT,NLVL
```

1 INTEGER*2 JSTRT, JSTOP,I,J,LBEGIN,LVLEND, CCSIZE,NBR,NODE
C

```
MASK}(\mathrm{ ROOT })=
LS (1)=ROOT
NLVL=0
COSINZE=1
```

C
C LBEGIN AND LVLEND POINT TO THE BEGINNING AND END OF THE CURRENT
C LEVEL
C
100 LBEGIN = LVLEND + 1
LVLEND=CCSIZE
NLVL $=$ NLVL +1
XLS (NLVL) =LBEGIN
C
C GENERATE THE NEXT LEVEL BY FINDING ALL THE MASKED NEIGHBOURS OF
C NODES IN CURRENT LEVEL
C
DO 500 I=LBEGIN,LVLEND
NODE=LS (I)
JSTRT = XADJRW (NODE)
JSTOP = XADJRW (NODE-1 )-1
IF (JSTOP.LT.JSTRT)GO TO 300
DO $200 \mathrm{~J}=\mathrm{JSTRT}$, JSTOP
MBR=ADJNRW (J)
IF (MASK (NBR).EQ.0)GO TO 200
CCSIZE=CCSIZE+1
MASK (NBR) $=0$
LS (CCSIZE) $=\mathrm{NBR}$
200
CONTINUE
C
300 JSTRT=XADJCL (NODE)
JSTOP = XADJCL (NODE+1)-1
IF (JSTOP.LT.JSTRT) GO TO 500
DO $400 \mathrm{~J}=\mathrm{JSTRT}$, JSTOP
NBR=ADJNCL (J)
IF (MASK (NBR). EQ.0) GO TO 400
CCSIZE = CCSIZE +1
LS (CCSIZE) $=$ NBR
$\operatorname{MASK}($ NER $)=0$
400 CONTINUE
500 CONTINUE
C
C If THE LEVEL WIDTH IS NONZERO GENERATE NEXT LEVEL
C
IF (CCSIZE.GT.LVLEND) GO TO 100
C C RESET MASK TO ONE FOR THE NODES IN LEVEL STRUCTURE
C
XLS $(N L V L+1)=L V L E N D+1$
DO $600 \mathrm{I}=1$ CCSIZE
NODE = LS (I)
MASK $($ NODE $)=1$
600 CONTINUE
RETURN
END
C
C

SUBROUTINE ROMS (ROOT, XADJRW, ADJNRW, XADJCL, ADJNCL, MASK, PERM,


C
C
C
C
C
C
C THIS ROUTINE NUMBERS A CONNECTED COMPONENT SPECIFIED BY MASK AND
C ROOT USING THE CUTHILL-MCKEE ALGORITHM (RCM=0) OP THE REVERSE
C CUTHILL-MCKEE ALGORITHM (RCM=1). THE NUMERING IS TO BE STARTED
C AT THE NODE ROOT
C
INTEGER*2 XADJRW (1), ADJNRW(1), XADJOL(1), ADJNCL(1), MASK(1),
PERM (1), ROOT,RCM
1
INTEGER*2 LEEGIN, LEND, NER, LNER, FNBR, JSTRT, JSTOP, I, J, K, L, LFER REAL DEG (1)
C
COMMON/ISRCM/RCM

```
MASK (ROOT})=
LEND=0
LNBR=1
```

C
C LBEGIN AND LEND POINT TO THE BEGINNING AND THF END OF THE CURRENT
C LEVEL OF THE CONNECTED COMPONENT
C
100 LBEGIN=LEND+1
LEND=LNBR
DO 900 I = LBEGIN, LEND
C FOR EACH NODE OF THE CURRENT LEVEL OF THE CONNECTED COMPONENT
C

```
NODE=PERM (I)
JSTRT=XADJRW (NODE)
JSTOP = XADJRW (NODE +1)-1
```

C
C FIND THE UNNUMBERED NEIGHBOURS OF NODE.FNBR AND LNBR POINT TO THE
C FIRST AND LAST UNNUMBERED NEIGHBOURS RESPECTIVELY OF THE CURRENT
C NODE (NAMED NODE) IN PERM
C
FNBR $=\mathrm{LNBR}+1$
IF (JSTOP.LT.JSTRT) GO TO 300
DO $200 \mathrm{~J}=\mathrm{JSTRT}$, JSTOP
NBR=ADJNRW (J)
IF (MASK (NBR).EQ.0) GO TO 200
LNBR = LNGR + 1
MASK (NER) $=0$
$\operatorname{PERM}(\mathrm{LNBR})=\mathrm{NBR}$
200
CONTINUE
C
300 JSTRT=XADJCL (NODE)
JSTOP = XADJCL (NODE+1)-1
IF (JSTDP.LT.JSTRT) GO TO 500
DO $400 \mathrm{~J}=\mathrm{JSTRT}$, JSTOP
$\mathrm{NBR}=\operatorname{ADJNCL}(\mathrm{J})$
IF (MASK (NBR).EQ.0) GO TO 400
LNBR $=\mathrm{LNBR}+1$
$\operatorname{MASK}(\mathrm{NBR})=0$
$\operatorname{PERM}(L N B R)=N B R$
CONTINUE
C ${ }_{500}^{400}$
IF (FNBR.GE.LNBR) GO TO 900
C
C SORT THE NEIGHBOURS OF NODE IN INCREASING ORDER BY DEGREE.LINEAR
C INSERTATION IS USED
C
$\mathrm{K}=\mathrm{FNBR}$
L=K
$K=K+1$
600
NBR=PERM (K)
700
IF (L.LT.FNBR) GO TO 300
LPERM=PERM (L)
LPERM=PERM (L)
IF (DEG (LPERM)
IF (DEG (LPERM).LE.DEG(NBR))GO TO 800
PERM $(\mathrm{L}+1)=\mathrm{LPERM}$
$\mathrm{L}=\mathrm{L}-1$
L $=\mathrm{L}-1$
GO TO 700
800
PERM $(\mathrm{L}+1)=\mathrm{NBR}$
IF (K.LT.LNBR) GO TO 600
900
C
CONTINUE
IF (LNBR.GT.LEND) GO TO 100
IF (LNBR.LE.1) RETURN
C
C CUTHILL-MCKEE ALGORITHM
C
IF (RCM EQ.0) RETURN
C
C REVERSE CUTHILL-MCKEE ALGORITHM : REVERSE ORDERING
C

```
 K = LNBR/2
 L=LNBR
 DO 1000 I=1, K
 LPERM=PERM(L)
 PERM (L)=PERM(I)
 PERM(L)=PERM(I)
 PERM (I) =LPERM
 L}=\textrm{L}-
```

    1000
    CONT I NUE
RETURN

## 2 WEEK LOAN

BRUNEL UNIVERSITY LIBRARY
Uxbridge, MIddlesex UB8 3PH
Telephone (0895) 274000 Ext. 2550
DATE DUE




[^0]:    + Departamento de Matematica, Universidade de Coimbra, Portugal.
    * Department of Mathematics and Statistics, Brunel University, England

