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Ultimately Bounded Filtering Subject to Impulsive
Measurement Outliers

Lei Zou, Zidong Wang, Jun Hu, and Hongli Dong

Abstract—This paper is concerned with the ultimately bounded
filtering problem for a class of linear time-delay systems subject
to norm-bounded disturbances and impulsive measurement out-
liers (IMOs). The considered IMOs are modeled by a sequence
of impulsive signals with certain known minimum norm (i.e.
the minimum of the norms of all impulsive signals). In order
to characterize the occasional occurrence of IMOs, a sequence
of independently and identically distributed random variables
is introduced to depict the interval lengths (i.e. the durations
between two adjacent IMOs) of the outliers. In order to achieve
satisfactory filtering performance, a novel parameter-dependent
filtering approach is proposed to protect the filtering performance
from IMOs by using a special outlier detection scheme, which
is developed based on a particular input-output model. First,
the ultimate boundedness (in mean square) of the filtering error
is investigated by using the stochastic analysis techniqueand
Lyapunov-functional-like method. Then, the desired filter gain
matrix is derived through solving a constrained optimization
problem. Furthermore, the designed filtering scheme is applied to
the case where the statistical properties about the interval lengths
of outliers are completely unknown. Finally, a simulation example
is provided to demonstrate the effectiveness of our proposed
filtering strategy.

Index Terms—Ultimately bounded filtering; Impulsive mea-
surement outliers; Parameter-dependent filter; Matrix-fr action
description; Time-delay systems.

I. INTRODUCTION

Filtering or state estimation problem is one of the mostly
investigated topics in signal processing and control com-
munities. Ever since the pioneering work of Luenberger in
1960s [27], there has been an ongoing research interest in the
filtering or state estimation problems for various systems [23].
For example, in [32], the optimal filtering problem has been
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investigated for the linear time-invariant system with unknown
covariances of process noises and measurement noises. In [22],
a so-called Gaussian particle filter has been developed for
nonlinear systems through approximating the posterior distri-
butions by single Gaussian models. In [15], the robustH∞

state estimation issue has been studied for uncertain systems
with limited communication capacity based on a parameter-
dependent approach. The moving horizon estimation problem
has been studied in [48], [49] for networked systems with
unknown inputs and communication constraints, respectively.

In order to evaluate the estimation accuracy of a filter,
various filtering performance requirements have been reported
in the literature, where the widely employed performance
requirements include, but are not limited to,H∞ require-
ment, minimum mean squared error (MMSE) index, ellip-
soidal bound constraint, ultimate boundedness requirement
and linear quadratic performance index. Among others, the
ultimate boundedness requirement is particularly suitable for
quantifying the steady-state filtering performance subject to
norm-bounded noises [18], [26], [30], [33].

In numerous practical applications, the filtering performance
might deteriorate when the underlying system suffers from
model mismatch, unreliable communication, sensor failures,
unknown inputs and measurement outliers [9], [28], [29], [37],
[44]. In order to deal with the filtering task subject to these
adverse effects, a number of filtering schemes have been de-
veloped [5], [6], [34], [36], [39]. For instance, in [31], several
adaptive Kalman filtering approaches have been introduced for
networked systems and sensor networks subject to mixed un-
certainties of sensor delays, missing measurements and packet
dropouts. The distributedH∞ filtering issue has been studied
in [16] for sensor networks with communication delays and
event-triggered transmission scheme. In [35], theH∞ filtering
problem has been addressed for semi-Markov jump systems
with randomly occurring uncertainties and sensor failures.
When it comes to theultimately bounded filteringproblem
for time-delay systemssubject tomeasurement outliers, the
corresponding results have been really scattered due mainly
to the difficulties in handling the outlier-induced effects.

In general, measurement outliers refer to certain “abnor-
mal” measurement disturbances that are quite distinguished
from those widely studied noises. Compared with the noises,
measurement outliers have their own distinctive features of
1) occasional/intermittent/probabilistic occurrences and 2) un-
expectedly large amplitudes. So far, some initial results have
been reported in the literature concerning the filtering problem
subject to measurement outliers, see, e.g. [1], [8], [13], [14],
[17], [38] and the references therein. Roughly speaking, the
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main strategies dealing with measurement outliers can be
categorized into groups, namely, the passive robustness-based
schemes and the active detection-based schemes where, for
the former, the filters are designed to be insensitive to outliers
by selecting the suitable filter parameters through statistical
tests or on-line adaptive adjustments [3], [8], [21]. It is worth
mentioning that, in [3], a so-called stubborn state observer
has been constructed by using the saturated innovation in
the observer design, under which the effects induced by the
possible outliers would be restrained. Nevertheless, the pas-
sive robustness-based schemes cannot guarantee the complete
elimination of the effects induced by the measurement outliers
in the filtering process.

In the active detection-based methods for tackling outliers,
the filters are developed based on certain detection strategy
with the hope to completely discard the measurements contam-
inated by outliers. Along this direction, a representativework
has unarguably been [2], in which a leave-one-out detection
strategy has been developed by removing the measurements
possibly contaminated by outliers from the estimation process.
Note that the results of [2] are still dependent on the upper
bound of outliers, and this implies that the estimation perfor-
mance might not be satisfactory if the amplitudes of outliers
are out of normal range. To this end, a seemingly interesting
research topic (which is also of clear engineering insight)is to
develop an ultimately bounded filtering strategy such that the
filtering results areindependentof the upper bound of outliers,
and this has motivated our present research.

Summarizing the discussions made so far, in this paper,
we endeavor to investigate the ultimately bounded filtering
problem for time-delay systems with measurement outliers by
utilizing an active-detection based method. Subsequently, three
fundamental challenges we are confronted with are identified
as follows: 1) how to model the effects of measurement
outliers according to practical engineering? 2) how to distin-
guish the outlier-corrupted-measurements with those normal
measurements? and 3) how to design the filter such that the
filtering error dynamics is ultimately bounded in mean square
subject to the outliers without having to know the upper bound
of outliers? The main purpose of this paper is to provide
satisfactory answers to these three questions.

In response to the identified challenges, the contributionsof
this paper are highlighted as follows: 1) the filtering problem
is, for the first time, investigated for time-delay systems with
IMOs where a novel detection scheme is developed to identify
whether the current measurement output is corrupted by an
outlier; 2) a dedicatedly designed parameter-dependent (PD)
filter is put forward under which the filtering error is ultimately
bounded in mean square; and 3) the proposed filter design
algorithm is applied to the case where the statistical properties
about the interval lengths of IMOs (i.e. the durations between
two adjacent IMOs) are completely unknown.

The remainder of this work is organized as follows. In Sec-
tion II, some preliminaries are firstly introduced, and the time-
delay systems with IMOs and the corresponding PD filtering
structure are proposed. In Section III, the dependent parameter
of the PD filter is designed. Furthermore, the desired filter
gain matrixK is derived based on the statistical properties of

interval length for the measurement outliers. Then, the derived
filtering strategy is applied to systems with unknown statistics
of the interval length for the measurement outliers. Moreover,
a simulation example is given in Section IV to demonstrate
the correctness and effectiveness of our proposed PD filtering
scheme. Finally, we present the conclusion of this work in
Section V.

Notations: The notation used here is fairly standard except
where otherwise stated.Rn and R

n×m denote, respectively,
the n dimensional Euclidean space and set of alln×m real
matrices.N (N+,N−) denote, respectively, the set of integers
(nonnegative integers, negative integers), and the set of all
nonnegative real numbers is denoted byR

+. The notation
X ≥ Y (X > Y ), where X and Y are real symmetric
matrices, means thatX −Y is positive semi-definite (positive
definite). MT represents the transpose of the matrixM . If
A is a matrix,λmax{A} (λmin{A}) stands for the maximum
(minimum) eigenvalue ofA, andtr{A} represents the trace of
A. For a matrixP ∈ R

n×n, det(P ) denotes the determinant
of the matrix P . 0 represents zero matrix of compatible
dimensions.1N represents anN dimensional row vector with
all ones. Then-dimensional identity matrix is denoted asIn or
simply I, if no confusion is caused. The shorthanddiag{· · · }
stands for a block-diagonal matrix and the notationdiagn{•}
is employed to stand fordiag{•, · · · , •

︸ ︷︷ ︸

n

}. Prob{·} means the

occurrence probability of the event “·”. E{x} andE{x|y} will,
respectively, denote expectation of the stochastic variable x
and expectation ofx conditional ony. Given a generic vector
x, ‖x‖ describes the Euclidean norm ofx. In symmetric block
matrices,“ ∗ ” is used as an ellipsis for terms induced by
symmetry. The degree of a polynomialf is represented by
deg(f), which is the highest degree of its monomials with
nonzero coefficients. A polynomialf is said to be monic
if the leading coefficient (the nonzero coefficient of highest
degree) of this polynomial is equal to1. Matrices, if they
are not explicitly specified, are assumed to have compatible
dimensions. The Kronecker delta functionδ(a) is a binary
function that equals1 if a = 0 and equals0 otherwise.

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. Preliminaries: matrix-fraction description

1) Polynomial matrix and rational matrix:Polynomial ma-
trix is a matrix whose elements are polynomials, in other
words, a polynomial matrix is a polynomial whose coefficients
are matrices. Am×m polynomial matrixP (z) is said to be
singular if det(P (z)) = 0 for all the z. P (z) is said to be
nonsingular ifdet(P (z)) 6= 0 for certain z. A polynomial
matrix P (z) is said to be unimodular if its determinant (i.e.
det(P (z))) is a nonzero constant. Rational matrixG(z) is a
matrix whose elements are rational functions of the variable
z.

2) Matrix-fraction description: A given rational matrix
G(z) can be written as a fraction of two polynomial matrices.
As the product of matrices is not commutative, there are
two different ways to proceed (e.g. the left matrix-fraction



FINAL 3

description and right matrix-fraction description). Morespecif-
ically, any rational matrixG(z) admits a left matrix-fraction
description (LMFD)

G(z) = D−1
L (z)NL(z) (1)

and a right matrix-fraction description (RMFD)

G(z) = NR(z)D
−1
R (z) (2)

where DL(z), DR(z), NL(z) and NR(z) are polynomial
matrices of suitable dimensions. LMFD (1) is irreducible if
DL(z) andNL(z) are left coprime. Similarly, RMFD (2) is
irreducible ifDR(z) andNR(z) are right coprime.

3) How to compute the LMFD:Consider a rationalm× r
matrix G(z) given as follows:

G(z) =









e11(z)
d11(z)

e12(z)
d12(z)

· · · e1r(z)
d1r(z)

e21(z)
d21(z)

e22(z)
d22(z)

· · · e2r(z)
d2r(z)

...
...

. . .
...

em1(z)
dm1(z)

em2(z)
dm2(z)

· · · emr(z)
dmr(z)









.

where all the polynomialsdij(z) (i = 1, 2, · · · ,m; j =
1, 2, · · · , r) are monic. Let the lowest common multiple (L-
CM) of {dij(z)}j=1,2,··· ,r be d̂i(z) and assume that̂di(z) =
fij(z)dij(z). Then, a LMFD of the rational matrixG(z) is
given as follows:

G(z) = D−1
L (z)NL(z) (3)

where






DL(z) = diag{d̂1(z), d̂2(z), · · · , d̂n(z)}

NL(z) =






e11(z)f11(z) e12(z)f12(z) ··· e1r(z)f1r(z)
e21(z)f21(z) e22(z)f22(z) ··· e2r(z)f2r(z)

...
...

...
...

em1(z)fm1(z) em2(z)fm2(z) ··· emr(z)fmr(z)






(4)

Remark 1:Matrix-fraction description (MFD) of the trans-
fer function matrix is a basic tool for characterizing the input-
output relationships for linear time-invariant (LTI) systems.
MFD-based technique provides a simple way to deal with
the analysis and synthesis issues for LTI systems (e.g. the
stability analysis). It is worth mentioning that the LMFD (3)
is not unique to the rational matrixG(z). Letting Λ(z) be a
nonsingular matrix, we haveG(z) = D−1

LΛ(z)NLΛ(z) where
DLΛ(z) = Λ(z)DL(z) and NLΛ(z) = Λ(z)NL(z). Further
introduction about MFD and the transfer function matrix can
be found in [47].

B. Impulsive measurement outliers

In this subsection, we consider the mechanism of modeling
the IMOs. In practical engineering, an outlier occurs at one
of the sampling instants and thus the number of occurred
outliers should be accountable. Without loss of generality, let
the sequence of occurrence moments for the outliers be

t(0) < t(1) < · · · < t(j) < · · ·

where t(j) (j ∈ N
+) represents the occurrence moment of

the j-th measurement outlier. Based on such an occurrence

moment sequence, the measurement outlierok (i.e. the out-
lier occurring at the sampling instantk) is modeled by the
following form of impulsive signals

ok =

∞∑

i=0

δ(k − t(i))ôi

whereôi represents the amplitude (a vector to be defined later)
of the i-th measurement outlier. Moreover, by defining the
interval lengthTi as

Ti = t(i)− t(i− 1)

for i ∈ N
+ with initial value T0 = t(0), the occurrence

moment t(i) can be rewritten ast(i) =
∑i

j=0 Ti, which
implies that

ok =

∞∑

i=0

δ



k −
i∑

j=0

Tj



 ôi. (5)

Next, let us introduce some necessary assumptions about
the proposed IMO.

Assumption 1:The interval lengthTi satisfies the following
condition:

Ti ∈ Υ , {T , T + 1, · · · , T + s}

whereT ands are two known positive constants. Furthermore,
the amplitudêoi satisfies the condition‖ôi‖ ≥ o whereo is a
known constant.

Assumption 2:The interval lengths{Ti}i≥0 are a sequence
of independently and identically distributed (i.i.d.) random
variables and the occurrence probability ofTi = T + j
(∀j ∈ {0, 1, · · · , s}) is given by

Prob{Ti = T + j} = pj

wherepj > 0 (∀j ∈ {0, 1, · · · , s}) and
∑s

j=0 pj = 1.
Remark 2: In this paper, the measurement outliers repre-

sent the anomalous signals that might result from sensor
malfunctions, wrong replacement of measures, cyber-attacks
or large non-Gaussian noises [2]. These anomalous signals
typically take place on an occasional basis with relativelylarge
amplitudes as compared with the conventional disturbances. In
order to capture such an occasional nature, a set of special im-
pulsive signals has been employed to model the measurement
outliers. In our previous work [50], we have considered the
set-membership filtering problem of time-varying systems with
IMOs, which are modeled by a sequence of impulsive signals
whose interval lengths and norms are larger than certain fixed
thresholds. In the current investigation, the interval lengths of
IMOs are modeled by a sequence of i.i.d. random variables
{Ti}i∈N+ . The statistical properties of these i.i.d. random
variables are identifiable from engineering practice. It isworth
noting that the interval lengthTi is an important index which
is commonly used in practical applications to characterizethe
occurrence frequency of outliers. A typical example of such
an index can be found in the failure model of a repairable
system, where an important index named the time between
failures (TBFs) is adopted to model the failure frequency [7],
[10]. Obviously, the so-called TBFs can be regarded as the
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interval lengths of outliers. Furthermore, it is worth mentioning
that the IMO model adopted in this paper is more general as
compared with our previous work [50] since, when the scalar
s and the statistical properties of{Ti}i∈N+ are completely
unknown, the IMO model utilized in this paper reduces to the
one established in [50].

C. Problem formulation: plant and filter structure

Consider a discrete-time linear system of the form






xk+1 = Axk + Exk−τ +Bωk

yk = Cxk + Fνk + ok

zk = Mxk

(6)

wherexk ∈ R
n, yk ∈ R

m and zk ∈ R
l are the system state,

the measurement output and the output vector to be estimated,
respectively;ωk ∈ W , {ω : ‖ω‖ ≤ ω̄;ω ∈ R

r} and
νk ∈ V , {ν : ‖ν‖ ≤ ν̄; ν ∈ R

s} denote, respectively, the
process and measurement noises whereω̄ and ν̄ are known
positive constants; the parametersA, B, C, E, F and M
are real-valued matrices of appropriate dimensions;τ is the
known constant; and the vectorok ∈ R

m is the IMO of
the form (5). Here,yk and zk are the system output and
the controlled output, respectively, whereyk is the actual
measurement output that is obtained from the sensors and
corrupted by the noiseνk and possibly the outlierok. The
matrixC is the output matrix. The controlled outputzk denotes
the signal to be estimated, which is actually the signal we are
interested in. In other words,zk is a noise-free signal that
describe the “real information” that we want to know, and the
matrix M is problem-dependent that can be determined by
engineering practice.

Remark 3:Note that the model (6) includes the time-delay
Exk−τ , which is justified as follows. As is well known, time-
delays commonly occur in many dynamical systems includ-
ing microwave oscillators, electronics, biological systems and
hydraulic systems. For example, in a robotic teleoperation
system, a time-delay might take place during the information
transmission if the teleoperation is performed over a great
distance [4]. So far, there has been a rich body of research
results available in the literature on various control and filter-
ing problems for time-delay systems. The existence of time
delays could lead to the deterioration of system performance
or even the instability of the system. As can be seen in the
sequel, the inclusion of the time-delayExk−τ in (6) will give
rise to additional difficulty in the filter analysis.

It is supposed that the occurrence moment sequence of the
outliers is completely unknown and Assumption 1 holds for
any i ∈ N

+. Without loss of generally, in this paper, we
assume thatxk = 0, νk = 0 andok = 0 for all k < 0. Actually,
this assumption is not restrictive at all. For example, suppose
that the initial condition of (6) isxi = φ (i < 0). Obviously,
we haveyi = yφ , Cφ (i < 0). Letting x̃k , xk − φ,
ỹk , yk − yφ and ω̃k , Bωk +Aφ+Eφ− φ, we can derive
the following linear system







x̃k+1 = Ax̃k + Ex̃k−τ + ω̃k

ỹk = Cx̃k + Fνk + ok

x̃i = 0, ∀i < 0

and it is easy to see that the new process noise vectorω̃k is
still a norm-bounded signal. Hence, the above reformulated
system falls into the plant form (6).

Next, let us consider the filter structure for the system
(6). In conventional filtering scheme, the filter is often de-
signed based on the structure of Luenberger observer and
the filter gain matrix is selected such that the filtering error
dynamics isinput-to-state stablesubject to the external inputs.
The filtering performance corresponding to this strategy is
largely dependent on the external inputs (e.g. the process
noise, measurement noise and IMOs). Clearly, such kind of
conventional Luenberger-observer-based filters would fail to
achieve a satisfactory filtering performance if the amplitudes
of outliers are quite large. To specifically tackle the outlier
issue, in this work, we aim to design a dedicated parameter-
dependent (PD) filter which is capable of “protecting” the
filtering performance from the effects of IMOs. In order to
achieve such a purpose, we adopt the following PD filter:

{

x̂k+1 = Ax̂k + Ex̂k−τ + θkK(yk − Cx̂k)

ẑk = Mx̂k

(7)

wherex̂k and ẑk denote, respectively, the estimates ofxk and
zk; θk is a binary function to be designed which takes values
of 1 or 0; and the PD filter gain matrixK is the parameter to
be designed.

In filter (7), the binary functionθk characterizes the outlier
detection result at time instantk. The rationale behind the
proposed structure of the PD filter (7) is to remove certain
outlier-related innovation from the filtering process according
to the outlier detection resultθk. Based on the outlier detection
results, the “rejection” of the outliers can be ensured in our
filtering scheme if the outlier detection technology is reliable
(i.e. θk = 0 holds if ok 6= 0). In other words, the binary
function θk should be designed such thatθk = 0 if there
exists an integeri ∈ N

+ satisfying the conditiont(i) = k.
Before presenting the problem addressed in this paper, let us

introduce the following definition about exponentially ultimate
boundedness (EUB) in mean square.

Definition 1: [41] The dynamics of the filtering errorek ,

xk−x̂k is said to be exponentially ultimately bounded in mean
square if there exist constantsς > 0, β > 0, ǫ > 0 such that

E{‖ek‖
2} ≤ ςkβ + ǫ (8)

where ς ∈ [0, 1), β > 0 and ǫ > 0, with ς and ǫ denoting
the decay rate and the asymptotic upper bound ofE{‖ek‖2},
respectively.

Now, we are ready to introduce the problem addressed in
this work as follows. The objective of this paper is twofold.

a) Firstly, design the binary functionθk such that the
conditionθk = 0 holds if and only ifok 6= 0 (i.e. there is
an outlier occurring at time instantk). In other words,
the designed PD filter (7) is capable of removing the
innovations contaminated by IMOs.

b) Secondly, based on the developed binary functionθk,
design the filter parameterK such that the filtering error
ek is exponentially ultimately bounded in mean square
subject to the process noiseωk, measurement noiseνk
and the IMOok.
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III. MAIN RESULTS

A. Design of the functionθk

In this subsection, we intend to develop a detection method
capable of identifying whether the received measurement con-
tains an outlier. Before proceeding further, let us first establish
the input-output model of the plant (6) which will be used
in developing the outlier detection scheme. According to the
system dynamics (6), we have the following delay-free linear
system:

{

x̄k+1 = Āx̄k + B̄ωk

yk = C̄x̄k + Fνk + ok
(9)

where

x̄k ,
[
xT
k xT

k−1 · · · xT
k−τ

]T
, C̄ ,

[
C 0 · · · 0

]
,

Ā ,










A 0 · · · 0 E
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0










, B̄ ,








B
0
...
0







.

The discrete-time transfer function matrices of (9) are given
as follows:







Gyω(z) = C̄(zI − Ā)−1B̄

Gyν(z) = F

Gyo(z) = I

(10)

Since the initial condition of (9) is zero, it is concluded
from (10) that

y(z) = Gyω(z)ω(z) +Gyν(z)ν(z) +Gyo(z)o(z) (11)

wherey(z), ω(z), ν(z) and o(z) represent the Z-transforms
of the discrete-time signalsyk, ωk. νk andok, respectively.

Now, we convert the discrete-time transfer function matrix
Gyω(z) into the LMFD (according to the introduction in
Subsection II-A3):

Gyω(z) = D−1
L (z)NL(z) (12)

where DL(z) and NL(z) are polynomial matrices and
DL(z) is a diagonal matrix with the formDL(z) =
diag{d̂1(z), d̂2(z), · · · , d̂m(z)}. Then, it follows from (11)
and (12) that

DL(z)y(z) = NL(z)ω(z) +DL(z)Fν(z) +DL(z)o(z).

Let the degree ofd̂i(z) be ~di (i.e. deg(d̂i(z)) = ~d(i)).
Define a diagonal polynomial matrix as follows:

W (z) = diag{zd̄−
~d(1), zd̄−

~d(2), · · · , zd̄−
~d(m)} (13)

whered̄ , maxi=1,2,··· ,m{~d(i)}. Then, we have

D̄L(z)y(z) = N̄L(z)ω(z) + D̄L(z)Fν(z) + D̄L(z)o(z)
(14)

in which D̄L(z) , W (z)DL(z) and N̄L(z) = W (z)NL(z).
Obviously, D̄L(z) is a diagonal matrix whose diagonal ele-
ment is monic and the degree of any diagonal element isd̄.

As such, the polynomial matrices̄DL(z) and N̄L(z) can be
rewritten as follows:

{

D̄L(z) = zd̄I + zd̄−1D̄L1 + · · ·+ D̄Ld̄

N̄L(z) = zd̄−1N̄L1 + zd̄−2N̄L2 + · · ·+ N̄Ld̄

(15)

where D̄Li (i = 1, 2, · · · , d̄) and N̄Lj (j = 1, 2, · · · , d̄) are
real constant matrices. Furthermore, it can be concluded that
{D̄Li}i=1,2,··· ,d̄ are diagonal matrices.

Without loss of generally, we letωk = 0 for k < 0 and
then the input-output model of the plant (6) can be described
as follows:

DLy
k
k−d̄ = NLω

k−1
k−d̄

+DLFνkk−d̄ +DLo
k
k−d̄ (16)

where

yk
k−d̄

,
[
yTk yTk−1 · · · yT

k−d̄

]T
,

ωk−1
k−d̄

,
[
ωT
k−1 ωT

k−2 · · · ωT
k−d̄

]T
,

νkk−d̄ ,
[
νTk νTk−1 · · · νT

k−d̄

]T
,

ok
k−d̄

,
[
oTk oTk−1 · · · oT

k−d̄

]T
,

DL ,
[
I D̄L1 · · · D̄Ld̄

]
,

NL ,
[
N̄L1 N̄L2 · · · N̄Ld̄

]
, F , diagd̄+1{F}.

Based on the above input-output model (16), we have the
following proposition.

Proposition 1: Under Assumption 1, suppose thatT > d̄.
Define the sequence of{t̂(i)}i≥0 as follows:

t̂(i) =

{
min{k|k ≥ T , f(k) > f̄}, if i = 0
min{k|k ≥ t̂(i− 1) + T , f(k) > f̄}, otherwise

(17)

where

f(k) ,
∥
∥DLy

k
k−d̄

∥
∥, f̄ ,

∥
∥NL

∥
∥d̄ω̄ +

∥
∥DLF

∥
∥(d̄+ 1)ν̄.

Then, the condition̂t(i) = t(i) holds for all i ≥ 0 if o > 2f̄ .
Proof: The proof of this proposition is performed by

mathematical induction.
Initial step.Considering the functionf(k), for anyd̄ < T ≤

k < t(0), it follows that

f(k) =
∥
∥DLy

k
k−d̄

∥
∥ =

∥
∥NLω

k−1
k−d̄

+DLFνk
k−d̄

∥
∥ ≤ f̄ (18)

On the other hand, under Assumption 1, it is deduced that

o
t(0)

t(0)−d̄
=








ot(0)
0
...
0







.

Then, it follows from the conditiono > 2f̄ that

f(t(0)) =
∥
∥DLy

t(0)

t(0)−d̄

∥
∥

=
∥
∥NLω

t(0)−1

t(0)−d̄
+DLFν

t(0)

t(0)−d̄
+DLo

t(0)

t(0)−d̄

∥
∥

≥ ‖ot(0)‖ −
∥
∥NLω

t(0)−1

t(0)−d̄
+DLFν

t(0)

t(0)−d̄

∥
∥

≥ ‖ot(0)‖ − f̄ > f̄ . (19)
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As such, it is immediately known from (18) and (19) that

t̂(0) = min{k|k ≥ T , f(k) > f̄} = t(0), (20)

which implies that the assertion̂t(i) = t(i) holds for i = 0.
Inductive step.Now that the assertion̂t(i) = t(i) is true for

i = 0. Next, given that the assertion is true fori = j (i.e.
t̂(j) = t(j)), we aim to show that the same assertion is true
for i = j + 1.

Along the similar lines of the Initial step, we have for any
t(j) + T ≤ k < t(j + 1) that

f(k) =
∥
∥DLy

k
k−d̄

∥
∥ =

∥
∥NLω

k−1
k−d̄

+DLFνk
k−d̄

+DLFok
k−d̄

∥
∥.

(21)

Note thatk− d̄ > k−T ≥ t(j), which implies thatok
k−d̄

=
0. Hence, it follows from (21) that

f(k) =
∥
∥NLω

k−1
k−d̄

+DLFνkk−d̄

∥
∥ ≤ f̄ . (22)

Moreover, we have

o
t(j+1)

t(j+1)−d̄
=








ot(j+1)

0
...
0







,

which means that

f(t(j + 1)) =
∥
∥DLy

t(j+1)

t(j+1)−d̄

∥
∥

=
∥
∥NLω

t(j+1)−1

t(j+1)−d̄
+DLFν

t(j+1)

t(j+1)−d̄
+DLo

t(j+1)

t(j+1)−d̄

∥
∥

≥‖ot(j+1)‖ −
∥
∥NLω

t(j+1)−1

t(j+1)−d̄
+DLFν

t(j+1)

t(j+1)−d̄

∥
∥

≥‖ot(j+1)‖ − f̄ > f̄ . (23)

As such, it follows readily from (22) and (23) that

t̂(j + 1) = min{k|k ≥ t̂(j) + T , f(k) > f̄}

= min{k|k ≥ t(j) + T , f(k) > f̄} = t(j + 1).
(24)

Hence, by the induction, it is concluded that the assertion
t̂(i) = t(i) is true fori = 0, 1, · · · . The proof is now complete.

Let T > d̄ and o > 2f̄ . By means of Proposition 1, we
propose an algorithm (Algorithm 1) to compute the occurrence
moment sequence of outliers (i.e.{t̂(i)}i≥0) as follows:

Algorithm 1:
Step 1. Initialization: let i = 0. According to Proposition 1, compute

the value off̄ . If the current time instantk < T , wait for the
next time instant. Otherwise, go to the next step.

Step 2. Based on the received measurement outputs{yj}k−d̄≤j≤k ,
compute the value of the functionf(k).

Step 3. If f(k) > f̄ , set t̂(i) = k. Let i = i+ 1 and go to the next step.
Step 4. If the current time instantk < t̂(i− 1) + T , wait for the

next time instant. Otherwise, go toStep 3.

Algorithm 1 is an on-line outlier detection algorithm which
is very easy to implement in practical applications. At each
time instant, the computational cost depends on the calculation
of f(k), which has a polynomial time complexity. More specif-
ically, the corresponding computational complexity aboutthe

calculation off(k) is bounded byO(m2(d̄ + 1)). According
to the above algorithm, we can recursively calculate the values
of {t̂(i)}i≥0, based on which the value of the binary function
θk is designed as follows:

θk =

{
0, if {i ≥ 0|k = t̂(i)} 6= ∅
1, otherwise

. (25)

Obviously, the outlier detection resultθk effectively charac-
terizes the occurrence of outliers at time instantk and, more
specifically, the conditionθk = 0 holds if and only ifok 6= 0
(i.e. there is an outlier occurring at time instantk).

Note that the binary functionθk can be rewritten by

θk = 1−
∞∑

i=0

δ(k − t̂(i)) = 1−
∞∑

i=0

δ(k − t(i)),

which implies that

θkok =

(

1−
∞∑

i=0

δ(k − t(i))

)
∞∑

i=0

δ(k − t(i))ôi

=

∞∑

i=0

δ(k − t(i))ôi −
∞∑

i=0

∞∑

j=0

δ(k − t(i))δ(k − t(j))ôj

=

∞∑

i=0

δ(k − t(i))ôi −
∞∑

i=0

δ(k − t(i))δ(k − t(i))ôi = 0.

Hence, we haveθkK(yk−Cx̂k) = θkK(Cxk +Fνk−Cx̂k).
Obviously, according to the PD filter (7), it is easy to find that
the rejection of the outliers is ensured by the designed binary
function θk.

Remark 4: It is seen thatD̄−1
L (z)N̄L(z) serves as another

LMFD of the discrete-time transfer function matrixGyω(z).
The main reason to adopt this new LMFD ofD̄−1

L (z)N̄L(z)
(rather thanD−1

L (z)NL(z)) is that the leading coefficient of
D̄L(z) is I which is nonsingular matrix. Based on this new
LMFD, we are able to examine the effects of outliers from
the measurement outputs exactly, that is,

∥
∥DLo

t(i)

t(i)−d̄

∥
∥ > 0 is

ensured for anyi ∈ N
+.

Remark 5:So far, we have accomplished the design of the
function θk. By setting the values of{θk}k≥0 according to
Proposition 1, we can examine whether the received measure-
ment output contains an outlier or not. Note that Proposition
1 is derived based on Assumption 1 and the conditiono > 2f̄ ,
which have ensured theshortest occurrence period of the
outliers and thelower boundof the norm of the outlier. These
findings are particularly reasonable for real-world applications
since the occurrence frequency of outliers is typically quite
low and the amplitude of outliers is typically very large as
compared with the noises. Based on the designedθk, we will
deal with the design of the filter parameterK in the next
subsection to ensure the EUB in mean square of the filtering
error.

Remark 6:The key point of removing the “harmful” inno-
vations (corrupted by outliers) is to “identify” the occurrence
moment for each IMO. Such a removal is, however, difficult
to accomplish by adopting the traditional model-based fault
detection (MbFD) method that relies on the so-called residual
(at each time instant) which is further affected by the historical
external inputs (including the historical outliers). As such,
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it might be the case that the generated residual is quite
small even if the received measurement is corrupted by an
outlier. Different from the MbFD method, the outlier detection
approach proposed in this paper is capable of accurately dis-
tinguishing the IMO-corrupted measurements from the normal
measurements under the conditiono > 2f̄ . In this sense, our
proposed detection scheme is superior to the MbFD scheme
when detecting the IMOs considered in this paper.

B. Design of the parameterK

Now, let us consider the estimation error dynamics. Let the
filtering error beek , xk− x̂k. According to the proposed PD
filter (7), the proposed binary functionθk (25) and Proposition
1, the dynamics of the filtering error could be derived as
follows:

ek+1 =(A− θkKC)ek + Eek−τ +Bωk − θkKFνk. (26)

By defining two parameter-dependent matrices as follows:

A(θk) , A− θkKC, F(θk) , −θkKF,

the filtering error dynamics (26) could be rewritten as follows:
{

ek+1 = A(θk)ek + Eek−τ +Bωk + F(θk)νk

z̃k , zk − ẑk = Mek
(27)

In light of Assumption 2 and the filtering error dynamics
(27), sufficient conditions guaranteeing the EUB in mean
square of the filtering error are given in the following theorem.

Theorem 1:Consider the filtering error dynamics (27). Sup-
pose that Assumptions 1-2 hold and let the filter parameterK
be given. Assume that there exist two positive definite matrices
P1, P2 ∈ R

n×n and five positive scalarsλi (i = 1, 2, 3), µ1

andµ2 satisfying

Ῡ1 =







Ῡ11
1 Ῡ12

1 Ῡ13
1 Ῡ14

1

∗ Ῡ22
1 Ῡ23

1 Ῡ24
1

∗ ∗ Ῡ33
1 Ῡ34

1

∗ ∗ ∗ Ῡ44
1






< 0 (28)

Ῡ2 =





Ῡ11
2 Ῡ12

2 Ῡ13
2

∗ Ῡ22
2 Ῡ23

2

∗ ∗ Ῡ33
2



 < 0 (29)

γ = (1 + µ2)
s∑

i=0

pi(1− µ1)
T+i−1 < 1 (30)

where

Ῡ11
1 , (A−KC)TP1(A−KC)− (1− µ1)P1 + P2,

Ῡ12
1 , (A−KC)TP1E, Ῡ13

1 , (A−KC)TP1B,

Ῡ14
1 , −(A−KC)TP1KF, Ῡ22

1 , ETP1E − (1− µ1)
τP2,

Ῡ23
1 , ETP1B, Ῡ24

1 , −ETP1KF, Ῡ33
1 , BTP1B − λ1I,

Ῡ34
1 , −BTP1KF, Ῡ44

1 , FTKTP1KF − λ2I,

Ῡ11
2 , ATP1A− (1 + µ2)P1 + P2, Ῡ12

2 , ATP1E,

Ῡ13
2 , ATP1B, Ῡ22

2 , ETP1E − (1− µ1)
τP2,

Ῡ23
2 , ETP1B, Ῡ33

2 , BTP1B − λ3I.

Then, the dynamics of the filtering error is ultimately bounded
in mean square subject to the disturbancesωk, νk and the
measurement outlierok.

Proof: To analyze the EUB in mean square of the filtering
error ek, we first consider the following two cases.

Case 1:θk = 1.
In this case, we select the following Lyapunov-like func-

tional:

Vk = V1,k + V2,k (31)

where

V1,k , eTk P1ek, V2,k ,

k−1∑

i=k−τ

(1− µ1)
k−i−1eTi P2ei.

Obviously, θk = 0 means that0 ≤ k < t(0) or there
exists a nonnegative integeri satisfyingt(i) < k < t(i + 1).
Calculating the difference ofVk along the trajectories of (27),
one has

V1,k+1 − (1 − µ1)V1,k

= eTk+1P1ek+1 − (1− µ1)e
T
k P1ek

=
(
A(θk)ek + Eek−τ +Bωk + F(θk)νk

)T
P1

(
A(θk)ek

+ Eek−τ +Bωk + F(θk)νk
)
− (1 − µ1)e

T
k P1ek

=







ek
ek−τ

ωk

νk







T

Ω







ek
ek−τ

ωk

νk







(32)

where

Ω ,







Ω11 Ω12 AT (θk)P1B AT (θk)P1F(θk)
∗ ETP1E ETP1B ETP1F(θk)
∗ ∗ BTP1B BTP1F(θk)
∗ ∗ ∗ FT (θk)P1F(θk)






,

Ω11 , AT (θk)P1A(θk)− (1− µ1)P1, Ω12 , AT (θk)P1E,

and

V2,k+1 − (1− µ1)V2,k

=
k∑

i=k−τ+1

(1 − µ1)
k−ieTi P2ei −

k−1∑

i=k−τ

(1− µ1)
k−ieTi P2ei

= eTk P2ek − (1− µ1)
τeTk−τP2ek−τ . (33)

Noting that‖ωk‖ ≤ ω̄ and‖νk‖ ≤ ν̄, it follows from (32)
and (33) that

∆Vk + µ1Vk = Vk+1 − Vk + µ1Vk

≤







ek
ek−τ

ωk

νk







T

Υ







ek
ek−τ

ωk

νk






+ λ1ω̄

2 + λ2ν̄
2 (34)

where

Υ ,







Υ11 Υ12 Υ13 AT (θk)P1F(θk)
∗ Υ22 Υ23 ETP1F(θk)
∗ ∗ Υ33 BTP1F(θk)
∗ ∗ ∗ FT (θk)P1F(θk)− λ2I






,



FINAL 8

Υ11 , AT (θk)P1A(θk)− (1− µ1)P1 + P2,

Υ12 , AT (θk)P1E, Υ22 , ETP1E − (1− µ1)
τP2,

Υ13 , AT (θk)P1B, Υ23 , ETP1B, Υ33 , BTP1B − λ1I.

Since A(1) = A − KC and F(1) = −KF , it can be
observed from (28) thatΥ = Ῡ1 < 0, which implies that

∆Vk ≤ −µ1Vk + λ1ω̄
2 + λ2ν̄

2, if θk = 0 (35)

As such, for anyt(i) < k < t(i + 1) and scalarδ > 0, it is
derived from (35) that

δk+1Vk+1 − δkVk = δk+1∆Vk + δk(δ − 1)Vk

≤ δk(δ − δµ1 − 1)Vk + δk+1(λ1ω̄
2 + λ2ν̄

2). (36)

Letting δ̄ , 1
1−µ1

and summing up both sides of (36) from
t(i) + 1 to t(i+ 1) with respect tok, we obtain

δ̄t(i+1)Vt(i+1) − δ̄t(i)+1Vt(i)+1 ≤ (λ1ω̄
2 + λ2ν̄

2)

t(i+1)
∑

i=t(i)+2

δ̄i

=(λ1ω̄
2 + λ2ν̄

2)
δ̄t(i)+2 − δ̄t(i+1)+1

1− δ̄

which implies that

Vt(i+1) ≤ (λ1ω̄
2 + λ2ν̄

2)
δ̄2−Ti+1 − δ̄

1− δ̄
+ δ̄1−Ti+1Vt(i)+1

(37)

Note that

E{δ̄−Ti+1} =

s∑

j=0

Prob{Ti+1 = T + j}δ̄−(T+j)

=
s∑

j=0

pj δ̄
−T−j .

Taking the conditional expectation on both sides of (37),
one has

E{Vt(i+1)|t(i)} ≤ ρ+ δ̄~δE{Vt(i)+1|t(i)} (38)

where~δ ,
∑s

j=0 pj δ̄
−T−j and

ρ , (λ1ω̄
2 + λ2ν̄

2)
δ̄2~δ − δ̄

1− δ̄
.

Taking the mathematical expectation on the inequality (38),
we have

E{Vt(i+1)} ≤ ρ+ δ̄~δE{Vt(i)+1} (39)

Case 2:θk = 0.
Obviously, the equalityθk = 0 means that there exists a

nonnegative integeri satisfyingk = t(i). In this case, one has

∆Vk − µ2Vk

=V1,k+1 − (1 + µ2)V1,k + V2,k+1 − (1 + µ2)V2,k

<V1,k+1 − (1 + µ2)V1,k + V2,k+1 − (1− µ1)V2,k

≤





ek
ek−τ

ωk





T

Ῡ2





ek
ek−τ

ωk



+ λ3ω̄
2 ≤ λ3ω̄

2

which implies that

Vt(i)+1 ≤ (1 + µ2)Vt(i) + λ3ω̄
2 (40)

Then, it follows from (39) and (40) that

E{Vt(i+1)} ≤ ρ̄+ δ̄~δ(1 + µ2)E{Vt(i)} (41)

whereρ̄ , δ̄~δλ3ω̄
2+ρ. Furthermore, it is concluded from (30)

thatE{Vt(i+1)} ≤ γE{Vt(i)}+ ρ̄ whereγ < 1, which implies
that

σi+1
E{Vt(i+1)} − σi

E{Vt(i)}

≤ σi
(
σ − σ(1− γ)− 1

)
E{Vt(i)}+ σi+1ρ̄ (42)

Letting σ̄ , 1
γ

and summing up both sides of (42) from
t(0) to t(j) with respect toi, we obtain

σj
E{Vt(j)} − E{Vt(0)} ≤

ρ̄σ(1− σj)

1− σ
=

ρ̄(1− γj)

γj(1− γ)
.

Moreover, it is found from (35) that

Vt(0) < δ̄−d̄V0 +
δ̄(δ̄−d̄ − 1)

1− δ̄
(λ1ω̄

2 + λ2ν̄
2) , V̄0

Hence, we arrive at

E{Vt(j)} < γjV̄0 +
ρ̄(1 − γj)

1− γ
= γj

(

V̄0 −
ρ̄

1− γ

)

+
ρ̄

1− γ
(43)

Therefore, the dynamics ofE{Vt(j)} is ultimately bounded,
that is,

lim
j→+∞

=
ρ̄

1− γ
< +∞.

Next, for anyt(j) ≤ k < t(j + 1), we have

λmin{P1}E{‖ek‖
2} ≤ E{Vk}

≤ (λ1ω̄
2 + λ2ν̄

2)
δ̄(δ̄1−k+t(j))

1− δ̄
+ δ̄1−k+t(j)

E{Vt(j)+1}

≤ (λ1ω̄
2 + λ2ν̄

2)
δ̄(δ̄1−k+t(j))

1− δ̄
+ δ̄1−k+t(j)λ3ω̄

2

+ δ̄1−k+t(j)(1 + µ2)E{Vt(j)}

≤ (λ1ω̄
2 + λ2ν̄

2)
δ̄2

1− δ̄
+ δ̄λ3ω̄

2 + δ̄(1 + µ2)E{Vt(j)}

which implies that the dynamics of the filtering error is
ultimately bounded in mean square. Finally, we conclude that

lim
k→+∞

E{‖ek‖
2} ≤ (λ1ω̄

2 + λ2ν̄
2)

δ̄2

1− δ̄

+ δ̄λ3ω̄
2 + δ̄(1 + µ2)

ρ̄

1− γ
.

The proof is now complete.
Remark 7:So far, we have designed the binary function

θk and derived sufficient conditions to ensure the EUB (in
mean square) of the filtering error. By employing a LMFD-
based technique, we are able to examine whether the received
measurement contains an outlier through a fixed number of
past measurements. Based on the analysis results in Theorem
1, we have the following observations.

1) To ensure that the matrix inequality (28) is feasible, the
scalarµ1 is required to satisfy the condition0 < µ1 < 1.
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2) The decay rate ofE{‖ek‖2} is mainly determined by
γ. Obviously, increasing the value of the lower bound
of Ti (i.e. T ) would improve the feasibility of the
matrix constraints (28)-(30), which indicates that a long
minimum interval length of outliers would contribute to
the improvement of the filtering performance.

3) Both the design ofθk and the sufficient conditions
derived in Theorem 1 are independent of the upper
bound of the outlierok. Hence, our developed filtering
strategy is capable of dealing with unbounded IMOs.

In Theorem 1, sufficient conditions have been proposed to
ensure that the dynamics of the filtering error is ultimately
bounded in mean square subject to the disturbances and the
IMOs. Note that the constraints (28)-(30) are nonlinear matrix
inequalities that are quite difficult to solve. In what follows,
we aim to present a computationally appealing algorithm to
determine the filter parameterK. Before doing so, we first
give the following corollary concerning the design of the filter
parameterK based on given scalarsµ1 andµ2.

Corollary 1: Consider the filtering error dynamics given by
(27). Suppose that Assumptions 1-2 hold. Let two scalars0 <
µ1 < 1 and µ2 > 0 satisfying the constraint (30) be given.
Assume that there exist two positive definite matricesP1, P2 ∈
R

n×n, three positive scalarλi (i = 1, 2, 3) and a matrixK̄ ∈
R

n×m satisfying the constraint (29) and the following two
matrix inequalities

Φ1 =

[
Φ11

1 Φ12
1

∗ Φ22
1

]

< 0 (44)

P1 ≥ MTM (45)

where

Φ11
1 , −diag

{
(1 − µ1)P1 − P2, (1− µ1)

τP2, λ1I, λ2I
}
,

Φ12
1 ,

[
P1A− K̄C P1E P1B K̄F

]T
, Φ22

1 , −P1.

Then, the dynamics of the filtering error is ultimately bounded
in mean square subject to the disturbancesωk, νk and the
measurement outlierok. Furthermore, the minimum of the
asymptotic upper bound ofE{‖z̃k‖2} can be derived by
solving the following minimization problem:

min

{

(λ1ω̄
2 + λ2ν̄

2)
δ̄2

1− δ̄
+ δ̄λ3ω̄

2 + δ̄(1 + µ2)
ρ̄

1− γ

}

(46)

subject to the matrix inequality constraints (29), (44) and(45),
where

δ̄ ,
1

1− µ1
, ~δ ,

s∑

i=0

piδ̄
−T−i, ρ , (λ1ω̄

2 + λ2ν̄
2)
δ̄2~δ − δ̄

1− δ̄
,

ρ̄ , δ̄~δλ3ω̄
2 + ρ,

and γ is defined in Theorem 1. Also, the desired filter
parameter can be computed byK = P−1

1 K̄.
Proof: The proof is straightforward based on Theorem 1

and Schur complement lemma, and is therefore omitted here
for space saving.

Remark 8: It is well known that the feasibility of a filter
algorithm is largely dependent on the observability (or de-
tectability) of the underlying system. Furthermore, the ob-
servability of the system is affected by the rank deficiency
of the corresponding system matrix [11], [12]. Compared
with the observability-based analysis technique, the matrix-
inequality-based technique is more appropriate for handling
the filter design issue addressed in this paper due mainly to
the consideration of the impulsive measurement outliers. In
fact, there should be some relationship between the feasibility
of our proposed matrix inequalities and the rank deficiency of
the system matrix, and this deserves further investigationin
our future research.

By means of Corollary 1, we propose an algorithm (Algo-
rithm 2) to design the filter parameter based on a particle-
swarm-optimization (PSO) method as follows. Obviously, the
computation of Algorithm 2 is quite costly due mainly to the
solving process of the constrained minimization problem (46).
Such a constrained minimization problem is solved by using
the well-known linear matrix inequality (LMI) technique,
which has a polynomial time complexity. In particular, the
number N (ε) of flops needed to compute anε-accurate
solution is bounded byO(MN 3 log(V /ε)), whereM is the
total row size of the LMI system,N is the total number of
scalar decision variables,V is a data-dependent scaling factor,
andε is the relative accuracy set for algorithm. For the LMIs
(29), (44) and (45), one has bothM = 8n+ 2r + s+ 3 and
N = n2 +mn+ 3. Therefore, the computational complexity
of the established LMIs isO((8n + 2r + s+ 3)(n2 +mn+
3)3 log(V /ε)). On the other hand, it should be noted that
the computational complexity of our proposed PSO-based
algorithm is bounded byO(2r̄kmaxS ), wherer̄ is the number
of particles,kmax is the maximum number of iterations,S

is the computational complexity of updating the particle and
the global best location. As such, the whole computational
complexity of Algorithm 2 isO(2r̄kmax(8n+2r+s+3)(n2+
mn+3)3 log(V /ε)). Note that the computation of Algorithm
2 is executed off-line for the subsequent filtering task. The
computational complexity of the filtering task will not be
affected by such a high computational complexity.

Remark 9: It should be pointed out that the observabili-
ty/detectability of the system is not required in outlier de-
tection (via the design ofθk) or the filter parameter design
(via the design ofK). In the proposed outlier detection
scheme, the detection result is based on the input-output model
(16) by using the LMFD of the transfer function matrix.
The computation of such a LMFD isnot dependent on the
observability of the delay-free linear system (9). On the other
hand, it is easy to see that the filter design task is accomplished
by solving certain matrix inequalities, and such a procedure
is quite different from the traditional methods (involvingex-
tensive observability analysis), and is therefore more suitable
for handling optimization problems. In fact, by solving a
constrained optimization problem outlined in Algorithm 2,the
derived filter would help suppress the asymptotic upper bound
of E{‖z̃k‖2}.
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Algorithm 2:

Step 1. Initialization: letXi
0 ,

[

µ1 µ2
]T be the location of the at the

i-th particle initial step. Generatēr particles under which the
the matrix inequalities (29), (30), (44) and (45) are feasible. The
velocity of thei-th particle is set to beSi

0. Let the maximum
number of iterations bekmax.

Step 2. Let the local best location of thei-th particle and the global best
location at stepk beP i

L
= Xi

0 andP k
G

= 0, respectively. Let
the iteration stepk be 0.

Step 3. Update the values ofP i
L

andP k
G

: for the i-th particle, solve the
minimization problem (46) subject to the matrix inequality
constraints (29), (44), (45), and let the value to (46) beη(Xi

k
).

Then, update the values ofP i
L

andP k
G

by P i
L
= mink

{

η(Xi
k
)
}

andP k
G

= mini
{

P i
L

}

, respectively. If‖P k
G

− P k−1
G

‖ < ξ
whereξ is a given small positive scalar representing the
computation accuracy, go toStep 7.

Step 4. Update the values ofSi
k

andXi
k

as follows:
Si
k+1 = ϕSi

k
+ υ1ri(P i

L
−Xi

k
) + υ2rg(P k

G
−Xi

k
)

Xi
k+1 = Xi

k
+ Si

k+1
whereϕ, υ1 andυ2 are the given inertia parameter and two
momentum parameters, respectively.ri andrg are the random
numbers between(0, 1). Let k = k + 1.

Step 5. Based on the values ofµi
1 andµi

2 according to thei-th particle
Xi

k
, if the matrix inequalities (29), (30), (44) and (45) are

infeasible, letXi
k
= Xi

k−1 andSi
k
= Si

k−1.
Step 6. If k < kmax, go back toStep 3, else update the values ofP i

L

andP k
G by P i

L = mink
{

η(Xi
k
)
}

andP k
G = mini

{

P i
L

}

,
respectively, and turn to the next step.

Step 7. Solve the minimization problem (46) subject to the matrix
inequality constraints (29), (44) and (45) according toP k

G
.

Calculate the desired filter parameter byK = P−1
1 K̄. Stop.

C. The case of unknown statistical properties of interval
length for outliers

So far, we have completed the filter design for the time-
delay system (6) with random occurring IMOs, where the
statistical properties of the outlier interval length areknown.
However, sometimes it is quite difficult to obtain these statisti-
cal properties in an exact way. In what follows, we consider the
case where the statistical properties of the interval length for
the impulsive outliers are completely unknown. In this case,
the filter parameterK is designed under the worst situation
(i.e. each interval length equals toT ) in order to ensure
that the filtering error is exponentially ultimately bounded
for all possible interval length. In other words, we aim to
deal with the filtering issuewithout the condition proposed in
Assumption 2.

Corollary 2: Consider the filtering error dynamics given by
(27). Let Assumptions 1-2 hold and two scalars (0 < µ1 < 1
andµ2 > 0) satisfy the following constraint:

γ̃ = (1 + µ2)(1− µ1)
T−1 < 1. (47)

If there exist two positive definite matricesP1, P2 ∈ R
n×n,

three positive scalarλi (i = 1, 2, 3) and a matrixK̄ ∈ R
n×m

satisfying the matrix constraints (29), (44) and (45), thenthe
dynamics of the filtering error is ultimately bounded subject
to the disturbancesωk, νk and the measurement outlierok.
Furthermore, the minimum of the asymptotic upper bound of
‖z̃k‖2 can be derived by solving the following minimization

problem:

min

{

(λ1ω̄
2 + λ2ν̄

2)
δ̄2

1− δ̄
+ δ̄λ3ω̄

2 + δ̄(1 + µ2)
ρ̃

1− γ̃

}

(48)

subject to the matrix inequality constraints (29), (44) and(45),
where

δ̄ ,
1

1− µ1
, ρ̌ , (λ1ω̄

2 + λ2ν̄
2)
δ̄2−T − δ̄

1− δ̄
,

ρ̃ , δ̄1−Tλ3ω̄
2 + ρ̌.

The desired filter parameter can be computed byK = P−1
1 K̄.

Proof: The proof is straightforward and omitted here for
space saving.

Similar to Algorithm 2, we can derive the desired filter
parameterK by means of Corollary 2 (by employing the PSO
algorithm) and the corresponding algorithm is omitted herefor
conciseness.

Remark 10:It is easy to conclude from Corollaries 1 and
2 that the filtering error results from the process and measure-
ment noises. Obviously, the main purpose of the filter design
is just to reduce the effects of noises on the state estimates
according to certain performance specifications. When the
underling system is undergoing unknown (but deterministic)
noises, an effective way of estimating the system state is to
employ the well-known unknown-input-observer-based (UIO-
based) approach whose main idea is to decouple the estimation
error from the unknown (but external) inputs [25]. One of
our future research topics is to consider the state estimation
problem subject IMOs by using the UIO-based strategy.

Remark 11:It is observed from Corollary 2 that 1) the
existence of the filter is determined by the condition (47),
whose feasibility depends on the parameterT , 2) increasing
the value ofT would contribute to the feasibility of the
condition (47) and the suppression of the minimum asymptotic
upper bound‖z̃k‖2, and 3) the condition (47) is independent
of the scalars. In fact, the results in Corollary 2 can be easily
extended to the case thats = +∞. Moreover, it should be
pointed out that the condition (47) is stricter than the condition
(30), which means that the minimum asymptotic upper derived
in Corollary 2 would be larger than that in Corollary 1. In
other words, the statistical properties of interval lengthfor
outliers would contribute to the resulted filtering performance.
The distinctive novelty of this paper lies on the follow three
aspects: 1) a new outlier detection technique is developed
to distinguish the measurements corrupted by outliers from
those normal measurements; 2) a new PD filter is designed to
guarantee that the filtering error is ultimately bounded in mean
square; 3) the desired filter parameter is achieved by combing
the PSO algorithm and LMI techniques; and 4) the proposed
filter design strategy is applied to deal with the scenario with
unknown statistical properties of interval length for the IMOs.

Remark 12:In this paper, we have dedicatedly designed an
“outlier-resistant” filter for a class of linear time-delaysystems
subject to IMOs, and such kind of filters is fundamentally dif-
ferent from the existing “attack-resilient” filters. For example,
in [19], [20], the distributed filtering problems have been stud-
ied for linear time-invariant systems subject to sensor attacks,
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where a saturation-like scheme has been adopted to construct
the filters by assuming that the maximal number of attacked
sensors is known, and this maximal number is employed to
indicate the “level of attacks”. In this paper, instead of making
any assumption on the number of the “problematic” sensors,
we exploit the information about interval lengths of outliers in
order to characterize the “occurrence frequency of outliers”.
Moreover, different from the saturation-like scheme adopted
in [19], [20], the PD filtering scheme proposed in this paper
is developed based on the idea of “decoupling-like” scheme,
which has proven to be particularly suitable for IMOs.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we provide two numerical example to
illustrate the effectiveness of the proposed filter design scheme.

Example 1: To make our simulation nontrivial, we consider
an unstablelinear time-delay system of the form (6) with

A =

[
0.65 0.38
0.32 −0.53

]

, B =

[
1

−0.7

]

, E =

[
0.3 0.2
−0.1 0.2

]

,

C =
[
1 0.5

]
, F = 0.5, M = I, τ = 1.

The process noise and measurement noise are chosen as
follows:

ωk = 0.4 sin(0.4k1.2), νk = 0.3rm(k)

whererm(k) is a random number at time instantk satisfying
rm(k) ∈ [0, 1]. Applying the augmentation method and the
LMFD technology introduced in Subsection III-A, we have

DL =
[
1 −0.12 −0.966 −0.055 0.08

]
,

NL =
[
0.65 0.6515 −0.285 0

]
,

and d̄ = 4. In this illustrative example, we assume thatT = 6
ands = 4. Then, the threshold̄f is computed as follows:

f̄ =
∥
∥NL

∥
∥d̄ω̄ +

∥
∥DLF

∥
∥(d̄+ 1)ν̄ = 2.5907.

Let the lower bound of the IMOs beo = 6.4768. Obviously,
we haveo = 2.5f̄ > 2f̄ . Based on the design of the binary
functionθk in Proposition 1, the IMOs and the values of{1−
θk}k≥0 are shown in Fig. 1. It can be observed from Fig. 1
that our developed{θk}k≥0 is capable of identifying whether
the received measurement contains an outlier (1−θk = 1 holds
whenok 6= 0).

Next, let us design the filter parameterK by applying the
developed PSO-based Algorithm 2. Set the inertia parameter
and two momentum parameters be0.6, 0.7 and 0.7, respec-
tively. The statistical properties of the intervalsTi are given
as follows:

Prob{Ti = T} = 0.1, Prob{Ti = T + 1} = 0.1,

Prob{Ti = T + 2} = 0.2, Prob{Ti = T + 3} = 0.4,

Prob{Ti = T + 4} = 0.2.

Then, according the derived the global best location, we have
µ1 = 0.1753 and µ2 = 0.5331. Furthermore, based on the
derived values ofµ1 andµ2, the minimum of the asymptotic
upper bound of can be derived by solving the minimization
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Fig. 1: The impulsive measurement outliers and the values ofthe
sequence{1− θk}k≥0

problem in Corollary 1. The corresponding filter parameterK
is given as follows:

K =

[
0.36594
0.02054

]

.

Based on the derived filter parameter and the developed
functionθk, we can design the PD filter according to (7). Nu-
merical simulation results are given in Figs. 2-3, which depict
the state trajectories and their corresponding estimates.All the
simulation results confirm that the filtering performance iswell
achieved.
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Fig. 2: The state trajectories ofx(1)
k and x̂(1)

k

In order to show the superiority of our designed filtering
scheme, we would like to conduct a comparative simulation
between our developed PD filtering scheme and the traditional
Luenberger-observer-based filter. Let the filter gain matrix of
the traditional Luenberger-observer-based filter beK, which
is exactly the same parameter of our PD filter whenθk = 0.
The trajectories of‖z̃k‖ under different filtering methods are
shown in Fig. 4. Table I shows the values of

∑420
k=0 ‖z̃k‖

of our developed PD filtering and the traditional Luenberger-
observer-based filtering. It can be easily observed from Fig. 4
and Table I that our developed PD filtering scheme performs
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much better than the traditional Luenberger-observer-based
filter. The main reason of such a performance superiority
lies in the fact that our developed filtering could ensure the
“rejection” of the impulsive outliers in the filtering process.

TABLE I: Comparison with the traditional filtering algorithm
∑420

k=0 ‖z̃k‖
2

Our developed PD filtering 125.7173
Luenberger-observer-based filtering 3230.4203
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‖z̃k‖ based on our PD filtering

‖z̃k‖ based on Luenberger-observer-based filtering

Fig. 4: The trajectories of‖z̃k‖ under different filtering approach

In what follows, we would like to consider the case where
the statistical properties of interval length for the outliers are
completely unknown. In this case, by employing Corollary 2,
we can obtain the corresponding values ofµ1, µ2 andK as
follows:

µ1 = 0.46117, µ2 = 18.98175, K =

[
0.70198
−0.33229

]

.

The trajectories of‖z̃k‖2 with known and unknown statisti-
cal properties are shown in Fig. 5, from which we can find that
the filtering with known statistical properties could achieve a
smaller upper bound of the filtering error. Table II shows the
values of

∑420
k=0 ‖z̃k‖

2 of our developed PD filtering schemes
with known and unknown statistical properties, respectively.
Obviously, a better filtering performance can be achieved if

the statistical properties of the interval length for the outliers
are known.
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Fig. 5: The trajectories of‖z̃k‖2 under different filtering approach

TABLE II: Filtering performance with known and unknown
statistical properties

∑420
k=0 ‖z̃k‖

2

Known statistical properties 125.7173
Unknown statistical properties 145.0910

According to the main results proposed in Theorem 1, it is
concluded that the existence of the desired filter is affected
by the time-delay parameterτ . In order to show the effect
of time-delay on the filtering performance, we would like to
provide a simulation to show the filtering results subject to
different values of the time-delay parameter (i.e.τ = 1, 2, 3).
Let T = 9 and s = 4. The corresponding trajectories of
‖z̃k‖ are shown in Fig. 6. Table III shows the corresponding
values of

∑420
k=0 ‖z̃k‖. It is easy to find that reducing the value

of τ would contribute to the improvement of the filtering
performance.
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Fig. 6: The trajectories of‖z̃k‖ with different values ofτ

Example 2: To show the applicability of our developed
filtering scheme in practical systems, let us consider the fol-
lowing two-degree-of-freedom quarter-car suspension systems
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TABLE III: Filtering results subject to different values ofτ

τ

√

∑420
k=0 ‖z̃k‖

2

τ = 1 11.1775
τ = 2 12.8546
τ = 3 18.1281

(2DOF-QSSs) [45]:

A =







−0.1055 0.0085 −0.0022 0.0217
−0.2260 0.1669 0.0028 0.1123
8.2196 −2.7734 −0.0139 −0.0831
−0.4540 −6.5121 −0.0109 −0.0482






,

B =







−1.0970
−1.0591
5.4462
−6.9661






, C =

[
1 0 0 0
0 1 0 0

]

, F =

[
0.5
0.5

]

,

E = 0, τ = 0, M = I.

The process noise and measurement noise are chosen as
follows:

ωk = 0.3 cos(0.6k), νk = 0.2 sin(0.4k1.1).

Then, by using our developed PSO-based Algorithm 2, the
desired filter gain matrixK is obtained as follows:

K =







−0.2125 −0.1182
0.1344 0.0469
4.1958 −4.9949
2.7638 −4.3444






.

The trajectories of‖z̃k‖ under different filtering schemes
are shown in Fig. 7, which has demonstrated the effectiveness
of our developed PD filtering scheme.
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Fig. 7: The trajectories of‖z̃k‖ under different filtering schemes

V. CONCLUSION

In this paper, the ultimately bounded filtering problem has
been studied for a class of linear time-delay systems subject
to IMOs. The measurement outliers under consideration are
modeled by a sequence of impulsive signals whose interval
lengths (i.e. the durations between two adjacent outliers)are

assumed to be a sequence of independent and identically
distributed (i.i.d.) random variables. In order to restrain the
filtering performance from being degraded by IMOs, a special
PD filter has been designed based on an active detection-
based framework to discard the “harmful” measurements (i.e.
the measurements corrupted by outliers). A novel outlier
detection approach has been developed to distinguish these
“harmful” measurements from other normal measurements.
Then, the EUB of the filtering error in mean square has been
carried out by combining the stochastic analysis technique
and Lyapunov-like approach. A PSO-based algorithm has been
developed to acquire the desired filter parameter. Furthermore,
the filter design scheme has been extended to the scenario with
unknown statistical properties for the measurement outliers
(i.e. the occurrence probabilities of the outlier intervallengths
are completely unknown). Finally, an illustrative example
has been provided to demonstrate the effectiveness of our
developed PD filtering scheme.

It is worth noted that, our developed PD filtering scheme
is typical model-based method dealing with the linear time-
delay systems with IMOs. The key technique is to obtain the
input-output model based on the transfer function matricesof
the plat. Accordingly, such a technique is not applicable to
some complex systems (e.g. nonlinear system, time-varying
systems, uncertain systems). Furthermore, it should be noted
that the desired filter parameter is designed by using the
matrix-inequality-based technique. The corresponding com-
putational cost would be very high if the system dimension
n is large. Such two deficiencies limit the application of
our developed PD filtering scheme. Further research topics
include 1) the extension of the main results to some complex
systems such as time-varying systems, networked systems and
uncertain systems [40], [42], [43], [46]; 2) the reduction of the
computational cost for the filter parameter design issue; and 3)
the filtering problem of networked systems subject to cyber-
attacks [24].
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