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Simple Summary: A robust and comprehensive meta-analysis, for the first time, identified defi-

nitely that BMI is by far the most influential risk factor in endometrial cancer. Risk factors were 

previously only studied individually and or in smaller meta-analysis studies which grouped some 

factors together. BMI was shown to be an important risk factor with other factors less so, but no 

rank order was established. This work also offers, for the first time, a neural network computer 

model to predict the overall increase or decreased risk of cancer for individual patients, which is 

98.6% accurate. This prediction can be used as a tool to determine if a patient should be considered 

for testing and to predict diagnosis, as well as to suggest prevention measures to patients. 

Abstract: Objectives: In this study we wished to determine the rank order of risk factors for endo-

metrial cancer and calculate a pooled risk and percentage risk for each factor using a statistical meta-

analysis approach. The next step was to design a neural network computer model to predict the 

overall increase or decreased risk of cancer for individual patients. This would help to determine 

whether this prediction could be used as a tool to decide if a patient should be considered for testing 

and to predict diagnosis, as well as to suggest prevention measures to patients. Design: A meta-

analysis of existing data was carried out to calculate relative risk, followed by design and imple-

mentation of a risk prediction computational model based on a neural network algorithm. Setting: 

Meta-analysis data were collated from various settings from around the world. Primary data to test 

the model were collected from a hospital clinic setting. Participants: Data from 40 patients notes 

currently suspected of having endometrial cancer and undergoing investigations and treatment 

were collected to test the software with their cancer diagnosis not revealed to the software develop-

ers. Main outcome measures: The forest plots allowed an overall relative risk and percentage risk 

to be calculated from all the risk data gathered from the studies. A neural network computational 

model to determine percentage risk for individual patients was developed, implemented, and eval-

uated. Results: The results show that the greatest percentage increased risk was due to BMI being 

above 25, with the risk increasing as BMI increases. A BMI of 25 or over gave an increased risk of 

2.01%, a BMI of 30 or over gave an increase of 5.24%, and a BMI of 40 or over led to an increase of 

6.9%. PCOS was the second highest increased risk at 4.2%. Diabetes, which is incidentally also 

linked to an increased BMI, gave a significant increased risk along with null parity and noncontin-

uous HRT of 1.54%, 1.2%, and 0.56% respectively. Decreased risk due to contraception was greatest 
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with IUD (intrauterine device) and IUPD (intrauterine progesterone device) at −1.34% compared to 

−0.9% with oral. Continuous HRT at −0.75% and parity at −0.9% also decreased the risk. Using open-

source patient data to test our computational model to determine risk, our results showed that the 

model is 98.6% accurate with an algorithm sensitivity 75% on average. Conclusions: In this study, 

we successfully determined the rank order of risk factors for endometrial cancer and calculated a 

pooled risk and risk percentage for each factor using a statistical meta-analysis approach. Then, 

using a computer neural network model system, we were able to model the overall increase or de-

creased risk of cancer and predict the cancer diagnosis for particular patients to an accuracy of over 

98%. The neural network model developed in this study was shown to be a potentially useful tool 

in determining the percentage risk and predicting the possibility of a given patient developing en-

dometrial cancer. As such, it could be a useful tool for clinicians to use in conjunction with other 

biomarkers in determining which patients warrant further preventative interventions to avert pro-

gressing to endometrial cancer. This result would allow for a reduction in the number of unneces-

sary invasive tests on patients. The model may also be used to suggest interventions to decrease the 

risk for a particular patient. The sensitivity of the model limits it at this stage due to the small per-

centage of positive cases in the datasets; however, since this model utilizes a neural network ma-

chine learning algorithm, it can be further improved by providing the system with more and larger 

datasets to allow further refinement of the neural network. 

Keywords: endometrial cancer; risk; neural network 

 

1. Introduction 

Endometrial cancer is the fourth most common cancer among postmenopausal 

women in the United Kingdom with more than 9377 cases between 2015 and 2017 [1]. It 

is the most common gynecological cancer in developed countries, and it is commonly con-

sidered a “curable cancer” as approximately 75% of cases are diagnosed before the disease 

has spread outside the uterus [2]. It is known to be hormone-related, and many of the risk 

factors are linked to excessive levels of estrogen. With that said, statistics show that 34% 

of cases are preventable, as a large percentage of the population is unaware of the factors 

which raise the risk of developing this type of cancer. 

The aim of this study was to determine the level of risk of six of the most commonly 

identified risk factors using a meta-analysis approach and then use these data to imple-

ment an algorithm within a risk prediction neural network model which uses machine 

learning to calculate an individual’s risk. We wish to assist clinicians to better identify 

patients at risk of developing endometrial cancer and help patients make an informed 

choice about possible actions they can take to lessen their risk. Individualized options for 

decreasing a patient’s risk on the basis of their risk factor data can be suggested to the 

patient in order to reduce the risk as much as possible. There are multiple expected bene-

fits of a good prediction model, including the discovery of patients who are at a higher 

risk than normal and may benefit from targeted prevention treatment, the increasing 

awareness in patients about the risk factors which put them at a high risk, and the help 

provided to the clinicians in decision making. 

Endometrial cancer statistics show that it is primarily a disease of postmenopausal 

women, with about 25% of cases occurring in premenopausal women, and 5% occurring 

in women younger than 40 years of age [3]. This type of cancer is known to be hormone-

related and driven by estrogen; thus, the levels of estrogen and progesterone in a woman’s 

body can affect her risk of endometrial cancer. Many of the risk factors are directly or 

indirectly linked to a state of excessive estrogen. During menopause, the levels of estrogen 

and progesterone shift, with a decrease in progesterone production. When estrogen hor-

mone is present with subnormal levels of progesterone, it can cause the endometrium to 

become thickened, potentially leading to endometrial cancer [3]. Consequently, protective 
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factors seem to be related to conditions that may result in decreased estrogen exposure. 

As the most common tumor of the female reproductive tract, endometrial cancer remains 

the fourth most common cancer in women in the developed world [4], with the incidence 

of endometrial cancer increasing rapidly concurrently with the increasing prevalence of 

obesity. 

Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic 

risk factors. There are several validated models which predict absolute risk of breast can-

cer such as the Gail model; however, there are fewer models for ovarian cancer and endo-

metrial cancer. One study proposed an actual risk prediction model for endometrial can-

cer, and, although the study presented some interesting points, the proposed model had 

several limitations [5]. One limitation is that the risk factors considered are given weights 

based on assumptions, rather than using pooled risk ratios of multiple studies which ex-

amine the relationship of the specific risk factors and endometrial cancer or the use of 

logistic regression. Additionally, the prevention techniques described are generic and are 

based on the risk category of the patient and not on the particular risk factors. A validated 

risk prediction model which is based on easily obtainable epidemiologic and clinical data 

which can accurately predict a person’s risk is, therefore, urgently required. It can assist 

in identifying individuals at particularly high risk of developing endometrial cancer and 

who may benefit from targeted primary prevention strategies, as well as determine 

whether endometrial testing is needed or not. 

Across Europe, it has been estimated that 60% of endometrial cancer cases may be 

due to excess body weight. Worldwide, the prevalence of obesity (body mass index, 

BMI >30 kg/m2) has doubled in the last three decades; each year, 2.8 million people around 

the world die as a result of being overweight or obese. Among women, obesity is more 

strongly associated with the development of endometrial cancer than any other cancer 

type [6] and, similarly to Europe, approximately 57% of endometrial cancers in the United 

States are thought to be attributable to being overweight and obese [7]. This is not neces-

sarily something surprising, as endometrial cancer is hormone-related and obesity is also 

closely tied to hormonal changes, including estrogen levels, considering that obese or 

overweight women have higher rates of circulating estrogen in their bloodstream. Despite 

the clear evidence of obesity associated with endometrial cancer, there is still limited pub-

lic awareness of the relationship as healthcare providers are often reluctant to counsel 

patients with endometrial cancer about obesity. 

Smoking is a great risk factor for any type of cancer, although studies show that 

smoking does not obviously correlate with endometrial cancer, with some studies even 

suggest that smoking is a protective risk factor [8]; this risk factor was, therefore, not in-

cluded in this risk model. 

Reproductive factors are also strongly tied to hormonal changes and were considered; 

this includes parity and the use of contraceptive methods. It has been demonstrated that 

a woman who has given at least one birth during her lifetime has a lower risk of develop-

ing endometrial cancer, as the hormonal balance shifts toward more progesterone during 

pregnancy [9]. On the other hand, women who have never been pregnant have a higher 

risk, especially if they are also infertile. For the same reason, use of the combined oral 

contraceptive pill (COCP) or intrauterine progesterone device (IUPD/IUS) is associated 

with a significant reduction in endometrial cancer risk due to suppression of endogenous 

estrogen levels and increased exposure to progesterone throughout the menstrual cycle 

[10]. Some studies have shown that polycystic ovary syndrome, which affects 6–8% of 

women of reproductive age, and insulin insensitivity (or resistance), which are both com-

ponents of metabolic syndrome, may play a role in the pathogenesis of endometrial cancer, 

perhaps through hormonal disruption, which causes higher androgen and estrogen levels 

and lower progesterone levels [11]. 

Hyperinsulinemia and the insulin-resistant state are known to be associated closely 

with obesity. The positive association of endometrial cancer with hyperinsulinemia and 
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type 2 diabetes is well documented, and several studies have shown an association of type 

2 diabetes with endometrial cancer risk. 

Hormone replacement therapy increases the levels of circulating estrogen, which is 

required to reduce vasomotor symptoms such as hot flushes and night sweats. This ther-

apy may reduce postmenopausal symptoms and prevent long-term problems due to es-

trogen deficiency. Sequential HRT is known to increase the risk of endometrial cancer, 

with risk being inversely proportional to the number of days progestin is given for. Con-

tinuous combination HRT, on the other hand, has been shown not to increase endometrial 

cancer risk and may even reduce it, presumably because of the protective effects of pro-

gesterone on the endometrium [12]. However, endometrial cancer is a hormone-sensitive 

carcinoma, and the use of HRT may stimulate estrogen receptors in residual carcinoma 

cells. These risk factors have been strongly associated with endometrial cancer, and clear 

evidence of the relationship between them and endometrial cancer has been shown. 

1.1. Preventive Measures According to Cancer Research UK 

Statistics from 2015 show that 34% of all cases of endometrial cancer are preventable 

[13]; therefore, the right prevention techniques are needed to help patients mitigate the 

risk of developing this type of cancer and eventually reduce this number where possible. 

Obesity is the most avoidable risk factor and is the leading risk factor for this and many 

cancer types [13]. Calorie-controlled diets, regular physical exercise in life, and adopting 

a Mediterranean diet [14] have been shown to help reduce the risk of endometrial cancer 

by losing excess weight. For morbidly obese patients, bariatric surgery may be the best 

option as it produces significant and durable results [15]. These lifestyle modifications 

also help to ameliorate polycystic ovary syndrome, which is another risk factor of endo-

metrial cancer. Medications such as metformin which have been shown to help prevent 

and treat type 2 diabetes and PCOS also lower the risk in women who are prone to endo-

metrial cancer [16,17]. However, as diabetes and PCOS are strongly associated with obe-

sity, it is important that the patient reduces their BMI significantly to lower their overall 

risk, in addition to taking medications. 

Given the growing importance of predictive medicine, there is a growing reliance on 

machine learning to make diagnostic predictions. Most studies using machine learning in 

the medical arena targeted breast cancer and were concerned with three clinical endpoints: 

(1) the prediction of cancer susceptibility, (2) the prediction of cancer recurrence, and (3) 

the prediction of cancer survivability [18]. Recently, machine learning algorithms, which 

used a set of clinical features including risk factors as input, were used to make predictions 

on breast cancer patients [19]. The algorithms showing the best accuracy in these studies 

were the artificial neural network and the K-nearest neighbor algorithms, with almost all 

reported studies concerning cancer prediction using an artificial neural network as their 

primary predictor, as it has the ability to learn and model nonlinear and complex relation-

ships [18]. Furthermore, these studies showed that the use of artificial neural networks 

could substantially improve the accuracy of cancer susceptibility and cancer outcome pre-

diction relative to simple statistical methods. 

In this study, we wished to determine the rank order of risk factors for endometrial 

cancer and calculate a pooled risk and percentage risk for each factor using a statistical 

meta-analysis approach. Then, a neural network computer model was designed to predict 

the overall increase or decreased risk of cancer for particular patients. This prediction can 

be used as a tool to determine if a patient should be considered for screening testing and 

to predict diagnosis, as well as to suggest prevention measures to patients. 

2. Methods 

2.1. Meta-Analysis and Determination of Pooled Risk 
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A meta-analysis of data from articles that studied the relationship of endometrial 

cancer and six chosen risk factors (obesity, contraception use, hormone-replacement ther-

apy (HRT), type 2 diabetes, polycystic ovary syndrome (PCOS), and parity) was con-

ducted. The total number of articles identified from a literature search using these key 

words prescreening was 9463. Articles were then screened and selected according to strict 

criteria, and the data therein were categorized as follows: 

Inclusion Criteria Exclusion Criteria 

Endometrial cancer 

Risk factors 

Women 

Publication dates 2003–2019 

English language 

Other cancers 

Lynch syndrome 

Other genetics/gene mutations 

Mortality risks 

Nonhuman 

<2003 

Non-English 

Reviews without data 

Case reports 

Letters, news, notes, commentaries, and edi-

torials 

Conference abstracts 

Book chapters 

Family history 

On further reviewing papers, those that reported on particular risk factors considered 

identifiable/modifiable within primary care without need for investigation (listed below) 

were chosen for a second screen. 

Risk factors within primary care included the following: 

 Obesity—BMI/anthropometry, 

 Diabetes—including IGT (impaired glucose tolerance), 

 Parity, 

 PCOS, 

 HRT, 

 Contraceptives. 

A total of 111 articles were then put through a second screen to be included in the meta-

analysis. Articles were excluded in this second screen on the basis of the following: 

 Not enough published data to perform analysis, 

 No/poor controls in study design, 

 Numbers too small (<15), 

 Old datasets—not relevant to current clinical management, 

 Heterogeneous data, 

 Combined risk factor data only (unable to analyze risk factors individually). 

A total of 51 articles were included in the meta-analysis with data obtained from non-

randomized controlled studies (e.g., case–control, case–cohort), investigating the relation-

ship of one or more of the risk factors above and endometrial cancer, where other factors 

were controlled for. Data were expressed as risk estimates such as odds ratio (OR), risk 

ratio (RR), hazard ratio (HR), and standard incidence ratio (SIR) with 95% confidence in-

tervals (CIs). 

Of the 51 studies that met the inclusion criteria, nine studies were related to contra-

ceptive use (four oral and five IUD/IUPD), six studies were related to HRT (six continuous 

use and six noncontinuous), seven studies were related to parity (five for nulliparity and 

two for parity), 14 studies related to type 2 diabetes, two studies were related to polycystic 

syndrome (PCOS), and 18 studies were related to obesity (six for a BMI over 25, 16 for 
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BMI over 30, and two for BMI over 40). Some studies collected data on multiple risk factors 

and, thus, were used in more than one calculation. 

Regarding obesity, only articles that measured the body mass index (BMI) rather than 

other measurements of body weight were used since this is a well-established and objec-

tive measurement. According to the World Health Organization, a person is considered 

overweight when their BMI is over 25, obese when their BMI is over 30, and morbidly 

obese when is over 40 [20]. These three categories were used to subdivide data from the 

articles as each of them presents a different relative risk, the risk increasing with an in-

crease in BMI. 

Contraception use was divided into two categories, the use of either oral contracep-

tives or intrauterine progesterone device (IUPD), being the most widely used methods of 

contraception throughout the world, which have been shown to have a relationship with 

endometrial cancer risk [15,21]. 

Hormone-replacement therapy was divided into two categories (continuous level or 

cyclical level), including those who had or are currently receiving this treatment, as each 

therapy type is known to have a different risk of endometrial cancer incidence [22,20]. 

Parity was divided into two categories (nulliparous women and women who have 

given birth at least once). Multiple studies have shown that parity does affect the risk of 

endometrial cancer, and a slight decrease of risk was shown in women who have a parity 

of over two in comparison to women who gave birth just once [23,24]; however, this dif-

ference was not great enough to be taken into consideration. 

The type 2 diabetes and polycystic ovary syndrome studies used included data from 

individuals who were divided into sufferers and non-sufferers. 

The 51 studies used in the meta-analysis are given in the Table 1. 

Table 1. Studies used in the meta-analysis of risk factors. 

Study Code Number Reference 

Obesity 13 Jenabi, E., Poorolajal, J. (2015) [25] 

Obesity 15 Gao, Y. et al. (2016) [26] 

Obesity 17 Zhang, Y. et al. (2014) [27] 

Obesity and anthropometry 3 Xu, W.H. et al. (2005) [28] 

Weight change 10 Nagle, C.M. et al. (2013) [29] 

Weight gain 6 Lu, L. et al. (2011) [30] 

Anthropometry 2 Maso, L. et al. (2011) [31] 

Anthropometry 3 Schouten LJ et al. (2004) [32] 

Obesity 1 Reeves, G.K. et al. (2007) [6] 

Obesity 6 Jonsson, F. et al. (2003) [33] 

Obesity 12 Wise, M.R. et al. (2016) [34] 

Obesity 14 Rota, M. et al. (2015) [35] 

Weight change 8 Liu, Y. et al. (2016) [36] 

Weight change 9 Horn-Ross, P.L. et al. (2016) [37] 

Diabetes 2 Attner, B. et al. (2012) [38] 

Anthropometry 1 Friedenreich, C. et al. (2007) [39] 

Population 6 Yang, H.P. et al. (2012) [40] 

Obesity 4 Lindemann, K. et al. (2009) [41] 

Diabetes 1 Friberg, E. et al. (2007) [42] 

Diabetes 3 Friberg, E. et al. (2007) [43] 

Diabetes 4 Lindemann, K. et al. (2008) [44] 

Diabetes 5 Bosetti, C. et al. (2012) [45] 

Diabetes treatment 1 Luo, J. et al. (2014) [46] 

Prediabetes 1 Huang, Y. et al. (2014) [47] 

Prediabetes and diabetes 1 Lambe M et al. (2011) [48] 

Type 2 diabetes 1 Johnson, J.A. et al. (2011) [49] 

Type 2 diabetes 2 Lin, C.C. et al. (2014) [50] 

Type 2 diabetes 3 Oberaigner, W. et al. (2014) [51] 
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Type 2 diabetes 4 Liu, X. et al. (2015) [52] 

Type 2 diabetes 5 Lo, S.F. et al. (2013) [53] 

HRT 4 Razavi, P. et al. (2010) [54] 

HRT 5 Jaakkola, S. et al. (2011) [55] 

HRT 9 Mørch, L.S. et al. (2016) [56] 

HRT 10 Doherty, J.A. et al. (2007) [57] 

HRT 11 Beral, V. et al. (2005) [20] 

HRT 13 Trabert, B. et al. (2013) [58] 

COCP + IUD Tao, M.H. et al. (2006) [59] 

IUD 1 Felix, A.S. et al. (2015) [60] 

IUD 2 Beining, R.M. et al. (2008) [61] 

MIRENA Jareid, M. et al. (2018) [62] 

Reproductive factors 1 Wernli, K.J. et al. (2006) [63] 

Reproductive factors 2 Xu, W.H. et al. (2004) [64] 

Parity 7 Yang, H.P. et al. (2015) [65] 

Timing of birth 2 Pfeiffer, R.M. et al. (2009) [66] 

COCP 1 Cook, L.S. et al. (2014) [67] 

COCP 2 Hannaford, P.C. et al. (2007) [68] 

COCP 4 
Collaborative Group on Epidemiological 

Studies on Endometrial Cancer. (2015) [69] 

Parity 5 Wu, Q.J. et al. (2015) [23] 

Reproductive factors 4 Brinton, L.A. et al. (2007) [70] 

PCOS 1 Fearnley, E.J. et al. (2010) [71] 

PCOS 2 Barry, J.A. et al. (2014) [72] 

The risks of each factor were transformed into risk percentages to be implemented 

into the STATA software (https://www.stata.com/features/meta-analysis/, accessed on 24 

April 2021), which was used to conduct all analyses. Forest plots were drawn to combine 

the risk results for each factor. The pooled risk ratios were then used to derive an absolute 

lifetime risk and to determine how much each risk factor contributes to the lifetime risk. 

According to Cancer Research UK and associated studies, the estimated lifetime risk for a 

female being diagnosed with endometrial cancer is about 2.8% [73], meaning that one in 

36 women will develop this disease at some stage in their life. Based on that number and 

the results from the forest plots, we transformed the relative risk of each risk factor type 

into risk percentage. A relative risk that is higher than 1 means that the specific factor puts 

the patient at a higher risk, while a relative risk lower than 1 is considered to be protective 

factor. As an example, we take the risk factor contraception use with IUD for which the 

pooled relative risk is 0.52 (see IUD forest plot in Appendix), meaning that it reduces the 

risk by 0.48 or 48%; therefore, a person’s lifetime risk of 2.8% is reduced by 48% to 1.35% 

if they have ever used an intrauterine device. On the other hand, a BMI ≥40 has a relative 

risk of 3.47, which, using the same method, is translated to an increase of 6.9%. Using this 

method, the relative risk for each risk factor was calculated. 

2.2. Design and Implementation of a Computational Risk Prediction Model 

The risk prediction model was based on a neural network algorithm. This is a classi-

fication algorithm that attempts to recognize underlying relationships in a dataset 

through a process that mimics the way the human brain operates. We wished to use the 

model to predict whether a patient with a specified set of characteristics had a high chance 

of developing endometrial cancer or not and, therefore, should be considered for testing, 

as well as to suggest any preventative measures that the patient could put in place to 

lessen their risk. For the creation of this model, we obtained the endometrial cancer patient 

dataset from the National Cancer Institute (NCI) (see Section 2.5). 

The model produces two main outputs, the calculated percentage risk and the pre-

diction of whether the individual has a high risk of having cancer or not based on this 

percentage. If the combination of these two is positive, the system suggests that the patient 

https://www.stata.com/features/meta-analysis/
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should proceed to more classical clinical investigations for endometrial cancer. We evalu-

ated the two outputs of this risk prediction model individually to determine how well 

they perform and to identify possible improvements to the algorithm. After training and 

testing the model using known data, we evaluated the model on some blind data from 40 

patients (see below) and recorded the outputs. Multiple statistical analyses were per-

formed on the results to determine any relationship between the percentage risk and the 

prediction accuracy with the eventual clinical diagnosis, as well as the relationship of the 

percentage risk and any individual risk factor. 

The model was implemented with a webpage interface (HTML was used to create 

the structure of the web page, CSS was used to describe the presentation of the web page, 

and JavaScript was used to provide the functionality needed). Visual Studio Code was 

used as the chosen source code editor. A neural net function (below) was used for the six 

risk factors mentioned earlier to predict the diagnosis of the patient. 

2.3. Risk Factors RStudio Code 

NN = neuralnet(diagnosis ~ agelevel + bmi + diabetes + contraception + hrt + parity, 

trainNN, hidden = c(4,2), threshold = 0.001, stepmax = 1 × 106, linear.output = FALSE). 

Two hidden layers with four neurons for the first and two neurons for the second 

hidden layer were determined to be optimal to avoid under- or overfitting. This was used 

to plot the neural network using the training set. The compute function was used to pre-

dict the outcomes using the test dataset, which computed the outputs of all neurons for 

specific arbitrary covariate vectors by the trained neural network. 

2.4. Neural Network RStudio Code 

temp_test ≤ subset(testNN, select = c(“agelevel”, ”bmi”, “diabetes”, “contraception”, 

“hrt”, “parity”)) NN.results ≤ compute(NN, temp_test) results ≤ data.frame(actual = 

testNN$diagnosis, prediction = NN.results$net.result) roundedresults ≤ sapply(re-

sults,round,digits = 0). 

The results were rounded to the nearest integer. The predictions were compared to 

actual values using a confusion matrix in order to evaluate how well it performed on the 

test dataset. 

The full code in R is available in Supplementary File S1. 

2.5. Datasets 

An endometrial cancer open-source dataset was obtained from the National Cancer 

Institute (NCI), which contained risk factor data from each patient. We randomly selected 

1200 records from this set that had data for the factors we were interested in, maintaining 

the same 95%–5% ratio of negative to positive cancer diagnosis as the whole dataset, giv-

ing 1142 instances (95%) with a negative diagnosis and 58 with a positive diagnosis (5%). 

These 1200 records were then randomly divided into a training dataset and a test dataset 

(70% records for training and 30% for testing), while still maintaining the 95%–5% ratio in 

each set. 

Further data from 40 patient notes currently suspected of having endometrial cancer 

and undergoing investigations and treatment at Royal Surrey NHS Foundation Trust 

Hospital were collected to test the software. Their cancer diagnosis was not provided to 

the software developers. 

The data from both sets was anonymized. 

Ethical approval was obtained from both Royal Surrey NHS Foundation Trust Hos-

pital and Brunel University to collect the data and conduct the study. Patients gave con-

sent for their data to be used in this study but were not actively involved. 

3. Results 
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The results of the meta-analysis of the data from studies of each risk factor type using 

STATA software are presented in forest plots (see Figures 1–11). The forest plot displays 

the risk factor type, study labels, the summary data, graphical representation of the indi-

vidual and overall effect sizes and their confidence intervals CIs, the corresponding values 

of the effect sizes and CIs, and the percentages of total weight for each study. In the graph, 

each study corresponds to a square, centered at a point estimate of the effect size with a 

horizontal line (whiskers) extending on either side of the square. The horizontal line de-

picts the CI. The area of the square is proportional to the corresponding study weight. The 

overall effect size corresponds to the diamond centered at the estimate of the overall effect 

size. The width of the diamond corresponds to the width of the overall CI. Note that the 

height of the diamond is irrelevant. 

 

Figure 1. Forest plot to show risk of BMI >25. 
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Figure 2. Forest plot to show risk of BMI >30. 
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Figure 3. Forest plot to show risk of BMI >40. 
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Figure 4. Forest plot to show risk of diabetes. 

 

Figure 5. Forest plot to show risk of continuous HRT. 
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Figure 6. Forest plot to show risk of noncontinuous HRT. 

 

Figure 7. Forest plot to show risk of contraception (IUD). 
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Figure 8. Forest plot to show risk of reproductive factors/null parity. 

 

Figure 9. Forest plot to show risk of contraception (oral). 
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Figure 10. Forest plot to show risk of parity. 

 

Figure 11. Forest plot to show risk of PCOS. 
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As can be seen, different studies of certain factors yielded data in high agreement 

with each other, e.g., diabetes and continuous HRT. However, for some factors such as 

PCOS, various studies yielded a wider variation of results. This is demonstrated by the 

longer whiskers for the individual studies and more elongated diamonds in the forest 

plots for studies with less agreement. 

The overall or pooled relative risk and the additional percentage risk above normal 

are summarized in Table 2 by risk factor and type. 

Table 2. Pooled relative risk and percentage risk for each risk factor. 

Risk Factor Type Pooled Relative Risk Percentage Risk 

Contraception IUD 0.52 −1.34% 

 Oral 0.68 −0.9% 

HRT Continuous 0.73 −0.75% 

 Noncontinuous 1.2 0.56% 

Parity Nulliparity 1.43 1.20% 

 ≥1 0.68 −0.9% 

PCOS Yes 2.5 4.2% 

 No 0 0% 

Diabetes Yes 1.55 1.54% 

 No 0 0% 

Obesity (BMI) <25 0 0% 

 ≥25 and <30 1.74 2.01% 

 ≥30 and <40 2.87 5.24% 

 >40 3.47 6.9% 

The forest plots allowed an overall relative risk and percentage risk to be calculated 

from all the risk data from the studies. The results show that the greatest percentage of 

increased risk is due to BMI being above 25, with the risk increasing as BMI increases. A 

BMI of 25 or over gives an increased risk of 2.01%, a BMI of 30 or over gives an increase 

of 5.24%, and a BMI of 40 or over gives an increase of 6.9%. PCOS was the second highest 

source of increased risk at 4.2%. Diabetes, which is incidentally also linked to an increased 

BMI, gave a significant increased risk along with nulliparity and noncontinuous HRT of 

1.54%, 1.2%, and 0.56%. Decreased risk due to contraception is greatest with IUD at −1.34% 

compared to −0.9% with oral. Continuous HRT at −0.75% and parity at −0.9% also decrease 

the risk. 

3.1. Training the Software Model to Correlate Percentage Risk with Diagnosis. 

To train the software the data for each factor for a given patient from the NCI data-

base, the training set is entered into the software to model the risk. The training set estab-

lished, by machine learning, the percentage risk boundary between a positive and nega-

tive diagnosis. A box plot was used to show the percentage risk output from the model, 

showing that those with a positive diagnosis have a significantly higher modeled risk than 

those with a negative diagnosis Figure 12). 
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Figure 12. Diagnosis–risk percentage box plot. 

Patients who eventually developed endometrial cancer had a median risk percentage 

of 6.9% with a maximum of 12%. On the other hand, patients who did not develop endo-

metrial cancer had a median risk percentage of 4.5%, with one outlier at 6%, which was 

considered to be in the “medium” risk category. The mean percentage risk of those with 

a benign diagnosis was around 4%, whereas, for those patients with a positive diagnosis 

of endometrial cancer, the mean was 7%. The software was trained to classify patients into 

these two categories using the overall percentage risk when given data of all the different 

risk factors. Thus, we demonstrated that our “percentage risk” algorithm can distinguish 

patients with a cancer diagnosis from those with a negative diagnosis when using the risk 

values for each factor derived from meta-analysis data. 

3.2. Evaluation of the Model’s Ability to Correctly Predict Diagnosis. 

In order to evaluate its performance, a confusion matrix was built, and several statis-

tical measures were implemented in order to determine the level of confidence (Algorithm 

1). 

> table(actual,prediction) 

  prediction 

  0 1 

actual 
0 349 3 

1 2 9 

The accuracy of the algorithm was determined by calculating the ratio of number of 

correct predictions to the total number of predictions made, i.e., Equation (1). 

accuracy = number of correct predictions/total number of predictions (1) 

Using the NCI data testing set, our results showed that the model is 98.6% accurate. 

This is by any means considered to be a very good accuracy value for any machine learn-

ing algorithm. Since only 5% of the individuals in the test dataset had a cancer diagnosis, 

the accuracy measurement of the algorithm does not show how well this model can cor-

rectly predict those who have endometrial cancer, as it could achieve a correct result by 

chance given the high number of individuals in the dataset with a negative diagnosis. We, 

therefore, decided to calculate the specificity, which is a measure of the true negative rate, 

corresponding to the proportion of negative individuals that were correctly predicted as 

negative (specificity = number of correct negative predictions/total number of negative 
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predictions); the result was an average of 98.78% when a series of different randomly 

picked data were entered, which again is an excellent result. 

To determine how well the algorithm could correctly predict a patient with a positive 

diagnosis of endometrial cancer, we calculated the sensitivity of the algorithm; the result 

was an average of 75% according to several runs of the algorithm (sensitivity = number of 

correct positive predictions/total number of positive predictions). The lower percentage 

was probably due to only 5% of the data having a positive diagnosis, which may not be 

enough for the model to be trained well enough to predict more precisely. 

Considering that BMI was the biggest contributor to the modeled percentage risk, we 

wanted to determine the relationship between BMI alone and the modeled percentage risk 

calculated using all the factors of individual patients, to determine the strength of the re-

lationship. We did this using data from a further 40 patients currently suspected of having 

endometrial cancer and undergoing investigations and treatment at Royal Surrey Hospi-

tal. There was a strong positive correlation between the modeled percentage risk and BMI. 

This is shown in a scatter plot of the risk percentage of the patients and their BMI by di-

agnosis (Figure 13). The plot also shows that a cancer diagnosis also positively correlated 

with BMI and risk percentage, as shown by the red points being clustered more to the 

upper part of the x- and y-axes, corresponding to a higher BMI/ risk percentage. From the 

plot, a BMI of >25 was associated with a cancer diagnosis with the exception of one patient. 

Furthermore, it could also be deduced that a negative diagnosis only correlated with a 

risk percentage of 5% or less, and most cancer diagnoses had a risk percentage of 6% or 

more. This further shows that our modeled risk percentage correlated well with diagnosis. 

 

Figure 13. BMI–risk percentage scatter plot. 

4. Conclusions 

In this study, we successfully determined the rank order of risk factors for endome-

trial cancer and calculated a pooled risk and risk percentage for each factor using a statis-

tical meta-analysis approach. Then, using a computer neural network model system, we 

were able to model the overall increase or decreased risk of cancer and predict the cancer 

diagnosis for particular patients to an accuracy of over 98%. 

The analysis of the risk factors determined that by far the biggest risk factor is obesity 

with a marked increased risk as BMI increases. Obesity has been linked to many cancers 

and is currently recognized as the single biggest risk factor [74]. In the case of endometrial 

cancer, as with other cancers, there is growing evidence that obesity increases the levels 

of estrogen, which is a proven cell proliferation and cell turnover agent, particularly for 
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cells with endothelial origin. Indeed, epidemiological studies have confirmed an in-

creased risk of endometrial cancer in women with high estrogen levels [75]. Estrogen in-

duces this endometrial proliferation through the local production of IGF-1 [76]. This 

rapid cell division increases the risk of genetic mutations in proto-oncogenes and tu-

mor suppressor genes, in addition to increasing free-radical-mediated DNA damage 

and inhibiting apoptosis [76,77]. This, in the presence of deceased levels of progesterone 

(as seen in postmenopausal women when the ovaries no longer produce progesterone, 

but instead testosterone, or in women with PCOS), leads to the “unopposed estrogen 

theory”, where estrogen is not counter-balanced by the protective effects of proges-

terone. 
Obesity leads to high levels of estrogen, as adipose tissue can convert androstenedi-

one and testosterone into estrogen and estradiol using aromatase and 17β-hydroxysteroid 

dehydrogenase (17β-HSD) [78,79]; thus, estrogen production is enhanced in obese indi-

viduals. 

If this increased production is not accompanied by progesterone, as is the case in 

postmenopausal women or women with PCOS, the risks of cancer are shown to be higher. 

This is due to progesterone counteracting the mitogenic effects of estrogen by raising lev-

els of IGF- binding protein-1 (IGFPB-1), which binds excess IGF-1. This in turn increases 

expression of the estrogen sulfotransferase and 17β-HSD enzymes, which transform es-

tradiol into more benign estrone [76]. This would explain why women with PCOS, who 

do not have the protective effects of progesterone during the luteal phase of the menstrual 

cycle, are at an increased risk of endometrial cancer. In contrast, users of progesterone-

releasing IUDs have a significantly lower risk of endometrial cancer than nonusers [80]. 

Furthermore, the use of the combined oral contraceptive pill (COCP) for ≥5 years is asso-

ciated with a significant reduction in endometrial cancer risk due to suppression of en-

dogenous estrogen levels and increased exposure to progesterone throughout the men-

strual cycle [10]. For the same reason, increasing parity is also a protective factor [23]. 

Obese women have higher insulin levels than their normal-weight counterparts; ex-

cess fat tissue reduces the responsiveness of the body to the effects of insulin; hence, levels 

increase to compensate. Endometrial cell proliferation is also stimulated by insulin. There 

is evidence for a direct effect on endometrial cancer cells of insulin and IGF-1; activa-

tion of the insulin receptor causes an increase in cell proliferation and inhibition of 

apoptosis [77,81,82] through both the MAPK and PI3K/Akt pathways. Insulin and 

IGF-1 also stimulate β-catenin, a signaling pathway involved in early tumor for-

mation, and the Ras oncogene. Insulin increases the breakdown of IGFBP-3, thus in-

creasing the levels of free IGF-1, promoting tumor formation. Interestingly, elevated 

serum insulin levels have been shown to be present in women with endometrial cancer, 

compared with those without the disease [75]. 

Obesity is characterized by chronic inflammation [83], with fat tissue producing in-

flammatory and carcinogenic (cancer promoting) proteins through the release of adi-

pokines, cytokines, and sex hormone metabolism [84]; hence, obese women have elevated 

levels compared with normal-weight women [75]. Cytokines are produced by the acti-

vated adipocytes and infiltrating macrophages in response to expansion of the adipose 

tissue and localized hypoxia. Increasing BMI is associated with elevated levels of cyto-

kines including IFNs, IL6, IL8, IL1 receptor antagonist (IL-1Ra), and C-reactive peptide 

(CRP) [77,85,86]. Chronic inflammation results in the generation of free radicals, as well 

as increased concentrations of COX2 and prostaglandin E2, leading to cell proliferation 

and DNA damage [87]. In addition, activation of the NF-κB pathway by inflammatory 

cytokines inhibits apoptosis, overcoming cell-cycle arrest, and leads to the transcription 

of genes encoding proinflammatory cytokines. This cycle of inflammation can result in 

tumor formation. Inflammation can also cause insulin resistance, and IL6 can stimulate 

aromatase activity and the conversion of androgens into estrogen within adipose tissue, 

which all contribute to the ideal conditions for tumor formation [86]. 
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The neural network model developed in this study was shown to be a potentially 

useful tool in determining the percentage risk and predicting the possibility of a given 

patient developing endometrial cancer. The risk factors analyzed are not linked to specific 

histological types or the new molecular classification [88]. As such, this could be a useful 

tool for clinicians to use in conjunction with other biomarkers in determining which pa-

tients warrant further preventative interventions progressing to endometrial cancer. This 

result would allow for a reduction in the number of unnecessary invasive classical tests 

on patients. The model may also be used to suggest interventions to decrease the risk for 

a particular patient. The sensitivity of the model limits it at this stage due to the small 

percentage of positive cases in the datasets; however, since this model utilizes a neural 

network machine learning algorithm, it can be further improved by providing the system 

with more and larger datasets to allow further refinement of the neural network. 
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