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Ultimately Bounded Filtering Subject to Impulsive
Measurement Outliers

Lei Zou, Zidong Wang, Jun Hu, and Hongli Dong

Abstract—This paper is concerned with the ultimately bounded
filtering problem for a class of linear time-delay systems shject
to norm-bounded disturbances and impulsive measurement du

liers (IMOs). The considered IMOs are modeled by a sequence

of impulsive signals with certain known minimum norm (i.e.

the minimum of the norms of all impulsive signals). In order
to characterize the occasional occurrence of IMOs, a sequea
of independently and identically distributed random variables

is introduced to depict the interval lengths (i.e. the duratons

between two adjacent IMOs) of the outliers. In order to achiee

satisfactory filtering performance, a novel parameter-degndent
filtering approach is proposed to protect the filtering performance

from IMOs by using a special outlier detection scheme, which
is developed based on a particular input-output model. Firg

the ultimate boundedness (in mean square) of the filtering eor

is investigated by using the stochastic analysis techniquand

Lyapunov-functional-like method. Then, the desired filter gain

matrix is derived through solving a constrained optimization

problem. Furthermore, the designed filtering scheme is appéd to

the case where the statistical properties about the intenddengths

of outliers are completely unknown. Finally, a simulation ample

is provided to demonstrate the effectiveness of our propose
filtering strategy.

Index Terms—Ultimately bounded filtering; Impulsive mea-
surement outliers; Parameter-dependent filter; Matrix-fraction
description; Time-delay systems.

. INTRODUCTION

investigated for the linear time-invariant system with nakn
covariances of process noises and measurement noise],In [2
a so-called Gaussian particle filter has been developed for
nonlinear systems through approximating the posteridridis
butions by single Gaussian models. In [15], the robHst
state estimation issue has been studied for uncertainnsyste
with limited communication capacity based on a parameter-
dependent approach. The moving horizon estimation problem
has been studied in [48], [49] for networked systems with
unknown inputs and communication constraints, respdgtive

In order to evaluate the estimation accuracy of a filter,
various filtering performance requirements have been tegor
in the literature, where the widely employed performance
requirements include, but are not limited t#,., require-
ment, minimum mean squared error (MMSE) index, ellip-
soidal bound constraint, ultimate boundedness requiremen
and linear quadratic performance index. Among others, the
ultimate boundedness requirement is particularly suatdoi
quantifying the steady-state filtering performance subjec
norm-bounded noises [18], [26], [30], [33].

In numerous practical applications, the filtering perfonca
might deteriorate when the underlying system suffers from
model mismatch, unreliable communication, sensor faglure
unknown inputs and measurement outliers [9], [28], [29T][3
[44]. In order to deal with the filtering task subject to these

Filtering or state estimation problem is one of the mostidverse effects, a number of filtering schemes have been de-
investigated topics in signal processing and control cor€¢!oPed [S], [6], [34], [36], [39]. For instance, in [31], seral
munities. Ever since the pioneering work of Luenberger @daptive Kalman filtering approaches have been introdumed f
1960s [27], there has been an ongoing research interest in petworked systems and sensor networks subject to mixed un-

filtering or state estimation problems for various systeg8].|

certainties of sensor delays, missing measurements akétpac

For example, in [32], the optimal filtering problem has beeﬁropouts. The distribute® ., filtering issue has been studied
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in [16] for sensor networks with communication delays and
event-triggered transmission scheme. In [35], g filtering
problem has been addressed for semi-Markov jump systems
with randomly occurring uncertainties and sensor failures
When it comes to thailtimately bounded filteringproblem

for time-delay systemsubject tomeasurement outlierghe
corresponding results have been really scattered due ynainl
to the difficulties in handling the outlier-induced effects
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mal” measurement disturbances that are quite distingdishe
from those widely studied noises. Compared with the noises,

Harbin Unimeasurement outliers have their own distinctive featurfes o

1) occasional/intermittent/probabilistic occurrenced &) un-
expectedly large amplitudes. So far, some initial resudtgeh
been reported in the literature concerning the filteringoprm
subject to measurement outliers, see, e.g. [1], [8], [1B3].[
[17], [38] and the references therein. Roughly speaking, th
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main strategies dealing with measurement outliers can inéerval length for the measurement outliers. Then, thé/ddr
categorized into groups, namely, the passive robustressdb filtering strategy is applied to systems with unknown stass
schemes and the active detection-based schemes wherepfdhe interval length for the measurement outliers. Moszpv
the former, the filters are designed to be insensitive tdarstl a simulation example is given in Section IV to demonstrate
by selecting the suitable filter parameters through skzdist the correctness and effectiveness of our proposed PDiilferi
tests or on-line adaptive adjustments [3], [8], [21]. It ierthh scheme. Finally, we present the conclusion of this work in
mentioning that, in [3], a so-called stubborn state observBection V.
has been constructed by using the saturated innovation irNotations: The notation used here is fairly standard except
the observer design, under which the effects induced by tiwbere otherwise stated®™ and R"*"™ denote, respectively,
possible outliers would be restrained. Nevertheless, #® pthe n dimensional Euclidean space and set ofralk m real
sive robustness-based schemes cannot guarantee the momplatrices.N (N*,N~) denote, respectively, the set of integers
elimination of the effects induced by the measurementengtli (nonnegative integers, negative integers), and the setlof a
in the filtering process. nonnegative real numbers is denoted Ry. The notation

In the active detection-based methods for tackling odlierX > Y (X > Y), where X and Y are real symmetric
the filters are developed based on certain detection syrategatrices, means thaf — Y is positive semi-definite (positive
with the hope to completely discard the measurements contasiefinite). M ™ represents the transpose of the mathik If
inated by outliers. Along this direction, a representatixek A is a matrix, \nmax{A4} (Amin{A}) stands for the maximum
has unarguably been [2], in which a leave-one-out detecti@gminimum) eigenvalue ofi, andtr{ A} represents the trace of
strategy has been developed by removing the measuremeht$-or a matrixP € R"*", det(P) denotes the determinant
possibly contaminated by outliers from the estimation pssc of the matrix P. 0 represents zero matrix of compatible
Note that the results of [2] are still dependent on the uppédimensionsl y represents aiW dimensional row vector with
bound of outliers, and this implies that the estimation @erf all ones. The:-dimensional identity matrix is denoted s or
mance might not be satisfactory if the amplitudes of owutliesimply I, if no confusion is caused. The shorthatidg{- - - }
are out of normal range. To this end, a seemingly interestistands for a block-diagonal matrix and the notatitig, {e}
research topic (which is also of clear engineering insightd is employed to stand fodiag{e,--- ,e}. Prob{-} means the
develop an ultimately bounded filtering strategy such that t —
filtering results aréndependentf the upper bound of outliers, occurrence probability of the event E{x} andE{ x|y} will,
and this has motivated our present research. respectively, denote expectation of the stochastic veriab

Summarizing the discussions made so far, in this papand expectation of conditional ony. Given a generic vector
we endeavor to investigate the ultimately bounded filtering ||z|| describes the Euclidean normefin symmetric block
problem for time-delay systems with measurement outligrs matrices, “ « 7 is used as an ellipsis for terms induced by
utilizing an active-detection based method. Subsequehtlye symmetry. The degree of a polynomiglis represented by
fundamental challenges we are confronted with are idedtifideg(f), which is the highest degree of its monomials with
as follows: 1) how to model the effects of measuremenbnzero coefficients. A polynomiaf is said to be monic
outliers according to practical engineering? 2) how toiulist if the leading coefficient (the nonzero coefficient of highes
guish the outlier-corrupted-measurements with those abrndegree) of this polynomial is equal tb. Matrices, if they
measurements? and 3) how to design the filter such that #re not explicitly specified, are assumed to have compatible
filtering error dynamics is ultimately bounded in mean squadimensions. The Kronecker delta functiofa) is a binary
subject to the outliers without having to know the upper lburfunction that equalg if « = 0 and equal$ otherwise.
of outliers? The main purpose of this paper is to provide
satisfactory answers to these three questions. Il. PROBLEM FORMULATION AND

In response to the identified challenges, the contributadns PRELIMINARIES
this paper are highlighted as follows: 1) the filtering peothl
is, for the first time, investigated for time-delay systemnithw
IMOs where a novel detection scheme is developed to identifyl) Polynomial matrix and rational matrixPolynomial ma-
whether the current measurement output is corrupted by t@x is a matrix whose elements are polynomials, in other
outlier; 2) a dedicatedly designed parameter-dependddy (Rvords, a polynomial matrix is a polynomial whose coefficgent
filter is put forward under which the filtering error is ultitety are matrices. An x m polynomial matrixP(z) is said to be
bounded in mean square; and 3) the proposed filter designgular if det(P(z)) = 0 for all the z. P(z) is said to be
algorithm is applied to the case where the statistical ptag®e nonsingular ifdet(P(z)) # 0 for certain z. A polynomial
about the interval lengths of IMOs (i.e. the durations bemve matrix P(z) is said to be unimodular if its determinant (i.e.
two adjacent IMOs) are completely unknown. det(P(z))) is a nonzero constant. Rational matz) is a

The remainder of this work is organized as follows. In Secnatrix whose elements are rational functions of the vagiabl
tion I, some preliminaries are firstly introduced, and timeet-  z.
delay systems with IMOs and the corresponding PD filtering 2) Matrix-fraction description: A given rational matrix
structure are proposed. In Section lll, the dependent pateem G(z) can be written as a fraction of two polynomial matrices.
of the PD filter is designed. Furthermore, the desired filtéts the product of matrices is not commutative, there are
gain matrix K is derived based on the statistical properties @ivo different ways to proceed (e.g. the left matrix-frantio

A. Preliminaries: matrix-fraction description
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description and right matrix-fraction description). M@@ecif- moment sequence, the measurement outlie(i.e. the out-
ically, any rational matrixG(z) admits a left matrix-fraction lier occurring at the sampling instai is modeled by the
description (LMFD) following form of impulsive signals

G(z) = D' (2)NL(2) 1)

o = Y _ 8k — t(i))o;
and a right matrix-fraction description (RMFD) i=0
G(z) = NR(z)Dgl(z) ) whereo,; represents the amplitude (a vector to be defined later)
of the i-th measurement outlier. Moreover, by defining the

where Dr(z), Dr(z), Nr(z) and Ng(z) are polynomial interval lengthZ; as
matrices of suitable dimensions. LMFD (1) is irreducible if
Dy(z) and N (z) are left coprime. Similarly, RMFD (2) is Ti=t(i) —t(i —1)
irreducible if Dg(z) and N(z) are right coprime.

3) How to compute the LMFDConsider a rationat x r

matrix G(z) given as follows:

for i+ € Nt with initial value T, = ¢(0), the occurrence
momentt(i) can be rewritten as(i) = >>;_,7;, which

implies that
en(z) ez | eir(z) .
Gt enld) s 3 oAl
T @a() T dar(e) on=) 0 |k=> T |0 )
Gz =™ A B = =
Eml'(Z) 6m2.(z) em;(z) Next, let us introduce some necessary assumptions about
dm1(2)  dm2(2) dmr(2) the proposed IMO.
where all the polynomialsi;;(z) (i = 1,2,---,m; j = Assumption 1:The interval length¥; satisfies the following
1,2,---,r) are monic. Let the lowest common multiple (L-condition:

CM) of {d;j(#)}j=1,2,.... » e d;(z) and assume that;(z) =

2 o
fij(2)di;(z). Then, a LMFD of the rational matri:(z) is LeT={LL+1, I+s}

given as follows: whereT ands are two known positive constants. Furthermore,
G(z) = D;l(z)NL(z) 3) the amplitudey; satisfies the conditiofjo;|| > o whereo is a
known constant.
where Assumption 2:The interval length47; };>( are a sequence
Dy (2) = diag{di(2),d2(2), -+ ,dn(2)} of independently and identically distributed (i.i.d.) dam

e (Dfir(z) era()fra(z) - ern(2)frn(2) varlables and the occurrence probability &f = T + j
e21()f21(2) e22(2)fa2(2) + ear(2)far(z) (Vj €{0,1,---,s}) is given by

Np(z) = ,
Prob{T; =T + j} = p;

emt () (2) em2(2) fma() " mr(2) fmr (2)
(4) wherep; >0 (vj € {0,1,---,s}) and}"_ p; = 1.

Remark 1:Matrix-fraction description (MFD) of the trans- Remark 2:In this paper, the measurement outliers repre-
fer function matrix is a basic tool for characterizing thean  S€nt the anomalous signals that might result from sensor
output relationships for linear time-invariant (LTI) sgsts. Malfunctions, wrong replacement of measures, cyberiatac
MFD-based technique provides a simple way to deal wifff !arge non-Gaussian noises [2]. These anomalous signals
the analysis and synthesis issues for LTI systems (e.g. figically take place on an occasional basis with relativeige
stability analysis). It is worth mentioning that the LMFD) (3 amplitudes as compared with the conventional dlsturbarhn.es.
is not unique to the rational matrig(z). Letting A(z) be a orde_r to capture such an occasional nature, a set of spetial i
nonsingular matrix, we havé/(z) = D; . (z)Np(z) where pulslve signals has t_Jeen employed to model the measurement
Dira(z) = A(2)Dp(2) and Npa(z) = A(z)Np(z). Further outliers. In our previous work [50], we have considered the

introduction about MFD and the transfer function matrix caf€t-membership filtering problem of time-varying systenita w
be found in [47]. IMOs, which are modeled by a sequence of impulsive signals

whose interval lengths and norms are larger than certaid fixe
. . thresholds. In the current investigation, the intervabtis of
B. Impulsive measurement outliers IMOs are modeled by a sequence of i.i.d. random variables
In this subsection, we consider the mechanism of modelifg;}, .. The statistical properties of these i.i.d. random
the IMOs. In practical engineering, an outlier occurs at oRgrriables are identifiable from engineering practice. Wisth
of the sampling instants and thus the number of occurrgdting that the interval lengtfi; is an important index which
outliers should be accountable. Without loss of generdity is commonly used in practical applications to charactettize
the sequence of occurrence moments for the outliers be occurrence frequency of outliers. A typical example of such
H0) < t(1) < - < 1(j) < - an index can be fqund in the_ failure model of a repairable
system, where an important index named the time between
wheret(j) (j € NT) represents the occurrence moment dhilures (TBFs) is adopted to model the failure frequendy [7
the j-th measurement outlier. Based on such an occurreri@®]. Obviously, the so-called TBFs can be regarded as the
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interval lengths of outliers. Furthermore, itis worth miening and it is easy to see that the new process noise vegtas

that the IMO model adopted in this paper is more general sl a norm-bounded signal. Hence, the above reformulated
compared with our previous work [50] since, when the scalaystem falls into the plant form (6).

s and the statistical properties gfl;};cn+ are completely  Next, let us consider the filter structure for the system

unknown, the IMO model utilized in this paper reduces to th). In conventional filtering scheme, the filter is often de-

one established in [50]. signed based on the structure of Luenberger observer and
the filter gain matrix is selected such that the filtering erro
C. Problem formulation: plant and filter structure dynamics isnput-to-state stablsubject to the external inputs.
Consider a discrete-time linear system of the form The filtering performance corresponding to this strategy is

largely dependent on the external inputs (e.g. the process
noise, measurement noise and IMOs). Clearly, such kind of
yr = Cak + Fvy + o (6)  conventional Luenberger-observer-based filters woultitéai
2 = My, achieve a satisfactory filtering performance if the ampisi
wherez;, € R”, y, € R™ and z, € R are the system state,_Of outliers are quite large. To specifically tackle the artli

the measurement output and the output vector to be estimafggUe: in this work, we aim to design a dedicated parameter-
respectively;w, € W 2 {w : |w|| < @;w € R"} and dependent (PD) filter which is capable of “protecting” the
v €V 2w v < v e RS} denote ’respectively the filtering performance from the effects of IMOs. In order to

process and measurement noises wherand 7 are known achieve such a purpose, we adopt the following PD filter:
positive constants; the parametets B, C, E, ' and M {;@kﬂ = A%y + Efp_r + 01K (yr, — Cy)

Tht1 = Az, + Exp_+ + Bwy

are real-valued matrices of appropriate dimensiangs the )
known constant; and the vecter, € R™ is the IMO of
the form (5). Here,y, and z;, are the system output andwherez; andz, denote, respectively, the estimatesitgfand
the controlled output, respectively, whegg is the actual 2k 0 is a binary function to be designed which takes values
measurement output that is obtained from the sensors &Hd or 0; and the PD filter gain matrix is the parameter to
corrupted by the noise, and possibly the outliep,. The be designed.
matrix C is the output matrix. The controlled outpytdenotes I filter (7), the binary functior;. characterizes the outlier
the signal to be estimated, which is actually the signal vee fetection result at time instarit. The rationale behind the
interested in. In other wordsy, is a noise-free signal that Proposed structure of the PD filter (7) is to remove certain
describe the “real information” that we want to know, and th@utlier-related innovation from the filtering process actog
matrix M is problem-dependent that can be determined B9 the outlier detection resul.. Based on the outlier detection
engineering practice. results, the “rejection” of the outliers can be ensured in ou
Remark 3:Note that the model (6) includes the time_de|a§jltering scheme if the outlier detection technology isable
Ezi,_., which is justified as follows. As is well known, time-(i-e. 6x = 0 holds if o, # 0). In other words, the binary
delays commonly occur in many dynamical systems incluédnction 6, should be designed such thét = 0 if there
ing microwave oscillators, electronics, biological systeand €Xists an integei € N* satisfying the conditiort(i) = k.
hydraulic systems. For example, in a robotic teleoperationBefore presenting the problem addressed in this paperslet u
system, a time-delay might take place during the infornmatiéntroduce the following definition about exponentiallyiniate
transmission if the teleoperation is performed over a gré@undedness (EUB) in mean square. .
distance [4]. So far, there has been a rich body of researciPefinition 1: [41] The dynamics of the filtering erray, =
results available in the literature on various control attarfi % iS said to be exponentially ultimately bounded in mean
ing problems for time-delay systems. The existence of tinfgluare if there exist constanfs> 0, 5 > 0, € > 0 such that
delays could_ lead Fq the deterioration of system perforrganc E{|lex||?} < <FB+¢ (8)
or even the instability of the system. As can be seen in th . .
sequel, the inclusion of the time-del#&yx_ - in (6) will give wheres € [0,1), 5> 0 ande > O with ¢ and e de”°2”9
rise to additional difficulty in the filter analysis. the dec_ay rate and the asymptotic upper bountfe;(|"},
It is supposed that the occurrence moment sequence of Eﬁ%pectlvely.

outliers is completely unknown and Assumption 1 holds fOtFl' ow, r’e afre”readyTLO in:)r_odltj_ce tr]:eihproblem f_;ld(ttlresfsledd in
any i € NT. Without loss of generally, in this paper, we IS Work as Tollows. 1he objective of this paper 1S Iwolold.
a) Firstly, design the binary functiodl, such that the

assume that;, = 0, v, = 0 andog = 0 for all & < 0. Actually, ) ) ) : )
this assumption is not restrictive at all. For example, sisep conditiond;, = 0 holds if and only ifo;, 7 0 (i.e. there is
an outlier occurring at time instakf). In other words,

that the initial condition of (6) is; = ¢ (i < 0). Obviously, ; ) ) !
we havey;, = ys 2 Co (i < 0). Letting 7 2 x4 — ¢ the designed PD filter (7) is capable of removing the
G 2 g — yo anday, 2 Bwy, + Ap + Ed — ¢, we can derive innovations contaminated by IMOs. _
the following linear system ) Secondly, based on the developed binary functipn
~ ~ ~ ~ design the filter parametét such that the filtering error
Tptr1 = ATy + ETpp—r + g er, is exponentially ultimately bounded in mean square
Uk = CZTr, + Fuvi, + oy subject to the process noisg, measurement noise,
Zi=0, Vi<0 and the IMOoy,.

2k = My,
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1. MAIN RESULTS As such, the polynomial matrice®;(z) and Ny (z) can be

A. Design of the functiofi;, rewritten as follows:

In this subsection, we intend to develop a detection method Dp(2) =2 T +2""'Dpy+---+ Dyg 15
ca}pable of i(jentifying whether the received measurememt co Np(z) =24 "Ny + 2% 2Npo + -+ Ny g (19)
tains an outlier. Before proceeding further, let us firsaletsh - - - -

the input-output model of the plant (6) which will be useavhere Dr; (i = 1,2,---,d) and Nz; (j = 1,2,--- ,d) are

in developing the outlier detection scheme. According t® theal constant matrices. Furthermore, it can be concludad th
system dynamics (6), we have the following delay-free linedDri};—; »... 4 are diagonal matrices.

system: Without loss of generally, we let;, = 0 for £ < 0 and
- o _ then the input-output model of the plant (6) can be described
{ Tht1 = {uk + Buwy @ as follows:
Yk =Czp + Fuvi, + o,
DLyZ_J:./\/'Lw::é—i—DL}"V;:_J—l-DLOZ_J (16)
where
. - . where
xk—[xk Ti_y :Cka} , C’:[C 0 0f, v oAt 7 —
A 0 - 0 E B Ur-a= Ve Yia Yp_d)
_ T
é ? : 8 8 0 w,]j,ulj [wi1 wis widl
AL : B2 T
ST ; ve_a 2 i Vi Ve_al
o oo k T T T 1T
0 0 - I 0 0 Opq = [0 O O—d)
R _ _
The discrete-time transfer function matrices of (9) areegiv DL = [If D L1 D LdJ ’
as follows: Ny £ [Ny Npa -+ Npgl, F£diagg{F}.
Gyo(z) =C(zI - A)~'B Based on the above input-output model (16), we have the
Gy(z)=F (10) following proposition. B
Gyolz) =1 Proposition 1: Under Assumption 1, suppose tH&t> d.

Define the sequence ¢t (i)};>o as follows:
Since the initial condition of (9) is zero, it is concluded B

from (10) that iy = { mindk[k =T, f(k) > I}, if i =0
() = { min{k|k > (i — 1) + T, f(k) > f}, otherwise
Y(2) = Gyu(2)w(2) + Gyu(2)1(2) + Gyo(2)o(z)  (11) (17)

wherey(z), w(z), v(z) ando(z) represent the Z-transformsyhere
of the discrete-time signalg,, wy. vx andoy, respectively. . B B

Now, we convert the discrete-time transfer function matrix (k) = |[Dryy_gll, [ £ |[Ni||de + | DoF||(d + 1)v

w to the LMFD di to th troducti . . =
Gyu(2) into the (according to the introduction mThen, the conditiori(i) = t(i) holds for alli > 0 if o > 2f.

Subsection 1I-A3):
vbsection ) Proof: The proof of this proposition is performed by
Gyuw(z) = D' (2)Np(2) (12) mathematical induction )
Initial step.Considering the functiorfi(k), foranyd < T <
where Dy (z) and Np(z) are polynomial matrices andk mllows that

Dp(z) is a d|agonal matrix with the formDp(z) = B
diag{d,(z),ds(2), - ,dm(2)}. Then, it follows from (11) = |Pryy_gl = [New) s+ DuFvf | < f (18)
and (12) that

Dp(2)y(z) = Np(2)w(z) + Dr(2)Fv(z) + Dr(z)o(z).

On the other hand, under Assumption 1, it is deduced that

. . . 9t(0)
Let the degree ofi;(z) be d; (i.e. deg(d;(z)) = d(7)). #(0) 0
Define a diagonal polynomial matrix as follows: % 0y—d = :
W(z) = diag{z‘i_‘f(l), pA-d2) e ﬂ(m)} (13) 0

whered £ max;_1 5. ,m{d( )}. Then, we have Then, it follows from the conditiom > 2f that

Dr(2)y(2) = Np(2)w(z) + Dr(2)Fv(z) + Dr(2)o(2) f(t(0)) = HDLyt(o) dH
14 t(0) £(0)
(14) HNL +(0)— d+DL‘FV H(0)— d+DLO o) al
; T A N _
in which Dy (z) £ W(z)Dr(z) and Ni(z) = W(z)NL(z). > oyl — HNL%(S) Lip, ]_-yt(g) dH

Obviously, Dy (z) is a diagonal matrix whose diagonal ele-

ment is monic and the degree of any diagonal element is = ooyl = f > f- (19)
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As such, it is immediately known from (18) and (19) that calculation off(k) is bounded byO(m?(d + 1)). According
to the above algorithm, we can recursively calculate theesl

t(0) = min{klk > T, f(k) > f} = #(0), (20) of {#(i)}:>0, based on which the value of the binary function
which implies that the assertiditi) = ¢(i) holds fori = 0. 0k is designed as follows:
Inductive stepNow that the assertiof(i) = ¢(i) is true for 0, if {i>0\k=1%()}#0
¢ = 0. Next, given that the assertion is true for= j (i.e. O = { 1 otherwise (25)

t(j) = t(5)), we aim to show that the same assertion is true, . . . .
f(()jr)z’ _ j(Q)l (%bwously, the outlier detection resuli, effectively charac-

Along the similar lines of the Initial step, we have for an erizes the occurrence of outliers at time instarand, more

VLT < k< t(i+1) that ;pecifically, the con_ditior@k :Q holdg if a_nd only ifop #0

+T < G+1) (i.e. there is an outlier occurring at time instant

fk) =||Dry;_4ll = [[Nowi s+ DLFvi_;+ DrFoy 4. Note that the binary functiofi;, can be rewritten by
(21)

Note thatk —d > k—1 > t(j), which implies thab} ;=

B 1= 36— H0) =1 3 00k — 1),
i=0 =0

d
0. Hence, it follows from (21) that which implies that
flk) = ||Nowi b+ DrFv 4| < f. (22) . = o
Moreover, we have Oror = (1 - ; 6(k —t(i)) ; 6(k — t(i))0s
Ot(j+1) — N . s
=) k-t i — O(k—t(i)d(k —t ;
ey |0 ; (k = t(i))o ; D ok = t(i)a(k = (7)),
. - = 1= =0 j=0
t(j+1)—d : ’ - -
0 = > 60k — ()6 — Y 8k = HD)(k = 1(i))3; = 0.
which means that =0 =0
t(G+1) Hence, we havé, K (y, — Ciy) = 0, K (Cxy + Fry — Ciy,).
Jt(G+1)) = "DLyt(;+1)_J" Obviously, according to the PD filter (7), it is easy to findttha
_ HNL“’EE;IB:; n DL}'V:((;E)),J n DLOEE?IRJH ;Etnecrt(ie(];cet::.)n of the outliers is ensured by the designedrpina
> [|os(jn |l = HNL“:E;IB:UIT + DLJFV:((;:)LJH Remark 4:1t is seen thatD; ! (z) Ny (z) serves as another
> llosan | = F> . 23) LMFD of the discrete-time transfer function matri,,(z).

The main reason to adopt this new LMFD bk, ' () Ny, (z)

As such, it follows readily from (22) and (23) that (rather thanD; ' (2)N1(2)) is that the leading coefficient of
o o _ Dy(z) is I which is nonsingular matrix. Based on this new
t(j +1) = min{k|k > t(j) + T, f(k) > [} LMFD, we are able to examine the effects of outliers from

= min{klk > t(j) + T, f(k) > f} =t(j + 1). the measurement outputs exactly, thatH'@,Lozgg_JH >0 is
(24)  ensured for any € N*+.
Hence, by the induction, it is concluded that the assertionRe€mark 5:So far, we have accomplished the design of the

i(i) = t(i) is true fori = 0,1, - - -. The proof is now complete. function 6;. By setting the values off},~o according to
m Proposition 1, we can examine whether the received measure-

Let T > d ando > 2f. By means of Proposition 1, we Ment output contains an outlier or not. Note that Propasitio
propose an algorithm (Algorithm 1) to compute the occureend iS derived based on Assumption 1 and the condition2/,

moment sequence of outliers (i(i)}:>0) as follows: which have ensured thehortestoccurrence period of the
- outliers and thdower boundof the norm of the outlier. These

Algorthm L. findings are particularly reasonable for real-world apgicns

Step 1 Initialization: leti = 0. Accord_ing to Proposition 1,_ compute since the occurrence frequency of outliers is typicallytgui
the value off. If the current time instank < T', wait for the low and the amplitude of outliers is typically very large as
next time instant. Otherwise, go to the next step. . . . .

Step 2 Based on the received measurement outYlS i< ;<. compared with the_ noises. Ba_sed on the desghedve will
compute the value of the functiofi(k). - deal with the design of the filter parametér in the next

Step 31f f(k) > f, seti(i) = k. Leti = i + 1 and go to the next step. ~ subsection to ensure the EUB in mean square of the filtering
Step 4 If the current time instank < ¢(¢ — 1) + T, wait for the error
next time instant. Otherwise, go fétep 3 ’ . . . e
Remark 6: The key point of removing the “harmful” inno-
vations (corrupted by outliers) is to “identify” the occence

Algorithm 1 is an on-line outlier detection algorithm whichmoment for each IMO. Such a removal is, however, difficult
is very easy to implement in practical applications. At eadlo accomplish by adopting the traditional model-basedtfaul
time instant, the computational cost depends on the cdionla detection (MbFD) method that relies on the so-called redidu
of f(k), which has a polynomial time complexity. More specif{at each time instant) which is further affected by the mistd
ically, the corresponding computational complexity abth& external inputs (including the historical outliers). Aschu




FINAL 7

it might be the case that the generated residual is quitéen, the dynamics of the filtering error is ultimately boedd
small even if the received measurement is corrupted by eEmmean square subject to the disturbancgs v, and the
outlier. Different from the MbFD method, the outlier defeat measurement outlies;.

approach proposed in this paper is capable of accurately dis Proof: To analyze the EUB in mean square of the filtering
tinguishing the IMO-corrupted measurements from the nbrmerror e, we first consider the following two cases.
measurements under the condition- 2f. In this sense, our Case 1, = 1.

proposed detection scheme is superior to the MbFD schemén this case, we select the following Lyapunov-like func-

when detecting the IMOs considered in this paper. tional:
Vie=Vigp+ Vau (31)
B. Design of the parametdk’
where
Now, let us consider the estimation error dynamics. Let the o1

. . A A . .
f!lterlng error beey, = xy — T Accordlng to the proposeq_PD Vi 2 eI Prey, Vo 2 Z (1 — )" LeT Pre.
filter (7), the proposed binary functiagh (25) and Proposition

1, the dynamics of the filtering error could be derived as _
follows: Obviously, 8, = 0 means thatd < k < ¢(0) or there

exists a nonnegative integersatisfyingt(i) < k < t(i + 1).
ep+1 = (A — 0, KC)ep + Fey_r + Bwy, — 0, KFv,. (26) Calculating the difference df), along the trajectories of (27),

. ) one has
By defining two parameter-dependent matrices as follows:
Vigsr — (1= p)Vig

=ei 1 Prepyr — (1 — e Preg

i=k—T1

AOr) 2 A— 0, KC, F(0r) 2 —0xKF,

the filtering error dynamics (26) could be rewritten as fato = (A(t?k)ek + Fep_, + Buwi + ]:(ek)yk)Tpl (A(t?k)ek
ext1 = A(Or)ex + Eey—r + Bwy, + F (0 )vi 27) + Eep—r + Bug + F(0r)vi) — (1 — )i Prex
T
ékézk—ék:Mek €k €k
_ ek*T Q ek*T 32
In light of Assumption 2 and the filtering error dynamics — | w;, Wi (32)
(27), sufficient conditions guaranteeing the EUB in mean Vi Vi

square of the filtering error are given in the following thexor
Theorem 1:Consider the filtering error dynamics (27). Sup\-Nhere
pose that Assumptions 1-2 hold and let the filter paramiter Q. Qe AT(O)PB  AT(0,)PLF(0k)
be given. Assume that there exist two positive definite wesri , » | * E'PE  E'PB ETPyF(0r)
Py, P, € R"*™ and five positive scalara; (i = 1,2,3), 1 * * BTP B BTPF(0r) |’
and i, satisfying * * * FL(0) L F(0r)
Qll é AT(Gk)PlA(Hk) - (1 - ,LL1)P1, 912 é AT(Gk)PlE,

7T
T I & & O & and
=L ) ok ogk| <0 @8
* * * TP Vortr — (1 — 1) Vo
Y1l T2 T%3: k } k-1 .
To= |« 12 TP|<0 @9 = 2 U-m)ielRei— ) (1-m) el P
* * ’fg3 i=k—T1+1 i=k—1
s ) =elPrer, — (1 —p1)"el __Prep,. (33)
_ (1 Il
7= (L) - pil =) <1 (30) Noting that||w;| < @ and||v|| < 7, it follows from (32)
=0 and (33) that
where
_ AVi+ Vi = Vieer — Vie + 11 Vi
T2 (A-KO)'P(A-KC)— (1 — )P + P, e 17 o
Y22 (A-KO)'PE, TP42(A-KO)'PB, L N e L
F14 A T 22 & T - S + M@+ Av (34)
THL (A KC)TPKF, Y22 ETPE— (1 1) P, wh Wi
Y32 ETp B, Y2 _ETPKF, Y32 BTP B — A1, Yk Yk
342 _BTpKF, TH2FTKTPKF -\, where
_ _ T
T 2 ATPLA— (L+ )P+ Pa, T2 ATPE, Tu T T A O)PF(0)
T18 & 4T 122 & pT T Tal| ¥ Tay Tog B PLF(0)
2 =A'PB, T3 =E PIE—(1—m) Py, Tl o« Ta BT P F(6;) ’

YBLETPB, Y3 2£BTPB-\I. * * x  FU(0p)PLF(0) — Nl
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TuéAT(ok) A(Or) — (1 — ) Py + Py,
Yo 2 AT(04)PLE, Yo 2 ETPIE— (1 — 1) Py,
Y132 AT(0,)P.B, Yo3 2 ETP B, T332 BTPB — \ 1.

Since A(1) = A — KC and F(1) —KF, it can be
observed from (28) thal = T; < 0, which implies that

AVp < = Vi + Mw? + Aap®, if 0, =0 (35)
As such, for anyt(i) < k < t(i + 1) and scalaw > 0, it is
derived from (35) that

SV — 08V = OFTLAV, 4+ 68 (6 — D)W

which implies that

Vi1 < (14 p2)Vigp) + As@? (40)
Then, it follows from (39) and (40) that
E{Viis1)} < p+00(1+ pa)E{ Vi) } (41)

wherep £ 5632+ p. Furthermore, it is concluded from (30)
that E{Vi(i11)} < YE{V;(;)} + p wherey < 1, which implies
that

UHlE{Vt(iH)} - UiE{Vt(i)}

<o'(c—o(l—7) = DE{Vyy} +0"p (42)

<G8 (6 — b — 1)Vi + 8 (M@ + Aa?). (36)  Lettings 2 1 and summing up both sides of (42) from
Letting § £ - #1 and summing up both sides of (36) fronf(0) 1 1(j) with respect tai, we obtain
t(i) + 1 to t(i + 1) with respect tok, we obtain : po(1— ol 1—~7
) G+l g TE{Vi} — EVao} < & (1 ) _ ”§ 7 )
t(i+1) —0 Y ( - '7)
SV, gy — 8OV ) < (@? + Aoi?) Z 5" Moreover, it is found from (35) that
i=t(i)+2 o 5(5 d ) _
SHO+2 _ Ft(i+1)+1 Vi) < 5§~V + 7()\1 =+ /\292) £
:()\1&)2+A252) _ 1-6
=9 Hence, we arrive at
which implies that ) v 5 5
2 T I ]E{V“j>}<7%+ﬁ_7]<V°_1—7>+1—7
Vt(i-i—l) < (M@’ + Ao/ )ﬁ + ot T Vt( Y41 (43)
(37) Therefore, the dynamics df{V;; } is ultimately bounded,
Note that that is,
B s B . lim = L < +o0.
E{5~"+1} =Y Prob{Tipy =T +j}o~ T+ jotee 1=

Jj=0

= i V2 6 L7,
=0

Taking the conditional expectation on both sides of (37),

one has
E{Vi(ir1)[t(1)} < p+ 06B{Viiy11[t(i)}
whered £ 3% p;6~

(38)

T

~J and

526 -4

pE (w?+ Ap?) =5

Taking the mathematical expectation on the inequality,(38)

we have
E{Vii+1y} < p+ 00E{Vigiy 41 }
Case 26, = 0.

(39)

Obviously, the equality)y = 0 means that there exists al Ne Proof is now complete.

nonnegative integersatisfyingk = ¢(i). In this case, one has

AVi, — p2Vi,
=Vigr1 — A+ p2)Vig + Varyr — (L4 p2)Voi
<Vigsr — (L +p2)Vig + Vagyr — (1 — p1) Vo
CL r €k
< lew—r| T2 |en—r| + A0 < A30?
WE WE

Next, for anyt(j) < k < t(j + 1), we have

Amin{ PrYE[lex[|*} < BE{Vi}

< (M@ + i + § T DELV, ()41}

1-6
S(S1—k+t(j) B )
< (M@? + /\252)5(5175) + 1R N g2

+ 8 RO (1 4 o) E{ Vi }
52
< (n@? + /\252)1

5+ SA30” 4+ 0(1 + p2)E{V; ;) }

which implies that the dynamics of the filtering error is
ultimately bounded in mean square. Finally, we concludé tha
52
1-46
+ 0A3w% 4+ 0(1 + o)

lim E{[lex]|?} < (M@% 4+ Ai?)
k—+oo

1—
|
Remark 7:So far, we have designed the binary function
0, and derived sufficient conditions to ensure the EUB (in
mean square) of the filtering error. By employing a LMFD-
based technique, we are able to examine whether the received
measurement contains an outlier through a fixed number of
past measurements. Based on the analysis results in Theorem
1, we have the following observations.
1) To ensure that the matrix inequality (28) is feasible, the
scalaru, is required to satisfy the conditidn< 1, < 1.
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2) The decay rate oE{|e|?} is mainly determined by = Remark 8:It is well known that the feasibility of a filter
~. Obviously, increasing the value of the lower boundlgorithm is largely dependent on the observability (or de-
of T; (i.e. T) would improve the feasibility of the tectability) of the underlying system. Furthermore, the ob
matrix constraints (28)-(30), which indicates that a longervability of the system is affected by the rank deficiency
minimum interval length of outliers would contribute toof the corresponding system matrix [11], [12]. Compared
the improvement of the filtering performance. with the observability-based analysis technique, the imatr

3) Both the design off, and the sufficient conditions inequality-based technique is more appropriate for hagdli
derived in Theorem 1 are independent of the uppé#re filter design issue addressed in this paper due mainly to
bound of the outliew,. Hence, our developed filteringthe consideration of the impulsive measurement outliers. |
strategy is capable of dealing with unbounded IMOs. fact, there should be some relationship between the fdiasibi

In Theorem 1, sufficient conditions have been proposed @four proposed matrix inequalities and the rank deficierfcy o

ensure that the dynamics of the filtering error is ultimatef{?® System matrix, and this deserves further investigation

bounded in mean square subject to the disturbances and QHE future research.

IMOs. Note that the constraints (28)-(30) are nonlinearixat ¢ I lqorith |
inequalities that are quite difficult to solve. In what falls, By means of Corollary 1, we propose an algorithm (Algo-

we aim to present a computationally appealing algorithm {Hhm 2) tq d_esign the filter parameter based on a particle-
determine the filter parametdt. Before doing so, we first swarm-optlmlzanon (_PSO) ”.‘etho.d as follows, Ob\_/louslyg th
give the following corollary concerning the design of théefil com_putatlon of Algorithm 2 is .qwte C,OfStIY dge mainly to the
parameter based on given scalars and solving process of the constrained minimization probles).(4

Corollary 1: Consider the filtering error dynamics given bySuch a constrained minimization problem is solved by using

(27). Suppose that Assumptions 1-2 hold. Let two scdlars the_ well-known Iinear_ ma_ltrix inequalit_y (LM1) te_chnique,
41 < 1andps > 0 satisfying the constraint (30) be givenWh'Ch has a polynomial time complexity. In particular, the

Assume that there exist two positive definite matrié@ng S nulm tl?er/Vt()a) Odf Llobps S;i‘;ﬁ? to %computﬁ am//a[cpuiﬁte
R™*™ three positive scalak; (i = 1,2,3) and a matrixk’ € solution is bounded by( og(¥'/e)), where.# is the

R satisfying the constraint (29) and the following tWOtotaI row size of the LMI system,/ is the total number of

matrix inequalities scalar_ decision v_anables‘( isa data—depen(_jent scaling factor,
ande is the relative accuracy set for algorithm. For the LMIs

o1t )2 (29), (44) and (45), one has botw = 8n + 2r + s+ 3 and
0y = x P22 <0 (44) A =n?+mn + 3. Therefore, the computational complexity
- i 2
P> MTM 45y Of the established LMIs i©)((8n + 2r + s + 3)(n® 4+ mn +
b= (45) 3)3log(7 /¢)). On the other hand, it should be noted that
where the computational complexity of our proposed PSO-based

algorithm is bounded b@) (27k,.x-7), wherer is the number
Pt & —diag{(l —p1)Pr — Py, (1 — 1)  Po, M )\QI}, of particles, k.« iS the maximum number of iterationsy
12 & & =T 522 8 is the computational complexity of updating the particlel an
22 [PA-KC PE RB KF]", @P£-P. g global best location. As such, the whole computational
Then, the dynamics of the filtering error is ultimately boadd comple>;|ty of Algorithm 2 iSO (27 kumax (814 21+ 543) (n” +
in mean square subject to the disturbancgs v, and the 7+ 3)”log(7'/¢)). Note that the computation of Algorithm
measurement outlieo,. Furthermore, the minimum of the2 iS executed off-line for the subsequent filtering task. The

asymptotic upper bound oE{[|Z]|>} can be derived by computational comp!exity of the.filtering task _wiII not be
solving the following minimization problem: affected by such a high computational complexity.

) L o, 02 = p Remark 9:1t should be pointed out that the observabili-
mm{(/\l“" + Aol )1 3 +0A3w” 4 0(1 +“2)1 — } ty/detectability of the system is not required in outlier- de
(46) tection (via the design ofy;) or the filter parameter design
(via the design ofK). In the proposed outlier detection
subject to the matrix inequality constraints (29), (44) &), scheme, the detection result is based on the input-outpdémo
where (16) by using the LMFD of the transfer function matrix.
1 525_5 The computation of such a LMFD isot dependent on the
, - observability of the delay-free linear system (9). On theeot
L= hand, it is easy to see that the filter design task is accohsgulis
P2 06X30° + p, by solving certain matrix inequalities, and such a procedur
is quite different from the traditional methods (involvieg-
and ~ is defined in Theorem 1. Also, the desired filtetensive observability analysis), and is therefore moreable
parameter can be computed By= P, 'K. for handling optimization problems. In fact, by solving a
Proof: The proof is straightforward based on Theorem @onstrained optimization problem outlined in AlgorithmtR2e
and Schur complement lemma, and is therefore omitted helerived filter would help suppress the asymptotic upper Houn
for space saving. m of E{||z||?}.

52

3

§ED pd I, p B (Me” + XP?) 13
=0
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Algorithm 2:

Step 1 Initialization: let X £ [u1 ug]T be the location of the at the
i-th particle initial step. Generate particles under which the
the matrix inequalities (29), (30), (44) and (45) are felasifhe
velocity of thei-th particle is set to béé. Let the maximum
number of iterations bé&p,ax.

Step 2 Let the local best location of thieth particle and the global best
location at stepi be P} = X and PE = 0, respectively. Let
the iteration steps be 0.

Step 3 Update the values oPi' and Pg: for the i-th particle, solve the
minimization problem (46) subject to the matrix inequality
constraints (29), (44), (45), and let the value to (46)’IbK;i)-
Then, update the values @t} and PE by P} = miny {n(X})}
and PY, = min; { P} }, respectively. Ifl PL — P51 < ¢
where¢ is a given small positive scalar representing the
computation accuracy, go tep 7

Step 4 Update the values of} and X} as follows:

S}i+1 =S} +uiri (P} — X1) + varg(PE — X})

Xigr = X+ Si+1

wherep, v1 andwvg are the given inertia parameter and two
momentum parameters, respectively.andr, are the random
numbers betwee(0, 1). Letk = k + 1.

Step 5 Based on the values (pﬁ and M; according to the-th particle
Xy if the matrix inequalities (29), (30), (44) and (45) are
infeasible, letX; = X; _, andS;, =S}, _,.

Step 6 If k£ < kmax, go back toStep 3 else update the values 61%
and P% by P} = miny, {n(X})} and P& = min; {P; },
respectively, and turn to the next step.

Step 7 Solve the minimization problem (46) subject to the matrix
inequality constraints (29), (44) and (45) accordinng.
Calculate the desired filter parameter Ay= Pflf(. Stop.

10

problem:

52 5 < p
min {(/\1@2 + )\2172)1 3 + A3 +6(1 + uz)l f = }
(48)
subject to the matrix inequality constraints (29), (44) &%),
where
2T —§

1 _
1—-6

L=
p 2o IN0? + p.

52 CBE (M@ + i)

The desired filter parameter can be computedsby: Pl‘l.f{ .
Proof: The proof is straightforward and omitted here for

space saving. [ |

Similar to Algorithm 2, we can derive the desired filter
parameter< by means of Corollary 2 (by employing the PSO
algorithm) and the corresponding algorithm is omitted Here
conciseness.

Remark 10:1t is easy to conclude from Corollaries 1 and
2 that the filtering error results from the process and measur
ment noises. Obviously, the main purpose of the filter design
is just to reduce the effects of noises on the state estimates
according to certain performance specifications. When the
underling system is undergoing unknown (but deterministic
noises, an effective way of estimating the system state is to
employ the well-known unknown-input-observer-based (UIO
based) approach whose main idea is to decouple the estimatio
error from the unknown (but external) inputs [25]. One of

C. The case of unknown statistical properties of mterv%lur future research topics is to consider the state estmati

length for outliers

problem subject IMOs by using the UlO-based strategy.
Remark 11:1t is observed from Corollary 2 that 1) the

So far, we have completed the filter design for the timeyistence of the filter is determined by the condition (47),

delay system (6) with random occurring IMOs, where t

statistical properties of the outlier interval length &reown

However, sometimes it is quite difficult to obtain theseistat
cal properties in an exact way. In what follows, we consider t
case where the statistical properties of the interval lerfigt
the impulsive outliers are completely unknown. In this ¢asgyianded to the case that—

hose feasibility depends on the paraméter2) increasing
the value ofT" would contribute to the feasibility of the
condition (47) and the suppression of the minimum asymptoti
upper bound|z,||?, and 3) the condition (47) is independent
of the scalars. In fact, the results in Corollary 2 can be easily
+00. Moreover, it should be

the filter parametet( is designed under the worst situation,inteq out that the condition (47) is stricter than the doou
(ie. each interval length equals ) in order to ensure (3gy \hich means that the minimum asymptotic upper derived

that the filtering error is exponentially ultimately bouxde
for all possibleinterval length. In other words, we aim to
deal with the filtering issu&ithoutthe condition proposed in

Assumption 2.

in Corollary 2 would be larger than that in Corollary 1. In
other words, the statistical properties of interval lenfith
outliers would contribute to the resulted filtering perfamce.
The distinctive novelty of this paper lies on the follow tare

Corollary 2: Consider the filtering error dynamics given byaspects: 1) a new outlier detection technique is developed

(27). Let Assumptions 1-2 hold and two scalabs<( ;1 < 1
and s > 0) satisfy the following constraint:

F=0+p)l—m)E "' <1 (47)

If there exist two positive definite matrice?, Py € R™7,
three positive scalak; (: = 1,2, 3) and a matrixk' € R"*™

satisfying the matrix constraints (29), (44) and (45), tlies

to distinguish the measurements corrupted by outliers from
those normal measurements; 2) a new PD filter is designed to
guarantee that the filtering error is ultimately bounded aam
square; 3) the desired filter parameter is achieved by cagnbin
the PSO algorithm and LMI techniques; and 4) the proposed
filter design strategy is applied to deal with the scenarith wi
unknown statistical properties of interval length for tihéQs.
Remark 12:In this paper, we have dedicatedly designed an
“outlier-resistant” filter for a class of linear time-delaystems

dynamics of the filtering error is ultimately bounded subjesubject to IMOs, and such kind of filters is fundamentally dif

to the disturbancesy, v, and the measurement outlie.

ferent from the existing “attack-resilient” filters. Forample,

Furthermore, the minimum of the asymptotic upper bound of [19], [20], the distributed filtering problems have beémnds
|Zx]|?> can be derived by solving the following minimizationied for linear time-invariant systems subject to sensachs,
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where a saturation-like scheme has been adopted to const
the filters by assuming that the maximal number of attack i ‘ ‘ ‘ oo
sensors is known, and this maximal number is employed
indicate the “level of attacks”. In this paper, instead ofkimg
any assumption on the number of the “problematic” senso
we exploit the information about interval lengths of outiién
order to characterize the “occurrence frequency of oustlier
Moreover, different from the saturation-like scheme addpt
in [19], [20], the PD filtering scheme proposed in this pape¢
is developed based on the idea of “decoupling-like” schenr
which has proven to be particularly suitable for IMOs.
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IV. AN ILLUSTRATIVE EXAMPLE

In this section, we provide two numerical example t E % “© ® o () 100 120 10
illustrate the effectiveness of the proposed filter desareme.

Example 1: To make our simulation nontrivial, we consider
an unstablelinear time-delay system of the form (6) with

Fig. 1: The impulsive measurement outliers and the valuebef
sequencel — 0k }r>o

A= [0'65 0.38 } , B= { 1 } , E= { 0.3 0-2} 7 problem in Corollary 1. The corresponding filter parameter
0.32 —-0.53 —-0.7 —-0.1 0.2 is given as follows:
C=[1 05], F=05 M=1I 7=1.

K- [0.36594}

The process noise and measurement noise are chosen as 0.02054|

follows: Based on the derived filter parameter and the developed

wr = 0.4sin(0.4k*%), v, = 0.3r,,(k) functiond;,, we can design the PD filter according to (7). Nu-
_ o o merical simulation results are given in Figs. 2-3, whichidep
wherer,, (k) is a random number at time instatsatisfying the state trajectories and their corresponding estimatethe

rm(k) € [0,1]. Applying the augmentation method and thejmulation results confirm that the filtering performancevé!
LMFD technology introduced in Subsection IlI-A, we have zchieved.

D, =[1 —012 -0.966 —0.055 0.08],
Np =[0.65 0.6515 —0.285 0], “

35

andd = 4. In this illustrative example, we assume tfiat= 6
ands = 4. Then, the threshold is computed as follows:

F=|Ne||do + || PrF||(d + 1) = 2.5907.

@
S

N
a
T

Let the lower bound of the IMOs he= 6.4768. Obviously, i

we haveo = 2.5f > 2f. Based on the design of the binary = |

functiony, in Proposition 1, the IMOs and the values{df—

0k }r>0 are shown in Fig. 1. It can be observed from Fig. Lof

that our developedd; } >0 is capable of identifying whether il

the received measurement contains an outliertf, = 1 holds

when O 7& 0) % 20 20 60 2 100 120 140
Next, let us design the filter paramet&r by applying the fme

developed PSO-based Algorithm 2. Set the inertia parameter Fig. 2: The state trajectories mﬁ” and:&l(j)

and two momentum parameters b, 0.7 and 0.7, respec- o . o
tively. The statistical properties of the intervéls are given I order to show the superiority of our designed filtering

as follows: scheme, we would like to conduct a comparative simulation
between our developed PD filtering scheme and the tradltiona
Prob{T; =T} =0.1, Prob{T; =T +1}=0.1, Luenberger-observer-based filter. Let the filter gain matfi
Prob{T; =T +2} =0.2, Prob{T; =T+ 3} = 0.4, the traditional Luenberger-observer-based filter gwhich
Prob{T, = T + 4} = 0.2. is exactly the same parameter of our PD filter wifen= 0.

The trajectories of|Z;|| under different filtering methods are
Then, according the derived the global best location, weehashown in Fig. 4. Table | shows the values Eiioo [
u1 = 0.1753 and ue = 0.5331. Furthermore, based on theof our developed PD filtering and the traditional Luenberger
derived values of:; and uo, the minimum of the asymptotic observer-based filtering. It can be easily observed from &ig

upper bound of can be derived by solving the minimizatioand Table | that our developed PD filtering scheme performs
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the statistical properties of the interval length for theliets
are known.

' \‘»\
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|Zx]|? with unknown statistical properties
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Fig. 3: The state trajectories af”) and &>

much better than the traditional Luenberger-observeethasrig. 5: The trajectories ofiz,||> under different filtering approach
filter. The main reason of such a performance superiority

lies in the fact that our developed filtering could ensure the o )
“rejection” of the impulsive outliers in the filtering prose ~ TABLE II: Filtering performance with known and unknown
statistical properties

TABLE I: Comparison with the traditional filtering algoritfn St lzl?
AR Known statistical properties 125.7173
he0 . 8
Our developed PD filtering 1557173 Unknown statistical properties 145.0910

Luenberger-observer-based filtering 3230.4203

According to the main results proposed in Theorem 1, it is
concluded that the existence of the desired filter is aftecte
‘ ‘ ‘ ‘ ‘ by the time-delay parameter. In order to show the effect
[IZ4]| based on our PD filtering ‘ of time-delay on the filtering performance, we would like to
IZ4] ased on Lnenberger-observer-based Hltering provide a simulation to show the filtering results subject to
different values of the time-delay parameter (re= 1,2, 3).

Let I’ = 9 and s = 4. The corresponding trajectories of
||Zx|| are shown in Fig. 6. Table Il shows the corresponding

©
T
I

<
T
I

)
T
I

ES* values onﬁ)O IZ||- It is easy to find that reducing the value
24 of 7 would contribute to the improvement of the filtering
o performance.
A
s 14 T i
A ||Zk]] subject to 7 =1
% 20 20 o 3 100 120 140 12} |IZ|] subject to 7 = 2 J
Time (k) [|Zk|| subject to 7 =3
Fig. 4: The trajectories offZx|| under different filtering approach 1r
In what follows, we would like to consider the case wher < o5t
the statistical properties of interval length for the carti are =1
completely unknowrin this case, by employing Corollary 2, = ost
we can obtain the corresponding values;of o and K as
follows: 4
0.70198 0.2}
p1 = 046117, pp = 18.98175, K = [_0.33229] :
o ‘ ‘ ‘ ‘ ‘ ‘
The trajectories of| z,.||2 with known and unknown statisti- ° 2 © im0
cal properties are shown in Fig. 5, from which we can find tha
the filtering with known statistical properties could acliea Fig. 6: The trajectories of %, with different values ofr

smaller upper bound of the filtering error. Table Il shows the

values onﬁ)O ||z, |I* of our developed PD filtering schemes Example 2: To show the applicability of our developed
with known and unknown statistical properties, respedtive filtering scheme in practical systems, let us consider the fo
Obviously, a better filtering performance can be achievedldwing two-degree-of-freedom quarter-car suspensiotesys
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TABLE llI: Filtering results subject to different values of

oENENE
T=1 11.1775
T=2 12.8546
T=3 18.1281
(2DOF-QSSs) [45]:
[—0.1055 0.0085 —0.0022 0.0217
A— —0.2260  0.1669 0.0028 0.1123
T | 82196 —2.7734 —0.0139 —0.0831|"
_—0.4540 —6.5121 —0.0109 —0.0482
[—1.0970
—1.0591 1 0 0 O 0.5
B=1 54462 ’O_{o 10 0]’F_[0.5}’
| —6.9661
E=0, 7=0, M=1I
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assumed to be a sequence of independent and identically
distributed (i.i.d.) random variables. In order to regtréte
filtering performance from being degraded by IMOs, a special
PD filter has been designed based on an active detection-
based framework to discard the “harmful” measurements (i.e
the measurements corrupted by outliers). A novel outlier
detection approach has been developed to distinguish these
“harmful” measurements from other normal measurements.
Then, the EUB of the filtering error in mean square has been
carried out by combining the stochastic analysis technique
and Lyapunov-like approach. A PSO-based algorithm has been
developed to acquire the desired filter parameter. Furthexm

the filter design scheme has been extended to the scenahio wit
unknown statistical properties for the measurement astlie
(i.e. the occurrence probabilities of the outlier inter\eadgths

are completely unknown). Finally, an illustrative example
has been provided to demonstrate the effectiveness of our
developed PD filtering scheme.

The process noise and measurement noise are chosen disis worth noted that, our developed PD filtering scheme

follows:

wr = 0.3¢cos(0.6k), vy, = 0.2sin(0.4k"1).

is typical model-based method dealing with the linear time-
delay systems with IMOs. The key technique is to obtain the
input-output model based on the transfer function matrafes

Then, by using our developed PSO-based Algorithm 2, tifae plat. Accordingly, such a technique is not applicable to

desired filter gain matri¥< is obtained as follows:

—0.2125 —0.1182
K— 0.1344  0.0469

4.1958  —4.9949

2.7638 —4.3444

some complex systems (e.g. nonlinear system, time-varying
systems, uncertain systems). Furthermore, it should bednot
that the desired filter parameter is designed by using the
matrix-inequality-based technique. The correspondinm-co
putational cost would be very high if the system dimension
n is large. Such two deficiencies limit the application of

The trajectories of| % under different filtering schemesOUr developed PD fil_tering schem_e. Further research topics
are shown in Fig. 7, which has demonstrated the effectienddclude 1) the extension of the main results to some complex

of our developed PD filtering scheme.

35 T

|| based on our switching filtering
|| based on Luenberger-observer-based filtering

F
K

30F

25

Amplitude
= N
o o

T :
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5/vvh

0
0 10 20 30 40 50 60 70 80 90 100
Time (k)

Fig. 7: The trajectories of ;|| under different filtering schemes

V. CONCLUSION

systems such as time-varying systems, networked systedns an
uncertain systems [40], [42], [43], [46]; 2) the reductidrtloe
computational cost for the filter parameter design issué;3n

the filtering problem of networked systems subject to cyber-
attacks [24].
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