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1. Introduction and Literature Background 

The concept of externalities is central to the study of the economics of networks. In the presence 

of externalities, one derives a payoff not only from the action taken by oneself, but also from the 

actions of others. In recent years, scholars have begun to focus on “local externalities,” where one’s 

payoff is affected by the actions of a specific subset of individuals (one’s neighbors) in the 

population. For example, if one person adopts a new technology to reduce pests on his farm, then 

nearby farms (and only the farms nearby) will also benefit. If one country takes effort to reduce 

pollution, the environment of adjacent countries also improves. In pharmaceutical or high-tech 

industries, research discoveries by one firm may spillover to its trade partners (neighbors). The 

theories involving local externalities offer insights into how the outcomes of games and social 

welfare are shaped by the interaction (network) structure. We refer interested readers to the 

literature reviews by Jackson and Zenou (2015) and Jackson et al. (2017).  

However, most theoretical works on network games assume that individuals pursue their self-

interests, which would seem inapplicable in many relevant social settings. For example, in a 

friendship or kinship network, agents may consider the well-being of their friends or relatives 

(neighbors) when playing the neighborhood game. In the workplace, employees may derive their 

utilities by comparing their earnings and performances with those of their colleagues (neighbors). 

Collaborators on a project—or coauthors on a paper—may place the goal of their team prior to their 

individual gains. These give rise to the study of other-regarding preferences. Notably, concerning 

this matter, see the seminal discussions in Kahneman et al. (1986a) and Kahneman et al. (1986b) , 

as well as models and analyses in Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Charness 

and Rabin (2002) and the references therein. To the best of our knowledge, our paper is among the 

first to bridge the gap between research on network games and that on social preferences.  

Through both theoretical modeling and laboratory experiments, we demonstrate the 

significance of incorporating social preferences into the analysis of games on networks. We 

develop alternative models that incorporate aversion to inequality and pursuit of welfare into the 

neighborhood games. These models produce qualitatively different insights, which we test using 

data pertinent to various network configurations. 

In our model of inequality aversion [resp. welfare preference], players care not only about their 

pecuniary payoffs, but also about the fairness of the payoff distribution within their neighborhood 

[resp. welfare within their neighborhood]. In that sense, our models extend the seminal works of 

Fehr and Schmidt (1999) and Charness and Rabin (2002) into a network context. Further model 



 

comparisons based on empirical data reveal that the welfare model is more likely to capture subject 

behavior than inequality aversion and self interest when the economic return is relatively low, 

regardless of the network structures considered. When the economic return rises, the advantage of 

social preferences over self-interest in driving individual activities appears to differ by the 

underlying network topology. Specifically, in the star network, the welfare preference continues to 

outweigh inequality aversion and self-interest; whereas in the circle network, self-interest grows to 

an extent almost equally influential compared to social preferences.  

This paper contributes to the theories of network games. Bramoullé et al. (2014), Bramoullé 

and Kranton (2007) and Ballester et al. (2006) all investigate games with linear best replies. The 

games they study exhibit either strategic substitute or strategic complement. Another school of 

research studies network games under incomplete network information. Examples include 

Sundararajan (2007) on strategic complementary games as well as Galeotti et al. (2010) on such 

games and those with strategic substitutes. In addition, there is remotely related literature that 

concerns games and experiments with strategic substitutes on endogenously formed networks, such 

as Hojman and Szeidl (2008), Cho (2009), Galeotti and Goyal (2010) and van Leeuwen et al. 

(2020).2 Moreover, other studies (Zhang and Chen, 2019; Fainmesser and Galeotti, 2016; Bloch 

and Quérou, 2013; Candogan et al., 2012) explore the pricing issues based on network games. 

Elliott and Golub (2013) examine the design of networks that implement the Pareto-efficient 

outcomes of a public goods game. For more comprehensive reviews on the literature of network 

games, see the recent surveys of Jackson and Zenou (2015) and Jackson et al. (2017). In all the 

works cited so far, a common assumption is that individuals care only about their own payoffs. 

Conversely, the theories we explore here consider prosocial motives and assume that the agent’s 

utility is also affected by the payoffs of others in their network neighborhood. In the literature of 

network games, Bourlès et al. (2017) and Ghiglino and Goyal (2010) are in a similar spirit to our 

work. Ghiglino and Goyal (2010) assume that a player derives utility from comparing her own 

consumption with that of her neighbors, whereas in our model such comparison occurs between 

players’ payoffs. We thus extract qualitatively different insights from that in Ghiglino and Goyal 

 
2  The literature devoted to network formation, which dates back to the seminal works of Jackson and 

Wolinsky (1996) and Bala and Goyal (2000), constitutes a separate branch of research on social and economic 

networks. We are aware of that literature but will not include it in the review, given the focus of our research. 

Interested readers can find more relevant discussions in the survey papers cited in the text, as well as in 

Jackson (2008) and Goyal (2009).  



 

(2010).3 Bourlès et al. (2017) examines a kind of player utility that resembles our networked 

welfare preference. However, they study a game of linear transfers while our game features 

nonlinear public goods. We also study inequality aversion in network games, which is not present 

in Bourlès et al. (2017). In addition to the differences noted above, our work is distinguished from 

both Bourlès et al. (2017) and Ghiglino and Goyal (2010) by our adoption of an experimental 

approach. 

Directly related to our paper is a handful of laboratory studies on network games. Earlier works 

such as Keser et al. (1998), Berninghaus et al. (2002), Cassar (2007) and Corbae and Duffy (2008) 

only consider bilateral (coordination or cooperation) games played between each pair of connected 

players. This stream of research is reviewed in Kosfeld (2004). More recent experimental works, 

e.g., Judd et al. (2010), Rosenkranz and Weitzel (2012), Berninghaus et al. (2013), Charness et al. 

(2014), Boosey and Issac (2016) and Boosey (2017) examine games that one plays multilaterally 

with all neighbors. More specifically, the games explored in Judd et al. (2010) involve coordination, 

and those in Rosenkranz and Weitzel (2012), Berninghaus et al. (2013), Boosey and Issac (2016) 

and Boosey (2017) all feature public goods.4 Charness et al. (2014) investigate the games under 

both complete and incomplete information.5 Our work falls into the latter (multilateral game) 

category, but it differs from the existing literature in two important ways. First, we develop formal 

behavioral models—in the context of network games—of both inequality aversion and welfare 

preference. Further, notably, these models apply to more general network structures than the ones 

explored in the prior experimental literature. Second, we tested competing hypotheses on network 

behavior, thus estimate the behavioral parameters, and interpret the estimation results in relation to 

the network topology.  

 
3 For example, the player’s utility is negatively affected by the consumption of her neighbors in Ghiglino and 

Goyal (2010), but it is not necessarily so in our model.  
4 The public goods setting in the study of Rosenkranz and Weitzel (2012) borrows from that of Bramoullé and 

Kranton (2007), and exhibits nonlinearity. Berninghaus et al. (2013), Boosey and Issac (2016) and Boosey (2017) 

investigate linear public goods, which is a classic environment for experimental research. In Berninghaus et 

al. (2013), players on a square network choose both the size and the location of a contribution, which generates 

a geographically decayed benefit for neighbors. In Boosey and Issac (2016), the public goods contribution 

occurs on a complete network, whereas monitoring and punishment are restricted by some specific network 

layouts (i.e., complete network, circle, or a particular asymmetric architecture). Boosey (2017) contrasts the 

behavior of subjects on a circle network who observe their neighbors’ average payoff (or average contribution) 

with that of subjects who are informed of the average payoff (or average contribution) regarding all players.     
5 Charness et al. (2014) show that subjects under complete network information and strategic complements 

maximize aggregate payoffs to a considerable extent (Results 2, 6 of Charness et al. (2014)). This could be 

viewed as an analogy to our finding regarding the prevalence of welfare preference. Nevertheless, our setup 

allows for a systematic test of welfare preference against inequality aversion based on formal analytical 

models, which would not be available in the setting of Charness et al. (2014).  



 

This paper is also akin to the research on social comparison, which examines how an agent’s 

behavior changes in response to the influence of her peers. Most of the extant literature focuses on 

the case where individuals compare their attributes with the aggregate of the entire group—for 

instance, the average or median score across the population (see, among others, Frank, 1985; 

Hopkins and Kornienko, 2004; Chen et al., 2010; Card et al., 2012). Nevertheless, there are some 

recent studies (e.g., Roels and Su, 2014) that inspect social comparisons when the agents are 

exposed to full group information. Such exposure means, in our terminology, that the reference 

network is complete (i.e., everyone’s activity is visible to everyone else). Furthermore, Immorlica 

et al. (2017) investigate social comparison in the presence of an explicit reference network. In their 

paper, social status is defined locally (i.e., players compare only with their neighbors), and the 

comparison is in one direction (i.e., players incur disutility only when their status is inferior to that 

of another player). Our work is distinguished from the literature on social comparison primarily by 

our consideration of payoff externalities—we consider the case where neighbors can not only 

observe each other’s earnings, but also affect each other’s earnings by their own actions. As such, 

the network in our study does not only function as a reference structure (“who receives information 

on whom” or “who is visible to whom”) but also defines a payoff structure (“whose decision affects 

whose profit”). That explains why our findings substantially deviate from those of works in the 

social comparison vein. For instance, we observe scenarios in which the subjects are more 

motivated to maximize the welfare of their neighborhoods than to enforce the fairness of payoff 

distribution.  

 The network externality in our paper can be interpreted as a kind of public goods shared by 

neighbors. Most experimental research on public goods employs a linear setting for the benefit and 

cost of providing the good (Rege and Telle, 2004; Masclet and Villeval, 2008; Fischbacher and 

Gächter, 2010; Weimann et al., 2012 – see also the reviews by Chaudhuri, 2011 and Ledyard et al., 

1995). However, we adopt a nonlinear setup that features a strictly positive contribution as the 

player’s dominant strategy. Much as in Keser (1996), Isaac and Walker (1998) and Cason and 

Gangadharan (2015), the presence of an interior optimum enables us to test the deviation from the 

standard prediction toward both directions. More importantly, the nonlinear setting facilitates the 

estimation of behavioral parameters (which enter the equilibrium prediction).6  

As for the rest of the paper, Section 2 introduces the models of social preferences in network 

games. In Section 3, we present the experimental design and protocols. Section 4 records the 

 
6 In the linear setting, some behavioral parameters only show up in the conditions that determine which 

equilibrium takes place but do not enter the equilibrium prediction, thus creating difficulty for the estimation.  



 

experimental results, for which we conduct both aggregate-level and individual-level analyses. 

Subsequently, Section 5 documents a second experiment aimed at studying the interaction between 

network architecture and economic stake. Finally, Section 6 presents the conclusion. As a note on 

the writing style, we will randomly use “his” and “her” when referring to an anonymous third-

person throughout this paper.   

2. Model 

2.1. Base model 

The network consists of a set of players and the connections between them. Player 𝑖 and 𝑗 

are [not] connected if 𝑔𝑖𝑗 = 1 [0] . We consider undirected links—𝑔𝑖𝑗 = 𝑔𝑗𝑖—and normalize 

𝑔𝑖𝑖 = 0 . Connected players are neighbors. The set of player 𝑖 ’s neighbors constitutes her 

neighborhood. We use 𝑑𝑖 ≔ Σ𝑗𝑔𝑖𝑗  to denote the number of neighbors player 𝑖 has or the degree 

of player 𝑖.  

Each player 𝑖 makes a (nonnegative) contribution, 𝑥𝑖. Player i’s payoff, 𝜋𝑖(𝒙), is determined 

by her own contribution 𝑥𝑖  (scalar) and the contributions of others, 𝒙−𝑖  (vector); and the 

combined vector 𝒙 ≔ (𝑥𝑖; 𝒙−𝑖) represents the action profile for all players.  

                           𝜋𝑖(𝒙) = 𝛿(𝑥𝑖 + ∑ 𝑔𝑖𝑗𝑥𝑗𝑗≠𝑖 ) −
1

2
𝑥𝑖
2.                   (1) 

This payoff setting reflects local externality. A player’s payoff is affected not only by her own 

action but also by the actions of those connected to her in the network. The payoff function also 

resembles a public goods setting, as for each individual player, everyone in her neighborhood 

(including herself) indiscriminately benefits from her contribution, while she alone bears the cost 

of contribution. Moreover, the setting features nonlinearity and an interior dominant-strategy 

equilibrium (in a similar spirit to that in Keser (1996)). If every player maximizes her payoff as in 

(1), there is a dominant strategy to contribute 𝛿 regardless of the player’s network position. This 

yields the first theoretical conjecture on the equilibrium play (Remark 1). 

REMARK 1 (Self-interest equilibrium). The players contribute 𝛿 units regardless of their network 

positions. 

Note that the presence of a dominant strategy in our experiment rules out the possibility of risk 

attitudes to affect behavior (because there is no risk in decision-making). At the same time, it largely 

reduces the cognitive burden associated with maximizing one’s own profit. As a result, the 

remaining bias in decision-making should be attributed to the concern for others’ profits—the 



 

social preference. We then develop two competing models that embed social preferences in 

network games. In Section 2.2 we examine a model of welfare preference, and Section 2.3 features 

a study of a model of inequality aversion. Both models assume that a player’s utility increases with 

her own payoff, while the models differ by the treatment of other’s payoffs in one’s utility function.  

2.2. The Model of Welfare 

In the welfare model, an individual’s utility amounts to a weighted sum of her own payoff and 

those of her neighbors. This model is based on the framework of Charness and Rabin (2002), but 

developed here into a network context. Formally, we have 

                     Π𝑖(𝒙) = (1 − ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 )𝜋𝑖(𝒙) + ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝜋𝑗(𝒙)𝑗 ,               (2) 

where 𝜋𝑖(𝒙) is player 𝑖’s pecuniary payoff defined in (1), and the coefficient 𝜆𝑖𝑗 captures the 

relative importance of player 𝑗’s payoff in 𝑖’s objective. The term 1 − ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗  is the weight 

that player 𝑖 reserves for her own monetary payoff, which we assume is nonnegative.7 If the total 

weight assigned to others’ payoffs, ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 , is equal to 1, player 𝑖 is purely altruistic or a 

disinterested individual who seeks to maximize the surplus of all other players. However, if 

∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 = 0, player 𝑖 becomes homo economicus as assumed in standard game theory. When 

the network is complete (𝑔𝑖𝑗 ≡ 1), our welfare model becomes a multi-person variant of the model 

described in the appendix of Charness and Rabin (2002). 8 We can also rewrite the welfare utility 

function as Π𝑖(𝒙) = (1 − ∑ 𝐿𝑖𝑗𝑗 )𝜋𝑖(𝒙) + ∑ 𝐿𝑖𝑗𝜋𝑗(𝒙)𝑗 , where 𝐿𝑖𝑗 ≔ 𝜆𝑖𝑗𝑔𝑖𝑗 . This expression can 

be interpreted as stating that the individual assigns different weights to different persons, where a 

nonzero weight may exist for a person not connected to the focal individual. Most of our results for 

the welfare model can be easily extended for this more general specification; however, here we 

write 𝜆𝑖𝑗𝑔𝑖𝑗 to separate the effect of the network structure from that of altruism.  

THEOREM 1 (Welfare equilibrium). The welfare equilibrium profile 𝒙∗ on network 𝐺 is such 

that, for each player 𝑖, 𝑥𝑖
∗ =

𝛿

1−∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗
. If also 𝜆𝑖𝑗 ≡ 𝜆𝑖 for all 𝑗, then 

 
7 Similar in spirit to the welfare preference in our paper, Neilson and Wichmann (2014) develop a model on 

the homophily among network neighbors in their valuations of an exogenous public good. Unlike Neilson 

and Wichmann (2014), we treat the public good as endogenous. Our paper also differs from theirs in that (i) 

we develop an additional model of inequality aversion, and (ii) the theoretical predictions of our models are 

contrasted and tested by laboratory experiment. 
8 We simplify certain aspects of the CR model (e.g., by removing the weight on the worst-off payoff) and also 

normalize the weights to put forth the central scheme of weighted welfare maximization and embed it into 

the network structure. 



 

                                  𝑥𝑖
∗ =

𝛿

1−𝜆𝑖𝑑𝑖
                                (3) 

All the proofs are provided in Appendix B. Under the welfare preference, a player cares about 

the collective wealth within her neighborhood. Hence, Theorem 1 states that a player’s contribution 

increases with ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 , or her connectivity weighted by the strength of her welfare concern. If 

one weights neighbors’ payoffs indiscriminately, then her equilibrium contribution level is 

increasing in the number of her neighbors (𝑑𝑖). In other words, a welfarist will raise his contribution 

when it benefits more people. As suggested in Theorem 1, the equilibrium play under welfare 

preference exhibits the following pattern.  

REMARK 2 (Welfare equilibrium). Players contribute more than 𝛿 independent of their network 

positions. Moreover, in a given network, players with more neighbors make higher contributions.  

2.3. The model of inequality aversion 

In the seminal work of Fehr and Schmidt (1999), a player suffers disutility if her payoff is either 

less or greater than that of any of her peers. In this section, we shall develop their model into a 

network context. To be specific, player 𝑖 maximizes her utility as follows: 

Π𝑖(𝒙) = 𝜋𝑖(𝒙) − ∑ 𝛼𝑖𝑗𝑔𝑖𝑗 (𝜋𝑗(𝒙) − 𝜋𝑖(𝒙))
+

𝑗 − ∑ 𝛽𝑖𝑗𝑔𝑖𝑗 (𝜋𝑖(𝒙) − 𝜋𝑗(𝒙))𝑗

+
,   (4) 

where 𝜋𝑖(𝒙) is one’s (pecuniary) payoff defined as in equation (1), (𝑦)+ ≔ max{𝑦, 0}, and the 

coefficients 𝛼𝑖𝑗  [𝛽𝑖𝑗] respectively represent the marginal reduction of player 𝑖’s utility for each 

unit by which her monetary payoff is lower [higher] than that of her neighbor 𝑗. We assume that 

∑ 𝛽𝑖𝑗𝑔𝑖𝑗𝑗 < 1 ∀𝑖.9 In our model, players are concerned about the fairness of payoff distributions 

within their social neighborhoods but not about the fairness over the entire society. This could be 

the case where individuals either (i) do not observe the payoffs of those who are not their friends 

or colleagues, or (ii) only use their friends or colleagues as their reference groups. 10  In our 

terminology, Fehr and Schmidt (1999) assume a complete network with everyone connected to 

everyone else. In contrast, our model generalizes Fehr and Schmidt (1999) by allowing an agent to 

 
9 This assumption is compatible with existing evidence that many subjects are far less averse to advantageous 

inequality than to disadvantageous inequality. See Loewenstein et al. (1989), Ferrer-i-Carbonell (2005), Ho 

and Su (2009), Immorlica et al. (2017) and the references therein. 
10 The existence of localized social comparison has garnered some empirical support, e.g. Luttmer (2005), 

Neumark and Postlewaite (1998).  



 

compare his or her payoff with a specific subset of the population; and it is the network structure 

that determines “who compares the profit with whom.”  

THEOREM 2 (equilibrium of Inequality Aversion). There exists a pure strategy equilibrium in the 

game with inequality aversion, with any given network structure.  

Theorem 2 establishes the existence of equilibrium in the game of inequality aversion. However, 

note that multiple equilibria may exist under Theorem 2, which will be made clearer when we 

introduce the equilibria on specific networks (see the Corollaries in Appendix A). Next, we will 

explore some regularities of the IA equilibrium, which will be useful for subsequent empirical 

analysis.  

REMARK 3 (equilibrium of Inequality Aversion). In a given network, players who earn more [less] 

than all of their neighbors contribute more [less] than the self-interest level.  

To understand Remark 3, notice that when one’s contribution increases, her neighbors’ payoffs 

increase faster than her own payoff (which may even decrease).11 Thus, a fairness-minded player 

earning higher [lower] than all neighbors will have the incentive to increase [decrease] her 

contribution relative to the self-interest level (𝛿) to reduce the payoff gap. The formal proof of 

Remark 3 directly follows the player’s best response (Proposition A-1 in Appendix A) and is thus 

omitted.   

3. Experiment 

3.1. Experimental design  

In this section, we present a simple experiment to test the competing theories outlined in 

Section 2. By manipulating the network structure, our experiment consists of three treatments, as 

recorded in Table 1 below. 

Table 1. Summary of experimental design 

Network Structure Star Circle Complete 

Treatment S C Com 

Note: between-subjects design, 𝛿 = 10, network size = 4 

 
11 This happens because one’s contribution benefits oneself and everyone connected to her indiscriminately, 

while one alone bears the cost of contribution. See (1).  



 

 

Figure 1. Experimental network structures 

Our experiment employs the three network structures depicted in Figure 1: star, circle, and 

complete. Generally speaking, by a star we refer to a network with a single node at the center 

(called the core) and multiple nodes that are connected to the core but not to each other (the 

periphery). Let the star’s core node be denoted by 𝑐, and denote by 1,2…𝑁𝑝 the 𝑁𝑝 nodes at 

the periphery. The circle is a 𝑁-vertex network in which each node is connected only to the two 

adjacent nodes. In the complete network, there exists a connection between any two nodes; and we 

denote the number of players by 𝑁. For the graphs illustrated in Figure 1, 𝑁𝑝 = 3,𝑁 = 4, so that 

all networks have the same size (4 players). We choose these networks for their simplicity and 

because they serve as miniatures of real-world social and organizational systems. The star network 

represents a monarchy, with the core assuming the most power or prestige; the circle is like a 

democratic society, with players distributed at egalitarian positions. The complete network 

resembles the conventional environment for game theory research (with global interactions). In all 

treatments, the subjects are connected according to the network structures shown in Figure 1 

(depending on their treatments).  

3.2. Experimental protocol 

The experiment consists of 20 rounds. In each round, the subjects play the game described in 

Section 2.1. In the star networks, a subject is located—throughout the experiment—either at the 

core or at the periphery.12 With the design of repeated play and fixed roles (either core or periphery 

in star networks), we can obtain more experienced subject behavior.13 Meanwhile, in order to 

maintain the one-shot nature of the game, we hold a rematch of the subjects every round according 

to the network structure. Specifically, we divide each treatment into five cohorts, each of which 

 
12 In other words, no subject can be placed at the core in one round and at the periphery in another round. If 

a subject is assigned at the core [the periphery] in one round, s/he will remain at the core [the periphery] in 

all rounds of the experiment.    
13 This design is adopted because alternating over different roles (core or periphery) in the experiment will 

likely disrupt the subject’s learning. 



 

consists of three [two; two] star [circle; complete] networks in treatment S [C; Com]; and we restrict 

the rematches within each cohort. Notably, a rematch preserves the subject’s role as core or 

periphery in the star treatments. Thus, we guarantee that the subjects’ roles are fixed, whereas the 

partnerships constantly change; therefore, every round resembles a one-shot game. After each 

round, subjects were informed of their own payoffs and those of their neighbors, while the 

anonymity was maintained for all players.14  

We collected data from 140 subjects in September 2020. The subjects were mainly registered 

students at a major public university in China. All subject participation was monetarily 

incentivized, and the average earning per subject was 37.06 Chinese Yuan. The software we used 

was programmed in z-Tree (Fischbacher, 2007).  

4. Results 

4.1. Aggregate patterns  

OBSERVATION 1. In all treatments, players on average contribute more than predicted by the 

standard theory.  

Figure 2 plots the average subject contribution in star, circle, and complete network treatments. 

In the figure (as well as other figures in this paper), the vertical bar represents the 95% confidence 

interval for the overall mean of the plotted variable; and the dashed line (when imposed) denotes 

the standard prediction. Figure 2 shows that the actual play deviates significantly from the self- 

interest benchmark. The average contribution falls below 𝛿 in none of the periods in the star 

treatment and complete network treatment. In the circle treatment, the average contribution by 

period exceeds the self-interest amount with merely a few exceptions toward the end of the 

experiment. The summary statistics of subject contribution is presented in Table 2. For Observation 

1, one sample t-test clustered by cohorts shows a p-value of 0.001 [0.040] for core [peripheral] 

players in treatment S, p = 0.018 for subjects in treatment C, and p = 0.002 for those in treatment 

 
14 To avoid negative payoffs and associated payment issues, we set an upper bound on the contribution that 

can be made by a subject in the experiment. The bound is sufficiently high so that the theoretical equilibria 

continue to hold as they fall within the bound. Nevertheless, our models can also be formally extended to 

accommodate the upper bound. Such an extension could be conducted in a manner similar to our handling 

of the nonnegativity constraint on the amount of contribution (see, for example, the proof of Proposition A-

1).  



 

Com.15, 16 The observed pattern of behavior is consistent with Remark 2, which is derived under 

the welfare preference. Note that the experimental result on the complete network replicates the 

existing finding regarding over-contribution in the public goods experiment with an interior 

dominant strategy (Keser, 1996). We also find that subject contribution slightly declines throughout 

the game in all treatments. This trend is in line with the common laboratory finding that contribution 

to the public good tends to fall over time (see, for example, Fischbacher and Gächter, 2010). 

 

Figure 2. Average contributions in all treatments 

Table 2. Summary of contributions  

S C Com 
Core Periphery   

16.97 
[0.97] 

11.86 
[0.80] 

11.41 
[0.46] 

13.81 
[0.66] 

Mean [standard error (clustered by cohorts)] 

OBSERVATION 2. In star networks, core nodes, on average, earn more, and contribute more than 

do peripheral nodes.  

 
15 The p-values are one-sided, with the patterns in Observation 1 formulated as the alternative hypotheses.    
16  The t-test clustered by cohorts employed in our paper takes into account the dependence across 

observations from the same cohort. The test is conducted in a regression framework so that the t-test problem 

is transformed to a test of the regression coefficient. Thus, we could apply the standard regression approach 

of clustering the standard errors on the cohort level. 



 

 

Figure 3. Payoffs in the star treatment 

Table 3. Payoffs in the star treatment 

S 
Core Periphery 

357.01 
[24.97] 

203.51 
[9.54] 

Mean [standard error (clustered 

by cohorts)] 

In the star networks, we find that core subjects make a higher profit than peripheral ones (Figure 

3). Table 3 shows that the profit of the core dominates that of the periphery (p-value = 0.004 from 

a two-sample t-test clustered by cohorts). If peripheral subjects were to pursue fairness, they should 

contribute less than 𝛿 (by Remark 3). However, we find their contribution to be higher than the 

self-interest level (Observation 1), which runs counter to inequity aversion. Moreover, as Figure 2 

suggests, the core players contribute more than do peripheral ones (p-value = 0.006 from a two-

sample t-test clustered by cohorts) in the star networks,17 which supports Remark 2. 

OBSERVATION 3. In circle and complete networks, subjects who earn less than all of their 

neighbors on average contribute less, but still more than 𝛿, in the subsequent period.   

In treatments C and Com, we find the average contribution tends to fall for the subjects who 

earned less than all their neighbors in the previous round. This case is plotted in Figure 4 as lag 

profit < neighbors’ and lowest profit in the previous round in C and Com respectively. Nevertheless, 

even in this case, the reduced contribution remains higher than 𝛿, which likely stems from the 

welfare preference. These are visualized in Figure 4, where the change in the amount of 

contribution over consecutive periods appears more often negative than positive in the circle 

treatment, and uniformly negative in the complete network treatment, for those having earned 

below all neighbors. Meanwhile for those subjects, the average contribution levels in most periods 

 
17 For the tests for Observation 2: All the p-values are one-sided, with the patterns in Observation 2 formulated 

as the alternative hypotheses.    



 

stay higher than 𝛿 in both treatments (Figure 4).18 For Observation 3, one-sample t-tests clustered 

by cohorts show a p-value of 0.003 for treatment C and 0.002 for treatment Com (contribution 

reduction), and p = 0.010 for C and 0.008 for Com (contribution higher than 𝛿).19  

When having earned less than all neighbors, a fairness-minded subject would tend to decrease 

his or her contribution to reduce the payoff gap (Lemma A-1). This is consistent with Observation 

3. However, for a fairness equilibrium to sustain, the contribution has to fall below 𝛿 in the case 

of earning less than all of one’s neighbors (Remark 3), which is clearly rejected by the experimental 

result. Overall, although Observation 3 reflects a mix of welfare concern and inequality aversion, 

the evidence for the former seems stronger than that for the latter. As we will see in Section 4.2, 

the preference for welfare indeed outweighs the aversion to inequality in the circle and the complete 

networks at the individual level.  

 

Figure 4. Behavior in treatments C and Com conditional on the 

focal player earning less than all neighbors in the previous round 

 
18 In the circle and the complete network treatments, our analysis accounts for the potential lag effect in 

subjects’ decision-making, as they cannot see and respond to their neighbors’ profits until the next decision 

round. As for the analysis of the star treatments, considering the lag effect would make little difference, 

because the average profit of the core is uniformly higher than that of the periphery in every period.  
19 The p-values are one-sided, with the patterns in Observation 3 formulated as the alternative hypotheses.    



 

In sum, these experimental results suggest that the theory based on self interest is largely 

inconsistent with the actual behavior in network games. In general, subjects contribute more than 

what would maximize their own profit. When they are at the central position in the star network, 

the subjects earn more, and make more contribution, than those at the outer positions. Furthermore, 

subjects in the circle and the complete networks reduce their contribution while still contributing 

more than the self-interest amount when they earned less than all their neighbors. These behavioral 

patterns indicate that subjects tend to exhibit more preference for welfare than aversion to 

inequality. In the next section, we will see that the same conclusion also holds at the individual 

level. Our experimental design also allows us to explore the network effects from an angle that is 

not captured by equilibrium analysis. Accordingly, see Appendix C.2 for an investigation of the 

global network effect.  

4.2. Individual-level analysis 

Having established that the welfare preference dominates both self-interest and inequality 

aversion at the aggregate level, we then commence an individual-level investigation and estimation 

of behavioral parameters. We fit the behavioral parameters 𝛼𝑖, 𝛽𝑖, 𝜆𝑖 for each individual 𝑖.20 As 

such, the estimation is based on the welfare equilibrium characterized in (3), as well as the equilibria 

of inequity aversion laid out in explicit forms in Corollaries A-1, A-2, and A-3 (in Appendix A). 

For the maximum likelihood estimation (MLE), we attach a zero-mean and normally distributed 

noise to the theoretically predicted action of each player 𝑖, and also estimate its standard deviation 

(𝜎𝑖).  

Table 4 records the log-likelihood (LL) and Akaike information criterion (AIC) values of the 

models in all treatments. In all the treatments, the welfare model achieves a higher likelihood than 

that of inequality aversion, and does so with fewer parameters. Consequently, the welfare model 

has unambiguously lower AIC values, which favors it over inequity aversion in the model selection. 

The welfare model is also superior to the self-interest model in terms of the AIC comparison. For 

expositional convenience, we shall respectively abbreviate the welfare, inequality aversion, and 

self-interest models with W, IA, and SI.  

 

 

 

 
20 We assume that an individual 𝑖 treats her neighbors indifferently in assessing her utility. In other words, 

we set 𝛼𝑖𝑗 ≡ 𝛼𝑖 , 𝛽𝑖𝑗 ≡ 𝛽𝑖  in (4) and 𝜆𝑖𝑗 ≡ 𝜆𝑖  in (2) for all 𝑗 in the fairness and the welfare model. 



 

Table 4. Model comparison*   

Treatment S C Com 

LL 
-2465.80 

[-2994.73;- 
3092.29] 

-1506.06 
[-1577.72;- 
1582.37] 

-1915.26 [-
2055.44; -
2070.95] 

AIC (df) 21 
5171.59 (120) 

[6349.45 (180); 
 6304.57 (60)] 

3172.13 (80) 
[3395.43 (120); 
3244.73 (40)] 

 3990.53 (80) 
[4350.88 (120); 
4221.90 (40)] 

* Model W [Model IA; Model SI] 

 

Why does the pursuit of welfare outweigh inequality aversion in subjects’ behavior in our 

experiment? We argue that the social connections in our experiment may impart a sense of group 

to the connected agents, so that they feel more affiliated when making decisions. This conjecture 

is supported by the study on social identity, which shows the group saliency can lead individuals 

to pursue the group’s goal (Akerlof and Kranton, 2000; Akerlof and Kranton, 2005; Kranton, 2016). 

In particular, Chen and Li (2009) demonstrate that subjects exhibit significantly less envy and more 

charity with partners from the same group and that the in-group subject behavior can be well 

interpreted through the Charness and Rabin (2002) model. This echoes the prevalence of welfare 

preference observed in our setting, which resembles a networked version of the Charness and Rabin 

(2002) model. Further, it has also been shown in simple distribution experiments that the efficiency 

preference dominates inequality aversion (see Engelmann and Strobel, 2004; Engelmann and 

Strobel, 2006 and references therein). In our experiment, we find that the same pattern of model 

selection also prevails in games in networks.   

Table 5 reports detailed parameter estimates of the behavioral models, where the notations with 

subscript 𝑐 and 𝑝 respectively denote the parameter estimates for the core and peripheral subjects 

in the star networks. In addition, 𝜎𝑖
𝐼𝐴 [𝜎𝑖

𝑊] denotes the individual 𝜎-estimates under the inequity 

aversion [welfare] model. As an exemplary interpretation of results from the welfare model, note 

that 𝜆𝑐 averages 0.128 in treatment S. That means, for an average subject at the core, the profit of 

a single neighbor of hers constitutes 12.8% of the focal subject’s utility. As the subject has three 

such neighbors, she ends up with 38.4% of interest attributed to neighbor profits, and 61.6% to her 

own.  

 

 
21 Recall that each treatment includes 5 cohorts, each star [circle; complete network] cohort contains 3 [2; 2] 

networks, and each network comprises 4 subjects; hence, there are 60 [40; 40] subjects in each star [circle; 

complete network] treatment. For each individual, the IA [welfare] model has 3[2] parameters, while the 

baseline model involves only the 𝜎𝑖-term. Altogether, these give the degrees of freedom (df) specified in Table 

5. 



 

Table 5. MLE results 

treatment 
Model IA Model W 

c  p  
c  p  IA

i  c  p  W

i  

S 
0.066* 0.048 0.108 0.147 5.246 0.128 0.142 4.168 

(0.040) (0.022) (0.010) (0.041) (0.571) (0.011) (0.036) (0.341) 

 i  
i  IA

i  i  W

i  

Com 
1.78 × 10−7* 0.042 6.477 0.081 5.167 

(8.68 × 10−8) (0.011) (0.831) (0.011) (0.699) 

C 
0.001* 0.025 3.875 0.055 3.319 

(0.001) (0.009) (0.797) (0.012) (0.623) 

Mean (standard error clustered by cohort) 

All parameters significant at 0.05 level except for those marked with * (per t-test clustered by cohort) 

Some remarks are in order concerning the estimation of the inequality aversion model. As the 

star network naturally leads to asymmetric payoffs, both core and peripheral players will expect 

that the earning is higher for the core and lower for the periphery. In this case, whether a fairness 

concern will emerge depends on to what degree this inequality is “within tolerance.” In treatment 

S, the core subjects earn, on average, approximately 1.75 times as much as the peripherals (see 

Table 3). As such, a peripheral player with 𝛼𝑝 = 0.048 (as estimated in Table 5) incurs a fairness 

disutility that amounts to about 0.048 × (1.75 − 1) = 3.6% of the monetary profit s/he earns. For 

a core player with 𝛽𝑐 = 0.108 (as estimated in Table 5), s/he suffers from a disutility that accounts 

for 3𝛽𝑐 (1 −
1

1.75
) = 13.9% of his/her financial payoff. Thus, the loss from inequality can be 

nontrivial (especially for the core players) if the core earns more than the periphery. Furthermore, 

if the actual outcome of the game goes against the players’ expectations—if it turns out that the 

core earned lower than the periphery in some period—the players will experience even stronger 

fairness disutility. A core subject would be more upset if she ends up receiving less payoff than the 

periphery than would a peripheral subject when earning less than the core (𝛼𝑐 > 𝛼𝑝). Meanwhile, 

a player at the periphery would feel sorrier for a core earning less than her, than would a core player 

when earning more than the periphery (𝛽𝑐 < 𝛽𝑝). Both 𝛼𝑐 > 𝛼𝑝 and 𝛽𝑐 < 𝛽𝑝 reflect how the 

player’s network position shapes her perception of fairness; notably, this is indeed what we 

observed with average parameter estimates in Table 5 (i.e., 0.066 > 0.048 and 0.108 < 0.147, 

respectively). In addition, we observe that 𝛼𝑝 < 𝛽𝑝 in treatment S and 𝛼𝑖 < 𝛽𝑖 in treatment C 



 

and Com.22 Although the fact 𝛼 < 𝛽 is inconsistent with the common understanding that people 

are more averse to disadvantageous inequality than to advantageous inequality (see e.g. Ho and Su, 

2009; Immorlica et al., 2017), this inconsistency in our case reflects that the welfare model explains 

the data better than that of inequality aversion. To see this, note that welfare preference and 

inequality aversion differ in their treatments of neighbors’ payoffs that are higher than one’s own. 

In such cases, a fairness-minded player wants to reduce her neighbor’s payoff, whereas a player 

endowed with welfare preference wants to increase her neighbor’s payoff. Hence, a forced 

estimation of the inequity aversion model (where 𝛼 is constrained to be nonnegative), when the 

underlying “true” model is that of welfare preference, should yield values of 𝛼 that are close to 

zero (because the “true” 𝛼-values should be less than zero). Subsequently, this leads to 𝛼 < 𝛽.  

Our results in this section can be summarized as follows. We show that the welfare preference 

outperforms both inequality aversion and self-interest in driving the individual behavior in the 

network games we examine. We also find that one’s perception of fairness is leveraged by her 

network position, which explains the observed patterns of estimated parameters, 𝛼 and 𝛽.  

5. Effects of Economic Return 

In this section, we conduct an additional experiment to examine the effect of increasing 

economic return and its interplay with the network structure. We denote by HS and HC the new 

treatments involving star (S) and circle (C) networks under a higher (H) economic return (𝛿 = 30). 

Consistent with the foregoing experimental protocol, the treatment HS [HC] consists of five cohorts, 

each of which entails three [two] four-player star [circle] networks as shown in Figure 1. In total, 

we recruited 60[40] subjects for HS [HC] from the same subject pool used for the main experiment 

in Section 3. Each subject plays 20 rounds of the game described in Section 2.1 with non-repetitive 

partners who are rotated within cohorts so that every round resembles a one-shot game. In the star 

networks, the role of subjects is fixed (either core or periphery) throughout the experiment. After 

each round, the subjects are informed of the payoffs of their own and those of their neighbors, while 

the anonymity is maintained for all players. Other procedures parallel those applied to the main 

experiment in Section 3. Appendix C provides supplemental materials for the experiment, including 

the organization and the matching protocol within each cohort (Appendix C.1), sample instruction 

(Appendix C.3), and sample software screenshots (Appendix C.4).  

 
22 The statement 𝛼𝑝 < 𝛽𝑝 in S is weakly significant with p = 0.058 from a one-sided t-test clustered by cohorts. 

The same test produces p = 0.035 [0.011] for the statement 𝛼𝑖 < 𝛽𝑖  in C [Com].  



 

OBSERVATION 4. In the star network, the welfare preference remains dominant over inequality 

aversion and self-interest with an increased economic return. However, in the circle network, the 

advantage of social preferences over self-interest is weakened with an increased economic return.  

In HS, players at both the core and periphery contribute more than 𝛿 at the aggregate level.23 

As presented in Figure 5, the average contribution of the core stays above 𝛿 in every period—so 

does that of the periphery, with minor exceptions in 2 rounds out of 20. Conversely, the contribution 

in HC starts off high but later slides down to a lower level (Figure 5). Inferred from Table 6, the 

average contribution in HC departs from the profit maximizing level only by 2.23% (i.e. 

|29.33−30|

30
= 2.23% ). In fact, a one-sample t-test clustered by cohorts fails to reject the null 

hypothesis that the contribution in HC never deviates from 𝛿 (with a two-sided p-value = 0.634). 

On the contrary, recall that the average contribution in treatment C differs from the self-interest 

level by 14.1% (see Table 2). Thus, the self-interest seems to be enhanced in the circle networks 

when the economic return rises higher.  

 

Figure 5. Average contributions in treatments with increased economic return 

Table 6. Summary of contributions in treatments with increased economic return 

HS HC 
Core Periphery  

36.16 
[3.31] 

32.21 
[0.81] 

29.33 
[1.31] 

Mean [standard error (clustered by cohorts)] 

As displayed in Figure 6 and Table 7, core nodes earn more than peripheral nodes in treatment 

HS.24 In this case, Remark 3 indicates that a peripheral player concerned with fairness should 

contribute below 𝛿. However, we have observed the peripheral contribution being greater than 𝛿 

 
23 For this statement, p-value = 0.027 for peripheral players by the one-sample t-test clustered by cohorts. The 

same test produces weak significance (p=0.068) for the core players.   
24 One-sided p-value = 0.000 from two-sample t-test clustered by cohorts 



 

(see the preceding paragraph), thereby yielding a contradiction to the prediction of inequality 

aversion. In treatment HC, we find the contributions are most likely to shrink for subjects who 

earned less than both of their neighbors in the previous round.25 Specifically, see Figure 7 for an 

illustration by periods, where most contribution changes (in percentages) are negative. As 

explained in Section 4.1, this is consistent with the conjecture of inequality aversion, as lowering 

one’s contribution in this case can help reduce the gap between one’s profit and her neighbors’ 

(Lemma A-1).  

 

Figure 6. Payoffs in HS 

Table 7. Payoffs in HS 

HS 
Core Periphery 

3191.05 
[79.91] 

1481.91 
[100.18] 

Mean [standard error (clustered by 

cohorts)] 

 
Figure 7. Change of contribution in HC 

when the focal player earned less than both neighbors in the previous round 

We also estimate the behavioral models based on Corollaries A-1, A-2 and (3) in Theorem 1 

by following the same approach outlined in Section 4.2. As suggested by Table 8, the welfare model 

 
25 One-sided p-value = 0.010 from one-sample t-test clustered by cohorts  



 

has the unambiguously lowest AIC value in treatment HS, which favors it over inequity aversion 

and self-interest in the model selection. Nevertheless, the performance gaps between models 

become substantially smaller in treatment HC, with the welfare model winning by a narrow 

margin—excelling in AIC by only 0.7% over the self-interest model. The parameter estimation in 

Table 9 also confirms the patterns 𝛼𝑐 > 𝛼𝑝, 𝛽𝑐 < 𝛽𝑝, and 𝛼𝑝 < 𝛽𝑝 in treatments HS.26 These 

echo the results in the main experiment (Section 4) and reflect the way one’s network location 

affects her fairness concern and the fact that the welfare preference outperforms inequality aversion 

in capturing the behavior in the star networks (see Section 4.2 for analogous arguments). In 

addition, compared to the parameter estimates in the main experiment (Table 5), the estimated 𝜆s 

for core, periphery, and circle subjects are all lower in treatments with an increased economic 

return.27 This observation suggests that if the stake becomes higher, the individual cares more 

about oneself.  

Table 8. Model comparison* 

Treatment HS HC 

LL 
-3389.39 

[-3705.55;- 
3777.66] 

-2277.14 
[-2305.51; -

2332.84] 

AIC (df) 28 
 7018.78 (120) 
[7771.10 (180); 
7675.32 (60)] 

4714.27 (80) 
[4851.02 (120); 
  4745.67 (40)] 

* Model W [Model IA; Model SI] 

 

 

 

 

 

 
26 For 𝛼𝑐 > 𝛼𝑝, a two-sample t-test clustered by cohorts yields a one-sided p-value of 0.001. The same test 

indicates weak significance for 𝛽𝑐 < 𝛽𝑝 with p = 0.089. The statement 𝛼𝑝 < 𝛽𝑝 is also statistically significant 

with p = 0.046 by a one-sided t-test clustered by cohorts.   
27 For this statement, two-sample t-tests clustered by cohorts yield a one-sided p-value of 0.048 for 𝜆𝑝 and 

0.001 for 𝜆𝑐 in star treatments and 0.047 for 𝜆𝑖 in circle treatments.  
28 Recall that each treatment includes 5 cohorts, each star [circle] cohort contains 3 [2] networks, and each 

network comprises 4 subjects; hence, there are 60 [40] subjects in each star [circle] treatment. For each 

individual, the IA [welfare] model has 3 [2] parameters in the star treatment and 3 [2] parameters in the circle 

treatment, while the baseline model involves only the 𝜎𝑖-term. Altogether, these give the degrees of freedom 

(df) as specified in Table 5. 



 

Table 9. MLE results 

treatment 
Model IA Model W 

c  p  
c  p  IA

i  c  p  W

i  

HS 
0.330 0.023 0.055 0.209 9.425 0.060 0.072 8.202 

(0.052) (0.007) (0.014) (0.088) (0.842) (0.014) (0.017) (0.799) 

 i  
i  IA

i  i  W

i  

HC 
0.044* 0.013 9.115 0.029 8.730 

(0.030) (0.004) (2.394) (0.009) (2.494) 

Mean (standard error clustered by cohort) 

All parameters significant at 0.05 level except for those marked with * (per t-test clustered by cohort) 

In summary, we find that when the economic return rises, the welfare preference remains more 

prevalent than inequality aversion and self-interest in the star networks. In contrast, self-interest 

gains more ground in the circle networks under a higher stake. Our estimation confirms the patterns 

of parameters observed in the foregoing main experiment and illustrates how one’s network 

location and the level of economic return influence the extent of social preferences. 

6. Conclusion and Discussion 

We investigate social preferences in network games where each player engages with an 

exogenous subset of the player population. The network is configured as a set of relationships that 

establish “whose action affects whose payoff.” We develop theoretical models that incorporate 

inequality aversion (Fehr and Schmidt, 1999) and welfare preference (Charness and Rabin, 2002) 

into a baseline dominant-strategy network game, and test our theories with experimental data. 

When the economic return is relatively low, subjects are observed to make higher contributions 

than the self-interest amount. We also find that subjects at the core positions contribute more than 

those at the periphery. These behavioral regularities collectively suggest welfare preference—

rather than inequality aversion or self-interest—as the driving force in the game play in all the 

networks considered. When the economic return is increased, however, the advantage of social 

preferences over self-interest in shaping subject behavior tends to vary with the network structure. 

Our estimation of the behavioral parameters reveals how one’s perceptions of fairness and welfare 

are affected by the network topology.  

In their seminal work, Fehr and Schmidt (1999) (p.851) remark that the effect of network 

topology on inequality aversion is a vital subject for future research: “Another set of questions 

concerns the choice of the reference group. … There may well be interactive structures in which 

some agents have a salient position that makes them natural reference agents.” This idea is 



 

materialized and analyzed in our paper. In a similar vein, we also extend the classic model of 

welfare preference (Charness and Rabin, 2002) into the network environment. This study offers a 

starting point for testing social preferences on more realistic social or economic networks, and 

developing more general models on social preferences in network games.  

Our current experiments were not conducted on real social networks. Instead, we arbitrarily 

assigned individuals to our experimental networks. The tradeoff we faced in this aspect (control vs. 

realism) is typical in the laboratory experiments. Nonetheless, it is reasonable to suppose that using 

real social networks would actually enhance the welfare preference because true friends 

presumably care more about each other’s profit than do random partners. Also note that our present 

experimental setup does not involve communication between neighbors. However, as 

communication can enhance cooperation in public goods provision (see Chaudhuri, 2011; Ledyard 

et al., 1995), neighbors shall be more aware of the group’s goal when the communication is in place. 

Consequently, the welfare preference may further firm up in the presence of communication.  

A promising direction for future research would concern the learning and dynamics in the 

behavior of network games. For example, we observe that there is usually a declining trend in 

player contributions over time. In the context of public goods provision, Fischbacher and Gächter 

(2010) has explained this downward contribution as a consequence of imperfect conditional 

cooperation – that is, the players only partly match the contributions of others at every iteration. 

Whether a similar mechanism is responsible for the intertemporal pattern found in our setting, and 

how such mechanics interact with the network layout, are subjects that merit further exploration. 

Our present experiment features a dominant strategy in the base game, as a means to control 

for nuisance factors (e.g., risk attitudes, cognitive complexity) other than social preferences. 

Nevertheless, a future study beyond this design could incorporate complementarity or 

substitutability among neighbors’ contributions. Whether adding such “synergy” in neighbor 

actions could alter the preference of players remains an interesting question.  

  



 

Owing to the page limit, the appendices can be separated from the manuscript and posted online. 

The notations in the appendices inherit from those in the main text unless otherwise clarified.   

Appendix A. The Equilibrium of Inequality Aversion  

A.1. Strategy and best response 

Given the individual payoff function in the main text as (1), a marginal increase of 𝑥𝑖 will 

cause the payoff of every neighbor of player 𝑖 to increase by 𝛿. Thus, one’s own action 𝑥𝑖 will 

not unilaterally change the order of her neighbor’s payoffs. Given the action profile 𝒙, denote by 

𝜋(1)𝑖(𝒙), 𝜋(2)𝑖(𝒙)…𝜋(𝑑𝑖)𝑖(𝒙) the 1st, 2nd, …𝑑𝑖
th least pecuniary payoff of player 𝑖’s neighbor. 

Given 𝒙−𝑖, let 𝑋(𝑘)𝑖(𝒙−𝑖) represents the threshold contribution level for player 𝑖, with which 𝑖’s 

payoff equals 𝜋(𝑘)𝑖(𝒙), that is, 𝜋𝑖(𝑋(𝑘)𝑖(𝒙−𝑖); 𝒙−𝑖) = 𝜋(𝑘)𝑖(𝒙). Then the following lemma holds: 

LEMMA A-1. 𝑋(𝑑𝑖)𝑖(𝒙−𝑖) < 𝑋(𝑑𝑖−1)𝑖(𝒙−𝑖)… < 𝑋(2)𝑖(𝒙−𝑖) < 𝑋(1)𝑖(𝒙−𝑖).  

The proof of Lemma A-1 is straightforward. For player 𝑖 , 
𝜕𝜋𝑖(𝒙)

𝜕𝑥𝑖
= 𝛿 − 𝑥𝑖 , while for 𝑖’s 

neighbor 𝑗,  
𝜕𝜋𝑗(𝒙)

𝜕𝑥𝑖
= 𝛿. 

𝜕𝜋𝑖(𝒙)

𝜕𝑥𝑖
<

𝜕𝜋𝑗(𝒙)

𝜕𝑥𝑖
. Thus, when 𝑥𝑖 increases, player 𝑖’s neighbors’ payoffs 

increase faster than player  𝑖’s payoff (which may even decrease). Subsequently, Lemma A-1 

follows. Without loss of generality, normalize 𝑋(0)𝑖(𝒙−𝑖) = +∞ and 𝑋(𝑑𝑖+1)𝑖(𝒙−𝑖) = −∞, ∀𝑖. 

We refer to the interval (𝑋(𝑘)𝑖(𝒙−𝑖), 𝑋(𝑘−1)𝑖(𝒙−𝑖)) as range-𝑘. Let 𝑑𝑖 ∶= max{𝑡|𝑋(𝑡)𝑖(𝒙−𝑖) ≥

0, 𝑡 ≤ 𝑑𝑖}. In other words, 𝑑𝑖 is the highest rank of 𝑖’s payoff in her neighborhood that player 𝑖 

can ever attain by reducing her contribution level, given 𝒙−𝑖. By definition, this rank must be upper 

bounded by 𝑖 ’s number of neighbors—𝑑𝑖 ≤ 𝑑𝑖 . Let 𝜙  be the best response function to the 

contribution profile 𝒙 , 𝜙 ≡ (𝜙𝑖)all 𝑖 . Elementwise, 𝜙𝑖  is the best response function for an 

individual player 𝑖 to her neighbor action 𝒙−𝑖. Now we are ready to present a foundational result 

for the model of inequality aversion. 

PROPOSITION A-1. a) Player 𝑖’s inequality-averse utility 𝛱𝑖(𝑥𝑖; 𝒙−𝑖) is piecewise concave with 

respect to her own contribution, 𝑥𝑖. b) There exists 𝑟 such that the unique best response 



 

𝜙𝑖(𝒙−𝑖)

=

{
 
 

 
 

𝛿

1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

− ∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

,   if  
𝛿

1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

− ∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

∈ (𝑋(𝑟)𝑖(𝒙−𝑖), 𝑋(𝑟−1)𝑖(𝒙−𝑖))

𝑋(𝑟)𝑖(𝒙−𝑖),   if 𝑋(𝑟)𝑖(𝒙−𝑖) ∈ (
𝛿

1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

− ∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

,
𝛿

1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑟)𝑖
𝑗=(1)𝑖

) 

 

c) A contribution profile 𝒙 is an equilibrium of inequality aversion, if and only if 𝒙 = 𝜙(𝒙).  

One can show that Π𝑖(𝑥𝑖; 𝒙−𝑖) is concave with respect to 𝑥𝑖  within any range-𝑘 , and is 

continuous at any point 𝑋(𝑘)𝑖(𝒙−𝑖). Hence, the best response of player 𝑖 to her neighbor action 

𝒙−𝑖  is obtained at either an interior point (which falls in the range that implements the 

corresponding payoff order) or a boundary point (which equalizes the player’s payoff with that of 

a neighbor of hers). An analogy to our equilibrium characterization in the network game literature 

is Proposition 1 from Bramoullé et al. (2014), where their equilibrium conditions (i) and (ii) 

correspond to the interior and corner best responses in our equilibrium of inequality aversion (i.e., 

Proposition A-1, part b). It is important to note that Proposition A-1 holds for arbitrary network 

topology. Proposition A-1 lays the foundation for the derivation of equilibria under inequality 

aversion in the star network (Corollary A-1), the circle network (Corollary A-2), and the complete 

network (Corollary A-3). The continuity and piecewise concavity of utility function, as revealed in 

Proposition A-1, is rudimentary to the existence of pure strategy equilibrium under inequality 

aversion (Theorem 2).  

A.2. Equilibrium on the experimental networks 

Theorem 2 establishes the existence of pure strategy equilibrium with inequality aversion. 

However, for the experimental networks we used, we have to obtain the explicit form of equilibria 

for parameter estimation. To proceed, more notations are required. For the star network, given an 

action profile 𝒙, order the peripheral nodes 1,2… 𝑁𝑝 such that their payoffs increase with their 

index—𝜋1(𝒙) < 𝜋2(𝒙) < ⋯ < 𝜋𝑁𝑝(𝒙). We consider all possible scenarios as follows: 1) Type-1 

payoff separating (PS1), where the core’s payoff is higher than all peripheral nodes’ payoffs:  

𝜋1(𝒙) < 𝜋2(𝒙) < ⋯ < 𝜋𝑁𝑝(𝒙) < 𝜋𝑐(𝒙); 2) Type-2 payoff separating (PS2), where the core’s 

payoff is lower than all peripheral nodes’ payoffs: 𝜋𝑐(𝒙) < 𝜋1(𝒙) < 𝜋2(𝒙) < ⋯ < 𝜋𝑁𝑝(𝒙); and 

3) Payoff embedding (PE), where the core’s payoff lies in the midst of peripheral nodes’ payoffs: 

there exists 𝑟 such that  𝜋1(𝒙) < ⋯ < 𝜋𝑟−1(𝒙) < 𝜋𝑐(𝒙) < 𝜋𝑟(𝒙) < ⋯ < 𝜋𝑁𝑝(𝒙) . Denote by 



 

𝑥𝑐
∗ and 𝑥𝑝

∗  the equilibrium action of core and periphery, respectively, and denote the equilibrium 

profile by 𝒙∗ ≔ (𝑥𝑐
∗, 𝑥𝑝

∗|
𝑝=1,2…𝑁𝑝

 )
T

. 

COROLLARY A-1 (equilibrium of inequality aversion in star). There are three possible equilibria 

of inequality aversion in a star.  

Case PS1: 𝑥𝑝
∗ =

𝛿

1+𝛼𝑝
 , for 𝑝 ∈ {1,2…𝑁𝑝}, and 𝑥𝑐

∗ =
𝛿

1−𝛽𝑐𝑁𝑝
 if 𝜋1(𝒙

∗) < ⋯ < 𝜋𝑁𝑝(𝒙
∗) < 𝜋𝑐(𝒙

∗). 

Case PS2: 𝑥𝑝
∗ = 

𝛿

1−𝛽𝑝
, for 𝑝 ∈ {1,2…𝑁𝑝},and 𝑥𝑐

∗ =
𝛿

1+𝛼𝑐𝑁𝑝
 if 𝜋𝑐(𝒙

∗) < 𝜋1(𝒙
∗) < ⋯ < 𝜋𝑁𝑝(𝒙

∗). 

Case PE: There exists 𝑟 ∈ (1, 𝑁𝑝],such that 𝑥𝑝
∗ =

𝛿

1+𝛼𝑝
 , for all 𝑝 ∈ {1,2, … 𝑟 − 1}; 𝑥𝑝

∗ =
𝛿

1−𝛽𝑝
 for all 𝑝 ∈

{𝑟, 𝑟 + 1,…𝑁𝑝}; and 𝑥𝑐
∗ =

𝛿

1+𝛼𝑐(𝑁𝑝−𝑟+1)−𝛽𝑐(𝑟−1)
 if 𝜋1(𝒙

∗) < ⋯ < 𝜋𝑟−1(𝒙
∗) < 𝜋𝑐(𝒙

∗) < 𝜋𝑟(𝒙
∗) < ⋯ <

𝜋𝑁𝑝(𝒙
∗).  

The equilibria in Corollary A-1—and Corollaries A-2 and A-3 to follow—can be worked out 

by self-reinforcement as follows. Start with an order of payoffs imposed by a candidate profile 𝒙∗. 

If the best response (given in Proposition A-1) under this order of payoffs results in 𝒙∗ itself, then 

𝒙∗ becomes an equilibrium. The formal proofs of Corollary A-1 (and of Corollaries A-2 and A-3 

to follow) are omitted as they immediately follow from Proposition A-1.  

 
Figure A-1. The networks illustrated with notations 

We next study the game of inequality aversion on circle networks. For the four-player circle 

used in the experiment, we can divide the nodes into two groups—each of which contains nodes 

that share a common neighborhood. Without loss of generality, the two groups are labeled b and w 

(respectively colored black [b] and white [w] in Figure A-1). We use an upper [lower] bar to 

represent the node with higher [lower] payoff in each group. Hence, by definition, we have 

𝜋�̅�(𝒙) > 𝜋𝑤(𝒙) and 𝜋�̅�(𝒙) > 𝜋𝑏(𝒙) for given 𝒙. Subsequently, there is the consideration of all 

possible scenarios in equilibrium: 1) payoff separating (PS), where  𝜋�̅�(𝒙) > 𝜋𝑤(𝒙) > 𝜋�̅�(𝒙) >



 

𝜋𝑏(𝒙) ; 2) payoff overlapping (PO), where 𝜋�̅�(𝒙) > 𝜋�̅�(𝒙) > 𝜋𝑤(𝒙) > 𝜋𝑏(𝒙) ; and 3) payoff 

embedding (PE), where 𝜋�̅�(𝒙) > 𝜋�̅�(𝒙) > 𝜋𝑏(𝒙) > 𝜋𝑤(𝒙).
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COROLLARY A-2 (equilibrium of inequality aversion in circle). There are three possible 

equilibria of inequality aversion in a four-player circle network.  

Case PS. 𝑥𝑏
∗ =

𝛿

1+2𝛼𝑏
 for all  𝑏 ∈ {�̅�, 𝑏},  and 𝑥𝑤

∗ =
𝛿

1−2𝛽𝑤
for all  𝑤 ∈ {�̅�,𝑤}  if 𝜋�̅�(𝒙

∗) >

𝜋𝑤(𝒙
∗) > 𝜋�̅�(𝒙

∗) > 𝜋𝑏(𝒙
∗). 

Case PO. 𝑥�̅�
∗ =

𝛿

1+𝛼�̅� −𝛽�̅�
, 𝑥𝑏

∗ =
𝛿

1+2𝛼𝑏
.  𝑥�̅�

∗ =
𝛿

1−2𝛽�̅�
 , 𝑥𝑤

∗ =
𝛿

1+𝛼𝑤−𝛽𝑤
 if 𝜋�̅�(𝒙

∗) > 𝜋�̅�(𝒙
∗) >

𝜋𝑤(𝒙
∗) > 𝜋𝑏(𝒙

∗). 

Case PE. 𝑥𝑏
∗ =

𝛿

1+𝛼𝑏 −𝛽𝑏
 for all 𝑏 ∈ {�̅�, 𝑏}, 𝑥�̅�

∗ =
𝛿

1−2𝛽�̅�
, 𝑥𝑤

∗ =
𝛿

1+2𝛼𝑤
   if 𝜋�̅�(𝒙

∗) > 𝜋�̅�(𝒙
∗) >

𝜋𝑏(𝒙
∗) > 𝜋𝑤(𝒙

∗).  

One implication of Corollary A-2 is that, if a player’s payoff is higher [lower] than both her 

neighbors in the circle network, then she unambiguously contributes more [less] than the self-

interest amount, driven by a sense of sympathy [envy]. This is consistent with Remark 3. When the 

player’s payoff falls between those of her neighbors, whether she contributes more than or less than 

the self-interest level will depend on the relative strength of her sympathy and envy. If, specifically, 

a player’s feeling of envy from earning less than one of her neighbors dominates her compassion 

for the other neighbor who earns even less, then the focal player’s contribution should be pulled 

below 𝛿.  

Finally, let us turn to the equilibrium of inequality aversion on the complete network. Denote 

by 𝑟𝑖(𝒙) ≡ 𝑟𝑖  the payoff rank of player 𝑖 under profile 𝒙, and by 𝜋(𝑟)(𝒙) the player payoff 

ranked at 𝑟 in the network for given 𝒙. The equilibrium is then characterized by the following 

corollary: 

COROLLARY A-3 (equilibrium of inequality aversion in complete network). There is a possible 

equilibrium of inequality aversion in a complete network of 𝑁  players, such that 𝑥𝑖
∗ =

𝛿

1+(𝑁−𝑟𝑖)𝛼𝑖−(𝑟𝑖−1)𝛽𝑖
  and 𝜋(1)(𝒙

∗) < ⋯ < 𝜋(𝑟𝑖)(𝒙
∗) < 𝜋(𝑟𝑖+1)(𝒙

∗) < ⋯ < 𝜋(𝑁)(𝒙
∗), ∀𝑖. 

 
29 Note that payoff scenarios other than PS, PO, and PE can be generated by exchanging labels (i.e., 𝑏 vs. 𝑤, 

upper bar vs. lower bar). 



 

Corollary A-3 works out in the same flavor as Corollaries A-1 and A-2, except that everyone 

falls in the same neighborhood in the complete network (where one can introduce a common payoff 

ranking over all players). As implied by Corollary A-3, the player with the lowest [highest] earning 

in the complete network will contribute lower [higher] than 𝛿, which is consistent with Remark 3. 

In estimating the inequality-aversion model (Corollaries A-1, A-2, and A-3), we use the actual 

profit observed in each period to determine the candidate equilibrium for that period. For example 

in a star network, if in some period the payoff of the core is greater than those of all in the periphery, 

then the subjects are supposed to play equilibrium PS1 in that period (where the contribution of 

any peripheral player 𝑝 is estimated by 
𝛿

1+𝛼𝑝
 and that of the core player 𝑐 estimated by 

𝛿

1−𝛽𝑐𝑁𝑝
). 
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Appendix B. Proofs 

PROOF OF THEOREM 1 

Observe 
𝜕𝜋𝑖(𝒙)

𝜕𝑥𝑖
= 𝛿 − 𝑥𝑖 ,

𝜕𝜋𝑗(𝒙)

𝜕𝑥𝑖
= 𝛿𝑔𝑗𝑖 for 𝑗 ≠ 𝑖 , and Π𝑖(𝒙) = (1 − ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 )𝜋𝑖(𝒙) +

∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝜋𝑗(𝒙)𝑗 . Thus  

𝜕

𝜕𝑥𝑖
Π𝑖(𝒙) = (1 −∑ 𝜆𝑖𝑗𝑔𝑖𝑗

𝑗
)
𝜕𝜋𝑖(𝒙)

𝜕𝑥𝑖
+∑𝜆𝑖𝑗𝑔𝑖𝑗

𝜕𝜋𝑗(𝒙)

𝜕𝑥𝑖
𝑗

 

                     = (1 − ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 )(𝛿 − 𝑥𝑖) + 𝛿 ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑔𝑗𝑖𝑗  

Given 1 − ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗 > 0, 
𝜕

𝜕𝑥𝑖
Π𝑖(𝒙) decreases in 𝑥𝑖. Therefore, 𝑥𝑖

∗ is identified by the first-

order condition 
𝜕

𝜕𝑥𝑖
Π𝑖(𝒙) = 0. 

𝑥𝑖
∗ = 𝛿+ 𝛿

∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑔𝑗𝑖𝑗

1 − ∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗
 

 
30 Note that the prerequisites of Corollaries A-1, A-2, and A-3 are stated in terms of estimated parameters (e.g., 

𝜋1(𝒙
∗) < ⋯ < 𝜋𝑁𝑝(𝒙

∗) < 𝜋𝑐(𝒙
∗)); therefore, it is an approximate to qualify these prerequisites using actual 

profit data. Such approximation becomes necessary given the rotation of partnership and the individualized 

parameter estimation.   



 

When 𝑔𝑖𝑗 = 𝑔𝑗𝑖 ∈ {0,1}, we simplify the above expression as 𝑥𝑖
∗ =

𝛿

1−∑ 𝜆𝑖𝑗𝑔𝑖𝑗𝑗
.  

If additionally we have 𝜆𝑖𝑗 ≡ 𝜆𝑖 for all 𝑗, then it follows that 𝑥𝑖
∗ =

𝛿

1−𝜆𝑖𝑑𝑖
. ∎ 

PROOF OF THEOREM 2 

By Proposition A-1, Player 𝑖’s inequality-averse utility Π𝑖(𝑥𝑖; 𝒙−𝑖) is piecewise concave with 

respect to her own contribution, 𝑥𝑖. It is also continuous everywhere, including at each boundary 

point that equalizes the focal player’s payoff with that of one of her neighbors. Given the action 

space is convex, the existence of pure strategy equilibrium follows from standard arguments (e.g., 

Theorem 1, Debreu, 1952). ∎ 

PROOF OF PROPOSITION A-1 

In the range-(𝑘 + 1), we have the following:  

Π𝑖(𝒙) = 𝜋𝑖(𝒙) − ∑ 𝛼𝑖𝑗 (𝜋𝑗(𝒙) − 𝜋𝑖(𝒙))

(𝑑𝑖)𝑖

𝑗=(𝑘+1)𝑖

− ∑ 𝛽𝑖𝑗 (𝜋𝑖(𝒙) − 𝜋𝑗(𝒙))

(𝑘)𝑖

𝑗=(1)𝑖

 

Rearranging,  

Π𝑖(𝒙) = 𝜋𝑖(𝒙)(1 + ∑ 𝛼𝑖𝑗

(𝑑𝑖)𝑖

𝑗=(𝑘+1)𝑖

− ∑ 𝛽𝑖𝑗

(𝑘)𝑖

𝑗=(1)𝑖

) − ∑ 𝛼𝑖𝑗𝜋𝑗(𝒙)

(𝑑𝑖)𝑖

𝑗=(𝑘+1)𝑖

+ ∑ 𝛽𝑖𝑗𝜋𝑗(𝒙)

(𝑘)𝑖

𝑗=(1)𝑖

 

 

Thus the derivative of Π𝑖(𝒙) within range-(𝑘 + 1) is: 

𝜕Π𝑖(𝒙)

𝜕𝑥𝑖
= (1 + ∑ 𝛼𝑖𝑗

(𝑑𝑖)𝑖

𝑗=(𝑘+1)𝑖

− ∑ 𝛽
𝑖𝑗

(𝑘)𝑖

𝑗=(1)𝑖

) (𝛿 − 𝑥𝑖) − 𝛿 ∑ 𝛼𝑖𝑗

(𝑑𝑖)𝑖

𝑗=(𝑘+1)𝑖

+ 𝛿 ∑ 𝛽
𝑖𝑗

(𝑘)𝑖

𝑗=(1)𝑖

 

 

The concavity of Π𝑖(𝒙) within range-(𝑘 + 1) is ensured by the fact that 1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

−

∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

> 0, which can be implied from the assumption 1 − ∑ 𝛽𝑖𝑗𝑔𝑖𝑗𝑗 > 0. 

Given this, player 𝑖’s best response within range-(𝑘 + 1), hereafter denoted by 𝜙𝑖
𝑘+1(𝒙−𝑖), 

is as follows.  



 

𝜙𝑖
𝑘+1(𝒙−𝑖) =

{
 
 
 
 

 
 
 
 
𝛿 + 𝛿

∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

−∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

,     𝑖𝑓  𝛿 + 𝛿
∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

−∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

∈ (𝑋(𝑘+1)𝑖(𝒙−𝑖), 𝑋(𝑘)𝑖(𝒙−𝑖))

𝑋(𝑘)𝑖(𝒙−𝑖),           𝑖𝑓 𝛿 + 𝛿
∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

−∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

> 𝑋(𝑘)𝑖(𝒙−𝑖) 

𝑋(𝑘+1)𝑖(𝒙−𝑖),         𝑖𝑓  𝛿 + 𝛿
∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

−∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑘)𝑖
𝑗=(1)𝑖

< 𝑋(𝑘+1)𝑖(𝒙−𝑖)

. 

When player 𝑖’s contribution 𝑥𝑖 increases, her payoff rank within neighborhood (𝑘) is lowered 

per Lemma A-1. Thus, 𝛿 + 𝛿
∑ 𝛽𝑖𝑗
(𝑘−1)𝑖
𝑗=(1)𝑖

−∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘)𝑖

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑘)𝑖

−∑ 𝛽𝑖𝑗
(𝑘−1)𝑖
𝑗=(1)𝑖

 decreases.  

Notice that Π𝑖(𝒙) is continuous at every 𝑋(𝑘)𝑖(𝒙−𝑖). Thus, Π𝑖(𝒙) is globally concave with 

respect to 𝑥𝑖. The resulting unique maximizing solution 𝜙𝑖(𝒙−𝑖) should be obtained at either an 

interior or a boundary point of some range-𝑟. In the former case (interior), the optimal solution is 

the point in range-r where the first derivative of Π𝑖(𝒙) equals 0:  

𝜙𝑖(𝒙−𝑖) = 𝛿 + 𝛿
∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

− ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

−∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

=
𝛿

1 + ∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

−∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

,   

if  
𝛿

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

−∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

∈ (𝑋(𝑟)𝑖(𝒙−𝑖), 𝑋(𝑟−1)𝑖(𝒙−𝑖)). 

In the latter case (boundary), the first derivative of Π𝑖(𝒙) turns from positive to negative at 

the optimum 𝑋(𝑟)𝑖(𝒙−𝑖). That is,   

𝜙𝑖(𝒙−𝑖) = 𝑋(𝑟)𝑖(𝒙−𝑖), 

if 𝑋(𝑟)𝑖(𝒙−𝑖) ∈ (
𝛿

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟)𝑖

−∑ 𝛽𝑖𝑗
(𝑟−1)𝑖
𝑗=(1)𝑖

,
𝛿

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(𝑟+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑟)𝑖
𝑗=(1)𝑖

).  

Notice the above cases are valid as 
𝛿

1+∑ 𝛼𝑖𝑗
(𝑑𝑖)𝑖

𝑗=(𝑑𝑖+1)𝑖

−∑ 𝛽𝑖𝑗
(𝑑𝑖)𝑖
𝑗=(1)𝑖

≥ 0, which guarantees the optimal 

contribution, 𝜙𝑖(𝒙−𝑖), is nonnegative. Finally, a contribution profile 𝒙 is an equilibrium if and 

only if the player contributions are best responses to each other—𝒙𝑖 = 𝜙𝑖(𝒙−𝑖) for each 𝑖, or in a 

vector form, 𝒙 = 𝜙(𝒙). That concludes the proof. ∎ 

 



 

Appendix C. Experiment 

C.1. Experimental protocol 

In connection with Sections 3 and 5 in the main text, we further illustrate below the structuring 

of the experiment and the matching protocol in Figures C-1 and C-2 respectively.  

 

Figure C-1. The organization of the experiment 

 

 

 

 

 

 

 

 

 



 

 
(a) Star cohort 

 
(b) Circle cohort 

 

(c) Complete network cohort 

Figure C-2. The matching protocol within a cohort 

C.2. Global network effect 

Note that the network effects observed in our main experiment in Section 4 are local, in the 

sense that we contrast subject behaviors in the same network with different numbers of neighbors 

(e.g. core vs. periphery). Now, we will examine global network effects by comparing the behavior 

across networks while controlling for one’s number of neighbors. Specifically, we will compare 

behavior in Com with that of the core players in treatment S. Thus, we control for one’s number of 

neighbors (3) while varying the outer network to examine the play.  

Figure C-3 shows that the subjects contribute less in Com than those at the core position in S 

(the latter denoted as S core in the figure) with one-sided p-value = 0.009 by a two-sample t-test 

clustered by cohorts. We view this as the effect of reference structure. Although having the same 

degree, the core of a star and a member of a complete network face drastically different networks 

outside their neighborhoods. The hierarchical configuration of the star network exposes its core to 

a “social responsibility” to raise its contribution, whereas such exposure does not take place in a 

complete network owing to the structural balance.  



 

 

Figure C-3. Global network effect on contribution 

In this section, we find that, while having the same number of connections, subjects in the 

complete network contribute significantly less than those at the core position in the star network. 

Thus, we showcase how the global network structure could affect individual contributions by 

manipulating the saliency of one’s network position. 

C.3. Experimental instruction 

We present the experimental instruction for treatment HS in this appendix. The instruction can 

be straightforwardly adapted to other treatments with the change of payoff or network structures. 

The original instruction delivered to the subjects was written in Chinese, and we present here the 

version translated to English.  

***************************** Instruction: HS ********************************* 

Welcome and thank you for participating in this experiment. In this experiment you will earn 

money. From now on until the end of the experiment, please do not communicate with other 

participants. If you have any question, please raise your hand. An experimenter will come to your 

place and answer your question privately. At the end of the experiment, the balance of your account 

will be converted into Chinese Yuan according to the conversion rate: 1 unit of experimental profit 

= 0.001 Chinese Yuan, and paid to you right away. 

The experiment lasts for 20 rounds. In each round, participants will be organized in a network 

shown in Figure 1 below. In this network, people connected to you are your neighbors. Every round 

your neighbors will be different people. If you ever take a core position (C) in any round, you will 

remain at the core position throughout the experiment. Similarly, if you ever take a peripheral 



 

position (P1, P2, or P3) in any round, you will remain at the peripheral position throughout the 

experiment. Your position in the network will be marked blue, shown on the computer screen. 

 

Figure 1. The network 

In each round of the experiment, you will determine the amount of a “contribution”. On the one 

hand, every unit of your contribution will return you a benefit of 30 units. On the other hand, 

making the contribution incurs you a cost that equals 0.5×(the amount of your contribution)2. 

Furthermore, your neighbors also benefit from your contribution – Every unit of your contribution 

will deliver a benefit of 30 units to each of your neighbors. Likewise, every unit contributed by 

each of your neighbors will also bring you 30 units of benefit. Every round, you can contribute up 

to 75 units.  

Examples.  

Suppose you are player P1 in the network above. Your neighbor is therefore player 

C. If player C contributes 30 and you (player P1) contribute 20, your profit will 

be:  

30 × 20 + 30 × 30 −
1

2
× 202 = 1300  

Similarly, if you are player C in the network, your neighbors are player P1, P2, P3. 

If player P1, P2, P3 contribute 20, 30, 40 respectively, and you (player C) 

contribute 30, your profit will be: 

30 × 30 + 30 ×（20 + 30 + 40）−
1

2
× 302 = 3150  

After each round, you will get to see your profit, your contribution, and your neighbor(s)’s profit 

this round. 

Before the game starts, you are required to complete a quiz, which covers the important knowledge 

about the game. The quiz will take place on your computer. You will not start to play the game 

unless you answer all the questions in the quiz correctly. 

************************************************************************************** 



 

C.4. Software interface 

The experimental software was programmed with zTree (Fischbacher, 2007). Subjects began 

with a quiz testing their understanding of the game, with no earning accumulated to the game. The 

quiz screens are shown in Figure C-4. The actual decision-making interfaces are found in Figure 

C-5. The original text on the experimental interface was in Chinese, and we present here the version 

translated to English. For conciseness, we only include the interfaces for treatment C. The other 

cases not covered in the screenshots were presented to the subjects in an analogous manner.  

 

Figure C-4. Quiz 



 

 

Figure C-5. Decision making 
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