
Vol.:(0123456789)

Journal of Statistical Theory and Practice           (2021) 15:73 
https://doi.org/10.1007/s42519-021-00203-1

1 3

ORIGINAL ARTICLE

A Discrete Density Approach to Bayesian Quantile 
and Expectile Regression with Discrete Responses

Xi Liu1,2 · Xueping Hu1,2 · Keming Yu1,2 

Accepted: 5 May 2021 
© The Author(s) 2021

Abstract
For decades, regression models beyond the mean for continuous responses have 
attracted great attention in the literature. These models typically include quantile 
regression and expectile regression. But there is little research on these regression 
models for discrete responses, particularly from a Bayesian perspective. By form-
ing the likelihood function based on suitable discrete probability mass functions, 
this paper introduces a discrete density approach for Bayesian inference of these 
regression models with discrete responses. Bayesian quantile regression for discrete 
responses is first developed, and then this method is extended to Bayesian expectile 
regression for discrete responses. The posterior distribution under this approach is 
shown not only coherent irrespective of the true distribution of the response, but 
also proper with regarding to improper priors for the unknown model parameters. 
The performance of the method is evaluated via extensive Monte Carlo simulation 
studies and one real data analysis.

Keywords Bayesian inference · Discrete asymmetric Laplace distribution · Discrete 
asymmetric normal distribution · Discrete responses · Expectile regression · 
Posterior consistency · Quantile regression

1 Introduction

Regression models for dealing with responses following a non-normal distribu-
tion have been drawing significant attention in the literature. For example, quantile 
regression and expectile regression have been widely developed in the literature 
and increasingly applied to a greater variety of scientific questions. See, [1–5] and 
among others.
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Typically, quantile regression estimates various conditional quantiles of a 
response or dependent random variable, including the median (0.5th quantile). Put-
ting different quantile regressions together provide a more complete description of 
the underlying conditional distribution of the response than a simple mean regres-
sion. This is particularly useful when the conditional distribution is asymmetric or 
heterogeneous or fat-tailed or truncated. Quantile regression has been widely used in 
statistics and numerous application areas. Bayesian quantile regression for continu-
ous responses has received increasing attention from both theoretical and empirical 
viewpoints. See a recent review by [6] for the first type of Bayesian quantile regres-
sion methods ([7–9] and among others) based on asymmetric Laplace distribution 
(ALD) likelihood function. But among numerous application areas of regression 
models, discrete observations such as integer values (e.g., -2, -1, 0, 1, 2, 3, etc.) on 
a response are easily collected. In particular, many big data nowadays contain dis-
crete observations such as number of online transaction, number of days in hospital, 
number of votes and so on. Classic regression models for discrete responses include 
logistic, Poisson and negative Binomial regression. Discrete responses are generally 
skewed, the mean-based regression analysis would not be sufficient for a complete 
analysis ([10]).

However, quantile regression for discrete responses receives far less attention 
than for continuous responses in the literature. Binary quantile regression was first 
introduced by [11]. Then, several authors ([12–14] and among others) developed 
different smoothed estimation techniques (nonparametric or semiparametric meth-
ods) for the binary quantile regression model under frequentist approaches. Based 
on the idea of linking ALD to latent variables in Bayesian Tobit quantile regression 
([15]), the papers by [16, 17] and among others did proposed Bayesian inference 
binary quantile regression. Based on a normal-exponential mixture representation 
of ALD, [18] and [19] extended Bayesian binary quantile regression to Bayesain 
ordinal quantile regression. Then, [20] further extended it to Bayesain inference of 
single-index quantile regression for ordinal data. [21, 22] and [23] applied these dis-
crete quantile regression methods in economics, energy and education, respectively.

But all these research methods are not a direct Bayesian quantile regression approach 
for discrete responses, or deal with quantile regression for general discrete responses. 
Similarly, there is little research on expectile regression for discrete responses, let alone 
from a Bayesian perspective ([24]). A semi-parametric jittering approach for general 
count quantile regression has been introduced ([25]), but some degree of smoothness 
has to be artificially imposed on the approach. Quantile regression for count data may 
be achieved via density regression as shown in [26], but this approach may result in a 
global estimation of regression coefficients. In this paper, we propose Bayesian infer-
ence quantile regression for discrete responses via introducing a discrete version of 
ALD-based likelihood function. This approach not only keeps the ‘local property’ of 
quantile regression, but also enjoys the coherency and finite posterior moments of the 
posterior distribution. Along this line, we then introduce Bayesian expectile regres-
sion for discrete responses, which proceeds by forming the likelihood function based 
on a discrete asymmetric normal distribution (DAND). Section 2 introduces a discrete 
asymmetric Laplace distribution (DALD) and discusses its natural link with quantile 
regression for discrete responses. Sections 3 and 4 detail this Bayesian approach for 
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quantile regression and expectile regression with discrete responses, respectively. Sec-
tion 5 illustrates the numerical performance of the proposed method. Section 6 con-
cludes with a brief discussion.

2  Discrete Asymmetric Laplace Distribution

Let Y be a real-valued random variable with its �-th ( 0 < 𝜏 < 1 ) quantile � 
( −∞ < 𝜇 < ∞ ), and then it is well-known that � could be found by minimiz-
ing the expected loss of Y with respect to the loss function (or check function) 
𝜌𝜏(y) = y(𝜏 − I(y < 0)), or min� EF0(Y)

��(Y − �) , where F0(Y) denotes the distribution 
function of Y, which is usually unknown in practice.

When Y is a continuous random variable, the inference based on the loss function 
��(y − �) was linked to a maximum likelihood inference based on an ALD(�, �) with 
local parameter � and shape parameter �:

Now, if Y is a discrete random variable, let Y take integer values in ℤ . We first derive 
a discrete version of ALD or a DALD and then show that the � th quantile � can also 
be estimated via this DALD.

To this end, note that the corresponding cumulative distribution function (c.d.f.) of 
an ALD in Eq.(1) can be written as:

Let S(y;�, �) be the survival function of this ALD, which is given by:

then, according to [27], the probability mass function (p.m.f.) of a DALD can be 
defined as:

with S(y;�, �) in Eq.(3). Note that when y ≥ �,

(1)f (y;�, �) = �(1 − �) exp
{
−��(y − �)

}
.

(2)F(y;𝜇, 𝜏) =

{
1 − (1 − 𝜏) exp {−𝜏(y − 𝜇)}, y ≥ 𝜇,

𝜏 exp {(1 − 𝜏)(y − 𝜇)}, y < 𝜇.

(3)
S(y;𝜇, 𝜏) = 1 − F(y;𝜇, 𝜏)

=

{
(1 − 𝜏) exp {−𝜏(y − 𝜇)}, y ≥ 𝜇,

1 − 𝜏 exp {(1 − 𝜏)(y − 𝜇)}, y < 𝜇,

(4)�(y;�, �) =

{
S(y;�, �) − S(y + 1;�, �), y ∈ ℤ,

0, otherwise,
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and similar deviation of it in the case of y < 𝜇 . It follows:

and the loss function (or check function) is

Remark 1 One could also incorporate scale parameter � in Eq.(4) to obtain

According to [6], any fixed � can be utilised to obtain asymptotically valid posterior 
inference and make the results asymptotically invariant. Here, we simply fix � as 1.

Given a sample Y = (Y1, Y2,⋯ , Yn) of the discrete response Y whose distribu-
tion F0(y) may be unknown, consider the DALD-based likelihood function for �:

Then, we have

S(y;�, �) − S(y + 1;�, �)

= (1 − �)

(
exp {−�(y − �)} − exp {−�(y + 1 − �)}

)

= (1 − �)

(
exp {−�(y − �)} − exp {−�(y − �)} exp {−�}

)

= (1 − �) exp {−�(y − �)}

(
1 − exp {−�}

)

= −(1 − �)

(
exp {−�} − 1

)
exp {−�(y − �)}

= ��(−sgn(y − �))
[
exp{−�� (sgn(y − �))} − 1

]
exp

{
−��(y − �)

}
,

(5)

�(y;�, �) = ��(−sgn(y − �))
[
exp{−��(sgn(y − �))} − 1

]

exp
{
−��(y − �)

}

y = ⋯ ,−1, 0, 1,⋯ ,

��(u) =
|u| + (2� − 1)u

2
.

�(y;�, �) = ��(−sgn(y − �))
[
exp

{
−��

(
sgn

(y − �

�

))}
− 1

]

exp
{
−��

(y − �

�

)}
,

y = ⋯ ,−1, 0, 1,⋯ .

(6)
L(Y|�) =

n∏
i=1[

��(−sgn(Yi − �))
[
exp−�� (sgn(Yi−�)) −1

]
exp

{
−��(Yi − �)

}]
.
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This means that the estimation of the �-th quantile � of a discrete random variable Y 
with respect to the loss function ��(⋅) is equivalent to maximization of the likelihood 
function Eq.(6) based on the DALD. According to [28], a Bayesian inference of � 
can be developed. That is, if �(�) represents prior beliefs about the �-th quantile � , 
and Y is observed data from the unknown distribution F0(Y) of the discrete random 
variable Y, then a posterior �(�|Y) which is valid and coherent update of �(�) can be 
obtained via the DALD-based likelihood function Eq.(6) and is given by:

Coherency here means if � denotes a probability measure on the space of � , then � is 
named coherent if

for all other probability measure �1 on the space of � in terms of expected loss of Y 
given by EF0(Y)

��(Y − �) . This coherency property aims to ensure the consistency 
of posterior from the proposed inference even if the ‘working likelihood’ in Eqs.
(3)–(A1) is misspecified.

3  Bayesian Quantile Regression with Discrete Responses

Generalized linear models (GLMs) extend the linear modelling capability to sce-
narios that involve non-normal distributions f (y;�) or heteroscedasticity, with f (y;�) 
specified by the values of � = E[Y|X = x] conditional on x , including to involve a 
known link function g, g(�) = xT� . Specifically, GLMs also apply to the so-called 
‘exponential’ family of models, which typically include Poisson regression with log-
link function.

When we are interested in the conditional quantile QY (�|x) of a discrete response, 
according to [7], we could still cast the problem in the framework of the gener-
alized linear model, no matter what the original distribution of the data is, by 
assuming that (i) f (y;�) follows a DALD in the form of Eqs.(5) or (A1) and (ii) 
g(�) = xT�(�) = QY (�|x) for any 0 < 𝜏 < 1.

When covariate information such as a covariate vector X is available, quan-
tile regression denoted by QY (�|X) for � is introduced. Without loss of generality, 

argmax
�

L(Y|�)
= argmax

�

log L(Y|�)

= argmax
�

{
−

n∑
i=1

��(Yi − �)

}

= argmin
�

n∑
i=1

��
(
Yi − �

)
.

(7)�(�|Y) ∝ �(�)L(Y|�).

� ��(Y − �)dF0(Y)�(d�) ≤ � ��(Y − �)dF0(Y)�1(d�),
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consider a linear regression model for QY (�|X) : QY (�|X) = XT� , where � is the 
regression parameter vector.

Given observations Y = (Y1, Y2,⋯ , Yn) of the discrete response Y, one of the 
aims in regression analysis is the inference of � . Let �(�) be the prior distribution 
of � , then the posterior distribution of � , �(�|Y) is given by

where the likelihood function L(Y|�) is given by:

The numerical computation of the posterior distribution can be carried out by the 
Metropolis-Hastings algorithm. That is, we first generate a candidate �∗ according to 
a random walk, which results in a symmetric proposal distribution in the Metropolis 
algorithm. Then, accept or reject �∗ for � according to the acceptance probability 
p(�∗|�) = min

(
1,

L(y|�∗)
L(y|�)

)
 around 30%. We always suggest to throw away at last 

30% of the iterations at the beginning of an MCMC run or ‘burn-in’ period to make 
sure the chain to reach stationarity.

Besides the coherent property discussed in Sect.  2 for posterior distribution 
�(�|Y) , it is important to verify the existence of the posterior distribution when 
the prior of � is improper, i.e,

or, equivalently,

Moreover, it is preferable to check that the existence of posterior moments of the 
regression parameters is entirely unaffected by improper priors and quantile index � 
([29] and among others), i.e,

where rj denotes the order of the moments of �j.
To this end, we have the following conclusion:

Theorem 3.1 Assume the posterior is given by Eq.(8) and �(�) ∝ 1 , then all poste-
rior moments of � in Eq.(9) exist.

The proof of Theorem 3.1 is available in the Supplementary Materials.

(8)�(�|Y) ∝ �(�)L(Y|�),

L(Y|�) =
n∏
i=1

[
��(−sgn(Yi − XT

i
�))

[
exp−�� (sgn(Yi−X

T
i
�)) −1

]

exp
{
−��(Yi − XT

i
�)
}]
.

0 < E{𝜋(�|Y)} < ∞,

0 < E{𝜋(�)L(Y|�)} < ∞.

(9)E

[(
m∏
j=0

|𝛽j|rj
)
|||Y
]
< ∞,



1 3

Journal of Statistical Theory and Practice           (2021) 15:73  Page 7 of 19    73 

4  Bayesian Expectile Regression for Discrete Responses

Instead of defining the �-th quantile of a response Y by argmin
�

E
(
��(Y − �)

)
 , [30] 

defined the �-th expectile of Y by

in terms of an asymmetric quadratic loss function

where � ∈ (0, 1) determines the degree of asymmetry of the loss function. Note that 
� is typically not equal to � , although there is a one-to-one relationship between �-th 
quantile and �-th expectile ([31]).

Corresponding to �(E)
�
(u) , we can define an asymmetric normal distribution 

(AND) whose density function is given by

where k = 2√
�

√
�(1−�)√
�+

√
1−�

 , � and � are the location parameter and shape parameter, 
respectively.

The corresponding c.d.f. of the AND can be written as:

where Φ(⋅) denotes the c.d.f. of the standard normal distribution.
Therefore, based on the survival function S(E)(y;�, �) = 1 − F(E)(y;�, �) , we can 

derive the p.m.f. of the DAND by following the same procedure as in Eq.(4). In 
fact, note that

then, for y ∈ Z,

we have

(10)Expectile�(Y) = argmin
�

E
(
�
(E)

�
(Y − �)

)
,

𝜌
(E)

𝜃
(u) = u2|𝜃 − I(u < 0)|,

(11)f (E)(y;𝜇, 𝜃) = k

{
exp

{
−𝜃(y − 𝜇)2

}
, y ≥ 𝜇,

exp
{
(𝜃 − 1)(y − 𝜇)2

}
, y < 𝜇,

(12)

F(E)(y;𝜇, 𝜃)

=

⎧
⎪⎨⎪⎩

k
�

𝜋

𝜃
Φ
�√

2𝜃(y − 𝜇)
�
+

k

2

��
𝜋

1−𝜃
−
�

𝜋

𝜃

�
, y > 𝜇,

k
�

𝜋

1−𝜃
Φ
�√

2(1 − 𝜃)(y − 𝜇)
�
, y ≤ 𝜇,

𝜌𝜃(sgn(y − 𝜇)) =

{
𝜃(y − 𝜇), y > 𝜇,

−(1 − 𝜃)(y − 𝜇) y ≤ 𝜇,

�(E)(y;�, �) = S(E)(y;�, �) − S(E)(y + 1;�, �)

=F(E)(y + 1;�, �) − F(E)(y;�, �),
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Now, if Y is a discrete random variable with unknown distribution function F0(y) , 
then given a sample Y = (Y1, Y2,⋯ , Yn) of Y, the �-th expectile of Y is estimated by 
the minimization of the loss function �(E)

�
 or argmin

�

∑n

i=1
�
(E)

�

�
Yi − �

�
 . Consider the 

DAND-based likelihood function:

We can see that the expectile � can also be estimated equivalently by the maximiza-
tion of the likelihood function L(E)(Y|�) in Eq.(14). In fact,

(According to Lagrange mean value theorem ∫ b

a
�(u)du = �(�)(b − a),)

where �(⋅) denotes the p.d.f. of the standard normal distribution.
Again, according to [28], a Bayesian inference of the expectile � can be devel-

oped. That is, a coherent posterior �(�|Y) for the update of �(�) exists and is given 
by �(�|Y) ∝ �(�)L(E)(Y|�) with the likelihood function L(E)(Y|�) in Eq.(14). 
Along with the similar discussion in Sect.  3, we can prove that the posterior dis-
tribution under this Bayesian inference is proper with regarding to improper priors 

(13)
�(E)(y;�, �) = k

�
�

��(sgn(y − �))

�
Φ
�√

2��(sgn(y − �))(y + 1 − �)
�

− Φ
�√

2��(sgn(y − �))(y − �)
��

, y = ⋯ ,−1, 0, 1,⋯ .

(14)

L(E)(Y��) =
n�
i=1

�
k

�
�

��(sgn(Yi − �))

�
Φ
�√

2��(sgn(Yi − �))
�
Yi + 1 − �

��

− Φ
�√

2��(sgn(Yi − �))
�
Yi − �

����
.

argmax
�

L(E)(Y��)

= argmax
�

n�
i=1

�
Φ
�√

2��(sgn(Yi − �))
�
Yi + 1 − �

��

−Φ
�√

2��(sgn(Yi − �))
�
Yi − �

���

= argmax
�

n�
i=1

∫
√
2��(sgn(Yi−�))(Yi+1−�)

√
2��(sgn(Yi−�))(Yi−�)

�(u)du

= argmax
�

[
exp

{
−��(sgn(Yi − �))

n∑
i

(
Yi − �

)2
}]

= argmax
�

[
−��(sgn(Yi − �))

n∑
i

(
Yi − �

)2
]

= argmin
�

n∑
i=1

�
(E)

�

(
Yi − �

)
,



1 3

Journal of Statistical Theory and Practice           (2021) 15:73  Page 9 of 19    73 

for regression parameter � in the expectile regression model � = XT� , if covariate 
information X is available. The corresponding proofs are available in the Supple-
mentary Materials.

5  Numerical Analysis

In this section, we implement the proposed method to illustrate the Bayesian quan-
tile regression for discrete responses via Monte Carlo simulation studies and one 
real data analysis. In all numerical analyses, we follow standard practice by setting 
the variance of random-walk MH sampling to tune the proposal distribution to get 
around a 0.25–0.3 acceptance rate. We discard the first 10000 of 20000 runs in every 
case of MCMC outputs and then collect a sample of 10000 values to calculate the 
posterior distribution of each of regression coefficients in � . All numerical experi-
ments are carried out on one Intel Core i5-3470 CPU (3.20GMHz) processor and 8 
GB RAM.

5.1  Simulated Example 1

Consider a simple regression model for which the sample Yi(i = 1, 2,⋯ , n) is counts 
and follows a Poisson distribution with parameter 3 and a Binomial distribution with 
parameters 20 and 1/5, respectively. 500 simulations for each case of � ∈ {0.05, 
0.25, 0.50, 0.75, 0.95} and n ∈ {200, 1000} are performed. The quantile regres-
sion Q�(Y) = �(�) is a constant depending on � only. Table 1 compares the posterior 
means with the true values of �(�) for each case under 500 simulations. Moreover, 
the expectile regression Expectile�(Y) = �(�) is also a constant depending on the 
�-th expectile. Table 2 compares the posterior means with the true values of �(�) 

Table 1  Posterior mean and 
posterior standard deviations 
(S.D.) of �(�) for quantiles from 
simulated example 5.1

� n = 200 n = 1000

Mean S.D. Mean S.D. True value

Case 1 : Y ∼ Pois(3)

0.05 1.191 0.119 1.037 0.024 1
0.25 2.103 0.072 2.009 0.006 2
0.50 3.097 0.069 3.007 0.006 3
0.75 4.316 0.157 4.149 0.043 4
0.95 6.438 0.321 6.228 0.116 6
Case 2 : Y ∼ Binom(20, 1∕5)

0.05 1.255 0.110 1.028 0.007 1
0.25 3.139 0.078 3.011 0.009 3
0.50 4.175 0.109 4.030 0.011 4
0.75 5.453 0.182 5.441 0.066 5
0.95 7.430 0.310 7.166 0.115 7
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obtained via an empirical estimation in Eq.(10) for different cases. Both Tables 1 
and 2 show that the results obtained by the proposed Bayesian inference are reason-
ably accurate.

5.2  Simulated Example 2

We consider a discrete quantile linear regression:

where n and p denote the number of observations and independent variables, 
respectively. �k, k = 1,… , p are the regression parameters. Let the random item �i 
follows a Poisson distribution with parameter 3. 500 simulations for each case of 
� ∈ {0.25, 0.50, 0.75} and n ∈ {300, 1500} are performed.

Without loss of generality, let p = 2 in Eq.(15):

where covariate X1,i is generated from a Geometric distribution with probability 1/4, 
and covariate X2,i is generated from a Poisson distribution with parameter 2. We gen-
erate the training data with �i = {6, 2,−4}, i = {0, 1, 2} and �i ∼ Pois(3) . 500 simu-
lations for each case of � ∈ {0.25, 0.50, 0.75} and n1 ∈ {200, 1000} are performed.

Therefore, the corresponding discrete quantile function is of the form

Although we have chosen improper flat priors in Simulated example 1 above, one 
may use other priors for analysis in a relatively straightforward fashion. For example, 

(15)Yi = �0 +

p∑
k=1

�kXik + �i, i = 1,⋯ , n; k = 1,⋯ , p,

Yi = �0 + �1Xi1 + �2Xi2 + �i, i = 1,⋯ , n,

Q�(Y|X) = �0(�) + �1(�)X1 + �2(�)X2.

Table 2  Posterior mean and 
posterior standard deviations 
(S.D.) of �(�) for expectiles 
from simulated example 5.1

� n = 200 n = 1000

Mean S.D. Mean S.D. True value

Case 1 : Y ∼ Pois(3)

0.05 1.266 0.103 1.242 0.049 1.24
0.25 2.268 0.072 2.270 0.034 2.27
0.50 2.943 0.070 2.972 0.033 3
0.75 3.662 0.077 3.717 0.033 3.80
0.95 5.029 0.136 5.016 0.061 5.15
Case 2 : Y ∼ Binom(20, 1∕5)

0.05 2.321 0.109 2.072 0.049 2.11
0.25 3.360 0.071 3.256 0.032 3.23
0.50 4.086 0.070 4.064 0.032 4
0.75 4.825 0.077 4.869 0.034 4.80
0.95 6.051 0.128 6.294 0.056 6.15
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along with [32], conditional conjugate prior distribution in the Normal-Gamma 
Inverse form for the unknown parameters � can be obtained. Given � ∈ (0, 1) , for 
any a > 0 , the prior mean and covariance matrix for � are given, respectively, by

where �a is anticipated values, and g > 0 is a known scaling factor. Various values 
of g have been used in the context of variable selection and estimation. [33] per-
formed variable selection using splines and suggested that the value of g is in the 
range 10 ≤ g ≤ 1000 . Following the discussions in [32, 34] and among others, we 
set g = 100 in this paper. Thus, given � and �a� , the conditional prior distribution 
for � is readily available. Here, we suggest a particular form of a conjugate Normal-
Inverse Gamma family for � given by

For simplicity, let E(�) and Cov(�) be the fitted values obtained by the semi-para-
metric jittering approach ([25]), as presented in Table 3.

Under the proposed Bayesian inference in Sect. 2, Table 4 reports the posterior 
mean, standard deviation and 95% credible interval for the regression parameters 
�0(�), �1(�) and �2(�) , under 500 simulations with �i ∼ Pois(3) , based on a conjugate 
Normal-Inverse Gamma prior for � . It can be shown from Table 4 that under differ-
ent prior settings, the posterior estimates of regression coefficients obtained from the 
working likelihood analysis are consistent .

5.3  Analysis of Length of Stay (LoS) in Days

The data are extracted from the Worcester Heart Attack Study with 500 observations 
([35]), which describes factors associated with trends over time in the incidence and 
survival rates following hospital admission for acute myocardial infarction. We aim 
to explore the relationship between the LoS and its associated factors such as age, 
gender (years), hr (initial heart rate by beats per minute), BMI (body mass index by 

E(�) = �a�

Cov(�) = 2g(XVXT )−1,

�|V ,X ∼ N(�a, 2g(XVX
T )−1).

Table 3  The prior mean and 
covariance matrix for �

� �
a

Cov(�)

0.25 [1.882, 0.489, −3.344] ⎡⎢⎢⎣

28.696 − 27.642 224.511

−27.642 27.209 − 221.267

224.512 − 221.267 1802.613

⎤⎥⎥⎦
0.50 [2.691, 0.349, −1.482] ⎡⎢⎢⎣

0.107 0.007 − 0.114

0.007 0.003 0.003

−0.114 − 0.013 0.136

⎤⎥⎥⎦
0.75 [2.320, 0.271, −0.674] ⎡⎢⎢⎣

0.001 0.000 − 0.0010

0.000 0.000 − 0.001

−0.001 − 0.000 0.002

⎤⎥⎥⎦
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kg∕m2 ), av3 (complete heart block), cvd (history of cardiovscular disease), sysbp 
(initial systolic blood pressure by mmHg) and diasbp (initial diastolic blood pressure 
by mmHg). Among covariates, gender (0=Male, 1=Female), av3 (0=No, 1=Yes) 
and cvd (0=No, 1=Yes) are binary variables. Age, hr, BMI, sysbp and diasbp as the 
continuous covariates are detailed in Table 5. The distribution of LoS is skewed and 
one is usually more interested in long stay or short stay than an average stay ([36, 
37] and among others). We aim to investigate how these factors affect the LoS, from 
short LoS, to middle LoS and long LoS, so that we carry out the analysis in a com-
plete range of the quantiles � ∈ {0.05, 0.1, 0.25, 0.50, 0.75, 0.95}.

Therefore, we fit a quantile regression model for LoS of the form:

Table 6 shows the posterior mean of all regression parameters under selected quan-
tiles. The boxplots in Fig.  1 also display the posterior mean of these regression 
parameters across �s.

The values of the posterior mean of �1 , �3 , �7 and �8 in Table 6 clearly indicate that 
age and all initial states of heart rate, systolic blood pressure and initial diastolic 
blood pressure, have little effect on LoS (days), particularly on the low quantiles of 

Q�(Y|X) = �0(�) + �1(�)Age + �2(�)Gender + �3(�)hr + �4(�)BMI

+ �5(�)av3 + �6(�)cvd + �7(�)sysbp + �8(�)diasbp.

Table 4  Posterior mean, standard deviation and 95% credible interval of �
k
(�), k = 0, 1, 2 from simulated 

example 2 based on a conjugate Normal-Inverse Gamma prior for �

�
k
(�) n

1
= 200 n

1
= 1000

CI Mean S.D CI Mean S.D value

�0(.25) (7.894, 8.308) 8.075 0.111 (7.678, 8.131) 7.733 0.111 8
�0(.50) (8.881, 9.277) 9.061 0.098 (9.009, 9.051 ) 9.025 0.016 9
�0(.75) (9.697, 10.483) 10.086 0.186 (9.980, 10.116) 10.031 0.036 10
�1(.25) (1.976, 2.050) 2.007 0.020 (1.897, 2.016) 2.007 0.030 2
�1(.50) (1.926, 2.036) 1.996 0.025 (1.998, 2.003) 2.000 0.002 2
�1(.75) (1.926, 2.070) 1.999 0.034 (1.995, 2.018) 2.004 0.006 2
�2(.25) (−4.043, −3.867) −3.977 0.042 (−4.006, −3.999 ) −4.004 0.004 −4
�2(.50) (−4.032, −3.881) −3.979 0.042 (−4.001, −3.983) −3.998 0.003 −4
�2(.75) (−4.072, −3.679) −3.930 0.101 (−4.014, −3.970) −3.996 0.010 −4

Table 5  Statistical description 
of the continuous covariates 
in data

Max. Min. Mean S.D.

Age 104 30 69.850 14.491
hr 186 35 87.018 23.586
BMI 44.839 13.045 26.614 5.406
sysbp 244 57 144.7 32.295
diasbp 198 6 78.270 21.545
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its distribution, whereas the values of the posterior mean of �2 , �5 and �6 show that 
gender, complete heart block and history of cardiovscular disease are those factors 
to affect the LoS most. Specifically, female patients tend to stay longer than male 
patients generally once they got those health problems and admitted into hospitals. 
Similarly, patients suffering complete heart block or history of cardiovscular disease 
stay much longer than patients without these problems, particularly for very long 
stay needed.

Based on the posterior mean of �4 in Table 6, the effect on LoS from BMI is not 
big but generally negative except on the median and 95% quantile of the distribution 
of LoS.

If we compare the fitted median quantiel regression of LoS with a Poisson mean 
regression below,

We can see that both the proposed median model and Poisson mean model provide 
consistent conclusion, but Poisson regression can not explored the short and long 
LoS.

Unlike the jittering method for count (Machado and Silva, 2005), the proposed 
method in this paper is density function based Bayesian inference. However, if we 
compare our findings to the results from the count model of Machado and Silva 
(2005) in Table 7, we can draw similar conclusions to those from Table 6. The dif-
ference is that the proposed method can show that complete heart block or history of 
cardiovscular disease increase the long LoS significantly, which is true in real situ-
ations and much significant than what explored in the count model of Machado and 
Silva (2005).

Mean∕LoS =1.388 + 0.001(�)Age + 0.140(�)Gender + 0.003(�)hr

− 0.005(�)BMI + 0.113(�)av3 + 0.071(�)cvd

− 0.001(�)sysbp + 0.003(�)diasbp.

Table 6  Posterior mean of regression parameters with different quantiles under the proposed method

� �
0

�
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

0.05 −0.382 0.007 0.751 0 0.021 0.072 −0.187 0.005 −0.001
0.1 −0.803 0.024 0.337 −0.002 0.036 −0.445 −0.224 0.004 −0.001
0.25 2.023 0.022 0.283 −0.004 0.012 −0.934 −0.309 −0.005 0.003
0.5 2.472 0.02 0.393 0.006 −0.006 0.12 0.133 −0.004 0.008
0.75 2.383 0.014 2.437 0.02 0.029 2.319 0.649 −0.004 0.01
0.9 1.221 0.023 1.785 0.051 0.023 3.171 1.73 −0.011 0.031
0.95 3.85 0.028 1.507 0.06 −0.051 4.341 2.181 −0.015 0.034
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6  Discussion

Discrete responses or count data are common in many disciplines. Regression 
analysis of discrete responses has been an active and promising area of research. 
Data with discrete responses may present features of skewness, fat-tailed and lepto-
kurtic. Quantile regression is a more suitable tool to analyse this type of data than 
mean regression. We propose Bayesian quantile regression and Bayesian expectile 
regression for discrete responses. This is achieved by using a discrete asymmetric 
Laplace distribution and discrete asymmetric normal distribution to form the like-
lihood function, respectively. The method is shown robust numerically and coher-
ent theoretically. The Bayesian approach which is fairly easy to implement and pro-
vides complete univariate and joint posterior distributions of parameters of interest. 
The posterior distributions of the unknown model parameters are obtained by using 
M-H algorithm implemented in R. We have shown promising results through Monte 
Carlo simulation studies and one real data analysis.

Appendix A. Proof of Theorem 3.1

A parametrization of the DALD in Eq.(5) leads to the following alternative form,

where the parameters p and q ( 0 < p, q < 1 ) are related to � via the relationships 
p = exp {−�} and q = exp {1 − �}.

Lemma A.1 The p.m.f. �(t) defined in Eq.(A1) is bounded by p|t|(1 − q) log p and 
q|t|(1 − p) log q.

Proof of Lemma A.1 Expand �(t) as a mixture of g, consider 0 < q ≤ p < 1,

(A1)𝜙(y;𝜇, p, q) =

{
py−𝜇(1 − p) log q, y ≥ 𝜇, y ∈ ℤ

qy−𝜇(1 − q) log p, y < 𝜇, y ∈ ℤ

Table 7  Posterior mean of regression parameters with different quantiles under Machado and Silva 
(2005)

� �
0

�
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

0.05 −0.667 0.007 0.302 0.001 0.015 0.044 −0.130 0.003 −0.000
0.1 −0.177 0.010 0.132 −0.001 0.012 −0.080 −0.080 0.012 −0.000
0.25 0.999 0.007 0.068 −0.001 0.003 −0.301 −0.059 −0.002 0.002
0.5 1.144 0.004 0.105 0.002 −0.002 0.121 0.045 −0.001 0.002
0.75 1.201 0.002 0.348 0.003 0.004 0.364 0.079 −0.001 0.002
0.9 1.230 0.005 0.1816 0.006 0.001 0.107 0.210 −0.002 0.004
0.95 2.560 −0.001 0.095 0.007 −0.020 0.453 0.261 −0.001 0.001
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Also,

Now, it is known that g(t;a) = a|t|(a − 1) log a with 0 < a < 1 is a increasing func-
tion of t. Therefore, �(t) has upper bound h(p, q)q|t| and lower bound h(q, p)p|t| . The 
same procedure may be easily adapted to q ≥ p .   ◻

Lemma A.2 For any constant a(0 < a < 1) and sample size n > m,

Proof of Lemma A.2 Without loss of generality and consider m = 1 for simplicity, 
then XT

i
� = �0 + �1X1i,

Since the double-integration 
∫
ℝ2 |U|r0 exp(−|U + V + c1|)|V1|r1 exp(−|U + V + c2)dUdV  is finite for any con-

stants c1, c2 , r0 ≥ and r1 ≥ 0 , Lemma 2 is proved.   ◻

Theorem 3.1 below establishes that in the absence of any realistic prior infor-
mation we could legitimately use an improper uniform prior distribution for all 
the components of �.

Theorem  3.1 Assume the posterior is given by Eq.(8) and �(�) ∝ 1 , then all 
posterior moments of � in Eq.(9) exist.

Proof of Theorem 3.1 We need to prove that

is finite. According to Lemma A.1 and Lemma A.2, it suffices to be proved.   ◻

𝜙(t) = p|t|(1 − p) log q�(t ≥ 0) + q|t|(1 − q) log p�(t < 0)

≤ (1 − q) log p
(
p|t|�(t ≥ 0) + q|t|�(t < 0)

)

≤ p|t|(1 − q) log p.

𝜙(t) = p|t|(1 − p) log q�(t ≥ 0) + q|t|(1 − q) log p�(t < 0)

≥ (1 − p) log q
(
p|t|�(t ≥ 0) + q|t|�(t < 0)

)

≥ q|t|(1 − p) log q.

∫
m∏
k=0

|𝛽k|rk
n∏
i=1

exp{(log a)|Yi − XT
i
�|}d� < ∞.

�
ℝ2

|�0|r0 |�1|r1 exp
{

(log a)

n∑
i=1

|Yi − XT
i
�|
}

d�0d�1

≤ �
ℝ2

|�0|r0 exp
{
(log a)|�0 + �1X11 − Y1|

}|�1|r1

× exp
{
(log a)|�0 + �1X12 − Y2|

}
d�0d�1.

∫
ℝm+1

m∏
k=0

|�k|rk exp
{

(log a)

n∑
i=1

|Yi − XT
i
�|
}

d�,
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Appendix B. Property in Sect. 4

Under Bayesian inference of expectile � for the discrete random variable Y, it can 
be proved that the posterior distribution is proper with regards to improper priors 
for the unknown parameters.

Similar to Lemma A.1, the p.m.f �(E)(t) defined in Eq.(13) is bounded. Con-
sider � ≤ 0.5,

Also,

where k = 2√
�

√
�(1−�)√
�+

√
1−�

 , Φ(⋅) denotes the c.d.f. of the standard normal distribution.

Now, it is known that 
√

�

1−�
≤
√

1−�

�
 for � ≤ 0.5 . Therefore, �(E)(t) has upper 

bound k
√

2�(1−�)

�
Φ�(t) and lower bound k

√
2��

1−�
Φ�(t) . The same procedure may be 

easily adapted to � ≥ 0.5.
Then, for n > m , we also have

𝜙(E)(t) = k

�
𝜋

𝜃

�
Φ
�√

2𝜃(t + 1)
�
− Φ

�√
2𝜃t

��
�t>0

+ k

�
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1 − 𝜃

�
Φ
�√

2(1 − 𝜃)(t + 1)
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− Φ

�√
2(1 − 𝜃)t

��
�t≤0

≤ k

�
𝜋
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��
Φ
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2𝜃(t + 1)
�
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2𝜃t
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�t>0

+ k

�
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��
Φ
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= k

�
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Similarly, consider m = 1 for simplicity, then XT
i
� = �0 + �1X1i,

As is known to all that the double-integration is finite for any constants.
Therefore, assume the likelihood is given by Eq.(8) and �(�) ∝ 1 , then it can 

be proved that all posterior moments of � in Eq.(9) exist.

Appendix C. Worcester Heart Attack Study Data Set

Data set used in the illustration of the proposed novel method in Sect. 5.3 is avail-
able in R-package smoothHR.
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