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ABSTRACT 
 

The primary focus of the current research program concerns visual word recognition 

and reading aloud as a function of orthographic transparency to inform current debates 

about the nature of visual word recognition. Within this thesis, this topic is explored 

using several different approaches with Turkish as the medium of choice. Additionally, 

the extreme orthographic transparency of Turkish serves as an excellent medium to 

test theories of visual word recognition. Any universal framework would need to 

account for the variation found in the writing systems of the Turkic family. 

 

Using a computational linguistic method, Chapter 2 explores current definitions of 

orthographic transparency and novel means of quantifying orthography, extending this 

approach to Turkish. The result was the production of four language models that take 

into account the different phoneme inventories used in Turkish, as well as the two 

main strategies (Word-onset vs whole-word), employed to investigate the 

quantification of Turkish. The models produced stipulate that Turkish is more 

transparent than any other alphabetic orthography that has been quantified to date. 

The chapter also highlights the superiority of whole-word approaches in capturing a 

full range of variation within an orthography despite some of the current cross-linguistic 

limitations of using such a method. 

 

Chapter 3 examines the currently available resources for Turkish psycholinguistic 

research and in response to the discovery of a lack of resources in the domain, has 

led to the creation of the Turkish Lexicon database. The new resource is a sizeable 

psycholinguistic database that includes several measures of word frequency, 

contextual diversity and orthographic neighbourhood density as well as providing 

lexical information such as word and syllable length, bigram and trigram frequency. 

The Turkish Lexicon was validated using a lexical decision task and also produced a 

subcorpus for use in future psycholinguistic studies with children. 

 

Furthermore, there has been hardly any empirical research investigating linguistic, 

metalinguistic, and cognitive processes involved in reading the highly transparent 

orthography of Turkish. To address this, Chapters 4 and 5 investigate how these skills 
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might impact Turkish children who are learning to read and also aims to uncover how 

developmental dyslexia might manifest itself in Turkish. As such, the current research 

has the potential to add to our understanding of the cognitive mechanisms that 

underlie reading in alphabetic languages. It is envisaged that the findings of this study 

will add to the current debate concerning the distinct influence of universal principles 

and specific variations in writing systems on cognitive reading processes. In addition, 

the research will provide conceivably the most comprehensive account of typical and 

atypical reading development in Turkish-speaking children to date which has huge 

potential practical implications. 

 

Chapter 4 examines the reading strategies of monolingual Turkish schoolchildren 

while they completed both a single-word naming and oral reading fluency task 

amongst a battery of cognitive tasks. The findings of the rapid development of 

phonology as well as the use of two distinct strategies in single-word reading lend 

support to the weak versions of the phonological and orthographic depth hypothesis 

of reading.  

 

Chapter 5 continues to pursue this question by examining reading disorder, i.e., 

Developmental Dyslexia in Turkish children. According to Wydell and Butterworth's 

(1999) Hypothesis of Transparency and Granularity, transparent orthographies such 

as Turkish should not manifest with a high incidence of phonological dyslexia. The 

findings of Chapter 5 lend support to this position as well as being in line with multiple 

deficit models of dyslexia (Pennington, 2006). 

 

In Chapter 6, the behavioural data of this doctoral thesis is supplemented with the 

development of a computational model of visual word recognition in Turkish, the first 

of its kind. The model builds on the recent incorporation of a self-teaching algorithm 

(Pritchard, 2012) in the Dual Route Cascaded model of reading aloud and word 

recognition (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). Simulations include 

exposing the model to vocabularies of varying size to simulate different stages of 

vocabulary growth in reading development. In addition, Chapter 6 took preliminary 

steps in investigating the manifestation of developmental dyslexia in Turkish from a 

computational perspective. 
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CHAPTER 1: GENERAL INTRODUCTION 

The advent of reading and writing approximately 5000 years ago (Harris, Graham, 

Brindle & Sandmel, 2009) represents a unique turning point in human history. For the 

first time, ideas and thoughts could be conveyed beyond verbal communication and 

thus, the transmission of information transcended time and space. This, coupled with 

the rich and diverse plethora of languages and orthographies, makes reading science 

a fascinating domain of research. As an example of diversity, alphabetic systems are 

said to correspond to distinct phonemes. In contrast, syllabic systems correspond with 

spoken syllables, and logographic systems use symbols to represent meaning directly 

with few clues to pronunciation (Ellis et al., 2004). As opposed to oral language 

development, learning to read is considered to be the result of sustained, systematic 

instruction and not the direct consequence of exposure during infancy (Wydell, 2012). 

Consequently, the capacity to read is considered fundamental to today's contemporary 

society and obtaining literacy is thought to increase prospective opportunities in 

education and employment; indirectly contributing to the quality of life (Snowling & 

Hulme, 2012). This being said, it seems almost contradictory that our brains are so 

efficiently adapted to the specific challenges presented by the relatively recent cultural 

invention of writing systems. It is precisely this paradox that makes reading science 

such a fascinating area of research. 

Reading is a complex neurodevelopmental process that entails decoding printed 

symbols and abstracting meaning from written language. Over the past century, 

reading research has enjoyed much attention in areas such as reading development 

(e.g. Lyytinen et al., 2006), skilled reading (e.g. Besner & Coltheart, 1979) and reading 

difficulties (e.g. Landerl et al., 2013). The reading process reflects the coordination of 

distinct perceptual and cognitive abilities beginning with low-level visual perception 

(Carreiras, Armstrong, Perea, & Frost, 2014) leading to eye-movement control, 

phonological processing, and recognition of word forms (Norris, 2013). In addition, 

higher-level psycholinguistic processes are involved in the abstraction of meaning 

from print via the feedforward and back processing of relationships between 

orthography, morphological structure, and semantics (Whiting, Shtyrov, & Marslen-

Wilson, 2014). 
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Reading represents a multi-staged procedure, and it is not within the scope of this 

thesis to study all aspects of reading. It is, therefore, critical to explicitly state that the 

aspect of reading under investigation in the present study is the visual recognition of 

isolated words as well as the growth of text reading fluency. Furthermore, visual word 

recognition and reading fluency will be explored using a Cognitive Science approach 

within the domains of orthographic transparency, reading development and specific 

reading disorder, i.e., Developmental Dyslexia. The following sections will highlight the 

topics of interest within the current thesis. It is important to note that there is some 

overlap in the literature review sections between chapters as a means to reintroduce 

some of the core topics discussed in this thesis. 

1.1 READING ACQUISITION AND DEVELOPMENT IN ALPHABETIC WRITING 

SYSTEMS 

It is widely accepted that an emergent reader will approach the process of reading 

differently from a skilled reader. Reading acquisition is thought to arise from a 

combination of cognitive, language, and social skills that have developed from birth. It 

is postulated that the most significant of these skills is the emergent reader's 

proficiency in oral language, which is widely accepted as the essential foundation for 

reading (Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001). Several 

theoretical stage models of reading acquisition have been proposed that outline the 

stages of cognitive development in which learners are suggested to transition through 

in order to acquire the skill of reading (e.g., Ehri, 1991; Frith, 1985; Gough & Hillinger, 

1980; Marsh, Friedman, Welch, & Desberg, 1981). The majority of the models 

mentioned above are highly harmonious in that they share the central supposition that 

achieving skilled reading in alphabetic languages necessitates the use of the 

alphabetic principle (Rozin & Gleitman, 1977). This print-to-sound mapping process is 

also referred to as phonological recoding (Share, 1995). These four core stage 

theories will each be considered in turn. 
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Gough & Hilinger's Two-Stage Model (1980) 

In an early iteration of stage models, Gough and Hillinger (1980) propositioned a two-

stage model for learning to read, which included an early-visual association stage and 

a decoding-based learning stage. In the first stage, it was postulated that there is an 

exclusively visual process that lacks information related to decoding. Children are said 

to use any functional source of information, i.e. contextual and pragmatic, in order to 

distinguish one word from another. In the second stage, children transition to the use 

of letter knowledge and grapheme-to-phoneme correspondences to decode novel 

words or pseudowords. 

Marsh, Friedman, Welch & Desberg's Four-Stage Model (1981) 

Similarly, Marsh, Friedman, Welch and Desberg (1981) suggested a framework that 

consisted of four stages of reading development. Comparable to Gough and Hillinger 

(1980), they proposed that initially, children make use of visual cues in order to identify 

words – the linguistic guessing stage. In the second stage, the sophisticated guessing 

stage, the authors propose that children learn to predict words from contextual cues. 

Following this, children learn to orthographically decode sequentially, the sequential 

decoding stage. In the final stage, children are said to read by analogy to familiar 

words that are stored in their mental lexicons. 

Frith's Three-Stage Model (1985) 

Similar to Gough and Hillinger's and Marsh and collegues's first stages, Frith (1985) 

initiated her three-stage model with a logographic stage. During this initial stage, Frith 

proposed that a child can recognize individual words based on certain salient features 

of the word but cannot read novel words. In the second stage of the model, the 

alphabetic stage, children acquire the ability to read by utilizing grapheme-phoneme 

correspondences. Finally, in the orthographic stage, Frith (1985) postulated that 

children could use earlier developed alphabetic skills for the decoding of unfamiliar 

words as at this stage they have developed a fully mature reading system parallel to 

that of a skilled adult reader and thus has both whole-word and grapheme-phoneme 

decoding strategies available to them. 
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Ehri's Four-Phase Model (1992; 1997) 

Ehri (1992; 1997) proposed a four-phase model, beginning again with the reliance on 

visual cues and patterns – the pre-alphabetic phase. The partial alphabetic phase 

stipulates that children exploit their partial knowledge of letter names and sounds. 

Subsequently, the full alphabetic phase completes connections between letters and 

sounds, enabling children to decipher new words. With time and practise, children 

begin to develop their sight-word reading and terminate the learning process with the 

consolidated alphabetic phase in which reading behaviour starts to emulate that of 

skilled readers. Additionally, Ehri (1991) proposes that learning the alphabet and not 

the alphabetic principle is the crucial factor in the transition to the partial alphabetic 

phase. Ehri concludes by stating that learning to read comprises determining complete 

word representations that incorporate both phonological and orthographic 

components. One of the significant limitations of stage/phase models is that although 

the models are highly informative, they ultimately serve as a theoretical outline of 

reading development rather than as a set of falsifiable scientific hypotheses (Beech, 

2005). 

Additionally, there is a corpus of research that indicates that not all children transition 

through the stages/phases highlighted above (Stuart & Coltheart, 1988; Wimmer & 

Hummer, 1990). Furthermore, the two above studies raised important questions 

regarding the ability of children to utilize phonological processing skills in the early 

stages of reading development (Stuart & Coltheart, 1988) as well as questioning the 

applicability of the developmental stage models across languages (Share, 2008; 

Wimmer & Hummer, 1990). Ultimately, developmental stage/phase models are 

culpable of being too descriptive in their nature as crucial aspects of each of the 

discrete model's workings are left undetermined. The following section will focus on 

providing an overview of the cognitive abilities that contribute to learning to read in 

alphabetic writing systems. 
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1.2 COGNITIVE AND LINGUISTIC FACTORS INVOLVED IN LITERACY 

ACQUISITION 

There has been an increasing shift towards exploring the cognitive and linguistic 

factors that are involved in the development of reading ability. Before an emergent 

reader can advance to the final stages of reading acquisition, there is a need to 

develop metalinguistic skills that will facilitate learning to read. The literature readily 

identifies three metalinguistic skills that are considered to contribute to the acquisition 

of reading and spelling which are phonological awareness, orthographic awareness, 

and morphological awareness (Apel, Wilson-Fowler, Brimo, & Perrin, 2012) Each will 

now be considered in turn. 

Phonological awareness may be conceptualized as the awareness of the internal 

sound structure of spoken words. A developing reader needs to develop an awareness 

of phonological units such as words, syllables, onset-rimes, and phonemes in order to 

develop the ability to decode words successfully. There is a sizeable body of literature 

investigating how developing reader's level of phonological awareness relates to 

reading development (Bradley & Bryant, 1983; Muter, Hulme, Snowling, & Stevenson, 

2004; Wagner & Torgesen, 1987). In general, phonological awareness is frequently 

identified as the strongest predictor of early reading skill (Adams, 1990; Goswami & 

Bryant, 1990). Additionally, a recent meta-analysis by Melby-Lervåg, Lyster and 

Hulme (2012) explored the relationship of three measures of phonological awareness, 

namely, phonemic awareness, rime awareness, and verbal short-term memory, with 

children's reading skills. The study determined that phonemic awareness was the 

strongest predictor of individual differences in reading development after controlling 

for the variance in verbal short-term memory and rime awareness. There has also 

been much debate regarding the causal link between children's phonological 

awareness and success in learning to read. In an argument against, Castles and 

Coltheart (2004) contend that there is a lack of irrefutable evidence regarding a causal 

link between children's phonological awareness and success in learning to read while 

acknowledging the relationship between phonological awareness and reading ability. 

Instead, Castles and Coltheart (2004) further argue that phonemic awareness may not 

be acquired in the absence of instruction on the relationship between phonemes and 

graphemes; more suggestive of the concept of graphophonemic awareness (Connelly, 
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2002; Ehri & Soffer, 1999). Alternatively, in a direct rebuttal of the above critique, 

Hulme, Snowling, Caravolas and Carroll (2005) dispute Castle and Coltheart's 

conclusions in that they focus on a relatively narrow theoretical perspective and state 

that it would be more useful to study the role of phonological skills in learning to read 

in a broader framework of a multi-causal model. 

Orthographic awareness refers to awareness of spelling patterns within words. 

Orthographic awareness is thought to require the morphological rules of a given 

language in addition to knowledge of letter patterns and sequences (Berninger & 

Abbott, 1994). It has been conceptualized that orthographic processing skills (Barker, 

Torgesen, & Wagner, 1992) may impact children's implicit acquisition of the statistical 

regularities of orthographic and phonological representations of words. In addition to 

this, a recent study identified that orthographic processing skill estimated a substantial 

proportion of the variance in word recognition after phonological processing was taken 

into consideration (Berninger & Wolf, 2009). Moreover, spelling, orthographic 

awareness and reading accuracy are thought to interact and supplement each other 

(Berninger, Abbott, Nagy, & Carlisle, 2010). Berninger and colleagues carried out a 

growth curve analysis of phonological, orthographic, and morphological awareness in 

children in grades from one to six. They reported that at the word-level, phonological 

and orthographic awareness demonstrated the highest growth during the earlier 

grades with limited growth after this period. They conclude by recommending that all 

three types of metalinguistic awareness need to be coordinated and applied to literacy 

learning. Furthermore, there is a growing interest in morphological awareness as a 

central facet of reading, particularly with regards to vocabulary knowledge. 

Morphological awareness is regarded as the ability to understand the structure of a 

word as a combination of morphemes and to have the ability to manipulate them 

(Weber et al., 2013). The distinct role of morphology in reading acquisition is well 

established in scripts that use the Latin alphabet (Elbro, 1996; Leong, 1999). After 

accounting for reading ability, verbal and nonverbal intelligence, and phonological 

awareness, Deacon and Kirby (2004) reported the significant, independent 

contribution of morphological awareness to English pseudoword reading and reading 

comprehension but failed to contribute to single word reading. In order to address the 

notion of whether orthographic and morphological skills are separable in their 
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contribution to reading outcomes, Roman, Kirby, Parrila, Wade-Woolley, and Deacon, 

(2009) conducted a series of regression analyses and established that orthographic 

knowledge and morphological awareness do indeed make unique contributions to 

reading development. 

1.3 COGNITIVE SKILLS INVOLVED IN LITERACY ACQUISITION 

Apart from metalinguistic skills, several cognitive skills have also been identified as 

contributors to reading skill development. Visual Attention Span (VA Span), Rapid 

Automized Naming (RAN) and various aspects of short-term and working memory will 

all be discussed within the remit of this thesis. As previously discussed, the 

development of reading in alphabetic languages necessitates learning the 

relationships between sequences of visual symbols and their related units of sounds. 

Therefore, reading may also be conceptualized as a visual perceptual task that 

involves processing multi-letter sequences (Bosse & Valdois, 2009). In stark contrast 

to the abundant research carried out regarding the role of phonological awareness in 

learning to read, there is still much debate in the domain regarding the impact of visual 

processes on learning to read. Consequently, the role of visual attention in reading 

has mostly been ignored by theorists and modellers, except for a few researchers 

(e.g., Bosse, Tainturier, & Valdois, 2007). The process of reading is undeniably 

dependent on the visual processing of letter strings (Bundesen, 1998) and a 

comprehensive investigation of reading would need to consider this. 

Visual Attention Span (VA Span) 

The concept of the Visual Attention Span (VA Span; Bosse, Tainturier, & Valdois, 

2007) has to date primarily been applied to children with reading difficulties (see 

below) and is rooted in the theoretical, computational and neuropsychological 

framework of visual attention (Bundesen, 1990; 1998; Bundesen, Habekost, & 

Kyllingsbæk, 2005). VA Span is conceptualized and built on the connectionist 

multitrace memory (MTM) model of polysyllabic word reading (Ans, Carbonnel, & 

Valdois, 1998). Concerning reading, Bosse, Tainturier, and Valdois, (2007) 

functionalized VA Span as the number of orthographic units in words that can be 

simultaneously processed at a glance. Bosse and Valdois (2009) measured the VA 

Span of 417 children across the first, third and fifth grades and reported that 
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independent of phonological processing skills, VA Span contributed to reading 

performance across grades. The authors conclude the study by suggesting that in 

order for the orthographic sequence of an input word to be memorized and 

consolidated into sight-word memory, VA Span needs to be large enough to process 

all the letters of a word simultaneously. In addition, there is increasing evidence that 

VA Span may be modulated by orthographic transparency in both monolinguals 

(Awadh et al., 2016) and bilinguals (Lallier, Acha, & Carreiras, 2016). 

Rapid Automatized Naming (RAN) 

As stated previously, word naming is thought to be dependent on a range of linguistic 

and cognitive subsystems. The synergy of these subsystems is considered to lead to 

rapid automation of the reading process in developing readers. Speed of processing 

is often quantified by Rapid Automatized Naming (RAN) tasks, which measure how 

rapidly people can name aloud objects, pictures, colours, or symbols (letters or digits). 

RAN tasks are thought to be reflective of phonological access to lexical storage and 

were initially developed to differentiate developmental dyslexics from controls 

(Denckla & Rudel, 1976a; Denckla & Rudel, 1976b; Denckla, Rudel, & Broman, 1981). 

RAN scores consistently correlate with reading ability in children and adults and thus 

maintains abundant significance in the reading literature, probably second only to 

phonological awareness. Furthermore, a meta-analysis of 35 studies revealed that 

performance on the RAN task is consistently correlated with, and predictive of both 

sight word and nonword reading (Swanson, Trainin, Necoechea, & Hammill, 2003). 

The authors report that the average correlation between RAN and real-word 

reading/nonword reading was r = .42 and r =.52 respectively. A potential concern 

regarding RAN is that from a cognitive perspective, it is a poorly defined construct and 

that it is unclear precisely what mechanism underlies RAN's relationship with reading 

(Kirby, Georgiou, Martinussen, & Parrila, 2010). It has also been posited that RAN 

could be a broad measure that assesses several cognitive skills (Arnell, Joanisse, 

Klein, Busseri, & Tannock, 2009). Although the importance of RAN is acknowledged, 

further work is necessary to identify the theoretical nature of naming speed. 
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Working Memory (WM), Phonological Short-term Memory (PSTM) & Visual-

Spatial Short-Term memory (VSSTM) 

Ultimately when learning to read, there is a requirement for an emergent reader to 

establish relationships between orthographic and phonological patterns in memory 

(Stanovich, 1991). For this thesis, the following subsystems of memory will be further 

discussed: Working Memory (WM), Phonological Short-Term Memory (PSTM) and 

Visual-Spatial Short-Term Memory (VSSTM). Concerning the updated multi-

compartment model proposed by Baddeley (2000), working memory is defined as a 

limited capacity store of human memory that stores and manipulates information as 

opposed to previously suggested Short-Term Memory (STM) that only refers to the 

storage of information for short durations. It is also essential to establish that working 

memory differs from long-term memory, which is thought to have unlimited capacity 

and holds information in a stable form. The model of working memory assumes a 

central executive attentional controller that maintains two slave subsystems known as 

the visuospatial sketchpad and the phonological loop. 

The visuospatial sketchpad functions to create and maintain a temporary visuospatial 

representation of the visual world. Research carried out by Logie (1986; 1995) and 

Klauer and Zhao (2004) suggest that spatial tasks interfere with spatial skill, whereas 

a purely visual activity may interfere with the capacity to remember objects or shapes. 

The visuospatial sketchpad can, therefore, be further divided into separate visual, 

spatial, and possibly kinaesthetic components. VSSTM is hypothesized to be a 

temporary storage component used to process received visual information for ongoing 

cognitive tasks (Baddeley, Eysenck, & Anderson, 2009). Huestegge and colleagues 

(2012) suggest that with regards to reading, VSSTM acts as an intermediary between 

the fast decaying perceptual impressions of notation and the, more long-term, 

crystallized knowledge of language-specific orthographic patterns (Dehaene et al., 

2010). The precise nature of the relationship between VSSTM and reading is poorly 

understood, and the conflicting evidence leaves much to be examined (Bosse, 

Tainturier, & Valdois, 2007; Dehaene et al., 2010; Gathercole, Alloway, Willis, & 

Adams, 2006). 
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The phonological loop processes acoustic information and is assumed to have two 

components comprised of a temporary acoustic store and a sub-vocal articulatory 

rehearsal process. The phonological loop is conceivably the most comprehensively 

investigated aspect of working memory (Baddeley, 1992; 2000; 2003). The presence 

of the phonological similarity effect (Baddeley, 1966a; 1966b), as well as the word 

length effect (Baddeley, Thomson & Buchanan, 1975), is the primary basis of evidence 

in support of a phonological store and a feedback loop mediated by rehearsal, 

respectively. According to Baddeley, Gathercole, & Papagno (1998), the phonological 

loop facilitates language acquisition by affording a temporary store for novel words 

while they are consolidated in long-term phonological memory. Furthermore, the 

phonological loop is thought to be mostly responsible for PSTM (Hummel, 2009). 

Therefore, PSTM can be understood to be central to the processing of auditory 

information (Anthony, Williams, McDonald, & Francis, 2007). Concerning reading, 

PSTM has been demonstrated to have a significant influence on reading accuracy but 

not speed across several different alphabetic orthographies (Ziegler et al., 2010). This 

section has briefly discussed some of the critical cognitive contributors to reading 

development in typically developing children, but what happens when the complex 

process of reading development is disrupted? The next section will describe the 

manifestation of cognitive and linguistic difficulties in reading within the framework of 

developmental dyslexia with reference to alphabetic writing systems. 

1.3 DEVELOPMENTAL DYSLEXIA 

While the majority of children learning to read do so with relative ease, there is a 

significant number (~10%) that struggle to obtain the relevant skills needed to extract 

meaning from a written language with ease and fluency (e.g., Boets, Wouters, Van 

Wieringen, & Ghesquiere, 2007). Specific reading disorder, also known as 

Developmental Dyslexia (DD), may be conceptualized as a marked difficulty in reading 

words not due to sensory, neurological, or intellectual impairments and inadequate 

schooling. Furthermore, developmental dyslexia frequently displays co-morbidity with 

other neurodevelopmental disorders such as attention deficit hyperactivity disorder 

(ADHD) (25-40%) (Landerl & Moll, 2010), dyscalculia (17%) (Ansari & Karmiloff-Smith, 

2002) and developmental coordination disorder (DCD)/ dyspraxia (50%) (Kaplan, 

Wilson, Dewey, & Crawford, 1998). Developmental dyslexia is widely accepted to be 
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a neurobiological disorder with a genetic origin that primarily affects the acquisition of 

literacy skills, in particular, learning to read with speed and accuracy. Within the 

literature, there is still an ongoing debate over both the definition and subsequent 

diagnosis of developmental dyslexia. The foundation of this disagreement is posited 

to stem from the diverse neurological and cognitive accounts of the disorder (Ramus, 

2003). Additionally, many of these competing theories refer to distinct theoretical 

approaches developed in order to explain developmental dyslexia from a causal 

perspective (Reid, 2001). The most dominant of these competing theories will now be 

considered in turn. 

Phonological Processing Deficit Hypothesis of Dyslexia 

The predominant phonological processing deficit hypothesis of dyslexia (Muter, 

Hulme, Snowling, & Taylor, 1998; Rack, 1994; Share, 1995; Stanovich, Cunningham, 

& Cramer, 1984; Vellutino, Fletcher, Snowling, & Scanlon, 2004; Wydell & Butterworth, 

1999) states that the core skill of reading ability is phonological processing and as 

such, is reported to be the core deficit in developmental dyslexia (Snowling, 2001). 

The most frequently reported problems of dyslexic children using this framework are 

phonological awareness deficits that hinder with the acquisition of grapheme-

phoneme correspondences as well as limitations of verbal short-term memory 

(Snowling, 1998). Considering the role of phonological awareness in typically 

developing children, there is strong evidence for this hypothesis. With reference to the 

Dual Route Cascaded (DRC) model of reading aloud (Coltheart, Rastle, Perry, 

Langdon, & Ziegler, 2001) phonological deficits are thought to affect processing via 

both the lexical and the nonlexical route. 

Double-Deficit Hypothesis of Dyslexia 

An extension of the phonological account of reading disorder is the double-deficit 

hypothesis (Wolf & Bowers, 1999; 2000), which postulates that in addition to the 

observed phonological difficulties experienced by dyslexic children, there is a second 

equally important deficit in naming speed as measured by RAN tasks (Allor, 2002; 

Denckla & Rudel, 1976b). The double-deficit hypothesis further stipulates that 

regarding dyslexic children, the correlations between phonological awareness and 
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naming speed are different though both phonological awareness deficits and naming-

speed deficits are reported (Wimmer, Mayringer, & Landerl, 2000). 

Domain-General Perceptual Deficit of Auditory Processing Hypothesis  

In an opposing view, there is an argument that observed phonological deficits might 

simply be an indicator of developmental dyslexia as opposed to the central causal 

factor. Instead, proponents of the rapid auditory processing deficit hypothesis (P. 

Tallal, 1984; P. E. Tallal, Galaburda, Llinás, & von Euler, 1993) suggest a domain-

general perceptual deficit of auditory processing. There is indeed a growing corpus of 

research that indicates that developmental dyslexics manifest a low-level deficit in 

rapid auditory processing resulting in a phonological deficit (Stoodley, Hill, Stein, & 

Bishop, 2006; Temple et al., 2000) 

Visual Processing Deficit Hypothesis 

Several alternative hypotheses regard developmental dyslexia as a primarily visual 

deficit: on the one hand, the magnocellular theory of developmental dyslexia (Stein, 

1989; 2001). The differential properties of magno- and parvo-cells allow researchers 

to investigate the two distinct pathways with a variety of psychophysics studies. With 

regards to developmental dyslexia, there is an argument which contends that the 

dysfunctional frequency and amplitude sensitive magno-cells present in both the 

visual and auditory modalities negatively impact motion sensitivity (binocular 

instability) and rapid auditory (phonological) processing respectively (Ray, Fowler, & 

Stein, 2005; Sperling, Lu, Manis, & Seidenberg, 2003). In a similar but distinct line of 

enquiry, the visual stress theory (Wilkins, 2003) stipulates that visual stress leads to 

distortions of text and headaches when reading through visual stress. The theory 

advocates for the use of coloured lenses in order to reduce visual stress but is not 

considered to be a specific theoretical theory of dyslexia though some dyslexic 

children do show marked patterns of visual stress (Ramus et al., 2003). The visual 

processing deficit hypothesis attempts perhaps inadvertently to fuse several theories 

into a coherent framework, but the theory remains contentious at least in regard to 

alphabetic languages (Wang, Bi, Gao, & Wydell, 2010). On the other hand, the visual 

attention span deficit hypothesis (Bosse, Tainturier, & Valdois, 2007) has received 

increased attention as it has been established that phonological awareness and visual 
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attention span make a unique impact to the reading performance of children with 

developmental dyslexia. They also report that phoneme awareness was responsible 

for a large amount of variance in pseudoword reading.  

By extension, they were adding weight for the argument of the robust impact of 

phonological processing on reading skills (Ziegler et al., 2008). VA Span impairments 

are often manifested as a deficit in the ability to recall strings of consonants though 

they can identify consonants in isolation and often have preserved phonological 

processing abilities (Bosse & Valdois, 2009b). A recent intervention case study on a 

French-Spanish bilingual dyslexic girl by Valdois and colleagues (2014) found that 

after specific training in a VA Span task, the dyslexic child reported higher scores on 

the VA Span tasks. In addition, there was increased activation in her superior parietal 

lobes bilaterally; an area thought to be associated with the neural underpinnings of VA 

Span (Peyrin, Démonet, N'Guyen-Morel, Le Bas, & Valdois, 2011). Based on this 

finding, the authors concluded in favour of a causal relationship between VA Span and 

developmental dyslexia, though stated that more extensive studies need to be 

conducted before a true conclusion could be drawn. It is also important to highlight 

that processes involved in WM and STM have also received much attention in children 

with reading disabilities over the last 30 years (Swanson, Cooney, & McNamara, 

2004). It is now becoming evident that developmental dyslexia may best be defined 

as a multi-faceted disorder and that a combination of factors contributes to its 

heterogeneous manifestation (Pennington, 2006). It can, therefore, be assumed that 

phonological factors (Siegel, 1990; Snowling, 1995; Stanovich, 1996), working 

memory (Baddeley, 1993; Rack, 1994), visual processing (Stein, 1989; Wilkins, 2003) 

and processing speed of information (Rack, 1994) may all play vital roles in explaining 

developmental dyslexia (Pneuman, 2009). Now that reading processes and dyslexia 

have been reviewed and defined; it is essential to reframe these findings within 

different orthographies and to identify the relevant universal and language-specific 

processes involved in reading. 
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1.4 THE ROLE OF ORTHOGRAPHY AND ASPECTS OF LANGUAGE 

UNIVERSALITY VS SPECIFICITY 

Orthography is considered to be the realisation of a writing system to a specific 

language. How a particular orthography maps on to the phonology of its spoken 

language is thought to affect literacy acquisition in children as well as adults' cognitive 

processing. This growing area of research has enjoyed particular focus over the past 

30 years exploring universal and language-specific processing by readers of different 

orthographies, as well as the relationship between orthographic transparency and the 

incidence of developmental disorders. Much of this area of research evolved from the 

Orthographic Depth Hypothesis (ODH) (Frost, Katz, & Bentin, 1987; Katz & Feldman, 

1983; Katz & Frost, 1992). This seminal unidimensional hypothesis postulates that 

print-to-sound mappings, i.e. Grapheme-Phoneme Correspondence (GPC) in 

alphabetic writing systems dictate the respective orthographic transparency of a 

written language, which in turn influences the strategies adopted by readers.  

When a particular orthography has consistent GPC, it is said to be shallow or 

transparent, and as such, the reader adopts a print-to-sound sequential decoding 

strategy. Conversely, deep or opaque orthographies are thought to utilize a more 

direct 'whole word' look-up strategy (referred to in the DRC model as the lexical route). 

In summary, proponents of the strong version of the ODH suggest that phonologically 

transparent words should always be insensitive to both word frequency and priming 

effects as these effects are said to be involved in lexical processing. Criticism of the 

ODH has come from several transparent languages which display both word 

frequency, and priming effects including Croatian (Carello, Lukatela, & Turvey, 1988), 

Persian (Baluch & Besner, 1991) and Spanish (Sebastián-Gallés, 1991) and word 

frequency effects have been reported in Japanese syllabic Kana (Wydell, 1991; 

Rastle, Havelka, Wydell, Coltheart & Besner, 2009) and Turkish (Raman, Baluch, & 

Sneddon, 1996).  

In response, some researchers have proposed two distinct universal hypotheses in 

which it is advocated that lexical access is achieved in one universal mechanism 

across all orthographies independent of orthographic depth. The Universal Phonology 

Mediation Hypothesis (UPMH) assumes the prelexical role of phonology (Frost, 1998; 



 15 

Van Orden, Pennington, & Stone, 1990) whereas the Universal Direct Access View 

Hypothesis (UDAVH) stipulates that lexical access occurs through the visual and 

direct route without the mediation of phonology between orthographic forms. 

Orthographies have also been approached by two-dimension theories. Wydell and 

Butterworth (1999) instituted the Hypothesis of Granularity and Transparency (HGT) 

and identified the two dimensions as transparency and granularity. The hypothesis 

suggests that transparent orthographies will not produce a high incidence of 

phonological dyslexia, regardless of the level of translation, i.e., phoneme, syllable, 

and character. In addition to this, they stipulate that any orthography whose smallest 

grain size representing sound is coarse, i.e., a whole character or whole word, should 

also not produce a high incidence of phonological dyslexia. Of note is that Ziegler and 

Goswami (2005) also indicate the consequence of grain size in order to explain 

developmental dyslexia across different languages and as a consequence have 

posited the Psycholinguistic Grain Size Theory (PGST). The major difference between 

these two hypotheses is that the PGST suggest that orthographic transparency is not 

predictive of a reduced incidence of developmental dyslexia. The influence of writing 

systems on reading processes has highlighted both universal principles and specific 

variations (Perfetti, 2003). Language-specific variations in reading have briefly been 

discussed above, and so attention will now focus on universal aspects of reading.  

The most fundamental universal is said to be the Language Constraint on Writing 

Systems (Perfetti & Liu, 2005) that postulates that a reader understands the meaning 

of printed words within the setting of a given language and not as independent symbols 

that confer meaning. The second universal, the Universal Phonological Principle 

(UPP) (Perfetti, Zhang, & Berent, 1992; Perfetti & Harris, 2013) posits that word 

reading activates phonology at the lowest level of language allowed by the writing 

system. However, Venezky (2006) states that a truly comprehensive understanding of 

both the universal and language-specific features of reading remains to be 

established. Critically, the vast majority of research that has been carried out in 

reading research to date has been of Anglocentric (Share, 2008) or Eurocentric focus. 

Consequently, the applicability of theories of reading, reading development and 

disorder to non-English/ European orthographies has to be questioned. That is if a 

further understanding of the universal principles of reading is to be achieved, then 

reading research needs to take into account a more diverse scope of findings of the 
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world's orthographies. This outstanding issue is the primary motivation of this doctoral 

thesis. As a final consideration, the following section will highlight recent developments 

concerning computational models of visual word recognition while also highlighting 

contemporary theoretical considerations in computational modelling.  

1.5 COMPUTATIONAL MODELS OF VISUAL WORD RECOGNITION 

Computational models of visual word recognition have become essential tools for 

investigating the cognitive phenomena associated with both normal and disordered 

reading. Computational modelling, as an endeavour, provides a mechanistic account 

of a given cognitive phenomena by offering explicit and testable predictions of how 

these processes function (Forstmann et al., 2011) 

The following section will introduce three models of reading aloud, namely, the 

previously mentioned, dual-route cascaded model of visual word recognition and 

reading aloud (DRC) (Coltheart, Rastle, Perry, Langdon & Ziegler 2001), the 

connectionist dual-process family of models (CDP, CDP+, CDP++) (Perry, Ziegler & 

Zorzi 2007) as well as the parallel distributed processing (PDP) model family 

(Seidenberg & McClelland 1989; Harm & Seidenberg 1999, 2004; Plaut, McClelland, 

Seidenberg & Patterson 1996). 

1.5.1 THE DUAL-ROUTE THEORY OF READING ALOUD 

 
FIGURE 1: ARCHITECTURE OF THE DUAL-ROUTE CASCADED MODEL (ADAPTED FROM COLTHEART ET AL., 2001) 
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The dual-route cascaded (DRC) model of reading aloud and visual word recognition 

was implemented to simulate the cognitive mechanisms associated with skilled 

reading based on the dual-route theory of reading aloud (Forster & Chambers, 1973; 

Marshall & Newcombe, 1973). As mentioned previously, the dual-route theory 

postulates that two distinct routes are involved in reading aloud: a lexical and a 

sublexical route. The sublexical route involves serially constructing a phonological 

representation of a word through knowledge of how constituent parts of the word 

correspond to meaningful sounds. In contrast, the lexical route involves the automatic 

recognition of whole written words, without needing to parse the constituent parts of 

the word or recognize phonology beforehand. Computationally, the lexical route of the 

DRC is an extension of the Interactive Activation (IA) model (McClelland & Rumelhart, 

1981). The lexical route can successfully identify known and irregular words, whereas 

the sublexical route is used to identify novel regular words and nonwords (Coltheart, 

2006; Coltheart et al., 2001). In addition, the DRC model has been successful in 

simulating a wide variety of word reading effects observed in adult readers in English 

(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) as well as being implemented 

across a range of alphabetic orthographies including French (Ziegler, Perry, & 

Coltheart, 2003), German (Ziegler, Perry, & Coltheart, 2000), Greek (Kapnoula, 

Protopapas, Saunders, & Coltheart, 2017), Italian (Schmalz, Marinus, Coltheart, & 

Castles, 2015) and Russian (Ulicheva, Coltheart, Saunders, & Perry, 2016). 

  

1.5.2 THE CDP FAMILY OF MODELS 
  

The CDP family of models (CDP: Zorzi, Houghton, & Butterworth, 1998; CDP+: Perry, 

Ziegler, & Zorzi, 2007; CDP++: Perry, Ziegler, & Zorzi, 2010; CDP++.parser: Perry, 

Ziegler, and Zorzi, 2013) represent the middle ground of computational approaches to 

visual word recognition. The CDP family of models maintain a dual-route architecture 

similar to the DRC model but retain the computational style of parallel distributed 

processing (PDP) models (Zorzi, 2010). Considering the architecture of the model, the 

lexical route of the CDP models is implemented as an IA network (similar to the DRC 

model). The distinction of the lexical route of the CDP models is that it contains a more 

extensive vocabulary than the DRC model and more recent implementations include 

multi-syllabic words (CDP++: Perry, Ziegler, & Zorzi, 2010). Regarding the sublexical 

route of the CDP models, while the DRC model uses a list of distinct rules to convert 
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graphemes to phonemes, the CDP models use a connectionist, two-layer associative 

(TLA) network through the identification of statistical relationships between 

orthographic and phonological word parts. The TLA network, therefore, affords the 

CDP models properties akin to supervised learning and therefore provide a good 

account of developmental data on reading acquisition (Hutzler, Ziegler, Perry, 

Wimmer, & Zorzi, 2004). In addition, learning in the TLA network is based on the delta 

rule learning procedure (Widrow & Hoff, 1960) which is suggested to be equivalent to 

a classical conditioning law (the Rescorla-Wagner rule; Sutton & Barto, 1981).  

  

 1.5.3 THE PDP FAMILY OF MODELS 
  

Taking a neurally inspired approach to understanding various aspects of cognition, the 

publication of the two-volume Parallel Distributed Processing (Rumelhart, McClelland, 

and the PDP Research Group, 1986) marked a shift away from symbolic models to 

what has been described as neural-network or connectionist models (Rumelhart, 

Smolensky, McClelland, & Hinton, 1986). The so-called triangle models of reading 

aloud (Harm & Seidenberg, 1999, 2004; Plaut, McClelland, Seidenberg, & Patterson, 

1996; Seidenberg & McClelland, 1989) have, along with the DRC model, motivated 

much of the research regarding computational modelling of reading aloud. The PDP 

family of models represent a distinct difference in modelling philosophy to that of 

previously mentioned models. In this distributed view, there is no mental lexicon for 

the store of word knowledge in the recognition system (Plaut, 1997; Seidenberg & 

McClelland, 1989, 1990) and the central difference between word and nonword stimuli 

is the nature of their underlying visual (orthographic), phonological and semantic 

statistical representations. Triangle models consist of three sets of processing units, 

the first is a set of units representing orthography, the second is a set of units 

representing phonology, and thirdly there are a set of semantic units (Powell, Plaut, & 

Funnell, 2006). 

 



 19 

 
FIGURE 2: THE PDP MODEL OF READING (WOOLLAMS ET AL., 2007). 

According to the triangle models, a word’s pronunciation is generated by spreading 

activation from orthographic input units along with connections to additional 

phonological output units. As such the information that permits a reader to identify 

printed words is contained in a single set of input-to-output connections, with the 

pronunciation of each word being influenced by the cumulative total of all of the 

underlying levels of representation for that word. While an early implemented version 

of the triangle model (Seidenberg & McClelland, 1989) performed significantly worse 

than skilled readers at pronouncing nonwords (Besner, Twilley, McCann, & Seergobin, 

1990), Plaut and colleagues (1996) developed a successor model that learned to 

produce pronunciations for both words and nonwords that simulated skilled adult 

reading and has subsequently been used to simulate a range of phenomena 

associated with reading aloud successfully. Successively, Harm and Seidenberg 

(1999) examined the impact of prior exposure to phonological forms of words on 

succeeding reading training. Their triangle model was able to accurately learn the 

dependencies between phonemes appearing in words and, after undergoing a full 

training routine, was able to replicate the findings of Plaut and colleagues (1996) 

concerning reading at skilled adult levels. However, it was not until the computational 

implementation of the semantic pathway by Harm and Seidenberg (2004) that the 

triangle models were considered to be complete networks. PDP models have also 

been extended to Chinese (Yang, McCandliss, Shu, & Zevin, 2009), German (Hutzler 

et al., 2004), Hebrew (Velan, Frost, Deutsch, & Plaut, 2005), Italian (Pagliuca & 

Monaghan, 2009) and Japanese (Ikeda et al., 2016). 
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While a truly comprehensive consideration of computational models of reading and 

reading development would demand a comparison of the above mentioned modelling 

approaches, this thesis focusses on the DRC model exclusively. Having reviewed the 

relevant literature concerning models of reading, it was decided to focus on the DRC 

model, as the dual-route theoretical framework has been previously employed in 

explaining a wide range of effects on Turkish adult single word/ nonword naming such 

as Lexicality (Raman, 2003) and Frequency (Raman et al., 1996). This thesis therefore 

represents an iterative extension on this important work in Turkish psycholinguistics. 

The rationale for adopting a dual-route approach as the dominant theoretical and 

interpretative framework is partly driven by methodological and technical issues, 

highlighted in Chapter 6, and is not reflective of the author’s theoretical position of a 

perceived superiority of the DRC modelling approach over others. 

1.6 THESIS AIM 

The primary aim of this doctoral research project was, therefore, to apply 

contemporary cognitive, computational and psycholinguistic theories and methods to 

the exploration of reading, reading development and disorder using the Turkish 

orthography as the medium of choice. This choice was motivated by the underlying 

orthographic transparency of the Turkish writing system in a preliminary attempt to 

redress the above highlighted Anglo-centric nature of research that has been carried 

out in reading research to date (Share, 2008). This aim was studied in several different 

ways: 

1. by exploring the concept of orthographic transparency using a quantitative 

approach (Chapter 2) 

2. by highlighting the need for better psycholinguistic tools to investigate Turkish 

leading to the development of the Turkish Lexicon database (Chapter 3) 

 

3. by investigating reading development in typically developing Turkish children 

(Chapter 4) 

 

4. by investigating the behavioural and cognitive manifestation of reading disorder 

in Turkish children (Chapter 5) 
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5. by developing a Turkish version of the dual-route cascaded (DRC, Coltheart et 

al., 2001) computational model of reading aloud, and testing the newly created 

model against the human word and nonword reading-aloud data (Chapter 6) 

It could be argued that the multidimensional nature of this thesis is either its primary 

strength, allowing for a multidisciplinary approach, or its central limitation, in that the 

scope of the current research is too broad. However, by maintaining a synergy 

throughout the current thesis, it is expected that any perceived limitation can be 

addressed. Except for Chapter 2, which was carried out to place the Turkish 

orthography among other alphabetic writing systems, all other chapters establish a 

clear link between each other. For example, the data for Chapter 4, a relatively large 

study carried out regarding understanding the factors that influence reading 

development, are also used in Chapter 5, as a benchmark against atypical reading 

development, as well as in Chapter 6 where children's accuracy and RT data were 

directly compared against newly developed computational models of reading in 

Turkish. The following section will outline the structure of this doctoral thesis. 

1.7 THESIS OUTLINE 

To address the above-stated research aims, the current doctoral thesis contains five 

exploratory investigations across five chapters. Chapter 2 introduces the reader to the 

historical and current conceptualization of Orthographic Depth. Previous attempts at 

quantifying these differences have been overly crude in their approach, and all existing 

methodologies have limitations. The chapter focuses on recent attempts at developing 

measures in order to generate quantitative indices of orthographic transparency. The 

reader will then be introduced to the key characteristics of the Turkish writing system 

before being presented with the quantitative models developed for this thesis. A variety 

of methodologies, including onset-entropy and whole-language phonemic 

transcription, were explored. The models will be compared to each other as well as 

offering a cross-linguistic comparison to other models in different orthographies. 

Chapter 3 introduces current approaches to the development of psycholinguistic 

resources. The chapter then provides an overview of the available resources in 

Turkish, which are scarce. The methodological approach adopted to create a new, 
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widely available corpus for use in Turkish psycholinguistic database is covered. 

Finally, the new database was validated using a lexical decision task in adults, and 

the naming task used in Chapter 4 is used to validate a subcorpus that is designed for 

use with children.  

Chapter 4 examines the limited psycholinguistic research carried out with monolingual 

Turkish children to date. The lack of standardized measures needed to investigate the 

cognitive and literacy constructs used in this thesis are addressed by the development 

of a battery of tasks that forms the core of the psycholinguistic component of the study. 

Chapter 4 will also discuss the motivations and rationale for the tasks selected in the 

pilot investigation before presenting the main study results and conclusions carried 

out with 130 Turkish-speaking children. 

Chapter 5 offers an overview of reading disorder with a particular focus on reading 

disorder in transparent alphabetic orthographies such as Finnish, Italian and Spanish. 

To the best of the author’s knowledge, this was the first reported study to 

comprehensively examine the cognitive profile of developmental dyslexia in Turkish 

and results are discussed using both a group and a multiple case design approach 

using chronological and younger typically developing controls from the Chapter 4 

Turkish monolingual study. 

Chapter 6 provides an overview of recent developments regarding computational 

modelling in visual word recognition research. The chapter will focus on current 

attempts to model self-learning (unsupervised). A model of reading development using 

a three-staged vocabulary learning paradigm will be reported. The preliminary work 

towards a Turkish version of the Dual Route Cascaded model will also be introduced 

as well as comparing the computational simulation data with the behavioural data in 

Chapters 4 and 5. 

Finally, Chapter 7 presents a general discussion based on findings from all 

experiments and concludes the thesis with a summary, implications of the findings, 

and limitations of the study as well as possible future directions in this area of research. 
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CHAPTER 2: TOWARDS THE QUANTIFICATION OF TURKISH 
ORTHOGRAPHY 

2.1 PREFACE 
A fundamental question in psycholinguistic research aims to address what is universal 

and what varies systematically with the mapping of spoken language to writing. It is 

therefore of critical importance to ascertain the extent to which conclusions from 

reading in a particular language can be generalized to others, and equally, what 

specific experimental effects are restricted to the particular orthography under 

investigation (Frost, 2012; Share, 2008). Theoretically, exploring how and why the 

cognitive mechanisms of reading diverge across orthographies will shed light into how 

universal systems and specific properties of orthographies interact. In alphabetic 

orthographies, the transparency/ consistency in which letters map onto sounds have 

been shown to influence central aspects of both reading development (Seymour, Aro, 

Erskine, 2003; Landerl et al., 2013) and skilled reading (Frost, Katz, & Bentin, 1987; 

Ziegler, Perry, Jacobs, & Braun, 2001).  The following section will consider the 

historical and current debate regarding orthographic transparency in alphabetic writing 

systems, namely the progression of theoretical frameworks and current efforts being 

made to quantify and model orthographic transparency. 

 

2.2.1 ORTHOGRAPHIC DEPTH AND READING IN ALPHABETIC WRITING SYSTEMS 
 
Orthographic Depth (OD) refers to the reliability of grapheme-phoneme 

correspondences (GPCs) in alphabetic writing systems (Liberman, Liberman, 

Mattingly, & Shankweiler, 1980; Frost, Katz, & Bentin, 1987) and is rooted in classic 

dual-route models of reading (e.g. Forster and Chambers, 1973; Coltheart, 1978). For 

example, a completely shallow or transparent orthography like Finnish has 29 letters 

and 29 phonemes and is characterized by consistent one-to-one mapping of 

graphemes to phonemes (Seymour, Aro, Erskine, 2003), resulting in a predictable 

pronunciation. Different alphabetic orthographies that have near one-to-one GPCs are 

Hungarian, Italian, Spanish, Greek, and as will be demonstrated in this chapter, 

Turkish. In contrast, a deep or opaque orthography like English is characterized by 

multi-letter graphemes in addition to context-dependent rules and morphological 

effects which consequently lead to many-to-many mappings of graphemes to 

phonemes, and thus the effect is a large degree of ambiguity in pronunciation. In this 
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respect, OD can be viewed as a single-dimensional continuum (Figure 1). Moreover, 

Katz and Frost (1992) further characterize orthographic depth into three underlying 

concepts, complexity, consistency, and completeness. However, Schmalz, Marinus, 

Coltheart and Castles, (2015) state that how these three constructs relate to each 

other is vague and it remains to be established whether each of them influences 

reading in different ways. This pertinent issue will be discussed further below. 

 

 
FIGURE 3: ORTHOGRAPHIC DEPTH OF SEVERAL ORTHOGRAPHIES (FROM FIG. 2.4 IN PERFETTI & 

DUNLAP, 2008) 

 

2.2.2 THE ORTHOGRAPHIC DEPTH HYPOTHESIS 
 

Historically, initial interest into orthographies with differing systematicity of GPC rules 

focused on the highly transparent, biscriptal Serbo-Croatian (Lukatela, Popadić, & 

Turvey, 1980), the opaque, un-pointed Hebrew (Bentin, Bargai, & Katz; 1984), and 

mixed Persian (Baluch & Besner, 1991). The investigation of three highly contrasted 

orthographies gave rise to several competing views. In its strong version, the 

Orthographic Depth Hypothesis (ODH; Katz & Frost, 1992) posits that readers adapt 

their processing strategy along two different reading routes depending on the type of 

GPC of the language being read. As such, the strong version of the ODH proposes 

that transparent orthographies can be read by applying sublexical GPC procedures, 

in which each grapheme is sequentially mapped to its corresponding phoneme. 

Furthermore, the ODH proposes that deeper, more opaque orthographies such as 

English require the lexical procedure to access words from whole word orthographic 
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memory. In addition, the weak version of the ODH suggests that both nonlexical and 

lexical routes are available to readers of all writing systems, but the relative 

involvement of each processing route reflects the transparency of a given orthography.  

 

Convincing support for the strong version of the ODH comes primarily from the results 

of several cross-linguistic studies. Katz and Feldman (1983) report that semantic 

priming effects were found in lexical decision and naming tasks in English but only 

found the same effect during the lexical decision task in Serbo-Croatian thus 

suggesting that a related context does not facilitate naming relative to an unrelated 

context resulting in a reliance on sublexical processing. In a similar study, Frost, Katz, 

& Bentin (1987) report that they found greater word frequency effects and differences 

in reaction times in naming between words and nonwords for Hebrew in comparison 

to Serbo-Croatian and English. These authors conclude that the lack of frequency 

effects in the oral reading of Serbo-Croatian indicates a reliance on sublexical 

processing. However, from a critical perspective, these initial null findings were based 

exclusively on reading Serbo-Croatian (Besner & Smith, 1992) which has also 

reported semantic priming effects in other studies (e.g. Carello, Lukatela, & Turvey, 

1988). Additionally, there is a corpus of research that demonstrates lexical 

involvement in the oral reading of many transparent orthographies such as Spanish 

(Sebastián-Gallés, 1991), Italian (Tabossi & Laghi, 1992), Turkish (Raman, Baluch, & 

Sneddon, 1996), Finnish (Wydell, Vuorinen, Helenius, & Salmelin, 2003) in a silent 

reading task with magnetoencephalography (MEG), and Japanese Kana (Rastle, 

Havelka, Wydell, Coltheart & Besner, 2009). Moreover, phonological processing has 

been demonstrated to be involved in word recognition in deep orthographies such as 

English (Ziegler, Perry, Jacobs, and Braun, 2001) or even in Japanese Kanji, a 

logographic/ morphographic script (Wydell, Patterson, & Humphreys, 1993) leading to 

a general rejection of the strong version of the ODH. 

 
2.2.3 ALTERNATIVE UNIVERSAL VIEWS OF ORTHOGRAPHIC DEPTH 
 

Alternative views to the ODH stipulate that the similarities between reading processes 

across orthographies are greater than their differences. Two such theoretical 

frameworks will now be considered. One alternative view to ODH referred to as the 

Universal Hypothesis, argues that the lexical route is the most dominant one 
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regardless of the transparency of the orthography (Seidenberg, 1985; Baluch & 

Besner, 1991; Besner & Smith, 1992; Baluch, 1993). Evidence rejecting the universal 

hypothesis in favour of the weaker version of the ODH comes from by Frost and 

colleagues (1987) (as reported above) and by Frost (1994). Frost (1994) carried out a 

word priming experiment using un-pointed Hebrew words and found that both word 

frequency and semantic priming effects were significant. However, according to Frost 

(1994), when the same words were pointed, both the word frequency and semantic 

priming effects diminished. Based on these findings, Frost argued that the pointed 

Hebrew script, which is highly transparent, promotes the use of a sublexical reading 

strategy even though participants were more accustomed to reading the words un-

pointed. 

 

The universal phonological principle (UPP) (Perfetti, Zhang, & Berent, 1992) is 

fashioned as a universal claim that reading involves the early use of phonology and 

subsequently, word reading activates phonology at the smallest unit allowed by the 

writing system. The UPP claims that the specific mapping differences across writing 

systems and orthographies affect fine-grain reading procedures within a wider 

universal dependence of reading on oral language. Thus, concluding that reading, 

irrespective of the writing system, involves phonology (Perfetti & Zhang, 1995). The 

UPP and weak version of the ODH are not incompatible (Perfetti, Cao, & Booth, 2013) 

and have recently been refined and combined to generate the Psycholinguistic Grain 

Size Theory (PGST) (Ziegler & Goswami, 2005) which claims that reading processes 

assemble phonology in accordance to the grain size of the orthography. The PGST 

will be discussed in greater depth in the next section. 

 
2.2.4 THE PSYCHOLINGUISTIC GRAIN SIZE THEORY 
 

Until recently, the ODH was the foremost theoretical framework to guide cross-

linguistic reading research (Wydell & Butterworth, 1999; Perfetti, Liu, & Tan, 2005; 

Ziegler & Goswami, 2005; Frost, 2012). Wydell and Butterworth (1999) described the 

case of AS, an English-Japanese bilingual adolescent with monolingual dyslexia in 

English. In order to account for the behavioural dissociation discovered in this study, 

Wydell and Butterworth proposed the hypothesis of transparency and granularity 

(Figure 2), propositioning that both universal and language-specific processes exist 
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during reading. Additionally, the authors predict that writing systems where the print-

to-sound relationship is transparent should not manifest a high incidence of 

developmental phonological dyslexia irrespective of granularity. Likewise, writing 

systems where the grain size is coarse (i.e. whole character or whole word) should 

similarly not manifest with a high incidence of developmental phonological dyslexia.  

 
FIGURE 4: HYPOTHESIS OF GRANULARITY AND TRANSPARENCY AND ORTHOGRAPHY-TO-PHONOLOGY 

CORRESPONDENCE. THE SHADED AREA ON THE ‘TRANSPARENCY’ DIMENSION REPRESENTS ALMOST 100% 

TRANSPARENCY (FROM WYDELL & BUTTERWORTH, 1999). 

The Psycholinguistic Grain Size Theory (PGST; Ziegler & Goswami, 2005) focuses on 

the influence of orthographic depth on reading acquisition and will be contemplated 

further below. Ziegler and Goswami (2005) posit that for phonological recoding to be 

effective, developing readers need to discover shared grain sizes between the 

orthography and phonology of their language. Furthermore, the PGST states that grain 

size in a given orthography is inversely proportional to the regularity of GPCs. In 

transparent orthographies, phonological regularity encourages sublexical decoding 

strategies. Divergently, in opaque orthographies, the availability of larger orthographic 

units, such as grapheme clusters or syllables promotes lexical, whole-word reading 

processing (Lallier, Carreiras, Tainturier, Savilla, & Thierry, 2013). This is mainly in 

line with the claims made by the weak version of the ODH with the distinction that 

whereas the ODH proposes a quantitative modification in the ratio of lexical-to-
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sublexical processing, the PGST suggests a qualitative change in the nature of 

sublexical processing (Schmalz, 2016). 

 
2.2.5 ORTHOGRAPHIC DEPTH AND READING DEVELOPMENT 
 

It has become increasingly evident over the last two decades that the characteristics 

of an orthography modulate reading processes and thus determining the cognitive 

mechanisms in which this occurs has important theoretical and practical implications 

(Schmalz, Marinus, Coltheart, & Castles, 2015; Spencer, 2007). The primary 

methodological approach thus far has been to carry out cross-linguistic investigations 

between English, and other (more transparent) alphabetic European orthographies. 

For example, Wimmer and Goswami (1994) compared German and English primary 

schoolchildren on the reading of digits, number names and nonwords (produced by 

substituting the onsets and rimes of number names). They found that nonword reading 

was significantly slower and inaccurate in English.  Similar studies have reported the 

same pattern of poorer nonword reading ability in English when compared with Greek 

(Goswami, Porpodas, & Wheelwright, 1997) and Spanish (Goswami, Gombert, & de 

Barrera, 1998). 

 

Recently, there has been a movement towards large-scale comparisons of 

orthographies that differ in orthographic transparency. For instance, Seymour, Aro, 

and Erskine (2003) carried out a seminal cross-linguistic study of the early stages of 

learning to read across 14 European countries. The study reported that by the end of 

Grade 1 reading accuracy was at ceiling level in most transparent languages (e.g., 

Italian, German, Greek, Spanish, and Finnish) whereas the word reading accuracy in 

less transparent languages (e.g., Portuguese, French, and Danish) was lower, around 

80%. Interestingly, reading accuracy for English readers, the least transparent of the 

orthographies investigated, was 34%. These studies provide evidence that 

orthographic transparency regulates the ability in which children transform letter 

strings into a phonological code (the alphabetic principle), a process referred to as 

phonological recoding (Share, 1995). 

 

Intriguingly, it has been advocated that phonological recoding provides the foundation 

for a self-teaching mechanism that facilitates developing readers in autonomously 



 29 

forming an orthographic lexicon (Bowey & Muller, 2005; Share, 1995; 1999). This, of 

course, also has implications on the manifestation of reading disorders, which will be 

covered in Chapter 5.  Additionally, Moll et al. (2014) carried out an extensive study 

which evaluated the concurrent predictions of phonological processing and rapid 

automatized naming (RAN) for reading development across five orthographies with 

varying degrees of transparency and found that phonological processing and RAN 

both accounted for significant amounts of unique variance in reading development 

across the five orthographies (i.e. English, French, German, Hungarian and Finnish). 

They found that the general pattern of reading development was comparable across 

orthographies with RAN being the best predictor of reading speed and phonological 

processing being the best predictor of reading accuracy. Although a consensus 

concerning the orthographic transparency classification of alphabetic writing systems 

exists, there is a distinct lack of quantitative research regarding this topic. The 

following sections will focus on recent trends in redefining and quantifying orthographic 

transparency. 

2.3 TOWARDS THE QUANTIFICATION OF ORTHOGRAPHIES 
 

The development of a linguistic quantification scheme would be useful in testing the 

claims made by both the weak version of the ODH and the PGST as detailed estimates 

of both transparency and granularity are deficient in the literature. Before attempting 

to explore quantification schemes, it is paramount that a clear definition of orthographic 

depth is established in order to avoid falsely attributing any behavioural differences 

observed between orthographies to orthographic depth posthoc (Schamlz et al. 2015). 

The sections below will consider novel reinterpretations of orthographic depth as well 

as both subjective and objective approaches taken in quantifying orthography. 

 
2.3.1 ORTHOGRAPHIC DEPTH: MORE THAN ONE CONSTRUCT? 
 

As previously mentioned in this chapter, Katz and Frost (1992) extricate three 

concepts underlying orthographic depth: complexity, consistency, and completeness. 

Each will now be considered separately. 
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In visual word recognition, the construct of complexity refers to the existence of multi-

letter rules, where several letters are needed to characterise a single phoneme 

(Bosch, Content, Daelemans, & de Gelder, 1994; Schmalz, Beyersmann, Cavalli, & 

Marinus, 2016). This may also include context-sensitive regularities wherein 

neighbouring letters affect a grapheme's pronunciation. There are several studies 

(e.g., Marinus & de Jong, 2010; Rastle & Coltheart, 1998; Rey, Jacobs, Schmidt-

Weigand, & Ziegler, 1998) whose findings indicate that the application of multi-letter 

rules produces competition between the pronunciation of the single letters and the 

grapheme's pronunciation, consequently inhibiting the sublexical route, and providing 

additional time to access lexical information via the lexical route (Katz & Frost, 1992). 

 

The second concept is consistency, which conveys the presence of several 

pronunciations for a given letter string. It can be conceptualized as a measure of 

variability in the GPCs of a writing system (Perry, Ziegler, & Coltheart, 2002). 

Consistency can be defined at various levels typically using the graphemic level or of 

larger grain size as evidence suggests that taking into account larger parts of the 

syllable reduces ambiguity (e.g. Kessler & Treiman, 2001; Treiman et al., 1995; Ziegler 

et al., 1997). Therefore, this approach is commonly applied to inconsistent 

orthographies such as English. Within the modelling literature, consistency is related 

with connectionist models (e.g. Harm & Seidenberg, 1999; Plaut, McClelland, 

Seidenberg, & Patterson, 1996) while the concept of regularity is connected to dual-

route models of reading (Coltheart et al., 2001). The regularity approach assumes that 

symbolic transcription procedures govern GPC and that irregular mappings are a 

consequence of the violation of these rules (Ziegler, Perry, & Coltheart, 2003). It is 

important to note that consistency and regularity are not mutually exclusive concepts 

and words can be classified as Consistent-Regular; Inconsistent-Regular; 

Inconsistent-Irregular, and Exception words (See Glushko, 1979). In the event where 

GPC diverges from the phonological ideal, that is, one –to one mapping, the most 

frequent mapping is considered to be regular, and the other mappings are said to be 

irregular (Zevin & Seidenberg, 2006). In line with recent developments in the field (see 

Schmalz, Marinus, Coltheart, & Castles, 2015 for a review), this thesis adopts a neutral 

view regarding the argument between dual-route and connectionist models and as 

such consistency/ regularity will be referred to as predictability for the remained of this 

chapter.  
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The third concept of completeness refers to the information (or lack thereof) that is 

conveyed by sublexical correspondences. In English, the presence of heterophonic 

homographs (words that are spelt the same but have distinctive pronunciations and a 

different meaning) is an excellent example of incomplete sublexical information (Pacht 

& Rayner, 1993). For instance, the word “read” has two pronunciations and context is 

needed to activate both the correct phonology and semantic representation of the 

word. Another example of incompleteness comes from abjad scripts such as Hebrew 

and Arabic. Within these orthographies, vowels are frequently not represented in 

writings (see reference to un-pointed Hebrew earlier in this chapter) and, as such, 

many words have indistinguishable consonant patterns (Frost & Bentin, 1992). Similar 

to English, lexical-semantic information is needed to identify and pronounce the word 

under investigation. The concept of incompleteness is not considered to be 

theoretically pertinent for the investigation of alphabetic scripts (Schmalz, 

Beyersmann, Cavalli & Marinus, 2016) and hence will not be considered any further 

in this thesis. 

 

2.3.2 METHODS OF QUANTIFICATION 
 

Now that orthographic depth has been further conceptualized, the following section 

will provide an overview of recent attempts to quantify these constructs. The relative 

strengths and weaknesses of each approach will be evaluated with a view of 

developing a quantification scheme for Turkish. 

 

Complexity, as described above, has recently been quantified using the ratio of letters 

to phonemes (Schmalz, Beyersmann, Cavalli, & Marinus, 2016). The authors define 

simple words as having a letter-to-phoneme ratio of one and complex words as having 

a letter-to phoneme ratio above 1, indicating the occurrence of multiple letters that 

correspond to a single phoneme. In order to dissociate complexity from predictability, 

Schmalz and colleagues (2016) give the example of French, which is characterized 

as being highly predictable but with a high degree of complexity (van den Bosch 

Content, Daelemans, & De Gelder, 1994). Classifying words in a dichotomous manner 

of complexity, as stated above, in addition to manipulating frequency, Schmalz, 

Beyersmann, Cavalli, & Marinus (2016) report, using both frequentist (β = −0.06, t = 

3.5, p = .0005) and Bayesian (BF = 37.9 (±1.1%)), evidence of an interaction between 
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frequency and complexity. This finding implies that the frequency effect is stronger for 

words with complex correspondences. Additionally, the authors assert that this finding 

provides evidence that independent of predictability, complexity impairs the sublexical 

route which subsequently “leads to a relative increase in the degree to which the 

lexical route contributes to the final output” (p.11). 

 

Another approach to complexity utilizes data-orientated learning algorithms in order to 

provide two indices of orthographic depth, namely graphemic parsing and degree of 

redundancy (van den Bosch, Content & Daelemans 1994). Of particular relevance is 

graphemic parsing, which was measured by applying a computationally obtained 

parsing mechanism to record all GPCs found in a test set of words. The authors found 

that for the orthographies under investigation, Dutch, English and French, the rate of 

successful parsing was 21.3%, 24.5% and 12.9% respectively. The results suggest a 

degree of similar complexity concerning the parsing of regular graphemes between 

the three orthographies. However, there are also distinct differences between the 

three corpora investigated with the French Grapheme- Phoneme Correspondences 

Extraction (GPCE) model performing worst in correctly aligned words and the English 

GPCE model performing the best. Additionally, the application of Decision Tree 

Learning to the three corpora found that English showed the least redundancy and 

hence can be considered to be more irregular than French and Dutch. A summary of 

the general findings is expressed in Figure 3. 

 

 
FIGURE 5: TWO- DIMENSIONAL ORTHOGRAPHIC DEPTH SPACE WITH ‘X’ S MARKING THE THREE CORPORA. G-

COMPLEXITY STANDS FOR THE COMPLEXITY OF GRAPHEMIC PARSING, AND G-P COMPLEXITY STANDS FOR THE 

COMPLEXITY OF GRAPHEME-TO-PHONEME CONVERSION (FROM VAN DEN BOSCH, CONTENT & DAELEMANS 1994). 
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The final method of the quantification of complexity is the use of rule-based 

computational models such as DRC (Schamlz et al., 2015) in which the number and 

proportion of complex (multi-letter) GPC rules are understood to be a measure of 

complexity. Using this approach, the DRC has thus far been implemented in Dutch, 

English (Coltheart et al., 2001), French (Ziegler, Perry, & Coltheart, 2003), German 

(Ziegler, Perry, & Coltheart, 2000), and Italian (C. Mulatti, personal communication, 25 

May 2014 as cited in Schmalz, Marinus, Coltheart, & Castles, 2015). The pattern of 

the number of complex rules is largely in line with previous subjective classifications 

of orthographic transparency, although this approach has several limitations. The DRC 

is limited to the computation of monosyllabic words and complexity measures derived 

from monosyllabic words alone are unlikely to provide reliable estimates of the GPCs 

of the language in question (Borgwaldt, Hellwig & Groot, 2004; Kessler & Treiman, 

2001; Protopapas & Vlahou, 2009). Furthermore, the exclusive use of monosyllables 

in the computation of complexity limits the applicability of such an approach for cross-

linguistic comparisons as languages vary significantly in the number of monosyllabic 

words used in a given language (Protopapas and Vlahou, 2009). Indeed, the corpus-

based approach taken in this chapter demonstrates that the DRC method is redundant 

in orthographies such as Turkish as monosyllables represent under 1% of words in 

the corpus. Any such approach in quantifying an orthography such as Turkish would 

need to be representative of the language. 

 

Predictability is a measure of how probable a pronunciation of a word is based on 

similarly spelt words. The most common approach to date has been to evaluate the 

DRC model’s performance and therefore calculate the percentage of GPC mappings 

that obey pronunciation rules (predictable words). Using this rule-based approach, 

Ziegler and colleagues (2000) compared predictability in German and English 

monosyllables and reported that the percentage of correct rule application is 90.4% 

for German and 79.3% for English words. Like the critique of the DRC approach for 

the calculation of complexity, the restricted use of monosyllables for the quantification 

of orthographic transparency in orthographies such as Turkish is inadequate. 

Furthermore, the calculation of predictability as the proportion of correct mappings is 

limited in that such an approach is inherently unable to discriminate between cases 

with many and few alternative mappings. To overcome this limitation, current 

approaches into the predictability of alphabetic orthographies have focused on 
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communicating variability in terms of entropy values (Borgwaldt, Hellwig, & de Groot, 

2004; Martensen, Maris, & Dijkstra, 2000; Protopapas & Vlahou, 2009).  

 

Entropy can be conceptualized as an information-theoretic notion that quantifies 

uncertainty using the h-index (Shannon, 1949). The h-index may be defined using the 

following algorithm: 

 
Entropy (H) is computed as the negative sum of n phonological (orthographic) 

mapping alternatives with probability Pi for the ith alternative multiplied by base-2 

logarithms. In terms of orthographic transparency, entropy computes uncertainty in 

the prediction of letters/ graphemes by phonemes and vice versa. If a particular 

grapheme maps unambiguously to a specific phoneme, i.e. the mapping is absolutely 

predictable, the corresponding entropy value will be zero. Conversely, the more 

alternative pronunciations a grapheme has, the higher its entropy value is. For 

example, Borgwaldt, Hellwig and Groot. (2004; 2005) carried out analyses of entropy 

for English, Dutch, German, French, Hungarian, Italian, and Portuguese. In an attempt 

to overcome the limitations of restricting the analysis to monosyllables, as discussed 

above, Borgwaldt and colleagues used word-initial sound-spelling correspondences, 

using all the words in each language.  An advantage of using word onsets is that 

languages with diverse orthographic and phonological properties can be objectively 

compared since all languages have word onsets. Thus, onset entropy offers an 

objective and assumption-free index of orthographic transparency. 

 

Borgwaldt, Hellwig and Groot (2004) revealed that none of the orthographies studied 

to date had an ideal one-to-one mapping between letters and sounds. Also, word-

initial letter entropy in Italian, Dutch, and English was significantly correlated with word-

naming RT. Though, one potential critique of word-initial entropy measures is that 

there is little evidence to suggest that such an approach characterizes an unbiased 

representative sample of all possible GPC mappings. To address this issue, 

Protopapas and Vlahou (2009) carried out a whole-word entropy analysis of Greek. 

The authors found that compared to word-initial single-letter mapping to phonemes, 

whole-word letter-to-phoneme entropy values were approximately three times greater. 
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Clearly, the use of whole-word approaches captures significantly more variation than 

word onset approaches. However, initial-letter onset offers a broader scope for cross-

linguistic applicability. Given the relative strengths and benefits, both methodologies 

will be considered in the current analysis. 

 

2.3.3 OTHER METHODOLOGICAL CONSIDERATIONS 
 

Whilst the main approaches to the quantification of orthographic transparency have 

been considered above; the following section will contemplate the characteristics of 

the counts being used to calculate transparency indices, namely the choice to employ 

word form or lemma databases as well as token or type counts of frequency. 

 

Transparency indices may be calculated based on either word form or lemma 

databases in which word form databases possess all of the possible morphological 

variants of a lemma. In contrast, lemma databases contain only the root form of a 

word. Most psycholinguistic studies to date have focused on lemma form (Hofmann, 

Stenneken, Conrad, & Jacobs, 2007) as word forms have been found to moderately 

activate its corresponding lemma entry in the mental lexicon (New, Brysbaert, Segui, 

Ferrand, & Rastle, 2004). However, it has also been argued that that lemma measures 

systematically over- or underestimate the frequency of sublexical units that occur in 

inflective morphemes (see Hofmann, Stenneken, Conrad, & Jacobs, 2007 for details). 

Given the highly inflective nature of agglutinative writing systems such as Turkish, and 

that sound changes are produced in the stem by the process of suffixation, it was 

decided to focus on the creation of word-form models of orthographic consistency. 

 

In recent word-onset entropy studies, both word form types (Borgwaldt, Hellwig & 

Groot., 2004) and lemma types (Borgwaldt, Hellwig & Groot., 2005) have been used. 

It has been argued that it may be superior to measure indices of transparency using 

word forms (i.e., token instead of type counts) in order to account for the well-

established role of word frequency effects on visual word recognition (Balota, Yap, & 

Cortese, 2006). Following the recommendation of Hofmann Stenneken, Conrad, & 

Jacobs (2007), a more conservative methodology will contemplate both type and 

token frequency counts (Protopapas & Vlhaou, 2009) as is the case in this current 

investigation.  
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Additionally, both type and token frequency counts are used to investigate 

orthographic transparency. Type counts of sublexical units comprise of the total 

amount of words that contain the given unit. Alternatively, token counts are calculated 

by summing the number of occurrences in a text corpus of the words that contain the 

unit. The theoretical importance of considering frequency counts stems from the 

rationale that in addition to the number of different pronunciations, the relative 

frequency of these alternative mappings contributes to the ensuing entropy value. If 

some of those pronunciations appear only very rarely, and if there is one truly 

dominant correspondence, the entropy value is lower than in the case of all 

pronunciations occurring with approximately the same frequency. This means that the 

impact of exceptional pronunciations is rather marginal. However, the methodological 

option to use type or token measures is contentious, since both are thought to be 

independently linked with lexical processing. For example, Conrad, Carreiras, and 

Jacobs (2008) carried out a lexical decision task and reported that syllable frequency 

(token-based) was related to an inhibitory effect on lexical access. Conversely, the 

use of a type-based measure was correlated with a facilitative effect in lexical decision. 

To account for the ambiguous findings, the authors suggested that both measures are 

related to distinctive processing points during the visual word recognition of words. 

 

In a contrasting account, Moscoso del Prado Martín, Ernestus, and Baayen (2004) 

propose that both token- and type-based effects can be accounted for by a shared, 

token-based mechanism. To demonstrate this, they modelled Dutch past tense 

formation with a simple recurrent network that exhibited both word frequency effects 

(token-based) and word analogical effects (type-based) that corresponded well with 

human behavioural data. In order to circumvent the diverging evidence regarding the 

relative contribution of token and type frequency effects, both will be considered in the 

current analysis in this thesis. 

 

Now that the methodological considerations of quantifying an orthography have been 

taken into consideration, the next section will focus on providing an overview of the 

Turkish orthography and its defining characteristics. 
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2.4 THE TURKISH ORTHOGRAPHY 
 

Modern Standard Turkish (Henceforth Turkish) is the official language of the Republic 

of Turkey and Cyprus and by current estimation, is fluently spoken by 80-90 million 

people worldwide (Kuribayashi, 2012). Outside of Turkey and Cyprus, there are large 

Turkish-speaking populations in historical Ottoman lands such as Bulgaria, 

Macedonia, Iraq, Algeria, Egypt and Syria as well as recent large emigrant populations 

in Germany, France, the Netherlands, Austria and the United Kingdom (Jørgensen, 

2003). Turkish is considered to be a member of the South-Western Turkic branch or 

Oğuz subdivision of the Altaic language family. Amongst the Turkic language family, 

Turkish is considered to be the most culturally and politically significant in addition to 

being the most commonly spoken (Katzner, 2002).       

 

Turkish is considered to be the successor of Anatolian Oğuz Turkish introduced into 

Anatolia during the 11th Century AD by Selçuk Turks and the subsequent Ottoman 

Turks. Historically, the first script to be used by the Turkish people was the runic 

Köktürk script (Róna-Tas, 2015). Evidence for its use dates back to 688-692 AD to the 

Çoyren Inscription, succeeded by the Orhun Inscription in 732-733 AD (Scharlipp, 

1994). Following this period, the Uygur script was adopted and used from 745 to 970 

AD. The widespread adoption of Islam among the Turks from the 10th century onward 

saw the Turkish language come under heavy influence from Arabic and Persian. The 

Arabic script was modified by the introduction of diacritics to mark vowels; though the 

new script remained inadequate to transcribe the eight vowels used in spoken Turkish. 

This consequently led to problems in deriving the correct phonology from print 

resulting in unpredictability that is linked with consonantal scripts. As a consequence, 

Çapan (1989) reported that in 1927, only about 10% of the Turkish population was 

considered to be literate.         

 

Turkish language reform in 1928 is often cited as one of the most significant language 

reform movements in the world (Lewis, 1999). It involved script reformation by 

transcribing the sounds of the spoken language in a modified Latin alphabet and 

purification of the Turkish language, leading to the elimination of foreign words and 

structures, mainly from Arabic and Persian. The aim was the creation of an alphabet 

where each spoken sound in standard Turkish was represented by a single letter in 
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the alphabet and ultimately providing an optimal environment to rapidly increase the 

acquisition of literacy skills in the general population. In the next section, the 

characteristics of Turkish orthography are introduced.  

 

2.4.1 THE CHARACTERISTICS OF TURKISH 
 

The modern Turkish orthography is composed of a 29-letter alphabet of eight vowels 

and 21 consonants based on a modified Latin script though the Turkish writing system 

contains 32 graphemes; the 29 letter forms of the Turkish alphabet as well as the 

graphemes < â >, < î > and < û > (TDK Yazim Kilavuzu, 2013). Of interest to this thesis 

is that, in Turkish, the relationship between orthography and phonology is said to be 

near one-to-one (Raman, 2006; 2011). However, there is also much debate as to the 

exact number of phonemes in Turkish (Koşaner, Birant, & Aktaş, 2013). This is an 

issue that will be further considered in the models produced in this chapter. 

Additionally, grapheme-phoneme and phoneme-grapheme conversions are both 

regular and consistent, resulting in bi-directional transparency. The presence of 

homographic loan and compound words (mainly from Arabic and Persian) as well as 

special cases of morphophonology, such as vowel length alternations, introduces the 

only ambiguities in grapheme-phoneme conversion (Göksel & Kerslake, 2004; Külekçi 

& Oflazer, 2006).            

 

Turkish is an agglutinating inflectional language, and the neutral word order is subject-

object-verb (SOV). In Turkish, words are typically composed of long sequences of 

morphemes (smallest meaningful unit) with each morpheme representing one 

morpheme or a meaning unit. Additionally, there are several regular morphophonemic 

processes such as vowel harmony, consonant assimilation and elisions that condition 

morphemes (Oflazer & Inkelas, 2006). 

 

Vowel harmony is a prominent feature of spoken Turkish in which vowels work in four 

pairs with corresponding front/back and rounded/unrounded sounds. Vowel harmony 

regulates the vowels of a word by conditioning each subsequent vowel by the vowel, 

which immediately precedes it (Durgunoğlu & Öney, 1999). This harmony is also 

observed in most grammatical suffixes, whereby the vowel in the suffix harmonises 

with the last vowel in the word though exceptions exist (Clements & Sezer, 1982). The 
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process in which the voicing of a consonant becomes analogous to that of the 

neighbouring consonant is referred to as voicing assimilation and, in Turkish, is 

significant for consonants because consonants are distinguished in terms of voicing. 

The process of voicing assimilation is most apparent in stop-initial and affricate-initial 

suffixes. Additionally, syllable structure in Turkish is said to be relatively simple in that 

four simple syllabic structures (V, VC, CV, and CVC) constitute 98% of all Turkish 

syllables (Durgunoğlu & Öney, 1999). Furthermore, Turkish syllable structure allows 

both open and closed syllables but no onset clusters in native words. Turkish syllabic 

structure, like French, (Sprenger-Charolles & Siegel, 1998) is said to possess clear 

boundaries.    

 

2.4.2 SOFT G 
 

An ongoing debate regarding the phonology and phonetics of Turkish is the status of 

soft ‘g’, which is represented as <ğ> in the orthography of the Turkish alphabet. 

Depending on position, ‘ğ’ can be described as “a stop, a fricative, an approximant, or 

a vowel” (Ünal-Logacev, Fuchs, & Żygis, 2014). Also, ‘ğ’ never occurs in the word-

initial position and is always preceded by vowels; usually in the context of high vowels. 

For this thesis, ‘ğ' will be treated phonologically like a consonant whilst taking into 

consideration the lengthening of the preceding vowels. 

 
2.4.3 A NOTE ON THE CIRCUMFLEX AND STRESS 
 

There is increasing evidence that the circumflex is falling out of use in contemporary 

written Turkish (Inkelas, Küntay, Sprouse, & Orgun, 2000). Though this adds a degree 

of ambiguity to pronunciation, for example, hala "paternal aunt" vs halâ "void" vs hâlâ 

"yet", most of the ambiguity can be resolved with context. To more accurately reflect 

modern standard Turkish, the three graphemes < â >, < î > and < û > that contain the 

circumflex will not be considered any further in this thesis.  

 

Finally, the Turkish orthography does not mark stress, and there are a limited amount 

of minimal pairs in Turkish diverging only in the position of stress. However, there are 

several items which follow neither of the regular stress placement rules (i.e. final 

stress, for the majority of words, and a more complex pattern of non-final stress, 
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referred to as Sezer stress, for place and foreign names used in Turkish (see Sezer, 

1981; Inkelas, 1999). 

2.5 METHOD 
 

The section below will consider the application of the methodological issues discussed 

in-depth above. Furthermore, a detailed description of the lemma and word form 

databases created for the purpose of this thesis will be outlined and analysed. 

 

2.5.1 TEXT CORPUS SELECTION AND CREATION 
 

Due to the productive morphology and parsing ambiguity in agglutinative languages 

such as Turkish, a large corpus is needed for a robust estimation of an absolute 

vocabulary. The TS Corpus v2 (Sezer & Sezer, 2013; http://tscorpus.com) is a large 

general-purpose Turkish Corpus containing 491 million POS-Tagged tokens (including 

punctuation marks) and 4.9 million unique word forms that builds on and extends the 

BOUN Corpus (Sak, Güngör, & Saraçlar, 2007). The BOUN Corpus was created from 

collecting web pages from three Turkish daily newspapers (212M tokens) as well as 

an extensive sampling of Turkish webpages (279M tokens). In line with the view held 

by Baayen, Milin, and Ramscar (2016), a corpus encompassing newspapers and 

webpages may offer a more suitable choice than corpora that have been constructed 

by other means because of the seemingly higher share in the overall reading 

experience of the subjects. 

 

Due to the nature of web corpora, there was a need to pre-process the raw text. A set 

of tools (ITU Turkish NLP Pipeline; Eryiğit, 2014; http://tools.nlp.itu.edu.tr) designed 

for such purposes was used and will be outlined below: 

 

• Firstly, a normalization procedure (Torunoğlu & Eryiğit, 2014) was carried out 

on the raw text using a cascaded method that combined both rule-based and 

machine learning methods for seven different layers of normalization, namely; 

letter case transformation, replacement rules and lexicon lookup, proper noun 

detection, deasciification (Adalı & Eryiğit, 2014), vowel restoration, accent 

normalization and spelling correction. An overall accuracy of 78.5% represents 
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the highest results for Turkish text normalization of social media data available 

to date but would still need to be manually checked for this thesis. 

 

• Following this, the normalized text was subject to the isTurkish module (Şahin, 

Sulubacak, & Eryiğit, 2013) in which a two-level Turkish morphological 

analyser, using flag diacritics, was used to validate the normalized text as 

morphologically legal for Turkish. Initial testing of the morphological analyser 

reports an accuracy of 99.8%. 

 

• During manual checking, items (4% of tokens) including any non-Turkish 

characters, numerals, or symbols were rejected. Additionally, to restrict the size 

of the resulting databases, items (words) that had an absolute frequency below 

1 part per million (ppm) were rejected from the final list.  

 

The resulting normalized text was condensed into a word-form database which 

contained 198,236 unique types and 91,497,080 tokens. The database was 

reasonably free from spelling errors and contained few idiosyncratic items, such as 

proper names, foreign words not quite integrated as loans in the Turkish language, or 

very low-frequency words unlikely to be found in contemporary use. 

 

2.5.2 PHONETIC TRANSCRIPTION 
 

As mentioned previously, there is a degree of disagreement as to the number of 

phonemes that best represent the Turkish language. To address this from a 

methodological perspective, two different phonetic transcription approaches will be 

considered, namely METUbet (Salor, Pellom, Çiloğlu, Hacıoğlu, & Demirekler, 2002) 

and Grafofon (Koşaner, Birant, & Aktaş, 2013). Each phonetic transcription system 

will now be considered in greater depth. 

 

METUbet (Salor, Pellom, Ciloglu, Hacioglu, & Demirekler 2002) represents a letter-to-

phoneme conversion rule set grounded on the phonetic symbol set first described in 

Ergenç (1995). The difficulties in digitalizing IPA symbols led to the authors adopting 

the symbols used in the Speech Assessment Method Phonetic Alphabet (SAMPA) 

dictionary (Wells, 1995). However, SAMPA symbols also have poor readability since 
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they include characters such as numbers and punctuation symbols, and as a 

consequence, a new simplified alphabet called METUbet was developed. 

 

METUbet has 39 phonetic representations as opposed to the 45 phonetic SAMPA 

representations (Salor et al., 2002). The difference in the number of phonetic 

representations is due to the open-short and closed-long forms of the letters u, ü, o, 

ö, and i being symbolised by the same phonetic symbol in the METUbet transcription. 

The closed-long forms of those letters appear when they are preceding soft g, which 

triggers the lengthening of those letters. Using a 60ms misalignment tolerance, 99.3% 

of phoneme boundaries were automatically placed. Grafofon (Koşaner, Birant, & 

Aktaş, 2013) was initially developed as an aid for course materials for teaching Turkish 

as a second language. Adopting a unified approach, the authors advocate a 32-

phoneme system for Turkish. A distinct feature of the Grafofon system is that it also 

considers allophonic variation; although the authors report 63 possible allophones, the 

current study found 40 and 52 allophones in the word-onset and the whole-word 

measures respectively. Finally, Grafofon reports an overall 96% phoneme 

identification accuracy. Table 1 below shows the two phoneme mapping schemes 

used in this thesis. 
TABLE 1: PHONEME VARIATION IN TURKISH WITH MAPPINGS OF IPA, METUBET AND GRAFOFON 

Uppercase Lowercase IPA METUbet Grafofon 

A a α AA α 
  

a A ɑ 

B b b B b 

C c ʤ C ʤ 

Ç ç ʧ CH ʧ 

D d d D d 

E e e E e 
  

ε EE 

F f f F f 

G g g GG Ɉ 
  

Ɉ G g 

H h h H h 

İ i i IY i 



 43 

  
ɪ IY 

I ı ï I ɯ 

J j ʒ J ʒ 

K k k KK k 
  

c K c 

L l l L l 
  

ɫ LL ɫ 

M m m M m 

N n n NN n 
  

ɳ N 

O o ɔ O o 
  

o O 

Ö ö œ OE ø 
  

ø OE 

P p p P p 

R r r R r 
  

ɾ RR 
  

ʁ RH 

S s s S s 

Ş ş ʃ SH ʃ 

T t t T t 

U u U U u 
  

u U 

Ü ü Y UE y 
  

y UE 

V v v VV v 
  

ʋ V 

Y y j Y j 
  

:ɪ Y 

Z z z Z z 
  

ʐ ZH 

Ğ ğ : GH : 
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To compute the entropy values for Turkish, all mono- and polysyllabic words were 

extracted from the relative corpora. Furthermore, word-initial letters from the word-

form database were extracted and used to calculate the entropy values for the different 

letter-phoneme correspondences (Borgwaldt, Hellwig, & De Groot, 2005). For 

example, using the METUbet transcription with token frequencies, the entropy of the 

grapheme <g> would be:  

 

- [0.891 x log2 (0.891) + 0.109 x log2 (0.109)] = 0.361 bits 

 

2.6 RESULTS 
 

At the word-onset level, the phoneme inventory size reported here ranges from 31 

(Grafofon without allophones) to 33 (METUbet). When allophonic variation is taken 

into consideration, the phoneme/allophone inventory increases to 40. Additionally, at 

the whole word-level, the phoneme inventory size reported here ranges from 32 

(Grafofon without allophones) to 38 (METUbet). When allophonic variation is taken 

into consideration, the phoneme/allophone inventory increases to 52. For both 

METUbet and Grafofon, further grapheme-phoneme pairs are possible although they 

were not identified in this corpus. A summary of the statistics related to the 

transparency of the Turkish orthography can be found below (Table 2). 
 

TABLE 2: STATISTICS RELATED TO THE TRANSPARENCY OF THE TURKISH ORTHOGRAPHY. WHERE GRAPH IS 
GRAPHEME, TOT PAIR IS THE TOTAL NUMBER OF GRAPHEME-PHONEME PAIRS, PHON(GRAF) IS GRAFOFON 
PHONOLOGY, AND PHON (METU) IS METUBET PHONOLOGY 

Mapping    Type Counts Token Counts 

From To 
Tot 

Pair 

Mean 

Pairs 

Type– 

Token 

Total 

Consis 

(%) 

Entropy– 

Consis 
V:C 

Total 

Consis 

(% 

Entropy- 

Consis 
V:C 

Graph 
Phon 

(Graf) 
32 1.10 0.86 95.4 -0.981 0.441 93.3 -0.938 0.508 

1st Graph 
Phon 

(Graf) 
31 1.11 0.93 97.4 -0.904 0.289 97.9 -0.860 0.281 

Graph 
Phon 

(METU) 
38 1.31 0.92 91.7 -0.811 0.508 91.9 -0.751 0.607 

1st Graph 
Phon 

(METU) 
33 1.18 0.95 99.3 -0.647 0.289 99.3 -0.570 0.281 
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The type sum of the most frequent phoneme for each grapheme divided by the total 

number of grapheme-phoneme pairs in the current corpus is 0.973 (Grafofon) and 

0.993 (METUbet) for word-onsets and 0.917 (METUbet) and 0.954 (Grafofon) for 

whole-words. With regards to the token sum, using the same calculation as above, the 

ratio is 0.979 (Grafofon) and 0.993 (METUbet) for word-onsets and 0.919 (METUbet) 

and 0.933 (Grafofon) for whole-words. In line with Protopapas and Vlahou (2009), if 

these ratios can be considered to be single-number estimates of the consistency of 

grapheme-to-phoneme mapping, Turkish is then considered to be 91.9% (METUbet)/ 

93.3% (Grafofon) consistent in the feedforward (reading) direction when whole-words 

using token frequencies are considered. 

 

2.6.1 GRAPHEME–PHONEME CONSISTENCY AND ENTROPY 
 

The Grapheme-Phoneme mappings, grouped by grapheme, and the proportion of 

occurrence for each phoneme are shown below Table 3 (Grafofon) and Table 4 

(METUbet). The proportion of the most frequent phoneme for each grapheme is 

displayed first, in a separate column to the left of the smaller proportions following it. 

Additionally, an index of orthographic consistency was calculated as the overall onset 

entropy value in which entropy values for all word-initial graphemes weighted by their 

frequency of occurrence within the current corpus are summed (Type and Token 

Frequency). 
TABLE 3: GRAFOFON: WORD ONSET GRAPHEME-TO-PHONEME MAPPINGS. 

 

    
Pair Proportion 

(%) 
  

Grapheme 
F (%) 

Type 

F (%) 

Token 
Phoneme Highest Other 

Entropy 

(Type) 

Entropy 

(Token) 
        
a 7.24 8.31 ɑ 100%  0 0 

b 7.65 8.73 b 100%  0 0 

c 1.15 0.61 ʤ 100%  0 0 

ç 3.17 2.18 ʧ 100%  0 0 

d 7.26 9.56 d 100%  0 0 
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e 3.66 4.80 e 100%  0 0 

f 1.72 1.72 f 100%  0 0 

g 5.56 6.93 Ɉ 89%  -0.004 -0.005 
   g  11% -0.001 -0.001 

h 3.51 3.38 h 100%  0 0 

i 4.06 0.88 i 100%  0 0 

ı 0.27 0.04 ɯ 100%  0 0 

j 0.13 0.04 ʒ 100%  0 0 

k 11.85 10.27 k 82%  -0.029 -0.023 
   c  18% -0.010 -0.012 

l 0.68 0.49 l 57%  -0.001 -0.001 
   ɫ  43% -0.002 -0.001 

m 4.38 3.67 m 100%  0 0 

n 1.10 1.26 n 100%  0 0 

o 2.35 4.01 o 100%  0 0 

ö 2.08 1.88 ø 100%  0 0 

p 2.76 2.22 p 100%  0 0 

r 1.38 1.05 r 100%  0 0 

s 8.59 7.47 s 100%  0 0 

ş 1.37 1.23 ʃ 100%  0 0 

t 5.96 4.79 t 100%  0 0 

u 1.94 0.90 u 100%  0 0 

ü 0.83 1.11 y 100%  0 0 

v 1.53 2.35 v 100%  0 0 

y 6.89 8.91 j 100%  0 0 

z 0.92 1.22 z 100%  0 0 
Grouped by Grapheme and Sorted by Within-Grapheme Proportions. Each line denotes an 

individual grapheme-phoneme mapping in the corpus. F, relative frequency (percentage of 

occurrences of all phoneme types and tokens) in the corpus; pair proportion, percentage of this 

phoneme–grapheme pair as a proportion of all occurrences (tokens) of this phoneme. The 

proportion of the dominant mapping is listed first, on the left; other mappings follow, on the 

right. Entropy values are weighted by type and token frequency. 
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TABLE 4: METUBET: WORD ONSET GRAPHEME-TO-PHONEME MAPPINGS 

GROUPED BY GRAPHEME AND SORTED BY WITHIN-GRAPHEME PROPORTIONS. EACH LINE DENOTES AN 

INDIVIDUAL GRAPHEME-PHONEME MAPPING IN THE CORPUS. F, RELATIVE FREQUENCY (PERCENTAGE OF 

OCCURRENCES OF ALL PHONEME TYPES AND TOKENS) IN THE CORPUS; PAIR PROPORTION, PERCENTAGE OF 

THIS PHONEME–GRAPHEME PAIR AS A PROPORTION OF ALL OCCURRENCES (TOKENS) OF THIS PHONEME. THE 

PROPORTION OF THE DOMINANT MAPPING IS LISTED FIRST, ON THE LEFT; OTHER MAPPINGS FOLLOW, ON THE 

RIGHT. ENTROPY VALUES ARE WEIGHTED BY TYPE AND TOKEN FREQUENCY. 

    
Pair Proportion 

(%) 
  

Graphe

me 

F 

(%) 

Typ

e 

F (%) 

Toke

n 

Phoneme Highest Other 
Entropy 

(Type) 

Entropy 

(Token) 

        
a 7.24 8.31 AA 99.75  -0.0003 -0.00005 
  

 
A  0.25 -0.000004 -0.0000002 

b 7.65 8.73 B 100.00  0 0 

c 1.15 0.61 C 100.00  0 0 

ç 3.17 2.18 CH 100.00  0 0 

d 7.26 9.56 D 100.00  0 0 

e 3.66 4.80 EE 92.78  -0.003 -0.004 
  

 
E  7.22 -0.001 -0.0008 

f 1.72 1.72 F 100.00  0 0 

g 5.56 6.93 GG 91.76  -0.006 -0.004 
  

 
G  8.24 -0.001 -0.0005 

h 3.51 3.38 H 100.00  0 0 

i 4.06 0.88 IY 100.00  0 0 

ı 0.27 0.04 I 100.00  0 0 

j 0.13 0.04 J 100.00  0 0 

k 
11.8

5 
10.27 KK 82.28  -0.022 -0.02 

  
 

K  17.72 -0.009 -0.011 

l 0.68 0.49 LL 99.93  -0.00001 -0.000001 



 48 

  

 

L  0.07 

-

0.000000

04 

-

0.00000000

05 

m 4.38 3.67 M 100.00  0 0 

n 1.10 1.26 NN 100.00  0 0 

o 2.35 4.01 O 100.00  0 0 

ö 2.08 1.88 OE 100.00  0 0 

p 2.76 2.22 P 100.00  0 0 

r 1.38 1.05 RR 100.00  0 0 

s 8.59 7.47 S 100.00  0 0 

ş 1.37 1.23 SH 100.00  0 0 

t 5.96 4.79 T 100.00  0 0 

u 1.94 0.90 U 100.00  0 0 

ü 0.83 1.11 UE 100.00 
 

0 0 

v 1.53 2.35 VV 100.00 
 

0 0 

y 6.89 8.91 Y 100.00 
 

0 0 

z 0.92 1.22 Z 100.00 
 

0 0 

 
2.6.2 GRAPHEME–PHONEME CONSISTENCY AND ENTROPY – WHOLE-WORD 
 

The Grapheme-Phoneme mappings, grouped by grapheme, and the proportion of 

occurrence for each phoneme are reported in Table 5 (Grafofon) and Table 6 

(METUbet). The proportion of the most frequent phoneme for each grapheme is 

displayed first, in a separate column to the left of the smaller proportions following it. 
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Table 5: Grafofon: Whole Word Grapheme-to-Phoneme Mappings, Grouped by Grapheme and Sorted by Within-

Grapheme Proportions 
 

Table 5: Each line denotes an individual grapheme-phoneme mapping in the corpus. F, relative frequency (percentage 

of occurrences of all phoneme types and tokens) in the corpus; pair proportion, percentage of this phoneme-grapheme 

pair as a proportion of all occurrences (tokens) of this phoneme. The proportion of the dominant mapping is listed first, 

on the left; other mappings follow, on the right. Entropy values are weighted by type and token frequency. 

 

 

    
Pair 

Proportion 

(%) 
  

Graphe

me 

F (%) 

Type 

F (%) 

Toke

n 

Phone

me 

Highe

st 

Ot

he

r 

Entropy 

(Type) 

Entropy 

(Token) 

        
a 7.09 9.75 ɑ 100.00 

 
0 0 

b 1.77 2.06 b 100.00 
 

0 0 

c 1.50 1.14 ʤ 100.00 
 

0 0 

ç 0.91 0.00 ʧ 100.00 
 

0 0 

d 4.46 5.18 d 100.00 
 

0 0 

e 7.27 8.56 e 100.00 
 

0 0 

f 0.57 0.57 f 100.00 
 

0 0 

g 1.10 1.60 Ɉ 73.66 
 

-0.003 -0.002 

  

 

g 

 

26

.3

4 -0.001 -0.001 

h 6.56 7.16 h 100.00 
 

0 0 

i 5.60 6.45 i 100.00 
 

0 0 

ı 4.29 0.59 ɯ 100.00 
 

0 0 

j 0.11 0.09 ʒ 100.00 
 

0 0 

k 5.04 5.01 k 56.73 
 

-0.013 -0.013 

  

 

c 

 

43

.2

7 -0.011 -0.011 

l 7.84 7.18 l 50.77 
 

-0.020 -0.018 
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ɫ 

 

49

.2

3 -0.019 -0.018 

m 5.31 4.19 m 100.00 
 

0 0 

n 6.91 6.95 n 100.00 
 

0 0 

o 2.21 2.80 o 100.00 
 

0 0 

ö 0.81 1.89 ø 100.00 
 

0 0 

p 1.54 1.61 p 100.00 
 

0 0 

r 8.04 7.55 r 100.00 
 

0 0 

s 3.56 3.25 s 100.00 
 

0 0 

ş 2.09 1.88 ʃ 100.00 
 

0 0 

t 4.21 3.76 t 100.00 
 

0 0 

u 2.00 2.06 u 100.00 
 

0 0 

ü 1.34 1.61 y 100.00 
 

0 0 

v 0.81 0.92 v 100.00 
 

0 0 

y 3.59 3.66 j 100.00 
 

0 0 

z 2.47 1.71 z 100.00 
 

0 0 

ğ 1.00 0.82 : 100.00 
 

0 0 
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Table 6: METUbet: Whole Word Grapheme-to-Phoneme Mappings, Grouped by Grapheme and 
Sorted by Within-Grapheme Proportions 
 

Each line denotes an individual grapheme-phoneme mapping in the corpus. F, relative 

frequency (percentage of occurrences of all phoneme types and tokens) in the corpus; pair 

proportion, percentage of this phoneme-grapheme pair as a proportion of all occurrences 

(tokens) of this phoneme. The proportion of the dominant mapping is listed first, on the left; 

other mappings follow, on the right. Entropy values are weighted by type and token frequency. 

 

 

    
Pair Proportion 

(%) 
  

Grapheme 

F 

(%) 

Typ

e 

F (%) 

Token 
Phoneme Highest Other 

Entropy 

(Type) 

Entropy 

(Token) 

        
a 7.09 9.75 AA 75.01  -0.021 -0.017 
  

 
A 

 
24.99 -0.011 -0.006 

b 1.77 2.06 B 100.00  0 0 

c 1.50 1.14 C 100.00  0 0 

ç 0.91 0.00 CH 100.00  0 0 

d 4.46 5.18 D 100.00  0 0 

e 7.27 8.56 EE 58.02  -0.024 -0.028 
  

 
E 

 
41.98 -0.020 -0.027 

f 0.57 0.57 F 100.00  0 0 

g 1.10 1.60 GG 89.10  -0.003 -0.002 
  

 
G 

 
10.90 -0.001 -0.0005 

h 6.56 7.16 H 100.00  0 0 

i 5.60 6.45 IY 100.00  0 0 

ı 4.29 0.59 I 100.00  0 0 

j 0.11 0.09 J 100.00  0 0 

k 5.04 5.01 KK 57.12  -0.012 -0.013 
  

 
K 

 
42.88 -0.010 -0.011 

l 7.84 7.18 LL 52.94  -0.020 -0.019 
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L 
 

47.06 -0.019 -0.017 

m 5.31 4.19 M 100.00  0 0 

n 6.91 6.95 NN 97.88  -0.002 -0.002 
  

 
N 

 
2.12 -0.0002 -0.0001 

o 2.21 2.80 O 100.00  0 0 

ö 0.81 1.89 OE 100.00  0 0 

p 1.54 1.61 P 100.00  0 0 

r 8.04 7.55 RR 81.55  -0.015 -0.017 
  

 
RH 

 
18.45 -0.006 -0.010 

s 3.56 3.25 S 100.00  0 0 

ş 2.09 1.88 SH 100.00  0 0 

t 4.21 3.76 T 100.00 
 

0 0 

u 2.00 2.06 U 100.00 
 

0 0 

ü 1.34 1.61 UE 100.00 
 

0 0 

v 0.81 0.92 VV 88.11 
 

-0.001 -0.001 
  

 
V 

 
11.89 -0.0003 -0.0001 

y 3.59 3.66 Y 100.00 
 

0 0 

z 2.47 1.71 Z 60.19 
 

-0.011 -0.012 
  

 
ZH 

 
39.81 -0.013 -0.014 

ğ 1.00 0.82 GH 100.00 
 

0 0 

 
TABLE 7: FREQUENCY WEIGHTED ENTROPY VALUES FOR THE TURKISH ORTHOGRAPHY FOR WHOLE WORDS AND 

WORD-INITIAL UNITS ONLY 

Mapping Type Counts Token Counts 

From To Total V C Total V C 

Grapheme 
Phoneme 

(Grafofon) 
0.068 

0.00

0 
0.068 0.085 0.000 0.085 

First 

Grapheme 

Phoneme 

(Grafofon) 
0.045 

0.00

0 
0.045 0.043 0.000 0.043 

Grapheme 
Phoneme 

(METUBet) 
0.189 

0.07

5 
0.114 0.196 0.078 0.118 

First 

Grapheme 

Phoneme 

(METUBet) 
0.044 

0.00

4 
0.039 0.041 0.005 0.036 
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2.6.3 PHONEME TO GRAPHEME CONSISTENCY AND ENTROPY 
 

Though the focus of this chapter regards the feedforward (reading) mappings of 

graphemes and phonemes, it is also important to consider the feedback (spelling) 

mappings (phoneme to grapheme) in Turkish. Similar to findings in another 

transparent agglutinative language, namely Hungarian (Borgwaldt, Hellwig, & De 

Groot, 2004), Turkish manifests with a one-to-one mapping of phonemes to 

graphemes resulting in a total consistency of 100% and an entropy value of 0. This 

holds true irrespective of the phoneme inventory used and type/token frequencies. 

This is in line with previous results as most languages display an asymmetry between 

the number of letters and phonemes with all alphabetic orthographies possessing a 

larger phoneme inventory than letters (Borgwaldt, Hellwig, & De Groot, 2004; 2005; 

Protopapas & Vlahou, 2009). 

 
2.6.4 MEASURES OF COMPLEXITY 
 

As previously stated, complexity may be quantified using the ratio of letters to 

phonemes with simple words having a letter-to-phoneme ratio of one and complex 

words as having a letter-to phoneme ratio above 1. Using this approach with the 

current corpus, the proportion of simple words in Turkish using the METUbet phoneme 

inventory is 100%, and the proportion of simple words in Turkish using the Grafofon 

phoneme inventory is 99.995%. The nine complex words identified in this corpus were 

then further investigated and were all found to be extremely long (23 or 24 letters) and 

possessed <eği> or <iği> in the penultimate syllable. In the instance when <ğ> follows 

a front vowel in a word-final or syllable-final position, it is pronounced as a palatal glide 

(Göksel & Kerslake, 2004). This can thus be interpreted as a limitation of the current 

phoneme inventories available in Turkish and the phonological behaviour of soft ‘g’ 

warrants further research (see Ünal-Logacev, Fuchs, Żygis, 2014 for a more 

comprehensive discussion on the topic). 

2.7 FURTHER CONSIDERATIONS AND DISCUSSION 
 

From the above findings, the Turkish orthography can be characterised as both highly 

predictable and simple at the grapheme level although deviations from the 

phonological ideal exist within the feedforward (reading) direction. At the grapheme 
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level, estimates of the predictability of individual mappings range from 57% for <l> to 

100% for 25 graphemes (Grafofon, Word-Onset). When considering whole-word 

predictability, estimates range from 50.77% (Grafofon) and 52.94% for <l> (METUbet) 

to 100% for the majority of grapheme to phoneme mappings across both phoneme 

inventories. In the feedback direction, regardless of the phoneme inventory employed, 

predictability was 100%.  

 

Using Grafofon: word-onset, a nonparametric comparison of the 28 grapheme 

consistency estimates with the 31 phoneme consistency estimates found that the 

asymmetry is non-significant (Mann–Whitney U = 362.5, Z = -1.27, asymptotic two-

tailed p = .20054. Using METUbet: word-onset, a nonparametric comparison of the 28 

grapheme consistency estimates with the 33 phoneme consistency estimates found 

that the asymmetry was significant (Mann–Whitney U = 280, Z = -3.26, asymptotic 

two-tailed p = .00112.  

 

Using Grafofon: whole-word, a nonparametric comparison of the 29 grapheme 

consistency estimates with the 32 phoneme consistency estimates found that the 

asymmetry was non-significant (Mann–Whitney U = 377, Z = -1.25, asymptotic two-

tailed p = .2113. Using METUbet: whole-word, a nonparametric comparison of the 29 

grapheme consistency estimates with the 38 phoneme consistency estimates 

confirmed that the asymmetry was significant (Mann–Whitney U = 290, Z = -3.30, 

asymptotic two-tailed p = .00096. 

 
2.7.1 TYPES VS. TOKENS 
 

As mentioned previously, there has been considerable debate regarding the use of 

types or tokens with regards to frequency measures in psycholinguistic research. The 

following section will explore the distinction, if any, between the two in the current 

corpus. Firstly, as can be seen from Table 2, the correlation between the two 

measures is very high ranging from 0.86 (Grafofon, Whole-word) to 0.95 (METUbet, 

Word-Onset). A series of paired-samples t-tests were conducted to compare the 

relative frequency of types and tokens. 
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For the word-onset measures, there was no difference in the scores for relative type 

(M=3.57, SD=2.99) and token (M=3.57, SD=3.25) frequencies; t (27) = -.003, p=.997). 

When frequency-weighted entropy was considered, the trend remains the same 

irrespective of the Grafofon, t (30) = -.611, p=.546 and METUbet, t (32) = -.531, p=.599 

phoneme inventories. Similarly, using whole-word measures there was no difference 

in the scores for relative type (M=3.45, SD=2.50) and token (M=3.45, SD=2.79) 

frequencies; t (28) = .0, p=1.0). When frequency-weighted entropy was considered, 

the trend also remains the same irrespective of the Grafofon, t (31) = -1.68, p=.103 

and METUbet, t (37) = -.612, p=.545 phoneme inventories. Thus, it can be concluded 

that regardless of mapping strategy or phoneme inventory, no significant differences 

between type and token frequency counts were found in this corpus. The findings here 

are also reflected with the whole-word quantification of the Greek orthography which 

also found no distinction (at least in the feedforward direction) between type and token 

frequencies. In line with this, Moscoso del Prado Martín, Ernestus, and Baayen (2004) 

postulate that a shared token-based mechanism can explain both token- and type-

based effects. That is not to say that there is not a linguistic difference between the 

two measures (e.g., Berg, 2014; Bybee, 1995; 2001). An avenue of further exploration 

regarding resolving these findings would be to reformulate frequency as a three-

dimensional construct in which the first level represents the number of affix types, the 

second level representing the number of words of which the affix types belong to, and 

the third level representing the textual frequency of the affixed words (Berg, 2016). 
2.7.2 GRAFOFON VS. METUBET PHONEME INVENTORIES 

 

The issue of utilising two phoneme inventories in this thesis adds a degree of 

complexity to the interpretation of the results. A paired-samples t-test was conducted 

to compare the entropy indices between the different phoneme inventories, taking the 

mapping strategy into account. At the word-onset level, the was no significant 

difference between the Grafofon (M = .0293, SD = .0227) and the METUbet phoneme 

inventories (M = .0282, SD = .0185; t (5) = .577, p = .589. However, when the same 

analysis is extended to the whole-word level, a statistical difference was found 

between the Grafofon (M = .0493, SD = .0345) and the METUbet phoneme inventories 

(M = .1283, SD = .0528); t (5) = -5.518, p = .003. These findings suggest that the 

METUbet phoneme inventory may be the superior of the two grapheme-phoneme 
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mapping schemes used in this chapter as it captures the most irregularity (based on 

standard deviation) and thus unpredictability in quantifying orthography transparency. 

 

2.7.3 WORD-ONSET VS WHOLE-WORD  
 

In line with the approach used in the quantification of the Greek orthography 

(Protopapas & Vlahou, 2009), it is also important to explore the differences, if any, 

between the use of word-onset and whole-word measures as indicated above. A 

paired-samples t-test was conducted to compare the total entropy indices between the 

different mapping strategies taking the phoneme inventories into account. For the 

Grafofon phoneme inventory, there was a statistically significant difference between 

the onset (M = .0293, SD = .0227) and the whole-word measures (M = .0493, SD = 

.0395); t (5) = t (5) = 2.6, p = .048. When the METUbet phoneme inventory was 

considered, the trend remained the same as a statistical difference was found between 

the onset (M = .0282, SD = .0185) and the whole-word measures (M = .0128, SD = 

.0528); t (5) = 6.31, p = .001. The results imply that the restriction of quantification of 

orthography to word-initial mappings introduces systematic distortions into the model 

due to differences in the distribution of phonemes and graphemes across word 

positions. As such, although word-onset entropy measures overcome the limitations 

of the monosyllabic bias found in other studies (e.g., Martensen, Maris, & Dijkstra, 

2000) they still fall short of capturing the true degree of variation between orthography 

and phonology. 

 
2.7.4 CROSS-LINGUISTIC COMPARISONS 
 

Beyond the generation of well-controlled linguistic stimuli, the real value and utility of 

calculating a quantitative index of transparency lies in the ability to carry out cross-

linguistic comparisons. In the following section, the results reported above will be 

compared with previous attempts at quantification of transparency. Considering the 

strengths and weaknesses of different approaches, only directly comparable studies 

will be contemplated, and as such, studies that use monosyllables or rhyme spelling 

bodies (Ziegler Perry, & Coltheart, 2000) will not be considered. Additionally, 

Borgwaldt, Hellwig and de Groot (2005) used lemma forms instead of word forms and 

will not be considered in a direct comparison. 
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As stated above, using type frequency, the overall consistency of Turkish is 97.3% 

(Grafofon)/ 99.3% (METUbet) for word-onsets and 91.7% (METUbet)/ 95.4% 

(Grafofon) for whole-words in the feedforward direction and 100% in the feedback 

direction.  

 
FIGURE 6: DEVIATIONS FROM ONE TO ONE MAPPING BETWEEN WORD-INITIAL LETTERS AND PHONEMES STATED 

IN ENTROPY VALUES. THE VALUES ON THE X-AXIS DENOTE THE DEGREE OF SPELLING-TO-SOUND AMBIGUITY, 

WHEREAS THE Y-AXIS DEPICTS THE DEGREE OF SOUND-TO-SPELLING AMBIGUITY 

 

When compared to the entropy values of word-initial letter type counts (Borgwaldt, 

Helliwig, & de Groot, 2004; Protopapas & Vlahou, 2009), Turkish can be considered 

to be an example of an exceptionally consistent alphabetic orthography with only small 

deviations from the alphabetic principle (H = .045) in the feedforward (reading) 

direction and with no deviation in the feedback (H = 0) direction (see Figure 4). To this 

end, the Turkish orthography is similar with regards to consistency to Finnish (H = 0) 

and Hungarian (H = 0.13). Interestingly, the three orthographies mentioned share 

features such as agglutination and vowel harmony. From Figure 5, it can also be 

concluded that Turkish is more consistent than all other orthographies investigated 

using entropy counts. 

 

Finally, in a similar line of investigation to Borgwaldt, Helliwig, and de Groot (2005), 

the relative contribution of vowels and consonants to orthographic transparency was 
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also explored. Though the Borgwaldt, Helliwig, and de Groot (2005) study used 

lemmas instead of words, they found that the outcomes of the lemma-based study 

were comparable to their previous study. 

 
FIGURE 7: DEVIATIONS FROM 1:1 MAPPING BETWEEN WORD-INITIAL LETTERS AND PHONEMES STATED IN 

ENTROPY VALUES. THE VALUES ON THE X-AXIS SHOW THE DEGREE OF VOWEL AMBIGUITY, WHEREAS THE Y-AXIS 

DEPICTS THE DEGREE OF CONSONANT AMBIGUITY. NON-TURKISH ENTROPY VALUES TAKEN FROM BORGWALDT, 

HELLIWIG, & DE GROOT (2004;2005). 

At the grapheme-phoneme (whole-word) level, the only meaningful comparison that 

can be undertaken is with Greek (Protopapas & Vlahou, 2009). At the word-level, 

consistency was found to be comparable in the feedforward direction: 95.7% in Greek 

vs 95.4% in Turkish (Grafofon) but varied considerably in the feedback direction: 

82.9% in Greek vs 100% in Turkish. Thus, unlike the well-documented (e.g. Porpodas, 

2006), asymmetric transparency of Greek, Turkish is an example of an orthography 

with bidirectional consistency (though this is not absolute). When the comparison is 

restricted to word-onsets, consistency indices display a difference in both the 

feedforward (93.8% in Greek vs 97.3% in Turkish) and the feedback direction (93.3% 

in Greek vs 100% in Turkish).  
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2.8 CONCLUSION 
 

In conclusion, to the best of the author’s knowledge, this chapter provides the first 

quantitative indices of orthographic transparency for Turkish. In this regard, Turkish, 

whilst being highly complex in terms of morphology, can be characterised as being as 

both highly predictable and simple at the grapheme level within both the feedforward 

(reading) and feedback (spelling) directions. Furthermore, the grapheme-phoneme 

level appears to be the most appropriate level of analysis for Turkish though further 

studies are needed to confirm this. Additionally, the data gathered for Turkish has 

been compared with similar data reported for other orthographies concluding that 

Turkish is the most transparent orthography that has been quantified to date. 

 

From a methodological perspective, entropy has been presented as a more complete 

and informative measure of consistency than the percentage of dominant mappings, 

because entropy measures factor in the relative proportions of non-dominant 

mappings. In the case of Turkish, it would not be simple to disentangle the two 

measures as they are highly correlated. Furthermore, in addition to Greek (Protopapas 

& Vlahou, 2009), the analyses carried out in this chapter provide an interpretation of 

orthographic transparency using whole-word entropy measures and thus overcomes 

previous limitations of using unrepresentative samples of the orthography, such as 

monosyllabic words or word-initial letters. 

 

Theoretically, in line with recent developments in the field (i.e. Protopapas & Vlahou, 

2009; Schmalz, Marinus, Coltheart, & Castles, 2015) orthographic depth can further 

be conceptualised as several distinct constructs namely, degree of complexity and 

predictability of grapheme to phoneme mappings. However, there is also a need to 

develop a further framework that extends to non-alphabetic writing systems. For 

example, Shimron (2006) states that Hebrew depth is very different from English 

depth. Differences in graphic complexity (Chang, Chen, & Perfetti, 2017), for example, 

offer challenges for frameworks like the orthographic depth that are based exclusively 

on alphabets. Given the above considerations and based on the findings reported 

here, it is evident that the Turkish orthography provides an excellent medium for the 

further investigation of typical and atypical reading development in highly transparent 

alphabetic orthographies.  
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CHAPTER 3  

SUBTLEX-TR: THE CREATION AND VALIDATION OF A NEW 
PSYCHOLINGUISTIC DATABASE FOR TURKISH 
 

3.1 PREFACE 
The need to establish reliable psycholinguistic resources for the investigation of 

reading processes remains a central endeavour in visual word recognition research. 

This chapter will introduce the topic area covering historical and current developments 

in the domain, specifically with regard to the recent SUBTLEX movement. 

Subsequently, the chapter will critically review the presently available resources for 

psycholinguistic research in Turkish and introduce SUBTLEX-TR, a new Turkish-word 

database created by taking into account frequency data from film and television 

subtitles. Furthermore, a new sub-corpus using subtitles for films and television shows 

that are appropriate for primary-school-aged children, SUBTLEX-TR-CHILD, will be 

introduced. Finally, SUBTLEX-TR will be validated using a Lexical Decision Task by 

comparing the respective variance explained by SUBTLEX-TR and TS Corpus (Sezer 

& Sezer, 2013) frequencies. Although lexical decision data was not available for 

children, SUBTLEX-TR-CHILD will be validated using the word naming data reported 

in Chapter 4. The chapter will conclude with a discussion of the findings and potential 

future developments of the new database. 

 
3.1.1 INTRODUCTION 
 

Visual word recognition tasks such as Single Word/Nonword Naming (SWNN) and 

Lexical Decision Task (LDT) represent the most widely used approaches to investigate 

reading (Coltheart et al., 2001). Both tasks require the participant to respond to word 

(or nonword) stimuli either by reading aloud (SWNN) or by indicating if the stimulus is 

a word or not (LDT). Thus, the stimuli for such tasks need to be carefully selected by 

taking into account the plethora of orthographic and phonological properties that 

influence lexical processing. Psycholinguistic databases enable the selection of stimuli 

by permitting researchers access to a collection of standardised data and the ability to 

manipulate and control variables that best suit their experimental parameters. For 

example, word frequency, the frequency in which a word occurs in a corpus, has 
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systematically and extensively been found to be the most reliable predictor of reaction 

times in word recognition studies (e.g.  Solomon and Postman, 1952; Forster & 

Chambers, 1973; Taft, 1979; Grainger, 1990). The word frequency effect indicates 

that high-frequency words are named faster than low-frequency words. Also, word 

frequency effects have been accounted for by all current computational models of 

visual word recognition (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Plaut, 

McClelland, Seidenberg, & Patterson, 1996). 

 

The work of Thorndike (1921) represents one of the first significant attempts in 

constructing a word frequency database by compiling a sizable amount of written texts. 

The seminal study of Thorndike (1921) resulted in a word frequency database of 

10,000 English word types and 4.5 million-word tokens. This study was extended over 

two decades later by Thorndike and Lorge (1944), resulting in a word frequency 

database of 30,000 English word types and 18 million word tokens. Other early 

noteworthy frequency lists generated in different languages during this period include 

the French Word Book (Henmon, 1924; Vander Beke, 1932) and the Spanish Word 

Book (Buchanan, 1927). However, the laborious nature of manually compiling such 

frequency lists severely restricted the advancement of the field. The rapid 

development of computer technology, in general, and information processing capacity, 

specifically, has eased the limitations of traditional manual compilation approaches. A 

shift towards digitally constructed corpora has greatly benefited the fields of corpus 

linguistics and computational linguistics. 

 

Kučera and Francis (1967) compiled the earliest electronic corpus, the Brown corpus, 

which produced the most extensively used word frequency norms in English to date. 

The Brown corpus consists of approximately 50K word types and 1M word tokens and 

is representative of written American English. Despite the widespread use of the 

Brown Corpus for over 40 years, there have been several significant criticisms of the 

frequency norms derived from the corpus. For example, Burgess and Livesay (1998) 

compared word frequency estimates from the Brown corpus with the Hyperspace 

Analogue to Language (HAL) Corpus (1995), a 97K word type and 131M word token 

corpus, in a word naming task. The study found that while both the Brown and HAL 

corpora equally predicted high-frequency words, the HAL corpus offered superior 

predictions for low- and medium-frequency words, i.e., the correlation between RT and 
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Brown corpus frequencies was low. This finding may be seen as a reflection of the 

limited size of the Brown corpus (Breland, 1996). More recently, the predictive validity 

of the Brown Corpus has again been called into question by several megastudies 

(lexical decision and word-naming tasks) that examined the predictive ability of word-

frequency measures (Balota et al., 2004; Brysbaert & New 2009; Zevin & Seidenberg, 

2002).  

 

Brysbaert and New (2009) also state that the type of language register from which 

frequency measures are derived is predictive of linguistic performance of individuals 

in that corpora derived from everyday language use are superior to corpora generated 

from formal written communication. The rationale for this is that the use of formal, 

expressive language and refrainment from using repeated words would result in higher 

lexical diversity, leading to an overestimation of rare word frequencies and the 

underestimation of high-frequency words (Baayen 2001; New, Brysbaert, Veronis, & 

Pallier, 2007). Thus, the issue of language representativeness in corpora, the degree 

to which the corpus contains a complete range of linguistic samples that represent a 

language as a whole (Sinclair, 2005), should also be considered to avoid bias in the 

way word frequency counts are collected. As an extension of this, the number of 

samples used to create a corpus should also be taken into consideration. To create a 

lexicon that is representative of a language, Brysbaert and New (2009) proposed that 

the corpus should contain between 3,000 - 10,000 different texts. Statistically, 

obtaining word frequency measures from a more extensive corpus should permit for 

an improved, more accurate measure of word frequency as the standard error of the 

word counts varies as a function of the square root of the sample size (Lee, 2003). 

Additionally, a larger corpus would allow for better representation of low-frequency 

words as well as establishing more subtle differences between them (Burgess & 

Livesay, 1998). Research from the English Lexicon Project (Balota et al., 2007), the 

French Lexicon Project (Ferrand et al., 2010), the Dutch Lexicon Project (Keuleers, 

Diependaele, & Brysbaert, 2010), and the British Lexicon Project (Keuleers, Lacey, 

Rastle, & Brysbaert, 2012) show that virtually all of the known word frequency effect 

lies within a frequency range under ten occurrences per million words. It is also 

reported that the most significant word frequency effect is detected for words with a 

frequency between 0.1 and 1 per million words (Keuleers, Lacey, Rastle, & Brysbaert, 

2012). 
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Thus far, this section has discussed the historical development of corpus linguistics 

about word frequency measures in visual word recognition tasks. While 

psycholinguistic resources have increased in availability, some critical issues have 

been identified in the domain, namely: 

 

(1) the size of corpora in both absolute terms, i.e. the number of word types and 

tokens in the corpus and in the relative number of texts used to generate the 

corpus. 

(2) Corpus representativeness with recent studies showing that corpora that make 

use of everyday, informal language being superior to formally written text 

resources. 

To address these issues, New, Brysbaert, Veronis, and Pallier (2007) proposed a new 

type of psycholinguistic resource derived from film and television subtitles. The 

rationale for this new approach is that the language used in film and TV subtitles aligns 

more closely with everyday language, capturing language samples from “real” social 

situations and human interactions. This approach addresses the need for corpus 

representativeness identified above. Additionally, subtitles derived from film and 

television series are readily available from several internet websites (e.g. 

www.opensubtitles.org). This issue of corpus and resource availability will be 

considered further in the conclusion of this chapter. 

 

New and colleagues (2007) validated a 52M word token corpus from over 9000 French 

films and TV series by assessing the extent to which the new subtitle word frequency 

measure predicted word processing times in comparison to established word 

frequency measures for French, i.e. the spoken Corpus du Référence du Français 

Parlé [CRFP] (Equipe DELIC, 2004) as well as the written corpus produced by New, 

Pallier, Brysbaert, and Ferrand (2004). The study found that film and television subtitle 

frequency measures accounted for about 10% more variance in lexical decision 

reaction times than the other corpora investigated. This study also signified the 

beginning of the “SUBTLEX” movement. 

 

As stated previously, Brysbaert and New (2009) presented new frequency norms 

obtained from  SUBTLEX-US, a 51 million word corpus based on American English 



 64 

films and television (TV) series subtitles. The study found that SUBTLEX-US 

explained a significantly higher proportion of variance in accuracy (10%) and word 

recognition times (6%) than the Brown corpus. This finding is not unanticipated given 

the limited size of the Brown corpus. Additionally, when more sizeable and 

contemporary corpora have been studied, the word frequency norms obtained from 

film and TV series subtitles show a consistent performance advantage over written-

word frequency norm databases. For example, in the same study, Brysbaert and New 

(2009) also compared the new subtitle frequency norms to the CELEX database 

(17.9M words; Baayen, Piepenbrock, & van Rijn, 1993, the Hyperspace Analogue to 

Language (HAL) (more than 130M words; Lund & Burgess, 1996), the written British 

National Corpus (88M words; Leech, Rayson, & Wilson, 2001) as well as the Zeno 

corpus (17M words; Zeno, Ivens, Millard, & Duvvuri, 1995). The SUBTLEX-US word 

frequencies again manifest with a clear advantage over the other corpora investigated 

especially for short-words (the HAL corpus was superior for long words). Furthermore, 

Brysbaert, Keuleers and New (2011) compared the SUBTLEX-US word frequency 

measures with Google’s Ngram word frequencies (131 billion-word corpus from 

digitised American English books (Michel et al. 2011) and found that the SUBTLEX-

US corpus explained 11% more variance of lexical decision times than the Google 

Ngram frequencies. In conclusion, it can be stated that the observed advantage of 

subtitle-word frequency measures cannot be explained based solely on corpus size. 

Additionally, it has been observed that variance gains level off after about 30 million 

words (Brysbaert & New, 2009). 

 

Since the original SUBTLEX database, comparable databases have been developed 

in several other languages including Chinese (SUBTLEX-CH: Cai & Brysbaert, 2010), 

Dutch (SUBTLEX-NL: Keuleers et al., 2010), Greek (SUBTLEX-GR: Dimitropoulou, 

Duñabeitia, Avilés, Corral, & Carreiras, 2010), German (SUBTLEX-DE: Brysbaert et 

al., 2011), Spanish (SUBTLEX-ESP: Cuetos, Glez-Nosti, Barbon, & Brysbaert, 2011), 

Albanian (SUBTLEX-AL: Avdyli & Cuetos, 2013), British English (SUBTLEX-UK: van 

Heuven, Mandera, Keuleers, & Brysbaert, 2014), Polish (SUBTLEX-PL: Mandera, 

Keuleers, Wodniecka, & Brysbaert, 2015) and Portuguese (SUBTLEX- PT: Soares et 

al., 2015). Recently, Gimenes and New, (2016) introduced Worldlex, a word frequency 

database built on Twitter, blog posts and newspapers for 66 languages and used a 

regression analysis to compare the new measures against five existing megastudies 
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that have been conducted in English (Balota et al., 2007), French (Ferrand et al., 

2010), Dutch (Keuleers, Diependaele, & Brysbaert, 2010), Malay (Yap, Liow, Jalil, & 

Faizal, 2010), and Chinese (Sze, Rickard, Liow, & Yap, 2014). The authors found that 

Worldlex frequencies predict lexical decision reaction times similar to, or better than, 

the frequencies that have been used to date, providing additional support for corpora 

that incorporate everyday spoken language use. Furthermore, the study discovered 

that in the five languages investigated, the blog and Twitter frequencies were more 

important than the newspaper frequencies. Although the Worldlex database offers a 

rich and significant resource for psycholinguistic research, further investigation is 

needed in other languages covered in the Worldlex database to validate the initial 

findings empirically. 

 

In sum, along with the original SUBTLEX-US database, all subtitle word-frequency 

measures tested to date along with databases constructed from social media 

(Herdağdelen & Marelli, 2017; Gimenes & New, 2016), and blogs (Gimenes & New, 

2016) have demonstrated superiority over written-word frequency norms, proposing 

that the linguistic style found in digital media is highly representative of the linguistic 

experience of young adults, principally with reference to the university student 

populations traditionally recruited in psycholinguistic studies. However, there is also 

evidence that for older adults, traditional word frequency measures based on books 

may be more suitable (Brysbaert & Ellis, 2016). Hence, there is a necessity to create 

and maintain corpora that offer more than one-word frequency measure, as Johns and 

colleagues (2016) suggest. That is, potentially further gains may be achieved by 

assembling word frequency lists that have been personalised to the participants of a 

study, depending on their learning histories, including reading habits.  

 

Taking this into consideration, it is also essential to provide a brief overview of the 

current reading habits of Turkish-speaking children and young adults. A survey carried 

out by the Ministry of National Education in 1993, found that 61% of children and young 

adults did not read any books over the last month, whereas 13% of the population had 

read only one book. Furthermore, consistent with the above finding, the United Nations 

Human Development Index ranks Turkey as 76th in book reading amongst the 173 

nations studied (Human Development Report, 2008). Relatedly, the overall level of 

newspaper and magazine reading has also been reported to be low (Özturk, Sevim 
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and Eroğlu, 2006). In addition, data from the Progress in International Reading 

Literacy Study (PIRLS) which focuses on the reading achievement of fourth-grade 

primary school students found that Turkey’s average score (449) was significantly 

lower than the international average (500) (PIRLS, 2001).  Amongst university 

students in Turkey, there is an increasing number of reports that state the decreasing 

number of regular readers (e.g. Pehlivan, Serin, & Serin, 2010; Odabaş, Odabaş, & 

Polat, 2008). Ultimately, the transition from printed to electronic mediums regarding 

reading also have to be considered. For instance, Gökçearslan and Seferoglu (2016)  

reported that, between 2010 and 2015, the age of first internet access in Turkey fell 

from 5 to 2 years old on average. Also, the same study reported an increase in almost 

all internet activities carried out by children. Further, one of the most significant 

changes noted was a 45.3% to 81.4% increase in online movie and music streaming. 

Also, the use of social networks has seen an increase from 51.7% to 81.3% among 

children in Turkey. This shift towards alternate leisure activities and the increasing 

availability of visual media may be able to explain, at least in part, the continuous 

decline in reading books, magazines and newspapers. Finally, considering the above, 

the extraction of word frequencies from visual media such as subtitles of film and TV 

series appears to be an extremely valuable substitute for written-word 

frequencies. However, despite their relevance and availability for a growing number of 

languages, word frequency norms from film and TV series subtitles are still non-

existent for Turkish.  

 

As stated previously, the characteristics of Turkish make it a fascinating language for 

the ongoing investigation of language representation and processing. Consequently, 

having reliable frequency norms available for Turkish such as the ones reported in this 

chapter will provide an essential resource for the future development of monolingual 

and cross-linguistic studies that take advantage of the characteristics of the Turkish 

language. This study will complement and expand upon the small number of lexical 

databases already available in Turkish. The following section will provide a critical 

evaluation of currently existing psycholinguistic resources for Turkish. 
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3.2 OVERVIEW OF PSYCHOLINGUISTIC RESOURCES IN TURKISH 
 

For Turkish, resources for psycholinguistic variables exist but are scarce. Conceivably 

the most important cause for this is the required investment of time, labour and 

resources necessary to develop such a resource (Cangöz, 1999). Cangöz (1999) 

further specified that one of the most critical and fundamental deficiencies regarding 

cognitive psychology studies in Turkish-speaking populations is a comprehensive 

word frequency resource. The fact that the rate of psychology research in Turkey is 

increasing also stresses the importance of creating such a resource. 

 

Historically, Turkish word lists compiled from newspapers, books and magazines were 

subjected to ratings by highly literate native speakers, and after inter-rater reliability 

was established, a selection was used as experimental stimuli (I. Raman, 1996; 1999; 

2006). Most recently, using similar methods lead to the first colour picture norms in 

Turkish, which also include frequency ratings (Raman, Raman, E. & Mertan, 2014). 

Although subjective norms can be deemed problematic, their use has nevertheless 

been argued in the literature to be more indicative of the dynamics of a particular 

language than objective frequency counts (e.g. Gernsbacher, 1984; Gordon, 1985).   

 

With regards to frequency measures in Turkish, Göz (2003) produced a word 

frequency dictionary based on a 22,693-word type and 1 million- word token corpus 

and may represent the most substantial attempt at developing a contemporary word 

frequency dictionary in Turkish to date. Inspired in part by the American-English Brown 

corpus (Kucera and Francis, 1967), the categories of the corpus were as follows: press 

(35%), novel-story (20%), science (8%), popular science (9%), fine arts and biography 

hobby (4%), religion (3%), school book (3%) and other (10%). Thus, it can be claimed 

that the Written Word Frequency Turkish Dictionary is representative of a general 

domain dictionary of Turkish. However, the same criticisms that have been levied at 

the Brown Corpus can also be applied to the Written Word Frequency Turkish 

Dictionary (Göz, 2003). Briefly, the size of the dictionary is small in both absolute and 

relative terms. Additionally, the corpus fails to meet the recommended criteria that to 

sufficiently represent the Turkish language, a corpus should contain at least 30 million 

word tokens (Brysbaert & New, 2009). 
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The recent development of the Turkish National Corpus (TNC; Aksan et al., 2012) 

represents a move away from traditional corpus development approaches in Turkish. 

The TNC is designed to be a balanced, large-scale and general-purpose corpus for 

contemporary Turkish. Though not explicitly designed as a psycholinguistic database, 

the TNC can be used to generate word frequency (raw and parts per million) as well 

as contextual diversity measures for Turkish words. The TNC was constructed from 

4978 documents and contains 50 million-word tokens. The main criticisms of the TNC 

can be roughly separated into two distinct arguments. The first is that the number of 

documents is relatively small meaning that there may be an overreliance on words 

generated from a few large sources. As stated above, this can lead to an 

underrepresentation of rare words and an overrepresentation of common words. More 

importantly, the relatively low document count would also impact on contextual 

diversity measures. The second is an issue of accessibility in that although the corpus 

is publicised as being open for research use, it does so with several restrictions. The 

corpus only allows up to 400 queries per day per account. This restriction thus poses 

severe time restrictions on extracting statistical information. 

 

Moving on from the TNC,  the TS Corpus v2 (Sezer & Sezer, 2013; 

http://tscorpus.com), extensively used in Chapter 2, is a large general-purpose Turkish 

Corpus containing 491 million POS-Tagged tokens and 4.9 million unique word forms 

that build on and extends the BOUN Corpus (Sak, Güngör, & Saraçlar, 2007). The 

BOUN Corpus was created by collecting web pages from three Turkish daily 

newspapers (212M tokens) as well as a general sampling of Turkish webpages (279M 

tokens). Furthermore, the BOUN corpus is readily accessible and is sufficiently large, 

making it highly appropriate for consideration in a comparison study with the new 

subtitle frequencies. 

 

Feasibly the most ambitious attempt at developing a Turkish psycholinguistic 

database to date comes in the form of KelimetriK (Erten, Bozşahin, & Zeyrek, 2014). 

KelimetriK is a query-based software that provides information on word frequency, 

bigram and trigram frequency, orthographic neighbourhood and similarity statistics. 

KelimetriK can, therefore, be viewed as a valuable resource for psycholinguistic 

experimenters with which several lexical and sublexical variables can be controlled or 

manipulated depending on the research question. The N-watch software for English 
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(Davis, 2005), and BuscaPalabras for Spanish (Davis and Perea, 2005) represent 

equivalents in their respective languages. Similar to other datasets reported here, 

Kelimetrik also suffers from several limitations. One such issue is that Kelimetrik is 

limited to a stem list which does not allow querying homographic words, i.e., words 

with the same orthographic representation but with a distinct meaning. Additionally, 

the use of lemma frequencies as opposed to word frequencies would diminish the 

lexical diversity attributed to agglutinative orthographies. As described in Chapter 2, 

this issue remains contentious in the literature, although the use of word frequency 

measures would arguably capture more variance in such morphologically rich 

languages. Finally, Kelimetrik is restricted to a single word query at a time. The size 

of the corpus, extracted from Erten, Bozsahin, & Zeyrek, (2014) consists of only 

24,414 Turkish stem words, although the word frequency measure is derived from the 

suitably large BOUN corpus (Sak, Güngör, & Saraçlar, 2007). In line with the current 

investigation, Kılıç (2008), while examining the role of vowel harmony in Turkish, 

compiled a list of words obtained from publicly available Turkish subtitles (Dave, 

2011). More specifically, the corpus contains a word list that includes all words 

observed from Turkish subtitles, along with the frequency of the word’s occurrence in 

the subtitles. 

 

While the entirety of this section has focussed on adult corpora and databases, there 

is also a need to consider psycholinguistic resources designed for use with children. 

Until recently, Turkish psycholinguistics researchers have relied on word stimuli that 

they have created themselves. For example, to generate words for a one-minute word 

reading list, Babayiğit and Stainthrop (2007) state that due to the lack of frequency 

norms, they generated their own by analysing books of primary and secondary grades. 

The apparent lack of reproducibility by taking such an approach as well as the 

inefficiency of generating new stimuli for every new experiment reaffirms the need to 

create a widely available psycholinguistic database for use in both Turkish-speaking 

children and adults. 

 

Recently, Acar, Zeyrek, Kurfali and Bozşahin (2016) produced a Child Literature 

Corpus (CLC) created from 535 books written for 3-12 years old Turkish-speaking 

children. The CLC is composed of 19,246 word types and 4,388,149 word tokens. 

Additionally, a 300 word subset of the CLC was used in the production of AoA and 
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imageability measures for Turkish. While representative of a move in the right 

direction, the corpus is still considerably small and is subject to copyright restrictions 

on its distribution. 

 

In summary, the above section highlights that although there have been essential 

developments with regard to the creation of psycholinguistic databases for Turkish, 

there is still a need to move beyond current approaches. This notion, coupled with the 

observation of changing reading behaviours, calls for the exploration of new avenues 

of corpora selection. In line with the growing SUBTLEX movement, the remainder of 

this chapter will focus on the development and validation of a subtitle word frequency 

database for Turkish considering a number of lexical and sublexical features. 

3.3 THE CONSTRUCTION OF SUBTLEX-TR 
 

In this section, the creation of SUBTLEX-TR will be introduced and discussed. 

SUBTLEX-TR is a new word frequency measure for 924,824 Turkish words forms 

obtained from a 156,761,118-word corpus based on 49,220 Turkish films (14,132), 

and TV series (35,088) subtitles screened between 1990 and 2016. In Turkey, national 

film and TV production are enjoying a revival (Basutçu, 2008), although foreign films 

still maintain a considerable degree of popularity and are often subtitled (as opposed 

to being dubbed). Therefore, amassing a subtitle corpus for Turkish is a relatively 

straightforward task to accomplish and the database produced in this chapter will aim 

to become a valuable research tool for the Turkish scientific community who utilise 

verbal stimuli in their experiments, especially for those who work with word reaction 

time data.  

 

Overall, 158,810 files containing film and television subtitles identified as Turkish were 

downloaded (See Lison & Tiedemann, 2016; http://www.opensubtitles.org/) and 

processed using the following procedure. 

 

i. Firstly, duplicates and corrupted files (6) were removed, resulting in 54,979 film 

and TV subtitle files. 

ii. Following this, film and TV subtitles that were representative of pre-1990 films 

were filtered out of the final list resulting in 49,220 files. This step was taken to 
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ensure a modern language register of Turkish was being created and that 

words that had fallen out of contemporary use were not included in the final 

database. 

iii. Finally, all subtitle-specific text formatting was stripped before further 

processing. 

iv. To create the children’s SUBTLEX-TR subcorpus, the additional step of filtering 

films labelled as “U” (Universal) and “PG” (Parental Guidance) resulted in 

13,034 film and TV subtitles. The resulting subcorpus, SUBTLEX-TR-child 

contains 505,024 word types and 27,193,916-word tokens. 

3.3.1 WORD AND SYLLABLE LENGTH 
 

Word length effects, i.e., longer words take longer to respond to, can be considered 

a hallmark feature of visual word recognition processes (see Balota et al., 2004) and 

are thought to be reflective of sublexical processing. Furthermore, word length 

measures can be derived from both orthographic features (number of letters) and 

phonological features (number of phonemes and syllables). There is, however, some 

evidence of null effects of word length (e.g. Weekes, 1997) as well as several studies 

reporting a “U” shaped curve (e.g., New, Ferrand, Pallier, & Brysbaert, 2006) which 

suggests that RTs are longer for short and long words than for words that are 

between 5 to 8 letters. It is posited that the reverse, i.e. inhibitory length effect is 

partly driven by the notion that long words have fewer competitors and are, therefore, 

easier to identify.  For Turkish, word length effects have been reported in both 

typically developing children (See Chapter 4) and adults (Kokten & Raman, 2007) as 

well as nonword repetition in Turkish-speaking children with Specific language 

impairment (SLI) (Topbaş, Kaçar-Kütükçü, & Kopkalli-Yavuz, 2014). Recent studies 

also indicate that syllabic length also contributes to visual word processing (Davies, 

Barbon & Cuetos, 2013). This effect has also been reported for Turkish (Öney, Peter 

& Katz, 1997) though see Kokten and Raman (2007) for a null finding regarding the 

contribution of syllabic length effects. The agglutinative nature of Turkish morphology 

would stipulate that word, and syllable lengths are highly correlated in Turkish. The 

correlation found in the current database was r(924824) = 0.75, p< 0.001. For the 

current database, the number of letters was calculated by summing the number of 

letters for each word and number of syllables was calculated using a modified version 
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(Appendix 1) of a syllabification algorithm for Turkish (Altınok, 2016).  The frequency 

distribution of the number of letters and syllables can be seen in Figure 6 and Figure 

7, respectively. 

 

 
FIGURE 8: THE FREQUENCY OF WORDS BY LETTER COUNT 

 

 
FIGURE 9: THE FREQUENCY OF WORDS BY SYLLABLE COUNT 

3.3.2 WORD-FORM FREQUENCY 
 

Similar to the finding of length effects, word frequency effects, i.e., more frequent 

words are named faster than less frequent words have previously been reported for 
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Turkish-speaking adults (Raman, Baluch & Sneddon, 1996; Raman, Baluch, & 

Besner, 2004). As stated previously, film and TV subtitle derived word frequency 

estimates are exceptionally useful at predicting human performance in behavioural 

tasks. In addition to raw frequency counts, it is also important to calculate standardised 

measures as word frequency is highly sensitive to the size of the corpus and thus 

corpora of varying size can be compared. The most commonly used standardised 

measure to date has been frequency per million (fpm) words. However, regardless of 

its widespread use, there are several issues with the fpm measure. For instance, in 

large corpora, the majority of words have a frequency of less than one fpm. Indeed, 

Brysbaert and New (2009) reported that for the SUBTLEX-US corpus, 76% of the 50M 

words were found to have a frequency of less than the intuitive starting point of 1 fpm. 

In the current database, which represents a sizeable 156M word corpus, the results 

are even more pronounced as nearly 95% of words fall below one fpm. In addition, it 

is currently understood that the frequency effect is compressed in that a logarithmic 

curve best represents it. In terms of corpora, this means that the difference in 

frequency between one fpm and two fpm has roughly “the same effect on processing 

times as the difference between 10 fpm and 20 fpm, between 100 fpm and 200 fpm, 

and between 1000 fpm and 2000 fpm” (Brysbaert & New, 2009). A recently proposed 

alternative will be discussed in the section below. 

 

3.3.3 ZIPF SCALE 
 

The Zipf scale (van Heuven, Mandera, Keuleers, and Brysbaert, 2014) is a recently 

proposed logarithmic scale and is calculated as log10 (frequency per billion words). 

The scale scores frequency from 1 (1 per 100 million words) to 6 (1000 per million 

words) with the lower half of the scale (1-3) representing low-frequency words and the 

upper half (4-6), high-frequency words. A particularly interesting property of the Zipf 

scale is that it permits unobserved words, i.e. frequency of 0 to be assigned a value 

by Laplace smoothing (Brysbaert and Diependaele, 2013). The addition of this 

transformation facilitates the comparison of corpora from different registers and with a 

substantial variation of word type and token counts such as the different corpora used 

to validate the current database. In addition to the raw frequency, fpm and the Zipf 

scale frequencies, this chapter also provides a frequency measure of LOG10 and 

LOG102. 
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3.3.4 LETTER UNIGRAM AND BIGRAM FREQUENCIES 
 

Sublexical statistical properties of words such as unigram and bigram frequencies are 

also important variables for consideration in psycholinguistic research. For instance, 

letter n-gram statistics present with uneven distribution (see Zipf, 1950) and have been 

shown to influence visual word recognition (see Seidenberg, 1987; Massaro & Cohen, 

1994) though see Carreiras, Álvarez, & Devega (1993) for an alternative explanation 

of these effects. The current study found 724 letter bigrams and 20095 letter trigrams. 

Unigram, bigram and trigram frequency were calculated using the n-Gram (3.0.3) 

package in R and then summing and averaging all bi/trigram occurrences for each 

word. The final bigram and trigram frequencies can, therefore, be considered to be 

both token values as well as being position-independent. 

 

3.3.5 CONTEXTUAL DIVERSITY 
 

Contextual Diversity can be conceptualised as the number of documents in which a 

word appears and is thought to contribute to the stability of conceptual representations  

(Burgess & Livesay, 1998). Recently, Adelman, Brown, and Quesada (2006) 

stipulated that contextual diversity might be more significant than word frequency 

measures in explaining the variance of lexical decision/ word naming latency data. 

Using the number of documents (or in this case the number of films and tv subtitles) 

as a proxy measure of contextual diversity (CD), it is hypothesised that words of equal 

frequency would be differentially processed if their respective CD scores were 

different, i.e., words appearing in higher contexts would be processed faster. 

Convergently, Brysbaert and New (2009) observed that CD accounts for 1 %–3 % 

more variance than does word frequency. Additionally, the influence of CD has been 

shown in studies of word learning (e.g. Hills, Maouene, Riordan, & Smith, 2010; Perea, 

Soares, & Comesaña, 2013) as well as spoken word recognition (Johns, 

Gruenenfelder, Pisoni, & Jones, 2012) though this effect was mediated by semantic 

distinctiveness. To the best of the author's knowledge, no study to date has accounted 

for CD in Turkish visual word recognition. By creating an index of CD in this chapter, 

future studies in Turkish psycholinguistics will be able to explore this exciting avenue 

of inquiry. For the current, study CD measures were calculated using the 
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DocumentTermMatrix function of the tm (0.7) package in R (3.4.1) for the subtitle files 

of both the children and adult SUBTLEX-TR corpora. The database provides raw CD 

counts as well as the percentage of documents containing each word. 

 

3.3.6 NEIGHBOURHOOD STATISTICS 
 

The orthographic neighbourhood (ON) of a word can be conceptualised as the number 

of orthographically similar words that can be created with one transformation (addition, 

deletion or substitution) of a given word while preserving letter order (Coltheart, 

Davelaar, Jonasson & Besner, 1977). The traditional measure of ON referred to in the 

literature as ColtheartsN, has been reported to provide evidence of a facilitative effect 

of ON on lexical access, though the majority of these findings appear to be restricted 

to low-frequency words (Andrews, 1997; Perea & Rosa, 2000). Furthermore, a 

limitation fo ColtheartsN is that N is calculated with words of the same length as the 

target word and hence longer words will always manifest with a smaller neighbourhood 

size. In an attempt to overcome this restriction, the measure of Orthographic 

Levenshtein distance 20 (OLD20) has recently been introduced (Yarkoni, Balota, & 

Yap, 2008). OLD20 is calculated by averaging the 20 closest words in the unit of 

Levenshtein distance (LD). LD is a measure that specifies the minimum number of 

insertions, deletions or substitutions required for converting one string to another 

(Levenshtein, 1966). Generally, it has been observed that words with lower OLD20 

values are recognised faster than words with higher OLD20 values (Yarkoni, Balota, 

& Yap, 2008). However, OLD20 was found to have an inhibitory effect on a Turkish 

lexical decision task rather than a facilitatory effect (Erten, Bozşahin, & Zeyrek, 2014). 

This seemingly contradictory finding may be associated with the agglutinative 

morphology of Turkish in which unique suffix groups are numerous thus providing 

competition rather than facilitation during lexical access. 

 

It is thus evident that any measure of ON will benefit from a large and diverse corpus. 

Therefore, it is imperative to provide an index of ON for Turkish using an extensive 

database like the one reported here. It was decided to report OLD20 scores for the 

words in the SUBTLEX-TR corpus for two reasons. Firstly, OLD20 is more flexible in 

its accommodation of longer words (which are numerous in Turkish). Second, at the 

time of writing this chapter and algorithm used to calculate ColtheartsN had been 
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running continuously for over three weeks without success. OLD20 was calculated 

using a modified version (http://crr.ugent.be/averageLD/) of the original OLD20 

measure in python3. 

3.4 VALIDATION OF SUBTLEX-TR 
 

As lexical decision reaction times are highly sensitive to word frequency measures 

(Balota et al., 2004), the task is currently accepted as the standardised approach to 

validating new word frequency measures by correlating performance in this task with 

word frequency estimates. In the following section, the design and implementation of 

a lexical decision validation task will be reported. 

METHOD 
 
3.4.1 PARTICIPANTS 
 

Seventy-two students from the Eastern Mediterranean University in Famagusta, 

Cyprus participated in the experiment (37 females, 35 males; mean age= 24.03, SD = 

2.82) in exchange for course credit. All students were right-handed and had normal or 

corrected to normal vision. Ethics approval was gained from both Eastern 

Mediterranean University and Brunel University London (see Appendix 2).  

 

3.4.2 MATERIALS 
 

In order to compare word frequency measures generated from two or more corpora, 

words for which the corpora give highly divergent estimates have been recently used 

and have been demonstrated to be a highly efficient approach in increasing the 

statistical power of the lexical decision task (Mandera, Keuleers, Wodniecka & 

Brysbaert, 2014). 

 

With this in mind, to make the experiment maximally informative, stimuli were selected 

for which the TS Corpus and SUBTLEX-TR gave highly divergent frequency 

estimates. In order to achieve this, linear regression was carried out on the SUBTLEX-

TR Zipf frequencies, using the TS Corpus frequencies as the predictor variable. 

Following this, words were ordered according to their residual error, and 160 words 
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from both extremes of the resulting lists for each corpus were selected for the 

experiment (320 words in total). Words at one extreme (with a substantial positive 

residual error value) were much more frequent in SUBTLEX-TR than would be 

expected on the basis of the TS Corpus, while words at the other extreme (with a 

substantial negative residual error value) occurred much less often in SUBTLEX-TR 

than would be expected on the basis of TS Corpus. In line with a recent validation 

lexical decision study, a further 80 words were selected at random for the experiment. 

Four hundred nonwords were generated using the Turkish plugin of the Wuggy 

application, therefore, bringing the total amount of stimuli to 800. A summary of the 

properties of the words and nonwords selected for this study can be found in Table 8 

below. 

 
TABLE 8: WORD/ NONWORD CHARACTERISTICS FOR LEXICAL DECISION TASK 

  Words Nonwords P 

  n = 370 n = 389   

Length 7.10 (2.57) 7.01 (2.49) 0.64 

Syllable 3.03 (1.09) 2.96 (1.05) 0.36 

OLD20 1.56 (.299) 1.98 (1.56) .001* 

 

In order to explore potential bias in the selected stimuli, the ldknn algorithm of the vwr 

package in R was used. The ldknn algorithm uses both k nearest neighbour 

classification and the Levenshtein distance metric to calculate the probability of a word 

response for the given stimulus based on the relative frequency of words among the 

nearest neighbours (see Keuleers & Brysbaert, 2011). The output of the algorithm can 

be seen in Figure 8 below. A logistic regression discovered that there was no 

significant bias for words in the current stimuli lists (z= -0.86, p = 0.39). 

 

The mean and standard deviation (SD) in word frequency (Zipf scale) mean was 2.68 

(SD = 1.16) for TS Corpus and 3.08 (SD = 1.99) for SUBTLEX-TR. The two variances 

were significantly different, F(370, 370) = 169.61, p < .001, and Welsch’s t-test has 

shown significant differences in the mean frequency derived from the two corpora, 

t(592) = 3.27, p < .001, for this set of stimuli. With regard to the randomly selected 

word stimuli, mean was 2.73 (SD = 1.16) for TS Corpus and 2.79 (SD = 1.09) for 

SUBTLEX-TR. The difference between variances was not statistically significant, 
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F(76, 76) = 0.84, p = .36, and the mean frequencies were not significantly different 

according to Welsch’s t-test, t(150) = .35, p = .73. 

 

 
FIGURE 10: OUTPUT OF THE LDKNN ALGORITHM HIGHLIGHTING THE PROBABILITY OF A WORD RESPONSE FOR 

THE GIVEN STIMULUS BASED ON THE RELATIVE FREQUENCY OF WORDS AMONG THE NEAREST NEIGHBOURS 

3.4.3 PROCEDURE 
 

Stimuli presentation and response recording were controlled by DMDX 5.1 software 

(Forster & Forster, 2003). Participants were requested to decide, as fast and 

accurately as possible, if the string of letters presented at the centre of the screen was 

a real word in Turkish or not. If participants considered that the letters string was a real 

word in Turkish, they were instructed to press the “Z” key on the keyboard (“evet” [yes] 

response). Equally, if they considered that the presented letter string was not a real 

word in Turkish, they were instructed to press the “M” key on the keyboard (“hayır” 

[no] response). Both speed and accuracy were stressed in the instructions.  

 

The task comprises responses to 800 trials which were divided into eight blocks 

comprised of 50 words and 50 nonwords per block. First, a fixation point (+) was 

presented at the centre of the computer screen for 500ms. Following this, the fixation 

point was replaced by the stimulus (word or nonword) at the centre of the computer 
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screen and disappeared when participants responded or until 2,500ms had passed. 

The order of the stimuli was randomised per block and participant. Participants were 

informed that several pauses (7) would occur during the experiment (each block; every 

100 trials) to counteract fatigue. Before the 800 experimental trials, participants 

received 12 practice trials (six words and six nonwords). Each experimental session 

lasted approximately 45 minutes.  

 

3.4.4 RESULTS 
 

Trials that were under 250ms (15) or over 2500ms (388) were considered as outliers 

and removed from the dataset. In line with a recent SUBTLEX validation study in 

Polish (Mandera et al., 2014), reaction time (RT) trials that were determined to be 

outside of a range of whiskers of a boxplot adjusted for skewed distributions (See 

Hubert & Vandervieran, 2008) were also removed from the dataset. This data cleaning 

approach was calculated independently for each participant, in each block separately 

for words and nonwords. Thirty (30) words and 11 nonwords with less than one-third 

correct responses were then removed from the final dataset. 

 

For the full set of 370 words, the mean RT was 798.60 (SD = 238.64), and the mean 

accuracy was .92 (i.e., 92%) (SD = .30). Words occurring less frequently in SUBTLEX-

TR than in TS Corpus had a mean RT of 936.74 (SD=227.20) and a mean accuracy 

of .88 (SD = .33), while words occurring more often in SUBTLEX-TR than in TS Corpus 

had a mean RT of 663.85 (SD = 169.70) and a mean accuracy of .91 (SD = .28). The 

randomly selected words had a mean RT of 826.58 (SD = 227.82) and a mean 

accuracy of .91 (SD = .28).  For nonwords, the mean RT was 958.20 (SD = 70.23), 

and the mean accuracy was .87 (SD = .09). 

 

Before comparing the different frequency measures, four separate multiple regression 

analyses on accuracy and RT data were conducted to evaluate the role of various 

variables on lexical decision data in Turkish-speaking adults. First, the word/nonword 

were considered together. Tables 9 and 10, below, highlight the findings of multiple 

regression analysis for accuracy and RT data of the complete stimuli set, respectively. 
 

TABLE 9: REGRESSION COEFFICIENTS OF LEXICAL DECISION TASK ACCURACY: WORDS AND NONWORDS 
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Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 10.84 10.47 – 11.24 <0.001 

Lexicality 0.94 0.91 – 0.98 0.001 

Length 1.47 1.42 – 1.53 <0.001 

OLD20 0.73 0.67 – 0.80 <0.001 

Lexicality * Length 1.19 1.15 – 1.24 <0.001 

Lexicality * OLD20 0.67 0.61 – 0.74 <0.001 

Length * OLD20 0.95 0.91 – 0.99 0.009 

From Table 9, the estimated coefficients for the final model showed that lexical 

decision accuracy for Turkish words/nonwords was predicted by main effects of 

lexicality, length, and neighbourhood size (OLD20). In addition, there were significant 

interactions between lexicality and length, indicating stronger length effects for 

nonwords than words. Additionally, there was a significant lexicality by neighbourhood 

size interaction effect indicating stronger differential neighbourhood effects on words 

(inhibitory) than nonword (facilitory). Finally, there was a significant interaction 

between length and neighbourhood size indicating stronger neighbourhood effects on 

short words than longer words (inhibitory effect). No other cognitive predictors or 

interactions reached significance for inclusion into the final model. 
 

TABLE 10: REGRESSION COEFFICIENTS OF LEXICAL DECISION TASK RT: WORDS AND NONWORDS 

  Reaction Time (ms) 

Predictors Estimates CI p 

(Intercept) 791.36 787.96 – 794.77 <0.001 

Lexicality -31.95 -35.31 – -28.58 <0.001 

Length 40.25 36.99 – 43.50 <0.001 

OLD20 22.92 13.86 – 31.99 <0.001 

Lexicality * Length -3.98 -7.18 – -0.78 0.015 

Lexicality * OLD20 29.62 20.29 – 38.96 <0.001 
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From Table 10, the estimated coefficients for the final model showed that lexical 

decision reaction times for Turkish words/nonwords was predicted by main effects of 

lexicality, length, and neighbourhood size (OLD20). In addition, there were significant 

interactions between lexicality and length, indicating stronger length effects for 

nonwords than words. Additionally, there was a significant lexicality by neighbourhood 

size interaction effect indicating stronger neighbourhood effects on words than 

nonword. Finally, there was a significant interaction between length and 

neighbourhood size indicating a facilitatory effect of orthographic neighborhood size 

for nonwords and an inhibitory neighborhood size effect for words. No other cognitive 

predictors or interactions reached significance. Similiarities and differences between 

the Turkish words/nonwords accuracy and RT models feature a large degree of 

overlap in their findings in terms of both main and interaction effects. The single 

exception to this is the significant finding of a length by neighbourhood size interaction 

in the accuracy data which was absent in the RT data. 

 

Following this, two further regression analyses were carried out only considering the 

word data. The frequency measure of choice in this analysis was the SUBTLEX-TR. 

Tables 11 and 12, below, highlight the findings of multiple regression analysis for 

accuracy and reaction time data of the word stimuli, respectively. 
 

TABLE 11: REGRESSION COEFFICIENTS OF LEXICAL DECISION TASK ACCURACY: WORDS 

  Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 14.51 13.43 – 15.70 <0.001 

Length 2.03 1.87 – 2.21 <0.001 

Frequency 2.09 1.91 – 2.28 <0.001 

Contextual Diversity 0.94 0.82 – 1.07 0.336 

OLD20 2.08 1.65 – 2.61 <0.001 

Length* Frequency 1.06 0.97 – 1.17 0.188 

Length * Contextual Diversity 0.73 0.65 – 0.83 <0.001 

Length * OLD20 1.29 0.99 – 1.67 0.059 
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From Table 11, the estimated coefficients for the final model showed that lexical 

decision accuracy for Turkish words was predicted by main effects of frequency, 

length, and neighbourhood size (OLD20) but not contextual diversity. In addition, there 

were significant interactions between frequency and length, indicating stronger length 

effects for low frequency words than high frequency words. Additionally, there was a 

significant length by contextual diversity interaction effect indicating stronger 

contextual diversity effects on shorter words than longer words. No other cognitive 

predictors or interactions reached significance though the interaction between length 

and neighbourhood size approached significance. 

 
TABLE 12: REGRESSION COEFFICIENTS OF LEXICAL DECISION TASK RT: WORDS 

  Reaction Time (ms) 

Predictors Estimates CI p 

(Intercept) 729.22 716.60 – 741.84 <0.001 

Length 21.18 16.75 – 25.62 <0.001 

Frequency -37.06 -48.99 – -25.13 <0.001 

Contextual Diversity -51.41 -77.19 – -25.63 <0.001 

OLD20 -55.20 -73.33 – -37.08 <0.001 

Frequency * Contextual Diversity 17.52 3.25 – 31.79 0.016 

 

From Table 12, the estimated coefficients for the final model showed that lexical 

decision reaction times for Turkish words was predicted by main effects of frequency, 

length, contextual diversity and neighbourhood size (OLD20). In addition, there was  

a significant interaction between frequency and contextual diversity indicating stronger 

contextual diversity effects on lower frequency words than higher frequency words. No 

other cognitive predictors or interactions reached significance. Similiarities and 

differences between the Turkish word accuracy and RT models feature a smaller 

degree of overlap in their findings when compared to the word/ nonword comparison. 

The main effects of length, frequency and OLD20 were significant in both models. 

Differences were found in terms of the influence of contextual diversity which was 

significant in the RT model but not the accuracy model. All of the discovered significant 

two-way interactions were distinct between the two models. 
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Multiple regression analyses on accuracy and reaction time data were conducted to 

compare the proportion of variance accounted by the Turkish subtitle-word frequency 

measures (SUBTLEX-TR) with that accounted for by the written-word frequency 

provided by the TS Corpus frequency measures. Zipf and Zipf2 frequencies were 

considered as predictors from the TS Corpus and the SUBTLEX-TR databases. For 

SUBTLEX-TR, LOG10 and LOG102 from the CD measures were also provided.  

 

The percentage of the variance  of RT and accuracy explained (Adjusted R2) by each 

of the word frequency corpora as well as CD are summarised in Table 13 below. 
 

TABLE 13: PERCENTAGES OF VARIANCE ACCOUNTED FOR BY THE VARIOUS FREQUENCY MEASURES 

Model 

 RT (% 

all 

words) 

 Accuracy 

(%; all 

words)  

 RT (% 

sampled 

words) 

 Accuracy (% 

sampled 

words) 

Length + OLD20 + 

WF(TS) + WF(TS2) 19.6 9.6 13.8 20.8 

Length+ OLD20 + 

WF(SUB-TR) + WF(SUB-

TR2) 44.03 31.4 22 22.3 

Length + CD SUB TR + 

CDSUB TR2 43.4 28.1 22.4 22.2 

Length + WF(SUM) + 

WF(SUM2) 34.9 1.4 21 0.3 

 

When all 370 words were included in the analysis, the TS Corpus word frequencies 

explained 19.6 % of the variance in RTs and 9.6 % of the variance in accuracy. 

Additionally, SUBTLEX-TR frequencies explained 44.03 % of the variance in RTs and 

31.4% in accuracy, which is 24.43 % more for RTs and 21.8 % more for accuracy 

when compared with TS Corpus frequencies. The Vuong test for nonnested models 

was used to test for statistical difference between models, (Vuong, 1989). The 

differences in performance of the two models were statistically significant for both RTs 

(z = −52.72. p < .001) and accuracy (z = −5.51, p < .001). When only the 77 words 

that were randomly sampled from the corpus were included in the analysis, the 

frequencies derived from the TS Corpus explained 13.8 % of the variance in RTs and 
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20.8% in accuracy. Word frequencies derived from the SUBTLEX-TR corpus 

explained 22% of the variance for RTs and 22.3 % of the variance for accuracy. The 

difference was significant for RTs (z = −11.1, p < .001) but not for accuracy (z = 1.6,p 

= .11). 

 

For the full set of words, CD measures calculated on the basis of SUBTLEX-TR 

accounted for 43.4% and 28.1% of the RT and accuracy variance, respectively. The 

difference between the SUBTLEX-TR CD and word frequency measures was 

significant for RTs (z = −23.89, p <.001)  and accuracy (z = −5.28, p <.001). When 

only randomly selected words were included in the analysis, CD explained 22.4% of 

the variance for RTs and 22.2 % for accuracy. This was not significantly different than 

the model based on subtitle word frequencies for RTs (z = −.84, p =.399) or for 

accuracy (z = .30, p = .76) 

 
3.4.5 ERROR ANALYSIS 
 

To further explore the influence of lexical and sublexical word properties on reading 

accuracy, an additional analysis of error rates was carried out. All 759 stimuli (370 

words, 389 nonwords) were reentered into the analysis. In order to satisfy conditions 

of normality, error scores were log-transformed after the addition of a constant of 0.01 

per participant per condition and then were subjected to a one-way ANOVA. There 

was no significant difference between the error scores for the lexicality condition (F<1). 

However, for words, length effects were statistically significant F(10,781) = 40.66, p 

<0.001, η2 = 0.342. To evaluate the nature of the difference observed, a post-hoc 

Bonferroni multiple comparisons were carried out. The results suggest that error rate 

for the 5, 6 and 7 letter conditions was significantly higher than shorter (2,3,4) and 

longer words (10,11,12). In a final consideration for the word data, frequency effects 

on error rate were examined. The one-way ANOVA revealed a significant effect of 

frequency on error rate F(6,497) = 50.15, p<0.001, η2 = 0.377. To evaluate the nature 

of the difference observed, post-hoc Bonferroni multiple comparisons were carried out. 

The results suggest that the error rate for low-frequency words was significantly higher 

than for high-frequency words. 
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TABLE 14:P-VALUES OF POST-HOC MULTIPLE COMPARISONS OF LENGTH BY ERROR RATE (BONFERRONI 
ADJUSTED) 

 
2 3 4 5 6 7 8 9 10 11 

3 0.004 - - - - - - - - - 

4 0.009 <0.001 - - - - - - - - 

5 <0.001 <0.001 0.009 - - - - - - - 

6 <0.001 <0.001 0.045 1.000 - - - - - - 

7 <0.001 <0.001 1.000 0.230 0.821 - - - - - 

8 0.240 <0.001 1.000 <0.001 0.001 1.000 - - - - 

9 1.000 <0.001 1.000 <0.001 <0.001 0.807 1.000 - - - 

10 0.058 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 - - 

11 <0.001 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.0 - 

12 0.017 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.0 1.0 

Bold indicates significance at 0.05 

 
FIGURE 11: ERROR RATE (LOG TRANSFORMED) BY WORD LENGTH. HIGHER VALUES INDICATE HIGHER ERROR 

RATES. BLACK LINE DENOTES MEAN ACROSS CONDITIONS. 

TABLE 15: P-VALUES OF POST-HOC MULTIPLE COMPARISONS OF FREQUENCY BY ERROR RATE (BONFERRONI) 

 
1 2 3 4 5 6 

2 <0.001 - - - - - 

3 <0.001 1.00 - - - - 

4 <0.001 1.00 1.00 - - - 

5 <0.001 <0.001 <0.001 <0.001 - - 

6 <0.001 <0.001 <0.001 <0.001 1.00 - 

7 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
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FIGURE 12: ERROR RATE (LOG TRANSFORMED) BY WORD FREQUENCY. HIGHER VALUES INDICATE HIGHER ERROR 

RATES. BLACK LINE DENOTES MEAN ACROSS CONDITIONS. 

An identical analysis of nonword error rates was also carried out. For nonwords, length 

effects were statistically significant F(10,781) = 40.66, p <0.001 η2 = 0.225. To 

evaluate the nature of the difference observed, a post-hoc Bonferroni multiple 

comparisons were carried out. The results suggest that error rate for the 5, 6 and 7 

letter conditions was significantly higher than shorter (2,3,4) and longer words 

(10,11,12). 
 

TABLE 16: : P-VALUES OF POST-HOC MULTIPLE COMPARISONS OF NONWORD LENGTH BY ERROR RATE 
(BONFERRONI) 

 
2 3 4 5 6 7 8 9 10 11 

3 <0.001 - - - - - - - - - 

4 <0.001 1.00 - - - - - - - - 

5 <0.001 0.26 1.00 - - - - - - - 

6 <0.001 1.00 1.00 0.46 - - - - - - 

7 <0.001 1.00 1.00 0.13 1.00 - - - - - 

8 <0.001 1.00 1.00 0.02 1.00 1.00 - - - - 

9 <0.001 1.00 0.10 <0.001 1.00 1.00 1.00 - - - 

10 <0.001 1.00 0.65 <0.001 1.00 1.00 1.00 1.00 - - 

11 0.11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.05 <0.001 - 

12 0.22 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.02 <0.001 <0.001 
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FIGURE 13: ERROR RATE (LOG TRANSFORMED) BY NONWORD LENGTH. HIGHER VALUES INDICATE HIGHER ERROR 

RATES. BLACK LINE DENOTES MEAN ACROSS CONDITIONS. 

 

3.4.6 DISCUSSION 
 
The current validation study found a distinct advantage for SUBTLEX-TR word 

frequencies over word frequencies derived from the TS Corpus. The observed 

differences in the captured variance were greater when divergent frequency estimates 

were incorporated into the analysis. With reference to the RT data, the advantage of 

the SUBTLEX-TR corpus remained statistically significant even when only the random 

sampled words were used. The results further suggest that the SUBTLEX-TR derived 

word frequencies were the more balanced of the frequency measures in that the lexical 

decision RTs are more in line with the predictions from SUBTLEX-TR compared with 

the TS corpus. Additionally, the TS Corpus frequencies appear to underestimate RTs 

for words that have a much lower occurrence in SUBTLEX-TR. This finding has been 

proposed to be indicative that the TS Corpus has inflated frequency estimates for 

these words (Brysbaert & New, 2009). Given the transparent nature of the Turkish 

orthography, the word frequency effects reported above are rather remarkable as 

transparent orthographies are considered to be less sensitive to word frequency 

effects (Cuetos, Glez-Nosti, Barbon, & Brysbaert, 2012). 
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In contrast to all other studies of word frequency databases derived from subtitles, the 

current study found that CD measures accounted for less variance than SUBTLEX-

TR word frequencies though this difference disappeared when only the randomly 

selected words were considered. The high degree of correlation between the two 

measures makes interpretation of this finding difficult though it does not diminish the 

importance of both word frequency and contextual diversity in word reading studies. 

 

The analysis of error rate yielded some interesting findings. Whilst a lexicality effect 

was absent, there was a significant effect of length on both words and nonword error 

rates. In addition, a significant effect of frequency was found for words. The pattern of 

error rates for both word and nonword length conditions were similar in that letter 

strings with 4, 5 and 6 letters produced a higher number of errors than for the other 

length conditions. Interestingly, very long letter strings had significantly lower error 

rates than medium length letter strings suggesting a well-developed visual recognition 

system to accommodate for the agglutinative nature of Turkish orthography. 

3.5 VALIDATION OF SUBTLEX-TR-CHILD 
 

The creation and validation of a new normative children’s database for use in Turkish 

represents an important and much-needed direction in the literature. Even though 

lexical decision data were not collected for the following validation study, the single 

word naming latency data reported in Chapter 4 was used to explore the potential 

validity and use of SUBTLEX-TR-Child. It is widely reported in the literature that single 

word naming studies typically account for less variance than lexical decision tasks. 

However, as this was a first of its kind exploration of new methods for the creation of 

a lexical database for use with Turkish-speaking children, it was decided to proceed 

with a similar analysis approach to the above adult data with caution in drawing 

conclusions. 

 
3.5.1 PARTICIPANTS 
 

130 primary school children’s reaction time and accuracy data from the study reported 

in Chapter 4 was used for subcorpus validation. The mean age (in months) was 120.02 

(SD = 15.18), and there were 71 females and 59 males. All children were first language 
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users of Turkish. Ethics approval was gained from both Eastern Mediterranean 

University and Brunel University London (see Appendix 3). A more in-depth overview 

of student demographics and recruitment strategy is offered in Chapter 4. 

 
 
3.5.2 MATERIALS 
 

The stimuli for Turkish test words were selected from Raman, Raman and Mertan 

(2014) and Turkish pseudowords were generated using the Turkish plugin  (Erten, 

Bozsahin, & Zeyrek, 2014)  of Wuggy, a multilingual pseudoword generator. The 40-

word stimulus list generated for real words were used as a template for generating the 

pseudowords. The parameters in Wuggy were set so that each real word generated 

ten candidate pseudowords that were matched for length and length of subsyllabic 

segments. Of the ten candidate pseudowords, the one that manifested the 

quantitatively smallest deviation from the reference word was selected for the 

pseudoword stimulus list. A breakdown of the stimuli used in this study can be seen 

below in Table 17. 
TABLE 17: WORD/ NONWORD CHARACTERISTICS OF CHILDREN’S DATA 

  Length Frequency AoA Familiarity 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Short Low 

Frequency  

3.30 (0.67) 14.84 (9.26) 2.25 (0.32) 4.66 (0.11) 

Short High 

Frequency  

2.70 (0.67) 144.75 (109.36) 1.80 (0.31) 4.74 (0.17) 

Short 

Psuedoword  

2.95 (0.68) - - - 

Long Low 

Frequency 

6.00 (0) 10.65 (3.93) 2.42 (0.42) 4.68 (0.22) 

Long High 

Frequency  

5.90 (0.39) 58.22 (51.83) 2.04 (0.39) 4.76 (0.12) 

Long 

Pseudoword  

5.95 (0.22) - - - 
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3.5.3 PROCEDURE 
 

For the single word reading task, children were presented with a series of 40 words 

and 40 pseudowords one at a time in a randomized order. Each word appeared in the 

centre of a computer screen for 3000 ms with an inter-stimulus interval (ISI) of 1500 

ms. The order of presentation was randomized for each child who was instructed to 

read aloud the words/ pseudowords as quickly as possible. A block of practice trials 

with five words and five pseudowords was presented for naming before the main 

experiment so that the children could familiarize themselves with the task, generally, 

and with the notion on pseudowords, specifically. Stimuli presentation and response 

recording were controlled by DMDX software (Forster & Forster, 2003). 

 

3.5.4 RESULTS 
 

Trials that were under 250ms (17) or over 3000ms (134) were considered as outliers 

and removed from the dataset. For the 40 words, the mean RT was 1007.94 (SD = 

345.3), and the mean accuracy was .97 (SD = .05). For nonwords, the mean RT was 

1234.11 (SD = 432.39), and the mean accuracy was .87 (SD = .15). In order to 

evaluate the internal consistency of RT and accuracy data, split-half correlations for 

100 random splits of the data across participants was calculated. The resulting 

correlations were corrected with the Spearman-Brown prediction formula (Brown, 

1910; Spearman,1910), giving average corrected reliability of .97 for RTs and .98  for 

accuracy. 

 

Multiple regression analyses on accuracy and reaction time data were conducted to 

compare the proportion of variance accounted by the Turkish subtitle-word frequency 

measures (SUBTLEX-TR-child) with that accounted for by the written-word frequency 

provided by the CLC frequency measures. Zipf and Zipf2 frequencies were considered 

as predictors from the CLC and the SUBTLEX-TR databases. For SUBTLEX-TR, 

LOG10 and LOG102 from the CD measures were also provided. The percentage of 

the variance  of RT and accuracy explained (Adjusted R2) by each of the word 

frequency corpora as well as CD are summarised in Table 18 below. 
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TABLE 18: PERCENTAGES OF VARIANCE ACCOUNTED FOR BY THE VARIOUS FREQUENCY MEASURES 

Model 

 RT (% all 

words) 

 Accuracy (%; all 

words)  

Length + WF(CLC) + WF(CLC2) 2.7 25.2 

Length+ WF(SUB-TR) + WF(SUB-

TR2) 2.8 26.7 

Length + CD (SUB TR) + CD (SUB 

TR2) 2.7 22.6 

 

When all 40 words were included in the analysis, the CLC word frequencies explained 

2.7 % of the variance in RTs and 25.2 % of the variance in accuracy. Additionally, 

SUBTLEX-TR-child frequencies explained 2.8 % of the variance in RTs and 26.7 % in 

accuracy, which is 0.1 % more for RTs and 1.5 % more for accuracy when compared 

with CLC frequencies. In line with the approach adopted in the adult corpus 

comparison, the Vuong test for nonnested models was used to test for statistical 

difference between models, (Vuong, 1989). The differences in performance of the two 

models were not statistically significant for both RTs (z = 0.34 p = .74) and accuracy 

(z = 0.28, p =.78).  

 

For the full set of words, CD measures calculated on the basis of SUBTLEX-TR-child 

accounted for 2.7% and 22.6% of the RT and accuracy variance, respectively. The 

difference  between the SUBTLEX-TR-child CD and word frequency measures was 

nonsignificant for RTs (z = 0.70, p = .48)  and accuracy (z = 0.65, p =.51). 
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3.5.5 DISCUSSION 
 

In the current chapter, Turkish-speaking adult participants completed a Lexical 

Decision task in which they had to decide whether the displayed letter string was a 

Turkish word or not. The study found main effects of lexicality, length and 

neighbourhood size effects when looking at words and nonwords together. In addition, 

when only words were considered there were significant main effects of frequency, 

length, contextual diversity and neighbourhood size. In addition, a number of 

significant interaction effects were discovered and will be further discussed below. 

 

The lexicality effect is considered to be a marker of lexical reading (Pagliuca et al., 

2008) indicating that real words were recognised significantly faster than nonwords 

and has been previously been reported to be a reliable effect in word naming in Turkish 

(Raman, 2003). The findings of the current study contribute to previous findings in 

Turkish and underline the availability of the lexical route for reading in Turkish.  

 

Along with word length, word frequency measures appear to be the most important 

variables for the investigation of lexical decision tasks in Turkish. Word length effects 

are particularly interesting for Turkish, given the agglutinative nature of the writing 

system where extremely long words are possible and frequent (Goksel & Kerslake, 

2005). There appears to be an unspoken concencus amonst Turkish psycholinguistics 

that word length is an important variable but frequently is often used as a control 

variable rather than a variable of interest (e.g. Bilgin, 2016; Raman, 1999).  The word 

length effect in Turkish has previously been reported to have a small yet significant 

relationship with name agreement (Raman et al., 2014). In addition, small scale 

Masters studies have found word length effects on fixation duration in sentence 

reading (Eren, 2014) and eye movement control (Bozkurt, 2017). Therefore, the 

present study provides the most comprehensive evidence of a word length effect in 

Turkish psycholinguistic research and the first concerning lexical decision tasks. The 

presence of a word length effect is taken as evidence of the serial nature of the 

sublexical route in reading . Further to this, there was evidence of a length by lexicality 

interaction on lexical decision accuracy data. The smaller effect of length on words 

than on nonwords implies that the parallel letter processes used for whole-word 
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reading are different from those used for sublexical and that both lexical and sublexical 

procedures are available to Turkish adults (Weekes, 1997).  

 

Concerning neighbourhood size, as measured by OLD20, the current study found  that 

RTs for higher OLD20 words were shorter than lower OLD20 words. It can be thus 

determined that OLD20 had an inhibitory effect on Turkish lexical decision tasks (Erten 

et al., 2014). This is perhaps reflective of the language’s rich agglutinating morphology 

which results in the presence of large families of words that share the same stem. 

Other interesting interactions were also observed that highlight the possibly mediation 

of lexicality and length effects by neighbourhood size in particular. In terms of the 

significant lexicality by neighbourhood size effect found in the current study, stronger 

differential neighbourhood effects on words (inhibitory) than nonword (facilitory) were 

found. This finding lends support to the position that challenges lexical accounts for 

orthographic neighborhood size effects (e.g. Fiebach et al., 2007). The significant 

length by neighbourhood size interaction lends further support to the above finding in 

that short letter strings with higher neighbourhood sizes (both words and nonwords) 

were recognised with lower accuracy than other conditions. 

  

The significant word frequency effect, found in this chapter, has previously been 

reported in a number of studies in Turkish-speaking adults (Raman, 1999; 2003). Word 

frequency effects are also thought to be reflective of lexical processes and therefore 

adds further support to the availability of the lexical route for processing in Turkish. 

This finding, along with similar results in other trnsparent orthographies such as 

Spanish (Davies et al., 2013) and Italian (Burani et al., 2007) adds additional support 

to the universal hypothesis indicating that a lexical route is used, even considering the 

transparent nature of these orthographies. Furthmore, the significant interaction of 

frequency and contextual diversity was a particularly interesting and unique finding. 

The finding suggests that lower frequency words are particularly sensitive to the 

effects of contextual diversity in comparison to higher frequency words and may go 

some way to explain some of the null effect findings of contextual diversity in the 

analysis that followed. 
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The current validation study found a distinct advantage for SUBTLEX-TR word 

frequencies over word frequencies derived from the TS Corpus. The observed 

differences in captured variance were larger when stimuli with extremely divergent 

frequency estimates were incorporated into the analysis. With reference to the RT 

data, the advantage of the SUBTLEX-TR corpus remained statistically significant even 

when only the random sampled words were used. The results further suggest that the 

SUBTLEX-TR word frequencies are more balanced than the TS Corpus word 

frequencies: RTs for the three different groups of stimuli are in line with the predictions 

from SUBTLEX-TR. On the other hand, the TS Corpus frequencies seem to 

systematically underestimate RTs for words that have a much lower occurrence in 

SUBTLEX-TR. This could indicate that the TS Corpus has inflated frequency 

estimates for these words, of which most could be characterized as belonging to a 

very formal register. Additionally, given the transparent nature of the Turkish 

orthography, the word frequency effects reported above is rather remarkable as 

transparent orthographies are less sensitive to word frequency effects (Cuetos et al. 

2012). 

 

In contrast to all other studies of word frequency databases derived from subtitles, the 

current study found that CD measures accounted for less variance than SUBTLEX-

TR word frequencies though this difference disappeared when only the randomly 

selected words were considered. The high degree of correlation between the two 

measures makes interpretation of this finding difficult though it does not diminish the 

importance of both word frequency and contextual diversity in word reading studies. 

 

When considering the children’s data, there was no advantage of the SUBTLEX-TR-

child word frequencies over CLC word frequencies. This null finding also extends to 

children’s CD measures. The variance accounted for by the accuracy data is similar 

between children and adults though, regarding RTs, the children’s naming data 

accounted for significantly less variance than the adult lexical decision data. Possible 

interpretations of the above findings and future directions to extend the current 

investigations outlined in this chapter are considered below. 
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3.6 CONCLUSION AND FUTURE DIRECTIONS 
 

This chapter has introduced and validated SUBTLEX-TR, a new word frequency 

database for Turkish based on film and television subtitles. The lexical decision 

experiment carried out in this chapter has validated the usefulness of the new 

frequency measures by comparing them with estimates derived from TS Corpus. 

There was a large advantage of SUBTLEX-TR over TS Corpus when words for which 

estimates given by the two corpora differed most were used as stimuli. In contrast, 

when words were sampled randomly, the advantage became less pronounced though 

remained statistically significant.  

 

The findings of this chapter, along with the growing body of research into word 

frequency effects on visual word recognition, highlight the complex relationship 

between frequency measures derived from distinct corpora and human performance 

on psycholinguistic tasks such as lexical decision and reading aloud. The complex 

nature of the word frequency effect, therefore, raises methodological issues 

concerning stimuli selection as even mega study approaches can introduce bias in 

selecting words (e.g., Keuleers et al., 2010). For example, considering the negative 

correlation between word frequency and word length, any word length decision would 

influence word frequency measures. Further studies that carry out analyses across 

different sets of stimuli and for different languages are needed to explore these 

challenges fully. Lexical decision megastudies (Balota et al., 2007; Keuleers et 

al.,2010; Keuleers et al.,2011) provide a useful platform for such analyses to take 

place. Considering the current study, even with validation using a limited set of words, 

the results of the experiment suggest that both SUBTLEX-TR and TS Corpus are 

valuable sources of word frequency estimates. The SUBTLEX-TR corpus represents 

the first widely available subtitle derived word database for Turkish. The database 

provides frequency and contextual diversity measures based on Turkish language 

subtitles. It is anticipated that the SUBTLEX-TR corpus will be a valuable resource in 

future psycholinguistic investigation in Turkish. Later iterations of the SUBTLEX-TR 

will contain measures of Parts-of-Speech, CV type, lemma frequencies and initial 

phoneme and further validation will take place in the form of a lexical decision 

megastudy. New releases of the opensubtitles.org subtitle data are already underway 
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and provide the opportunity to update the current database. Additionally, Worldlex 

(Gimenes & New, 2016), previously mentioned in this chapter, comprises a subcorpus 

for Turkish containing 63.7M tokens and thus provides another excellent candidate for 

comparison with the new subtitle database. Another highly relevant aspect of the 

Worldlex database is that it also reports contextual diversity measures for each of its 

subcorpora which can also be used in future validation studies. 

 

The non-significant findings of the SUBTLEX-TR-child corpus in comparison to the 

CLC database, raises several important methodological issues regarding validation 

studies in children. Firstly, the small number of words used for this sub-investigation 

were not selected for their highly divergent estimates of word frequency and as such 

were highly correlated (r=0.69, p<.0001). In addition, the low variance captured for RT 

across the corpora suggests that naming tasks, particularly regarding children, are 

less informative than lexical decision tasks for use in validation studies. This finding is 

in line with previous frequency measure validation studies (Cuetos et al., 2012). 

Furthermore, these methodological issues may be compounded by the reduced 

sensitivity to frequency effects in transparent orthographies. With these limitations 

considered, the small non-significant findings of a SUBTLEX-TR-child advantage over 

the CLC word frequencies warrants further exploration taking into consideration the 

methodological issues stated above. 
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CHAPTER 4: THE DEVELOPMENT OF READING IN A HIGHLY 
TRANSPARENT ORTHOGRAPHY 

 

4.1 INTRODUCTION 
 

This section will offer an overview of the existent literature on reading development, 

and there is some overlap with previous literature reviews. However, it is important to 

state that this is a necessary reintroduction rather than mere repetition. Visual word 

recognition is considered to be one of the fundamental skills involved in reading and 

according to dual-route theories of reading (Coltheart, Curtis, Atkins, & Haller, 1993; 

Coltheart et al., 2001; Perry, Ziegler, & Zorzi, 2014), there are two available routes to 

reading: lexical (orthographic), or sublexical (phonological decoding). The lexical 

procedure is typically assessed by performance on reading high-frequency, irregular 

words that cannot be read using the sublexical procedure due to the presence of 

irregular grapheme-phoneme correspondences (GPC). Conversely, the sublexical 

procedure is primarily assessed by reading novel words, typically pseudowords that 

can only be decoded using GPC because they are absent from the mental lexicon. If 

the sublexical procedure is the dominant route, then effects of regularity (faster and/or 

more accurate processing of regular words than irregular words) and length (faster 

and/or more accurate processing of short letter-strings than long letter-strings) should 

be present. Alternatively, if the lexical procedure is the dominant route, then frequency 

(faster and/or more accurate processing of high-frequency words than low-frequency 

words) and lexicality (faster and/or more accurate processing of words than 

pseudowords) effects should be present. In the latter scenario, the effect of length 

should be less marked for words, and there should be no significant effect of regularity, 

at least for frequent words.  

 

For over a century, the question of how children learn to read remains a central 

endeavour in psychological research (e.g. Huey, 1900). As a consequence and as 

mentioned previously, several theoretical stage models of reading acquisition have 

been proposed that outline the stages of cognitive development in which learners are 

suggested to transition through in order to acquire the skill of reading (Ehri, 1991; Frith, 

1985; Gough & Hillinger, 1980; Marsh, Friedman, Welch, & Desberg, 1981). As 
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highlighted in the introduction, one of the major limitations of stage/phase models is 

that although the models are highly informative, they ultimately serve as a theoretical 

framework rather than as a set of falsifiable scientific hypotheses (Beech, 2005).   

 

Apart from a small number of learned words, it is presently accepted that during the 

initial stages of learning to read, children primarily make use of the sublexical 

procedure before a gradual transition toward the lexical procedure. Research that 

supports the above finding has been reported in English (Backman, Bruck, Hebert,& 

Seidenberg, 1984; Waters, Seidenberg, & Bruck, 1984), German (Wimmer & 

Hummer, 1990; Rau, Moeller, Landerl, 2014), French (Leybaert & Content, 1995; 

Sprenger-Charolles, Siegel, Béchennec, & Serniclaes, 2003; Sprenger-Charolles, 

Siegel, & Bonnet, 1998), Italian (Zoccolotti, de Luca, di Filippo, Judica, & Martelli, 

2009; Zoccolotti et al., 2005) Previous studies have shown that this period is 

considerably short in transparent orthographies such as Turkish, German, Italian, 

Spanish and Greek, where learning the regularities of the orthography is 

comparatively straightforward due to the unambiguous GPC mappings (Avdyli, 

Castejón, & Cuetos, 2014; Landerl, Wimmer, & Frith, 1997; Öney & Durgunoğlu, 

1997). These findings are largely in line with the Psycholinguistic Grain Size Theory 

(PGST; Ziegler and Goswami, 2005) in that the use of small grain sizes (i.e. 

phonemes) appears to be the salient feature in these languages. However, there is 

also a conflicting body of evidence that suggests that this is not necessarily the case. 

For example, Sebastian-Gallés and Parreño- Vacchiano (1995) report that 10-year-

old Spanish-speaking children made more lexicalizations than adults while reading 

pseudowords. The authors suggest that this is because children retain orthographic 

regularities in their memory and construct analogies to differentiate them (Sebastián-

Gallés & Parreño-Vacchiano, 1995). At that age, Arduino & Burani, (2004) propose 

that readers can alternate the decoding strategy with automatic access to the lexicon 

depending on the demands of the orthography. 

 

Further evidence for this finding comes from Davies, Cuetos, and González-Seijas 

(2007) who report that both routes are available to primary school-aged children as 

indicated by the presence of length, frequency and neighbourhood effects. Similar 

conclusions have been made from a number of studies of reading development in 

transparent orthographies such as Italian (Bates, Burani, D’Amico, & Barca, 2001) and 
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Turkish (Öney & Goldman, 1984). The following section will provide an overview of 

previous work carried out regarding reading development in Turkish-speaking children 

and skilled reading in Turkish-speaking adults. The design and implementation of a 

pilot study will be introduced, followed by the reporting of the main study and its 

findings. 

4.2 READING DEVELOPMENT IN TURKISH CHILDREN 
 

Studies that have been carried out examining reading development in Turkish-

speaking children have thus far been limited. The majority of said studies have 

measured phonological awareness skills in the context of highly accurate word and 

pseudoword reading in Turkish. For example, in one of the first cross-linguistic and 

Turkish language investigations, Öney and Goldman (1984) compared the 

pseudoword reading ability of Turkish and American schoolchildren and found that the 

Turkish-speaking children were both more accurate (94% vs 59%) and faster in the 1st 

grade. In a longitudinal follow up, both cohorts were reported to have reached ceiling 

level performance for accuracy at 3rd grade, but the Turkish-speaking cohort was 

reported to still be more fluent. These findings have been replicated several times in 

similar cohorts. For example, Öney, Peter, and Katz (1997) assessed changes in 

phonological mediation in word recognition in Turkish and American second and 5th 

graders as well as adults. The authors report a greater phonological activation in 

Turkish than in English at all levels of reading skill as well as a stronger effect on 

younger than on older readers.  

 

Furthermore, Öney and Durgunoğlu (1997) carried out a longitudinal investigation of 

reading development in Turkish by following 30 children through grade 1 in which they 

were tested three times in October, February and May. By May (end of the first grade), 

reading and spelling performance was stated to be at ceiling level. In addition, Öney 

and Durgunoğlu (1997) report that letter knowledge, i.e., the ability to recognize letters 

was a better predictor of reading skills than phonological awareness. These findings 

were understood to be reflective of the limited time duration of effect for phonological 

awareness in Turkish, possibly being restricted to the first few months of literacy 

education (Öney & Durgunoğlu, 1997). The authors also found that, by the end of the 

school year, reading accuracy for word and pseudoword reading was highly correlated 
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(.92). Both the ceiling level findings and high correlation of word and pseudoword 

reading have been interpreted as being reflective of the near one-to-one GPC of 

Turkish. The findings of this study as well as findings from several other highly 

transparent alphabetic orthographies; Finnish  (Holopainen, Ahonen, & Lyytinen, 

2001) , Greek (Porpodas, 1999) and Italian (Cossu, 1999) are suggestive of the rapid 

development of phonological recoding skills in contrast with opaque orthographies 

such as English. This, in turn, is expected to further improve the levels of phonological 

awareness. Conversely, Babayiğit (2006) suggests that the ceiling effect findings 

coupled with the lack of control of verbal short-term memory and reading skills at the 

beginning of the grade, complicate the interpretation of the results. This being said, 

the influence of letter knowledge on early reading skills is largely in line with previous 

research (Blaiklock, 2004; Caravolas et al., 2001; de Jong & van der Leij, 1999). 

 

Another more recent study comparing Turkish with English found that Turkish-

speaking children could manipulate syllables more accurately earlier in a syllable-

tapping task than English-speaking children  (Oktay & Aktan, 2002) . Oktay and Aktan 

(2002) suggest that this is due to Turkish words having a well-defined syllabic structure 

as well as a low number of possible syllable types. In a phoneme deletion task, the 

Turkish-speaking children performed more accurately with the authors suggesting that 

this is due to the presence of strong vowel harmony, which requires that morphemes 

change to match the nature of the preceding vowel. It is posited that such manipulation 

may enable Turkish-speaking children to identify individual phonemes more quickly 

and accurately. Moreover, Durgunoğlu and Öney (1999) reported 94% accuracy in a 

syllable counting task and 67% accuracy in a phoneme-counting task for Turkish pre-

schoolers. The authors postulate that the well-defined syllable structure and highly 

suffixed morphology of Turkish permits children to manipulate syllables and as well as 

final phonemes, with ease (Peynircioglu, Durgunoğlu, & Öney-Kusefoglu, 1996). More 

recently, Babayiğit and Stainthorp (2007) assessed the role of phonological 

awareness and verbal STM in early reading skills of 56 Turkish-speaking preschoolers 

in a longitudinal study, following the children from preschool to Grade 2. Their findings 

lend support to the longitudinal correlation of preschool phonological short-term 

memory skills on subsequent reading development. However, the study failed to 

replicate the well-detected influence of phonological awareness on early literacy 

development. The authors offered two possible explanations of the unexpected 
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findings. The first was that the extreme transparency of the Turkish orthography might 

not impact reading fluency by the end of Grade-1, and the second was possible 

methodological limitations related to the research paradigm. In a similar investigation, 

Babayiğit and Stainthorp (2010) examined the role of phonological and grammatical 

awareness as well as RAN (rapid automatized naming) and verbal STM in the 

development of reading and spelling skills. Grammatical awareness may be described 

as the ability to process the morphological and syntactic structures of a spoken 

language and is thought to aid contextual word recognition as opposed to single word 

recognition. The study found that RAN was the most powerful longitudinal predictor of 

reading speed and that phonological awareness was found to reliably predict spelling 

skills. Furthermore, Babayiğit and Stainthorp (2011) carried out a longitudinal 

investigation of reading fluency and comprehension using measures of phonological 

awareness, RAN, vocabulary, listening comprehension, and working memory. By 

following, children from second and fourth grades into third and fifth grades, 

respectively, the authors report similar findings to their previous work in that RAN was 

a strong predictor of reading fluency, and that phonological awareness was the 

strongest predictor of spelling. Although the authors use of a composite measure of 

reading fluency (made up of word lists and narrative text) is a valid approach to the 

investigation of reading in transparent orthographies, the use of a computerized, 

discrete trial, test method to examine visual word recognition would facilitate further 

fine-grained statistical analysis (Davies, Cuetos, & Glez-Seijas, 2007). 

 

To summarize, the limited research into the development of reading skills in Turkish 

have been highly informative with regards to the rapid development of phonological 

awareness skills, which in turn enhances the development of reading ability in highly 

transparent orthographies. To the best of the author’s knowledge, to date, there has 

only been one study to incorporate speed of processing, as measured by RAN as a 

predictor variable of reading ability. Beyond this, there is little evidence of more 

comprehensive investigations into visual word recognition and reading skill 

development in Turkish-speaking children. Further still, there are no reports of 

developmental dyslexia in the literature. This gap in the literature, along with the 

methodological concerns of previous studies motivates the current study. Before 

discussing the development of the pilot investigation, the following section will aim to 

provide an overview of recent psycholinguistic research regarding visual word 
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recognition studies that have been conducted in adults as an insightful contribution to 

reading development in Turkish. 

4.3 SKILLED READING IN TURKISH ADULTS 
 

Similar to the literature in reading development in Turkish, to date, there has been 

limited investigation into skilled reading in Turkish adults. The doctoral research 

carried out by Öney (1990) is perhaps the earliest attempt at exploring the processes 

involved in skilled reading in Turkish. In this study, participants undertook both word 

naming and lexical decision tasks in which they were presented with three types of 

sentences (contextually consistent, inconsistent or neutral words) and had to respond 

to the preceding target words in order to investigate semantic priming and sentence-

context effects. Öney (1990) reported that both word naming and lexical decision were 

facilitated by consistent, contextual words, whereas inconsistent context words 

inhibited naming. The overall pattern of results was suggested to be indicative that 

Turkish supports a substantial reliance on phonologically analytic strategy, i.e., the 

sublexical route in word recognition. However, in her doctoral thesis, I.Raman (1999) 

contended that if Turkish readers relied solely on the sublexical route, there is no 

reason to expect a significant semantic priming effect in naming. Furthermore, the 

finding of a reliable frequency effect from skilled adult readers in Turkish indicated that 

even readers of completely transparent orthographies make primary use of the lexical 

route (I.Raman, Baluch & Sneddon, 1996). As stated previously, this would suggest 

that during literacy development, there must be a shift from nonlexical to lexical 

reading strategies. In addition to this, I.Raman, Baluch, & Besner (2004) propose a 

model in which both lexical and nonlexical processing appears to be in parallel, 

interactive and equally automated for word naming in Turkish. In a similar line of work 

in Italian, Pagliuca, Arduino, Barca, and Burani, (2008) reported the presence of 

lexicality effects which is thought to be indicative of a primary reliance on the lexical 

route for reading aloud.          

 

Recently, I.Raman (2011) investigated the degree to which age of acquisition (AoA) 

would influence dyslexic adults in word and picture naming in comparison to non-

dyslexic controls in the transparent orthography of Turkish. The results of the study 

found that participants with dyslexia performed considerably slower than non-dyslexic 
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controls in both the word and the picture naming tasks. One of the main findings of 

this investigation was that the overall error rates were not significantly different 

between reading impaired and typical reading participants and both groups performed 

close to ceiling level. With respect to this, word reading accuracy is considered a poor 

indicator in transparent orthographies at least where developmental dyslexia is 

concerned. Ultimately, very low error rates may be indicative of a speed-accuracy 

trade-off in which performance is compromised in favour of accuracy rather than speed 

(MacKay, 1982). 

4.4 A NOTE OF THE TURKISH CYPRIOT EDUCATION SYSTEM 
 

The Turkish Cypriot education system has gone through substantial changes over the 

past decade. The most recent iteration (2013) can be broadly defined as being made 

up of five parts:  

1. Preschool – Children aged 4-6 (Non-compulsory) 

2. Primary - Children aged 7-12 

3. Secondary Junior – Adolescents aged 13-15 

4. High School- Adolescents aged 16-17 

5. University – 18+ 

 

Since 1995, the rate of schooling in North Cyprus has been 100%. In addition, all 

public primary, secondary and high schools are free, compulsory and maintained by 

the Ministry of National Education and Culture. According to the Education Statistical 

Yearbook (2019), the student-teacher ratio for public pre-primary and primary schools 

are 14.5 and 21.4, respectively. The total number of students across the island in pre-

primary and primary education are 7360 and 19861 respectively.  

 

In a similar vein to other studies in Turkish reading, the number of studies on early 

literacy education in Northern Cyprus is low. In a comprehensive investigation of 

teacher’s views of primary literacy education in Northern Cyprus, Babayiğit and 

Konedralı (2007) report that nearly two-thirds (64%) of Grade 1 teachers use an 

eclectic method of reading instruction whereas 25% use the whole-language method. 

It is further reported that there was tremendous support (94%) for the use of a phonics-

type approach in reading instruction. In addition, Kargın, Güldenoğlu & Ergül (2017) 
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report that Turkish preschoolers develop a superior vocabulary than phonological 

awareness, letter identification and listening comprehension skills. The rationale for 

this, in their view, is that preschool teachers’ negative beliefs about imparting early 

literacy skills such as letter identification or phonics teaching may be a contributing 

factor to the poor performance of young preschoolers on phonological awareness, and 

letter identification tasks. The following section will describe the theoretical 

foundations used in the development of a battery of tests to evaluate word decoding 

ability in Turkish-speaking children. 

4.5 THE PILOT STUDY 
 

The aim of the pilot study is driven, in part, by the need to address the lack of reports 

as well as methodological limitations in the relevant literature on Turkish reading 

development. The development of a battery of tests to measure the impact of several 

cognitive constructs on word decoding ability began as an attempt to offer a more 

systematic and comprehensive overview of reading development in Turkish-speaking 

children. Thus, the over-arching aim of the pilot will be to establish if the battery of 

tests and stimuli proposed in this study is appropriate for the psycholinguistic 

investigation of Turkish-speaking children who are in the early stages of reading 

development.      

 

Although there has been important work carried out in the investigation of Turkish 

reading development (e.g., Durgunoğlu & Öney, 1999; Öney & Durgunoğlu, 1997)), 

there has been minimal research conducted on the simultaneous influence of 

cognitive, metalinguistic and linguistic processing skills that may influence Turkish-

speaking children who are learning to read.  

 

4.5.1 BATTERY OF TESTS 
 

Briefly, tests were derived from existing measures found in the literature in other 

orthographies and were carefully constructed in order to overcome potential 

methodological issues and also avoid copyright infringement. The exception to this 

approach was with regard to non-verbal IQ, which was measured by the widely used 
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Raven’s Colored Progressive Matrices (Raven, 1986). The eight cognitive constructs 

explored by the battery were: 

 

i) Reading accuracy and speed in single-word naming  

ii) phonological awareness (PA),  

iii) Rapid Automatized Naming (RAN),  

iv) Visual Attention (VA) Span,  

v) Non-verbal IQ  

vi) Phonological short-term memory (PSTM),  

vii) Visuo-spatial short-term memory (VSSTM) 

viii) Working memory.  

 

Finally, in addition to the psycholinguistic investigation carried out, the results will 

provide an insight into the validity of the conceptual representation of the tests 

developed as well as the internal reliability of the scales themselves. As described 

previously, the following section will provide a detailed account of the process in 

designing the battery of tests for the investigation of reading development in Turkish-

speaking children. The tests selected for this study include:  

 

Single Word Reading (SWR) (Word/nonword naming) 

 

Visual Word Recognition is considered to be the first step of the reading process. The 

vast majority of studies explore the association between reading ability and reading 

time within the framework of accurate reading performance. Moreover, SWR tests are 

commonly utilized to identify children with reading impairments (Wydell & Butterworth, 

1999) . In order to investigate universal and language-specific aspects of typical and 

atypical reading development, Ziegler and colleagues (2003a) state that it is essential 

to factor in theoretically critical marker effects of the reading process, such as lexicality 

and length effects. To this end, it was decided that lexicality (word vs pseudoword), 

length (short vs long) as well as frequency (low vs high) effects would be explored 

whilst controlling for Age-of-Acquisition (AoA) (Morrison & Ellis, 2000)  and 

orthographic familiarity effects, in which familiar words are named faster than the 

unfamiliar words  (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004) . 
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Pseudowords were matched with words for length and number of syllables as well as 

being phonologically legal.   

 

The stimulus for Turkish test words was selected from I.Raman, E.Raman and Mertan 

(2014) and Turkish pseudowords were generated using the Turkish plugin  (Erten, 

Bozsahin, & Zeyrek, 2014)  of Wuggy, a multilingual pseudoword generator  (Keuleers 

& Brysbaert, 2010) . The justification for using the above stimulus sets is as follows: 

At the time of designing the experiment, the database of I.Raman, E.Raman and 

Mertan (2014) was the only such resource available in Turkish that had both AoA and 

familiarity ratings freely available. Words were selected on the basis that they were 

acquired early on in development as well as representing highly familiar concepts. 

Reliable AoA effects have been previously reported in Turkish-speaking adults as well 

as an adult dyslexic cohort (I.Raman, 2006; 2011). Of note, the Turkish dyslexic adults 

were defined by their distribution of reaction times and error rates when compared to 

age-matched controls as part of a wider study and may not be indicative of true 

dyslexic status.  

 

With regards to pseudoword generation, previous studies in Turkish children have 

used manual methods of pseudoword selection by which real words are modified by 

one or two letters with other letters legal to the language’s rules. This potentially 

introduces an experimenter bias into the research design based on the implicit 

knowledge regarding the research’s hypothesis (Balota et al., 2007). For the purpose 

of this study, in order to overcome these methodological limitations, pseudowords 

were generated in the Turkish version of Wuggy using a semi-automated approach. A 

similar procedure was recently utilized on a lexical decision task in Turkish-speaking 

adults (Erten et al., 2014). Firstly, the 40-word stimulus list generated for real words 

were used as a template for generating the pseudowords. The parameters in Wuggy 

were set so that each real word generated ten candidate pseudowords that were 

matched for length and length of subsyllabic segments. Of the ten candidate 

pseudowords, the one that manifested the quantitatively smallest deviation from the 

reference word was selected for the pseudoword stimulus list. Table 19 provides an 

overview of the words and pseudowords used in the pilot investigation. 
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TABLE 19: DESCRIPTIVE CHARACTERISTICS OF THE SIX GROUPS OF WORDS AND PSUEDOWORDS CREATED BY 
MANIPULATIONS OF LEXICALITY, LENGTH AND FREQUENCY.  

  Length Frequency AoA Familiarity 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Short Low 

Frequency  

3.30 (0.67) 14.84 (9.26)  2.25 (0.32) 4.66 (0.11) 

Short High 

Frequency  

2.70 (0.67) 144.75 

(109.36) 

1.80 (0.31) 4.74 (0.17) 

Short Psuedoword  2.95 (0.68) - - - 

Long Low 

Frequency 

6.00 (0) 10.65 (3.93) 2.42 (0.42) 4.68 (0.22) 

Long High 

Frequency  

5.90 (0.39) 58.22 (51.83) 2.04 (0.39) 4.76 (0.12) 

Long Pseudoword  5.95 (0.22) - - - 

            

           

Methods 

 

Stimuli & Procedure for Word Reading Task: 

For the single word reading task, children were presented a series of 40 words and 40 

pseudowords one at a time in a randomized order. Each stimulus appeared in the 

centre of a computer screen for 2500 ms with an inter-stimulus interval (ISI) of 

1500ms. The order of presentation was randomized for each child who was instructed 

to read aloud the words/ pseudowords as quickly and accurately as possible. A block 

of practice trials with five words and five pseudowords was presented for naming prior 

to the main experiment so that the children could familiarize themselves with the task, 

generally, and with the notion on pseudowords, specifically.  

 

The SuperLab 5 (Cedrus Corporation, San Pedro, CA) software package was used to 

control the experiment and to collect naming latencies via a voice-activated 

microphone (SV-1) which has a 1ms resolution.  Despite the frequent use of voice-

keys in psycholinguistic research, there are a number of concerns that have been 

voiced regarding their use (Rastle & Davis, 2002) . The major concern is that voice-

keys are considered to be particularly inaccurate in detecting acoustic onsets. Another 
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concern is that accuracy varies significantly across onset phonemes  (Duyck et al., 

2008; Kessler, Treiman, & Mullennix, 2002) . The resulting effect is bias data or the 

production of contradictory results. In order to overcome these limitations of voice-key 

use, a USB microphone also collected responses in order to measure accuracy and 

speed offline using Praat 5.4 speech signal analysis software (URL: www.praat.org)

       

Stimuli & Procedure for Phonological Awareness Tasks: 

Phonological awareness is a complex and multifaceted skill which refers to an 

individual’s understanding of, and ability to manipulate the sound structure of oral 

language and is thought to be central in reading development. Due to the weight of 

evidence regarding the relationship of phonological awareness with reading ability 

across orthographies  (Castles & Friedmann, 2014; Goswami & Bryant, 1990; 

Janssen, Bosman, & Leseman, 2013) , it was decided that for the pilot investigation, 

three tests of phonological awareness would be administered. Also, the rapid 

development of phonological awareness in transparent orthographies, including 

Turkish  (Durgunoğlu & Öney, 1999; Öney & Durgunoğlu, 1997)  provided 

supplementary motivation to select three tests of phonological awareness that 

increased with difficulty and thus provide an opportunity to investigate the contribution 

of phonological awareness without the consequence of ceiling effects observed in 

previous studies. Finally, the simple syllabic structure of Turkish, similar to other highly 

transparent alphabetic orthographies of Spanish and Italian, stipulates that when 

syllables are CV units, onsets, rimes and phonemes share a degree of equivalency 

(Goswami, 2008). With this in mind, the two tests selected were at the phonemic level, 

and a third test was selected at the onset-rime level.  

 

Phoneme Deletion 

Phoneme deletion tasks have a long and established use within the reading 

development literature, particularly when considering that deficits in phonemic 

awareness are frequently cited as the most influential factor in an individual’s 

probability of reading failure, especially in opaque alphabetic orthographies  (e.g., 

Shaywitz & Shaywitz, 2003; Ziegler & Goswami, 2005) . The phoneme deletion task 

requested that the child pronounce a sound sequence after deleting a specified sound 

(e.g. say “/kedi/ meaning “cat” without /k/”). 10 words were selected from I.Raman et 

al., (2014) on the basis that they had not been used in the previous reading task. For 
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the Phoneme deletion task, participants were asked to delete a specified phoneme 

from a spoken word. Both the initial and final phoneme locations were manipulated, 

i.e., 10 words (5 initial, 5 final). Furthermore, the resulting sound sequence following 

deletion was always a pseudoword. The number of correct responses out of 10 was 

scored. 

 

Phonemic Segmentation 

Phoneme segmentation is the ability to segment spoken words into constituent 

phonemes. With regards to development, the ability to successfully perform 

segmentation tasks shifts from the ability to segment at the onset-rime level to 

phonemic segmentation (Savage & Carless, 2005) . To this end, 20 words were 

selected from I.Raman, E.Raman and Mertan (2014) on the basis that they had not 

been used in the reading tasks. In a similar fashion to the Yopp-Singer Test of 

Phonemic Segmentation (Yopp, 1988), participants were instructed to sound out the 

letters of a given word. To confirm that a child had identified the words correctly, 

he/she was requested to repeat each word before segmenting it into phonemes. 

Before starting the experiment, the child was shown a practice item and the process 

of segmentation was explained and demonstrated to them. Participants were then 

presented with 20 such words with varying length. The raw score of this task was 

calculated as the number of correct responses out of 20.  

 

Spoonerism. 

A spoonerism task (e.g., Perin, 1983) requires exchanging the first phoneme of two 

words pronounced by the experimenter one after the other to form two new words or 

pseudowords (e.g., /car-park/ -> /par-cark/). Spoonerism tasks are assumed to tap 

into the ability to hold and manipulate phonological information. Additionally, 

segmentation in a spoonerism is at the level of onset and rime and not at the phonemic 

level  (Landerl & Wimmer, 2000) . Thus, when considering tasks demands, the 

spoonerism task is considered to be a difficult task. To this end, 20 pairs (40 words) 

were selected from (I.Raman et al., 2014) on the basis that they had not been used in 

the reading, phoneme deletion and segmentation tasks. The experimenter provided 

an example before the task began in order to confirm that the child understood the 

task requirements. In order to score the spoonerism task, each correctly named word-

pair was awarded two points with one point given for each new pseudoword correctly 
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exchanged. 

 

Phonological Automatization - Rapid Automatized Naming (RAN) (Rudel & Denckla 

(1976) 

Though there is much debate within the literature, it is generally agreed that RAN tasks 

can be regarded as an index of the retrieval speed of phonological information from 

memory (Wagner & Torgesen, 1987) . Recently, a number of studies have lent support 

to the double-deficit hypothesis  (Bowers & Wolf, 1993)  in which phonological 

awareness and RAN make independent and differential contributions to reading ability 

(Cronin, 2013; Wolff, 2014). Similarly, RAN is often cited as the best predictor of 

reading ability in highly transparent orthographies (Landerl et al., 2013; Moll et al., 

2014). For the current study, participants’ responses to objects, colours, numbers, and 

letters  (Denckla & Rudel, 1976c)  were measured using 50 items arranged in 5 rows 

of 10 items each. None of the five different token items for each subtest appeared 

consecutively on the same line. The overall time taken in seconds to process each 

subset was reported. 

 

Visual Attention Span (Ans, Carbonnel, & Valdois, 1998) 

Visual attention Span (VA Span) is described as the quantity of distinct visual elements 

that can be processed in parallel in a multi-element array (Ans, Carbonnel, & Valdois, 

1998). It is considered to be a measure of visual attention span capacity rather than a 

verbal STM task. Of interest to this thesis, is that there are no reports of VA Span in 

the Turkish literature. This merits further investigation as VA Span skills may be 

modulated by grapheme-to-phoneme consistency  (Bosse & Valdois, 2009a)  and as 

such, in accordance with the PGST  (Ziegler & Goswami, 2005) , the finer grain size 

found in highly transparent orthographies would translate to smaller VA Spans in 

children learning to read such orthographies.  

 

The methodology of the visual attention span tasks followed the exact procedure of 

the global report outlined by Bosse and Valdois (2009a). Briefly, stimuli were made up 

of 20 random five-letter strings (e.g., R H S D M) constructed from a selection of 10 

consonants (B, P, T, F, L, M, D, S, R, H). Each letter appeared a total of 10 times, 

twice in each position. In addition, letters were never repeated in a string, and the five-

consonant strings never matched the skeleton of a real word. Each trial began with 
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the presentation of a central fixation point for 200 ms, which was followed by a blank 

screen for 50 ms. A horizontally centred five-letter sequence was then presented on 

the fixation point for 200 ms. The participant was requested to name as many letters 

as possible immediately after they disappeared independently of position. The total 

number of correct letters named out of 100 was used as the measure for VA Span. 

 

Non-verbal IQ - Raven’s Coloured Progressive Matrices (RCPM) (Raven, 1986)  

In an attempt to quantify a measure of non-verbal intelligence in children, the 

experiment also required the completion of Raven’s Coloured Progressive Matrices 

(RCPM) (Raven, 1986) . Though widely used in the typical and atypical reading 

development literature, Goswami (2003) argues against the use of nonverbal IQ tests 

when they are the only matching measure used between dyslexics and controls. Whilst 

this reservation is valid, partly due to the functional nature of nonverbal IQ tests, 

measures used within a wider framework in which children are excluded from 

membership of dyslexic groups have demonstrated usefulness (Boets et al., 2010; 

Zoccolotti et al., 2005). The child version of the RCPM consisted of 36 coloured items 

in 3 sets (A, Ab, B), with 12 items per set. The items were a sequence of perceptual 

and conceptual matching exercises, and children had to complete the pattern by 

selecting one out of six possible pattern matches (Raven, 1986). The test required 

minimal verbal instructions, which were given in Turkish.  

 

Memory  

Phonological STM 

The phonological loop component of Baddeley’s Working Memory model (Baddeley, 

2003) is thought to reflect the storage and maintenance of written phonological 

sequences as an addition to speech stimuli. Furthermore, there is some evidence that 

suggests that tasks that measure short-term phonological memory are moderately 

correlated with individual differences associated with reading skill  (Gathercole & 

Baddeley, 1993) . Traditionally, digit span tasks are utilized in the assessment of 

developmental dyslexia in order to measure a child’s ability to store verbal information 

(Everatt et al., 2010). It has further been suggested that digit span measures of 

phonological short-term memory may be constrained by the pure individual capacity 

of the phonological loop in addition to more general working memory limitations  

(Wagner & Muse, 2012) . For the pilot study, participants were verbally presented with 
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a series of random digits (e.g., '8, 3, 4'). The lists of numbers range from 2 to 8 

numbers long.   

 

Using SuperLab 5, after the pre-recorded verbal presentation of a list, the participant 

was required to immediately repeat them back in the order they were presented by the 

experimenter. If they did this successfully, they were given a second list of the same 

length, progressing and subsequently moving onto longer lists (e.g., '9, 2, 4, 0'). The 

test was terminated when the child failed to correctly repeat both of the lists of a given 

length. The length of the longest list a participant recalled was scored as their digit 

span.  

 

Visuo-spatial STM (Della Sala, Gray, Baddeley, Allamano, & Wilson, 1999) 

It is currently considered that non-verbal short-term memory is made up of discrete 

visual and spatial/sequential components. The visual subcomponent of the previously 

mentioned visuospatial sketchpad is thought to be responsible for the binding of static 

visuo-spatial information. With respect to this, the Visual Patterns Test  (Della Sala, 

Gray, Baddeley, Allamano, & Wilson, 1999) is considered to be a measure of 

simultaneous visual working memory  (Trick, Mutreja, & Hunt, 2012) . Moreover, the 

role of visuospatial memory in reading development has received little attention 

(Bacon, Parmentier, & Barr, 2013) . A study carried out by Gathercole and colleagues 

(2006) found that visuospatial short-term memory scores were low in dyslexic children 

and reported correlations with measures of complex memory, phonological processing 

and performance IQ.   

 

For the pilot a paradigm similar to the Visual Patterns Test (VPT)  (Della Sala, Gray, 

Baddeley, Allamano, & Wilson, 1999)  was designed taking into consideration the need 

to limit the use of verbal coding  (Brown, Forbes, & McConnell, 2006) . Briefly, children 

are shown a series of grids. In each grid, half the squares were filled in black while the 

remaining ones remained empty. The grids increased in size and thus complexity 

beginning with 4 squares (2 black), 6 squares (3 black) and so forth. The experiment 

was designed to tap into the visual aspects of non-verbal short-term memory whilst 

excluding the spatial-sequential component.  

 

The Visual STM task was completed using the SuperLab 5 software package. Each 
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pattern was presented to the participant for 3000 ms. The participant was then asked 

to reproduce the pattern by marking squares in an empty grid of the same size as the 

one bearing the pattern just presented. Each grid size represented a level, and each 

level had three differentially coded grids within it; in order to progress to the next level, 

children had to correctly code two of the three grids. The VSSTM score was calculated 

to be the level at which the child failed to progress. 

 

Working Memory (WM) (Baddeley & Logie, 1999) 

Working memory may be conceptualized as a processing resource of limited capacity, 

involved in the conservation of information whilst simultaneously processing the same 

or additional information  (Swanson, Xinhua, & Jerman, 2009) . With respect to reading 

development, tasks of working memory are frequently used as a predictor variable. It 

was decided, similar to other research in the literature, that a backward digit span task 

would be utilized as an index of working memory capacity. Complex memory span 

tasks are postulated to elevate demands on both on the central executive and the 

phonological loop  (Baddeley & Logie, 1999) .  However, it must be noted that there is 

considerable debate as to whether the backward digit span test is representational of 

WM or STM processes (Gathercole, Pickering, Ambridge, & Wearing, 2004).  Similar 

to the phonological STM task above, participants were verbally presented with a series 

of random digits (e.g., '8, 3, 4'). The lists of numbers range from 2 to 8 numbers long. 

In the Working memory task (backward digit-span task) the participant was required 

to reverse the order of the numbers. The length of the longest list a participant could 

recall was scored as their working memory span. 

 

Experimental Hypotheses 

H1: Beyond the first grade, word length and frequency effects will be evident for 

typically developing children in so far as longer words and less frequent words will 

take longer to name. This is thought to be reflective of both lexical and sublexical 

processes. 

 

H2: Word reading accuracy will be close to ceiling level. Word reading speed will be 

the best predictor of reading ability, particularly with reference to older children (who 

have reached ceiling level performance on word reading accuracy  (Wimmer & Schurz, 

2010) .  
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H3: In typically developing Turkish children, it is expected that there will also be a 

lexicality effect positing that words will be named faster than nonwords. This being 

said, it is also reasonable to postulate that the transparent nature of Turkish will also 

allow for the processing of nonwords with relative ease. In addition to this, a lexicality 

by length interaction effect would be expected, stipulating the availability of two routes 

of reading aloud in children learning to read a highly transparent orthography. 

 

H4: There will be a heterogeneous spread (large variance) in the manifestation of 

visual attention span and memory tasks that reflect individual differences in these 

underlying abilities. This should hold true for both typically developing children and 

dyslexics. This being said, it is expected that all cognitive measures would improve 

with age. 

 

The following section will provide an account of the application of the newly developed 

battery of tests in a pilot study by planning to  

i) measure the reliability of the constructs  

ii) to provide initial insights into word decoding skills in Turkish-speaking 

children based on the novel methodological design of the pilot study  

iii) to make further recommendations on how the battery can be improved for 

the main study. 

4.5.2 METHODS 
 

Participants 

Participants were 58 randomly selected Turkish-speaking children (Table 20) from 

Grade 2 and 5. Children were recruited from three mainstream primary schools in 

Famagusta, Cyprus after receiving backing from the Turkish Republic of Northern 

Cyprus Department of Primary Education. Informed assent and consent were obtained 

from all children and their parents. A further nine children who were originally recruited 

were removed from the study, seven due to technical issues1, one due to non-

compliance and one for requesting to be removed during the testing stage. This study 

 
1 The nature of technical difficulties and implications for future design of the methodology will be discussed in 
the final section of the pilot study. 
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was approved by the Brunel Psychology Research Ethics Committee (Appendix 4) 

and by the collaborating institution, namely the Eastern Mediterranean University’s 

Psychology Department.       

 

Children’s demographic information was obtained together with language use and 

familial history from parents using a questionnaire recently constructed for the purpose 

of this study. Acquiring a wide range of information regarding a child’s background is 

useful in developing individualized profiles that take into account factors such as 

language proficiency and familial environmental differences. An index of 

socioeconomic status (SES) for each child was derived from parental education level 

and was computed by the mean of the highest attained educational level of both 

parents rated on a 7-point scale. This approach is habitually utilized in the reading 

literature and is thought to be highly predictive of overall SES. The Edinburgh 

Handedness Inventory (Oldfield, 1971) was translated into Turkish in order to 

determine and control for handedness. All participants had normal or corrected-to-

normal vision and are all monolingual Turkish-speakers. Table 16 illustrate the 

characteristics of the pilot cohort. 

 
TABLE 20: CHARACTERISTICS OF THE PILOT COHORT BY GRADE. 

 
Grade 2 Grade 5 

N 27 31 

Sex [% girls] 56 45 
 

Mean SD Mean SD 

Age 

(Months) 

90.15 5.45 124.26 4.49 

SES (2.5-

6.5) 

4.18 1.29 3.93 0.73 

     

Handedness 21 RH 6 LH 28 RH 3 LH 

 

Procedure 

The battery of tests (described above) was carried out individually in a single session 

lasting approximately one hour in a quiet room within the children’s school during 

school hours. The experimenter and a trained research assistant conducted all testing. 
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The battery was presented as a fully computerized task with the exception of the 

Visuo-spatial short-term memory task in which children were required to write answers 

in a booklet with blank grids. Each session followed a fixed order of presentation 

beginning with Visual Short-term Memory, followed by RAN, VA Span, Single 

Word/Pseudoword naming, Raven’s CPM, Digit span (Forward and Backward) and 

ended with PA. Children were informed that they could take brief breaks between tasks 

but not during tasks. The exception to this was the single word/pseudoword reading 

task in which a break was built into the task design after children had reached the 

midpoint (40 words/ pseudowords) in order to avoid fatigue. 

 

Statistical Analysis Plan 

The data analysis approach for this pilot study was designed to address the previously 

stated research hypotheses. For each response of each participant for the single 

word/pseudoword reading task, reaction time (RT) was calculated from the onset of 

the stimulus until the onset of the response. Though this was a built-in measure of the 

SV-1 voice-activated key, each response was also checked off-line using the digital 

sound files recorded separately by the USB microphone. Furthermore, only RTs of 

correct responses were used to calculate the RT means. The digital sound files were 

also used to score accuracy and were reported as an overall percentage correct. With 

regards to error coding for the pseudowords, in line with previous research, a lenient 

error-coding criterion was adopted in which all phonologically plausible responses 

were considered correct  (Landerl, Wimmer, & Frith, 1997; Ziegler, Perry, Ma-Wyatt, 

Ladner, & Schulte-Körne, 2003b) .        

 

In order to gain valid results from the use of parametric tests, a common assumption 

is that the dependent and independent variables are approximately normally 

distributed. Transformations allow for data to be manipulated into a normal distribution. 

All raw scores with violations of normality were converted into z-scores within each 

grade level. It was anticipated that several variables would have highly skewed 

distributions, e.g., word reading accuracy and phoneme deletion as previously 

reported in transparent orthographies. When such distributions were detected, a 

ranking procedure was utilized prior to normalization (Landerl et al., 2012). Pearson's 

correlation was used to measure the strength of association between two continuous 
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variables, namely Reaction Time and Accuracy measures and the predictor variable 

scores.  

 

A series of multiple regressions were used to predict single word reaction time, a 

continuous dependent variable, given a number of independent variables. Multiple 

regression analysis was also utilised to offer an account of how much the independent 

variables can explain the variation of the dependent variable score. For the purpose 

of regression analysis, where several measures of a construct are measured, principal 

components analysis (PCA) was used to cluster cognitive skills (RAN, Memory and 

Phonological Awareness) into principal components. However, it is acknowledged that 

large sample sizes are required in order for a principal components analysis to 

produce a reliable result. Countless diverse guidelines have been suggested to 

calculate minimum numbers for reliable PCA that differ in terms of using either 

absolute sample size numbers or a multiple of the number of variables in the sample. 

Generally speaking, a minimum of 150 cases or 5 to 10 cases per variable has been 

recommended as a minimum sample size.  

 

The mixed ANOVA will be used to compare the mean differences between groups 

(between-subjects factor) that have been divided on three independent variables 

(within-subjects factor). For the purposes of this study, the three independent variables 

in question will be lexical status, length and frequency.  The central aim of a mixed 

ANOVA is to establish the presence or absence of an interaction between the two 

independent variables on the dependent variable. Statistical analysis for the pilot study 

was carried out using IBM SPSS Statistics 20. 
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4.5.3 RESULTS 
 

Reliability Analysis 

Before proceeding with planned comparisons, reliability analysis was conducted on all 

measures used in the battery. The resulting alpha coefficients are reported in Table 

21 (word/pseudoword tasks) and 22 (cognitive tasks) below. Cronbach’s α is 

considered to be an index measure of internal consistency with a measurement 

criterion of 0.7 and above being indicative of a reliable measurement tool (Nunnaly, 

1978). In line with this, the battery of tasks designed for this study (with the exception 

of the phonological awareness phoneme deletion task (0.66)) are considered reliable 

measures of their underlying constructs (0.72-0.96). Additionally, the word and 

nonword measures were also highly reliable (0.875-0.942). 

 
TABLE 21: ALPHA COEFFICIENTS OF WORD/ PSEUDO WORD NAMING TASKS. 

 
Short Long 

 
Low Freq High Freq Pseudoword Low Freq High Freq Pseudoword 

Cronbach’s 
α 

0.918 0.923 0.942 0.875 0.912 0.922 

N of items 10 10 20 10 10 20 

 
TABLE 22: ALPHA COEFFICIENTS OF COGNITIVE BATTERY TASKS 

Task RAN VA Span PA -Del PA- Seg PA – Spoon 
Cronbach’s α 0.84 0.96 0.66 0.79 0.92 

N of items 4 20 10 20 20 

Task PSTM VSTM WM RCPM 
 

Cronbach’s α 0.74 0.85 0.76 0.72 
 

N of items 8 27 7 36 
 

 

 

Descriptive 

Regarding Word/Pseudoword naming speed, and in line with the current literature 

(see Baayen & Milin, 2010; Rønneberg & Torrance, 2017), all outliers with a residual 

outside -/+2.5 SD from the mean reaction time for each condition and for each grade 

were removed, and a new mean was calculated. From Grade 2, there was one 

extreme outlier in the SNW reaction times. For Grade 5, there were 2 extreme outliers: 



 119 

1 in the Long Low Frequency and 1 in the Long High-Frequency group. Furthermore, 

there were 53 false triggers (1.5%) in naming (RT<350ms) and 177 (5%) incidences 

of a Non-Response, which were removed before accuracy for each condition was 

calculated. The descriptive statistics for non-verbal IQ, cognitive measures and 

reading skills by Grade are presented in Table 23. A preliminary examination of 

means and standard deviations of variables measured in this pilot suggested that, in 

general, there was a gradual development of these skills with age. Grade 5 students 

significantly outperformed second graders on all measures except for non-verbal IQ, 

phonological short-term memory and all but one (Long Low-Frequency Words) 

measures of single word/pseudoword reading accuracy. In general, Turkish-speaking 

children displayed a high degree of accuracy on the word/ pseudoword task 

regardless of grade and reached ceiling or near-ceiling levels of accuracy with the 

notable exception of long pseudowords. In contrast, all measures of reading speed 

were a particularly sensitive index of the variability in reading skill between the two 

different grades. 

 
TABLE 23: MEANS, STANDARD DEVIATIONS, KURTOSIS AND SKEWNESS OF INDIVIDUAL TESTS AS WELL AS T-
TESTS COMPARING MEANS ON TESTS BETWEEN GRADES. *DENOTES A SIGNIFICANT DIFFERENCE BETWEEN 
GRADES 

 
Grade 2 Grade 5 

  

 
Mean SD 

K
u
rt

o
si

s 

S
ke

w
n
e
ss

 Mean SD 

K
u
rt

o
si

s 

S
ke

w
n
e
ss

 t(56

) 

P 

       

Non-verbal IQ 

Max= 36 

21.30 4.47 -0.75 -0.4 23.35 4.07 1.94 0.51 1.8

4 

.72 

Reading 
          

SLF Accuracy 

(%) 

99.26 2.67 10.67 -3.45 99.35 2.50 12.72 -3.73 0.1

4 

.889 

Speed (ms) 1043 66.4

1 

-0.87 0.37 868 35.4

6 

-

0.856 

0.21 12.

77 

<.00

1* 

SHF Accuracy 98.52 6.02 21.31 -4.53 99.68 1.80 31.00 -5.57 1.0

2 

.311 

Speed 892 51.0

7 

2.84 0.59 716 50.5

7 

0.708 0.83 13.

16 

<.00

1* 

LLF Accuracy 95.93 9.31 8.28 -2.77 99.68 1.80 31.00 -5.57 2.2 .032 

* 
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Speed 1339 113.

2 

-0.34 0.21 1118 53.5

4 

-

0.103 

-0.66 9.7

4 

<.00

1* 

LHF Accuracy 95.21 9.75 4.84 -2.27 96.56 12.2

2 

25.91 -4.94 0.4

6 

.647 

Speed 1195 79.8

3 

0.86 -1.01 952 69.1

8 

0.512 0.79 12.

45 

<.00

1* 

SNW 

Accuracy 

92.76 6.27 -0.86 -0.4 91.82 9.96 5.37 -2.06 0.4

2 

.675 

Speed 1119 56.4

9 

-0.48 0.32 893 70.0

0 

-

0.796 

0.52 13.

44 

<.00

1* 

LNW 

Accuracy 

74.08 18.2

4 

5.03 -1.9 73.59 19.1

4 

-0.24 -0.72 0.1 .92 

Speed 1582 121.

01 

0.42 -0.22 1331 115.

50 

0.498 1.69 8.0

7 

<.00

1* 

RAN 
          

Objects (secs) 67.04 14.8

6 

-0.56 0.72 53.98 10.1

4 

0.18 0.18 3.9

5 

<.00

1* 

Colors 62.76 14.0

2 

-0.66 0.53 44.80 9.30 4.26 4.26 5.8

2 

<.00

1* 

Letters 37.23 8.06 1.29 1.16 26.70 5.11 1.64 1.64 6.0

2 

<.00

1* 

Numbers 41.19 7.15 1.22 0.78 27.76 4.53 2.95 2.95 8.6

6 

<.00

1* 

PA 
          

Deletion  8.74 1.29 -0.46 0.76 9.48 0.85 3.10 -1.85 2.6

2 

.011 

* 

Max = 10 
          

Segmentation 15.81 3.11 0.1 -0.76 18.68 1.80 5.47 -2.06 4.3

6 

<.00

1* 

Max=20 
          

Spoonerism 17.71 10.4

2 

-0.6 0.02 24.34 9.40 0.39 -0.58 2.4

6 

.018 

* 

Max=40 
          

VA Span 55.74 11.5 0.12 -0.18 67.84 16.2

9 

0.40 -0.59 3.2

2 

.002 

* 

Max= 100 
          



 121 

VSTM 9.59 2.55 -0.57 -0.01 13.84 3.84 0.21 0.59 4.8

8 

<.00

1* 

Max= 24 
          

PSTM 4.67 1.18 -0.65 0.41 4.97 1.02 -1.16 0.48 1.0

5 

0.3 

Max=8 
          

WM 2.15 0.77 -0.05 0.28 2.94 1.00 -0.11 0.136 3.3

3 

.002 

* 

Max =7 
          

 

 

H1: Do children learning to read Turkish manifest Length and Frequency effects 

in Word Naming? 

A 3 x 2 ANOVA, using frequency (high-frequency words, low-frequency words and 

pseudowords) and length (short words and long words) as within-subject factors and 

Grade as a between-subjects factor, showed significant main effects of frequency, F 

(2,55) = 579.16, p<. 001, and length, F (1,56) = 2357.38, p<. 001 as well as a 

significant interaction between them, Length x Frequency, F (2,55) = 129.81. In 

addition, there was also a significant interaction between length and grade, F (1,56) = 

11.42, p = .001. There was no significant interaction between frequency and grade, F 

(2,55) = 3.03, p= .057. The results of the above analysis are presented graphically in 

Figure 12. The findings here are consistent with Hypothesis 1, stating that length and 

frequency effects will be present in Turkish children that are learning to read as 

previously reported in Turkish adults and children of other transparent alphabetic 

languages. 
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FIGURE 14: MEAN NAMING SPEED BY GRADE, FREQUENCY AND LENGTH 

 

Following this, two 2 x 2 x 2 ANOVAs were conducted where length (short words and 

long words) and lexicality (words and pseudowords) were the within-subjects’ factors 

and again grade (2 and 5) was the between-subjects factor for both low and high-

frequency words. For low-frequency words, the results showed that the main effects 

of length, F (1,56) = 1770.65, p<.001, with short words (949ms) being named faster 

than long words (1221ms);  and also found that lexicality F (1,56) = 292.75, p<.001 

with words (1085ms) being named faster than nonwords( 1223ms) was significant.  

The interaction between them was also significant, F (1,56) = 202.88, p<.001 in that 

the magnitude of the difference between short and long RTs for low-frequency words 

(271ms) was significantly increased for nonwords (450ms). There was also a 

significant interaction between Length and Grade F (1,56) = 4.22, p<.045 in that the 

magnitude of the difference between short and long RTs for Grade 2 stimuli (379ms) 

was significantly reduced for Grade 5 (344ms). In addition, there was a significant 

interaction between Lexicality and Grade F (1,56) = 6.10, p<.001 in that the 

magnitude of the difference between word and nonword RTs for Grade 2 stimuli 

(160ms) was significantly reduced for Grade 5 stimuli (119ms). 
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For high-frequency items, the results showed that the main effects of length, F (1,56) 

= 2025.60, p<.001 with short items (898ms) being named faster than long items 

(1257ms);  and also found that lexicality F (1,56) = 1160.52, p<.001 was significant 

with words (938ms) being named faster than nonwords (1223ms). The interaction 

between them was also significant, F (1,56) = 231.61, p<.001 in that the magnitude 

of the difference between short and long RTs for high-frequency words (267ms) was 

significantly increased for nonwords (450ms). There was also a significant interaction 

between Length and Grade F (1,56) = 8.24, p = .006 in that the magnitude of the 

difference between short and long RTs for Grade 2 stimuli (383ms) was significantly 

reduced for Grade 5 (337ms). There was no significant interaction for Lexicality and 

Grade F (1,56) = 2.86, p<.097. 

 

H2: How does the accuracy of Word/ Nonword naming across conditions reflect 

the development of reading skills in Turkish children? 

 

Thus far reaction time, as an index of reading ability, have been shown to develop 

rapidly in Turkish children in that the time taken to process words is vastly reduced in 

older children. It is also imperative to explore the function of accuracy as a measure 

of reading ability. To this end, accuracy, as measured by percentage correct, was 

investigated between Grades. Similar to the investigation of naming speed, a 3 x 2 

ANOVA, using frequency (high-frequency words, low-frequency words and 

pseudowords) and length (short words and long words) as within-subject factors and 

Grade as a between-subjects factor, showed significant main effects of frequency, 

F(2,55) = 53.46, p<.001 and length, F(1,56) = 61.35, p<.001 as well as a significant 

interaction between them, F(2,55) = 24.80, p<.001. As suspected from the near ceiling 

effects of accuracy scores, there were no significant interactions between length and 

grade, F (1,56) = 0.53, p =.472 as well as frequency and grade F (2,55) = .37, p = 

.696. 

 

What is the relationship between the outcome and predictor variables? 

Correlation analysis was conducted to explore the relationship between the outcome 

and predictor variables. Before doing so, cognitive constructs, that had more than one 

measure, were explored and, where appropriate, were clustered into a single 

component using Principal Component Analysis (varimax rotation with Kaiser 
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normalization). There were three such constructs: RAN, PA and memory. Overall, a 

strong degree of inter-correlation was found amongst the four different stimulus types 

for RAN performance, which is illustrated in Table 24. 
 

TABLE 24: CORRELATION OF MEASURES OF RAN  

Correlations 
 

RAN_Ob RAN_Col RAN_Lett RAN_Numb 

RAN_Ob - 
   

RAN_Col .613** - 
  

RAN_Lett .601** .610** - 
 

RAN_Numb .520** .642** .760** - 

** Correlation is significant at the 0.01 level (2-tailed). 

 

A single component was extracted with an eigenvalue of 2.88 and accounting for 72% 

of the variance of RAN measures. With regards to PA, a strong degree of inter-

correlation was also established amongst the three different stimulus types for PA 

performance which is illustrated in Table 25. 
TABLE 25: CORRELATION OF MEASURES OF PA. 

Correlations 
 

Phon_Del Phon_Seg Spoonerism 

Phon_Del - 
  

Phon_Seg .532** - 
 

Spoonerism .510** .664** - 

** Correlation is significant at the 0.01 level (2-tailed). 

 

A single component was extracted with an eigenvalue of 2.14 and accounting for 71% 

of the variance of PA measures. Finally, with regards to memory, a strong correlation 

was found between the measures of visual short-term memory and working memory 

but not with phonological short-term memory which is illustrated in Table 26. 
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TABLE 26: CORRELATIONS OF MEASURES OF SHORT-TERM AND WORKING MEMORY. 

Correlations 
 

PSTM WM VSTM 
 

PSTM - 
   

WM 0.176 - 
  

VSTM 0.048 .348** - 
 

** Correlation is significant at the 0.01 level (2-tailed). 

 

Taking the above into consideration, it was decided that factor analysis would be 

conducted on WM and VSTM with PSTM being considered as a separate measure. 

The resulting component had an eigenvalue of 1.35 and accounted for 67% of the 

variance between the two measures. 

 

Following this, two correlation analyses were conducted: one for naming accuracy 

and one for naming speed which were shown in Table 27. Correlation analysis of 

naming accuracy only revealed one significant correlation. Long low frequency words 

correlated moderately with PA, r(58) = .397, p < .003. 
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TABLE 27: CORRELATIONS OF NAMING SPEED AND COGNITIVE MEASURES. ** CORRELATION IS SIGNIFICANT AT 
THE 0.01 LEVEL (2-TAILED). * CORRELATION IS SIGNIFICANT AT THE 0.05 LEVEL (2-TAILED).  
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Briefly, correlation analysis revealed strong correlations between the six measures 

of naming speed. With the general exception of PSTM and nonverbal IQ, all of the 

outcome measures correlated with all of the predictor variables. The specific 

exception was that short high-frequency words did not show a correlation with VA 

Span, r(58) = -.24, p = .07. 

 

Can reaction time data be used in conjunction with measures of cognitive skills 

to identify developmental dyslexia in Turkish-speaking children? 

 

Using an arbitrary cut-off point of 1.25 SD  (Landerl et al., 2013) , the reaction 

time data were explored for potential candidates who were either poor readers or 

developmental dyslexics. To this end, the cut off points for each condition were 

SLF: 1126, SHF: 956, LLF: 1481, LHF: 1295, SNW: 1190 and LNW: 1734 for 

Grade 2 and SLF: 912, SHF: 779, LLF: 1185, LHF: 1038, SNW: 980 and LNW: 

1476 for Grade 5.       

 

For Grade 2, 8 children were slower than the 1.25 cut-off in at least one naming 

condition, 3 children were slower in at least 2 conditions and 2 children were 

slower in at least 3 conditions. The three children in Grade 2 identified by being 

slower in word naming in at least 2 conditions were then further subjected to 

investigation of their cognitive skills in comparison to their age-matched peers. It 

was decided to approach the task of identifying predictors of developmental 

dyslexia by comparing the three “at-risk” children to the rest of the Grade 2 cohort.  

An ANCOVA, controlling for the covariation of nonverbal IQ and SES, revealed 

that working memory was the only significant predictor of “at-risk” status, F(1,26) 

= 10.20, p = 0.005. For Grade 5, 8 children were slower than the 1.25 cut-off in 

at least one naming condition, 3 children were slower in at least 2 conditions and 

2 children were slower in at least 3 conditions. The three children in Grade 5 

identified by being slower in word naming in at least 2 conditions were then further 

subjected to investigation of their cognitive skills in comparison to their age-

matched peers. No quantitative difference was found between the “at-risk” 

children and their age-matched peers. 
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INTERIM DISCUSSION 
 

The over-arching aim of the pilot study was to establish the adequacy of the newly 

created battery of tests and methodological design for measuring the development of 

reading skills in Turkish-speaking children. In addition, the data collected from 58 

Turkish-speaking monolingual children aged 7 to 8 and 10 to 11 has yielded some 

interesting insights regarding the development of reading processes in a bi-

directionally transparent language. The overarching aim of the researcher’s doctoral 

thesis is to explore the Turkish language processing skills of children who are in the 

process of acquiring the ability to read with skill. The present pilot study is suggestive 

of the unique contribution of both specific factors involved in visual word recognition 

(Lexicality, Length and Frequency effects) as well as more general automation of 

cognitive functioning during the process of learning to read in Turkish. A brief account 

of the findings and their potential relation to the wider domain are discussed below. 

 

Reliability 

 

An initial goal of the pilot research was to identify possible sources of bias and 

inconsistent measurement at the item level prior to administering the final version of 

the newly created battery. While there has been a vast growth in the development of 

measurement tools available to assess foundation learning and literacy, the practice 

of adapting tests with demonstrated psychometric properties in Western contexts is 

prevalent amongst researchers investigating lesser-studied languages (Nag, 2017). 

One of the main criticisms of such an approach is that there is often a lack of rigour 

and care in the adaptation of such tests as well as a lack of widely available, open-

source materials used by a wide range of researchers in any given language. 

 

In the context of the current pilot study, all newly developed tests were (according to 

Cronbach’s a coefficients) highly reliable, with the exception of the PA- Deletion 

measure. Furthermore, the measures developed were considered to be highly suitable 

for the purpose of this thesis (though see below for a discussion of limitations and 

future work). 
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Word Reading Accuracy and Speed 

Word reading accuracy was high across conditions irrespective of grade. The 

exceptions to this finding were the significant difference between grades on the Long, 

Low-Frequency word condition and the overall poorer performance by both groups on 

the long nonword measure. These ceiling effect findings are largely in line with the 

literature concerning reading development in Turkish. Overall, evidence from the pilot 

study advocates that Turkish readers rapidly reach ceiling-level reading accuracy, 

which is expected given the shallow orthography of Turkish (Durgunoğlu & Öney, 

1999; Öney & Durgunoğlu, 1997). This is also in agreement with previous outcomes 

in the adult literature (I.Raman et al., 2004) as well as the results from transparent 

orthographies such as Italian, Finnish, and  Greek (Cossu, Shankweiler, Liberman, 

Katz, & Tola, 1988; Holopainen, Ahonen, & Lyytinen, 2002; Porpodas, 1999). 

Additionally, the above findings appear to corroborate the position that reading speed 

is a superior index of reading than accuracy in transparent orthographies. From the 

above, it appears that hypothesis 2 can be accepted regarding ceiling effects for 

accuracy data, particularly with regards to single word reading.  

 

Regarding word reading speed, all six of the word/nonword conditions were named 

significantly faster by children in Grade 5 than in Grade 2. The general direction (from 

fastest to slowest) of the word/nonword naming conditions, independent of Grade, 

was: SHF> SLF>SNW>LHF>LLF>LNW. In addition, single word RTs of the older 

children became faster and less sensitive to word length and frequency effects as a 

function of age as indicated by the significant interaction of both length by grade and 

Frequency by Grade. Similar to findings in other transparent languages (e.g., Acha, 

Laka, and Perea, (2010), the findings above are thought to signify that word naming 

is easier as evidenced by a decreasing word frequency effect in older readers. The 

robust word frequency effect found in beginning readers is thought to denote the 

development and storage of words in the mental lexicon and is thought to be reduced 

as older children are exposed to more words. However, this effect was small in older 

children, who were able to effortlessly recognize both frequent and infrequent words. 

 

Lexicality, Length and Frequency Effects in Turkish children 

The present pilot investigation propositions the availability of both lexical and 

sublexical reading strategies at early stages of reading acquisition in Turkish as word 
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length, a sublexical variable, and frequency, a lexical variable, affected both Grades 2 

and 5. Evidence from Turkish adults suggests that users of transparent orthographies 

make full use of the lexical route in naming words aloud and that under conditions 

which demand the use of the nonlexical route, they shift strategies (I.Raman et al., 

2004). Further support for the flexible use of both the lexical and sublexical pathways 

in transparent orthographies comes from research in Italian  (Pagliuca, Arduino, 

Barca, & Burani, 2008).  Furthermore, as stated previously, reading strategies are 

thought to be partially dependent on the transparency/consistency of the orthographic 

system. 

 

To the best of the researcher’s knowledge, this is the first evidence for the presence 

of lexical variables from the early stages in Turkish reading development. Similar 

evidence has been found in Italian  (Burani, Marcolini, & Stella, 2002) , Japanese 

(Sambai et al., 2012) and Spanish  (Avdyli, Castejón, & Cuetos, 2014) . Furthermore, 

the supposition of lexical and sublexical strategies for reading forms the very basis of 

the Dual Route Cascaded model of Reading Aloud (Coltheart, Rastle, Perry, 

Langdon, & Ziegler, 2001). In contrast, connectionist frameworks offer an alternative 

account of observed frequency effects stipulating that the connection weights 

between the distributed representational units, i.e., orthography, phonology and 

semantics gradually strengthen to reduce model error  (Seidenberg & McClelland, 

1989) . Finally, the observed interaction between length and lexicality asserts that 

length effects were larger for orthographically unfamiliar word forms, i.e., 

pseudowords compared to words (Weekes, 1997). Thus, as the recognition of 

pseudowords is considered to reflect a serial, sublexical procedure and the 

recognition of words is presumed to reflect a parallel lexical procedure, these findings 

lend support to dual-routes of visual word recognition  (Coltheart et al., 2001; Perry, 

Ziegler, & Zorzi, 2007; 2013) as well as the availability of both routes to Turkish 

primary school children learning to read. From the above, it appears that hypothesis 

1 can be accepted regarding the presence of length and frequency effects as well as 

hypothesis 3 regarding the positive finding of a length by lexicality interaction. 

 

Cognitive measures of visual word recognition 

A separate goal of the pilot study was to assess the role of different cognitive skills in 

learning to read in Turkish, a highly transparent orthography. The first studies of 
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Turkish phonological awareness successfully established the rapid development of 

decoding skills in emergent readers  (Durgunoğlu & Öney., 1999; Öney & Goldman, 

1984) . In line with this, the results from this pilot investigation advocate that 

phonological awareness contributes to word recognition in the early stages of reading 

as expressed by ceiling effects for both word reading accuracy and phonological 

awareness even in children as young as 7 years old. Furthermore, the relationship 

between phonological awareness and reading speed measures in Turkish was weak 

to moderate (r ranging from -.302 to -.418). Likewise, the role of RAN, which has been 

suggested to be central to reading in transparent orthographies, was explored through 

a correlational analysis and found that the relationship between RAN and reading 

speed measures in Turkish were moderate to strong (r ranging from .573 to .702). In 

a similar manner of analysis, the relationship between reading speed measures and 

VA Span was weak (r ranging from -.240 to -.336), for VSSTM was moderate (r ranging 

from -.395 to -.538), for WM was weak to moderate (r ranging from -.251 to -.483). 

The findings above warrant further investigation of the role of these cognitive factors 

in reading in Turkish. 

 

Learning to read in languages with transparent orthographies is thought to begin with 

alphabetic decoding though due to the high degree of consistency of these languages, 

this phase is transitory, and children rapidly start to develop a lexical procedure, as 

revealed in this pilot and previous investigations of reading development in transparent 

orthographies. In principle, this change is not necessary since nearly all words can be 

identified by the use of the sublexical route. Conversely, by making use of this strategy, 

reading becomes more fluent and rapid. Since the correspondence rules are 

straightforward in Turkish, early alphabetic decoding is acquired effectively by 

practically all children learning to read Turkish. Accordingly, Turkish second graders 

who have only formally been learning to read for a year can read slowly but accurately. 

  

4.5.4 LIMITATIONS AND FUTURE IMPROVEMENTS TO STUDY DESIGN  
 

While considering the aim to establish the utility of the newly created battery of tests 

and methodological design, the pilot study was successful in its objective though 

several limitations must be acknowledged. These limitations, along with future 

developments to the battery and study design, will be discussed below. Given the 
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limited sample size, the preliminary findings of this study should be considered as a 

foundation for further research as the sample size restricted the types of analyses that 

could be carried out. In particular, whilst relationships were established between 

predictor and outcome variables, multiple regression analysis would allow a more 

refined evaluation of the relationships found in the pilot study. Additionally, some of 

the findings in the pilot study require replication in order for the results to be 

generalised to the wider population.   

 

This issue of upscaling leads to the second limitation:  Whilst SuperLab 5 proved to 

be a useful experiment presentation tool in general, the relatively large number of 

participants (10%) that were removed from the pilot due to technical issues was 

alarming. The root cause of the technical issues was the SV-1 voice-activated key 

which required voice-level adjustment for each child, a largely subjective occurrence, 

and in the researcher’s opinion, nevertheless manifested with an unacceptably large 

number of false triggers (53) in naming (RT<350ms) as well as documenting 177 (5%) 

incidences of a Non Response. Furthermore, given the need to upscale in terms of 

participants and factoring in the cost of SuperLab licenses and SV-1 voice-keys, it was 

deemed unsuitable to carry on using SuperLab the experiment presentation software 

for this and similar studies in this thesis. In light of this, a decision was made to migrate 

to DMDX 5.1, an experiment presentation control software (Forster & Forster, 2003) .  

 

Another limitation was that of recruitment strategy; whilst it was decided that for the 

pilot study children at the beginning and end of primary education should be recruited, 

this approach was less than optimal for several reasons. The primary criterion for 

inclusion into the study was that of grade, though within the Turkish educational 

system there is considerable variability regarding age in grades, as progress to the 

next year is dependent on adequate progress. Moreover, the random nature of 

recruitment for the pilot study proved problematic regarding the balancing of 

demographic information, particularly for SES and gender. It is evident that given a 

significantly larger number of participants will be recruited for the main study; a more 

systematic approach needs to be taken regarding participant recruitment. In order to 

overcome the potential limitations of the grade/ age issue above, an equal number of 

children from Grades 2, 3, 4 and 5 will be recruited for the main study and instead of 

using grade as a between-subjects factor, age in months will be calculated instead.  
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With regards to the battery itself, accuracy scores, as measured by percentage 

correct, proved to be overwhelmingly redundant due to ceiling effects. In order to 

overcome this, accuracy in the main study will be reported as an error rate. Also, 

PSTM as a construct and measure proved to be unhelpful regarding both the 

investigation of reading development across grades and as a predictor variable of 

reading outcomes. The null findings of PSTM are difficult to reconcile, and possible 

explanations of this finding will be considered in the discussion. The null finding, 

coupled with the demand to reduce the length of the experiment (see below), it was 

decided to remove the measure of PSTM from the battery. Though the majority of 

children completed the experiment with no difficulties, there was a significant majority 

(mainly younger children) that systematically complained about the length of the 

experimental procedure. In order to avoid discouraging participation as well as 

ensuring that performance was not compromised by fatigue, several changes to the 

experimental procedure were proposed: 

 

i) Raven’s CPM would be removed from the battery and instead would be carried out 

in small groups as has been done previously in the literature  (Jerman, Reynolds, & 

Swanson, 2012; Uno, Wydell, Haruhara, Kaneko, & Shinya, 2009) . 

 

ii) Several of the constructs with multiple measures would be reduced: For PA, the 

deletion task was removed as nearly all children hit ceiling and was deemed too easy 

of a task. Furthermore, the number of items in the segmentation and spoonerism tasks 

would be reduced; for RAN, the high correlation between the four measures allowed 

for its reduction. Upon review of the literature, it was decided to keep the two 

alphanumeric measures (Letters and Numbers) as they were named faster than the 

non-alphanumeric conditions and that the alphanumeric measures are more strongly 

related to reading skills (Bowey, 2005). 

 

iii) As stated above, PSTM, as measured by the forward digit span task, would be 

removed from the battery. 

 

It was also decided that due to the above modifications, there was room for the 

addition of a new outcome measure, Reading Fluency, which would not significantly 
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increase the total time taken to complete the battery as it is frequently measured as a 

one-minute task. An overview of the reading fluency literature, as well as a solid 

justification of its usefulness in the current thesis, is given in the next section. 

 

Reading Fluency 

Reading fluency may be conceptualized as an index of effective word recognition skills 

in order to extract meaning from text. Indeed, on the surface, oral reading fluency is 

often cited to be a direct quantification of phonological segmentation and recoding 

skills  (Fuchs, Fuchs, Hosp, & Jenkins, 2001) . Furthermore, the ability to read 

connected text fluently is considered to be an essential aspect of successful reading 

comprehension. Of particular interest to this present thesis is the notion that fluency is 

said to consist of properties regarding accuracy in word decoding, automaticity, and 

prosody  (Hudson, Lane, & Pullen, 2005) . Though a comprehensive discussion 

regarding prosody remains beyond the limits of this thesis, accuracy and automaticity 

lie at the very centre of the current investigation. Thus, it seems logical that measuring 

reading fluency within the frameworks previously defined would ultimately be 

complementary. 

 

For instance, Vaessen and colleagues (2010) conducted a cross-sectional 

comparison of French, Dutch, and Hungarian primary school children and found that 

reading fluency was predicted by phoneme awareness, letter knowledge, and RAN 

independent of which language the children use. The authors further state that the 

cognitive development of reading skill, as measured by reading fluency, appears to be 

universal in nature. Additionally, the manifestation of reading fluency difficulties  

(Eklund, Torppa, & Lyytinen, 2013) has been explored with regards to developmental 

dyslexia (Eklund, Torppa, & Lyytinen, 2013). Recently the relationship between 

reading fluency and proficiency in reading has been investigated among fifth-grade 

Turkish-speaking children  (Yildirim & Rasinski, 2014) . Three hundred ninety-nine 

fifth-grade students were tested on measures of reading comprehension, word 

recognition and reading fluency. The authors reported that word recognition and 

fluency correlated significantly with reading comprehension. Evidently, whilst the 

relationship between reading fluency and comprehension is well defined, there is a 

need to further explore the relationship between measures of word recognition and 

reading fluency in Turkish-speaking children. 
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Development of measures of Oral Reading Fluency 

It was decided that Oral reading fluency (ORF) was to be measured with a one-minute 

grade-appropriate passage reading task. Though this approach would not allow for 

the comparison of reading fluency across grades, it would act as an intra-grade 

measure of reading ability. Additionally, the methodological limitations of selecting a 

passage that would be equally difficult across age groups would be avoided. Short 

passages were selected from textbooks administered by the Turkish Ministry of 

Education, which are tabulated in Table 28.  
 

TABLE 28: SUMMARY OF TEXTS SELECTED FOR AGE-APPROPRIATE MEASURES OF ORAL READING FLUENCY. 

Grade Age-appropriate text selected  

(English translation) 

Length 

(Words) 

Difference Cumulative 

Difference 

2 Üç Kelebek "Three Butterflies" 181 - - 

3 Uçan İlk Adam "The First Man to 

Fly" 

190 9 9 

4 Küçük Limon Ağacı "The Small 

Lemon Tree" 

214 24 33 

5 Şeker Dede "Sweet Granddad" 218 4 37 

 

Children were asked to read the short passage aloud as quickly and accurately as 

possible for 1 minute. Oral reading fluency was calculated by computing the total 

number of words read during the minute (WPM), subtracting incorrectly read words, 

and consequently calculating the number of words read correctly per minute (WCPM) 

(Hasbrouck & Tindall, 2006).  
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4.6 THE MAIN STUDY 

4.6.1 REVISED METHODS 
Before carrying out the main study, sample size calculations in the form of a priori 

statistical power analyses were carried out using G*Power 3.1 (Faul, Erdfelder, Lang, 

& Buchner, 2009). In order to investigate potential small-to-medium effect sizes, i.e. 

0.3 (Cohen, 1977) for lexicality, length and frequency conditions as well as exploring 

linear regression models for the main study, power analysis revealed that a total 

sample size of 132 was needed to maintain power at 0.95 (with up to 10 predictor 

variables). 

 

Participants 

Twelve (12) schools were contacted regarding the research project of which four (4) 

expressed an interest in taking part. Following this, 320 students were invited to take 

part in the study (80 from each school; 20 from each year group per school). Of these, 

153 (~48%) students and their families gave assent/consent to take part in the study. 

During data collection, two students were removed due to technical difficulties and 

finally, six students failed/refused to complete the individual session. 

 

Therefore, participants were 145 second, third, fourth and fifth-grade children from 

four mainstream primary schools in Famagusta, Cyprus. At the time of testing, the 

mean ages of the children were 96 months (SD = 5.52 months) in Grade 2, 106 months 

(SD = 4.77 months) in Grade 3, 118 months (SD = 3.52 months) in Grade 4 and 131 

months (SD = 4.25 months) in Grade 5. All participants reported having normal or 

corrected-to-normal vision and were all native Turkish-speakers. This study was 

approved by the Brunel Psychology Research Ethics Committee and by the 

collaborating institution, namely the Eastern Mediterranean University’s Psychology 

Department in Cyprus. Permission to approach schools was approved by the Turkish 

Republic of Northern Cyprus Ministry of Education. All psycholinguistic testing was 

carried out in the children’s schools during school hours.    

 

Following data collection, a further 15 participants were removed from the dataset as 

suspected developmental dyslexics for further analyses in Chapter 5. The final 
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participant number for the current study was, therefore, 130. Table 29: shows the 

characteristics of the main study demographics by Grade. 

 
TABLE 29: CHARACTERISTICS OF MAIN STUDY DEMOGRAPHICS BY GRADE 

  Grade 2 Grade 3 Grade 4 Grade 5 

N 28 32 31 39 

Sex [% girls] 61 44 48 64 

  Mean SD Mean SD Mean SD Mean SD 

Age 

(Months) 

99 8.3 116.5 6.01 127.1 6.91 137.4 6.96 

SES (1-4) 2.3 1.26 2.2 1.1 2.68 1.16 2.2 0.9 

         

 

Procedure 

Following the suggested revisions from the pilot study, the data collection procedure 

is as follows. With the exception of data collection for Raven’s Coloured Progressive 

Matrices, which was carried out in small groups, children were assessed individually 

in a quiet room in the children’s school and lasted approximately 1 hour. Similar to the 

pilot study, the battery of tasks was presented as a fully computerized task with the 

exception of the Visuo-spatial short-term memory task in which children were required 

to write answers in a booklet with blank grids.  

 

Each session followed a fixed order of presentation beginning with Visual Short-term 

Memory, followed by RAN, VA Span, Single Word/Psuedoword naming, Digit span 

Backward, PA and ended with the newly created ORF (Oral Reading Fluency) task. 

Children were informed that they could take brief breaks between tasks but not during 

tasks. The exception to this was the single word/pseudoword reading task in which a 

break was built into the task design after children had reached the midpoint (40 words/ 

pseudowords) in order to avoid fatigue.  

 

Stimuli were presented on a laptop using DMDX v5.1 (Forster & Forster, 2003). In 

addition, all of the children received the same instructions, which were displayed on 

the screen and reinforced orally. In order to simulate the natural conditions of individual 
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reading on self-teaching, participants did not receive feedback on their responses, nor 

were they corrected if they misread the pseudo-words (Álvarez-Cañizo, Suárez-

Coalla, & Cuetos, 2018). Finally, children’s responses were recorded in WAV format 

using DMDX and analysed with CheckVocal software (Protopapas, 2007) to calculate 

the number of correct responses and reaction times (RTs). 

 

Statistical Analysis Plan 

The recent move toward the use of linear mixed methods (LMM) provides an 

opportunity to analyse all the available word-level RT data without the reliance on 

averaging across participants or items. LMMs permit the separation of the effects of 

the predictor variables (fixed effects) from the differences on performance among 

participants and items (random effects) (Baayen, Davidson, & Bates, 2008). For the 

above reason, the single word reading data was analysed using linear mixed-effects 

models for continuous variables, i.e. naming speed and generalized mixed-effects 

models for binary variables, i.e. accuracy (Baayen, Davidson, & Bates, 2008; Jaeger, 

2008), with the lme4 package (version 1.1-12; Bates, Mächler, Bolker, & Walker, 2015) 

in the R environment (R Core Team, 2016). In addition, in order to adjust the skew in 

its distribution when carrying out mixed-effect model analysis (Baayen, Davidson, & 

Bates, 2008), all RTs were transformed into inverse RTs (−1000/RT), in line with the 

recommendation by Brysbaert and Stevens (2018). The data were transformed back 

to raw RTs for ease of interpretation. Furthermore, the lmerTest package (version 2.0-

30; Kuznetsova, Brockhoff, & Christensen, 2015) was used to calculate p values using 

Satterthwaite approximations to determine degrees of freedom. Following the 

recommendations of Barr, Levy, Scheepers, and Tily (2013), fixed effects in models 

will include both random effects terms between participants or items (random 

intercepts) and differences between participants or items in the slopes of the effects 

of the predictor variables (random slopes). The likelihood ratio test (LRT; Barr et al., 

2013; Pinheiro & Bates, 2000) was used to evaluate whether the inclusion of fixed or 

random effects was warranted in order to select the model of best fit (Luke, 2017). As 

a final note of consideration, lme4 uses general-purpose nonlinear optimizers (e.g. 

Nelder-Mead or Powell's BOBYQA method) to examine the variance-covariance 

structures of the random effects though the calculation of convergence is challenging 

(Bates et al., 2015). In an attempt to address this issue (as well as mitigate against 

convergence issues) within the current study, during the RT analysis, the final models 
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were all re-fitted with a range of optimizers using the allFit function in lme4. Where 

non-default optimizers provided a better model fit for the data, the optimizer used was 

also reported. Finally, it should be emphasised that the present study design, with 

concurrent measurement of all predictor variables, does not permit any causal 

interpretation of these effects. 

 

Experimental Hypotheses 

 

H1: As in the pilot study, word length and frequency effects will be evident for 

typically developing children in so far as longer words and less frequent words will 

take longer to name. This is thought to be reflective of both lexical and sublexical 

processes. 

 

H2: As found in the pilot study, word reading accuracy will be close to ceiling level. 

Word reading speed will be the only word reading measure that differentiates 

between good and poor readers  (Hasko, Groth, Bruder, Bartling, & Schulte-Körne, 

2013) . 

 

H3: In typically developing Turkish children, it is expected that there will also be a 

lexicality effect positing that words will be named faster than nonwords. This being 

said, it is also reasonable to postulate that the transparent nature of Turkish will also 

allow for the processing of nonwords with relative ease. In addition to this, a lexicality 

by length effect would be expected, stipulating the availability of two routes of 

reading aloud in children learning to read a highly transparent orthography. 

 

H4: Regarding the cognitive predictors of both ORF and single word/pseudoword 

reading, it is anticipated that all of the measures used in the main study would have 

a significant effect on ORF and SWR measures. 

 

H5: Based on findings from previous studies, it is expected that there will be a 

heterogeneous spread (large variance) in the manifestation of visual attention span 

and memory tasks that reflect individual differences in these underlying abilities.  
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4.6.2 RESULTS 
 

Oral Reading Fluency 

 

Descriptive 

Table 30 below shows the characteristics of the oral reading fluency task as measured 

by an age (grade) appropriate one-minute text reading task. In order to explore the 

potential application of a measure across grades, the mean syllable length and mean 

syllables per word were calculated.  

 

A non-parametric Friedman test of differences among the different grade-based ORF 

measures was conducted and rendered a Chi-square value of 6.12, which was 

nonsignificant (p=.106). Therefore, Correct Syllables per minute (SyllCPM) was 

considered to be a valid index of reading fluency across grades. The results of the 

Pearson correlation between WCPM and SyllCPM denoted that there was a very 

strong significant positive association between the two measures, (r (128) = .99, p < 

.0001) 

 
TABLE 30: CHARACTERISTICS OF THE ORAL READING FLUENCY TASK 

  Grade 2 Grade 3 Grade 4 Grade 5 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

mean Word Length  6.23 (2.83) 6.66 (2.99)  6.21 (2.89) 6.22 (2.32) 

mean Syllable 

Length 

2.64 (1.20) 2.82 (1.23) 2.61 (1.23) 2.67 (1.05) 

mean Syll per word 2.36 2.36 2.38 2.33 

ORF - WCPM 58.64 (15.74) 63.47 (16.66) 84.97 (20.84) 89.10 (26.27) 

ORF - SyllCPM  158.96 (48.31) 167.31 (47.89) 215.90 (52.08) 245.87 (64.80) 

 

 

Predicters of Oral Reading Fluency 

In order to evaluate predictors of oral reading fluency across grades, it was decided to 

use the newly created SyllCPM measure in a linear regression analysis. Before 

statistical analysis took place, the two phonological awareness task scores 

(Segmentation and Spoonerism) were combined for each child and similarly a 
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combined score was calculated for the two RAN tasks (RAN–Letter and RAN–Digit) 

by averaging raw scores in order to increase the predictive validity of phonological 

awareness and RAN. The correlations between the combined tasks were r = .357 (p 

< .001) between the phonological awareness tasks and r = .637 (p < .001) between 

the RAN tasks. Following this, correlation analysis revealed significant correlations 

between the dependent, i.e., SyllCPM and the cognitive predictors of interest in this 

study (See Table 31). With the exception of RAN (which was negatively correlated to 

SyllCPM), the predictor variables were all positively correlated to each other and the 

oral reading fluency measure. The simultaneous use of these measures in a 

regression analysis can be problematic (see Belsley et al., 2005). Therefore, 

multicollinearity was checked using bivariate correlations (Tabachnick & Fidell, 2007) 

and tolerance values in the regression output. In line with the recommendation by 

Tabachnick & Fidell, (2007), Table 31 indicates that none of the independent variables 

were too highly correlated to be run in the multiple regressions (< .70). 
 

TABLE 31: CORRELATIONS BETWEEN SYLLCPM AND THE COGNITIVE PREDICTORS 

  ORF_Syll RCPM Grade PA VSTM WM RAN 

RCPM .358**             

Grade .545** .341**           

PA .625** .319** .427**         

VSTM .458** .487** .522** .500**       

WM .329** .229* .259** .372** .301**     

RAN -.670** -.193* -.556** -.543** -.461** -.324**   

VA 

Span 

.553** .293** .287** .376** .369** .348** -.453** 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

A multiple regression analysis was carried out in which all predictor variables (RCPM, 

Grade, PA, VSTM, WM, RAN and VA Span) were entered simultaneously. The 

recommendation to have at least 10 cases per independent variable (Hair, Babin, 

Anderson, & Tatham, 2005) was well satisfied. The results of the regression analysis 
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are shown in Table 32 and indicated that the selected predictors explained 64.6% of 

the variance (R2=.645, F (7, 110) = 31.46, p<.001). The individual predictors were 

examined further and indicated that Grade (β = 2.72, p < .01), PA (β = 4.42, p < .001), 

RAN (β = -4.02, p < .001) and VA Span (β = 3.29, p < .001) were all significant 

predictors in the model. The four significant predictors were then re-entered into a 

hierarchical regression model in the following order: Grade, PA, RAN and VA Span. 

The results are summarised in Table 33 below
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TABLE 32: REGRESSION COEFFICIENTS OF ORAL READING FLUENCY 

  Unstandardized Coefficients Standardized Coefficients 

  B Std. Error Beta 

RCPM 0.679 0.104 1.607 

Grade 4.266 0.198 2.722 ** 

PA 0.676 0.317 4.421 *** 

VSTM 1.367 -0.090 -1.193 

WM 5.157 0.016 0.259 

RAN 0.926 -0.313  -4.018 *** 

VA Span 0.253 0.219 3.293 *** 

* p < .05. ** p < .01. *** p < .001. 

 

 
TABLE 33: HIERARCHICAL REGRESSION COEFFICIENTS OF ORAL READING FLUENCY 

 
B Std. Error Beta 

1 Grade 31.397 4.270 0.545 *** 

2 Grade 19.599 4.059 0.340 *** 

  PA 4.328 0.636 0.479 *** 

3 Grade 10.850 4.119 0.188 ** 

  PA 3.035 0.639 0.336 *** 

  RAN -4.612 0.927 -0.383 *** 

4 Grade 10.583 3.883 0.184 ** 

  PA 2.614 0.611 0.290 *** 

  RAN -3.542 0.912 -0.294 *** 

  VA Span 0.971 0.237 0.258 *** 

 
The unique variance (Adjusted R2) accounted for by the predictors in each subsequent 

model while controlling for variance explained by previous predictors was Grade (29.1%), 

PA (17.8%), RAN (8.2%) and VA Span (4.9%). 
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In a further investigation of the age-based influence of cognitive predictors on ORF, the 

Grade variable was recoded into Younger (Grade 2 and 3) and Older (Grade 4 and 5) 

groups. A new linear regression model with all cognitive variables (except VSSTM) and 

their relative interactions with the newly created age variable was created. Table 34 

illustrates the outcomes of the new model. 

 
TABLE 34: COGNITIVE PREDICTORS OF ORAL READING FLUENCY 

Oral Reading Fluency 
Predictors Estimates CI p 
(Intercept) 58.50 54.18 – 62.81 <0.001 
Age 24.70 18.47 – 30.94 <0.001 
PA 0.49 0.41 – 0.57 <0.001 
RAN -0.94 -1.03 – -0.85 <0.001 
VAS 0.47 0.44 – 0.50 <0.001 
WM -0.75 -1.30 – -0.20 0.007 
Age: PA 0.88 0.78 – 0.99 <0.001 
Age: RAN -1.11 -1.25 – -0.97 <0.001 
Age: VAS -0.14 -0.18 – -0.10 <0.001 
Age: WM 0.72 -0.06 – 1.51 0.071 
R2 / adjusted R2 0.653 / 0.653 
  

 

 

Post-hoc analyses of the significant interactions were conducted in order to further 

explore them. To perform the post-hoc analyses, the lsmeans package (Lenth, 2016) was 

used and examined the cognitive predictor effects across age groups using the Tukey 

adjustment. First, regarding the Age * PA significant interaction, the effect of PA on ORF 

increased between younger and older children (Younger: EstimatePA = 0.49, SE = 0.04; 

Older: EstimatePA = 1.38, SE = 0.03). Second, the analysis of the Age * RAN significant 

interaction showed that the effect of RAN was lower in younger (EstimateRAN = -0.94, SE 

= 0.05) than older children (EstimateRAN = -2.05, SE = 0.06). Third, the Age * VA span 

interaction meant that the effect of VA span, despite being significant in both groups, was 

lower for older children (EstimateVAS = 0.33, SE = 0.013) than younger children 

(EstimateVAS = 0.47, SE = 0.015). 
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Mediation Analysis 

To explore if the effects of working memory and/or visuospatial STM on reading are 

mediated by VA span, two separate simple mediation analysis was carried out using the 

R package, mediation (Tingley et al., 2013). The motivation behind this analysis was 

that the total effects of WM and VSSTM on the ORF measure could be separated into 

direct and indirect effects. While the direct effect of WM and VSSTM on reading fluency 

were found to be non-significant, there is a need to further explore how visual attention 

can itself be limited and how in turn VA span may act as a mediator of the relationship 

between WM and VSSTM with ORF. VA span, WM and VSSTM scores all significantly 

varied between grades with the exception of no difference between Grades 2 and 3 for 

VA span. Considering the distribution of each of the measures: VA span had a range 

from 12 to 91; WM had a range from 2 to 5, and VSSTM had a range from 2 to 20. 

 

Mediation analysis revealed that the relationship between WM and ORF scores was 

significantly mediated by children’s VA span (total effect: b = 0.37, p = .001; direct 

effect: b = −0.003, p = .99; mediation indirect effect: b = 0.37, p = .001; 10,000 

simulations). Additionally, the relationship between VSSTM and ORF scores was also 

significantly mediated by children’s VA span (total effect: b = 0.24, p = .001; direct 

effect: b = −0.02, p = .7; mediation indirect effect: b = 0.26, p = .001; 10,000 

simulations). 

 

Word Reading 

 

Data extraction and cleaning 

For the single word/ pseudoword reading data, a total of 10,400 responses were 

recorded. Following data collection, the sound spectrograms of the recorded responses 

were analysed using CheckVocal (Protopapas, 2007) in order to extract corrected 

accuracy and RT measures. For the analysis of accuracy, all responses were considered. 

Transversely, for the analysis of RT, only correct responses were considered. 
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Overall, there were 709 (6.8%) errors in the single word naming data which corresponded 

to: 106 non-responses (no response, <250ms or >3,000 ms to respond); 88 were word 

naming errors; and 515 were pseudoword errors. The RTs of the remaining 9,691 correct 

responses remaining after the above eliminations were then explored for outlier using the 

same procedure outlined in Chapter 3 for the adult lexical decision data. Briefly, RTs that 

were determined to be outside of a range of whiskers of a boxplot adjusted for skewed 

distributions (Hubert & Vandervieran, 2004; 2006; 2008) were also removed from the 

dataset. This data cleaning approach was calculated independently for each participant, 

separately for words and nonwords and led to the removal of 513 RT data points from the 

data resulting in a final dataset of 9173 correct responses for further analysis. 

 

Descriptive 

The mean overall response time and accuracy across conditions and participants was 

1077ms and 93%, respectively. Considering the lexicality factor, response time and 

accuracy for words was 971ms and 98%, respectively whereas response time and 

accuracy for nonwords was 1193ms and 88%, respectively. Considering the length factor, 

response time, and accuracy for short words/pseudowords was 1003ms and 96%, 

respectively whereas response time and accuracy for long words/ nonwords was 1156ms 

and 90%, respectively. Considering the frequency factor, response time and accuracy for 

high-frequency words was 957ms and 98% respectively whereas response time and 

accuracy for low-frequency words was 985ms and 98% respectively. Table 35 and 36 

below provides a summary of the descriptive statistics for accuracy and RT data, 

respectively. 
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TABLE 35: MEAN ACCURACY FOR WORDS AND NONWORDS BY GRADE 

  Grade 2 Grade 3 Grade 4 Grade 5 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Short Low 

Frequency  

99 (11) 100 (6)  99 (10) 98 (13) 

Short High 

Frequency  

99 (11) 97(17) 99 (8) 99 (11) 

Short Psuedoword  94 (23) 94 (23) 93 (25) 94 (24) 

Long Low 

Frequency 

93 (26) 99 (9) 97 (17) 97 (17) 

Long High 

Frequency  

97 (16) 98 (14) 96 (19) 99 (9) 

Long Pseudoword  76 (43) 85 (36) 85 (36) 85 (36) 

 

As can be seen from Table 35, reading accuracy across participants was at near celling 

level. As stated above, the accuracy of responses to words/ pseudowords was conducted 

by using Generalized-Mixed effects Modelling (GLMM). As an extension of multiple 

logistic regression, it allows for the evaluation of the log odds that a response would be 

accurate given a set of predictors. In addition, LMMs can be used to factor in random 

effects of both subjects and items. In line with similar research (e.g. Ricketts et al., 2016), 

the approach for the GLMM analysis involved conducting pairwise LRT comparisons 

(Pinheiro & Bates, 2000) of simpler models with more complex models, where each step 

of model comparison involves the former model building on the latter in order to determine 

the value of including various fixed and/ or random effects in the models of single word/ 

pseudoword reading accuracy. 
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Reading Speed 

 
TABLE 36: MEAN RT FOR WORDS BY GRADE 

  Grade 2 Grade 3 Grade 4 Grade 5 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Short Low 

Frequency 

1034 (202) 949 (175) 908 (153) 817 (116) 

Short High 

Frequency 

1042 (215) 935 (155) 896 (160) 799 (114) 

Short Psuedoword 1290 (415) 1116 (202) 1099 (332) 979 (188) 

Long Low 

Frequency 

1246 (386) 1090 (192) 1002 (307) 922 (157) 

Long High 

Frequency 

1217 (403) 1047 (197) 983 (269) 930 (190) 

Long Pseudoword 1398 (215) 1430 (285) 1319 (376) 1219 (271) 

 

Accuracy – Length, Lexicality and Grade  

In the analysis of accuracy, first, a model (Empty model) that included participants and 

items as random factors and intercept as a fixed factor was tested: 

 

Accuracy ~ 1 + (1|Subject) + (1|Item) 

 

In the next step, Grade (2,3,4,5), Length (short vs long) and Lexicality (words vs 

pseudowords) were added as fixed factors. 

 

Accuracy ~ Grade + Length + Lexicality + (1|Subject) + (1|Item) 

 

It was found that the addition of the above, fixed effects significantly improved model fit 

(LRT, c2 = 125.56, 4 df, p < .001). In this main-effects model, there were significant effects 

of length and lexicality (p < .001) but not of grade (p = .102). The third step was carried 

out by adding interaction terms. In contrast with the main effects model, the new model 
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also included the length by lexicality interaction and subsequently improved model fit 

(LRT, c2 = 7.17, 2 df, p = .028). The length by lexicality interaction was significant (p = 

.027). In order to explore further interactions, length by grade and lexicality by grade 

interaction terms were added one at a time to the model. The addition of the length by 

grade interaction term also improved model fit (LRT, c2 = 9.32, 1 df, p < .001) whereas 

the addition of the lexicality by grade interaction did not further improve model fit (p=1). 

Three-way interactions were not explored due to the inherent difficulty in interpreting the 

results. Therefore, the final model was: 

 

Accuracy ~ Grade + Length + Lexicality + (Length * Lexicality) + (Length * Grade) + 

(1 | Item) + (1 | Subject) 

 

As a penultimate step in selecting the model of best fit, a series of comparison models 

that varied on random effects were explored. First, a model with only the random effect 

of participants on intercepts was compared to the model above and found that the addition 

of participants on intercepts improved model fit (LRT, c2 = 577.61, 1 df, p < .001). 

Similarly, when a model with only the random effect of items on intercepts was compared 

to the full model above it was found that the inclusion of a random effect of items on 

intercepts improved model fit (LRT, c2 = 21.02, 1 df, p < .001).   

 

Finally, in order to explore “maximal” models (Barr et al., 2013), the inclusion of random 

slopes was examined. Random slopes highlight random differences between participants 

or items regarding the fixed effects. Consequently, random slope terms analogous to 

random effects of participant differences on the slope of grade and random effects of item 

differences on the slopes of both length and lexicality were added to the model and did 

significantly improve the model (LRT, c2 = 42.52, 7 df, p < .001). Table 37 below offers a 

summary of the final model. 
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TABLE 37: SUMMARY TABLE OF THE FINAL GLMM MODEL OF WORD/PSEUDOWORD READING ACCURACY. 

Fixed 

effects 

Estimated 

coefficient 

SE z p 

(Intercept) 4.12 0.48 8.60 <.001 

Grade 0.03 0.12 0.23 .82 

Length -1.76 0.45 -3.88 <.001 

Lexicality 1.49 0.30 5.00 <.001 

Length by 

Lexicality 

0.79 0.31 2.51 <.010 

Length by 

Grade 

0.23 0.11 1.98 <.050 

Random effects  SD  

Due to items 

Intercepts  0.49 

Grade  0.03  

Due to participants 

Intercepts  0.64 

Length  0.83  

Lexicality  0.81  

Note. Number of observations: 10400; 80 items; 130 participants. The marginal R2 of the 

final model is 0.23, and the conditional R2 of the final model is 0.38. 

 

From Table 37, the estimated coefficients for the final model show that reading accuracy 

was higher for short words over long words as indicated by the length effect. There was 

also a significant effect of Lexicality, indicating that real words were named faster than 

pseudowords. Additionally, the model revealed a Length by Lexicality interaction. The 

interaction effect indicates that length effects were more evident for pseudowords rather 

than words. Of note, in the final model, the effect of grade was non-significant, however, 

there was a significant interaction of length by grade (Figure 13). 

 

 



 151 

 
FIGURE 15: PREDICTOR PROBABILITIES OF ACCURACY HIGHLIGHTING THE LENGTH BY GRADE INTERACTION. RED 

DENOTES SHORT WORDS/ PSEUDOWORDS AND BLUE DENOTES LONG WORDS/ PSUEDOWORDS. 

 

Accuracy – Length, Frequency and Grade  

 

In order to explore the effects of word frequency, a separate (yet identical) analysis of 

participants’ word reading accuracy (n=5200) was carried out. In this analysis, lexical 

frequency was added as a fixed effect predictor, and the lexicality term used in the above 

analysis was removed. The final model (including random intercepts and slopes) for the 

accuracy of responses to words found no significant fixed effects or interactions perhaps 

reflective of the ceiling effects of word naming in Turkish-speaking children. 
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Naming Speed - Length, Lexicality and Grade 

 

 
FIGURE 16: CLUSTERED BAR CHART OF MEAN REACTION TIMES BY GRADE AND LEXICALITY 

 

Following on from the analysis of the accuracy data, the same model selection procedure 

was applied to the RT data considering only correct responses (n=9178). Figure 14 

suggests that RT to both words and pseudowords decrease as a function of grade (and 

by extension age) suggesting an overall development of word reading automaticity as the 

cohort get older. The effects of Grade, Length and Lexicality were explored using a Linear 

Mixed-effects model. The final formula for the best model fit was: 

 

Inverse RT ~ Grade + Length + Lexicality + (Length * Lexicality) + (Length*Grade) + 

(Lexicality*Grade) + (Lexicality | Subject) + (Length | Subject) + (1| Item) 

 

 

Table 38 below offers a summary of the final model. From Table 38, the estimated 

coefficients for the final model show that single word/pseudoword RTs were greater for 

short words over long words as well as words being named faster than pseudowords. 

There was also a significant effect of Grade. Additionally, the model discovered a 
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significant Length by Lexicality interaction. The interaction effect indicates that length 

effects were more evident for pseudowords rather than words. There was also a Lexicality 

by Grade effect indicating that lexicality effects were more evident in younger rather than 

older children. The marginal R2 of the final model is 0.311 (variance explained by the main 

effects), and the conditional R2 of the final model is 0.529 (variance explained by the entire 

model, including both fixed and random effects). 

 
TABLE 38: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD/PSEUDOWORD READING RT. 

 

Fixed 

effects 

Estimated 

coefficient 

SE T p 

(Intercept) -0.79 0.07 -11.73 <.001 

Grade -0.06 0.02 -4.17 <.001 

Length -0.09 0.03 10.33 <.001 

Lexicality 0.07 0.03 -2.43 .037 

Length by 

Lexicality 

-0.06 0.02 -2.49 .015 

Lexicality by 

Grade 

-0.02 0.01 -3.79 <.001 

Length by 

Grade 

0.01 0.01 1.71 0.09 

Random effects Variance SD  

Due to items 

Intercepts 0.002 0.05 

Due to participants 

Intercepts .02 0.10 

Length .003 .05  

Lexicality .005 .07 

 

Note: Convergence issue resolved with the use of bobyqa (optimx) optimizer with 300000 

iterations. 
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Naming Speed - Length, Frequency and Grade 

 

In addition, to explore the effects of word frequency, a separate (yet identical) analysis of 

participants’ word reading RTs was carried out. In this analysis, lexical frequency was 

added as a fixed effect predictor, and the lexicality term used in the above analysis was 

removed. The final model had the equation: 

 

InverseRT ~ Frequency + Grade + Length + (Length | Subject) + (Grade| Item) 

 
TABLE 39: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD READING RT. 

 

 
Dependent variable: 

 
Inverse RT 

Frequency -0.004 
 

(0.005) 

Grade -0.072*** 
 

(0.016) 

Length 0.095*** 
 

(0.014) 

Constant -0.843*** 
 

(0.068) 

Observations 4,819 

Log-Likelihood 1,065.581 

Akaike Inf. Crit. -2,113.163 

Bayesian Inf. Crit. -2,054.344 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

Note: Convergence issue resolved with the use of bobyqa (optimx) optimizer with 200000 

iterations. 

From table 39 ,as above, the estimated coefficients for the final model show that single 

word RTs were faster for short words over long words as well as words being named 
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faster as a function of age. However, the frequency effect was found to be non-significant 

after length was added to the model. The marginal R2 of the final model is 0.111 (variance 

explained by the main effects), and the conditional R2 of the final model is 0.604 (variance 

explained by the entire model, including both fixed and random effects). 

 

As a post-hoc follow up to explore the non-significant finding of a frequency effect, the 

above model was rerun with several theoretical and statistical considerations. It is 

currently understood that transformations of RT data such as the one used in this study 

lead to distorted interval differences in the DV (Lo and Andrews, 2015). In order to explore 

this issue further, the distributional properties of the RT data were further explored using 

a number of non-Gaussian (non-normal) distributional assumptions for the RT data; 

namely Gamma and Inverse Gaussian distributions with both variants including an 

identity and inverse link function. Based on the comparison above, the model was refitted 

using an Inverse Gaussian distribution applied to the raw RT data. The new model has 

the formula: 

 

RT~ Length + Frequency + Grade + (Length*Frequency) + (Length*Grade) + 

(Length|Subject) + (Frequency|Subject) 

 

From Table 40 below, it is evident that the pattern of main effect findings is similar 

between the two LMM models of word reading in that the estimated coefficients for the 

new model show that single word RTs were faster for short words over long words as well 

as words being named faster as a function of age. The frequency effect remained non-

significant after length was added to the model. However, the new model also found a 

significant interaction effect of Frequency by Length and of Length by Grade. Further 

investigation into the interaction effects established that frequency effects were more 

evident for long rather than short words. Similarly, Length by Grade interaction indicated 

that length effects were more evident in younger rather than older children. The marginal 

R2 of the final model is 0.705 (variance explained by the main effects), and the conditional 

R2 of the final model is 1.00 (variance explained by the entire model, including both fixed 

and random effects). 
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TABLE 40: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD READING RT WITH MODIFICATIONS TO RT 

 

Fixed 

effects 

Estimated 

coefficient 

SE T p 

(Intercept) 1236.14 17.81 69.39 <.001 

Grade -56.47 6.59 -8.57 <.001 

Length 199.65 15.26 13.08 <.001 

Frequency -4.90 3.01 -1.63 .103 

Length by 

Frequency 

-12.23 3.87 -3.17 .002 

Length by 

Grade 

-15.21 4.82 -3.16 .002 

Random effects Variance SD  

Due to participants 

Intercepts 181.9 13.49 

Length 5870 76.61  

Frequency 249.7 15.80 

 

 

Cognitive Predictors of Word/Pseudoword Reading 

In a final analysis, the cognitive predictors of single word/pseudoword reading were 

considered. First, both words and pseudowords were considered together for both 

accuracy and RT measures. Following this, a separate analysis was carried out for words 

and pseudowords. 

 

Word/Pseudoword Reading Accuracy 

The same model selection procedure used in the previous analyses was applied to both 

the accuracy and RT data. The effects of Grade, PA, RAN, VA Span, RCPM, WM and 

VSSTM on accuracy scores were explored using a Generalised Linear Mixed-effects 

model. The final formula for the best model fit was: 
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Accuracy ~ PA + VA Span + (PA | Subject) + (1 | Item) 

 
TABLE 41: SUMMARY TABLE OF THE FINAL GLMM MODEL OF WORD READING ACCURACY USING COGNITIVE 
PREDICTORS 

   Accuracy   

Predictors Odds Ratios CI p 

(Intercept) 4.37 1.70 – 11.29 0.002* 

PA 1.06 1.02 – 1.10 0.001* 

VA Span 1.02 1.00 – 1.03 0.017* 

Random Effects    

σ2 3.29   

Subject 1.87   

Item 1.65   

Subject.PA 0.01   

Subject -0.74   

ICC _Subject 0.27   

ICC _Item 0.24   

Observations 10400   

Marginal R^2 / 

Conditional R^2  

0.055 / 0.506   

 

From Table 41, the estimated coefficients for the final model show that reading accuracy 

was more likely to produce correct responses by students with higher scores in PA and 

VA Span. No other cognitive predictors or interactions reached significance for inclusion 

into the final model. Separate analysis for words and pseudowords yielded the same final 

model and as such will not be reported further. 
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Word/Pseudoword Reading Speed 

The same model selection procedure used in the previous analyses was applied to the 

RT data. The effects of Grade, PA, RAN, VA Span, RCPM, WM and VSSTM on RT scores 

were explored using a Linear Mixed-effects model. The final formula for the best model 

fit was: 

 

InverseRT ~ PA + RAN + VA Span + (Grade | Item) + (PA + RAN + VA Span | Subject) 

 

From Table 42 below, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with higher scores in VA 

Span and PA and lower scores in RAN. 

 
TABLE 42: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD/ PSUEDOWORD READING RT USING COGNITIVE 
PREDICTORS 

Inverse RT    

Predictors  Estimates  CI  p 

(Intercept) -1.04 -1.30 – -0.77 <0.001 *** 

PA -0.005 -0.01 – -0.00 0.049 * 

RAN 0.01 0.00 – 0.02 0.006*** 

VA Span -0.002 -0.00 – -0.00 0.029 * 

Random Effects    

σ2 0.03   

Subject  0.03   

Item  0.01   

ICC _Subject  0.50   

ICC _Item  0.08   

Observations  9176   

Marginal R^2 / 

Conditional R^2  

0.131 / 0.563   
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Note: Convergence issue resolved with the use of bobyqa (optimx) optimizer with 200000 

iterations. 

 

Word Reading Speed 

Considering the effects of Grade, PA, RAN, VA Span, RCPM, WM and VSSTM on word 

reading speed scores using a Linear Mixed-effects model. The final formula for the best 

model fit was: 

 

InverseRT ~ Grade + RAN + VA Span + (1 | Subject) + (1 | Item) 

 

From Table 43 below, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with higher scores in RAN 

and VA Span but not PA. Additionally, there was a near significant finding that speed 

decreased as a function of age in that older children were faster than younger children in 

word naming. No significant interaction effects were found. 
TABLE 43: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD READING RT    

Inverse RT    

Predictors  Estimates  CI  p 

(Intercept) -1.16 -1.48 – -0.84 <0.001 *** 

Grade  -0.03 -0.06 – 0.00 0.057 

RAN 0.01 0.00 – 0.02 0.001*** 

VA Span -0.00 -0.00 – -0.00 0.038 * 

Random Effects    

σ2 0.03   

Subject  0.03   

Item  0.00   

ICC _Subject  0.45   

ICC _Item  0.06   

Observations  4819   

Marginal R^2 / 

Conditional R^2  

0.150 / 0.587   
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Nonword Reading Speed 

Considering the effects of Grade, PA, RAN, VA Span, RCPM, WM and VSSTM on 

pseudoword reading speed scores using a Linear Mixed-effects model. The final formula 

for the best model fit was: 

 

InverseRT ~ RAN + VA Span + PA + (Grade | Item) + (RAN | Subject) 

 

From Table 44 below, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with higher scores in RAN 

and VA Span and PA. No significant interaction effects were found. 

 
TABLE 44: SUMMARY TABLE OF THE FINAL LMM MODEL OF NONWORD READING RT 

  Inverse RT 

Predictors Estimates CI p 

(Intercept) -0.91 -1.18 – -0.64 <0.001 

RAN 0.01 0.00 – 0.02 0.010 

VA Span -0.00 -0.00 – -0.00 0.013 

PA -0.00 -0.01 – -0.00 0.030 

Random Effects 

σ2 0.03 

τ00 Subject 0.21 

τ00 Item 0.00 

τ11 Subject.RAN 0.00 

τ11 Item.GradeNew 0.00 

ρ01 Subject -0.97 

ρ01 Item 1.00 

ICC Subject 0.87 

ICC Item 0.01 

Observations 4357 
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4.7 DISCUSSION 
 

The current chapter explored the factors that influence reading aloud in typically 

developing readers in Turkish, a highly transparent orthography. Reading was considered 

at the word and text levels. As predictors, the effect of length, lexicality and frequency 

(and their interactions) were explored as well as considering the influence of a set of 

cognitive predictors that have been indicated to influence word and text reading such as 

phonological awareness, rapid naming, and visual attention span. 

 

With reference to the experimental hypotheses of this study, the current investigation 

found supporting evidence for length effects as well as some evidence for frequency 

effects resulting in a general acceptance of H1. Additionally, word reading accuracy was 

found to be high across participants (H2) as well as reporting a lexicality main effect and 

a lexicality by length interaction effect (H3). Regarding cognitive predictors of reading in 

Turkish-speaking children (H4), LME model analysis reported direct effects of Grade, PA, 

RAN and VA span while also finding an indirect influence of WM and VSSTM measures 

on ORF via a mediation analysis. Finally, regarding the hypothesis that there would be a 

large variance in VA span and memory tasks (H5), there was partial evidence to support 

this position. The below sections will offer a further critical interpretation of the results in 

light of the existent literature. 

  

Oral Reading Fluency 

  

The decision to include measures of Oral Reading Fluency within the current study 

appears to be justified in that the measures developed were able to differentiate good 

from poor readers using a single index. In addition, the growth of oral reading fluency as 

measured by correct words and syllables per minute across grades is reflective of the 

general reading proficiency of the current cohort and the ability to read connected text 

fluently is advocated to be an essential requirement for adequate reading comprehension 

(Fuchs, Fuchs, Hosp, & Jenkins, 2001).  
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When considering the cognitive predictors of ORF, the current study found a significant 

effect of PA, RAN and VA Span. Concerning PA’s influence on ORF, the findings of this 

study indicate that increased phonological awareness skills predict reading fluency 

irrespective of age and as such offer support for the view that phonological processes 

continue to contribute to effective word recognition even in fluent readers (e.g. Rayner et 

al. 2012). Furthermore, this finding lends support to the view that PA may be a significant 

universal contributor to ORF (Katzir, Schiff, & Kim, 2012). Also, the contribution of 

phonological processing to word recognition may have an indirect influence on oral 

reading fluency (Torgesen, Rashotte, & Alexander, 2001). Considering the findings of the 

younger vs older children comparison, PA’s role in ORF is sustained over and above its 

role in single-word recognition. 

 

When considering the influence of RAN on ORF, the findings of the current study are 

broadly in line with the literature in that RAN is considered to be a robust predictor of ORF 

(Christo & Davis, 2008; Papadopoulos, Spanoudis, & Georgiou, 2016). Furthermore, the 

parallel development of reading automaticity, as measured by RAN and ORF may be 

indicative of shared mental resources, i.e. domain-general factors such as serial 

processing and articulation (see Georgiou, Aro, Liao, & Parrila, 2016 for an in-depth 

discussion). In line with this study, both Babayiğit and Stainthorp (2011) and Karadağ, 

Keskin and Arı (2019) report that RAN was a significant predictor of fluent reading in 

Turkish children. Beyond Turkish, there is growing evidence that RAN predicts reading 

fluency equivalently well across languages (e.g. Georgiou, Aro, Liao, & Parrila, 2016). In 

addition, considering the findings of the younger vs older children comparison, RAN’s role 

in ORF is sustained over and above its role in single-word recognition. 

 

When considering the influence of Visual Attention Span on ORF, the findings of a unique 

and significant influence of VA Span on ORF are primarily in line with previous studies 

that have reported that VA Span correlates with oral text reading speed (Lobier, Dubois, 

& Valdois, 2013). Besides, there are several accounts of the unique contribution of VA 

Span to oral reading (Bosse & Valdois, 2009; Valdois et al., 2003). However, a recent 

study carried out by van den Boer, van Bergen & de Jong (2014) found that although VA 
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span correlated equally strongly with measures of oral and silent reading, VA Span made 

a significant unique contribution to silent reading exclusively. In light of the current 

findings, it may be reasonable to postulate that the agglutinative nature of Turkish 

requires the rapid development of VA Span in order to facilitate the correct reading of 

increasingly long words. The current findings signified that ORF is a reliable and valid 

measure of reading skill in Turkish grades 2–5 and is straight forward and quick to 

administer. As such, ORF measures may contribute to the early identification of Turkish 

students at risk for reading difficulties. This position will be further investigated in Chapter 

5. Furthermore, considering the findings of the younger vs older children comparison, VA 

span’s role in ORF appears to diminish for older students. That is, for Turkish, it appears 

that the contribution of VA span to reading beyond the single-word level may be time-

limited. It is feasible to postulate that this may be due to a language-specific feature of 

Turkish such as clearly defined syllable boundaries or agglutination or even a combination 

of both. In transitioning from sublexical to lexical reading strategies, the need to develop 

a VA span beyond three would serve little advantage for Turkish children learning to read. 

Further research is needed to elucidate the exact nature of these findings. 

 

With regard to the mediation analysis, both WM and VSSTM capacity predicted VA span 

and as such, could be central limiting factors in VA span performance. Consequently, 

children with smaller reported WM and VSSTM capacities would have fewer available 

memory slots to store encoded letters than those with a larger WM and VSSTM 

capacities. Accordingly, they report fewer letters and their total VA Span score is lower. 

This finding is largely in line with the Theory of Visual Attention (TVA) (Bundesen, 1990).  

 

In addition, the current study contributes to the growing literature that VA span can 

operate within and beyond the single-word level (Chen, Schneps, Masyn, & Thomson, 

2016). Overall, these findings provide support for H4 and H5 regarding the influence of 

several cognitive predictors on ORF as well as the large variance observed in VA span 

and memory measures. 
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Word/ Pseudoword reading 

 

The current study also considered single word and pseudoword recognition in addition to 

the manipulation of length and frequency. In general, the study determined the presence 

of lexicality, length, and frequency effects indicating the use of both a sub-lexical reading 

route (length effect) and a lexical route (lexicality and frequency effect). These results are 

mostly coherent with previous reports on Turkish adults (I.Raman, 2006). Furthermore, 

the collective evidence for a lexicality effect with specific evidence for a frequency effect 

establishes the influence of lexical knowledge on reading development in Turkish. 

 

When assessing word/ pseudoword reading accuracy, the current study found that 

irrespective of age, reading accuracy was near ceiling. As reported in the pilot 

investigation, the ceiling effect findings are in line with the literature concerning reading 

development in Turkish (Durgunoğlu & Öney, 1999; Öney & Durgunoğlu, 1997) and other 

transparent orthographies such as Italian (Burani et al., 2002), Finnish (Holopainen, 

Ahonen, & Lyytinen, 2002), Greek (Porpodas, 1999) and Spanish (Davies et al., 2013). 

Taken together, the results of this study extend the predominantly European alphabetic 

findings of the influence of orthographic transparency on reading development. From the 

above, it appears that hypothesis 2 can be accepted regarding ceiling effects for accuracy 

data, particularly with regards to single word reading. 

 

Further to this, there was evidence of a length and lexicality effects as well as a length by 

lexicality interaction on reading accuracy data. The smaller effect of length on words than 

on pseudowords implies that both lexical and sublexical procedures were available to 

Turkish children in the naming task. While the main effect of grade was found to be non-

significant, there was a significant interaction of length by grade which indicated that 

regardless of lexical status, older children were better than younger children regarding 

reading long letter strings accurately while there was no difference reading short letter 

strings accurately. 
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When considering the influence of grade, length and frequency on word reading accuracy, 

the ceiling effects of word naming accuracy in Turkish-speaking children found no 

significant fixed effects or interactions. Additionally, the above finding appears to 

corroborate the position that reading speed is a superior index of reading than accuracy 

in transparent orthographies.  

 

Reading speed, as indexed by RT in this study, was then further considered. Regarding 

the influence of lexical and sublexical factors on RTs, a significant word length and 

lexicality effect, as well as a significant effect of grade, were revealed. Persistent length 

effects in transparent orthographies are thought to be reflective of reliance on the 

sublexical route as this strategy is said to be both fast and efficient (Wydell, Vuorinen, 

Helenius, & Salmelin, 2003). Similar findings have been reported in other transparent 

orthographies such as Finnish (Leinonen et al., 2001) and Italian (Paulesu et al., 2000). 

Furthermore, the current study reported a significant Length by Lexicality interaction that 

is indicative of length effects being more evident for pseudowords rather than words as 

well as a Lexicality by Grade effect indicating that lexicality effects were more evident in 

younger rather than older children. While the Length by Grade interaction failed to reach 

significance (p=0.09), there was a trend which suggested that there was a diminishing 

effect of word length on RTs as children grew older conceivably insightful of a gradual 

shift from sublexical to lexical route use. 

 

The analyses of the influence of grade, length and frequency on word RTs discovered 

several remarkable results. The first iteration of the model found that word RTs were 

faster for short words over long words as well as words being named faster as a function 

of age. However, the frequency effect was found to be non-significant. The evidence 

regarding the influence of lexical frequency on RTs in reading in Turkish, as well as other 

transparent orthographies, is variable. For example, small but significant frequency 

effects have been reported in Turkish adults (Raman, Baluch, & Sneddon, 1996). In 

Spanish children, Valle Arroyo (1989) reported no frequency effect and a significant 

length effect, similar to the findings of the current study. 
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Conversely, a recent series of studies by Davies and colleagues (2007; 2013) did report 

frequency effects in Spanish children. Comparably, in Italian, frequency effects have been 

reported to be more sizeable in younger children (Barca et al. 2007). However, Burani et 

al. (2002) stated finding no significant interaction between the effects of frequency and 

age. Taken together, the results of a null word frequency effect were perplexing, not due 

to the Turkish adult or Spanish and Italian developmental data but more so since 

frequency effects were found in the pilot investigation using the same stimuli. 

 

In order to address the seemingly confounding results, a further analysis was carried out 

using raw rather than transformed RTs in order to address the potential compression of 

the long end of the RT distribution relative to the short end (Liceralde & Gordon, 2018). 

The resulting LMM model reported the same main effects as the previous model, i.e. 

significant length and grade effects and non-significant frequency effects. However, the 

new model also included significant interactions of Length by Frequency as well as Length 

by Grade, which substantially increased the variance explained by the fixed effects of the 

model. Taken together, the interactions stipulate that length effects were greater for 

infrequent than frequent words. Similarly, the Length by Grade interaction indicated that 

length effects were more evident in younger rather than older children. The length by 

frequency interaction has previously been reported in both oral and silent reading tasks 

in children (Rau, Moll, Snowling, and Landerl, 2015; Tiffin-Richards & Schroeder, 2015). 

Within the dual-route framework and per the self-teaching hypothesis (Share, 1995), word 

representations in the mental lexicon arise as a consequence of repeated phonological 

decoding with a gradual increase in the number of words stored in the lexicon. As Turkish 

children that are learning to read are anticipated to possess fewer word representations 

in their lexicons, words are highly likely decoded using the sublexical route, which is serial 

and sensitive to word length, resulting in more substantial length effects for infrequent 

words. 

 

Furthermore, the length by grade interaction is indicative that the differences between 

short and long word stimuli are greater in the lower grades and diminish in the higher 

grades. The diminishing length effect with increasing experience has previously been 
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reported in Spanish children (Suárez-Coalla, Álvarez-Cañizo, & Cuetos, 2014) and is 

considered to be indicative of a gradual shift away from sublexical toward lexical 

processing of words. Taken together the findings reported in the above section provide 

strong support for length and lexicality effects (H1 and H3) as well as partial support for 

frequency effects being present in Turkish-speaking children who are learning to read. 

 

Cognitive predictors of words/pseudowords 

  

A separate avenue of research was to explore the influence of several cognitive skills in 

word and pseudoword reading accuracy and speed in Turkish children. To this end, 

several LMMs were produced. While considering the influence of cognitive predictors on 

reading accuracy, PA and VA Span were found to be exclusively influential on reading 

accuracy. 

 

First, considering the role of PA, there is a large body of evidence within both the cross-

linguistic (Caravolas et al., 2012; Moll et al., 2014; Vaessen et al., 2010; Ziegler et al., 

2010) and within-language literature of the importance of PA (e.g. de Jong & van der Leij, 

2003; Landerl & Wimmer, 2008; Nag & Snowling, 2012; Park & Uno, 2015; Torppa et al., 

2010). In reading development, the vast number of studies carried out to date are 

suggestive that PA may be more significant for reading development in opaque than in 

transparent orthographies. This being said, there is growing support for the view that the 

effect of PA in transparent/ consistent orthographies appears to be temporary (Verhagen, 

Aarnoutse, & Van Leeuwe, 2008; Wimmer & Mayringer, 2002). The first studies of PA in 

Turkish (Durgunoğlu & Öney., 1999; Öney & Goldman, 1984) recognized the rapid 

development of decoding skills in emergent readers. In line with this, the results from the 

current study support the view that phonological awareness contributes to word 

recognition in the early stages of reading as expressed by ceiling effects for both word 

reading accuracy and phonological awareness.  

 

Considering the role of VA Span on reading accuracy, the hypothetical role of visual 

processes on reading acquisition is still under examination. This study lends support to 
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the role of VA Span in reading development in line with previous research carried out in 

Dutch (van den Boer, van Bergen & de Jong, 2015) and French (Bosse and Valdois, 

2009) monolingual children. However, it remains unclear whether the relationship 

between the VA span and reading changes across languages (Lallier et al., 2018). Taking 

this into consideration, weaker length effects are associated with larger VA spans in a 

study involving Dutch children (van den Boer, de Jong, & Haentjens-van Meeteren, 2013) 

suggesting that increasing VA span may act to facilitate the fast-lexical procedure of 

reading (Lobier, Dubois, & Valdois, 2013) by permitting more letters at each fixation to be 

processed. Within the context of Turkish, VA span may similarly accelerate the 

processing of very long words known to be associated with agglutinative orthographies.  

 

In a final analysis, the influence of several cognitive skills in word and pseudoword reading 

speed in Turkish children were considered. To this end, several LMMs were produced. 

While considering the influence of cognitive predictors on reading speed, RAN, PA and 

VA Span were found to be exclusively influential on reading speed. However, when 

considering word reading speed only, the effect of PA disappeared. It appears that 

phonological skills are related to literacy skills that involve decoding as indexed by a 

significant finding in nonword reading speed and lack of a significant finding in word 

reading speed. In this study, RAN and VA span has been found to be related to word 

reading speed. 

 

Considering the role of RAN in word reading speed, RAN was a better predictor of 

word than of nonword reading. Theoretically, if RAN is held to be a reflection of 

orthographic processing (Bowers & Newby-Clark, 2002; Manis, Seidenberg, & Doi, 1999), 

the integration of visual information concerning letter orders in words would make RAN 

redundant in nonword reading processes as found in this study. Still, the mechanisms 

underlying the RAN-reading relationship are still not fully understood (Kirby, Georgiou, 

Martinussen, & Parrila, 2010).  

 

Considering the role of VA Span in word reading speed, the current study found that VA 

span directly influences single word reading speed. In addition, there was a relationship 
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between VA span abilities and reading skills at all grades. Similar findings have been 

reported in French children (Bosse and Valdois, 2009). 

  

4.7.1 LIMITATIONS 
 

As with any experimental study, there are some limitations of the current study that need 

to be highlighted. First, the current study was undertaken with children who were 

attending several different schools from one district, and as participation was voluntary, 

and the participation rate was moderately low, a selection bias cannot be excluded. The 

findings of the current study need to be replicated with a more representative sample that 

moves beyond the singular geographic region covered in this thesis. Second, all of the 

participants, as a function of the inclusion criteria for this study, had already mastered the 

alphabetic principle; in order to fully explore earlier relationships between predictors and 

the Turkish outcome variables, future studies that include younger children are needed. 

Related to this, as the present study was concurrent, the causal role of how lexical and 

cognitive factors develop over time need to be addressed using a longitudinal study 

design that follows students over several years. 

 

The lack of standardized measures (as previously reported in Chapter 3) led to the 

development of measures for each cognitive skill that was hypothesized to be involved in 

Turkish reading. While this approach was appropriate for this study, future experimental 

research could address this limitation following the standardization of the measures 

developed in this work. Also, the findings of the current study are limited to the specific 

set of measures used, i.e., it is entirely plausible that a different set of measures (e.g. 

syllabic manipulation in PA tasks or n-back tasks for working memory) for the constructs 

measured would yield different results. Future research would benefit from including well-

designed measures of morphological awareness in studies exploring reading 

development in Turkish. Additionally, frequency measures beyond surface frequency 

such as root frequency may have a differential influence in agglutinative orthographies 

and warrant further research. The bottom-up approach used for the analysis was one of 
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personal preference if the alternative top-down approach had been adopted, it is feasible 

that results would be different. 

 

The null findings of PSTM are challenging to reconcile, given that, they could be due to a 

poorly conceived measure design through digit span tasks are widely used in the 

literature. Future studies may consider an alternative, purer, measure of PSTM such as 

a modified version of Gathercole and Baddeley’s (1989) Nonword repetition test. 

Alternatively, the findings could be reflective of ceiling level phonological processing 

development in Turkish children (see Babayiğit & Strainthrop, 2007). Within the literature, 

there are mixed findings regarding the role of PSTM. For example, Parrila et al. (2004) 

and Torgesen et al. (1997) found that when considered along with PA and RAN, PSTM 

was only weakly associated with reading measures. Conversely, Swanson and 

colleagues (Swanson & Alexander,1997; Swanson & Howell, 2001) report that the 

contribution of PSTM to reading was significant. Perhaps it is feasible to postulate that, 

like the other measures of memory used in the current investigation, PSTM may have a 

mediating role in Turkish reading. Alternatively, if phonological memory reaches capacity 

early on in reading development, then the emphasis would switch to the contribution of 

other cognitive skills. This finding presents an opportunity for further investigation in future 

studies to shed light on the findings regarding PSTM in this study. 

 

Finally, it is important to consider that while outlier removal is a common approach within 

the literature, it is not without contention when carried out regarding children’s RTs. The 

approach adopted within this thesis is the use of means and standard deviations which 

has been identified as being problematic for a number of reasons (Jones, 2019). The first 

issue is that means and standard deviations are particularly sensitive to extreme values 

and as such, extreme outliers can often mask less extreme cases. The second issue is 

that the use of means and standard deviations also assumes symmetry of distribution, 

which is not the case in reaction time data. With particular relevance to this thesis, 

children’s RT data, is sensitive to outlier removal with the use of absolute cut-offs risking 

real data being eliminated (Ratcliff, 1993). Therefore  the removal of outliers may bias the 

results (Bakker & Wicherts, 2014). Furthermore, slow RTs may simply be reflective of the 
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developmental nature of word reading. Future studies in reading development that utilise 

RTs as a measure of interest need to consider alternative approaches such as the median 

absolute deviation (MAD; Leys et al., 2013) to detect outliers or the use of robust LMM 

models (Koller, 2016) which require no outlier removal. 

4.8 SUMMARY 
  

The findings of this study contribute to a number of topics concerning the underlying 

cognitive and linguistic mechanisms of reading development in Turkish children.  Taken 

together, for children reading in Turkish, performance appears to be dependent on a 

mixture of both lexical and sub-lexical knowledge. Furthermore, the results obtained in 

the current study reveal that phonological awareness, rapid automatized naming and 

visual attention span differentially influence reading ability. 

 

As reading accuracy reaches ceiling quickly, the focus shifts toward developing reading 

speed by automating a superior method of decoding and progressively developing the 

lexical reading route. To this end, VA span appears to play a vital role in decoding speed, 

conceivably by processing multiple letter-clusters as single units. In addition, RAN is 

related both to decoding and to sight word reading and may be involved in the essential 

function of fluently converting visual stimuli into their corresponding phonological 

representations. 

 

The following chapter will introduce the literature regarding atypical reading development 

in Turkish in addition to exploring the contribution of several linguistic and cognitive 

factors to reading development in atypically developing monolingual Turkish children. 
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CHAPTER 5: DEVELOPMENTAL DYSLEXIA IN TURKISH-SPEAKING 
CHILDREN 
 

5.1 OVERVIEW 
 

While typical reading development in Turkish has been sufficiently explored in Chapter 4, 

there is also a need to examine the manifestation of Developmental Dyslexia (DD) in 

Turkish-speaking children. This chapter will introduce the topic area covering current 

developments in the domain, explicitly concerning differing theoretical accounts of DD 

taking into consideration the influence of orthographic transparency on reading 

development. Subsequently, the chapter will critically review both cognitive predictors and 

the diverse conceptualisations of DD subtypes. Based on the literature review below, 

comparisons between DD children and chronological age-matched and younger controls 

will be reported using both a group and multiple case study approach. The chapter will 

conclude with a discussion of the findings and potential future developments. 

5.2 INTRODUCTION 
 

Developmental dyslexia is characterised as a neurodevelopmental disorder that 

manifests as a disorder that principally affects the acquisition of literacy skills, in 

particular, learning to read (Habib, 2000; Peterson & Pennington, 2012; Scerri & Schulte-

Körne, 2010). According to the World Health Organization (1993), DD can additionally be 

described as "a disorder manifested by difficulty learning to read, despite conventional 

instruction, adequate intelligence and sociocultural opportunity" (World Health 

Organization, ICD-10). However, concerning intelligence, this definition is considered 

outdated as average intelligence is no longer considered a pre-requisite for DD 

identification (Siegel & Hurford, 2019). Poor readers with a lower than average IQ have 

not been found to differ from poor readers with average or above IQ in several literacy 

and cognitive measures (See Ellis, McDougall & Monk 1996; Vellutino et al., 1996).  

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V, 2013), 

DD should be identified if reading is behind that expected for the person's age and the 
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difficulties observed cannot better be accounted for by any other neurological, physical, 

social or personal condition. This age-based definition will be adopted for this thesis. 

Globally, DD is the most common learning disorder accounting for approximately 80% of 

all reported specific learning disorders (Handler et al., 2011). 

 

5.2.1 THEORIES OF DEVELOPMENTAL DYSLEXIA 

 

DD is both particularly difficult to define and currently has an inadequately understood 

aetiology. There are a large number of conflicting hypotheses for the causes of DD. Many 

of these competing theories refer to diverse theoretical approaches developed to explain 

DD from a causal perspective (Reid, 2001). For example, in a seminal study, Bradley and 

Bryant (1978) reported that poor readers attained lower scores on tasks of rhyme oddity 

and production than good readers, resulting in the proposal of the Phonological Deficit 

Hypothesis (PDH) (Bradley & Bryant, 1983). The core ability to read, at least in alphabetic 

orthographies, is considered to be phonological processing. As such, is reported to be 

the core deficit in DD (Frith, 1997; Goswami, 2002; Marshall et al., 2001; Snowling, 1998; 

Snowling and Hulme, 2011; Stanovich, 1988). According to this phonological deficit 

model, DD results from an inability to break down words into their phonological parts and 

map each letter to its corresponding sound. In individuals with DD, phonemes are less 

well defined and are thought to affect processing via both the lexical and the sublexical 

route. In support of this, a longitudinal study examining the cognitive skills of children with 

a familial risk of DD (Pennington and Lefly, 2001) found that this cohort performed 

significantly poorer than low-risk control children on both implicit VSTM (visual short term 

memory) and RAN (rapid automatized naming), and explicit (PA) phonological processing 

tasks. However, an outstanding issue within the literature concerns whether PA precedes 

reading acquisition or is a consequence of learning to read (Morais, Cary, Alegria, & 

Bertelson, 1979). There is some evidence from two recent extensive longitudinal studies 

(Landerl et al., 2019: Peterson et al., 2018) that the predictive power of PA for reading 

may have been overemphasised in previous studies. Additionally, the authors of these 

studies propose that the contribution of PA to reading development may be less causal 

and conjecture that PA may function as a corequisite skill for typical reading development. 
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An extension of the phonological account of reading disorder is the double-deficit 

hypothesis (Wolf & Bowers, 1999; 2000). This hypothesis postulates that in addition to 

the observed phonological difficulties experienced by dyslexic children, there is a second 

equally important deficit in naming speed as measured by RAN tasks (Allor, 2002; 

Denckla & Rudel, 1976b). RAN is defined as the ability to rapidly name highly familiar 

visual stimuli, such as digits, letter, objects and colours (Wolf & Bowers, 2000). As such, 

RAN tasks are intended to measure reading speed. Although RAN is frequently reported 

to be moderately correlated with PA, most studies also report that RAN makes a unique 

contribution to explaining the variance of reading skill (Georgiou, Parrila, & Liao, 2008). 

Considering transparent orthographies, reading speed deficits are at the core of DD, and 

RAN is reported to be a better predictor of reading differences than PA (Guzmán et al., 

2004; Meisinger, Bloom, & Hynd, 2010; Serrano & Defior, 2008). The double-deficit 

hypothesis further stipulates that individuals who have both PA and RAN deficits show 

more significant reading impairments compared to those with a single deficit. However, 

there is a conflict in the literature as to the exact nature of RAN; one view posits that RAN 

tasks index the retrieval speed of phonological information from memory and as such is 

an aspect of phonological processing, which is coherent with the phonological deficit 

theory (Snowling, 2000). However, the alternative view is that RAN tasks index processes 

that are as a minimum partially independent of phonological processing. Evidence in 

support of this view comes from correlational studies that report a relationship between 

RAN and reading skills that are independent of measures of PA (Bowers & Wolf, 1993; 

Wolf & Bowers, 1999). Taken together, it appears that RAN may be the best predictor of 

reading speed while phonological processing may be the best predictor of reading 

accuracy and spelling (Moll et al., 2014). 

 

Beyond this broad consensus, the underlying biological and cognitive causes of DD are 

still contested (Ramus 2003; Démonet et al., 2004; Ramus et al., 2006) and a growing 

number of studies identify deficits other than phonological. Several alternative hypotheses 

regard developmental dyslexia as a primarily visual deficit. Firstly, the magnocellular 

theory of DD (Stein, 1989; 2001) proposes that the dysfunctional frequency and amplitude 
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sensitive Magno-cells negatively impact motion sensitivity (binocular instability) and rapid 

auditory processing (Ray, Fowler, & Stein, 2005; Sperling, Lu, Manis, & Seidenberg, 

2003) resulting in the observed deficits manifested by people with dyslexia. In a similar 

but distinct line of enquiry, the visual stress theory (Wilkins, 2003) stipulates that visual 

stress leads to distortions of text and headaches when reading and advocates for the use 

of coloured lenses to reduce visual stress. However, it is not considered to be a specific 

theoretical theory of dyslexia though some dyslexic children do show marked patterns of 

visual stress (Ramus et al., 2003). The visual processing deficit hypothesis attempts 

perhaps inadvertently to merge several theories into a coherent framework, but the theory 

remains contentious at least regarding alphabetic languages (Wang, Bi, Gao, & Wydell, 

2010). Finally, and of most interest to this thesis, the visual attention span deficit 

hypothesis (Bosse et al., 2007) has received increased attention as it has been 

established that phonological awareness and visual attention span measures each made 

a unique contribution to the reading performance of dyslexic children. They also report 

that phoneme awareness was responsible for a large amount of variance in pseudoword 

reading, by extension, adding weight for the argument of the robust impact of 

phonological processing on reading skills (Ziegler et al., 2008). VA Span impairments are 

often manifested as a deficit in the ability to recall strings of consonants. However, they 

can identify consonants in isolation and often have preserved phonological processing 

abilities (Bosse & Valdois, 2009b). A recent interventional case study on a French-

Spanish bilingual dyslexic girl by Valdois and colleagues (2014) found that after specific 

training in a VA Span task, the dyslexic child reported higher scores on the VA Span 

tasks. Also, the study reported increased activation in her superior parietal lobes 

bilaterally; an area thought to be associated with the neural underpinnings of VA Span 

(Peyrin, Démonet, N'Guyen-Morel, Le Bas, & Valdois, 2011). Based on this finding, the 

authors concluded in favour of a causal relationship between VA Span and DD, though 

stated that more extensive studies need to be conducted before a true conclusion could 

be drawn. 

 

It is also important to highlight that processes involved in WM and STM have also received 

much attention in children with reading disorders over the last 30 years (Swanson, 
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Cooney, & McNamara, 2004). STM is considered to be essential to phoneme recall, and 

WM is required for the simultaneous processing and storage of letter sequences. STM 

deficits are thought to contribute to the manifestation of DD by decreasing the 

orthographic and phonological information that is needed to be co-activated during 

reading. Additionally, with reference to reading development, STM is particularly 

important during the development of phonological recoding, when GPC are not yet fully 

specified (Gathercole and Baddeley, 1993). According to WM models, WM is controlled 

by the central executive system in order to manage attentional processing demands and 

is indirectly involved in phonological processes and naming speed. Poor WM is 

hypothesised to contribute to poor performance on complex PA tasks leading to a 

negative impact on word reading ability (see de Jong & van der Leij, 2003). Accordingly, 

a child with DD may show deficits in both STM and WM processes (Swanson et al., 2009). 

 

The notion that DD could have diverse cognitive characteristics is increasingly 

acknowledged in the domain (Menghini et al., 2010). It is now becoming evident that DD 

may best be defined as a multi-faceted disorder and that a combination of factors 

contributes to its heterogeneous manifestation. It is conjectured that phonological factors 

(Siegel, 1990; Snowling, 1995; Stanovich, 1996), working memory (Baddeley, 1993; 

Rack, 1994), visual processing (Stein, 1989; Wilkins, 2003) and processing speed of 

information (Rack, 1994) all play vital roles in explaining DD (Pneuman, 2009). The 

following section will consider several approaches that have been created to explore the 

subtypes of DD. A critical review of these different methodological approaches will be 

offered before considering some of the theoretical frameworks that have been proposed 

regarding reading development and disorder in orthographies beyond English. 

 

5.2.2 SUBTYPES OF DEVELOPMENTAL DYSLEXIA 

 

The heterogeneous manifestations of dyslexia are thought to characterise diverse 

patterns of performance on reading and reading-related cognitive tasks, and as such lend 

support to the idea that there may be homogenous subtypes within DD populations. There 

are, at present, numerous theoretical frameworks which are used to characterise and 
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classify the diversity of children with DD (e.g. Coltheart, Curtis, Atkins, & Haller, 1993; 

Pennington, 2006; Ramus et al., 2003). Moving beyond single-deficit accounts of DD, one 

of the most influential theoretical models of reading and reading disorder come from the 

dual-route cascaded (DRC) model of reading aloud (Coltheart, Rastle, Perry, Langdon, & 

Ziegler, 2001). While the model was initially developed to explain skilled reading and 

acquired dyslexia, it has also had a significant influence on the field of DD especially 

concerning the question of whether there are subtypes of DD (Castles & Coltheart, 1993; 

Manis, Seidenberg, Doi, McBride-Chang & Peterson, 1996). As mentioned previously, 

according to the dual-route model, written words are processed by use of either the lexical 

or sublexical route. According to the DRC model, reading acquisition involves establishing 

these two partially independent routes. There are two widely used approaches to 

subtyping DD within the framework of the dual-route framework. Using the so-called 

classical method, the assumption is that phonological DD is indexed by impaired 

pseudoword reading but with preserved irregular word reading; Conversely, surface DD 

manifests with impaired irregular word reading with spared pseudoword reading. A mixed 

profile of DD is reported when both pseudoword and irregular word reading are impaired. 

This dissociation was first reported in several adult cases of acquired dyslexia 

(Newcombe & Marshall, 1973; Holmes, 1973; Shallice, 1981) and forms the cornerstone 

of evidence for support of the dual-route models of reading (Coltheart, Masterson, Byng, 

Prior, & Riddoch, 1983; Coltheart, 1987) but has also been replicated in the connectionist 

triangle model of Seidenberg and McClelland (1989) as well as the multi-trace memory 

model of Ans et al. (1998). Alternatively, the regression method considers reading 

disorder as a relative deficit with either orthographic skills relative to phonological skills, 

or vice versa. Using this approach, DD subtypes may be classified as "soft" as contrasting 

to the "hard" subtypes defined using the previously mentioned classical method 

(Stanovich et al., 1997). Soft DD subtypes are established by plotting pseudoword 

reading performance against irregular-word performance (and vice versa) and then 

inspecting the 90% or 95% confidence intervals around the regression lines as defined 

by the control group. A participant is considered to be a phonological dyslexic when they 

are an outlier once pseudowords are plotted against irregular words but are in the normal 

range when irregular words are plotted against pseudowords. Equally, a participant is 
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considered to be a surface dyslexic in the opposite direction, i.e.,   outlier status when 

irregular words are plotted against pseudowords but normal range when pseudowords 

are plotted against irregular words. Participants who are outside of the normal range for 

both regression lines are considered to be mixed profiles. Both of these methods of 

classifying DD have been widely utilised in the domain across several orthographies that 

differ in their transparency including the opaque orthographies of English (Castles & 

Coltheart, 1993; Manis, Seidenberg, Doi, McBride-Chang & Peterson, 1996; Stanovich, 

Siegel & Gottardo, 1997) and French (Génard, Mousty, Content, Alegria, Leybaert & 

Morais, 1998; Sprenger-Charolles et al., 2000; Ziegler et al., 2008) as well as more 

transparent alphabetic orthographies such as Greek (Douklias, Masterson, and Hanley, 

2009; Niolaki, Terzopoulos & Masterson, 2014) and Spanish (Jiménez et al., 2009). 

Interestingly, the above studies that explored DD subtypes in transparent orthographies 

(Greek and Spanish) used word reading latency rather than irregular word accuracy as a 

measure of lexical processes. The lack of irregular words in Turkish would also warrant 

such an approach. 

 

In a converse conceptualisation, the interaction between DD and the DRC model have 

been proposed so that the DRC model informs DD research (Friedmann & Coltheart, 

2016). Within this framework, Developmental Dyslexias are characterised as selective 

deficits in the different modules or connections of the DRC model. A deficit in each 

component or connection is proposed to manifest in diverse patterns of reading difficulty, 

characterised primarily by different error types. Using this framework, Dyslexias are 

broadly distributed into peripheral Dyslexias which are considered to be reading deficits 

that stem from the orthographic-visual analysis stage of the model, and alternatively, the 

central Dyslexias, which stem from reading impairments in the later stages of the lexical 

and sublexical routes. Using this approach, it has been proposed that there are 19 

subtypes of DD (Friedmann & Coltheart, 2016) 

 

Another framework for DD subtyping uses cluster analysis to classify DD subtypes based 

on the children's differential deficits in distinctive cognitive domains. In an early attempt 

at using this approach, Lyon and Watson (1981) reported six independent DD subgroups 
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in a cohort of 100 children with DD: Cluster 1 was defined by deficits in language 

comprehension, auditory memory, sound blending, visual-motor integration, visual-spatial 

and visual memory skills; Cluster 2 was defined by deficits in language comprehension, 

auditory memory, and visual-motor integration skills; Cluster 3 manifested with 

deficiencies in language comprehension and sound blending; Cluster 4 was defined by 

deficits in visuospatial capacity; Cluster 5 was defined by deficits in verbal, visual memory, 

and Cluster 6 manifested with no cognitive deficits. This approach has also found some 

utility in orthographies beyond English such as Chinese (Ho et al., 2004), Dutch (Willems, 

Jansma, Blomert, Vaessen, 2015), German (Heim et al., 2008), Portuguese (Pacheco et 

al., 2014), and Spanish (Soriano and Miranda, 2010). For example, the data-driven study 

by Pacheco and colleagues (2014) profiled children with DD on a wide-ranging array of 

cognitive abilities, including measures of PA, RAN, Verbal WM and vocabulary. The study 

found evidence for a cluster with phoneme deletion and RAN deficiencies as well as a 

cluster with phonological processing difficulties (phoneme deletion and digit span) without 

a RAN deficit. The authors suggest that the results are best explained by a hybrid 

perspective, initially proposed by Pennington and colleagues (2012), to explore the 

heterogeneity of dyslexia further. Adopting a hybrid perspective incorporates all 

contending models of DD and therefore permits the occurrence of both single and 

multiple-deficit cognitive profiles. In summary, the significance of characterising the 

cognitive profiles of Turkish children with DD would contribute to both a better 

understanding of the aetiology of DD as well as offering a valuable resource in order to 

develop enhanced tools for the identification and remediation of DD in Turkish-speaking 

populations. 

 

However, the evidence for discrete subtypes is controversial (e.g. Bryant & Impey, 1986; 

Stanovich et al., 1997; Sprenger-Charolles et al., 2011). In a recent study, Giofrè et al. 

(2019) identified seven DD subtypes with cluster analyses in a large Italian cohort. Taking 

a distinct approach, the authors propose a continuum of phonological–visual impairment 

in which the position of an individual along the continuum might determine the distinctive 

features of their cognitive profile. The study found the presence of two distinct clusters of 

children with DD: Cluster 1 reported a more prominent phonological deficit, while both 
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clusters were found to be impaired in visual processing. Also, a continuum approach has 

been implemented into the previously discussed surface, and phonological types 

proposed by the DRC model (see Peterson et al., 2014) as support for distinct aetiologies 

is limited (Gustafson, Ferreira, & Ronnberg, 2007), and prevailing evidence implies that 

the two subtypes symbolise two ends of a continuum rather than discrete groups (Castles 

et al., 1999; Griffiths & Snowling, 2002; Olson et al., 1985).  

 

Another pertinent issue within the DD subtyping literature concerns the use of control 

groups. The performance of children with DD are typically compared to chronological age 

(CA) matched controls. Using a CA control group approach, it is hypothesised that the 

overall portion of mixed profiles is high, and there should be little evidence for dissociated 

profiles. However, there is a strong case for the inclusion of average readers of the same 

reading level (RL) controls for several reasons. Firstly, RL controls are necessary to 

establish if there are differences in vocabulary size and phonemic awareness between 

people with dyslexia and CA controls (Bryant & Impey, 1986) are a consequence of the 

lower reading level of people with DD. Second, there is a need to consider the shift in the 

use of the sublexical and the lexical routes that depend on the overall level of visual word 

recognition that has developed (Waters, Seidenberg, & Bruck, 1984; Sprenger-Charolles 

et al., 2000). 

 

Consequently, comparisons of DD participants with both CA or RL controls are based on 

skills that differ both quantitatively and qualitatively. Additionally, when compared to RL 

controls, it can be determined if people with DD have a developmental trajectory that is 

either deviant or delayed. For instance, when people with DD are at the same reading 

skill level as RL controls, then their developmental trajectory is considered to be delayed. 

When their phonological or orthographic reading skills are below the level of RL controls, 

then their developmental trajectory is considered to be deviant. 

 

It is, however, essential to consider that the majority of the theoretical frameworks 

concerning DD come from studies conducted with English-speakers. The outlier status of 

the English orthography is well established (Share, 2008) and accumulating evidence 
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from cross-linguistic studies (e.g. Joshi & Aaron, 2006; Seymour, Aro, Erskine, 2003) 

raises uncertainties regarding if studies of DD conducted in the English orthography can 

be readily generalised to other orthographies (Ziegler et al., 2003). It is currently 

understood that the manifestation of DD differs according to the orthographic 

transparency of a language. In a seminal study, Wydell and Butterworth (1999) reported 

a case of a well-educated English-Japanese bilingual boy, AS who manifested with 

monolingual dyslexia in English. The study found that AS's ability to read in Japanese 

was at an equal or superior level to that of his peers, notwithstanding his severely 

impaired reading ability in English. He was especially poor at English tasks involving 

phonological manipulation. To explain this dissociation, Wydell and Butterworth (1999) 

inaugurated the Hypothesis of Granularity and Transparency (HGT). As mentioned in 

Chapter-3, the hypothesis suggests that any orthography where the print-to-sound 

translation, i.e. the transparency dimension is transparent will not produce a high 

incidence of phonological DD, regardless of the grain size, i.e., phoneme, syllable, and 

character. In addition to this, they stipulate that any orthography whose smallest 

orthographic unit representing speech sound is coarse (granular level), i.e., a whole 

character or whole word, should also not produce a high incidence of phonological DD. 

Support for the HGT comes from a range of studies that report the estimated prevalence 

rates of DD across orthographies. For example, use of the different script variants of 

Japanese, namely syllabic Hiragana, syllabic Katakana and logographic Kanji, report 

distinct prevalence rates of DD, i.e. 0.2%, 1.6% and 6.9% respectively (Uno et al., 2009). 

In addition, a higher incidence rate of phonological DD has been reported in English (25–

55%) when compared to Spanish (22%) or French (4%) (Castles and Coltheart, 1993, 

Genard et al., 1998, Jimenez and Ramirez, 2002, Stanovich et al., 1997). Finally, the 

prevalence of DD in Italian has also been reported to be considerably lower than opaquer 

and less consistent languages (De Luca, Burani, Paizi, Spinelli, & Zoccolotti, 2010). 

However, prevalence rates vary widely across studies depending on the exact definition 

and measures used for identification (Elliott & Grigorenko, 2014). The dimensions of the 

HGT are illustrated in Figure 15 below. 
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FIGURE 17: THE INCIDENCE OF PHONOLOGICAL DYSLEXIA IN LANGUAGES THAT DIFFER IN TRANSPARENCY AND 

GRANULARITY.  (ADAPTED FROM WYDELL & BUTTERWORTH, 1999) 

In contrast, the Psycholinguistic grain size theory (PGST) also mentioned in Chapter-3, 

proposed by Ziegler and Goswami (2005) does not predict that orthographic transparency 

and granularity reduces the incidence of DD. They, instead, argue that if reading is 

established by phonological skills, then children with DD will experience similar difficulties 

even in consistent orthographies. The PGST further suggests that although the incidence 

of DD will be similar regardless of the transparency of the orthography, the manifestation 

of the disorder may differ with orthographic consistency. Additionally, they posit that the 

incidence of Phonological DD should not be reduced by larger grain sizes, as PA of 

“subsyllabic units may still be necessary for the acquisition of the characters or symbols 

used in coarse grain-size orthographies”. 

 

In summary, the variance among readers with dyslexia is significant; for each proposed 

causal mechanism, there are readers with dyslexia that show the deficit predicted, but 

many others that do not. To date, no single-deficit approach has offered a fully 

comprehensive account for such heterogeneity. In line with this, Menghini and colleagues 
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(2010) provide support to the view of DD as a multifactorial deficit. Consequently, the 

multiple deficit perspective of DD suggests that cognitive profiling is critical for a true 

understanding of DD subtypes. Furthermore, one of the main limitations of causal 

interpretations of DD is that research looking into the reading disorder has primarily been 

carried out with English speaking participants. It is, therefore, imperative to consider how 

the characteristics of writing systems influence the manifestation of DD. 

 

5.2.3 DEVELOPMENTAL DYSLEXIA IN TRANSPARENT ORTHOGRAPHIES 

 

The orthography that children learn to read in has been acknowledged as a critical factor 

that influences the manifestation of DD. Before exploring the literature regarding Turkish 

DD, it would be useful to critically evaluate the research literature concerning DD in other 

transparent alphabetic orthographies such as Greek, Italian, Finnish and Spanish, 

amongst others. Finnish represents a particularly remarkable orthography to explore 

further given the orthographic, morphological and phonological similarities with the 

Turkish writing system. First, the accuracy and latency of visual word recognition will be 

considered, followed by an overview of specific cognitive deficits associated with DD in 

transparent orthographies. 

 

The established view within the literature proposes that participants with DD perform both 

less accurately and slower than age-matched controls on reading tasks (King, 

Lombardino & Ahmed, 2005; Tressoldi, Lorusso, Brenbati & Donini, 2007; Wimmer, 1993; 

Wimmer & Goswami, 1994,). As previously mentioned, there is also accumulating 

evidence that children with DD in transparent orthographies manifest with slow word 

reading rates (Campton & Carlisle, 1994) and is supported by results in Finnish 

(Holopainen, Ahonen, & Lyytinen, 2001; Müller & Brady, 2001), Italian (Brizzolara et al., 

2006; Tressoldi, Stella, & Faggella, 2001), and Spanish (Jiménez González & Hernández-

Valle, 2000). In Finnish, parallel to Turkish, reading accuracy and efficient decoding skills 

are established early on in reading development, and reading difficulties in Finnish are 

primarily revealed in tasks of reading fluency and slow single word reading (Aro, Huemer, 

Heikkilä & Mönkkönen, 2011; Holopainen, Ahonen, & Lyytinen, 2001). Considering this 
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position further, Tressoldi, Stella and Faggella (2001) examined Italian children’s text 

passage reading accuracy and speed and reported that Italian children with DD 

manifested with difficulties involving speed or automatization of the reading process. In 

addition, in a seminal study, Porpodas (1999) established that Greek children with DD 

read 93% of nonwords accurately representing a statistically significant difference when 

compared to 97.1% nonword accuracy for the typically developing controls. As mentioned 

in Chapter 4, the transparent mapping of graphemes to phonemes appears to facilitate 

the development of word decoding skills to the degree that suggests reading accuracy is 

relatively unaffected in most cases of DD; although see Güven & Friedmann (2019) for a 

counter-argument related to Letter Position Dyslexia in Turkish. 

 

Further to this, DD affects and is affected by the cognitive skills that underpin reading 

ability though the exact nature and mechanisms of these cognitive skills remain a matter 

of considerable debate: It has also been proposed that depending on orthographic 

transparency, cognitive processes may be differently involved in producing symptoms of 

DD, (Landerl et al., 2013). Studies carried out in several transparent orthographies 

suggest that deficits in PA are a universal feature of reading disorder and that PA is 

central to reading (Goulandris, 2003). Evidence for this comes from studies carried out in 

Finnish (Puolakanaho et al., 2004), Greek (Porpodas, 1999; Nikolopoulos et al., 2003) 

and Spanish (Jimenez Gonzalez, Alvarez Gonzalez, Estevez Monzo, & Hernadez-Valle, 

2000). Furthermore, a study on the phoneme awareness skills of Czech and English 

children with DD found that children with DD in grades 3 to 7 manifested with significant 

and persistent phoneme awareness difficulties irrespective of orthographic consistency 

(Caravolas, Volín, & Hulme, 2005). Adding weight to this argument, Nikolopoulos et al. 

(2003) compared the performance of children with DD and typically developing readers 

at Grades 2 and 4, on a series of PA and cognitive tasks and found that Greek children 

with DD struggled on complex PA tasks, such as spoonerism and phoneme deletion. 

However, in a counter position, there is also some evidence that specific tasks that 

measure PA such as are less demanding for children with DD that are learning to read a 

transparent orthography (Ziegler & Goswami, 2003). Overall, the discriminatory power of 

PA measures of reading deficit can be evaluated in terms of task demand in that complex 
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PA tasks maintain high discriminatory power in studies including children with DD who 

are learning to read in a transparent orthography (de Jong & van der Leij, 2003). 

 

Beyond phonology, there is growing evidence that, at least in transparent orthographies, 

RAN appears to be one of the strongest predictors of reading among children with DD 

(See Landerl & Wimmer, 2008; Torppa et al., 2010). For instance, Brizzolara and 

colleagues (2006) evaluated naming speed (RAN) and phonological skills in Italian 

children with DD. The study reported that the majority of children manifested with 

problems with RAN. In contrast, children who exhibited reduced scores in phonological 

measures had a history of language delay. The authors concluded that in transparent 

orthographies, phonological deficits might not accurately represent the primary cognitive 

marker of DD. In support of this, Holopainen and colleagues (2001) explored the role of 

phonological awareness, letter knowledge, and naming speed measures in predicting the 

deficits in reading acquisition observed in Finnish children with DD. The study found that 

rapid naming speed was the most important predictor of reading differences in Finnish 

and argued that RAN was a superior measure to PA in predicting at-risk status in reading 

development. Overall, it appears that PA is an essential universal skill early on in reading 

acquisition then as children reach ceiling levels in their ability to accurately decode words, 

there is a shift towards a stronger relationship between RAN and reading. Taken together, 

orthographic depth is believed to prescribe when this shift occurs with children reading in 

transparent languages shifting earlier in schooling (Vaessen et al. 2010).  

 

In addition to PA and RAN, there are a number of other cognitive skills that are thought 

to be involved in the manifestation of DD. Firstly, there is an increased focus within the 

DD literature concerning the role of visual attention span (e.g., Bosse & Valdois, 2009; 

Valdois, Bosse, & Tainturier, 2004; van den Boer, de Jong, & Haentjens van Meeteren, 

2013). Mentioned previously, Visual attention span is generally conceptualised as the 

ability to report back briefly presented letter strings and is thought to reflect the number 

of orthographic units that can be processed in a glance (Valdois et al., 2004). Considering 

the role of VA Span in DD, evidence from French and English-speaking children with DD 

(Bosse et al.,2007), suggest that, independent of their phonological skills, children with 
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DD frequently report with difficulty to simultaneously process multiple elements. Beyond 

opaque orthographies, there is growing evidence of the role of VA Span in DD concerning 

transparent orthographies (e.g. Awadh et al., 2016; Valdois et al., 2014). For instance, 

Germano, Reilhac, Capellini, and Valdois (2014) investigated the manifestation of DD in 

Brazilian Portuguese (intermediate transparency). Results suggest that both PA and VA 

span skills contributed independently to reading fluency and that deficits in each of the 

cognitive abilities define specific subtypes of DD. Furthermore, evidence from the 

relatively transparent orthography of Dutch (Van Den Boer, Van Bergen, & de Jong, 2015) 

confirms the contribution of VA span to reading fluency. Interestingly the study controlled 

for both rapid naming and verbal short-term memory, adding further support for the 

independent role of VA span to reading development and reading disorder. 

 

Concerning working memory deficits in DD, there is abundant evidence for the role of 

verbal working memory in processes related to word decoding. Several studies of 

transparent orthographies have reported differences between typical and poor readers 

(Dutch: Tilanus, Segers, & Verhoeven, 2013; Greek: Constantinidou, & Evripidou, 2012). 

Italian: Menghini, Finzi, Carlesimo, & Vicari 2011; Spanish: Jiménez, Rodríguez, & 

Ramírez, 2009) suggesting that poor readers have difficulty in keeping phonological 

information in working memory. However, in contrast to verbal working memory, visual-

spatial working memory has received little attention in the domain (Provazza, Adams, 

Giofrè, & Roberts, 2019). Interpreted in terms of the working memory model of Baddeley 

and Hitch (1974), visual-spatial working memory refers to the visuospatial sketchpad 

which has limited capacity to represent information in terms of its visual and spatial 

characteristics (Baddeley, 2000). Visual-spatial memory performance is typically 

measured by tasks relating to the recall/ recognition of visual patterns (Gathercole & 

Baddeley, 2014). Concerning the role of visual-spatial memory in DD within transparent 

orthographies, the evidence is variable. For instance, in support of the role of visual-

spatial working memory deficits, Giovagnoli, Vicari, Tomassetti, and Menghini (2016) 

reported that in a cohort of Italian children with DD, there were significant differences 

between typically developing and DD subgroups in tasks of mental rotation, visual-spatial 

memory, global visual-perception and visual-motor integration. However, a longitudinal 
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study carried out with German children with DD (Fischbach, Könen, Rietz & Hasselhorn, 

2014) reported no deficits in static visual-spatial working memory though there were 

significant differences in dynamic measures of visual-spatial working memory. 

Furthermore, the authors propose that their results may be reflective of compensational 

effects in that phonological deficits are equalised by strengths in the visual-spatial domain 

(See von Kàrolyi et al., 2003; Winner, French, Seliger, Ross, & Weber, 2001). Also, the 

role of WM, generally, and visual-spatial WM, specifically, in agglutinative orthographies 

such as Turkish has received little attention. The current study will aim to bridge the gap 

in the literature concerning the role if any, of visual-spatial memory on reading disorder in 

Turkish. 

 

Considering reading disorder within the framework of dual-route theories, evidence from 

Italian children with DD suggests a dependence on the sublexical route as indexed by the 

presence of length effects for both words and pseudowords (De Luca, Borrelli, Judica, 

Spinelli, & Zoccolotti, 2002; Zoccolotti et al., 2005). Similar reports of persistent word 

length effects have been reported in Dutch (Martens & de Jong 2008; Verhoeven, & 

Keuning, 2018), Finnish (Hautala et al., 2013) and Spanish (Davies, Rodríguez-Ferreiro, 

Suárez & Cuetos, 2013). In support of this assertion, a series of studies of Greek children 

with DD have found distinct surface dyslexia subgroups who read highly familiar words 

slowly (Douklias, Masterson, Hanley, 2009; Niolaki, Terzopoulos, Masterson, 2014; 

Sotiropoulos, & Hanley, 2017). However, in another Italian study, word frequency effects 

were reported in both children with DD and typically developing controls. This has also 

been reported in Dutch (van der Leij, & van Daal, 1999), Finnish (Hautala et al., 2013) 

and Spanish (Davies, Rodríguez-Ferreiro, Suárez & Cuetos, 2013). Overall, the above 

studies conclude that the lexical route is still available to developmental dyslexics of 

shallow orthographies thus rejecting the idea of an over-reliance on sublexical processing 

(Barca, Burani, Di Filippo, & Zoccolotti, 2006). It has also been posited that a persistent 

word length effect may be the prominent behavioural manifestation of dyslexia in shallow 

orthographies (Hautala, Hyönä, Aro, & Lyytinen, 2011).  
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Regarding dual-route approaches to DD subtyping, there is growing evidence of the 

presence of subtype dissociations in transparent alphabetic orthographies. For instance, 

consistent with the manifestation of surface and phonological subtypes of DD, there have 

been reported cases in Filipino (Surface: Dulay & Hanley, 2014), Greek (Douklias, 

Masterson, & Hanley (2009), Italian (Lorusso, Cantiani and Molteni, 2014; Surface: 

Zoccolotti et al., 1999) and Spanish (Jiménez, Rodríguez, & Ramírez, 2009). These 

studies appear to corroborate the position that “individuals with pure surface and 

phonological dyslexia can be observed in transparent alphabetic orthographies” (Hanley, 

2017, p.14). Additionally, in order to explore the supposition that the underlying 

impairment in DD that produces slow reading of familiar, regular words in transparent 

orthographies is parallel to inaccurate reading of irregular words in English, Sotiropoulos, 

and Hanley (2017) carried out a study of seven Greek-English bilinguals with DD. The 

study found that the cohort had slow reading of Greek familiar words (surface DD). In 

addition, the group also reported inaccurate reading of English irregular words. 

Sotiropoulos and Hanley (2017) argue that the observed co-occurrences provide strong 

evidence that the underlying impairment seen in the slow reading of real words in Greek 

is equivalent the impairment that produces inaccurate reading of irregular words in 

English.  

 

In conclusion, it seems that both surface and phonological subtypes of DD can be readily 

detected in transparent and opaque alphabetic orthographies. The underlying impairment 

observed in surface DD appears to be equivalent though with a somewhat different 

manifestation in transparent and opaque alphabetic writing systems. From a theoretical 

perspective, research on developmental dyslexia is informative regarding the effect of the 

properties of the various orthographies on reading. Therefore, the simple GPC mappings 

in transparent writing systems are likely to cover difficulties observed in DD in opaque 

orthographies resulting in the manifestation of less severe and distinct deficit patterns by 

comparison. 
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5.2.4 DEVELOPMENTAL DYSLEXIA IN TURKISH 

 

The topic of DD was purportedly first introduced to the Turkish literature in a series of 

books (Razon, 1976, 1980, 1982). While benefitting from being written in the Turkish 

language, the books were merely reflective of the theoretical understanding of DD at the 

time from an Anglocentric perspective and contained no experimental study carried out 

in Turkish populations. Perhaps the first experimental report of DD in Turkish speakers 

comes from Vanlı (1988) who investigated literacy errors in children with DD by 

comparing 18 dyslexic boys aged 7-9 years with 18 typically reading boys matched in 

terms of IQ, age and SES. The study found that the number of reading and writing errors 

made by children with dyslexia was significantly higher than those in the control group. 

Furthermore, the most common mistakes were found to be missing/incorrect letter and 

syllable production, letter/syllable rotation, and nonword writing. However, the lack of an 

RL control group and the use of group means for statistical analysis makes both the 

reliability and interpretability of these results difficult. Similarly, Çapan (1989) reported two 

case studies of two poor readers with average IQ who made misread and misspelt many 

words and showed a tendency to omit and substitute suffixes. However, this study suffers 

from small sample sizes and lack of generalisability that are inherent in single case study 

designs.  

 

Following these early investigations, there have been several studies examining reading 

performances of students with DD (Baydık, 2002; Çaycı & Demir, 2006; Gökçe-Sarıpınar 

& Erden, 2010; Güzel-Özmen, 2005; Karaman, Türkbay, & Gökçe, 2006). For example, 

in her doctoral thesis, Baydık (2002) conducted, a study examining word reading 

strategies of Grade 1 students with and without reading difficulties in Turkish. Her thesis 

reported that despite the orthographic transparency of Turkish, word and pseudoword 

reading accuracy was lower than expected. Baydık (2002) attributed this finding to the 

use of holistic approaches in the teaching of reading of the children participating in the 

research. In similar results, Akyol and Yildiz (2010) report that case study that found that 

the most frequent error type in a grade 5 student with DD was substitution with insertion 

leading to a high error rate. In another study examining the reading fluency errors of grade 
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4 students with DD (Sidekli, 2010) the most frequently reported errors were found to be 

related to word repetition, syllable skipping and adding letters. Similarly, Akyol and Temur 

(2006), examined the reading errors of the grade 3 students and reported that the 

students made the most errors concerning self-correction, syllable/word repetition, adding 

letters, letter skipping and syllable reading errors. Taken together, these case studies are 

suggestive that it is critical to also consider children with DD’s reading accuracy scores 

despite the transparent nature of the Turkish orthography. 

 

More recently, Gökçe-Sarıpınar and Erden (2010) carried out a large norm study in which 

909 children in grades 1-5 took part. Additionally, the DD group was made up of 64 

children, selected based on a formal diagnosis of DD by a state psychiatrist and 

psychologist. The study reported that children with DD performed worse in reading 

fluency (words correct per minute) and reading comprehension compared to their typical 

reading peers. While the study reflects upon an important and understudied area, the 

exploration of DD in Turkish within this study is mostly descriptive and does not consider 

the cognitive and linguistic skills involved in reading. In addition, nor the diagnostic criteria 

used to identify students with DD, nor potential subgroup membership has been stated in 

this study. Furthermore, the large variability seen between the various texts used for the 

study (80-269) calls into question the comparability of scores across age groups. 

 

To date, there has been minimal empirical investigation of the existence and extent to 

which DD is manifested in Turkish. One of the main barriers within this domain is the lack 

of knowledge and understanding of specific learning disorders in Turkey and Northern 

Cyprus (Bingöl, 2003; Erden, Kurdoğlu, & Uslu, 2002; Esen & Çiftçi, 1998).  

Consequently, the number of students that are identified with learning disorders is limited. 

One of the reported reasons for this is the lack of tools available to identify learning 

difficulties in Turkish (Arslan & Dirik, 2008; Bingöl, 2003; Erden et al., 2002; Gökçe-

Sarıpınar & Erden, 2010). The distinct lack of standardised measurement tools developed 

to measure reading skills presents a major challenge for gauging the manifestation for 

DD objectively. Additionally, the lack of measurement tools creates difficulty in identifying 

which areas children with DD experience difficulties and subsequently in developing 
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suitable intervention programs specific to those areas of difficulty. In addition, educators 

are poorly informed as to the nature of learning disorders (Esen & Çiftçi, 1998). 

Additionally, the limited papers that have examined DD in Turkish to date have not made 

the distinction between different subtypes of DD. The principal exception to this is a case 

study carried out by I. Raman and Weekes (2005) reporting BRB a Turkish-English 

bilingual stroke patient who as a consequence of his stroke had an acquired lexical-

phonological retrieval deficit. According to dual-route theory, BRB was reported to be 

unable to utilise the lexical route which led to a manifestation of surface dyslexia in 

English, and imageability effects in reading Turkish, with good reading of nonwords. 

 

The current study aims to start filling the apparent research gap by exploring, in detail, 

the cognitive manifestation of DD in Turkish. The rationale for the proposed research is 

partially driven by the notion that a comprehensive account of dyslexia must 

accommodate phonological impairments as a potential determinant of reading and writing 

problems across different languages. It is therefore essential to examine the supposition 

that phonological impairments are associated with DD in languages that contain 

completely transparent orthography such as Turkish.  

 

5.2.5 A NOTE ON DD POLICY IN TURKEY AND NORTHERN CYPRUS 

 

In Turkey, special education law was established when the Özel Eğitime Muhtaç Çocuklar 

Kanunu (Children with Special Education Need Law) (No. 2916) was legislated in 1983. 

The Turkish Ministry of Education (MEB) has formally recognised Developmental 

Dyslexia since 1997 (Special Education Regulation (No. 573)), although primarily uses 

the term “Specific Learning Difficulties” (SLD) rather than “Dyslexia”. In 2005, the 

Disability Act, Ozurluler Kanunu, no. 5378 (2005) was approved to protect the rights of 

people with disabilities, though not explicitly mentioning dyslexia. However, there are 

other legal regulations (kararname) which state that students with dyslexia have the right 

to special measures in class.  
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The identification of DD is exclusively carried out by state, and university hospitals using 

the Turkish version of tests such as the WISC-R (Savasir & Sahin, 1988) or Stanford-

Binet (Ugurel-Semin, 1987) which are ill-suited for the identification of DD and the need 

to develop better reading achievement tests specific to Turkish are highlighted (Bingöl, 

2003) in order to determine the prevalence of reading difficulties more accurately. In 

recent years, there have been several attempts at developing appropriate assessments 

for DD in Turkish-speaking populations. For example, the Kelime Okuma Bilgisi 

Testi (KOBİT) (Babür, Haznedar, Erdat-Çekerek, Erçetin, & Özerman, 2009) was 

designed to measure Turkish reading and was administered to 283 primary school 

students in Istanbul. While the authors assert that the reliability and validity of these 

specific tests have been established, they have not yet been shared with other 

researchers. In addition, the geographical restriction of the testing to Istanbul makes the 

generalisability to the broader Turkish population limited. 

 

In sum, while there has been progress made towards both developing a national policy 

regarding DD and developing standardised/normalised measures for the identification of 

DD, there is still much room for further improvement. This chapter will aim to contribute 

to the evidence base regarding the selection of suitable materials for the development of 

standardised assessments for DD in Turkish-speaking children. 

 

5.3 METHOD 
 

The aims of the current study were four-fold. First, there was a need to investigate 

whether the classification of DD into subtypes is the same in Turkish as in other 

orthographies. The theoretical framework adopted for this purpose was the DRC model, 

and the same methodological procedures (classic and regression) (Castles & Coltheart, 

1993) were explored. Second, there was a necessity to examine the incidence rates of 

surface and phonological DD subtypes in Turkish. Third, the current study aimed to 

explore individual-specific cognitive and linguistic deficits including phonological 

awareness, rapid automatized naming, visual attention span, working memory and visuo-

spatial short-term memory using both a group and multiple-case study approach. Multiple-
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case studies, in contrast to single-case studies, are designed to study individual cases 

that are assumed to be representative of the larger population of individuals with DD 

within a given population. Therefore, multiple-case studies are considered to be more 

relevant than single-case studies in assessing the prevalence and the reliability of distinct 

profiles of DD (Sprenger-Charolles, Siegel, Jiménez & Ziegler, 2011). Besides, the 

detection of distinct subtypes of DD in Turkish children would be of pronounced 

significance for the identification of DD in Turkish. Finally, the applicability of the HGT 

(Wydell & Butterworth, 1999) would be evaluated for Turkish. Based on the above aims, 

the following hypotheses would be considered: 

 

H1: Developmental Dyslexia, conceptualised primarily as a word-level literacy learning 

difficulty will be less evident in Turkish (Van Orden & Kloos, 2005). 

 

H2: It is anticipated that the highly transparent nature of Turkish should not produce a 

high incidence of phonological developmental dyslexia (Wydell & Butterworth, 1999). 

 

H3: In addition to this, Ziegler & Goswami, (2005) postulated, RAN may play a more 

significant role than phonological processing in the development of skilled reading for 

dyslexic learners in transparent orthographies. 

 

H4: Considering cognitive skills, RAN would be the best predictor of reading at the word 

and text level in Turkish. 

 

H5: There should be distinct word length effects observed in children with DD. It is 

hypothesised that these effects should be greater in the DD cohort. 

 

5.3.1 PARTICIPANTS 

Due to the lack of objective screening tools for developmental dyslexia in Turkish, the DD 

cohort was identified primarily by the distribution of Oral Reading Fluency scores and then 

by Reaction Times (RT) and error rates across all the tasks used in the study, employing 

a similar method used in Turkish adults (I. Raman, 2011). RTs are considered to provide 



 194 

a window into lexical processing and have been effectively utilised as a diagnostic tool 

especially in highly transparent orthographies that typically yield very low error rates, e.g. 

Italian (Tressoldi, Stella, & Faggella, 2001) and Spanish (Serrano & Defior, 2008). For the 

current experiment, the SD cut off for Turkish children was set at 1.25 (Landerl et al., 

2013). This methodology was used in a large European study investigating Finnish, 

Hungarian, German, Dutch, French and English. Landerl and colleagues justify the use 

of a 1.25 SD cut-off as a pragmatic compromise between the standard criteria of -1 and -

1.5 SDs. Finally, children with DD were included if they have been identified as having a 

reading difficulty in the absence of any overwhelming sensory, neurological and 

intellectual disorders or sociocultural factors. 

 

Using the above approach, seven (7) children met the criteria for inclusion in the DD group 

for the current investigation. A further eight (8) participants were referred to the study by 

the Ministry of Education as suspected DD cases. In order to examine the equivalence of 

the two groups, independent samples t-tests were carried out for age, non-verbal IQ, SES 

and the ORF task. Examination revealed no significant differences for age, t (13) = -.106, 

p> 0.5, non-verbal IQ, t (13) = -1.27, p> 0.5, SES, t (8.26) = -1.32, p> 0.5, or ORF scores, 

t (13) = -1.35, p> 0.5. As such, the two groups were combined to form the DD group for 

the current investigation. Except for investigating incidence and prevalence rates, the 

newly formed cohort would be considered as one group for the remainder of this study. 

 

Overall, fifteen (15) children (6 female) met the criteria for inclusion in the DD group for 

the current investigation. Children in the DD group had a mean age of 115.4 months 

(SD=8.48, range 103-129). In order to explore group differences, each child in the DD 

group was matched, when possible, to a child in an older typically developing (TD) control 

group based on age and non-verbal IQ and a child on the basis of ORF scores and non-

verbal IQ, where possible, in order to create a younger TD control group. The typically 

developing control groups were drawn from the cohort previously described in Chapter 4. 

In a similar vein to Davies, Rodríguez-Ferreiro, Suárez & Cuetos (2013), the younger TD 

group used in the current study were not matched on reading ability to the children in the 
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DD group as ability matches on the basis of ORF were not possible with the current 

sample of children. Table 45 below provides an overview of group comparisons. 

 
 

TABLE 45: SUMMARY OF GROUP COMPARISONS BETWEEN DD AND YOUNGER AND OLDER TD CHILDREN 

  DD Older TD 
Younger 
TD 

  

  n=15 n=15 n=15   

          

Age (Months) 
115.40 
(8.48) 

116.40 
(7.80) 

106.13 
(12.65) 

DD = Older TD   
DD > Younger TD* 

Nonverbal IQ (36) 
22.27 
(7.42) 

24.13 
(4.66) 

23.80 
(6.41) 

DD = Older TD  
DD = Younger TD 

Oral Reading 
Fluency (WCPM) 

29.00 
(10.95) 

70.47 
(19.69) 

42.20 
(5.29) 

Older TD > DD* 
Younger TD > DD* 

Socioeconomic 
Status (1-4) 

1.93 (0.59) 1.73 (0.80) 2.20 (1.08) 
DD = Younger TD 
DD = Older TD 

 

From table 45, as above, the DD and younger/ older TD groups showed no significant 

differences in terms of Nonverbal IQ and socioeconomic status. In terms of chronological 

age, the DD group was a similar age to the Older TD group but were significantly older 

(~9 months) then the Younger TD group. Oral reading fluency was significantly different 

between DD and younger TD children as well as DD and older TD children. 

 

Following this, each child in the DD group was individually matched with 14-15 Older TD 

controls based on age, SES and non-verbal IQ and with 13-14 Younger TD controls based 

on ORF scores, SES and non-verbal IQ. 

 

5.3.2 MATERIALS 
 

The same tests that were created and used in Chapter 4 were used in the current study. 

The eight cognitive constructs explored by the battery were: 

· Reading accuracy and speed in single-word naming 
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· Oral reading fluency (ORF) 

· phonological awareness (PA) 

· Rapid Automatized Naming (RAN) 

· Visual Attention (VA) Span 

· Non-verbal IQ  

· Visuo-spatial short-term memory (VSSTM) 

· Working memory (WM)  

 

5.3.3 PROCEDURE 
 

The data collection procedure followed the exact protocol described in Chapter 4. 

Children were tested individually in a quiet room within the school. Stimuli were presented 

on a laptop using DMDX v5.1 (Forster & Forster, 2003). In addition, all of the children 

received the same instructions, which were displayed on the screen and reinforced orally. 

In order to simulate the natural conditions of individual reading on self-teaching, 

participants did not receive feedback on their responses, nor were they corrected if they 

misread the pseudowords (Álvarez-Cañizo, Suárez-Coalla, & Cuetos, 2018). Finally, 

children’s responses were recorded in WAV format using DMDX and analysed with 

CheckVocal software (Protopapas, 2007) to calculate the number of correct responses 

and reaction times (RTs). 

 

5.3.4 STATISTICAL ANALYSIS PLAN 
 

Statistical analyses were performed using RStudio. Planned comparisons between the 

DD, younger and older TD groups were carried out using statistical analyses based on 

Linear Mixed models previously described in Chapter 4.  

 

In order to establish subtypes, the generally used procedure used in studies in opaque 

orthographies for identifying DD subtypes is based on pseudoword and irregular word 

reading accuracy. However, irregular words in transparent orthographies such as Turkish 

do not exist. Taking this into consideration, it has been suggested that RT data can be 

used as an alternative approach of detecting surface dyslexia in Spanish (Jiménez, 
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Rodríguez, & Ramírez, 2009) and Greek (Douklias, Masterson & Hanley, 2009). Both the 

classic and the regression-based approaches to DD subtyping (Castles and Coltheart, 

1993) were used in the current study. For the soft subtype approach, a regression 

analysis was conducted using two separate approaches. First by plotting nonword 

reading accuracy against word reading latencies and secondly by plotting nonword 

reading latency against high-frequency word naming latencies. Both approaches used 

the data for 30 of the Older TD control children in order to establish 90% confidence 

intervals (CIs), and children whose scores were outside of the established CIs were 

identified. Following this, modified t-tests (Crawford & Howell, 1998) were used to look 

for differences in scores in the background and experimental tasks between these cases 

and Older TD- and Younger TD-matched children. The resulting DD subgroups, i.e. 

phonological, surface and mixed were also compared to Older TD and Younger TD 

controls using univariate analysis of variance (ANOVA) tests. Post-hoc comparisons were 

conducted with either the Bonferroni or Games-Howell correction for multiple 

comparisons. Partial eta-squared was additionally calculated to determine the effect size 

of the differences between the groups. 

5.4 RESULTS 
 
5.4.1 GROUP COMPARISONS: WORD READING 
 

Data extraction and cleaning 

For the single word/pseudoword reading data, a total of 3,600 responses were recorded. 

Following data collection, the sound spectrograms of the recorded responses were 

analysed using CheckVocal (Protopapas, 2007) in order to extract corrected accuracy 

and RT measures. For the analysis of accuracy, all responses were considered. 

Transversely, for the analysis of RT, only correct responses were considered. Overall, 

there were 442 (12.8%) errors in the single word naming data which corresponded to 16 

were non-responses (no response, <250ms or >3,000 ms to respond); 83 were word 

naming errors; and 343 were pseudoword errors. The removal of these RT data points 

from the data resulted in a final dataset of 3158 correct responses for further analysis. 
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Descriptive 

The mean overall response time and accuracy across conditions and participants were 

1328ms and 88.06%, respectively. Considering the group variable, overall accuracy was 

82.67% for the DD group, 87.33% for the Younger TD group and 94.17% for the Older 

TD group. Overall response time was 1462ms for the DD group, 1324ms for the Younger 

TD group and 1197ms for the Older TD group. Considering the lexicality factor, overall 

response time and accuracy for words were 1180ms and 95.55%, respectively whereas 

response time and accuracy for nonwords was 1476ms and 80.55%, respectively. 

Considering the length factor, response time, and accuracy for short words/pseudowords 

were 1081ms and 97.56%, respectively whereas response time and accuracy for long 

words/ nonwords was 1285ms and 93.56%, respectively. Considering the frequency 

factor, response time and accuracy for high-frequency words was 1173ms and 96.22% 

respectively whereas response time and accuracy for low-frequency words was 1193ms 

and 94.89% respectively. Table 46 and 47 below provides a summary of the descriptive 

statistics for accuracy and RT data, respectively. 

 
TABLE 46: MEAN ACCURACY FOR WORDS AND NONWORDS BY GROUP 

  DD Younger TD Older TD 

  Mean (SD) Mean (SD) Mean (SD) 

Short Low 

Frequency  

94.00 (9.10) 98.67 (3.52)  100.00 (0) * 

Short High 

Frequency  

96.00 (8.28) 97.33(5.94) 99.33 (2.58) 

Short Psuedoword  83.33 (13.45) 90.00 (20.00) 95.67 (7.04) * 

Long Low 

Frequency 

86.67 (13.97) 92.00 (10.14) 98.00 (7.75) * 

Long High 

Frequency  

90.00 (15.12) 96.67 (6.17) 98.00 (5.61) 

Long Pseudoword  64.00 (22.22) 67.00 (24.11) 83.33 (21.93) * 
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TABLE 47: MEAN RT FOR WORDS AND NONWORDS BY GROUP 

  DD Younger TD Older TD 

  Mean (SD) Mean (SD) Mean (SD) 

Short Low 

Frequency  

1195 (288) 1112 (219)  964 (162) * 

Short High 

Frequency  

1199 (291) 1057 (227) 959 (187) * 

Short Psuedoword  1531 (305) 1360 (382) 1248 (406) * 

Long Low 

Frequency 

1434 (283) 1323 (381) 1132 (362) * 

Long High 

Frequency  

1408 (263) 1295 (369) 1119 (416) * 

Long Pseudoword  1709 (359) 1500 (286) 1444 (271) * 

 

 

As can be seen from Table 46, except long pseudowords, reading accuracy across 

participants was at near celling level. The general trend for accuracy scores was Older 

TD > Younger TD > DD with no exceptions. While the differences with between the DD 

and older TD groups was significant, the differences with the DD and younger TD groups 

were not. From table 47, as above, the general trend for RT scores was Older TD > 

Younger TD > DD with no exceptions. While the differences with between the DD and 

older TD groups were significant concerning low-frequency words and pseudowords (but 

not high-frequency words), the differences with the DD and younger TD groups were not. 

As stated above, the accuracy of responses to words/ pseudowords manipulated by 

length and lexicality was conducted GLMM analysis. 

 

Accuracy – Length, Lexicality and Group 

In the analysis of accuracy, the same approach as adopted in Chapter 4 was used to 

build LMM models. Briefly, the accuracy of responses to words/ pseudowords was 

conducted by using Generalized-Mixed effects Modelling (GLMM). The approach for the 

GLMM analysis involved conducting pairwise LRT comparisons (Pinheiro & Bates, 2000) 
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of simpler models with more complex models, where each step of model comparison 

involves the former model building on the latter in order to determine the value of including 

various fixed and random effects in the models of single word/pseudoword reading 

accuracy. Table 48 below offers a summary of the final model. The final model for the 

analysis of Length, Lexicality and Group, was: 

 

Accuracy ~ Length + Lexicality*Group + (Length| Subject) + (1|Item) 

 
TABLE 48: SUMMARY TABLE OF THE FINAL GLMM MODEL OF WORD/PSEUDOWORD READING ACCURACY. 

  Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 17.78 9.24 – 34.20 <0.001 

Length 0.24 0.18 – 0.40 <0.001 

Lexicality 5.23 3.39 – 8.05 <0.001 

DD vs Older TD 8.64 3.44 – 21.70 <0.001 

DD vs Younger TD 2.04 0.90 – 4.63 0.089 

Lexicality: DD vs Older TD 3.32 1.27 – 8.67 0.014 

Lexicality: DD vs Younger TD 1.87 1.01 – 3.48 0.046 

Random Effects 

σ2 3.29 

τ00 Item 0.22 

τ00 Subject 1.09 

τ11 Subject. Length 0.46 

ρ01 Subject -0.27 

ICC Item 0.05 

ICC Subject 0.24 

Observations 3600 

Marginal R2 / Conditional R2 0.365 / 0.549 

 

From Table 48, the estimated coefficients for the final model show that reading accuracy 

was higher for short words over long words as indicated by the length effect. There was 

also a significant effect of Lexicality, indicating that real words were named faster than 
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pseudowords. Additionally, the model revealed Group effects indicating that the DD group 

was significantly less accurate than the Older TD group but not the Younger TD group 

(although this neared significance). The observed Lexicality by Group interaction effects 

indicates that lexicality effects were more evident for the DD group than both the younger 

and older TD groups. 

 

Accuracy – Length, Frequency and Group  

In order to explore the effects of word frequency, a separate (yet identical) analysis of 

participants’ word reading accuracy (n=1800) was carried out. In this analysis, lexical 

frequency was added as a fixed effect predictor, and the lexicality term used in the above 

analysis was removed. The final model (including random intercepts and slopes) for the 

accuracy of responses to words is shown below and had the formula: 

 

Accuracy ~ Length + Group +(1|Group:Subject) +(1|Item) 

 
TABLE 49: SUMMARY TABLE OF THE FINAL GLMM MODEL OF WORD READING ACCURACY. 

  Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 37.56 16.13 – 87.45 <0.001 

Length 0.33 0.17 – 0.61 <0.001 

DD vs Older TD 10.61 2.97 – 37.97 <0.001 

DD vs Younger TD 2.12 0.79 – 5.65 0.134 

Random Effects 

σ2 3.29 

τ00 Group: Subject 1.16 

τ00 Item 0.27 

ICC Group: Subject 0.25 

ICC Item 0.06 

Observations 1800 

Marginal R2 / Conditional R2 0.214 / 0.451 
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From Table 49, the estimated coefficients for the final model show that word reading 

accuracy was higher for short words over long words as indicated by the length effect. 

Additionally, the model revealed Group effects indicating that the DD group was 

significantly less accurate than the Older TD group but not the Younger TD group. 

 

Reading Speed - Length, Lexicality and Group 

 

Following on from the analysis of the accuracy data, the same model selection procedure 

was applied to the RT data considering only correct responses (n=3170). The effects of 

Group, Length and Lexicality were explored using a Linear Mixed-effects model. The final 

formula for the best model fit was: 

 

InverseRT ~ Length * Lexicality * Group + (Length | Subject) + (1 | Item) 

 

Table 50 below offers a summary of the final model. From Table 50, the estimated 

coefficients for the final model show that single word/pseudoword RTs were shorter for 

short words over long words as well as words being named faster than pseudowords. 

There was also a significant effect of Group indicating that the DD group was significantly 

slower in word reading than the Older TD group but not the Younger TD group. 

Additionally, the model discovered a significant Length by Lexicality interaction. The 

interaction effect indicates that length effects were more evident for pseudowords rather 

than words. There was also a significant Length by Lexicality by Group effect between 

the DD group and the Older TD group (but not the Younger TD group) indicating that 

Length by Lexicality effect is statistically more evident in Older TD children than in children 

with DD. However, the Length by Lexicality effect was still significant in DD children 

(Figure 16). 

 

 

 
 

 

 



 203 

TABLE 50: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD/PSEUDOWORD READING RTS. 

  Inverse RT 

Predictors Estimates CI p 

(Intercept) -0.83 -0.91 – -0.74 <0.001 

Length 0.12 0.07 – 0.17 <0.001 

Lexicality -0.20 -0.25 – -0.16 <0.001 

DD vs Older TD -0.17 -0.28 – -0.05 0.007 

DD vs Younger TD -0.07 -0.18 – 0.05 0.274 

Length: Lexicality 0.08 0.01 – 0.14 0.018 

Length: DD vs Older TD 0.01 -0.05 – 0.07 0.678 

Length: DD vs Younger TD 0.01 -0.04 – 0.07 0.752 

Lexicality: DD vs Older TD 0.00 -0.04 – 0.04 0.995 

Lexicality: DD vs Younger TD 0.01 -0.03 – 0.05 0.715 

Length: Lexicality: DD vs Older TD -0.14 -0.20 – -0.08 <0.001 

Length: Lexicality: DD vs Younger TD -0.02 -0.08 – 0.05 0.630 

Random Effects 

σ2 0.03 

τ00 Item 0.00 

τ00 Subject 0.03 

τ11 Subject.Len1 0.01 

ρ01 Subject -0.21 

ICC Item 0.05 

ICC Subject 0.43 

Observations 3170 

Marginal R2 / Conditional R2 0.227 / 0.600 
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FIGURE 18: LENGTH BY LEXICALITY BY GROUP (DD VS OLDER TD) INTERACTION EFFECTS 

 

Reading Speed - Length, Frequency and Group  

In addition, to explore the effects of word frequency, a separate (yet identical) analysis of 

participants’ word reading RTs was carried out. In this analysis, lexical frequency was 

added as a fixed effect predictor, and the lexicality term used in the above analysis was 

removed. The final model had the equation: 

InverseRT ~ Length +Frequency+ Group + (Length | Subject) + (1 | Item) 
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TABLE 51: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD READING RTS. 

 

Inverse RT 

Predictors Estimates CI p 

(Intercept) -0.92 -1.01 – -0.83 <0.001 

Length 0.14 0.09 – 0.18 <0.001 

Frequency -0.03 -0.06 – 0.00 0.093 

DD vs Older TD -0.18 -0.30 – -0.06 0.005 

DD vs Younger TD -0.05 -0.17 – 0.07 0.440 

Random Effects 

σ2 0.03 

τ00 Subject 0.03 

τ00 Item 0.00 

τ11 Subject.Len1 0.01 

ρ01 Subject -0.23 

ICC Subject 0.45 

ICC Item 0.05 

Observations 1720 

Marginal R2 / Conditional R2 0.154 / 0.579 

 

From table 51, as above, the estimated coefficients for the final model show that single 

word RTs were faster for short words over long words as well as words being named 

faster as a function of Group with the DD group naming single words significantly slower 

than the Older TD group but not the Younger TD group. Of note, the frequency effect was 

found to be non-significant after length was added to the model. 

In order to explore specific length by group interactions, the random slope for Len| Subject 

was removed with the final model having the formula: 

InverseRT~ Len*Group + (1|Subject) + (1|Item) 
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TABLE 52: SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD READING RTS WITH THE RANDOM SLOPE FOR LEN| 
SUBJECT REMOVED  

  Inverse RT 

Predictors Estimates CI p 

(Intercept) -0.93 -1.02 – -0.84 <0.001 

Length 0.16 0.12 – 0.21 <0.001 

DD vs. Older TD -0.17 -0.29 – -0.05 0.009 

DD vs. Younger TD -0.06 -0.18 – 0.06 0.326 

Length: DD vs. Older TD -0.06 -0.11 – -0.02 0.004 

Length: Younger TD -0.00 -0.05 – 0.04 0.893 

Random Effects 

σ2 0.03 

τ00 Subject 0.03 

τ00 Item 0.00 

ICC Subject 0.42 

ICC Item 0.05 

Observations 1720 

Marginal R2 / Conditional R2 0.160 / 0.555 

 

From table 52, as above, the estimated coefficients for the final model show that single 

word RTs were faster for short words over long words as well as words being named 

faster as a function of Group with the DD group naming single words significantly slower 

than the Older TD group but not the Younger TD group. Additionally, there was a 

significant interaction between Length and Group between DD and Older TD groups. The 

interaction effect indicates that length effects were more evident for DD children than 

Older TD controls. 

Furthermore, in a similar vein to Chapter 4, to explore the non-significant finding of a 

frequency effect, the above model was rerun using an Inverse Gaussian distribution 

applied to the raw RT data. The new model has the formula: 
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RT~ Length + Frequency +Group + (Len*Group) +( Frequency*Group) + 

(Len*Freq*Group) + (1|Subject) + (1|Item) 

TABLE 53 SUMMARY TABLE OF THE FINAL LMM MODEL OF WORD READING RTS WITH MODIFICATION TO RT 

  RT 

Predictors Estimates CI p 

(Intercept) 1294.40 1227.64 – 1361.16 <0.001 

Length 248.93 193.82 – 304.04 <0.001 

Frequency 12.46 -35.64 – 60.57 0.612 

DD vs Older TD -97.61 -154.43 – -40.78 0.001 

DD vs Younger TD -11.90 -76.31 – 52.51 0.717 

Length: DD vs Older TD -176.54 -216.82 – -136.26 <0.001 

Length: DD vs Younger TD -105.08 -149.84 – -60.32 <0.001 

Frequency: DD vs Older TD -40.76 -79.02 – -2.50 0.037 

Frequency: DD vs Younger TD -86.98 -126.35 – -47.61 <0.001 

Length: Frequency -26.64 -88.97 – 35.69 0.402 

Length: Frequency: DD vs Older TD 26.92 -23.41 – 77.25 0.295 

Length: Frequency: DD vs Younger TD 70.74 19.78 – 121.71 0.007 

Random Effects 

σ2 0.00 

τ00 Subject 17309.67 

τ00 Item 3202.33 

ICC Subject 0.84 

ICC Item 0.16 

Observations 1720 

Marginal R2 / Conditional R2 0.407 / 1.000 

 

From table 53, as above, the estimated coefficients for the final model show that single 

word RTs were faster for short words over long words as well as words being named 

faster as a function of Group with the DD group naming single words significantly slower 
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than the Older TD group but not the Younger TD group in support of the previous analysis. 

Additionally, there was a significant interaction between Length and Group between DD 

and both TD groups. The interaction effect indicates that length effects were more evident 

for DD children than TD controls. Furthermore, there was a significant interaction between 

Frequency and Group between DD and both TD groups. The interaction effect indicates 

that frequency effects were less evident for DD children than TD controls. Finally, a 3-

way interaction between Length, Frequency and Group for DD vs Younger TD children 

revealed that the greater frequency effect for long words was less marked in the DD group 

compared to younger TD readers 

5.4.2 Cognitive Predictors of Word/Pseudoword Reading 

In a final analysis, the cognitive predictors of single word/pseudoword reading were 

considered. First, both words and pseudowords were considered together for both 

accuracy and RT measures. Following this, a separate analysis was carried out for words 

and pseudowords. 

Word/Pseudoword Reading Accuracy 

The same model selection procedure used in the previous analyses was applied to both 

the accuracy and RT data. The effects of Group, PA, RAN, VA Span, WM and VSSTM 

on accuracy scores were explored using a Generalised Linear Mixed-effects model. The 

final formula for the best model fit was: 

Accuracy ~ PA + Group + (1 | Subject) + (1 | Item) 
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TABLE 54: SUMMARY TABLE OF THE FINAL GLMM MODEL OF COGNITIVE PREDICTORS OF WORD READING ACCURACY. 

  Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 4.86 1.56 – 15.10 0.006 

PA 1.13 1.04 – 1.24 0.005 

DD vs Older TD 3.71 1.00 – 13.78 0.050 

DD vs Younger TD 1.34 0.52 – 3.44 0.542 

Random Effects 

σ2 3.29 

τ00 Subject 0.80 

τ00 Item 0.51 

ICC Subject 0.17 

ICC Item 0.11 

Observations 1800 

Marginal R2 / Conditional R2 0.236 / 0.454 

 

From Table 54, the estimated coefficients for the final model show that reading accuracy 

was more likely to produce correct responses by students with higher scores in PA. In 

addition, there was a significant difference between children in the DD group and Older 

TD children in PA scores. Similar to the parallel approach in Chapter 4, separate analysis 

for words and pseudowords yielded the same final model and as such will not be reported 

further. 

Word/Pseudoword Reading Speed 

The same model selection procedure used in the previous analyses was applied to the 

RT data. The effects of Grade, PA, RAN, VA Span, WM and VSSTM on RT scores were 

explored using a Linear Mixed-effects model. The final formula for the best model fit was: 

InverseRT ~ PA + Group + (1|Subject) + (1 | Item) 
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From Table 55 below, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with higher scores in PA. 

No other cognitive predictors or interactions reached significance for inclusion into the 

final model. 

TABLE 55: SUMMARY TABLE OF THE FINAL LMM MODEL OF COGNITIVE PREDICTORS OF WORD/PSUEDOWORD 
READING RT. 

  Inverse RT 

Predictors Estimates CI p 

(Intercept) -0.65 -0.78 – -0.52 <0.001 

PA -0.01 -0.02 – -0.00 0.028 

DD vs Older TD -0.09 -0.21 – 0.04 0.195 

DD vs Younger TD -0.03 -0.14 – 0.08 0.575 

Random Effects 

σ2 0.03 

τ00 Item 0.02 

τ00 Subject 0.02 

ICC Item 0.23 

ICC Subject 0.31 

Observations 3170 

Marginal R2 / Conditional R2 0.095 / 0.582 

 

Furthermore, in a similar vein to Chapter 4, the above model was rerun using an Inverse 

Gaussian distribution applied to the raw RT data. The new model has the formula: 

RT ~ PA + RAN + Group + (RAN * Group) + (1 | Subject) + (1 | Item) 

 

 

 

 

 



 211 

TABLE 56: SUMMARY TABLE OF THE FINAL LMM MODEL OF COGNITIVE PREDICTORS OF WORD/PSUEDOWORD 
READING RT WITH MODIFICATIONS TO RT 

  RT 

Predictors Estimates CI p 

(Intercept) 1269.85 1127.36 – 1412.34 <0.001 

PA -3.10 -19.42 – 13.23 0.710 

RAN 10.95 5.99 – 15.91 <0.001 

DD vs. Older TD 166.43 114.52 – 218.33 <0.001 

DD vs Younger TD -359.05 -472.31 – -245.80 <0.001 

RAN: Older TD -3.93 -13.99 – 6.14 0.445 

RAN: Younger TD 11.19 3.90 – 18.49 0.003 

Random Effects 

σ2 0.00 

τ00 Item 12611.73 

τ00 Subject 14934.04 

ICC Item 0.46 

ICC Subject 0.54 

Observations 3170 

Marginal R2 / Conditional R2 0.290 / 1.000 

From Table 56, as above, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with lower scores in RAN. 

In addition, there was a significant difference between children in the DD group and 

younger TD children in RAN scores. The interaction effect indicates that the effect of RAN 

on RT was less evident for DD children than younger TD controls. 

Separate analysis for words revealed the final formula of the best model fit to be: 

InverseRT ~ PA + RAN + VA Span + Group + (PA | Subject) + (Group | Item) 

From Table 57 below, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with lower scores in RAN. 
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No other cognitive predictors or interactions reached significance for inclusion into the 

final model. 

 
TABLE 57: SUMMARY TABLE OF THE FINAL LMM MODEL OF COGNITIVE PREDICTORS OF WORD READING RT. 

  Inverse RT 

Predictors Estimates CI p 

(Intercept) -1.09 -1.41 – -0.77 <0.001 

PA -0.00 -0.01 – 0.01 0.779 

RAN 0.01 0.00 – 0.01 0.038 

VA Span -0.00 -0.00 – 0.00 0.632 

DD vs Older TD -0.09 -0.23 – 0.05 0.231 

DD vs Younger TD -0.03 -0.13 – 0.08 0.653 

Random Effects 

σ2 0.03 

τ00 Subject 0.00 

τ00 Item 0.01 

τ11 Subject.PA 0.00 

τ11 Item.DD vs older TD 0.00 

τ11 Item.DD vs younger TD 0.00 

ρ01 Subject 1.00 

ρ01 Item.DD vs older TD -1.00 

ρ01 Item.DD vs younger TD -1.00 

ICC Subject 0.04 

ICC Item 0.25 

Observations 1720 

Furthermore, in a similar vein to Chapter 4, the above model was rerun using an Inverse 

Gaussian distribution applied to the raw RT data. The new model has the formula: 

RT ~ RAN + Group + (RAN * Group) + (1 | Subject) + (1 | Item) 
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TABLE 58: SUMMARY TABLE OF THE FINAL LMM MODEL OF COGNITIVE PREDICTORS OF WORD READING RT WITH 
MODIFICATION TO RT 

 

  RT 

Predictors Estimates CI p 

(Intercept) 772.85 698.08 – 847.61 <0.001 

RAN 15.88 12.07 – 19.68 <0.001 

DD vs Older TD 248.01 165.71 – 330.30 <0.001 

DD vs Younger TD 145.60 74.34 – 216.87 <0.001 

RAN: DD vs Older TD -8.07 -15.57 – -0.58 0.035 

RAN: DD vs Younger TD -4.06 -9.82 – 1.71 0.168 

Random Effects 

σ2 0.00 

τ00 Subject 14440.14 

τ00 Item 5335.64 

ICC Subject 0.73 

ICC Item 0.27 

Observations 1720 

Marginal R2 / Conditional R2 0.412 / 1.000 

From Table 58, as above, the estimated coefficients for the final model show that reading 

speed was more likely to produce faster responses by students with lower scores in RAN. 

In addition, there was a significant difference between children in the DD group and older 

TD children in RAN scores. The interaction effect indicates that the effect of RAN on RT 

was more evident for DD children than older TD controls. 
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5.4.3 Subtyping 

Moving beyond group studies, two methods were used to analyse the presence of 

subtypes within the DD cohort, namely, the classical method and the regression method.  

Chronological Age Comparison: Hard subtypes (Classical method) 

In order to identify hard Phonological and Surface DD cases, the classical method with 

the typically used criterion of one SD below the mean accuracy score of Older TD controls 

(or above the mean for RT). For accuracy, grade-based cut-offs for nonword accuracy 

were 71.97% for Grade 2, 74.73% for Grade 3, 72.18% for Grade 4 and 78.59% for Grade 

5. Out of the 15 dyslexics, eight were reduced in pseudoword reading accuracy. Grade-

based cut-offs for word accuracy were 92.91% for Grade 2, 95.92% for Grade 3, 91.35% 

for Grade 4 and 96.24% for Grade 5. Out of the 15 dyslexics, eight were deficient in word 

reading accuracy. Taken together, 5 had both deficits and had four neither. Accordingly, 

only three children were selectively impaired in pseudoword reading accuracy 

(Phonological DD), and three were selectively impaired in word reading accuracy 

(Surface DD). Hence, 6 of the 15 dyslexics had a selective deficit (40%). 

Considering the classical method on word/pseudoword RTs, 11 of the 15 children in the 

DD subgroup were slow in pseudoword reading, 11 were slow in word reading, 10 had 

both deficits, and 3 had neither deficit. Only one child was selectively slow in pseudoword 

reading (Phonological DD), and one was selectively slow in word reading (Surface DD). 

Thus, a selective deficit was found in only 2 of the 15 dyslexics (13%). As is commonly 

used in subtyping studies in transparent orthographies, when both nonword accuracy and 

word reading RT were considered together, 3 of the 15 children in the DD subgroup were 

inaccurate in pseudoword reading (Phonological DD), six were slow in word reading 

(Surface DD), 5 had both deficits (Mixed DD), and 1 had neither deficit. 

Chronological Age Comparison: Soft subtypes (Regression-based method) 

In order to further explore the profiles of phonological and surface dyslexia, the 

regression-based technique employed by Castles and Coltheart (1993) and adapted for 

use in transparent orthographies by Niolaki, Terzopoulos and Masterson (2014) was 
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used. A regression analysis was carried out using scores of 30 Older TD control children 

for nonword reading accuracy and word reading RT. 

The regression discovered a significant relationship (r = -.626, P <.001) between the two 

variables (F (1,29) = 18.04, p<.001). In order to investigate if age accounted for this 

significant relationship, an additional analysis with chronological age as a covariate was 

carried out. The resulting partial correlation indicated that the relationship between the 

two variables remained significant (partial r=-.498, p<.001). Predicted values based on 

the relationship were used to identify those children in the DD group with scores markedly 

below expectation on one task based on their performance on the supplementary task. 

The resulting mean predicted values and 90% CI for a subgroup of 30 Older TD matched 

typically developing children as well as the DD children were plotted and are presented 

in Figure 17 below. 
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FIGURE 19: NONWORD READING ACCURACY BY WORD READING RT FOR 30 OLDER TD CHILDREN, AND 90% 

CONFIDENCE INTERVALS.  

Note: Stars represent dyslexic children with the profile of surface dyslexia (n=7), triangles 

represent dyslexic children with the profile of phonological dyslexia (n=7) and diamond 

symbols represent dyslexic children with a mixed profile (n=1). 

Before analysing the difference between groups, there was a need to consider the 

potential group dissimilarities in non-verbal IQ. Due to the small group sizes, a one-way 

ANOVA was used instead of the LMM approach. The analysis revealed that there was no 

significant difference between groups on non-verbal IQ F (3,34) = 1.06, p= 0.38. 

Analysing Oral Reading Fluency at the word and syllable level, there were significant 

differences between groups at the word, Welch F (3,14.71) = 16.17, p<0.001, h2= .60 and 

syllable, Welch F (3,14.53) = 13.87, p<0.001, h2= .58, levels. Planned post-hoc 

comparisons using the Games-Howell correction revealed significant differences 

between the Phonological DD subgroup and the Older TD (46 words, p<0.001) and the 

Younger TD (19 words, p = 0.037) controls but not with the Surface DD subgroup (p> 

0.05) for the ORF word level. The surface DD group only differed significantly from Older 

TD (36 words, p< 0.001). Post-hoc comparisons using the Games-Howell correction for 

ORF syllable scores revealed significant differences between the Phonological DD 

subgroup and the Older TD (120 syllables, p<0.001) and the Younger TD (47 syllables, p 

= 0.009) controls but not with the Surface DD subgroup (p> 0.05) for the ORF word level. 

The surface DD group only differed significantly from Older TD controls (87 syllables, p< 

0.001). Taken together, the Phonological DD group manifested with an overall deficit in 

ORF, whereas the Surface DD group appeared to reflect a delay in their ORF. 

Following this, single word/ nonword naming accuracy and speed were analysed for 

group differences. The resulting ANOVAs discovered significant group differences for 

nonword reading accuracy, F (3,43) = 5.72, p = 0.002, h2= .30 and word reading RT, F 

(3,43) = 3.16, p = 0.035, h2= .19 but not for word reading accuracy Welch F (3,14.54) = 

3.18, p=0.056 or nonword reading RT, F (3,43) = 2.52, p=0.072. Post-hoc comparisons 

using the Bonferroni correction for nonword reading accuracy scores revealed significant 

differences between the Phonological DD subgroup and the Older TD (29%, p= 0.001) 



 217 

and the Younger TD (20%, p = 0.042) controls as well as the Surface DD subgroup (25%, 

p> 0.001). The surface DD group only differed significantly from the Phonological DD 

group previously reported above. Post-hoc comparisons using the Bonferroni correction 

for word reading RT scores revealed no significant differences between the groups. 

However, group differences between the surface DD group and the Older TD control 

group approached significance (p= 0.056). 

Considering the cognitive profiles of the subgroups, there were significant differences 

between groups for PA, Welch F (3,13.86) = 5.47, p = 0.011, h2= .34, and RAN, Welch F 

(3, 14.37) = 4.65, p = 0.018, h2= .27 but not VA Span F (3,43) = 2.66, p = 0.061, WM, 

Welch F (3,15.70) = 0.80, p = 0.52,or VSSTM, F (3,43) = 0.48, p = 0.70. Post-hoc 

comparisons using the Games-Howell correction for PA scores revealed significant 

differences between the Phonological DD subgroup and the Older TD (12, p= 0.003). The 

differences between the phonological DD group and the Younger TD controls approached 

significance (p= 0.051). The surface DD group did not significantly differ from controls. 

Post-hoc comparisons using the Games-Howell correction for RAN scores only revealed 

significant differences between the Older TD and Younger TD control groups (5.64 

seconds, p= 0.031). 

In a further consideration, and in line with Jiménez, Rodríguez, Ramírez (2009), the 

regression analysis approach for subtyping was further explored using the RT for high-

frequency words and pseudowords. See Figure 18 below. 
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FIGURE 20: NONWORD READING RT BY WORD READING RT FOR 30 OLDER TD CHILDREN, AND 90% CONFIDENCE 

INTERVALS. 

Note: Stars represent dyslexic children with the profile of surface dyslexia (n=3), triangles 

represent dyslexic children with the profile of phonological dyslexia (n=4) and diamond 

symbols represent dyslexic children with a mixed profile (n=8). 

Using this approach, three children belonging to the phonological subgroup and four 

belonging to the surface subtype appear as mixed profiles. The resulting analysis also 

suggests that the approach originally adopted by Douklias, Masterson, and Hanley (2009) 

may be better suited for differentiating subgroups of DD in highly transparent 

orthographies.  
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Comparing individual DD children and typically developing controls 

Using modified t-tests, the scores of the battery of tests of each individual child of the DD 

group was compared to those of 6 - 10 older TD children on the basis of chronological 

age, SES and nonverbal IQ as well as 5-8 younger TD controls on the basis of scores in 

the oral reading fluency task, SES and nonverbal IQ. Three children (PD4, SD4, SD5) did 

not have suitable younger TD children comparisons available. The resulting comparison 

is reported in Table 59 and 60.
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TABLE 59: AGE, GENDER AND WORD/ PSEUDOWORD READING SCORES FOR CHILDREN WITH DD IN THE SURFACE, PHONOLOGICAL AND MIXED SUBTYPE GROUPS 
WITH OLDER TD AND YOUNGER TD CONTROLS (STANDARD DEVIATIONS ARE REPORTED IN PARENTHESES). * P < .05 (SIGNIFICANCE TEST: CRAWFORD & HOWELL, 
1998). 

 

 

 

Mixed DD

PD1 PD2 PD3 PD4 PD5 PD6 PD7 SD1 SD2 SD3 SD4 SD5 SD6 SD7 MD1

Age (Months) 107 129 112 116 105 103 107 123 121 122 109 110 117 128 122

Gender F M M M F F M M F F M M F M M (9)

Older / Younger TD (N) 10 / 8 9 / 7 9 / 7 7 / 8 8 / NA 7 / 5 6 / 8  7 / 8 8 / 6 7 / 5 8 / NA 7 / NA 6 / 6  6 / 6 8 / 8

Older TD mean age (Months) 106.4 (2.8) 129.4 (1.0) 113.2 (0.83) 115.6 (1.62) 100.4 (8.94) 103.3 (1.50) 105.5 (1.87) 123.7 (1.25) 120.8 (3.15) 121.4 (1.62) 111.1 (2.47) 111.6 (2.99) 117.0 (2.53) 125.5 (4.97) 121.5 (5.0)

Older TD mean RCPM  25.2 (3.8) 27.6 (3.4) 25.1 (4.9) 24.3 (3.09) 16.5 (1.6) 15.03 (6.8) 24.33 (3.3) 25.0 (2.52) 24.6 (2.20) 19.14 (7.01) 24.67 (3.78) 27.20 (3.63) 25.17 (1.60) 15.50 (6.35) 30.9 (1.0)*

Older TD mean SES 1.7 (.08) 2.9 (1.05) 2.0 (1.07) 2.0 (1.0) 2.0 (1.15) 0.87 (.68) 1.83 (.75) 2.67 (1.03) 2.14 (1.21) 1.83 (1.33) 1.50 (.55) 1.71 (.50) 1.83 (.98) 2.50 (1.38) 2.4 (0.7)

Younger TD mean age (Months) 93.5 (6.1)* 101.9 (12.9)* 95.1 (6.6)* 93.6 (6.32)* - 92.2 (4.55)* 92.8 (2.49)* 101.0 (10.65)* 98.8 (11.14) 97.00 (8.80)* - - 98.7 (10.88) 98.00 (8.25)* 109.3 (15.4)

Younger TD mean RCPM 21.25 (6.76) 26.17 (4.07) 26.00 (5.13) 24.4 (6.57) - 18.8 (3.70) 23.6 (2.20) 24.6 (5.62) 26.6 (4.39) 15.6 (1.14) - - 26.17 (1.47) 15.83 (1.17) 26.7 (3.44)*

Younger TD mean SES 1.9 (.08) 2.3 (1.38) 2.6 (1.13) 2.5 (1.19) - 1.0 (1.41) 2.6 (.92) 2.2 (1.36) 2.5 (1.38) 1.80 (.84) - - 2.17 (1.47) 1.67 (.82) 1.9 (0.9)

Older TD mean ORF Syllables 171.4 (52.7)* 235.0 (54.3)* 165.3 (59.0)* 184.0 (38.4)* 156.0 (41.1) 168.4 (44.3)* 183.7 (26.9)* 195.6 (39.4)* 206.4 (39.5)* 186.1 (56.67) 178.9 (66.42) 186.4 (55.11)* 172.2 (49.87) 200.33 (57.72) 218.3 (29.4)*

Younger TD mean ORF Syllables 125.0 (19.9)* 98.6 (6.8)* 108.3 (13.7)* 109.6 (13.4) - 157.8 (36.93)* 143.6 (40.5)* 104.1 (9.6) 99.8 (6.46) 132.2 (12.58) - - 102.3 (9.61) 150.33 (45.82) 129.7 (9.55)

Word Accuracy 70% 88% 85% 80% 98% 98% 90% 88% 100% 100% 100% 93% 100% 90% 98%

DD vs. Older TD 96.94 (4.10)* 98.61 (2.2)* 100.00 (0.00)* 100.00 (0.00)* 96.25 (4.23) 97.50 (3.82) 98.75 (2.09)* 98.93 (1.34)* 99.06 (2.65) 97.14 (4.66) 99.38 (1.77) 99.64 (.95)* 99.17 (2.04) 96.00 (5.00) 99.7 (.009)*

DD vs. Younger TD 95.00 (3.78)* 96.43 (4.05)* 95.71 (3.45)* 95.63 (3.20)* - 97.00 (4.11) 96.88 (3.72) 96.88 (3.95)* 96.67 (4.38) 94.58 (3.68) - - 96.67 (4.38) 95.00 (4.00) 98.2 (.02) *

Word RT 1647 1460 1286 852 1103 1300 1520 1340 1416 1337 1207 1200 1297 1731 907

DD vs. Older TD 1204 (459) 858 (102)* 1053 (231) 952 (151) 1088 (164) 1056 (185) 962 (164)* 871 (62)* 910 (128)* 945 (139)* 1002 (166) 1005 (223) 955 (91)* 942 (153)* 917 (75)

DD vs. Younger TD 1126 (113)* 1184 (166) 1276 (388) 1255 (366) - 1063 (130) 1094 (112)* 1217 (128) 1226 (135) 1097 (136) - - 1215 (124) 1085 (147)* 1085 (163)

Nonword Accuracy 35% 50% 60% 63% 65% 65% 73% 83% 83% 83% 83% 88% 93% 95% 90%

DD vs. Older TD 78.88 (19.16)* 86.94 (12.73)* 90.56 (6.22)* 95.00 (6.29)* 86.56 (8.44)* 90.36 (6.20)* 89.58 (4.85)* 90.71 (10.97) 93.75 (5.82) 89.64 (6.03) 91.25 (6.55) 88.93 (7.20) 96.67 (3.03) 88.00 (5.00) 93.4 (11.70)

DD vs. Younger TD 81.25 (5.51)* 87.14 (6.36)* 81.79 (16.25) 80.00 (14.20) - 86.50 (11.54) 88.75 (9.06) 84.69 (4.52) 85.42 (4.85) 81.67 (7.36) - - 83.75 (4.68) 84.00 (8.00) 77.9 (26.75)

Nonword RT 1960 1689 1574 919 1799 1735 1771 1776 1927 1634 1574 1651 1469 1684 1099

DD vs. Older TD 1496 (627) 1070 (174)* 1347 (322) 1205 (192) 1290 (207)* 1305 (190)* 1168 (166)* 1186 (166)* 1136 (145)* 1177 (198)* 1309 (168) 1331 (331) 1215 (103)* 1155 (217)* 1085(112)

DD vs. Younger TD 1333 (136)* 1414 (119)* 1560 (477) 1483 (480) - 1241 (175)* 1297 (146)* 1443 (188) 1436 (113)* 1307 (138)* - - 1484 (177) 1307 (138)* 1404 (254)

Phonological DD Surface DD
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TABLE 60: COGNITIVE PROFILES FOR CHILDREN WITH DD IN THE SURFACE, PHONOLOGICAL AND MIXED SUBTYPE GROUPS WITH OLDER TD AND YOUNGER TD 
CONTROLS (STANDARD DEVIATIONS ARE REPORTED IN PARENTHESES). * P < .05 (SIGNIFICANCE TEST: CRAWFORD & HOWELL, 1998). 

 

Mixed DD

PD1 PD2 PD3 PD4 PD5 PD6 PD7 SD1 SD2 SD3 SD4 SD5 SD6 SD7 MD1

Age (Months) 107 129 112 116 105 103 107 123 121 122 109 110 117 128 122
Gender F M M M F F M M F F M M F M M (9)

PA 4 2 10 13 6 17 11 15 27 15 11 13 14 5 27
DD vs. Older TD 18.00 (7.25)* 27.44 (6.42)* 21.67 (6.93) 20.00 (2.38)* 15.63 (3.93)* 17.00 (5.51) 20.33 (7.66) 21.71 (5.47) 22.00 (5.66) 23.29 (6.50) 20.75 (9.54) 22.14 (8.73) 20.33 (3.78) 23.00 (4.56)* 24.38 (7.98)

DD vs. Younger TD 14.38 (2.77)* 15.43 (2.57)* 15.14 (2.19)* 15.00 (2.20) - 14.00 (6.44) 15.13 (5.51) 14.75 (2.43) 15.17 (2.71) ↑ 14.5 (2.74) - - 14.17 (1.33) 13.83 (2.14)* 16.43 (2.37) ↑
RAN 58.69 53.78 33.36 27.18 38.39 32.68 38.04 37 43.31 34.58 38.23 30.65 28.04 64.64 29.27

DD vs. Older TD 30.72 (4.95)* 22.77 (2.86)* 27.50 ( 3.37) 27.88 (3.25) 33.83 (5.72) 32.48 (4.22) 28.53 (3.18)* 27.32 (3.14)* 27.80 (2.85)* 27.60 (4.74) 28.31 (4.24)* 26.90 (2.72) 30.47 (7.22) 24.92 (3.93)* 26.44 (3.05)
DD vs. Younger TD 37.29 (3.49)* 35.81 (6.08)* 36.71 (4.75) 36.72 (4.52) - 31.34 (7.17) 31.93 (6.40) 33.95 (5.22) 34.62 (5.69) 36.01 (2.89) - - 34.84 (5.38) 35.03 (4.83)* 31.05 (3.06)

VA Span 35 20 10 54 49 37 34 39 31 19 45 26 51 29 63
DD vs. Older TD 61.00 (11.73)* 65.00 (18.30)* 55.00 (12.14)* 55.43 (12.18) 45.13 (17.63) 50.71 (13.65) 61.67 (13.85) 65.86 (11.77)* 66.50 (13.70)* 58.71 (19.41) º 53.88 (13.21) 58.14 (8.28)* 62.00 (14.38) 54.00 (26.43) 77.88 (7.10)*

DD vs. Younger TD 45.13 (15.40) 39.14 (14.37) 38.00 (14.61) 37.38 (14.29) - 44.60 (24.83) 48.75 (19.48) 39.75 (13.45) 38.67 (15.68) 41.00 (16.70) - - 36.67 (13.49) 42.00 (17.44) 47.86 (12.85)
WM 2 2 2 5 2 2 4 3 2 2 3 3 4 2 4

DD vs. Older TD 3.44 (.88) 4 (.50)* 3.78 (.44)* 3.43 (.79) 3.00 (.76) 3.29 (.76) 4 (0) 3.43 (.79) 3.50 (.76) 3.14 (.90) 3.5 (.76) 3.86 (.38)* 3.50 (0.55) 3.33 (.82) 3.88 (.41)
DD vs. Younger TD 3.00 (.76) 3.43 (.53)* 3.00 (.58) 3.00 (.53) ↑ - 2.80 (.45) 2.75 (.46) ↑ 3.38 (.52) 3.50 (.55)* 3.00 (.63) - - 3.33 (.52) 2.83 (.75) 3.29 (.76)

VSSTM 9 13 9 13 4 10 11 7 16 13 19 8 11 6 11
DD vs. Older TD 8.89 (2.89) 14.67 (2.35) 12.33 (2.92) 12.29 (2.81) 9.88 (2.64)* 11.14 (2.27) 9.00 (2.76) 11.71 (3.15) 11.50 (3.89) 10.43 (4.31) 12.13 (3.87) 11.00 (3.65) 12.33 (3.39) 10.33 (4.63) 14.75 (2.60)

DD vs. Younger TD 8.89 (2.90) 10.14 (1.77) 9.14 (2.19) 9.13 (2.17) - 7.60 (.89) 7.88 (1.96) 10.50 (1.69) 10.33 (1.86) ↑ 9.17 (2.32) - - 10.33 ( 9.33 (2.45) 9.00 (5.23)

Phonological DD Surface DD
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For word reading accuracy, 5 out of 7 children in the Phonological DD subgroup (PD1, PD2, 

PD3, PD4 and PD7), 2 out of the seven children in the Surface DD subgroup (SD1 and SD5) 

and MD1 had scores that were significantly lower than those of Older TD controls. In addition 

to this, PD1, PD2, PD3, PD4, SD1 and MD1 reported word reading accuracy scores that were 

significantly below that of Younger TD controls. Regarding word reading RT, 2 out of 7 children 

in the Phonological DD subgroup (PD2, PD7) and 5 out of 7 children in the Surface DD 

subgroup (SD1, SD2, SD3, SD4 and SD7) were significantly slower than those of Older TD 

controls. Additionally, PD1, PD7 and SD7 were significantly slower in single-word naming than 

Younger TD controls. 

For nonword reading accuracy, all of the children that fit the phonological DD profile had scores 

that were significantly lower than those of Older TD controls. None of the children that fit the 

surface DD profile had scores that were significantly lower than those of Older TD controls. In 

addition to this, PD1 and PD2 reported nonword reading accuracy scores that were significantly 

below that of Younger TD controls—regarding nonword reading RT, four (4) of the seven 

children in the phonological DD group (PD2, PD5, PD6 and PD7) and 5 of the children in the 

surface DD group (SD1, SD2, SD3, SD6 and SD7 were significantly slower than those of Older 

TD controls. Additionally, PD1, PD2, PD6, PD7, SD2, SD3 and SD7 was significantly slower in 

single nonword naming than Younger TD controls. 

Considering the cognitive profile of the DD subgroups, scores on PA were significantly lower 

than Older TD controls for 4 of the seven children that fit the phonological DD profile (PD1, 

PD2, PD4 and PD5) as well as 1 of the seven children that fit the surface DD profile (SD7). In 

addition, PD1, PD2, PD3, and SD7 scored significantly lower than Younger TD controls for PA. 

Scores on RAN were significantly slower than Older TD controls for 3 of the seven children that 

fit the phonological DD profile (PD1, PD2, and PD7) as well as 4 of the seven children that fit 

the surface DD profile (SD1, SD2, SD4 and SD7). In addition, PD1, PD2 and SD7 were 

significantly slower than Younger TD controls for RAN. Scores on VA span were significantly 

lower than Older TD controls for 3 of the seven children that fit the phonological DD profile 

(PD1, PD2, and PD3) as well as 3 of the seven children that fit the surface DD profile (SD1, 

SD2, and SD5) as well as MD1. In addition, no child with DD scored significantly lower than 

Younger TD controls for VA span. Scores on WM were significantly lower than Older TD 

controls for 2 of the seven children that fit the phonological DD profile (PD2, and PD3) as well 
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as 1 of the seven children that fit the surface DD profile (SD5). Only SD2 scored significantly 

lower than Younger TD controls for WM. Scores on VSSTM were significantly lower than Older 

TD controls for 1 of the seven children that fit the phonological DD profile (PD5). No children 

scored significantly lower than Younger TD controls for VSSTM. 

In summary, three children (PD6, SD3 and SD6) showed no cognitive deficits relative to older 

TD controls; four children manifested with a single deficit (1 PA: PD4, 2 RAN: PD7 and SD4, 1 

VA span: MD1), six children manifested with a double deficit (1 PA/ RAN: SD7, 1 PA/ VA span: 

PD3, 1 PA/ VSSTM: PD5, 2 RAN/ VA span: SD1, SD2, 1 VA span/ WM: SD5), one child 

manifested with a deficit in 3 domains (PA/ RAN/ VA span: PD1) and one child (PA/ RAN/ VA 

span/ WM: PD2) manifested with a deficit in 4 domains. Subsequently, 7 (46%) of the DD 

subgroup has selective deficits in RAN and VA span measures, 5 (33%) had deficits in PA, 3 

(20%) had deficits in WM, and 1 (6%) had deficits in VSSTM.  

TABLE 61: PREVALENCE OF PHONOLOGICAL, SURFACE, AND MIXED PROFILES 

  Classic: 

Accuracy 

Classic: RT Classic: 

Nonword 

Accuracy/ 

Word RT 

Regression: 

Older TD 

(Nonword 

Accuracy/W

ord RT) 

Regression: 

Older TD 

(Nonword 

RT/ HF 

Word RT) 

PD 3 

20% 

2.1% 

1 

6.7% 

0.7% 

3 

20% 

2.1% 

7 

47% 

4.8% 

3 

20% 

2.1% 

SD 3 

20% 

2.1% 

1 

6.7% 

0.7% 

6 

40% 

4.1 

7 

47% 

4.8% 

4 

27% 

2.76% 

MD 5 

33% 

3.5% 

10 

67% 

6.9% 

5 

33% 

3.5% 

1 

7% 

0.7% 

7 

47% 

4.8% 

No Deficit 4 

27% 

2.76% 

3 

20% 

2.1% 

1 

7% 

0.7% 

0 
 

1 

7% 

0.7% 
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Table 61 above shows a summary of membership to different subgroups based on the different 

approaches used. Note: PD stands for Phonological subgroup, SD stands for Surface 

subgroup, MD stands for Mixed subgroup. The three numbers under each section represent 

the absolute number of cases, the relative percentage of cases and the absolute percentage of 

cases. 

In a final consideration, the prevalence of DD within the current cohort was considered. While 

an accurate estimate of the prevalence of DD amongst Turkish-speaking children is beyond the 

scope of this study, there is utility in providing estimates to be further examined in future studies 

in reading development and disorder in Turkish. The overall prevalence of DD within this cohort 

was 10.34% using a 1.25 SD cut-off on scores of ORF. Using the regression procedure adopted 

by Niolaki, Terzopoulos and Masterson (2014), nearly half (47%) of the DD cohort manifested 

as Phonological Dyslexics, and nearly half (47%) of the DD cohort manifested as Surface 

Dyslexic. From Table 60, as above, the absolute estimates for each subtype of DD are between 

0.7 and 4.8%. Considering only the seven children found in the initial cohort (as opposed to the 

children referred to the study), the prevalence of DD within this group was 5.11% using a 1.25 

SD cut-off on scores of ORF. Furthermore, within this group, there were two (2) cases of 

Phonological DD (PD5 and PD6), four (4) cases of Surface DD (SD1, SD2, SD3, SD5) and 1 

Mixed DD case (MD1). In terms of absolute percentages of the entire TD cohort, it can be 

deliberated that the prevalence of each subtype is 1.46% for Phonological DD, 2.92% for 

Surface DD and 0.73% for Mixed DD cases. 
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5.5 DISCUSSION 

The current chapter explored the factors influencing reading, cognitive profiles and subtypes of 

DD in a group of Turkish-speaking children. In a similar vein to Chapter 4, reading was studied 

at both the word and text levels. As predictors, the effect of length, lexicality and frequency (and 

their interactions) were explored as well as considering the influence of a set of cognitive 

predictors that have been indicated to influence word and text reading such as phonological 

awareness, rapid naming, and visual attention span. In addition, the current chapter explored 

the presence of subtypes of DD within the current cohort. 

5.5.1 GROUP COMPARISONS OF CHILDREN WITH DD AND OLDER AND YOUNGER TD CONTROLS 

When the DD group was considered as a whole, the current investigation found evidence that 

children in the DD group were slower than TD children at reading at both the text and single 

word levels, although their word/pseudoword reading was relatively accurate. This finding is 

mostly congruent with results from a number of studies on transparent orthographies such as 

Greek (Nikolopoulos, Goulandris, & Snowling, 2003), Italian (Zoccolotti et al., 1999) and 

Spanish (Davis, Cuetos, & Glez-Seijas, 2007). Additionally, the DD group were less accurate 

than older TD children.  

In addition, the current study found evidence of main effects of both lexicality and length with 

mixed evidence for frequency for both word/pseudoword reading accuracy and RT. The 

presence of length effects in a transparent orthography is considered to be reflective of the use 

of serial sublexical coding processes (Coltheart et al., 2001; Weekes, 1997) and is congruent 

with previous reports from Italian (Zoccolotti et al., 2005) and Spanish children (Davies et al., 

2013). Furthermore, the current study found that word length effects were present in all three 

groups of children concerning their word/ pseudoword reading accuracy and RTs. Davies and 

colleagues (2013) propose that this finding is indicative of the role of sublexical processing in 

transparent orthographies as even the older TD children could not avoid the effect of word 

length on the time needed to utter words. In further consideration of word length effects, when 

the random intercept of length was removed from the random-effects model, a distinct group 

by length interaction was observed. This was seen to be suggestive that Older TD readers, 

manifested with a significantly reduced word length effect on their word reading RTs when 

compared to the DD group. That is, the use of or reliance on the sublexical coding route is 

sustained in children with DD relative to older TD readers. These findings lend support for H5 
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regarding the presence of sustained length effects in the DD cohort. Previous findings in other 

transparent alphabetic orthographies such as Albanian (Avdyli & Cuetos, 2012), Dutch 

(Verhoeven & Keuning, 2018), Italian (Burani et al., 2002; De Luca et al., 1999; 2002) and 

Spanish (Davies et al., 2013) provide further support for the current findings. 

Following this, there was an observed main effect of Lexicality for word reading accuracy and 

RT. This finding is indicative of words being read more accurately and quickly than 

pseudowords and has previously been reported in Finnish (Hautala et al., 2012), Italian (De 

Luca et al., 2010) and Spanish (Davies et al., 2013). In addition, the group by lexicality 

interaction found in the word reading accuracy investigation was suggestive of statistically 

significant differences in accurately naming nonwords than words in the DD group when 

compared to both younger and older TD controls and broadly in line with previous studies in 

German (Landerl, Wimmer, Frith, 1997) and Italian children (Martelli et al., 2014). In line with 

previous research (e.g. concerning word reading in children learning to read in transparent 

orthographies, the observed length by lexicality interaction within the word RT data is 

suggestive of the availability of both the lexical and sublexical routes for visual word recognition 

and is one of the critical findings used in support of dual-route theories of reading aloud 

(Weekes, 1997). Also, the observed 3-way interaction of group by length by lexicality within the 

word reading RT data denoted that the greater length effect for nonwords was more marked in 

the DD group compared to older TD readers. Taken together, the main effects and interactions 

above suggest that although Turkish children with DD have both routes available to them, there 

is an overreliance on sublexical processing which results in slow word reading. 

Regarding the mixed findings of word frequency effects amongst the current cohort, it is not 

clear if the same concerns, regarding the distribution of RT, explored in Chapter 4, are present 

here or if the observed null finding for frequency effects is indicative of the current state of word 

reading of the Turkish-speaking children within this cohort. For instance, the literature regarding 

word frequency effects in young readers of transparent orthographies presents a varied 

perspective. While there is some evidence of null frequency effects (e.g. Valle-Arroyo, 1989), 

the prevailing evidence suggests that, in fact, word frequency effects are reported in young 

readers of transparent orthographies (e.g. Barca et al., 2007; Burani, Marcolini, & Stella, 2002; 

Davies, Cuetos & Glez-Seijas, 2007). Furthermore, although small frequency effects have been 

previously reported in Turkish-speaking adults (I. Raman, 1999), there is an argument for the 
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use of different word frequency metrics to fully understand the full extent of the complexity of 

frequency in agglutinating languages like Turkish (Bilgin, 2016). In a follow-up investigation, 

when the measure of RT was explored with an inverse Gaussian distribution, word frequency 

and group interactions revealed that the DD group was less sensitive to word frequency effects 

than TD controls indicating a reliance on the sublexical route. Taken together, the finding of a 

significant group by frequency interactions provides further supporting evidence for the 

availability of the lexical route for TD children but not the DD group. This finding is largely in 

line with previous reports of DD in Spanish-speaking children (Davies et al., 2013). 

Another central topic addressed by the current study concerns the nature of the cognitive 

deficits associated with DD in Turkish-speaking primary school children. To this end, no group 

differences emerged when investigating reading accuracy and Inverse RT though PA was a 

significant predictor of word/ pseudoword reading accuracy and inverse RT across groups. In 

addition, when only word reading inverse RT were considered, RAN was the only significant 

predictor across groups. In a follow-up investigation, when the measure of RT was explored 

with an inverse Gaussian distribution, significant group differences emerged. For instance, 

consider both word/ pseudoword stimuli, there was a significant interaction between RAN and 

Group (DD vs Younger TD) indicating that RAN may be a more important predictor of letter 

string processing for the younger TD readers than for the DD group. Conversely, when only 

words were considered, there was a significant interaction between RAN and Group (DD vs 

older TD) indicating that RAN may be a more important predictor of word processing for the DD 

group than for older TD controls. All in all, when considering word/ pseudoword reading RT, 

RAN emerges as the only predictor of DD in Turkish-speaking children giving support to H4. In 

light of the literature, the results of the current study are largely congruent with previous studies 

of the importance of RAN to reading (Araújo et al., 2015; Song et al., 2016). However, the is 

also evidence that the relative influence of RAN in predicting reading fluency differs marginally 

between orthographies (Georgiou et al., 2016; Landerl et al., 2018; Moll et al., 2014; Vaessen 

et al., 2010; Ziegler et al., 2010). 

5.5.2 ESTABLISHING DD SUBTYPES IN TURKISH 

As a further aim of the current study, the presence of subtypes of DD in a group of Turkish-

speaking dyslexic children was explored. Using the dual-route theoretical framework, the 

current DD cohort was analysed using an approach implemented in Greek (Douklias et al., 
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2009; Niolaki, Terzopoulos, & Masterson, 2014) in order to investigate surface and phonological 

subtypes of DD in Turkish. Specifically, using nonword reading accuracy as a measure of 

sublexical processing, and word reading RT as a measure of lexical processing, the current 

study established distinct subtypes of DD in Turkish-speaking children. Overall, the outcomes 

of the current study lend support to the existence of distinct types of DD in Turkish. The 

presence of distinct subtypes in transparent orthographies is further supported by studies in 

Greek (Douklias et al., 2009; Niolaki, Terzopoulos, & Masterson, 2014), Italian (Zoccolotti et al. 

(1999) and Spanish (Jiménez, Rodríguez, & Ramírez, 2009). In conclusion, it is apparent that 

both surface and phonological subtypes of DD can be detected in transparent and opaque 

alphabetic orthographies (Hanley, 2017). 

5.5.3 PREVALENCE OF DD SUBTYPES IN TURKISH 

With reference to the experimental hypotheses of this study, the current investigation found 

supporting evidence for a reduced incidence of DD in Turkish speaking children relative to other 

orthographies. For instance, when the whole DD cohort (n = 15) was considered together, the 

incidence rate of 10.34% is largely in line with previously reported research in English (e.g. 

Snowling, 2000) and Danish (e.g. Elbro, Moller & Nielsen, 1995), both considered to be opaque 

orthographies. However, considering that the numbers in the DD group were artificially inflated 

due to referred cases, the correct approach regarding this line of enquiry would be only to 

consider cases found within the cohort study in Chapter 4. As such, the incidence of DD in this 

study was found to be 5.11% resulting in an acceptance of H1. Moreover, the current study is 

largely in agreement with the hypothesis of granularity and transparency (Wydell & Butterworth, 

1999) since the incidence rate of phonological DD found in the present study (2.92%, when 

seven cohort cases were measured) is considerably lower than that found in studies of English-

speaking children with DD (10%; Brunswick, McDougall, & de Mornay Davies, 2010) in line with 

H2. Further still, when considering the relative prevalence of each subtype, the current study is 

in congruence with previous reports in Spanish (Jiménez & Ramírez, 2002; Jiménez, 

Rodríguez, & Ramírez, 2009) in that the relative percentages of DD subtypes in Turkish and 

Spanish are highly similar. For instance, the current investigation found that the prevalence of 

Surface and Phonological subtypes were 57.1% and 28.6%, respectively. Jiménez, Rodríguez, 

& Ramírez (2009) reported prevalence rates of 45.7% and 22.8%, respectively. Similarly, 

Jiménez and Ramírez (2002) reported relative prevalence rates of 53% and 18% for surface 

and phonological subtypes of DD. The collective agreement of the above studies with the 
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current investigation stands in contrast to studies carried out with English-speaking children. 

For example, in their seminal study, Castles and Coltheart (1993) report a relative prevalence 

rate of 30% for Surface DD and 55% for Phonological DD. Taken together, it appears that 

Phonological DD is less evident in transparent alphabetic orthographies such as Turkish and 

Spanish as predicted by the HGT (Wydell & Butterworth, 1999). 

5.5.4 COGNITIVE PROFILES OF DD IN TURKISH 

As a final consideration, the nature of the cognitive deficits associated with DD in Turkish-

speaking children was considered using a multiple-case study design. To the best of the 

author's knowledge, this is the first reported study to systematically assess the different 

cognitive deficits among Turkish-speaking children with DD. 

Generally, performance across the tasks used in this study was variable, with different children 

manifesting with deficits in tasks of phonological awareness, rapid naming, letter report, working 

memory and visuo-spatial short-term memory. Similar results have also been discovered for 

children with DD in several previous studies of DD in transparent orthographies (e.g. Brizzolara 

et al., 2006; Jimenez et al., 2009; Nikolopoulos, 1999; Tobia & Marzocchi, 2014). Furthermore, 

the current results lend support to the proposition that, at least in transparent orthographies, 

RAN and VA span are substantial reading-related cognitive deficits. Specifically, 46% of 

children with DD had selective deficits in RAN and VA span measures, respectively, 33% had 

deficits in PA, 3 20% had deficits in WM, and 6% had deficits in VSSTM.  

The current study also investigated whether surface and phonological DD subtypes could be 

distinguished in terms of their underlying cognitive deficits. Previous studies suggest that 

phonological and surface DD subtypes manifest as developmental deviancy and lag, 

respectively (e.g., Manis et al., 1996; Stanovich et al., 1997). The findings of the current study 

lend support to this position as most children in the phonological DD subgroup performed 

poorer than younger TD on most measures of word/pseudoword reading accuracy and RT were 

as children in the surface DD subgroup were more reflective of a delay profile as they were not 

statistically different to younger TD in word/pseudoword reading performance. Finally, the 

findings of the current study suggest that the manifestation of DD in Turkish-speaking children 

is heterogeneous, and the majority of children in the DD subgroup exhibited either double or 

multiple deficits and therefore providing further support for the multiple-deficit hypothesis for 

Turkish developmental dyslexia. 
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5.6 LIMITATIONS 

As with all experimental studies, there are a number of limitations to consider. Firstly, the 

present results are based on a cross-sectional design. While there is a need for this type of 

research design to better understand the role of these cognitive skills to word reading there is 

also a need for longitudinal studies in order to examine the relative contribution of these 

cognitive skills over time. Another notable limitation is the relatively small sample size of the 

current DD cohort. Future studies will need to recruit a larger representative sample of Turkish-

speaking children with DD to explore several of the findings in the current chapter further. 

Separately, some of the constructs used within the current investigation were conceptualised 

using only one relevant measure, and therefore future studies will need to incorporate additional 

measures in order to increase construct validity (Landerl et al., 2013). 

The mixed results regarding, and need for transformation of, the word frequency measures 

could be reflective of the complexity of word frequency measures in agglutinating languages 

such as Turkish. Consequently, there is a need to further define novel word frequency 

measures as the use of surface frequency may not be sufficient to characterise Turkish 

psycholinguistic data fully. Furthermore, there is a need to broaden the linguistic and cognitive 

domains under exploration. For example, reading comprehension, spelling and morphological 

awareness are excellent candidates for further investigation for predictors of DD in Turkish-

speaking populations. For instance, the role of morphological awareness may be particularly 

important to investigate in agglutinative orthographies (Acha et al., 2010). In one of the few 

studies of morphological awareness in Turkish, Durgunoğlu (2003) proposed that the rich 

morphological structure of Turkish may be best addressed by the use of a left-to-right 

computational strategy. Additionally, Fowler, Feldman, Andjelkovic, and Öney (2003) suggest 

that phonological predictability could play a more crucial role than semantic relatedness in the 

acquisition of distinctive types of morphology. Finally, as this was a monolingual study, the 

extent to which the results can reflect comparability between the different orthographies is 

limited. For future studies, cross-language studies on DD are of particular importance. 
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5.6 CONCLUSION 

The findings of this study contribute to a number of topics concerning the underlying cognitive 

and linguistic mechanisms of reading disorder in Turkish-speaking children. To the best of the 

author's knowledge, the current study represents the most comprehensive attempt to 

characterise reading disorder in Turkish at both group and individual levels. Taken together, for 

children with DD reading in Turkish, performance appears to be over-reliant on sublexical 

processes. Furthermore, the results obtained in the current study reveal that phonological 

awareness, rapid automatized naming, visual attention span, working memory and visuo-spatial 

short-term memory can all differentially contribute to the cognitive deficits associated with 

reading disorder in Turkish. In addition, it appears that RAN is essential for both decoding and 

to sight word reading and, along with VA span, were the most important cognitive predictors of 

DD in Turkish-speaking children learning to read. Considering the existence of subtypes of DD 

in Turkish, the current results show support for distinct profiles of developmental surface and 

phonological DD in Turkish speaking children. It is anticipated that by further identifying distinct 

cognitive profiles of DD, the goal of developing and applying screening and intervention 

measures that are tailored to the specific manifestation of each type of developmental dyslexia 

can be achieved. 

The following chapter will introduce ongoing work aimed at developing a psychologically 

plausible computational model of visual word recognition in Turkish using the dual-route 

cascaded model (Coltheart et al., 2001).  
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CHAPTER 6: TOWARDS DEVELOPING COMPUTATIONAL MODELS OF 
VISUAL WORD RECOGNITION AND READING ALOUD IN TURKISH 
 

6.1 PREFACE 
 

In order to truly comprehend the complexity of visual word recognition, there is a need to 

consider the assortment of processes involved at both an individual level and as a whole. Over 

time, verbal theories are giving way to computational models that provide falsifiable predictions 

while also highlighting gaps in our theoretical understanding of complex phenomena. As such, 

computational modelling is fast becoming omnipresent within cognitive psychology. Further still, 

the recent movement beyond the monosyllabic constraints of older models, coupled with 

considerations of how learning could be plausibly incorporated into the reading process 

together highlight some interesting new directions in the field of computational modelling of 

visual word recognition and reading aloud. 

 

This chapter aims to provide a review of the recent progress made in developmental 

computational models of visual word recognition while also highlighting contemporary 

theoretical considerations in computational modelling. Also, this chapter will introduce the 

groundwork for the ongoing development of a Turkish child version of the dual-route cascaded 

(DRC) model of reading aloud and word recognition. Finally, the newly created model will be 

evaluated in terms of fit to human reading data. 

 

6.2 INTRODUCTION 
 

Dating back to Morton’s (1969) logogen model, models of visual word recognition have become 

essential tools for investigating the cognitive phenomena associated with both normal and 

disordered reading. Within his model, Morton (1969) introduced the concept of the logogen– a 

type of unit that activates during word recognition and contains information about the unique 

properties of a word including visual, phonological and semantic information (Besner & Swan, 

1982). As such, the presentation of a word lowers the threshold of that word’s logogen, 

consequently making it more accessible for future presentations. Due to these features, the 

logogen model was successful in simulating word frequency effects as high-frequency words 
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would have a lower threshold than low-frequency words. However, the logogen model offered 

limited information about what was happening within the logogen system and the nature of 

information transmission through the model. According to Norris (2013), the development of 

computational models of visual word recognition in the early 1980s offered a novel approach to 

developing theoretical models. 

 

Among the first and most influential of these models was the Interactive Activation (IA) model 

(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). Within the IA model, 

information from the visual stimulus moves through each of the feature, letter, and word levels 

of representation, i.e. “localist” structure. Each of the three levels of representation is made up 

of individual units or nodes, and the connections between the three adjacent levels of 

representation can be both excitatory and inhibitory. Additionally, information flows 

continuously (i.e. in a “cascade”; McClelland, 1979) through the levels of representation in a 

bidirectional manner. In contrast to the logogen model (Morton, 1969), information at one level 

of representation does not have to reach a threshold before being passed on to another level 

of representation. In order to select the word node candidate that provides the best fit to the 

letter string stimulus, the IA model implements a system of competition whereby inhibitory 

connections between word nodes enable the most active node to reduce the activation of 

alternative candidate nodes. Although the IA model represents an essential step in 

computational models of visual word recognition, several limitations have been noted (See 

Andrews & Davies, 1999). Most significantly is that because orthography was coded using four 

slots, the model was limited to processing four-letter stimuli. In addition, IA models generally 

cannot learn (though a recent attempt to overcome this limitation forms a central component of 

this chapter). The success of the IA model may be best marked by the success of its successors 

namely the dual-route cascaded (DRC) model (Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001; multiple readout model (MROM), (Grainger & Jacobs, 1996; Jacobs, Rey, Ziegler, & 

Grainger, 1998); and the CDP family of models (Perry, Ziegler, & Zorzi, 2007).  

 

The following section will reintroduce three models of reading aloud, namely, the previously 

mentioned, dual-route cascaded model of visual word recognition and reading aloud (DRC) 

(Coltheart, Rastle, Perry, Langdon & Ziegler 2001), and the connectionist dual-process family 

of models (CDP, CDP+, CDP++) (Perry, Ziegler & Zorzi 2007) as well as the parallel distributed 

processing (PDP) model family (Seidenberg & McClelland 1989; Harm & Seidenberg 1999, 
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2004; Plaut, McClelland, Seidenberg & Patterson 1996). The motivation for presenting these 

three families of models is that they have been widely discussed in the computational modelling 

literature, and have been implemented as computational models, signifying that they are fully 

formulated. In addition, all three types of model have been highly successful in their attempt to 

simulate the cognitive phenomena associated with reading aloud single words (Hendrix, 

Ramscar, & Baayen, 2019). To provide a comprehensive account of these models however is 

beyond the scope of this chapter; instead, the sections below will present the underlying 

architecture of each of the models and will be focused on the role of word learning mechanisms, 

i.e. the development of orthographic knowledge. 

 

Though the DRC was principally created to explain skilled reading performance, proponents of 

the model argue that the DRC can also be used to understand and evaluate the acquisition of 

the two routes that developing readers need to learn (Sheriston, Critten & Jones, 2016). 

Although the DRC is often criticized for being a static, non-learning model of skilled reading 

(Perry, Ziegler, & Zorzi, 2007; Seidenberg & Plaut, 2006; Snowling, Bryant, & Hulme, 1996), 

there is some evidence that static models may be informative regarding reading acquisition. 

For example, Castles and colleagues (2006), using simple regression modelling with a sample 

of 2136 children ranging from 6 to 15 years old, determined that a student’s regular word 

reading performance could be accurately predicted by their irregular and nonword reading 

scores.  The authors concluded that independent of a reader’s age, the DRC model provides 

an exceptional account of children’s reading performance. In support of this position, several 

studies have provided further evidence of the DRC models capability to simulate reading 

disorder (Jones, Castles, & Kohnen, 2011; Moore, Porter, Kohnen, & Castles, 2012). As stated 

previously, the DRC model posits that developmental phonological dyslexia is characterized by 

a specific difficulty in developing the nonlexical reading route, whereas developmental surface 

dyslexia is reflective of a specific difficulty in acquiring the lexical reading route (Castles & 

Coltheart, 1993). 

  

More recently, in order to address the criticisms of the static nature of the DRC model, two 

novel learning mechanisms have been designed to supplement the DRC model (Pritchard, 

2012). The first is grounded in an initial account of an algorithm for learning grapheme-phoneme 

correspondences (GPCs) (Coltheart, Curtis, Atkins, and Haller, 1993). Building on this, 

Pritchard and colleagues (2016) produced a GPC Learning (L-DRC) model that was able to 
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effectively learn GPCs with mixed results. While the model was able to simulate word reading 

accuracy at a similar rate to the original DRC model (77.9% vs 83.7%), a number of issues 

concerning increased error rates when the model was trained with multi-morphemic words, 

when single- letter and multi-letter rules were learned in the same training phase, and the use 

of a token-based input corpus represent significant challenges for the L-DRC model (Pritchard, 

Coltheart, Marinus, & Castles, 2016). Aside from these challenges, the L-DRC model operation 

raises intriguing prospects regarding the incorporation of a DRC model for Turkish. Firstly, the 

L-DRC would allow for the creation of GPC rules for Turkish for the first time and would facilitate 

a computational exploration of Turkish visual word recognition. Secondly, the anticipated lack 

of multi-letter rules in Turkish would address one of the limitations stated above. 

  

The second learning algorithm incorporated into the DRC concerns a computational 

implementation of the self-teaching hypothesis (Share, 1995). Share (1995) argues that 

beginning readers utilize their pre-existing knowledge of GPCs to ascertain the pronunciation 

of a newly encountered printed word and consequently create a scheme to self-teach a new 

orthographic representation. Proponents of the self-teaching hypothesis argue that 

orthographic learning is fundamental to reading. Pritchard and colleagues (2018) adopted a 

semi-supervised approach to learning, using the sub-lexical route to assist in training the lexical 

route. In a series of simulations, the findings validated the suitability of the Learning DRC (L-

DRC) model in simulating self-teaching in order to build orthographic knowledge. However, the 

psychological plausibility of this absolute form of learning, where orthographic learning can 

occur after a single exposure to a word was raised by its creator (Pritchard, 2012). Still, the 

availability of such a learning mechanism with the DRC would allow for a finer examination of 

the verbal self-hypothesis theory, the exploration of vocabulary growth in developing readers 

as well as the potential to model age or grade-based accounts of reading development. The 

latter opportunity is of particular interest to the current investigation as it would allow for the 

development of both an average child model of the DRC in Turkish as well as grade-based 

accounts of reading. This implementation would allow for a further investigation of reading 

development and disorder in Turkish using a computational approach. 

  

In summary, the DRC model provides a computational implementation of the dual-route theory 

of reading aloud. Its success is indexed by the model’s ability to simulate a wide range of word 

reading phenomena observed in human readers as well as recent extensions of the model to 
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differing orthographies. The recent incorporation of learning mechanisms opens up an exciting 

avenue of further investigation of reading development and reading disorder – which will be 

further explored in this chapter. However, before this, it is essential to consider alternative 

computational interpretations of the visual word recognition process, starting with another class 

of dual-route models, namely the Connectionist Dual Process (CDP) family of models. 

 

One of the most recent implementations, the CDP++ model (Perry, Ziegler, & Zorzi, 2010) 

accounted for over 49% of the item-specific variance in naming latencies on the English Lexicon 

Project data using a selection of monomorphemic monosyllabic and disyllabic words (Yap & `, 

2009). Specifically, the CDP++ model accounted for word length, frequency, neighbourhood, 

and consistency effects as well as disyllabic benchmark effects such as syllable number and 

stress regularity (Perry, Ziegler, & Zorzi, 2010). The CDP models have also been successfully 

extended to other alphabetic orthographies including French (Perry, Ziegler, & Zorzi, 2014a), 

German (Perry, Ziegler, Braun, & Zorzi, 2010) and Italian (Perry, Ziegler, & Zorzi, 2014b). 

  

Criticism of the CDP model includes having a slow learning rate and the psychological 

implausibility of supervised learning being the only learning mechanism (Pritchard, 2012). This 

slow learning rate over voluminous trials is needed to avoid the risk of catastrophic interference 

(McCloskey & Cohen, 1989; Ratcliff, 1990)) where the connection weights that accurately 

reflect the initial information are altered by successive learning events in an incompatible way 

with the initial learning resulting in initially learned information being lost. Subsequently, delta 

rule training also undergoes catastrophic interference (Lewandowsky & Li, 1995), and requires 

many trials using a low rate of learning to minimize this interference. While progress is being 

made in addressing this limitation (see Parisi et al., 2019 for a recent review), the slow learning 

rate and risk of catastrophic forgetting pose challenges regarding the psychological plausibility 

of neural network accounts of visual word recognition. It is also argued that supervised learning 

is comparable to a beginning reader receiving direct instruction, which Share (1995) argues 

that direct instruction cannot be the primary avenue by which children acquire new orthographic 

knowledge. Though, the delta rule is used exclusively in the sublexical route of the CDP model, 

which would be more akin to systematic phonics teaching methods. This being said, the CDP 

sublexical training routine needs a large amount of training with whole words as input, rather 

than only explicit phonics training. 
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Despite the challenges faced by CDP models, the family of models have been highly successful 

in modelling reading development through self-teaching Ziegler, Perry & Zorzi, 2014) and 

Developmental Dyslexia (Perry, Zorzi, & Ziegler, 2019; Ziegler, Perry & Zorzi, 2014; Ziegler, 

Perry, & Zorzi, 2019). In a parallel development to the ST-DRC model, a computational version 

of the self-teaching hypothesis was also recently implemented within the CDP++model of 

reading aloud, (Ziegler, Perry, & Zorzi, 2014). Ziegler and colleagues (2014) simulated 

sublexical learning simultaneously with orthographic learning demonstrating how self-teaching 

of both routes might be bootstrapped from initial knowledge of only a few single-letter sublexical 

GPCs and spoken vocabulary, i.e. a developed phonological lexicon. In doing so, the study 

produced, arguably, the first developmentally plausible computational model of reading 

development and also subsequently addressed the inherent limitation of supervised learning, 

highlighted above. The overall model accuracy was 80% - given the inconsistent nature of 

English word pronunciation; this level of accuracy can be considered to be exceptional for a 

computational model of reading development. 

 

Furthermore, Ziegler and colleagues (2014) demonstrated how this developmental reading 

model could be used to simulate reading disorder. For instance, in Simulations 4 and 5 of their 

study, Ziegler and colleagues (2014) determined that the model may explain how both visual 

and phoneme deficits affect orthographic development and nonword reading. In order to 

simulate visual deficits, the authors parametrically manipulated the probability that each letter 

in a word switched with the letter next to it leading to letter position errors. To simulate deficits 

in phonological awareness, the authors parametrically manipulated the probability that each 

time a correct word was activated in the phonological lexicon, the phonemes in the output of 

the TLA network were changed. While the simulations were promising, they were not compared 

to human developmental data. To address this, Perry, Zorzi, & Ziegler (2019) applied the newly 

created CDP++ developmental model to large-scale individual simulations of 622 children (62% 

dyslexic) to examine how the core deficits of developmental dyslexia could predict both 

individual learning outcomes and reading profiles. Using three component tasks, the study 

found that the models accurately simulated normal and impaired reading development. In terms 

of individual differences, models were found to capture human data variance between 63% and 

72%, displaying a very good fit to data. Clearly, the application of models of reading 

development and disorder to large-scale data is a particularly attractive endeavour. 
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While it was initially intended to develop a CDP++ developmental reading model in Turkish 

within this chapter, the unavailability of the source code (C. Perry, personal communication, 

October 31, 2017) meant that this would not be feasible within the time frame of this thesis. The 

following section covers the final family of models, namely the Parallel Distributed Processing 

(PDP) or “triangle” models. 

 

Regarding learning, the triangle models all use some form of the backpropagation algorithm 

(Rumelhart, Hinton, & Williams, 1986) to facilitate learning in the model. Backpropagation 

allows networks with multiple layers of processing units to be effectively trained, and such 

networks are more powerful than their older and simpler two-layer predecessors. Multi-layer 

networks employ intermediate layers of hidden units, which are not accessible to the external 

world. They receive activation from layers closer to the input and feed activation forward to 

layers at the output. However, similar to the criticisms of the delta rule used in CDP models, 

backpropagation is a form of supervised learning and has also been criticized as 

psychologically implausible due to a large amount of training that the triangle models need to 

endure to become skilled (Pritchard, 2012; Norris, 2006). The risk of catastrophic interference 

is mediated by setting the learning rate very low. As a consequence, the training corpus is 

typically presented for numerous epochs. For example, the model of reading described in Plaut 

et al. (1996) was trained with over 300 epochs.  

  

Despite the challenges faced and in a similar vein to the other models described above, triangle 

models have also been applied to the simulation of reading development and disorder. For 

example, Powell, Plaut, and Funnell, (2006) evaluated the PMSP96 triangle model (Plaut et al., 

1996) for use with behavioural, developmental data and found that like the child data, their 

model read more words than nonwords correctly at Time 1. However, at Time 2, the model read 

significantly more words than nonwords showing an opposite pattern of performance to the 

children. Furthermore, the types of errors made by the model were mostly exclusive to 

nonwords, whereas the developmental data suggested that errors were more common in word 

reading. Using a series of adaptations including incremental training on a frequency-based 

vocabulary and inclusion of GPCs during training, Powell, Plaut, and Funnell, (2006) were able 

to produce a near-exact match to the children’s nonword reading performance. 
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Furthermore, Harm and Seidenberg’s (1999) model (HS99) offers a connectionist account of 

developmental dyslexia subtypes. The model was first trained to develop phonological 

attractors which facilitated pronunciations for English words via interactive activation in the 

phonological network. Following this, a set of orthographic inputs was connected to the 

phonological network through a set of hidden units, and the back-propagation-through-time 

algorithm (see Werbos, 1990) was used to “teach” the model to generate the most suitable 

phonological outputs for the given orthographic input. To simulate a phonological reading 

deficit, Harm and Seidenberg (1999) added noise to the attractor units, which prohibited the 

model from producing efficient phonological representations. In contrast to the unimpaired 

model, which learned to read all orthographic input correctly, the impaired model successfully 

simulated phonological dyslexia - manifesting with difficulties in reading nonwords. In order to 

simulate surface dyslexia, conceptualized by Harm and Seidenberg (1999) as reading delay 

dyslexia, the model slowed down reading acquisition in several ways. These included less 

training and therefore simulating a lack of reading experience as well as decreasing the learning 

rate, degrading the orthographic input, and removing some of the hidden units (Peterson, 

Pennington & Olson, 2013). In each iteration, the HS99 model manifested with a pattern of 

relative surface dyslexia, that is, an impairment in both irregular word and nonword reading but 

could not simulate pure surface dyslexia. Peterson, Pennington & Olson (2013) contest that 

while the HS99 model conceptualizes surface dyslexia as a reading delay, several reading 

profiles in the study did not reflect word reading delays. 

  

Ultimately, the competition between the computational approaches described above has 

progressed the understanding of the theoretical frameworks surrounding visual word 

recognition, reading acquisition and disorder. While the common driver of current computational 

models of reading has been the English language (e.g. Coltheart et al. (2001); Perry et al. 

(2010); Plaut et al. (1996)), there is a need to further consider various orthographies and writing 

systems in a move towards more universal conceptualizations of visual word recognition (Frost, 

2012). Furthermore, while a comparison of several models would be beneficial, the lack of 

availability of the CDP source code coupled with the inability of triangle models to simulate pure 

types of dyslexia naturally dictates that a more singular approach is warranted within this thesis. 

As such, the DRC model will be used for the current purposes in providing a model for 

simulating typical reading as well as surface and phonological developmental dyslexia within 

the Turkish orthography. To this end, the following section describes the implementation of the 
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DRC model for use with Turkish-speaking children. 

6.3 TURKISH CHILD DRC (DRC-TR-CHILD) MODEL CREATION 
 

6.3.1 MODEL ARCHITECTURE 
 

The architecture of the Turkish version of the DRC model is identical to that of the English 

version 1.2.3 (http://www.cogsci.mq.edu.au/~ssaunder/DRC/2009/10/drc-1-2-1/) with a 

number of modifications. First, a new set of visual letter features was developed to reflect the 

properties of the Turkish alphabet. Using the 14-feature uppercase-letter font (Rumelhart and 

Siple, 1974), one additional critical feature was added to the letters C, G, O, S, U to make the 

letters Ç, Ğ, Ö, Ş Ü. Also, one critical feature was removed from İ to make the letter I. Finally, 

Q, X and W were removed from the letters list. In the lexical route, both the orthographic and 

phonological lexicons of the Turkish model contained 5000 words and their associated 

frequencies. The rationale for this was to produce a mental lexicon that reflected the average 

size vocabulary of an average Turkish-speaking child. To this end, while research into 

vocabulary size in Turkish-speaking children is largely absent, the choice to include 5000 words 

was a pragmatic one, balancing the need for psychological plausibility and computational 

capacity.  

  

Additionally, in the non-lexical route, the English GPC rules were replaced by the Turkish rule 

set that was learned (See the section below for an overview of GPC rule learning integration 

into the current model. Further adjustments included: 

1. increasing the number of units in each position of the visual feature and letter layers to 

30 — one for each of the 29 Turkish letters, and an extra unit for the 'blank', 

2. increasing the number of units in each position of the phoneme layer to 40 — one for 

each of the 39 Turkish phonemes, and one for the 'blank', and 

3. increasing the number of positions in each of the visual feature, letter, and phoneme 

layers to 13 to accommodate long Turkish words. 

 

Fundamentally, following the above changes, the Turkish DRC could handle both mono and 

polysyllabic words correctly, including stress assignment, as Turkish has a simple stress 

assignment rule that places primary stress on the final syllable of a word irrespective of the 
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length of the word and weight of the syllables (Sezer, 1983) though instances of non-final stress 

exist. All following simulations were carried out with a PC Intel(R) Core (TM) i7-4770 CPU @ 

3.4 GHz with 8.0 GB of RAM. 

  

6.3.2 A COMPUTATIONAL TURKISH MODEL OF SUBLEXICAL ROUTE GPC LEARNING 
  

In his doctoral thesis, Pritchard (2012) implemented a model that could provide a 

psychologically plausible computational account of GPC learning. Similar to the DRC model 

(Coltheart et al., 2001), GPC learning is based on the concept of rule learning as opposed to 

statistical learning. The model's procedure, also implemented within this chapter, involves two 

stages: First, an information-gathering stage, and secondly a rule consolidation stage. In the 

information-gathering stage, the model is presented with individual written word-spoken word 

pairs, and the model attempts to identify graphemes and GPCs in each input while also 

gathering information about GPC occurrence frequency. The learning model implemented by 

Pritchard and colleagues (Pritchard, 2012; Pritchard et al., 2016) classifies input into three 

types, namely, 1. number of letters equals the number of phonemes; 2. Number of letters is 

less than number of phonemes and 3. Words containing the letter X. The nature of written 

Turkish dictates that the only type of interest for this research is the first type. The result of this 

stage is a list of candidate GPCs, with an attached frequency of occurrence.  

  

Following this, in the rule consolidation stage, the model inspects the list of candidate GPC and 

makes changes, including the removal of GPCs that are infrequent, i.e. low-frequency GPCs. 

The threshold for determining low-frequency cut-ff is set by the experimenter as a parameter 

choice. The subsequent step is the modification of GPCs that apply to the same grapheme by 

adapting them to form context-sensitive rules. In the formation of context-sensitive rules, GPCs 

are grouped into small sets organised by grapheme. For each small set, the GPC with the 

highest frequency of occurrence is regarded as the default. For the other GPCs in each set, if 

their frequency relative to the GPC with maximum frequency is less than a value determined 

by the experimenter and specified as a parameter choice, then they are dropped from the list. 

If any of the non-highest-frequency rules in a set are above the relative frequency cut-off, then 

the model will take the one with the highest frequency and attempt to form a context-sensitive 

rule for it. To do this, the model will go back and loop through the full list of inputs in the input 

corpus, looking for the instances when the GPC under consideration was identified. Whenever 
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it finds an input where this is the case, it will take note of the letters that precede and follow the 

letter comprising the GPC and record how many times it notices the GPC with particular 

preceding and following letters. After doing this, the model will have a list of preceding and 

following letters, with a frequency count for each letter. If one particular letter is seen to precede 

or follow the rule with a frequency that dominates the frequency of the other preceding or 

following letters, then a context-sensitive rule is created. In the final phase, the newly learned 

rules were extrapolated by separating matching grapheme-phoneme pairs based on position, 

i.e. beginning of a word (the first grapheme), end of a word (the last grapheme), and the middle 

of a word (all other positions). For the learning DRC, the same grapheme corresponding to the 

same phoneme but in a different position is taken as a discrete GPC.  

  

In order to model GPCs in Turkish, the METUbet phonetic transcription (Salor, Pellom, Çiloğlu, 

Hacıoğlu & Demirekler, 2002), described in detail in Chapter 2, was re-employed as the 

phoneme system for the Turkish DRC resulting in a 39-phoneme implementation. While the 

Grafofon phonetic system would have been a useful resource for this investigation, it was 

unavailable at the time of initial model development (O. Koşaner, personal communication, 

September 20, 2016). 

  

A series of exploratory simulations were conducted to establish a working set of parameter 

values for the learning algorithm (Table 62). From the table below, Simulations 1,2 and 3 

provided the best results in terms of the percentage of words named correctly. In order to 

differentiate between the models, their ability to accurately name the 5000 words was also 

assessed using only the sublexical route. 
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TABLE 62: SIMULATION PARAMETERS AND RESULTS FOR MODELS 1 TO 10. 

 Parameters Rules Learned   

Model 
Absolut

e 
Relative Minimum Single Multi cs output Total Accuracy 

1 1 0 1 37 0 16 0 53 99.24% 

2 2 0 1 37 0 13 0 50 99.24% 

3 3 0 1 35 0 13 0 48 99.24% 

4 1 0 2 37 0 5 0 42 99.12% 

5 2 0 2 37 0 3 0 40 99.12% 

6 3 0 2 35 0 3 0 38 99.12% 

7 1 1 1 37 0 0 0 37 98.62% 

8 2 1 1 37 0 0 0 37 98.62% 

9 3 1 1 35 0 0 0 35 98.62% 

10 1 0.5 1 37 0 13 0 50 99.24% 

The best results (Model 2) in terms of the percentage of words named correctly using the 

learned GPCs were obtained by using the following parameter settings: 

 

Minimum absolute frequency threshold: 2 

Minimum relative frequency threshold: 0 

Minimum contextual dominance: 1 

 

The resulting GPC rules using the above parameter settings were then used in all subsequent 

simulations. Briefly, the Turkish GPC route was best characterised by 50 rules: 37 single letter 

rules and 13 context-sensitive rules. A full list of the rules generated is provided in Appendix 5. 

 

6.3.3 MODEL OPTIMISATION 1: AVERAGE CHILD DRC 
 

Perhaps the most significant changes needed to the original DRC model were a consideration 

of the parameters that drive the behaviour of the model. As there are 25 parameters in the 

model (excluding five noise and four decay parameters), model optimisation moves through 25-

dimensional parameter space. This dimensional space, therefore, represents a vast potential 
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area to explore. In order to reduce the computational load and time of exploring the dimensional 

space, a series of model optimisation decisions were taken.  

 

First, the 25 parameters were reduced to nine parameters. A full consideration of these 

parameters is given below. This decision was based on theoretical motivations considering 

orthographic transparency, conversations with one of the DRC models principle designers (S. 

Saunders, Personal Communication, 5 July 2019) and the parameter changes made to the 

recent implementation of the Greek DRC model (Kapnoula et al., 2017). Though the Greek 

DRC was not explicitly designed to provide an optimised model, the movement through 

parameter space was systematic and as such a similar approach was adopted in the current 

chapter. In addition, a similar approach was adopted in parameter value selection where 

parameters were adjusted using a process of trial-and-error until the final model produced no 

errors on any of the 5000 vocabulary words in the lexicon, or any of a set of 500 nonwords, with 

the minimum reading phonology set to 0.9. As a consequence, a substantial penalty was 

applied to incorrect model responses so that the optimisation procedure would reject parameter 

sets that did not generate perfect accuracy. The following is a list of parameters that were 

modified in the current modelling work: 

 

1. Letter to Orthographic lexicon Excitation: This parameter determines the excitatory 

strength of the connection from the letter layer to the orthographic lexicon. It provides a 

means of determining the relative balance of lexical and sublexical processing. 

Exploratory navigation of the parameter space established that the edges of the 

parameter values for the Turkish dataset were between 0.02 and 0.07. 

 

2. Letter to Orthographic lexicon Inhibition: This parameter determines the inhibitory 

strength of the connection from the letter layer to the orthographic lexicon. It provides a 

means of regulating or repressing stimuli-incompatible words in the orthographic lexicon. 

Exploratory navigation of the parameter space established that the edges of the 

parameter values for the Turkish dataset were between 0.30 and 0.40. Values above 0.4 

up to 0.9 led to identical predictor strength and as such was considered to be redundant. 

 

3. Orthographic lexicon to phonological lexicon excitation: This parameter controls the 

feedforward of activation from the orthographic lexicon to the phonological lexicon. This 
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excitatory connection is involved in producing both frequency and late neighbourhood 

density effects in the DRC model. Exploratory navigation of the parameter space 

established that the edges of the parameter values for the Turkish dataset were between 

0.10 and 0.30. 

  

4. Orthographic lexicon to Letter layer excitation: This parameter is a feedback excitation 

from the orthographic lexicon back to the letter layer. This excitatory connection is 

involved in early neighbourhood density effects. Exploratory navigation of the parameter 

space established that the edges of the parameter values for the Turkish dataset were 

between 0.10 and 0.30. 

  

5. Orthographic lexicon lateral inhibition: This parameter determines the level that units 

within the orthographic lexicon, i.e. words mutually inhibit each other. Within this layer, 

lateral inhibition is considered to be homogeneous in that each unit inhibits any other 

unit in the lexicon to the same degree, regardless of its identity. Exploratory navigation 

of the parameter space established that the edges of the parameter values for the 

Turkish dataset were between 0.00 and 0.20. 

  

6. Phonological lexicon lateral inhibition: This parameter determines the level that units 

within the phonological lexicon mutually inhibit each other. Within this layer, lateral 

inhibition is considered to be homogeneous in that each unit inhibits any other unit in the 

lexicon to the same degree, regardless of its identity. Exploratory navigation of the 

parameter space established that the edges of the parameter values for the Turkish 

dataset were between 0.00 and 0.20. 

 

7. GPC Onset: This parameter controls how many cycles pass before the first letter 

supplies activation to the nonlexical route and therefore also helps balance the relative 

strengths of the lexical and nonlexical routes. Exploratory navigation of the parameter 

space established that the edges of the parameter values for the Turkish dataset were 

between 0 and 20. 

  

8. GPC Critical Phonology: This parameter determines the level of activation required to 

move serially on to the next letter when any phoneme in the right-most phoneme unit is 



 246 

excited in the previous cycle. Exploratory navigation of the parameter space established 

that the edges of the parameter values for the Turkish dataset were between 0.01 and 

0.30. 

  

9. GPC Phoneme Excitation: This parameter denotes the strength of the input from the 

GPC system to the phoneme system. The higher the GPC phoneme excitation value, 

the faster the activation builds within the phoneme system. Exploratory navigation of the 

parameter space established that the edges of the parameter values for the Turkish 

dataset were between 0.02 and 0.06. 

 

To give a numerical indication of the computational capacity and time needed to move through 

a 9-parameter dimensional space, consider the following equation: 

Number of potential model parameter sets  

= Parameter Number (1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9) 

= Parameter Space (6 x 11 x 21 x 21 x 21 x 21 x 21 x 21 x 5) 

= 28,302,819,930 

 

In addition, there were additional ad-hoc modifications to several other parameters, including 

adjusting the phoneme to phonological lexicon excitation value in the averaged model to 0.02. 

For the grade 2 and 3 models, phoneme to phonological lexicon excitation was set at 0.01, and 

the frequency scale parameter was set to 0.10. For the grade 4 model, phoneme to 

phonological lexicon excitation was set at 0.01, phoneme to phonological lexicon inhibition was 

set to 0.15, phoneme lateral inhibition was set to 0.15, and the frequency scale parameter was 

set to 0. For the grade 5 model, phoneme to phonological lexicon excitation was set at 0.01, 

phoneme to phonological lexicon inhibition was set to 0.1, phoneme lateral inhibition was set 

to 0.1, and the frequency scale parameter was set to 0.1. 

 

Evidently, moving through the parameter space in a single step represents unreasonable 

computational times. As such a further modelling decision was made to move through the 

parameter space in a series of steps. First, the Letter layer parameters were moved through 

followed by the orthographic lexicon layer, the GPC layer and finally the phonological lexicon 

layer. While this presents an unavoidable limitation of the current work, confidence was taken 

from the resulting goodness of fit evaluations between the model and the RT data.  
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6.4 TURKISH CHILD DRC (DRC-TR-CHILD) GRADE-BASED MODEL CREATION 
 

Following on from the development of an average Child DRC model for Turkish, the subsequent 

line of enquiry revolved around the development of averaged child DRC models based on 

grade. In order to achieve this, the self-teaching algorithm incorporated into the L-DRC model 

(Pritchard, 2012) was utilised to simulate varying vocabularies with grade through orthographic 

learning. All the following created models used the same architecture as the average Turkish 

DRC model mentioned above. 

 

To effectively simulate self-teaching in the DRC model, the L-DRC triggers activation in the 

visual feature and letter layers upon presentation of novel stimuli. Similar to the DRC-1.2.1, the 

sublexical route then generates a pronunciation according to GPC rules based on the letter 

layer activation. Subsequently, the phoneme layer is activated, leading to the interactive 

excitation of the phonological lexicon. Overall, this process can simulate “phonological 

recoding” through the activation of a spoken word representation without any prior knowledge 

of a written word representation in the orthographic lexicon (Pritchard, 2012). To replicate this 

in Turkish, a number of modelling decisions were made. First, the L-DRC introduced a number 

of new parameters associated with learning based on threshold levels of activation. The new 

parameters considered in this chapter were SpokenWordRecognisedThreshold, 

WrittenWordRecognisedThreshold and WrittenWordFrequencyMultiplier. While there were 

additional parameters related to context and semantics, they were switched off (set to zero) as 

they were beyond the theoretical scope of the current modelling work. It was also decided to 

leave the three parameters of interest with their default values. Further explorations of self-

teaching in Turkish can better utilise these parameters in future studies. 

 

Starting with a vocabulary of 5000 words for Grade 2, each subsequent grade was exposed to 

an additional 10000 words. This figure comes from a simple estimate of vocabulary growth in 

Turkish-speaking children learning to read in primary school. While there were no available 

vocabulary growth studies available in Turkish children, the growth rate of 10,000 new words 

per year comes from crude estimates based on previous studies with children. For example, it 

has been suggested that between the 3rd and 9th grades, English-speaking children learn 

approximately 3,000 new words per year (Nagy & Anderson, 1984). Additionally, Anglin (1993) 

found that in Grade 1, vocabulary size was about 3,100 root words to about 7,500 root words 
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in Grade 5. Similarly, Biemiller and Slonim (2001) reported that in 2nd grade, the mean 

vocabulary size was 5,200 root words, increasing to roughly 8,400 root words by 5th grade. 

Given the productivity of Turkish morphology, it is feasible to assume that the vocabulary of 

Turkish children would be significantly higher than that of speakers in other non-agglutinative 

languages though the lack of empirical studies means that this area of research warrants further 

investigation. This was balanced against a need to reduce the size of the lexicons in the model 

and 10,000 new words per year was the conservative approximation of this balance. The size 

of each Grade-based DRC model is given in table 63 below. 

 

TABLE 63: SUMMARY OF THE SELF-TEACHING MODELS CREATED TO SIMULATE GRADE-
BASED DRC MODELS 

Grade 
Words 

presented 

Words 

learned 

% words 

learned 
Difference 

2 5000 3593 72% - 

3 15000 10612 71% 7019 

4 25000 17817 71% 7205 

5 35000 24784 71% 6967 

 

6.4.1 MODEL OPTIMISATION 2: GRADE-BASED CHILD DRC 

 

Following the creation of the four new models, described above, each model was optimised by 

moving through the same parameter space as the averaged Turkish DRC model. However, the 

criteria for model acceptance was relaxed in that the requirement to read all of the words in the 

lexicon and a set of 500 nonwords were removed with only the need to read the 80 words/ 

nonwords stimuli to perfect accuracy being maintained. Each grade-based model was 

compared to the averaged RT scores form the relevant grade. 
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6.5 TURKISH CHILD DRC (DRC-TR-CHILD) AVERAGE AND INDIVIDUAL PROFILES OF 
DD MODEL CREATION 

 

In a final modelling consideration, developmental dyslexia (DD) was investigated in the context 

of the Turkish DRC model of reading. While previous computational investigations of acquired 

dyslexia using the DRC model have simulated surface and phonological dyslexia by introducing 

lesions to the lexical or sublexical route (Coltheart et al., 1996, 2001; Nickels et al., 2008), there 

is a need to make a distinction concerning the nature of developmental and acquired dyslexia. 

Several criticisms have been aimed towards the use of the adult DRC models use in interpreting 

developmental data (e.g. Snowling, 1983; Snowling, Bryant & Hulme, 1996). In order to mitigate 

against these criticisms, a similar approach was adopted to previous DD modelling attempts 

using the DRC framework (Ziegler et al., 2008; Ziegler, 2011) in that, the word/nonword reading 

profile of each child with DD was simulated by adding five noise parameters to the model 

parameter space search, following optimisation, at the Letter, Orthlex, Phonlex, Phoneme and 

GPC levels. Participant-based modelling approaches are relatively novel to the field of 

developmental dyslexia, and the use of noise parameters offers an alternative implementation 

of disorder into the reading system. 

 

Each child-specific model started with the relevant Grade-based DRC model and then went 

through a series of optimisation steps to improve the variance accounted for the model. From 

Ziegler et al., (2008), noise was introduced into the model at each representational level and 

then added to the net input of the relevant unit (Equations 3 and 6 from Coltheart et al., 2001, 

pages 215–216). This method was reiterated for each unit at each processing cycle of the 

model. Using this approach, 17 models (one for each DD case described in Chapter 5 and two 

averaged DD subtype (phonological and surface) models were created. 

 

The aim of this computational modelling work is three-fold: First to evaluate the utility of the 

DRC model framework for Turkish-speaking children’s data, second to explore further the DD 

profiles found in the empirical portions of this thesis and third, to assess the suitability of current 

subtyping approaches to Turkish. All models were evaluated using both a factorial and 

regression approach.  The factorial approach consists of analysing RTs using analyses of 

variance (ANOVA) to evaluate if the effects found in the human data were also significant in 

the model data. The regression method involves predicting item-level variance (Spieler & 
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Balota, 1997; Besner, 1999) and includes computing the proportion of variance (R2) in human 

RTs that is accounted for by the model. Further optimisation of models was carried out and is 

covered further down in this chapter after further modelling approaches had been undertaken. 

 

In an attempt to align the current computational study with contemporary practices within the 

literature, it was also decided to add variables of onset phoneme articulation (Balota et al., 

2004). To achieve this, variables for voicing, place of articulation (i.e., labial, labiodental, 

palatoalveolar, alveolar, palatal, velar and glottal) and manner of articulation (i.e. a stop, 

fricative, approximant, trill and nasal) were dummy coded. For vowel phonemes, Turkish 

phonology stipulates that there are three dimensions to consider representing six further 

dummy codes (Front/ Back, Rounded/ Unrounded and Open/ Closed). 

 
6.5.1 MODEL DATA COLLECTION 
 

The stimuli used in Chapters 4 and 5 were provided as input to the model, and the phonological 

output of the model was recorded. Rather than accuracy measures, RT was the variable of 

interest in all modelling approaches, and as such, the number of processing cycles was used 

as a proxy measure for RT in the single word/pseudoword naming task. Now that the modelling 

approach has been outlined, the following section describes the findings of the simulations 

described above in the context of their fit to the relevant human RT data. 

6.6 WORD/ NONWORD READING SIMULATIONS 
 

6.6.1 SIMULATION 1: PERFORMANCE OF THE AVERAGED TURKISH DRC MODEL (MODEL 1) 
 

The first step in model selection was moving through the parameter space to identify models 

that could read all 80 words/ nonwords correctly as well as name all words in the 5000-word 

lexicon and 500 nonwords correctly when the MinReadingPhonology parameter was set to 0.9 

to simulate casual reading. To this end, over 4000 parameter sets could successfully achieve 

this goal. Following this, the MinReadingPhonology parameter was set to 0.4 to simulate 

speeded reading, and the parameter space between the 4000 working models was explored.  

 

The best performing Turkish DRC model pronounced all 5000 words in the lexicon and all but 

two of the 500 nonwords (0.4%) correctly. The two incorrectly named nonwords were both 
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lexicalisation errors, i.e. nonwords being read as words. Appendix 6 provides a list of the 

parameter values of Model 1. The correlation between the average child RTs and DRC model 

cycles was significant, (r (80) = 0.806; p < 0.001). A hierarchical regression analysis was carried 

out in which acoustic articulation variables and the DRC model cycles were entered in a stepped 

fashion. The results of the regression analysis indicated that the selected predictors significantly 

explained 68.1% of the variance, R2=.681, F (10, 69) = 16.32, p<.0001 with the DRC model 

predicting 49.1% of the unique variance in the model. When the DRC model was entered alone 

as a predictor into a linear regression model, DRC accounted for 64.5% of the variance in 

children’s RT, F (1, 78) = 144.45, p<.0001. Comparison of linear regressions between the 

children’s RT and DRC model using Length and lexicality (Table 64) and Length and Frequency 

(Table 65) as predictors were also carried out. 

 
TABLE 64:  LINEAR REGRESSION ANALYSIS OF AVERAGED CHILDREN’S AND DRC MODEL’S RT 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 148.74*** 345.69*** 

Lexicality 0.733*** 0.926*** 

Length 0.508*** 0.206*** 

R2 78.90% 89.70% 

 

 

From Table 64, the DRC model provided a good fit of the RT data in its ability to capture both 

length and lexicality effects. However, from the beta values reported, the DRC model overfitted 

lexicality effects and underfitted length effects. The DRC model also accounted for 10.80% 

more variance than the RT data suggesting an overall overfitting of the DRC model. 
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TABLE 65: LINEAR REGRESSION ANALYSIS OF AVERAGED CHILDREN’S AND DRC MODEL’S WORD RT 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 42.00*** 2.00 

Length 0.810*** 0.313^ 

Frequency -0.130 0 

R2 67.80% 4.9% 

 

From Table 65, the DRC model provided a poor fit of the word RT data in its ability to capture 

both length and frequency effects. From the beta values reported, the DRC model underfitted 

length effects. The DRC model also accounted for 62.90% less variance than the RT data 

suggesting an overall underfitting of the DRC model. The failure of the DRC model to account 

for length effects in known words is anticipated as parallel processing through the lexical route 

explains the model’s insensitivity to word length effects. 

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 66 and 67 

below. 

 
TABLE 66: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN AVERAGED CHILDREN’S RT AND DRC MODEL 

 
Human DRC 

Lexicality 194.62*** 0.911 742.05*** 0.975 

Length 144.35*** 0.884 38.00*** 0.667 

Lexicality by length interaction 10.74** 0.361 8.32** 0.305 
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From Table 66, the DRC model provided an excellent fit of the RT data in its ability to capture 

both length and lexicality effects and their interaction. However, from the beta values reported, 

the DRC model again overfitted lexicality effects and underfitted length effects. 

 
TABLE 67: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN AVERAGED CHILDREN’S WORD RT AND DRC 
MODEL 

 
Human DRC 

Frequency .876 0.089 .016 0.002 

Length 199.06*** 0.957 4.45 0.331 

Frequency by length interaction 0.023 0.003 3.79 0.305 

 

From Table 67, the DRC model provided a poor fit of the word RT data in its ability to capture 

both length effects. From the beta values reported, the DRC model underfitted both length and 

frequency effects while overfitting their interaction. Again, the failure of the DRC model to 

account for length effects in known words is anticipated as parallel processing through the 

lexical route explains the model’s insensitivity to word length effects. 

 

6.6.2 SIMULATION 2: PERFORMANCE OF THE GRADE-BASED MODELS (MODELS 2, 3, 4 AND 5) 
 

In a similar line of enquiry, development of Grade-based models proceeded by moving through 

the parameter space to identify models that could read all 80 words/ nonwords correctly though 

the criteria to name all words in the lexicon and the 500 nonwords correctly was removed. 

Following this, the MinReadingPhonology parameter was set to 0.4 to simulate speeded 

reading, and the parameter space between the working models for each grade were explored.  

 

Model 2: Grade 2 

 

The best performing Turkish DRC Grade 2 model pronounced all but 16 of the 3593 words 

(0.43%) in the lexicon and all of the 500 nonwords correctly. The 16 incorrectly named words 
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were all regularisation errors. Appendix 7 provides a list of the parameter values of Model 2. 

The correlation between the average child RTs and DRC model cycles was significant, (r (80) 

= 0.728; p < 0.001). A hierarchical regression analysis was carried out in which acoustic 

articulation variables and the DRC model cycles were entered in a stepped fashion. The results 

of the regression analysis indicated that the selected predictors significantly explained 61.2% 

of the variance, R2=.612, F (9, 70) = 13.47, p<.0001 with the DRC model predicting 33.1% of 

the unique variance in the model. When the DRC model was entered alone as a predictor into 

a linear regression model, DRC accounted for 52.4% of the variance in children’s RT, F (1, 78) 

= 88.14, p<.0001. Comparison of linear regressions between the children’s RT and DRC model 

using Length and lexicality (Table 68) and Length and Frequency (Table 69) as predictors were 

also carried out. 

 
TABLE 68: LINEAR REGRESSION ANALYSIS OF GRADE 2 CHILDREN’S AND DRC MODEL’S RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 66.21*** 275.97*** 

Lexicality 0.676*** 0.876*** 

Length 0.419*** 0.331*** 

R2 62.30% 87.40% 

 

From Table 68, the DRC Grade 2 model provided a good fit of the RT data in its ability to 

capture both length and lexicality effects. However, from the beta values reported, the DRC 

model again overfitted lexicality effects and slightly underfitted length effects. The DRC model 

also accounted for 25.10 % more variance than the RT data suggesting an overall overfitting of 

the DRC model. 
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TABLE 69: LINEAR REGRESSION ANALYSIS OF GRADE 2 CHILDREN’S AND DRC MODEL’S WORD RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 15.56*** 2.46 

Length 0.666*** 0.339* 

Frequency -0.118 -0.049 

R2 42.70% 7.0% 

 

From Table 69, the DRC model provided a poor fit of the word RT data. While the model was 

able to capture both present length and absent frequency effects, the overall model was 

nonsignificant. From the beta values reported, the DRC model underfitted length effects. The 

DRC model also accounted for 35.70% less variance than the RT data suggesting an overall 

underfitting of the DRC model. 

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 70 and 71 

below. 

 
TABLE 70: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN GRADE 2 CHILDREN’S RT AND DRC MODEL 

 
Human DRC 

Lexicality 78.72*** 0.701 237.72*** 0.926 

Length 44.58*** 0.806 1016.03*** 0.982 

Lexicality by length interaction 0.204 0.011 81.58*** 0.811 
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From Table 70, the DRC model provided a good fit of the RT data in its ability to capture both 

length and lexicality effects. However, while there was no significant interaction in the RT data, 

there was a significant interaction in the DRC model. From the beta values reported, the DRC 

model overfitted both lexicality and length effects. 
TABLE 71: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN GRADE 2 CHILDREN’S WORD RT AND DRC MODEL 

 
Human DRC 

Frequency .772 0.079 .010 0.011 

Length 49.24*** 0.845 4.54 0.335 

Frequency by length interaction 0.581 0.061 2.10 0.189 

 

From Table 71, the DRC model provided a poor fit of the word RT data in its ability to capture 

both length effects. From the beta values reported, the DRC model underfitted both present 

length and absent frequency effects while overfitting their interaction. 

 

Model 3: Grade 3 

 

The best performing Turkish DRC Grade 3 model pronounced all of the 10612 words in the 

lexicon and all but 8 of the 500 nonwords (1.6%) correctly. The eight incorrectly named 

nonwords were made of 6 regularisation errors and two LOWAC errors. Appendix 8 provides a 

list of the parameter values of Model 3. The correlation between the average child RTs and 

DRC model cycles was significant, (r (80) = 0.715; p < 0.001). A hierarchical regression analysis 

was carried out in which acoustic articulation variables and the DRC model cycles were entered 

in a stepped fashion. The results of the regression analysis indicated that the selected 

predictors significantly explained 59.7% of the variance, R2=.597, F (9, 70) = 3.39, p=.002 with 

the DRC model predicting 38.3% of the unique variance in the model. When the DRC model 

was entered alone as a predictor into a linear regression model, DRC accounted for 50.4% of 

the variance in children’s RT, F (1, 78) = 81.42, p<.0001. Comparison of linear regressions 
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between the children’s RT and DRC model using Length and lexicality (Table 72) and Length 

and Frequency (Table 73) as predictors were also carried out. 
 

TABLE 72: LINEAR REGRESSION ANALYSIS OF GRADE 3 CHILDREN’S AND DRC MODEL’S RT 

  

  Human (Std. Beta) DRC (Std. Beta) 

Model F 58.67*** 136.54*** 

Lexicality 0.658*** 0.806*** 

Length 0.413*** 0.362*** 

R2 59.30% 77.40% 

 

From Table 72, the DRC model provided a good fit of the RT data in its ability to capture both 

length and lexicality effects. However, from the beta values reported, the DRC model overfitted 

lexicality effects and underfitted length effects. The DRC model also accounted for 18.10% 

more variance than the RT data suggesting an overall overfitting of the DRC model. 
 

TABLE 73: LINEAR REGRESSION ANALYSIS OF GRADE 3 CHILDREN’S AND DRC MODEL’S WORD RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 16.00*** 1.86 

Length 0.681*** 0.237 

Frequency -0.023 0.187 

R2 43.50% 4.2% 
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From Table 73, the DRC model provided a poor fit of the word RT data in its ability to capture 

length effects. From the beta values reported, the DRC model underfitted present length effects 

and overfitted absent frequency effects. The DRC model also accounted for 39.30% less 

variance than the RT data suggesting an overall underfitting of the DRC model. 

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 74 and 75 

below. 

 
TABLE 74: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN GRADE 3 CHILDREN’S RT AND DRC MODEL 

 
 

Human DRC 

Lexicality 74.36*** 0.796 373.72*** 0.952 

Length 27.15*** 0.588 97.50*** 0.837 

Lexicality by length interaction 0.002 0 61.75*** 0.765 

 

From Table 74, the DRC model provided a good fit of the RT data in its ability to capture both 

length and lexicality effects. However, the DRC model reported a significant lexicality by length 

interaction when none was present in the RT data. From the beta values reported, the DRC 

model again overfitted both lexicality and length effects. 
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TABLE 75: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN GRADE 3 CHILDREN’S WORD RT AND DRC MODEL  
 

Human DRC 

Frequency .037 0.004 1.42 0.137 

Length 89.93*** 0.909 2.35 0.207 

Frequency by length interaction 0.018 0.002 1.84 0.170 

 

From Table 75, the DRC model provided a poor fit of the word RT data in its ability to capture 

length effects. From the beta values reported, the DRC model underfitted length effects and 

overfitted frequency effects while also overfitting their interaction. Again, the failure of the DRC 

model to account for length effects in known words is anticipated as parallel processing through 

the lexical route explains the model’s insensitivity to word length effects. 

 

Model 4: Grade 4 

 

The best performing Turkish DRC Grade 4 model pronounced all of the 17817 words in the 

lexicon and all of the 500 nonwords correctly. The eight incorrectly named nonwords were all 

regularisation errors. Appendix 9 provides a list of the parameter values of Model 4. The 

correlation between the average child RTs and DRC model cycles was significant, (r (80) = 

0.807; p < 0.001). A hierarchical regression analysis was carried out in which acoustic 

articulation variables and the DRC model cycles were entered in a stepped fashion. The results 

of the regression analysis indicated that the selected predictors significantly explained 62.4% 

of the variance, R2=.62.4, F (9, 70) = 14.13, p<.05 with the DRC model predicting 47.7% of the 

unique variance in the model. When the DRC model was entered alone as a predictor into a 

linear regression model, DRC accounted for 64.7% of the variance in children’s RT, F (1, 78) = 

145.53, p<.0001. Comparison of linear regressions between the children’s RT and DRC model 

using Length and lexicality (Table 76) and Length and Frequency (Table 77) as predictors were 

also carried out. 
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TABLE 76: LINEAR REGRESSION ANALYSIS OF GRADE 4 CHILDREN’S AND DRC MODEL’S RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 176.69*** 95.58*** 

Lexicality 0.840*** 0.703*** 

Length 0.340*** 0.468*** 

R2 81.60% 70.50% 

 

From Table 76, the DRC model provided an excellent of the RT data in its ability to capture 

both length and lexicality effects. However, from the beta values reported, the DRC model 

overfitted length effects and underfitted lexicality effects. The DRC model also accounted for 

11.10% less variance than the RT data suggesting an overall overfitting of the DRC model. 

 
TABLE 77: LINEAR REGRESSION ANALYSIS OF GRADE 4 CHILDREN’S AND DRC MODEL’S WORD RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 7.39*** 17.84 

Length 0.457*** 0.689*** 

Frequency -0.277^ -0.126 

R2 24.70% 46.3% 

 

From Table 77, the DRC model provided a poor fit of the word RT data as the overall model 

was not significant. The model was, however, able to capture both present length and absent 

frequency effects. From the beta values reported, the DRC model overfitted length effects. The 



 261 

DRC model also accounted for 21.60% more variance than the RT data suggesting an overall 

overfitting of the DRC model. 

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 78 and 79 

below. 

 
TABLE 78: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN GRADE 4 CHILDREN’S RT AND DRC MODEL 

 
Human DRC 

Lexicality 119.88*** 0.863 544.71*** 0.966 

Length 84.34*** 0.816 94.78*** 0.833 

Lexicality by length interaction 2.40 0.112 71.03*** 0.789 

 

From Table 78, the DRC model provided a good fit of the RT data in its ability to capture both 

length and lexicality effects. However, the DRC model reported a significant interaction when 

none was present in the RT data. From the beta values reported, the DRC model again 

overfitted lexicality and length effects. 

 
TABLE 79: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN GRADE 4 CHILDREN’S WORD RT AND DRC MODEL 

 
Human DRC 

Frequency 1.11 0.110 6.53* 0.420 

Length 29.64*** 0.767 10.35** 0.535 

Frequency by length 

interaction 

0.281 0.030 3.50 0.280 
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From Table 79, the DRC model provided a poor fit of the word RT data in its ability to capture 

frequency effects. From the beta values reported, the DRC model underfitted length effects and 

overfitted frequency effects. 

 

Model 5: Grade 5 

 

The best performing Turkish DRC Grade 5 model pronounced all but 25 of the 24784 words 

(0.10%) in the lexicon and all of the 500 nonwords correctly. The 25 incorrectly named words 

were all regularisation errors. Appendix 10 provides a list of the parameter values of Model 5. 

The correlation between the average child RTs and DRC model cycles was significant, (r (80) 

= 0.899; p < 0.001). A hierarchical regression analysis was carried out in which acoustic 

articulation variables and the DRC model cycles were entered in a stepped fashion. The results 

of the regression analysis indicated that the selected predictors significantly explained 80% of 

the variance, R2=.800, F (9, 70) = 32.65, p<.0001 with the DRC model predicting 65% of the 

unique variance in the model. When the DRC model was entered alone as a predictor into a 

linear regression model, DRC accounted for 80.6% of the variance in children’s RT, F (1, 78) = 

329.60, p<.0001. Comparison of linear regressions between the children’s RT and DRC model 

using Length and lexicality (Table 80) and Length and Frequency (Table 81) as predictors were 

also carried out. 

 
TABLE 80: LINEAR REGRESSION ANALYSIS OF GRADE 5 CHILDREN’S AND DRC MODEL’S RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 169.40*** 163.71*** 

Lexicality 0.834*** 0.751*** 

Length 0.344*** 0.496*** 

R2 81.00% 80.50% 
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From Table 80, the DRC model provided an excellent fit of the RT data in its ability to capture 

both length and lexicality effects. However, from the beta values reported, the DRC model 

overfitted length effects and underfitted lexicality effects. The DRC model also accounted for 

0.50% less variance than the RT data. 

 
TABLE 81: LINEAR REGRESSION ANALYSIS OF GRADE 5 CHILDREN’S AND DRC MODEL’S WORD RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 29.09*** 8.05*** 

Length 0.781*** 0.483*** 

Frequency -0.028 -0.263 

R2 59.00% 26.40% 

 

From Table 81, the DRC model provided a good fit of the word RT data in its ability to capture 

both present length and absent frequency effects. From the beta values reported, the DRC 

model underfitted length effects and overfitted frequency effects. The DRC model also 

accounted for 32.60% less variance than the RT data suggesting an overall underfitting of the 

DRC model.  

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 82 and 83 

below. 
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TABLE 82: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN GRADE 5 CHILDREN’S RT AND DRC MODEL 

 
 

Human DRC 

Lexicality 300.66*** 0.941 594.01*** 0.969 

Length 110.63*** 0.853 101.70*** 0.843 

Lexicality by length interaction 24.84*** 0.567 87.78*** 0.822 

 

From Table 82, the DRC model provided an excellent fit of the RT data in its ability to capture 

both length and lexicality effects and their interaction. However, from the beta values reported, 

the DRC model provides an excellent fit for the main effects while overestimating the effect of 

the lexicality by length interaction. 
 

TABLE 83: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN GRADE 5 CHILDREN’S WORD RT AND DRC MODEL 
 

Human DRC 

Frequency 0.053 0.006 5.00 0.357 

Length 115.87*** 0.928 10.25** 0.533 

Frequency by length 

interaction 

0.045 0.005 4.03 0.309 

 

From Table 83, the DRC model provided a good fit of the word RT data in its ability to capture 

both present length effects and absent frequency effects. From the beta values reported, the 

DRC model underfitted length and overfitted frequency effects and their interaction. 

 

Table 84, below, offers a summary of the findings from the comparisons between grade-based 

human and modelling data. From the table, when all stimuli were considered, length and 

lexicality effects were found in both the children’s RTs and relevant DRC models. However, in 

contrast to the children’s word reading RTs, two DRC models (2 and 3) were not sensitive to 
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the effects of length for known words. In addition, one DRC model (4) found a frequency effect 

which was absent in the behavioural data and three of the grade-based DRC models (2,3 and 

4) reported a significant interaction between Lexicality and length which were also absent in 

the behavioural data. Only model 5 accurately captured all of the effects observed in the 

behavioural data. 

 
TABLE 84: SUMMARY OF GRADE-BASED CHILDREN’S RT AND DRC MODEL REGRESSION AND FACTORIAL ANALYSES 

Grade -> 2 3 4 5 

  Human DRC Human DRC Human DRC Human DRC 

R2 (All) 62.3 87.4 59.3 77.4 81.6 70.5 81 80.5 

R2 

(Words) 
42.7 7 43.5 4.2 24.7 46.3 59 26.4 

Lexicality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Length 

(All) 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Length 

(Words) 
✓ ✕ ✓ ✕ ✓ ✓ ✓ ✓ 

Frequency ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕ 

Lex x Len ✕ ✓ ✕ ✓ ✕ ✓ ✓ ✓ 

Freq x Len ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

 

6.6.3 SIMULATION 3: PERFORMANCE OF AVERAGE DD SUBTYPE MODELS (MODELS 6 AND 7) 
 

In the first consideration of DRC models of DD in Turkish, two new models (Model 6: 

Phonological Dyslexia and Model 7: Surface Dyslexia) were created by optimising parameters 

according to the average child DRC model (Model 1). Following this, five noise parameters 

were added to each model to simulate deficits at each level of processing in the DRC. The 

outcome of Models 6 and 7 in terms of noise (deficits) is shown below in Figure 19.  
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FIGURE 21: AVERAGE CHILD DRC NOISE PARAMETERS BY DD SUBTYPE 

 

From Figure 19, phonological dyslexia was associated with a large deficit at the GPC level and 

smaller deficits in access to the orthographic and phonological lexicons as well as the phoneme 

level. Conversely, surface dyslexia was associated with a large deficit at the orthographic 

lexicon level and smaller deficits in access to the phonological lexicon as well as the phoneme 

level. Each DD subtype model was then considered independently. 

 

Model 6: Average Phonological Developmental Dyslexia subtype Turkish DRC model 

The correlation between the average Phonological DD child RTs and DRC model cycles was 

significant, (r (80) = 0.651; p < 0.001). A hierarchical regression analysis was carried out in 

which acoustic articulation variables and the DRC model cycles were entered in a stepped 

fashion. The results of the regression analysis indicated that the selected predictors significantly 

explained 46.6% of the variance, R2=.466, F (10, 69) = 7.89, p<.0001 with the DRC model 

predicting 30.6% of the unique variance in the model. When the DRC model was entered alone 

as a predictor into a linear regression model, DRC accounted for 41.6% of the variance in 

children’s RT, F (1, 78) = 57.25, p<.0001. Comparison of linear regressions between the 
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children’s RT and DRC model using Length and lexicality (Table 85) and Length and Frequency 

(Table 86) as predictors were also carried out. 

 
TABLE 85: LINEAR REGRESSION ANALYSIS OF PHONOLOGICAL DD CHILDREN’S AND DRC MODEL’S RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 17.58*** 71.08*** 

Lexicality 0.550*** 0.737*** 

Length 0.107 0.325*** 

R2 12.60% 64.00% 

 

From Table 85, the Phonological DD DRC model provided a poor fit of the RT data in its ability 

to capture non-significant length effects, perhaps reflecting an overactivation of the sublexical 

route. However, the DRC model reported a significant length effect when none was present in 

the RT data. From the beta values reported, the DRC model overfitted both lexicality and length 

effects. The DRC model also accounted for 51.40% more variance than the RT data suggesting 

an overall overfitting of the DRC model. 

 
TABLE 86: LINEAR REGRESSION ANALYSIS OF PHONOLOGICAL DD CHILDREN’S AND DRC MODEL’S WORD RT 

 

  Human (Std. Beta) DRC (Std. Beta) 

Model F 1.58 17.59*** 

Length 0.232 0.050 

Frequency -0.158 0.696*** 

R2 2.9% 46.00% 
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From Table 86, the DRC model provided a poor fit of the word RT data in its ability to capture 

frequency effects. From the beta values reported, the DRC model underfitted length effects and 

grossly overfitted frequency effects. The phonological DD DRC model also accounted for 

43.10% more variance than the RT data suggesting an overall overfitting of the DRC model.  

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 87 and 88 

below. 
 

TABLE 87: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN PHONOLOGICAL DD CHILDREN’S RT AND DRC 
MODEL  

 
Human DRC 

Lexicality 48.18*** 0.717 140.49*** 0.881 

Length 1.10 0.055 23.27*** 0.550 

Lexicality by length interaction 0.08 0.004 5.20** 0.3215 

 

From Table 87, the DRC model provided a poor fit of the RT data in its ability to capture both 

length effects and the interaction between lexicality and length. From the beta values reported, 

the DRC model again overfitted lexicality and length effects as well as their interaction. 
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TABLE 88: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN PHONOLOGICAL DD CHILDREN’S WORD RT AND 
DRC MODEL 

 
Human DRC 

Frequency .888 0.090 .261 0.028 

Length 1.34 0.130 35.70*** 0.799 

Frequency by length interaction 0.299 0.032 5.67* 0.386 

 

From Table 88, the DRC model provided a poor fit of the word RT data in its ability to capture 

length effects. From the beta values reported, the DRC model underfitted frequency effects 

while overfitting length effects and their interaction. 

 

Model 7: Average Surface Developmental Dyslexia subtype Turkish DRC model 

 

The correlation between the average child RTs and DRC model cycles was significant, (r (80) 

= 0.748; p < 0.001). A hierarchical regression analysis was carried out in which acoustic 

articulation variables and the DRC model cycles were entered in a stepped fashion. The results 

of the regression analysis indicated that the selected predictors significantly explained 60.3% 

of the variance, R2=.603, F (9, 70) = 14.33, p<.0001 with the DRC model predicting 31% of the 

unique variance in the model. When the DRC model was entered alone as a predictor into a 

linear regression model, DRC accounted for 55.4% of the variance in children’s RT, F (1, 78) = 

99.22, p<.0001. Comparison of linear regressions between the children’s RT and DRC model 

using Length and lexicality (Table 89) and Length and Frequency (Table 90) as predictors were 

also carried out. 
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TABLE 89: LINEAR REGRESSION ANALYSIS OF SURFACE DD CHILDREN’S AND DRC MODEL’S RT 

  

  Human (Std. Beta) DRC (Std. Beta) 

Model F 51.11*** 524.85*** 

Lexicality 0.542*** 0.822*** 

Length 0.526*** 0.506*** 

R2 55.90% 93.00% 

 

From Table 89, the DRC model provided an excellent fit of the RT data in its ability to capture 

both length and lexicality effects. However, from the beta values reported, the DRC model 

overfitted lexicality effects and slightly underfitted length effects. The DRC model also 

accounted for 37.10% more variance than the RT data suggesting an overall overfitting of the 

DRC model. 

 
TABLE 90: LINEAR REGRESSION ANALYSIS OF SURFACE DD CHILDREN’S AND DRC MODEL’S WORD RT 

  

  Human (Std. Beta) DRC (Std. Beta) 

Model F 18.26*** 62.39*** 

Length 0.702*** 0.878*** 

Frequency 0.062 -0.006 

R2 47.00% 75.90% 

 

From Table 90, the DRC model provided a good fit of the word RT data in its ability to capture 

both present length and absent frequency effects. From the beta values reported, the DRC 
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model overfitted length effects and underfitted frequency effects. The DRC model also 

accounted for 28.90% more variance than the RT data suggesting an overall overfitting of the 

DRC model. 

 

Turning to the factorial approach, a series of repeated measures ANOVAs were run to explore 

the effects of a number of psycholinguistic variables on human and DRC models data. The 

variables of interest and their interactions were length and lexicality for all stimuli and length 

and frequency for word stimuli only. The resulting ANOVAs are presented in Tables 91 and 92 

below. 
 

TABLE 91: FACTORIAL ANALYSIS OF LENGTH AND LEXICALITY EFFECTS IN SURFACE DD CHILDREN’S RT AND DRC MODEL 
 

Human DRC 

Lexicality 68.94*** 0.784 1330.20*** 0.986 

Length 27.96*** 0.595 488.49*** 0.963 

Lexicality by length interaction 3.96 0.172 23.69*** 0.555 

 

From Table 91, the DRC model provided a good fit of the RT data in its ability to capture both 

length and lexicality effects. However, the surface DD DRC model reported a significant 

interaction where none was present in the RT data. From the beta values reported, the DRC 

model overfitted both lexicality and length effects. 
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TABLE 92: FACTORIAL ANALYSIS OF LENGTH AND FREQUENCY EFFECTS IN SURFACE DD CHILDREN’S WORD RT AND DRC 
MODEL 

 
 

Human DRC 

Frequency 0.188 0.020 0.006 0.001 

Length 39.76*** 0.815 154.07*** 0.945 

Frequency by length 

interaction 

0.320 0.034 0.947 0.095 

 

From Table 92, the DRC model provided a good fit of the word RT data in its ability to capture 

length effects. From the beta values reported, the DRC model overfitted length effects while 

underestimating the frequency effect. 

 

Table 93, below, offers a summary of the findings from the comparisons between DD subtype 

human and modelling data. From the table, when all stimuli were considered, lexicality effects 

but not length effects were found in the phonological DD children’s RTs. In contrast, the relevant 

DRC model (model 6) found both length and lexicality effects as well as a significant interaction 

between them. When considering phonological DD children’s word reading RTs, no main or 

interaction effects were significant. In contrast, model 6 found both length effects and a 

significant interaction between length and frequency. When the surface DD profiles were 

considered, surface DD children’s RTs showed length and lexicality effects when all words were 

considered and only significant length effects when only words when studied. The relevant DRC 

model (model 7) was able to successfully simulate this pattern of results but also included a 

significant length by lexicality interaction which was not present in the children’s RT data. 
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TABLE 93: SUMMARY OF AVERAGED DD SUBGROUP CHILDREN’S RT AND DRC MODEL REGRESSION AND FACTORIAL 
ANALYSES 

  Phonological Surface 

  Human DRC Human DRC 

All(R2) 12.6 64 55.9 93 

Length ✕ ✓ ✓ ✓ 

Lexicality ✓ ✓ ✓ ✓ 

Length by Lex ✕ ✓ ✕ ✓ 

Words (R2) 2.9 46 47 75.9 

Length ✕ ✓ ✓ ✓ 

Frequency ✕ ✕ ✕ ✕ 

Length by 

Freq 
✕ ✓ ✕ ✕ 

 

In summary, both the phonological and surface DD DRC models overfitted the models to the 

RT data. While both models were successful in accounting for the lexicality effect, only the 

surface DD DRC model accounted for the length effect found in the RT data. Furthermore, both 

models reported significant length by lexicality interaction were none were found in the RT data. 

Of the two models, the surface DD DRC model was the more successful in terms of the number 

of effects (main and interaction) accounted for (Surface: 5/6 vs Phonological: 2/6). 

 

 

6.6.4 SIMULATION 4: PERFORMANCE OF INDIVIDUAL DD MODELS (MODELS 8 – 23) 
 

In a final consideration of DRC models of DD in Turkish, 15 new models were created by 

optimising parameters according to the appropriate grade-based child DRC models (models 2-

5). While model accuracy was not of specific consequence to the current work, model 

parameters were selected only if the resulting models could name as accurately or better than 

the corresponding individual data but not worse. Using this approach, the correlation between 

overall accuracy scores of children and accuracy of the DRC models was significant r (15) = 

.881, p< .001. Furthermore, the overall DRC accuracy scores predicted 75.9% of the variance 
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in the observed overall accuracy scores F (1,13) =45.11, p< .001. Following this, five noise 

parameters were added to each model to simulate deficits at each level of processing in the 

DRC. The outcome of models 8 - 23 in terms of noise (deficits) is shown below in Table 94 for 

the regression analyses and Table 95 for the factorial ANOVAs. 
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TABLE 94: SUMMARY OF LINEAR REGRESSION ANALYSIS OF INDIVIDUAL DD DRC MODELS 

ID 

-> PD1 PD2 PD3 PD4 PD5 PD6 PD7 SD1 SD2 SD3 SD4 SD5 SD6 SD7 MD1 

ID-

> 901 904 902 601 3 277 903 159 162 552 900 82 906 604 120 

  

R

T 

D

R 

C 

R

T 

D

R 

C 

R

T 

D 

R

C 

R

T 

D

R 

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

R

T 

D 

R

C 

r 0.447 0.371 0.555 0.292 0.783 0.578 0.398 0.564 0.639 0.511 0.448 0.582 0.508 0.019 0.656 
R2 18 12.1 29.6 6.9 60.7 32.3 14.5 30.7 40 25.1 19 32.9 24.8 -1.4 42.2 

Le

n         ✓ ✓   ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ 

Le

x ✓ ✓   ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ 

Le

n         ✓     ✓ ✓ ✓   ✓     ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓       ✓ ✓ ✓ 

Fr

eq                 ✓     ✓       ✓   ✓       ✓               ✓ 

 

From Table 94, linear regression analysis between the RT data of the 15 children with DD on both words and nonwords as well 

as words only with the predictions of the corresponding DRC models was carried out. On average, the models accounted for 

25.83% (SD: 15.45; Range: -1.40 – 60.70) of the variance. Closer inspection of the data revealed that two models (PD4 and SD7) 

performed particularly poorly. A reanalysis with these two models removed accounted for 29.38% (SD: 13.56; Range: 12.10 – 
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60.70) of the variance. Taken together the individual DD models correctly accounted for 73% of the predictor variables found in 

the RT data, while 23% of the predictor variables in the DRC models reported a false effect, i.e. finding an effect when none was 

present, and 3% of DRC predictor variables failed to account for a significant predictor found in the RT data. In addition, only 

three of the individual DD models (PD1, SD3 and SD5) accounted for all of the predictor variable findings in their corresponding 

RT data whereas nine individual models (PD2, PD3, PD5, PD7, SD1, SD2, SD4, SD6 and MD1) had one discrepancy between 

the predictor variables findings of the corresponding RT data. Further, two individual DD models (PD6 and SD7) had two 

discrepancies between their predictor variables and the corresponding RT data with one model (PD4) having three discrepancies 

between their predictor variables and the corresponding RT data. Encouragingly, all of the individual models accounted for at 

least one predictor variable that was present/ absent in the RT data. 
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TABLE 95: SUMMARY OF FACTORIAL ANALYSIS OF INDIVIDUAL DD DRC MODELS 

ID 

(Chapt

er 5)-> 

PD1 PD2 PD3 PD4 PD5 PD6 PD7 

ID-> 901^ 904 902^2 601 3 277 903 

 RT DRC RT DRC RT DRC RT DRC RT DRC RT DRC RT DRC 

Length - 0 
0.12

4 
0.041 0.85 

.310

** 

0.31

5 

.708

*** 

.830

*** 

.776**

* 

.649

** 

.930

*** 

0.1

15 

.341

** 

Lexicali

ty 
- 

.659

*** 

0.61

3 

0.632

*** 

.906

* 

.771

*** 

0.06

9 

.816

*** 

.938

*** 

.976**

* 

.717

** 

.839

*** 

0.3

78 

.867

*** 

Len * 

Lex 
- 0 

0.00

1 
0.003 

0.84

6 

.279

* 

0.01

6 

.658

*** 

.655

** 

.574**

* 

0.06

5 

0.00

3 

0.0

01 

0.18

1 

Length 
0.98

6 

0.13

1 
0.02 0.025 

0.38

5 

0.15

5 

0.08

6 

.736

*** 

0.32

9 
.559** 

0.15

3 

.922

*** 

0.0

75 
0.25 

Freque

ncy 

0.12

2 

0.10

8 

0.01

6 
0.112 

0.00

4 

0.05

8 

0.30

5 

0.16

2 

.445

* 
0.006 0 

.364

* 

0.0

26 

0.11

1 

Len * 

Freq 

0.30

5 

0.13

1 

0.05

3 
0.05 

0.04

1 

0.15

3 

0.06

7 

0.06

8 

0.00

9 
0.124 0.02 

0.00

4 

0.0

43 

0.11

6 
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ID 

(Chapt

er 5)-> 

SD1 SD2 SD3 SD4 SD5 SD6 SD7 MD1 

ID-> 159 162 552 900 82 906 604 120 

 RT DRC RT DRC RT DRC RT DRC RT DRC RT DRC RT DRC RT DRC 

Length 
0.15

3 

.665

*** 

.687

*** 

.911**

* 

.446

** 

.903

*** 

.774

*** 

.808

*** 

0.22

9 

0.893

*** 

0.06

2 

.867

*** 

0.2

05 

.483

*** 

.812

** 

.879

*** 

Lexicali

ty 

.605

*** 

.946

*** 

.600

*** 

.940**

* 

.634

*** 

.871

*** 

0.25

5 

.774

*** 

.513

*** 

0.934

*** 

.407

*** 

.938

*** 

0.0

33 

.834

*** 

.459

*** 

.910

*** 

Len * 

Lex 

.519

*** 

.642

*** 
0.06 

.793**

* 

0.01

3 
0.18 

0.07

2 

.258

** 
0 

.599**

* 

.217

^3 

.834

*** 

0.1

96 

0.06

3 

0.07

1 

.752

*** 

Length 
.682

* 

.886

*** 

.836

*** 

.821**

* 

.737

*** 

.845

*** 

.731

*** 

.725

*** 

0.28

7 

.851**

* 

0.00

7 

0.06

6 

0.0

67 

.428

*** 

.676

*** 

.728

*** 

Freque

ncy 

0.19

9 

.403

* 

0.00

8 
.637** 0 

0.28

3 

0.00

3 

.480

** 

0.16

1 
0.056 

0.03

6 

0.17

2 

0.2

88 

0.13

4 

0.00

1 

.441

* 

Len * 

Freq 

0.10

7 
0.04 

0.02

5 
0 0.02 0 0.01 

0.08

3 

0.11

3 
0.285 

0.00

2 

0.00

2 

0.0

03 

0.06

3 

0.05

6 

0.15

8 

 

From Table 95, the individual DD models correctly accounted for 67% of the effects (main and interaction) found in the RT data, 

while 32% of the significant effects in the DRC models reported a false effect, i.e. finding an effect when none was present, and 

1% of DRC effects failed to account for a significant effect found in the RT data. In addition, only two of the individual DD models 

(PD1 and SD3) accounted for all of the effects in their corresponding RT data whereas two individual DRC models (PD2 and 

SD6) had one discrepancy between the effect findings and the corresponding RT data.  Seven individual models (PD3, PD5, 

PD6, PD7, SD1, SD2 and MD1) had two discrepancies between the model’s effects findings and the corresponding RT data. 
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Further, three individual DD models (SD4, SD5 and SD7) had three discrepancies between their predictor variables and the 

corresponding RT data with one model (PD4) having four discrepancies between their effect and the corresponding RT data. 

Encouragingly, all of the individual models accounted for at least two effects that were present/ absent in the RT data. 

 
TABLE 96: NOISE PARAMETERS FOR INDIVIDUAL DD MODELS 

 

ID-> PD1 PD2 PD3 PD4 PD5 PD6 PD7 SD1 SD2 SD3 SD4 SD5 SD6 SD7 MD1 

Letter 0.03 0.02 0.04 0.02 0.04   0.04 0.05   0.07 0.02 0.02 0.02   0.01 

OrthLex   0.40     0.20           0.10 0.70 0.06 0.20 0.20 

PhonLex   0.02     0.01 0.04   0.03 0.02 0.02 0.02   0.02   0.02 

Phoneme               0.02 0.02 0.02         0.04 

GPC 0.60 0.60 0.20 0.20 0.19 0.80 0.05 0.34 0.20 0.32 0.60 0.40 0.60 0.80 0.30 

 

 

From Table 96, the average Phonological Noise parameter was 0.50 (0.35) compared to the average Surface Noise parameter 

of 0.67 (0.21). In terms of the number of noise deficits, the average count for the phonological models was 2.57 (0.98) compared 

to the average count for the surface models 3.43 (0.79). A series of paired t-tests found no significant difference between 

phonological and surface subtypes in terms of noise parameters across all levels of representation in the DRC model.  In terms 

of the number of noise deficits, letter level noise was found in 6 phonological models compared to 5 surface models, orthographic 

lexicon level noise was found in 2 phonological models compared to 4 surface models, phonological lexicon level noise was found 

in 3 phonological models compared to 5 surface models, phoneme level noise was found in no phonological models compared 

to 3 surface models, and GPC level noise was found in all DD models.
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6.7 DISCUSSION 
 

This chapter assessed several versions of the DRC model by piloting a quantitative 

evaluation of the models’ responses to those of Turkish-speaking children with and 

without DD. This computational modelling work aimed to evaluate the utility of the DRC 

model framework for Turkish-speaking children’s RT data as well as to explore further 

the DD profiles and current subtyping approaches to Turkish. To achieve this, all 23 

created models were assessed using both a factorial and regression approach. To this 

end, the approach taken during this chapter demonstrated that the DRC model could 

be successfully utilised to account for both group-based and individual DD profiles, 

with some limitations (discussed further below). The following section will further 

consider the simulations, starting with the group-based considerations before 

presenting an overview of the individual DD profiles. 

  

6.7.1 SIMULATION OF THE AVERAGE CHILD’S READING PERFORMANCE 
 

The average Turkish child DRC model was able to simulate the human RT data of the 

word and nonword stimuli with 100% accuracy. However, the model was overly 

sensitive to lexicality effects in that nonword reading in the DRC model was roughly 

twice the number of cycles in the word reading condition. In contrast, the 

corresponding difference in the average child’s RT data was equivalent to a 24% 

increase between words and nonwords. In addition, the DRC child model’s sensitivity 

to length effects across stimuli and absent word frequency effect is also in line with 

the RT data. Conversely, when only considering the word stimuli, the DRC child model 

failed to report a significant length effect that was present in the RT data. As stated 

previously, the failure of the DRC model to account for length effects in words was 

predictable due to parallel processing in the lexical route. Similar findings have been 

reported in the Greek version of the DRC model (Kapnoula et al., 2017). The marked 

oversensitivity to lexicality effects and under sensitivity to length effects in known 

words may either reflect a divergence between the Turkish readers and the DRC 

architecture or be indicative that further parameter optimisation is needed. 

Considering the latter possibility, Kapnoula and colleagues (2017) carried out further 

optimisation of parameters in the face of a lack of reported length effects in known 
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words within the DRC model. The optimisation procedure found a significant length 

effect in known words at the expense of accuracy. According to Kapnoula et al., 

(2017), the observed trade-off between the strength of the non-lexical route and 

naming accuracy may be informative regarding how humans read words or may 

alternatively reflect an underlying limitation of the DRC model. The authors conclude 

that these observed divergences between the RT and DRC data suggest that the DRC 

model (as a model built on English theoretical frameworks of reading) may overly rely 

on lexical processing though they argue that further simulations and model 

comparisons are needed to address this outstanding question. In light of this, further 

consideration of future modelling endeavours is considered below.  

 

Separately, the use of the GPC learning algorithm for the development of the average 

Turkish child DRC model appears to have particular usefulness for Turkish, 

specifically and perhaps other transparent orthographies generally. Using this 

approach, simulations showed that the GPC Learning Model could successfully 

acquire GPCs to the degree that reflects ceiling level performance in terms of model 

accuracy. The use of only 50 GPC rules compared to the 104; Dutch, 226; English, 

340; French, 130; German and 59; Italian versions of the DRC (Schmalz, Marinus, 

Coltheart, & Castles, 2015) further quantitatively communicate the degree of 

transparency of the Turkish orthography. This further confirms the usefulness of 

Turkish as an orthographic medium for further computational investigation of visual 

word recognition. 

 

In sum, while the Turkish child DRC model provides a better fit to human RT data than 

previously reported DRC models in other orthographies such as English (Perry et al., 

2007), French (Ziegler et al., 2008) and Russian (Ulicheva, 2015) a number of 

divergences between the RT and DRC data were observed. Coupled with data from 

adult Turkish (I. Raman, 1999; 2003) the outcome of simulation 1 seems to lend 

provisional support to dual-route accounts of reading without discarding the possibility 

that alternative theoretical frameworks of reading could accommodate the results 

reported in this chapter.  
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6.7.2 SIMULATION OF AVERAGE GRADE-BASED READING PERFORMANCE 
 

A novel approach adopted in the current chapter was an attempt to develop average 

Grade-based models of reading using the DRC architecture. By adopting the self-

teaching DRC model approach (Pritchard, 2012), four grade-based DRC models were 

created and evaluated against their corresponding RT data. While connectionist 

models have made a long and sustained contribution to our understanding of reading 

development (e.g. Monaghan & Ellis, 2010),  the recent incorporation of the self-

teaching hypothesis within dual-route models (Perry, Zorzi, & Ziegler, 2019; Pritchard, 

Coltheart, Marinus, & Castles, 2018; Ziegler, Perry, & Zorzi, 2014) represents an 

interesting advance for computational models of visual word recognition. The 

increasing availability of reading acquisition models provide further opportunity for 

exploring the developmental changes that accompany learning to read. While a 

comprehensive computational investigation of reading development was beyond the 

scope of the current study, there is much opportunity to build on the preliminary work 

reported in this chapter. 

 

Overall, the development and findings of the four Turkish grade-based DRC models 

was encouraging but again presented with a number of divergences from the RT data. 

Firstly, all four grade-based Turkish child DRC models were able to simulate the 

human RT data of the word and nonword stimuli with 100% accuracy. On average the 

four models accounted for 62% of the variance in their corresponding RT datasets with 

the grade-based DRC models of older children (73%; grade 4 and 5) performing better 

than the grade-based DRC models of younger children (51%; grade 2 and 3). 

Additionally, when considering all word/ nonword stimuli, grade 2 and 3 models overfit 

the captured variance relative to the RT data, whereas the grade 4 model underfit the 

captured variance relative to the RT data. The Grade 5 DRC model provided a near-

perfect match to the behavioural data concerning the captured variance when all 

stimuli were considered. The length by lexicality interaction is argued to be the 

hallmark feature of dual-route models (Weekes, 1997) as this interaction is interpreted 

as signifying the parallel lexical processing of words and serial processing of 

pseudowords. To this end, using the factorial approach, only the Grade 5 RT data and 

DRC model reported a significant interaction between length and lexicality. Therefore, 
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based on averaged models, only the grade 5 RT and DRC model manifest with the 

full availability of both routes. This is clearly at odds with the mixed model analysis 

carried out in Chapter 4, and likely reflects a general limitation of the ANOVA 

approach. This particular limitation will be further considered following the discussion 

of the remaining models. 

 

When considering only the word stimuli, grade 2 and 3 based DRC models failed to 

capture length effects that were present in the RT data. Interestingly, the grade 4 

based model overfitted the word-only RT data by reporting a significant frequency 

effect when one was not present in the corresponding behavioural data. Again, only 

the grade 5 model provided an account of all of the effects found in the RT data though 

it captured under half of the variance in the word-only RT data. Further evaluation 

found that while Grade 2 and 3 models both underfit length effects and overfit lexicality 

effects, Grade 4 and 5 models showed the opposite pattern. 

 

In summary, while all four models were able to capture present length and lexicality 

effects across the word/pseudoword stimuli, the failure of grade 2 and 3 DRC models 

to accommodate the word length effect found in the corresponding word RT data 

presents a challenge for modelling reading development using the current 

computational approach. 

 

6.7.3 SIMULATION OF DD SUBTYPES 
 

The following section reports an attempt to develop average DD subtype models in 

Turkish using the averaged RT of the two groups. Impaired reading of each of the DD 

subtypes was simulated by first adjusting model parameter values and then by adding 

noise to each level of representation in the DRC. When the DD cohort was again 

divided into the phonological and surface subtypes according to the regression 

procedure adopted in Chapter 5, the results suggest that phonological dyslexics as a 

group were primarily affected at the GPC level. Concerning the surface group, results 

suggest that they were primarily affected at the level of access to the orthographic 

lexicon. This apparent divergence lends support to dual-route accounts of DD, in that 

phonological dyslexia develops from distinct impairment to the sublexical route, 

whereas surface dyslexia develops from distinct impairment to the lexical route 
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(Peterson, Pennington & Olson, 2013). However, several additional observations raise 

a number of important issues. For instance, the modelling approach reported above 

also found that the surface DD model (model 7) had a larger phoneme deficit than the 

phonological DD model (model 6). Similar findings have been reported in behavioural 

data in transparent orthographies such as Spanish (Jiménez, Rodríguez, & Ramírez, 

2009) as well as the opaque orthography of French (Sprenger-Charolles et al., 2000; 

Ziegler et al., 2008). 

 

Additionally, the phonological DD model presented with a marked secondary deficit in 

the orthographic lexicon. While seemingly an odd finding, the role of the lexical route 

in the aiding sublexical processing can offer further insight into this finding (Coltheart 

& Leahy, 1996). That is, feedback from lexical access to the sublexical route (Coltheart 

et al., 1993; 2001) through analogy (Glushko, 1979) can explain the access to 

orthographic lexicon deficit observed in the average phonological DD model. 

Furthermore, the presence of deficits across multiple levels of representation within 

the DD subgroup DRC models lends further support to the multiple-deficit hypothesis 

of developmental dyslexia as well as indicating that the manifestation of DD in Turkish-

speaking children is heterogeneous as neither the phonological nor surface DRC 

model was characterised by a single deficit. 

 

Considering the individual performance of each model, both Model 6 (Phonological 

DRC) and Model 7 (surface DRC) accounted for a good amount of variance in the RT 

data but accounted for more variance than the RT data did when the effects of length 

and lexicality were considered. Model 6 overestimated the effect of both length and 

lexicality and also reported a present length effect when one was not present in the 

data. Model 7 successfully captured the effect of length and lexicality though 

overestimated the effect of length. Considering the words only analysis, Model 6 again 

reported a present length effect when one was not present in the data. Model 7 again 

successfully captured the present effect of length and the absent effect of frequency 

though overestimated the effect of length. 

 

In summary, both the phonological and surface DRC models provide a reasonable fit 

to the RT data with the surface DRC model performing at a superior level in capturing 

the effects observed in the RT data. Although the averaged DD DRC models suggest 
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that there are multiple deficits in both subtypes of DD when considered as a group, it 

is feasible that each individual had only a single deficit and that the observed pattern 

of deficits only appeared as a consequence of the averaging procedure. To further 

investigate this, individual models were created for the 15 DD cases first reported in 

Chapter 5. 

 

6.7.4 SIMULATION OF INDIVIDUAL DD PROFILES 
 

The principal aim of the current modelling work was to simulate normal and impaired 

reading with the newly created Turkish child version of the DRC model. The originality 

of the approach taken was to develop individual models for each of the children with 

DD reported in Chapter 5 by first optimising parameters based on grade-based models 

and then by systematically adding noise to each representational level to increase the 

captured variance. This work was primarily influenced by a previous DRC modelling 

endeavour carried out by Ziegler and colleagues (2008). However, while the previous 

attempt at modelling DD in the DRC model used a top-down approach in that noise 

parameters were altered according to the observed deficits in corresponding ancillary 

tasks, the approach adopted in this chapter adopted a bottom-up approach in that no 

a priori information beyond RT data of children with DD was used in optimising the 

parameters of the model. Model selection was, therefore, solely based on the best-

fitting parameters for the model that were found during the duration of the 

computational work. The rationale for this is threefold, first, while the computational 

work carried out by Ziegler and colleagues (2008) builds upon a fully developed 

French DRC model of visual word recognition (Ziegler, Perry & Coltheart, 2003), the 

current chapter presents ongoing work towards the development of a DRC model in 

Turkish. Second, Ziegler et al. (2008) used word reading accuracy as their dependent 

variable were as the current approach used RT and cycles. Third, while a number of 

variables measured in this doctoral project could potentially be mapped onto the DRC 

model as ancillary tasks, this was not the explicit purpose of the current research. 

 

According to the observed noise parameters across participants, the most substantial 

deficits were obtained for phonological processes. Also, further examination of the 

phonological noise parameters revealed that all 15 participants had deficits at the GPC 

(sublexical) level, 9/ 15 (3 phonological, 5 surface, 1 mixed) had deficits at the 
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phonological lexicon level, and 4/15 (4 Surface) had deficits at the phoneme level. 

This finding lends support to both the phonological deficit hypothesis of DD (Stanovich 

& Siegel 1994; Snowling, 2000) and the double-deficit hypothesis (Wolf, 1999) in that 

the central deficits concerning DD are associated with phonological processes. 

Furthermore, the majority (12/15) of individual DD models also exhibited letter 

processing deficits. This finding is mostly coherent with a number of studies that 

highlight the importance of deficits in the parallel processing of letters (Bosse et al., 

2007; Valdois et al., 2004; Zoubrinetzky, Bielle, Valdois, 2014). Finally, there was also 

evidence for the presence of deficits in the orthographic lexicon level in 7/15 DD 

models (3 phonological, 3 surface, 1 mixed). In sum, evaluation of the individual 

models suggests that as the majority of models exhibited multiple deficits across the 

DRC’s representational levels, the strongest theoretical argument regarding the 

manifestation of DD, in models of Turkish-speaking children, is provided by the 

multiple deficit model of DD. The considerable heterogeneity in both the number and 

magnitude of deficits across subjects further lends support to the concept of multiple 

probabilistic risk factors (Pennington et al., 2012). 

 

Additionally, when considering DD subtypes, the individual model approach adopted 

in this chapter stipulates that there were no meaningful differences in the underlying 

noise parameters and therefore argue that the classification of children with DD into 

qualitatively distinct subtypes presents an inadequate account of DD (Griffiths & 

Snowling, 2002). Instead, growing evidence suggests that phonological and surface 

subtypes may best be represented as two ends of a continuum (Castles et al., 1999; 

Griffiths and Snowling, 2002). A parallel finding was also reported by Ziegler et al. 

(2008). 

 

6.7.5 LIMITATIONS AND FUTURE RESEARCH 
  

In addition to some of the limitations highlighted in Chapter 5 concerning the 

behavioural data such as the small sample size, there are also a number of limitations 

in the current computational work. Firstly, the use of averaged models and RT datasets 

reintroduces an issue previously addressed in Chapters 4 and 5. That is the reliance 

on averaging across participants or items. Coupled with the small sample size, the 

findings of the current study can be accepted as exploratory at best. 
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Perhaps the largest challenge in the current computational work was the suboptimal 

optimisation procedure used as a consequence of limited computational power and 

time. While several models captured a good amount of variance of their respective RT 

data, several also failed. In future, to achieve superior fitting models to individual 

participants will require data of greater precision at an individual level (Adelman & 

Brown, 2008). Similarly, future studies could address this limitation by adopting an 

alternative optimisation procedure such as the one reported in Adelman and Brown 

(2008). In an attempt to address the so-called optimal parameters problem, Adelman 

and Brown (2008) applied the Nelder-Mead simplex procedure to the DRC. As such, 

the simplex procedure is an example of a standard non-gradient local search method 

which inspects the corners of a region of interest, i.e. the parameter space of a model 

and subsequently expands into parameter spaces that represent improved model fit 

while also moving away from regions that fail to improve the model. In doing so, the 

DRC model can be optimised to a state where any observed effects or predictor 

variables are a consequence of a given theoretical framework rather than an artificial 

obstacle to falsification brought about by suboptimal approaches to model fitting. 

  

Developmental models of reading represent a fascinating enterprise that has a rich 

history in connectionist approaches (see Chang, Monaghan & Welbourne, 2019 for a 

recent implementation) but has only recently received increasing interest in dual-route 

accounts of reading (Pritchard, 2012) There are also further prospects to carry out 

further research using both the GPC learning and self-teaching models (Pritchard, 

2012). While the approach taken to self-teaching was akin to one-shot learning, a more 

psychologically plausible approach would be to incorporate a process of incremental 

training that starts with a small number of words and eventually builds a full 

representative vocabulary over time. In a similar line of enquiry, the recently 

implemented CDP++ developmental model of learning to read (Ziegler, Perry & Zorzi, 

2014) has made some important progress in this direction. Using this approach, the 

authors achieved an accuracy rating of 80% for the 32,000 words that the model was 

exposed to after training. While the default parameters of the self-teaching model were 

used for model development in the current work, future studies need to address the 

distinct lack of vocabulary growth data in Turkish-speaking primary school children. 

Following this, a more fine-grained exploration of vocabulary change, orthographic 
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learning and self-teaching in Turkish can take place. In line with this, future 

computational modelling work in Turkish needs to take a closer look at features of 

phonology as there is much debate surrounding this topic (see Chapter 2 of this thesis; 

Koşaner, Birant, & Aktaş, 2013). Finally, while there is a widely accepted view in the 

domain regarding the relevant dependent variables of interest being a function of 

orthographic transparency, i.e. transparent orthographies index RT whereas opaque 

orthographies index accuracy, there is also a need to take potential speed-accuracy 

trade-offs into account. Future behavioural and computational studies can adopt the 

response signal paradigm (Reed, 1973) in order to address this. 

  

The recent move towards modelling individual differences (Ziegler, Perry & Zorzi, 

2019) in order to increase our understanding of the heterogeneity of DD represents a 

critical line of enquiry with computational models. Using this approach, the authors 

were able to develop a model that could successfully simulate the individual learning 

trajectories of 622 children (388 with DD). The authors argue that only by adopting 

personalised computational models that allow for multiple deficits can the 

heterogeneity and individual differences in DD profiles be captured. Such models may 

also have significant implications on the early identification of DD as well as being 

informative regarding the outcomes of interventions. 

  

In summary, this chapter provides an overview of the first computational study to 

evaluate a series of DRC models of visual word recognition and reading aloud with 

Turkish stimuli by directly measuring modelling alongside behavioural data. The 

computational work undertaken within this chapter, while exploratory, produced good 

fitting models of the average Turkish-speaking children’s RT data as well as adequate 

models of grade-based average RT data and subtypes of DD. Overall, the DRC 

models produced were generally useful in simulating several aspects of the 

behavioural data; however, a number of limitations were also identified. In particular, 

several of the DRC models displayed sensitivity to length, lexicality and frequency 

effects (which were absent in the behavioural data). Certain parameter adjustments 

would expectedly lead to better-quality models. Despite the limitations of the current 

modelling work, the simulations carried out here provide a rich foundation for further 

work on computational models of reading, reading development and disorder among 

Turkish-speaking populations. 
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CHAPTER 7: GENERAL DISCUSSION 
 

This chapter begins with a summary of the research carried out within this doctoral 

project intending to highlight both the key findings and the unique contribution made 

by the current research. Following this, a consideration of both the limitations and 

future avenues for research that builds on this work will be offered.  

7.1 SUMMARY OF FINDINGS, LIMITATIONS AND FUTURE STUDIES 
 

The primary aim of this doctoral research project was to apply contemporary cognitive, 

computational and psycholinguistic theories and methods to the exploration of 

reading, reading development and disorder using the Turkish orthography as the 

medium of choice. This choice was motivated by the underlying orthographic 

transparency of the Turkish writing system in a preliminary attempt to redress the 

largely Anglo-centric nature of research that has been carried out in reading research 

to date (Share, 2008).  

 

7.1.1 HOW TRANSPARENT IS TRANSPARENT? A QUANTIFICATION OF THE TURKISH 
ORTHOGRAPHY 
 

To this end, the work carried out in Chapter 2 bid to understand the orthographic 

transparency of Turkish from a quantitative perspective. Chapter 2 began with a review 

of the previous research on approaches to understanding the differences between 

alphabetic writing systems with a focus on recent conceptualisations and 

quantification attempts regarding orthographic transparency. Additionally, the 

properties of the Turkish orthographic and phonological system were described in 

detail. Surprisingly, while there is a degree of agreement between researchers in terms 

of qualitative descriptions of orthographic transparency, only a hand-full of studies 

have considered quantitative indices (e.g. Borgwaldt, Helliwig, & de Groot, 2004). It is 

the author’s view that the ongoing conversation surrounding universal and language-

specific aspects of reading will only progress when a) more diverse orthographies and 

writing systems are included into current debate and b) more quantitative approaches 

are developed to try to capture the diversity of orthographies. 
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From a methodological perspective, entropy was adopted over calculating the 

percentage of dominant mappings as entropy measures factor in the relative 

proportions of non-dominant mappings. As such, variability in terms of entropy values 

(Borgwaldt, Hellwig & de Groot, 2004; Martensen, Maris, & Dijkstra, 2000; Protopapas 

& Vlahou, 2009) were generated for each word in the created corpus. 

 

To the best of the author’s knowledge, Chapter 2 provides the first quantitative indices 

of orthographic transparency for Turkish. Regarding this, the Turkish orthography was 

characterised as both highly predictable (h = 0.045) and simple (100% one-to-one 

GPC mapping) at the grapheme level. However, deviations from the alphabetic 

principle exist within the feedforward direction, i.e., the presence of irregular words.  

The approach used in Chapter 2 also addresses previous limitations of using 

unrepresentative samples in the quantification of an orthography, such as using 

monosyllabic words or word-initial letters entropy measures (Protopapas & Vlahou, 

2009; Schmalz, Marinus, Coltheart, & Castles, 2015). 

 

Chapter 2 highlights an important consideration for future psycholinguistic research 

concerning orthographic transparency. Research carried out to date frequently 

identifies a number of Indo-European orthographies such as Dutch, German, Greek, 

Italian and Spanish as examples of transparent orthographies. When compared to 

Turkish, it is clear that any claims of overall transparency are relative. When 

considered in absolute terms, these orthographies, with the exception of Italian, would 

be considered to be of medium transparency. It is consequently the author’s view that 

the psycholinguistic investigation of Turkish will benefit ongoing research in the 

domain by highlighting these important differences. With specific interest to the author, 

understanding where unpredictability and complexity exist, can aid in a greater 

understanding of literacy acquisition and disorder. This thesis then represents a 

theoretical starting point to begin to deconstruct Anglo-centric dominated reading 

research. If English is considered to be an outlier orthography, then Turkish represents 

the opposite side of the continuum as it closely adheres to the alphabetic principle. 
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One primary avenue for future research is to carry out a similar language entropy 

model development using the newly created SUBTLEX-TR and comparing this with 

the entropy models created in this thesis. Additionally, there is scope to utilise entropy 

as an item-level measure (feedforward/ back consistency) in future psycholinguistic 

investigations in Turkish. Item-level analysis of consistency/ regularity and 

predictability would be of particular interest in future studies of Turkish psycholinguistic 

research as they are currently absent from the literature. While orthographies are 

characterised on a continuum of transparency as a whole, a finer grained analysis of 

item-level variation within orthographies would be beneficial to our understanding of 

visual word recognition. Chapter 2, therefore offers a useful resource for such a study 

to be undertaken in Turkish. 

 

Additionally, beyond the generation of well-controlled linguistic stimuli, the real value 

and utility of calculating a quantitative index of transparency lies in the ability to carry 

out cross-linguistic comparisons. At present, this comparison is restricted to analyses 

that have adopted the same approach to quantification and therefore, severally restrict 

the generalisability and applicability of the approach beyond the handful of 

orthographies that have been quantified. Furthermore, orthographic transparency, 

only represents one of many possible dimensions that capture the variability among 

the world's writing systems. As such, the results of Chapter 2 can, at this stage, only 

be compared to other alphabetic orthographies. However, there is also a need to 

develop a further framework that extends to non-alphabetic writing systems. For 

example, Shimron (2006) states that Hebrew depth is very different from English 

depth. Differences in graphic complexity (Chang, Chen, & Perfetti, 2017), for example, 

offer challenges for frameworks like orthographic depth that are based exclusively on 

alphabets. Additionally, Daniels and Share (2018) propose that in order to 

accommodate for the full spectrum of the world’s writing systems, at least ten 

dimensions of complexity need to be considered concerning reading development and 

disorder. These dimensions fall into one of three categories concerning oral language 

structure, visual shapes complexity, and the translation rules between the visual and 

phonological domains. Future attempts at developing quantitative indices of writing 

systems, therefore, need to consider these dimensions in order to truly develop an 

understanding of writing system variation. 
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7.1.2 SUBTLEX-TR: THE CREATION AND VALIDATION OF A NEW PSYCHOLINGUISTIC 
DATABASE FOR TURKISH 
 

Chapter 3 reviewed the currently available resources for psycholinguistic research in 

Turkish. Until recently, Turkish psycholinguistic researchers have relied solely on word 

stimuli that they have created themselves (e.g. Babayiğit & Stainthrop, 2007; I.Raman, 

2011). The apparent lack of reproducibility by taking such an approach as well as the 

inefficiency of generating new stimuli for every new experiment reaffirmed the need to 

create a widely available psycholinguistic database for use in both Turkish-speaking 

children and adults. Highlighting a distinct lack of widely-available resources within the 

research area, Chapter 3 introduced the development of SUBTLEX-TR, a new 

Turkish-word database. The SUBTLEX-TR was validated with 72 participants 

completing a lexical decision task and confirmed the usefulness of the new frequency 

measures by comparing them with estimates derived from TS Corpus (Sezer & Sezer, 

2013). 

 

The findings of the lexical decision task were particularly interesting for theories of 

visual word recognition. Specifically, the presence of  main effects of length, lexicality 

and frequency as we as a length by lexicality interaction provides evidence that both 

the lexical and sublexical processes are available to Turkish readers and conceivably 

reflects the flexibility of the reading system. This finding poses a challenge to the 

strong view of the Orthographic Depth Hypothesis and instead, lends support to the 

both the universal hypothesis and the PGST which argues that a transparent 

orthography operates both lexical and sublexical mappings together (Ziegler & 

Goswami, 2005). However, within the literature, several arguments have emerged in 

recent years that question the applicability of dual-route theory to transparent 

orthographies (Ardila & Cuetos, 2016) based on the argument that efficient reading 

only requires a sublexical approach given the simple mapping between orthography 

and phonology.  

 

Taken together, this thesis argues that even in extremely transparent orthographies 

such as Turkish, evidence suggests the active use of the lexical route for reading. 

Interpreted in a dual-route framework, it could be postulated that the transparency of 

writing systems may facilitate a more congruent relationship between the lexical and 
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sublexical routes given that the outcome of phonology is rarely ambiguous. That is, 

while some words a read predominantly via either the lexical or sublexical route, the 

majority of words can be read using either strategy. 

 

Overall, there was a large advantage of SUBTLEX-TR over TS Corpus when words 

for which estimates given by the two corpora differed most were used as stimuli. With 

the increasing transition from printed to electronic media, Chapter 3 represents an 

important future direction of psycholinguistic investigation in Turkish. Chapter 3 also 

included the creation and validation of a new normative children's database for use in 

Turkish, representing an essential and much-needed direction in the literature. 

Additionally, Chapter 3 highlights the complex relationship between word frequency 

measures derived from distinct corpora and human performance on psycholinguistic 

tasks such as lexical decision. Ultimately, the SUBTLEX-TR corpus represents the 

first widely-available subtitle derived word database for Turkish. The database 

provides frequency and contextual diversity measures based on Turkish language 

subtitles. It is anticipated that the SUBTLEX-TR corpus will be a valuable resource in 

future psycholinguistic investigation in Turkish. It is also planned for this resource to 

be freely available online in the form of a web app. 

 

Chapter 3 reported that Contextual Diversity (CD) measures accounted for less 

variance than SUBTLEX-TR word frequencies and the high degree of correlation 

between the two measures makes interpretation of this finding difficult. This sits in 

stark contrast with the literature, which frequently highlights the influence of CD on 

lexical decision times (e.g., Adelman, Brown, & Quesada, 2006; Perea, Soares, & 

Comesaña, 2013). There are several possible reasons why the current study failed to 

replicate the results of previous SUBTLEX studies. First, CD may have different effects 

in different orthographies, that is, CD effects may be language-specific. Second, while 

word frequency was the variable of interest, CD effects were only considered as an 

additional variable. Future studies in this area will need to explore this curious finding 

further by controlling for word frequency and manipulating CD as the variable of 

interest. While, as mentioned above, frequency and CD are highly correlated, and 

therefore only carefully designed factorial studies (with enough power) or the 

development of megastudies in Turkish (see below) could potentially address this 

finding. 



 294 

 

Additionally, when considering the children's data, there was no advantage of the 

SUBTLEX-TR-child word frequencies over Children’s Language Corpus word 

frequencies. This null finding also extends to children's CD measures. The variance 

accounted for by the accuracy data is similar between children and adults. However, 

regarding RTs, the children's naming data accounted for significantly less variance 

than the adult lexical decision data. The non-significant findings of the SUBTLEX-TR-

child corpus in comparison to the CLC database raise several important 

methodological issues regarding validation studies in children. Firstly, the small 

number of words used for this sub-investigation were not selected for their highly 

divergent estimates of word frequency and as such were highly correlated). In addition, 

the low variance captured for RT across the corpora suggests that naming tasks, 

particularly regarding children, are less informative than lexical decision tasks for use 

in validation studies. Furthermore, these methodological issues may be compounded 

by the reduced sensitivity to frequency effects in transparent orthographies. With these 

limitations considered, the small non-significant findings of a SUBTLEX-TR-child 

advantage over the child literature corpus (Acar, Zeyrek, Kurfali, & Bozsahin, 2016) 

word frequencies warrant further exploration taking into consideration the 

methodological issues stated above. Future iterations of the SUBTLEX-TR are already 

underway and will contain measures of Parts-of-Speech, CV type, lemma frequencies 

and initial phoneme, and further validation will take place in the form of a lexical 

decision mega study. New releases of the opensubtitles.org subtitle data will provide 

the opportunity to update the current database. A planned mega study will directly 

build upon the work undertaken in this thesis to elucidate further the variables that 

influence visual word recognition in Turkish. 

 

7.1.3 THE DEVELOPMENT OF READING IN A HIGHLY TRANSPARENT ORTHOGRAPHY 
 

Chapter 4 began with an overview of the literature regarding reading development with 

a focus on transparent orthographies such as Italian, Spanish, Greek, Finnish. The 

limited research into the development of reading skills in Turkish was highly 

informative with regards to the rapid development of phonological awareness skills 

(Öney, & Durgunoğlu, 1997; Durgunoğlu., & Öney, 1999). Beyond this, there was little 

evidence of comprehensive investigations into visual word recognition and reading 
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skill development in Turkish-speaking children. This gap in the literature, along with 

the methodological concerns of previous studies such as the lack of measures of RAN 

(Durgunoğlu & Öney, 1997) and use of word lists over discrete words (Babayiğit & 

Stainthrop, 2007) motivated the experimental work carried out in Chapter 4. The 

Chapter contributes to several topics concerning the underlying cognitive and linguistic 

mechanisms of reading development in Turkish children.  

 

Taken together, for the 131 typically developing children learning to read in Turkish, 

performance was dependent on a mixture of both lexical and sub-lexical knowledge. 
Furthermore, the results obtained in the current study reveal that phonological 

awareness, rapid automatised naming and visual attention span differentially influence 

reading ability. As reading accuracy reaches ceiling quickly, the focus shifts toward 

developing reading speed by automating a superior method of decoding and 

progressively developing the lexical reading route. The investigation of reading 

development in Turkish raised some important theoretical implications concerning our 

current understanding of visual word recognition. First, the ceiling-level finding of 

accuracy highlights that oral reading accuracy has received disproportionate attention 

within the reading literature. Where transparent orthographies are considered, it is 

largely an irrelevant issue given that ceiling-level word reading accuracy is achieved 

soon after the beginning of reading instruction. Related to this, when word reading 

fluency was explored, the effect of PA disappeared. It appears that phonological skills 

are related to literacy skills that involve decoding as indexed by a significant finding in 

accuracy measures and lack of a significant finding in word reading speed. While the 

role of phonological awareness on reading development is crucial, this thesis argues 

that for transparent orthographies, RAN may be the more central measure to consider. 

 

Furthermore, the availability of both lexical and sublexical routes to children further 

highlights the arguments above concerning the adult lexical decision data. In addition 

to this, it appears that the transparent nature of the orthography facilitates the rapid 

development of phonological skills and subsequently the development of an efficient 

sublexical route. It is currently hypothesised that this ultimately leads to the 

establishment of orthographic representations.  
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In addition, RAN (Wolf & Bowers, 1999) was related both to decoding and to sight 

word reading as indexed by the significant findings of RAN’s role in both word and 

nonword reading speed. As word and nonword naming speed are considered to tap 

into separate skills, it could be considered that RAN may be involved in both the 

essential function of fluently converting visual stimuli into their corresponding 

phonological representations, i.e., phonological decoding as well as providing rapid 

access to the mental lexicon (Bowers & Wolf, 1993). These findings, while requiring 

further specific enquiry, tentatively add support to the growing literature that RAN  is 

involved in both word and nonword reading as reported in several orthographies such 

as Dutch (van den Boer, de Jong, & Haentjens-van Meeteren, 2013),  German (Moll 

et al., 2009) and Spanish (Onochie-Quintanilla, Defior, & Simpson, 2017). 

 

Additionally, Visual Attention (VA) span appears to play a vital role in decoding speed, 

as has been reported in studies in additional languages, such as Dutch (Van Den 

Boer, Van Bergen, & de Jong, 2015) and Basque (Antzaka, Acha, Carreiras, & Lallier, 

2019). Conceivably this mechanism may function by processing multiple letter-clusters 

as single units. While the literature concerning VA span’s influence in reading 

development is still in its infancy, the findings of this thesis highlight the importance of 

this skill in reading development. It is postulated by the author that the agglutinative 

nature of Turkish, in particular, requires the rapid development of VA span in order to 

facilitate the accurate and rapid recognition and pronunciation of increasingly long 

words. In sum, as a result of the agglutinative nature of Turkish writing, reading could 

feasibly require increased sensitivity to morphological and syntactic structures at the 

word level. The specific influence of VA span on agglutinative writing systems remains 

an outstanding question in the domain. 

 

Additionally, the inclusion of a measure of oral reading fluency was warranted as the 

measure was able to differentiate good from poor readers using a single index 

measure. Using, an arbitrary SD cut-off value of 1.25, Oral Reading Fluency (ORF), 

as a global index of reading ability, allowed for the distinction to be made between 

good and poor readers. Furthermore, Chapter 4 found that PA, RAN and VA Span 

were all significant predictors of ORF. Additionally, the results of Chapter 4 reported 

that increased phonological awareness skills predict reading fluency irrespective of 

age and as such offer support for the view that phonological processes continue to 
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contribute to the efficiency of word recognition processes even in fluent readers (e.g., 

Rayner et al. 2012). When considering the influence of RAN on ORF, the findings of 

Chapter 4 indicate that RAN is a robust predictor of ORF (Christo & Davis, 2008; 

Papadopoulos, Spanoudis, & Georgiou, 2016). Furthermore, the parallel development 

of reading automaticity, as measured by RAN and ORF may be indicative of shared 

mental resources, i.e., domain-general factors such as serial processing and 

articulation (Georgiou, Aro, Liao, & Parrila, 2016).  

 

Chapter 4 also signified that ORF is a reliable and valid measure of reading in Turkish 

grades 2–5 (aged from 86 to 151 months) and is relatively easy and fast to administer. 

As such, ORF measures may contribute to the early identification of Turkish students 

at risk for reading difficulties, and this discovery marks an important novel finding of 

the current thesis. Additionally, the findings of Chapter 4 seem to corroborate the 

position that reading speed is a superior index of reading than accuracy in transparent 

orthographies. Taken together, the results of Chapter 4 extend the predominantly 

European alphabetic findings of the influence of orthographic transparency on reading 

development. 

 

The study in Chapter 4 was conducted with children attending several different schools 

from one district, and as participation was voluntary, and the participation rate was 

moderately low, a selection bias cannot be excluded. The findings of the current study 

need to be replicated with a feasibly, more representative sample. Second, all of the 

participants taking part in the current study already mastered the alphabetic principle 

before the start of this study; in order to fully explore earlier relationships between 

predictors and the Turkish outcome variables, future studies that include younger 

children are needed. Related to this, as the present study was concurrent, the causal 

role of how lexical and cognitive factors develop over time need to be addressed using 

a longitudinal study design that follows students over several years. Additionally, the 

lack of standardised measures led to the development of measures for each cognitive 

skill that was hypothesised to be involved in Turkish reading. While this approach was 

appropriate for this study, future experimental research could address this limitation 

following the standardisation of the measures developed in this work. This represents 

perhaps the principal future direction of the current doctoral work.  
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Also, related to this, the findings of the current study are limited to the specific set of 

measures used, i.e., it is entirely plausible that a different set of measures for the 

constructs measured would yield different results and therefore warrants further 

investigation.  The null findings of Phonological Short-Term Memory (PSTM) are 

challenging to reconcile, given that, they could be due to a poorly conceived measure 

design through digit span tasks are widely used in the literature. Alternatively, the 

findings could be reflective of ceiling level phonological processing development in 

Turkish children (see Babayiğit & Strainthrop, 2007, for more details). Within the 

literature, there are mixed findings regarding the role of PSTM. For example, Parrila 

et al., (2004) and Torgesen et al. (1997) found that when considered along with PA 

and RAN, PSTM was only weakly associated with reading measures. Conversely, 

Swanson and colleagues (Swanson & Alexander,1997; Swanson & Howell, 2001) 

report that the contribution of PSTM to reading was significant. Separately, some of 

the constructs used within the current investigation were conceptualised using only 

one relevant measure. Therefore, future studies will need to incorporate additional 

measures in order to increase construct validity (Landerl et al., 2013). Future research 

would benefit from including well-designed measures of morphological awareness in 

studies exploring reading development in Turkish. The bottom-up approach used for 

the Linear Mixed Model (LMM) analysis was one of personal preference if the 

alternative top-down approach had been adopted, it is feasible that results would be 

different. 

 

The mixed results regarding, and need for transformation of, the word frequency 

measures could be reflective of the complexity of word frequency measures in 

agglutinating languages such as Turkish. Consequently, there is a need to further 

define novel word frequency measures as the use of surface frequency may not be 

sufficient to characterise Turkish psycholinguistic data fully. That is, while surface 

frequency is suitable for the investigation of isolating writing systems such as English, 

the psycholinguistic investigation of Turkish likely requires sublexical considerations 

of frequency such as root or base frequency, given the rich morphological structure of 

agglutinative orthographies. This, in turn, would provide further clues as to the 

structure of the mental lexicon concerning the structure of stored lexical entries. This 

particular topic would also provide a rich platform for the exploration of different models 

of reading and reading development. 
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Furthermore, there is a need to broaden the linguistic and cognitive domains under 

exploration. For example, morphological awareness and word form prevalence 

(Keuleers, Stevens, Mandera, & Brysbaert, 2015) are excellent candidates for further 

investigation for predictors in Turkish-speaking populations. For instance, the role of 

morphological awareness may be particularly important to investigate in agglutinative 

orthographies (Acha et al., 2010). In one of the few studies of morphological 

awareness in Turkish, Durgunoğlu (2003) proposed that the rich morphological 

structure of Turkish may be best addressed by the use of a left-to-right computational 

strategy. Additionally, Fowler, Feldman, Andjelkovic, and Öney (2003) suggest that 

phonological predictability could play a more crucial role than semantic relatedness in 

the acquisition of distinctive types of morphology. Stimulatingly, it will be important to 

gain insight into whether being exposed to morphologically complex writing systems 

effects the development of visual attentional resources and word reading strategies. 

Finally, as this was a monolingual study, the extent to which the results can reflect 

comparability between the different orthographies is limited. For future studies, cross-

language studies are of particular importance. Furthermore, the presence of vowel 

harmony and agglutination as characteristics of the Turkish language (and writing 

system) offer interesting avenues of investigation that can potential contribute to our 

current understanding of word level processing. 

 
7.1.4 DEVELOPMENTAL DYSLEXIA IN TURKISH-SPEAKING CHILDREN 
 

Chapter 5 examined differing theoretical accounts of Developmental Dyslexia (DD), 

such as the Phonological Deficit Hypothesis (PDH) (Bradley & Bryant, 1983) and the 

visual attention span deficit hypothesis (Bosse et al., 2007), taking into consideration 

the influence of orthographic transparency on reading development. Subsequently, 

the Chapter reviewed both cognitive predictors and the diverse conceptualisations of 

DD subtypes. Comparisons between DD children and chronological and younger TD 

controls were reported using both a group and multiple case study approach. Chapter 

5 also explored the factors influencing reading, cognitive profiles and subtypes of DD 

in a group of Turkish-speaking children. In a similar vein to Chapter 4, reading was 

studied at both the word and text levels. As predictors, the effect of length, lexicality 

and frequency (and their interactions) were explored as well as considering the 

influence of a set of cognitive predictors that have been indicated to influence word 
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and text reading such as phonological awareness, rapid naming, and visual attention 

span. To this end, the current study found evidence of main effects of both lexicality 

and length with mixed evidence for frequency for both word/pseudoword reading 

accuracy and RT. The presence of length effects in a transparent orthography is 

considered to be reflective of the use of serial sublexical coding processes (Coltheart 

et al., 2001; Weekes, 1997) and is congruent with previous reports from Italian 

(Zoccolotti et al., 2005) and Spanish children (Davies et al., 2013). Furthermore, the 

current study found that word length effects were present in all three groups of children 

concerning their word/ pseudoword reading accuracy and RTs. Davies and colleagues 

(2013) propose that this finding is indicative of the role of sublexical processing in 

transparent orthographies as even the older Typically Developing (TD) children could 

not avoid the effect of word length on the time needed to utter words. Chapter 5 results 

also revealed that phonological awareness (PA), rapid automatized naming (RAN), 

visual attention span (VA Span), working memory and visuo-spatial short-term 

memory could all significantly differentially contribute to the cognitive deficits 

associated with reading disorder in Turkish. Also, it appears that RAN along with VA 

span were the most critical cognitive predictors of DD in Turkish-speaking children 

learning to read. 

 

In addition, Chapter 5 explored the presence of subtypes of DD within the current 

cohort. Considering the existence of subtypes of DD in Turkish, overall, the outcomes 

of the current study lend support to the existence of distinct behavioural types of DD 

in Turkish. The presence of subtypes in transparent orthographies is further supported 

by studies in Greek (Douklias et al., 2009; Niolaki, Terzopoulos, & Masterson, 2014), 

Italian (Zoccolotti et al. (1999) and Spanish (Jiménez, Rodríguez, & Ramírez, 2009). 

However, the individual cognitive profiles of DD explored in this thesis paint a different 

picture. That is, there seems to be a mismatch in terms of the behavioural and 

cognitive manifestation of DD. Overall, no distinct cognitive profile of deficit or delay 

emerged during the subtyping investigation. Rather while both surface and 

phonological subtypes of DD can be detected in transparent and opaque alphabetic 

orthographies (Hanley, 2017) the findings of Chapter 5 indicate that the manifestation 

of DD in Turkish-speaking children is heterogeneous, and the majority of children in 

the DD subgroup exhibited either double or multiple deficits and therefore providing 

further support for the multiple-deficit hypothesis for Turkish developmental dyslexia. 
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To this end, the results underlined the independent role of RAN and phonological skills 

in predicting reading accuracy and speed. This is in line with the double-deficit theory 

of dyslexia (Wolf & Bowers, 1999), where RAN and phonological skills are considered 

to be two separate sources of reading difficulties. Further to this, the findings of 

Chapter 5 contribute to a number of topics concerning the underlying cognitive and 

linguistic mechanisms of reading disorder in Turkish-speaking children. To the best of 

the author's knowledge, the current study represents the most comprehensive attempt 

to characterise reading disorder in Turkish at both group and individual levels. When 

the DD group was considered as a whole, the current investigation found evidence 

that children in the DD group were slower than TD children at reading at both the text 

and single word levels, although their word/pseudoword reading was relatively 

accurate. This finding is mostly congruent with results from a number of studies on 

transparent orthographies such as Greek (Nikolopoulos, Goulandris, & Snowling, 

2003), Italian (Zoccolotti et al., 1999) and Spanish (Davis, Cuetos, & Glez-Seijas, 

2007). 

Chapter 5 was also based on a cross-sectional design. While there is a need for this 

type of research design to understand better the role of these cognitive skills to word 

reading in DD, there is also a need for longitudinal studies in order to examine the 

relative contribution of these cognitive skills over time. Another notable limitation is the 

relatively small sample size of the current DD cohort. Future studies will need to recruit 

a larger representative sample of Turkish-speaking children with DD to explore several 

of the findings in the current Chapter further.  

While it is proposed that group-based comparisons in DD research can be biased 

against specific subtypes of dyslexia (Wybrow, 2014), the further development of 

multiple-case designs in Turkish using large sample sizes will go some way to address 

this bias. There is also a wide range of methods currently utilised in DD research to 

identify subtypes such as the regression-outlier and use of z-scores, both of which 

were incorporated in the current thesis. However, there is relatively little consensus as 

to how research can differentiate typical from atypical reading performance, and as 

such, the comparability of different studies is often meaningless. While this work has 

mainly been Anglo- and Euro-centric to date, it is anticipated that input from a large 

variety of different orthographies can help facilitate advances in this important domain. 
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Finally, as this was a monolingual study, the extent to which the results can reflect 

comparability between the different orthographies is limited. For future studies, cross-

language studies on DD are also of particular importance. 

7.1.5 TOWARDS DEVELOPING COMPUTATIONAL MODELS OF VISUAL WORD RECOGNITION 
AND READING ALOUD IN TURKISH 
 

Chapter 6 assessed several versions of the DRC model (e.g., child DRC model, DD 

subtype models) by piloting a quantitative evaluation of the models’ responses to those 

of Turkish-speaking children with and without DD. This computational modelling work 

aimed to evaluate the utility of the DRC model framework for Turkish-speaking 

children’s RT data as well as to explore further the DD profiles and current subtyping 

approaches to Turkish. Chapter 6 provides an overview of the first computational study 

to evaluate a series of DRC models of visual word recognition and reading aloud with 

Turkish stimuli by directly measuring modelling alongside behavioural data. The 

computational work undertaken within this Chapter, while exploratory, produced good 

fitting models of the average Turkish-speaking children’s RT data as well as adequate 

models of grade-based average RT data and subtypes of DD. Overall, the DRC 

models produced were generally useful in simulating several aspects of the 

behavioural data.  

 

However, a number of limitations were also identified. In particular, several of the DRC 

models displayed sensitivity to length, lexicality and frequency effects (which were 

absent in the behavioural data). It is feasible that the false-positive findings in the 

models were reflective of non-optimised model parameters or reflect a more critical 

issue in that the DRC model, being developed for English, may offer a poor fit to non-

English behavioural data. Despite the limitations of the current modelling work, the 

simulations carried out in Chapter 6 provide a rich foundation for further work on 

computational models of reading, reading development and disorder among Turkish-

speaking populations. 

 

In addition to some of the limitations highlighted in Chapter 5 concerning the 

behavioural data such as the small sample size, there are also a number of limitations 

in Chapter 6. Firstly, the use of averaged models and RT datasets reintroduces an 

issue previously addressed in Chapters 4 and 5. That is the reliance on averaging 
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across participants or items. Coupled with the small sample size, the findings of the 

current study can be accepted as exploratory at best. Perhaps the most substantial 

challenge in the current computational work was the suboptimal optimisation 

procedure used as a consequence of limited computational power and time. While 

several models captured a good amount of variance of their respective RT data, 

several also failed.  

 

In future, to achieve superior fitting models to individual participants will require data 

of greater precision at an individual level (Adelman & Brown, 2008). Similarly, future 

studies could address this limitation by adopting an alternative optimisation procedure 

such as the one reported in Adelman and Brown (2008). In an attempt to address the 

so-called optimal parameters problem, Adelman and Brown applied the Nelder-Mead 

simplex procedure to the DRC. The Nelder-Mead algorithm (Nelder and Mead, 1965) 

is an example of a standard non-gradient local search method which inspects the 

corners of a region of interest, i.e., the parameter space of a model and subsequently 

expands into parameter spaces that represent improved model fit while also moving 

away from regions that fail to improve the model. In doing so, the DRC model can be 

optimised to a state where any observed effects or predictor variables are a 

consequence of a given theoretical framework rather than an artificial obstacle to 

falsification brought about by suboptimal approaches to model fitting. 

  

Developmental models of reading represent a fascinating enterprise that has a rich 

history in connectionist approaches (see Chang, Monaghan & Welbourne, 2019 for a 

recent implementation) but has only recently received increasing interest in dual-route 

accounts of reading (Pritchard, 2012) There are also further prospects to carry out 

further research using both the GPC learning and self-teaching models (Pritchard, 

2012). While the approach taken to self-teaching was akin to one-shot learning, a more 

psychologically plausible approach would be to incorporate a process of incremental 

training that starts with a small number of words and eventually builds a full 

representative vocabulary over time. In a similar line of enquiry, the recently 

implemented CDP++ developmental model of learning to read (Ziegler, Perry & Zorzi, 

2014) has made some important progress in this direction. Using this approach, the 

authors achieved an accuracy rating of 80% for the 32,000 words that the model was 

exposed to after training.  
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While the default parameters of the self-teaching model were used for model 

development in the current work, future studies need to address the distinct lack of 

vocabulary growth data in Turkish-speaking primary school children. Following this, a 

more fine-grained exploration of vocabulary change, orthographic learning and self-

teaching in Turkish can take place. In line with this, future computational modelling 

work in Turkish needs to take a closer look at features of phonology as there is much 

debate surrounding this topic as mentioned above (see Chapter 2 of this thesis; 

Koşaner, Birant, & Aktaş, 2013). Finally, while there is a widely accepted view in the 

domain regarding the relevant dependent variables of interest being a function of 

orthographic transparency, i.e. transparent orthographies index RT whereas opaque 

orthographies index accuracy, there is also a need to take potential speed-accuracy 

trade-offs into account. Future behavioural and computational studies can adopt the 

response signal paradigm (Reed, 1973) in order to address this. 

  

The recent move towards modelling individual differences (Ziegler, Perry & Zorzi, 

2019) in order to increase our understanding of the heterogeneity of DD represents a 

critical line of enquiry with computational models. Using this approach, the authors 

were able to develop a model that could successfully simulate the individual learning 

trajectories of 622 children (388 with DD). The authors argue that only by adopting 

personalised computational models that allow for multiple deficits can the 

heterogeneity and individual differences in DD profiles be captured. Such models may 

also have significant implications on the early identification of DD as well as being 

informative regarding the outcomes of interventions. 
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7.3 THEORETICAL IMPLICATIONS AND CONCLUSION 
 

The present doctoral research has addressed some outstanding questions regarding 

visual word recognition across a number of domains in the cognitive sciences. Using 

a computational linguistic method, this thesis explored current definitions of 

orthographic transparency and novel means of quantifying orthography, extending this 

approach to Turkish. The models produced stipulate that Turkish is more transparent 

than any other alphabetic orthography that has been quantified to date. To this end, it 

is important to consider orthographic transparency as a multifaceted construct and, in 

absolute terms, further research in extremely transparent orthographies can be used 

to extend reading research beyond the narrow Anglo- and Eurocentric research that 

has been dominated the domain to date. The extreme orthographic transparency of 

Turkish, therefore, serves as an excellent medium to test theories of visual word 

recognition, and any universal framework would need to account for the variation 

found in the writing systems of the Turkic family.  Additionally, this thesis examined 

the currently available resources for Turkish psycholinguistic research and in response 

to the discovery of a lack of resources in the domain, has led to the creation of a 

Turkish lexicon database. It is anticipated that this much needed resource will 

stimulate further exploration of Turkish psycholinguistics in a structured and focussed 

way. 

 

Overall the studies included in this thesis aimed to add to the growing field of  reading, 

reading development and disorder of Turkish-speaking monolingual children and 

adults; however, this thesis has generated additional questions that demand 

exploration. For example, the finding of significant length by lexicality effects on both 

adults and children indicates that two routes of reading are available to Turkish-

speakers. This finding lends general support to dual-route theories of reading and their 

applicability to extremely transparent orthographies. Related to this, Turkish presents 

a number of challenges for cross-linguistic theories of reading. Specifically, the 

presence of two routes to reading in children and adults contests the strong position 

of the ODH as this thesis presents a strong case for both lexical and sublexical reading 

strategies in Turkish.  
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In addition, a number of interactions emphasise both a diminishing effect of word 

length as a function of age and persistent effects of word length across children. Taken 

together, this provides evidence of a gradual shift from sublexical to lexical reading 

strategies without the full transition to lexical reading. This finding then suggests that 

the transparency of writing systems may modulate the nature of the relationship 

between the lexical and sublexical routes. In Turkish, it is hypothesised that while 

some words are read predominantly via either the lexical or sublexical route, the 

majority of words can be read using either strategy. As such, Turkish reading may not 

demand the simultaneous activation of both the lexical and the sublexical routes to 

generate phonology and instead, is suggestive of a highly flexible criterion account of 

reading strategy. While this thesis makes no specific claim as to what this account is, 

it does stress that the DRC model of reading would need to be modified to 

accommodate these findings. In line with this, Besner and others (O’Malley and 

Besner, 2008; Reynolds and Besner, 2008) argue that the DRC model should feature 

a threshold mode of processing in addition to a separate route-change control 

mechanism. 

 

In a separate finding, orthographic (and phonological) neighbourhood density were 

inhibitory in Turkish lexical decision in contrast with the majority of the literature 

concerning this effect. This was hypothesised to be driven by the complex morphology 

of Turkish in which new words are formed with the addition of suffixes. This is 

particularly pertinent for models that incorporate the IA model into their lexical route 

i.e. DRC and CDP models. Within these models the faciliatory neighbourhood density 

effect is attributed to downstream feedback activation from word to features. Future 

modelling endeavours will need to explore if the direction of activation is reversable 

within these models. The failure of dual-route models to accommodate such a finding 

in Turkish would demand either a revision of the lexical route framework or seeking 

out alternative modelling approaches. 

 

The findings of the reading development chapter indicate that increased phonological 

awareness skills predict reading fluency irrespective of age and as such offers general 

support for phonological theories of reading development as well as the likely universal 

role of phonological awareness in reading. As such, the findings of the rapid 

development of phonology in Turkish as well as the use of two distinct strategies in 
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single-word reading lend support to the weak versions of the phonological and 

orthographic depth hypothesis of reading. Taken together, the results of the current 

study extend the predominantly European alphabetic findings of the influence of 

orthographic transparency on reading development. 

 

Considering the role of cognitive predictors in reading development, this thesis made 

a number of interesting discoveries. For example, RAN, PA and VA Span were found 

to be exclusively influential on reading speed. However, when considering word 

reading speed only, the effect of PA disappeared. It appears that phonological skills 

are related to literacy skills that involve decoding as indexed by a significant finding in 

nonword reading speed and lack of a significant finding in word reading speed. This 

finding highlights both the universal aspects of cognitive predictors for reading 

development which appear to be present in all orthographies studied to date and the 

language-specific variation in these predictors in terms of their predictive value. VA 

span’s role in ORF appears to diminish in older students. That is, for Turkish, it 

appears that the contribution of VA span to reading beyond the single-word level may 

be time-limited. It is feasible to postulate that this may be due to a language-specific 

feature of Turkish such as clearly defined syllable boundaries or agglutination or even 

a combination of both. In transitioning from sublexical to lexical reading strategies, the 

need to develop a VA span beyond three (the largest syllable length) would serve little 

advantage for Turkish children learning to read. Additionally, the mediation analysis 

within this thesis, argues that VA span may be driven by domain-general skills such 

as WM and Visuo-Spatial STM indicating the cognitive limitations on visual attention. 

 

The current work was also extended to the examination of reading disorder, i.e., 

Developmental Dyslexia in Turkish children. When the DD group was considered as 

a whole, the current investigation found evidence that children in the DD group were 

slower than TD children at reading at both the text and single word levels, although 

their word/pseudoword reading was relatively accurate. This finding emphasises that 

accuracy is relatively well preserved in children learning to read in a transparent 

orthography and that reading speed and fluency are more sensitive measures to 

differences between TD and DD readers. Additionally, when the random intercept of 

length was removed from the random-effects model, a distinct group by length 

interaction emerged. This was seen to be suggestive that older TD readers, 
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manifested with a significantly reduced word length effect on their word reading RTs 

when compared to the DD group. Taken together, the main effects and interactions 

found suggest that although Turkish children with DD have both routes available to 

them, there is an overreliance on sublexical processing. 

It also emerged that both surface and phonological subtypes of DD can be detected 

in Turkish at the behaviour level though this is not supported at a cognitive level. That 

is, when considering subtypes, no distinct cognitive profile that distinguished between 

the groups emerged. This therefore suggests that while there is support for the use of 

subtyping approaches at the behavioral level, the utility of such approaches in 

understanding the cognitive developmental profile of children with DD is limited. 

Instead, the findings of the current study suggest that the manifestation of DD in 

Turkish-speaking children is heterogeneous, and the majority of children in the DD 

subgroup exhibited either double or multiple deficits and therefore providing further 

support for the multiple-deficit hypothesis for Turkish developmental dyslexia. There 

is a need then to move beyond the phonological-surface continuum and explore 

alternative accounts that better characterise the cognitive manifestation of DD. 

This thesis also supplemented the behavioural data with the development of a 

computational model of visual word recognition in Turkish, the first of its kind. This is 

particularly important as an essential consideration of any modelling approach has to 

examine whether it can account for findings across languages. While the Turkish child 

DRC model provides a better fit to human RT data than previously reported DRC 

models in other orthographies, a number of divergences between the RT and DRC 

data were observed. This was not particularly surprising given the extreme 

transparency of the Turkish orthography.  

 

The models particularly struggled with a marked oversensitivity to lexicality effects and 

under sensitivity to length effects in known words and may reflect a divergence 

between Turkish readers and the DRC architecture. The models performed 

particularly poorly when only words were considered which again highlights the 

limitations of applying IA modelling approaches to Turkish words via the lexical route. 

It may be that given the agglutinative nature of Turkish that the structure of the mental 

lexicon would be distinct in that whole word representations would not by 
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psychologically plausible and instead maintain a structure that reflects a combined 

index of root words and suffixes. 

 

The evaluation of the individual models suggests that as the majority of models 

exhibited multiple deficits across the DRC’s representational levels, the strongest 

theoretical argument regarding the manifestation of DD, in models of Turkish-speaking 

children, is provided by the multiple deficit model of DD. The considerable 

heterogeneity in both the number and magnitude of deficits across subjects further 

lends support to the concept of multiple probabilistic risk factors. The combined 

computational work in this thesis, therefore, further confirms the usefulness of Turkish 

as an orthographic medium for further computational investigation of visual word 

recognition. 

 

Overall, it is expected that this thesis will provide a stimulus for further research into 

the processes involved in reading, reading development and disorder in Turkish. This, 

as stated above, will help inform psycholinguistic theory in a broader sense and 

contribute to the realisation of suitable assessments of reading development and 

identification of reading disorder in Turkish. 
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Appendix 1: Modified version of a syllabification algorithm for Turkish based on 
Altınok (2016). 
 
#! /usr/bin/python 
# -*- coding: utf-8 -*- 
  
import sys 
import codecs 
  
def lowercase(ch): 
    return { 
    'İ':u'i', 
    'I':u'ı', 
    'Ç':u'ç', 
    'Ğ':u'ğ', 
    'Ş':u'ş'    
    }.get(ch, ch.lower()) 
              
def sesli(ch): 
    ch = lowercase(ch) 
    if ch in [u'a', u'e', u'i', u'ı', u'o', u'ö', u'u', u'ü']: 
        return True 
    else: 
        return False 
  
def hecele(str): 
    index=0 
    length=len(str) 
    while sesli(str[index]) == False and length>index+1: 
        index=index+1 
    try: 
        if sesli(str[index+1]): 
            print str[0:index+1], 
            hecele(str[index+1:]) 
        elif length>index+2: 
            if sesli(str[index+2]): 
                print str[0:index+1], 
                hecele(str[index+1:]) 
            elif length>index+3: 
                if sesli(str[index+3]): 
                    print str[0:index+2], 
                    hecele(str[index+2:]) 
                else: 
                    if str[index+1:index+4] in [u'str', u'ktr', u'mtr', u'nsp']: 
                        #print "istisna!.." 
                        print str[0:index+2], 
                        hecele(str[index+2:]) 
                    else: 
                        #print "üç sessiz, normal kural" 
                        print str[0:index+3], 
                        hecele(str[index+3:]) 
            else: 
                print unicode(str), 
        else:  
            print unicode(str), 
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    except: 
        print unicode(str), 
        return 
              
f = codecs.open("subWordFinal2020.txt", encoding= 'utf-8')         
for line in f: 
    hecele(line) 
    print 
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APPENDIX 4: DUAL ROUTE CASCADED MODEL GPC RULES 

e cs [e]l 8 u 1 
m cs e[r] 3 u 1 
A cs [l]a 1 u 1 
b cs g[a] 4 u 1 
b cs e[G] e u 1 
e cs [i]k 7 u 1 
b cs k[e] 7 u 1 
m cs n[g] 9 u 1 
m cs l[e] 8 u 1 
e cs [o]v w u 1 
m cs [e]k 7 u 1 
m cs v[u] w u 1 
m cs g[I] 4 u 1 
A sing b b u 1 
A sing i i u 1 
e sing r @ u 1 
A sing O O u 1 
A sing l l u 1 
A sing d d u 1 
A sing u u u 1 
m sing e e u 1 
A sing n n u 1 
A sing a a u 1 
A sing o o u 1 
A sing v v u 1 
b sing g g u 1 
b sing e 3 u 1 
A sing t t u 1 
A sing C 2 u 1 
A sing y y u 1 
A sing p p u 1 
A sing k k u 1 
A sing m m u 1 
A sing c c u 1 
A sing S S u 1 
e sing e e u 1 
A sing s s u 1 
m sing r r u 1 
A sing h h u 1 
A sing I 6 u 1 
A sing U x u 1 
e sing z Z u 1 
b sing z z u 1 
m sing z z u 1 
A sing G 5 u 1 
A sing f f u 1 
b sing r R u 1 
m sing g g u 1 
A sing j j u 1 
e sing g 4 u 1 
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APPENDIX 5: AVERAGED DRC MODEL PARAMETERS 

# General Parameters 
ActivationRate 0.2 
FrequencyScale 0.05 
MinReadingPhonology 0.9 
 
# Feature Level Parameters 
FeatureLetterExcitation 0.005 
FeatureLetterInhibition 0.15 
 
# Letter Level Parameters 
LetterOrthlexExcitation 0.03 
LetterOrthlexInhibition 0.90 
LetterLateralInhibition 0 
 
# Orthographic Lexicon (Orthlex) Parameters 
OrthlexPhonlexExcitation 0.3 
OrthlexPhonlexInhibition 0 
OrthlexLetterExcitation 0.2 
OrthlexLetterInhibition 0 
OrthlexLateralInhibition 0.10 
 
# Phonological Lexicon (Phonlex) Parameters 
PhonlexPhonemeExcitation 0.09 
PhonlexPhonemeInhibition 0 
PhonlexOrthlexExcitation 0.25 
PhonlexOrthlexInhibition 0 
PhonlexLateralInhibition 0.07 
 
# Phoneme Level Parameters 
PhonemePhonlexExcitation 0.02 
PhonemePhonlexInhibition 0.16 
PhonemeLateralInhibition 0.147 
PhonemeUnsupportedDecay 0.05 
 
# GPC Route Parameters 
GPCPhonemeExcitation 0.045 
GPCCriticalPhonology 0.25 
GPCOnset 7 
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APPENDIX 6: GRADE 2 DRC MODEL PARAMETERS 

General Parameters 
ActivationRate 0.2 
FrequencyScale 0.10 
MinReadingPhonology 0.4 
 
# Feature Level Parameters 
FeatureLetterExcitation 0.005 
FeatureLetterInhibition 0.15 
 
# Letter Level Parameters 
LetterOrthlexExcitation 0.03 
LetterOrthlexInhibition 0.90 
LetterLateralInhibition 0 
 
# Orthographic Lexicon (Orthlex) Parameters 
OrthlexPhonlexExcitation 0.2 
OrthlexPhonlexInhibition 0 
OrthlexLetterExcitation 0.2 
OrthlexLetterInhibition 0 
OrthlexLateralInhibition 0.10 
 
 
# Phonological Lexicon (Phonlex) Parameters 
PhonlexPhonemeExcitation 0.09 
PhonlexPhonemeInhibition 0 
PhonlexOrthlexExcitation 0.25 
PhonlexOrthlexInhibition 0 
PhonlexLateralInhibition 0.07 
 
 
# Phoneme Level Parameters 
PhonemePhonlexExcitation 0.01 
PhonemePhonlexInhibition 0.16 
PhonemeLateralInhibition 0.147 
PhonemeUnsupportedDecay 0.05 
 
 
# GPC Route Parameters 
GPCPhonemeExcitation 0.050 
GPCCriticalPhonology 0.24 
GPCOnset 7 
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APPENDIX 7: GRADE 3 DRC MODEL PARAMETERS 

 
# General Parameters 
ActivationRate 0.2 
FrequencyScale 0.10 
MinReadingPhonology 0.4 
 
# Feature Level Parameters 
FeatureLetterExcitation 0.005 
FeatureLetterInhibition 0.15 
 
# Letter Level Parameters 
LetterOrthlexExcitation 0.03 
LetterOrthlexInhibition 0.90 
LetterLateralInhibition 0 
 
# Orthographic Lexicon (Orthlex) Parameters 
OrthlexPhonlexExcitation 0.2 
OrthlexPhonlexInhibition 0 
OrthlexLetterExcitation 0.2 
OrthlexLetterInhibition 0 
OrthlexLateralInhibition 0.10 
 
# Phonological Lexicon (Phonlex) Parameters 
PhonlexPhonemeExcitation 0.09 
PhonlexPhonemeInhibition 0 
PhonlexOrthlexExcitation 0.25 
PhonlexOrthlexInhibition 0 
PhonlexLateralInhibition 0.07 
 
# Phoneme Level Parameters 
PhonemePhonlexExcitation 0.01 
PhonemePhonlexInhibition 0.16 
PhonemeLateralInhibition 0.147 
PhonemeUnsupportedDecay 0.05 
 
# GPC Route Parameters 
GPCPhonemeExcitation 0.050 
GPCCriticalPhonology 0.24 
GPCOnset 7 
 
 
 
 
 

 

 

 



 359 

APPENDIX 8: GRADE 4 DRC MODEL PARAMETERS 

 
# General Parameters 
ActivationRate 0.2 
FrequencyScale 0.00 
MinReadingPhonology 0.4 
 
# Feature Level Parameters 
FeatureLetterExcitation 0.005 
FeatureLetterInhibition 0.15 
 
# Letter Level Parameters 
LetterOrthlexExcitation 0.03 
LetterOrthlexInhibition 0.90 
LetterLateralInhibition 0 
 
# Orthographic Lexicon (Orthlex) Parameters 
OrthlexPhonlexExcitation 0.2 
OrthlexPhonlexInhibition 0 
OrthlexLetterExcitation 0.2 
OrthlexLetterInhibition 0 
OrthlexLateralInhibition 0.10 
 
# Phonological Lexicon (Phonlex) Parameters 
PhonlexPhonemeExcitation 0.09 
PhonlexPhonemeInhibition 0 
PhonlexOrthlexExcitation 0.25 
PhonlexOrthlexInhibition 0 
PhonlexLateralInhibition 0.07 
 
# Phoneme Level Parameters 
PhonemePhonlexExcitation 0.01 
PhonemePhonlexInhibition 0.15 
PhonemeLateralInhibition 0.15 
PhonemeUnsupportedDecay 0.05 
 
# GPC Route Parameters 
GPCPhonemeExcitation 0.050 
GPCCriticalPhonology 0.30 
GPCOnset 10 
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APPENDIX 9: GRADE 5 DRC MODEL PARAMETERS 

# General Parameters 
ActivationRate 0.2 
FrequencyScale 0.10 
MinReadingPhonology 0.4 
 
# Feature Level Parameters 
FeatureLetterExcitation 0.005 
FeatureLetterInhibition 0.15 
 
# Letter Level Parameters 
LetterOrthlexExcitation 0.03 
LetterOrthlexInhibition 0.90 
LetterLateralInhibition 0 
 
# Orthographic Lexicon (Orthlex) Parameters 
OrthlexPhonlexExcitation 0.3 
OrthlexPhonlexInhibition 0 
OrthlexLetterExcitation 0.2 
OrthlexLetterInhibition 0 
OrthlexLateralInhibition 0.10 
 
# Phonological Lexicon (Phonlex) Parameters 
PhonlexPhonemeExcitation 0.09 
PhonlexPhonemeInhibition 0 
PhonlexOrthlexExcitation 0.25 
PhonlexOrthlexInhibition 0 
PhonlexLateralInhibition 0.10 
 
# Phoneme Level Parameters 
PhonemePhonlexExcitation 0.01 
PhonemePhonlexInhibition 0.01 
PhonemeLateralInhibition 0.100 
PhonemeUnsupportedDecay 0.05 
 
# GPC Route Parameters 
GPCPhonemeExcitation 0.05 
GPCCriticalPhonology 0.19 
GPCOnset 20 
 


