
 1

J. Computer-Aided Design. Vol.32, No.14, pp. 851-866, 2000.

From on-line sketching to 2D and 3D geometry: A fuzzy knowledge based system

S. F. Qin*, D. K. Wright

a
, and I. N. Jordanov

b

School of Product & Engineering Design, University of Wales Institute, Cardiff CF5 2YB, UK
a
 - Department of Design, Brunel University, Runnymede Campus, Egham, Surrey TW20 0JZ, UK.

b
 - Design Engineering Research Centre, University of Wales Institute, Cardiff CF5 2YB, UK

Abstract

The paper describes the development of a fuzzy knowledge based prototype system for conceptual design. This real

time system is designed to infer user’s sketching intentions, to segment sketched input and generate corresponding

geometric primitives: straight lines, circles, arcs, ellipses, elliptical arcs, and B-spline curves. Topology information

(connectivity, unitary constraints and pairwise constraints) is received dynamically from 2D sketched input and primitives.

From the 2D topology information, a more accurate 2D geometry can be built up by applying a 2D geometric constraint

solver. Subsequently, 3D geometry can be received feature by feature incrementally. Each feature can be recognised by

inference knowledge in terms of matching its 2D primitive configurations and connection relationships. The system accepts

not only sketched input, working as an automatic design tools, but also accepts user’s interactive input of both 2D

primitives and special positional 3D primitives. This makes it easy and friendly to use. The system has been tested with a

number of sketched inputs of 2D and 3D geometry.

Keywords: Conceptual design; Geometric modelling; Fuzzy knowledge

1. Introduction

Conceptual design is an early stage of the design

process, characterised by a fuzzy knowledge of the

design requirements and constraints, and tolerating high

degrees of uncertainty and vague ideas. A rapid

geometric modeller for supporting conceptual design

process is highly demanding, because few CAD tools are

suitable for this stage of the design process, in which

designers use various sketches with vague and imprecise

geometry to rapidly express their creative ideas. Besides,

conceptual designers still tend to prefer paper and pencil,

to a CAD system, for effective expression,

communication and record of their ideas. The reason

most often given for this is that the interface is not

suitable for sketching very basic ideas. To support this

early stage of geometric design and to improve the

speed, effectiveness and quality of the design decision,

studies [1 – 5]

indicate that a computer aided conceptual

design system must allow sketched input, and must have

a variety of interfaces, recognising features and

managing constraints.

This paper presents the development of a sketch

based CAD system interface for assisting designers

during conceptual design stages. The system captures

designers’ intention and interprets the input sketch into

geometrically more exact 2D vision objects and further

* Corresponding author. Tel: +44 (0) 2920 416495, fax:

+44 (0) 2920 416946, E-mail: sqin@uwic.ac.uk

3D models. It could also allow designers to specify a 3D

object or a scene quickly, naturally, and accurately.

The problem of inputting a 3D object from 2D data,

e.g. from several orthographic views, has been addressed

by many researchers [6-8]. They aimed to produce a

solid model given a complete drawing of the target

object which contains depth information, and

concentrated on matching vertices between views, or just

producing face information. Our aim is to allow

designers to input a quick sketch for just a single view.

We do not demand several sketch views for expressing

their 3D design ideas. Some works [9-11], coming from

the computer vision community, aim to reconstruct

objects from line drawings, extracted from single

perspective view image, rather than sketched by a user.

Perspective projections are difficult to sketch, and too

error prone to be used for quick sketching by hand. For

reconstruction from a single isometric projection, two

main methods, namely labelling schemes and

optimisation approaches have received considerable

attention in computer vision society [12]. Huffman [13]

and Clowes [14] set forth the first labelling scheme valid

for polyhedra. The Huffman-Clowes labelling method

classifies line segments into three categories: convex

edges; concave edges; and occluding edges. Given this

labelling, there is only a finite number of ways in which

lines can meet at junctions. The labelling scheme is

based on line labels and junction library to interpret line

drawings. Kanade [15], Sugihara [16], and several others

[5, 12] have extended the Huffman-Clowes labelling

scheme based on junction libraries. Lamb and

 2

Bandopadhay [17] presented a system for interpreting a

3D object from a rough line drawing. Their system uses

heuristic rules plus labelling information. In general,

labelling methods require a hidden-line removed 2D

view of a 3D object, and are not suitable for handling

inaccurate drawings and possible missing entities [2].

For an optimisation approach, it requires a complete

wireframe drawing as input, and the use of an

optimisation method gradually assigning the depth of

each vertex from an initially flat drawing to a 3D wire-

frame. Then minimising the standard deviation of the

angles between connected lines, as in Leclerc’s [18], and

Marill’s [19] works, or identifying and formulating

geometrical regularities and seeking their associated 3D

configuration, as in the work of Lipson and Shpitalni [2].

These approaches neither take into account drawing

errors, nor attempt to tidy up the drawings.

The direct input of depth, whilst creating the

sketches, is also investigated. Fukui [20] developed a

system for transforming 2D into 3D data, face by face,

referring to the geometry of connected faces that are

previously transformed. If there is only one, or there is

no adjacent face, the viewing direction is referred to. In

principle, curved shapes cannot be input directly by this

method. Pugh [21] proposed an algorithm that applies

geometric constraint satisfaction to the labelling scheme

to generate a 3D object description. This description is

consistent with both, the designer’s line-drawing, and set

of geometric constraints, either derived from the line

drawing, or placed by the designer. This system

produces solid models directly, but not in a natural for

the users way. Furthermore, it seems not suitable for

interpreting large complicated drawings all at once.

Hwang and Ullman [22, 23] developed a design capture

system, which has two phases: 2D stroke recognition;

and 3D feature recognition. In the first phase, sketched

strokes are interpreted as lines, arcs, circles, ellipse, etc.

These primitives are accumulated, until they can be

recognised as a 3D feature. New features can be built

upon previous ones. Their system still uses some

junction features, such as arrow_head and duck_claw to

inference a box feature. They did not employ a general

modelling feature of extrusion object, in terms of a

closed profile with an extrusion edge. Thus, their system

has difficulties in applying an inference knowledge

method for a box structure to a general combined

extrusion object. The weakness of the system is that it

recognises a finite number of features: box and cylinder.

To construct a complicated design, a large number of

features are required. Eggli, Hsu, Bruderlin and Elber [1]

described a ‘Quick-sketch’ system which can interpret

2D sketch into 2D lines, circles, arcs or B-spline curves,

and build up geometric relationships. Then it infers 3D

models from 2D shapes and constraints. Their system

seems questionable in successfully inferring large

complicated objects, because it does not interpret 2D

ellipses and uses a vague projection co-ordinate system.

This paper presents a profile of the developed system

and details of a 2D relationship inference engine, and 3D

recognition. After describing the system structure,

segmentation and classification of sketch input,

identification and generation of 2D primitives and B-

spline curves are studied. In section 4 a 2D relationship

inference engine is investigated, and then 3D recognition

is presented. Discussion with some examples, and

conclusion remarks are made in the final section.

2. System description

In this paper, development of a sketch-based CAD

system for conceptual design is described. The system

flow chart is shown in Figure 1. In the first phase, the

system gets a sequence of input data from mouse button

presses, mouse motion and mouse button release events.

From this data, information about the speed,

acceleration, direction, angle, and accumulative chord

length is extracted. This information is used in the

following processing to infer users drawing intentions,

and then to filter unintentional and redundant points.

During the segmentation phase, the input sketch is

divided into several sub-curves by locating segmentation

points (points connecting two meaningful sub-curves). In

the third stage, each of the curve segments is classified

and recognised. Then, the corresponding precise 2D

primitives or B-spline curves are identified and

generated. At this stage, 2D primitives can also be

quickly inputted by selecting from a 2D menu. After that,

2D relationships (connectivity, parallelism or

perpendicularity) between the primitives is conducted.

Subsequently, a 2D geometry can be received by a 2D

geometric constraint solver, based on the relationship

information. Finally, this 2D geometry (primitives and

connections) is accumulated until it can be recognised as

a 3D object or feature. The features are placed in a 3D

space and new features can be built upon previous ones.

3. Segmentation and classification of sketched input

The systems for on-line sketching and interpretation,

referenced in previous section, have no segmentation

process because each stroke is assumed to correspond to

a single entity. However, this assumption simplifies and

limits a variety of applications. For example, several

connected lines can be drawn with one stroke on pen-

paper based sketches.

To allow sketched input in more natural way, in our

system, one stroke input can include more than one

geometric primitive. Thus, precise segmentation of the

sketch strokes into straight lines and other sub-curves is

prerequisite for obtaining the best sketch recognition and

interpretation. Errors in the segmentation phase might

propagate to false feature extraction and classification.

3.1 Curve segmentation

 3

In our system, an intelligent and adaptive threshold

segmentation technique is used on the basis of fully

exploiting properties of dominant points, and fuzzy

heuristic knowledge in terms of sketching speed and

acceleration. We combine fuzzy logic ideas from [24]

with a hybrid approach [25], that emphasises on

accuracy and speed to segment curves by finding acute

and obtuse corner points, and inflection points. For an

obtuse corner point, directional deviation ranges from

90° to 180°, and for an acute corner point the deviation

is less than 90°. As for inflection point, an identifying

feature is a change in the curve convexity. Details of this

segmentation process are given in [26].

Our fuzzy knowledge based segmentation algorithm

can be briefly described in four steps:

Step 1 Compute the directional deviation βi at point i

with an adaptive support region, based on k-

cosine curvature measure, and perform

nonmaxima suppression;

Step 2 Find obtuse corner point, if βi is larger than 90

degree;

Step 3 Detect acute corner points between two adjacent

obtuse corner points, by applying adaptive

threshold and fuzzy knowledge, with respect to

the drawing speed, acceleration, and curve’s

linearity;

Step 4 Specify inflection points, if it is necessary, during

the following classification process.

To find suitable 2D primitives for fitting a segment

of sketches, it is very important to be able to correctly

classify a sub-curve as a line, a conic curve, or a free

form curve. We classify a curve according to three

preference orders: linearity; convexity; and complexity

of a shape, not just by complexity as in [24, 27]. In

comparison with the referenced works, this classification

method brings advantages of reducing computational

burden and complexity. Details of this classification are

presented in [28]. A curve classification briefly follows a

four step procedure:

Step 1 Detect a straight line by its linearity;

Step 2 Detect a free-form curve by finding inflection

points or convexity changes;

Step 3 Determine a spiral line (free-form curve) by

checking self-intersection point;

Step 4 Classify into a circle, an arc, an ellipse, an

elliptical arc, a hyperbola, or a parabola by least-

square fitting general conic equation, or further

identification for free form curve.

3.2 Identification and generation

After the classification, each curve should be

identified and fitted with a meaningful 2D primitive or a

B-spline segment, representing the corresponding

sketching points. To find the best coefficients (, ,)a b c of

a line segment equation: aX bY c+ + = 0 , a weighted

least-square (LS) routine is used. For a conic curve, we

investigate weighted LS fitting with some normalisation

techniques, based on algebraic distances, because

geometric distances are difficult to evaluate. After the LS

fitting, a conic curve can be further classified into a

circle, an arc, an ellipse, or an elliptical arc. Then, the

corresponding 2D parameters are received. For a line,

we obtain the line equation and two end points. For an

elliptical arc, we get the centre point, two radii,

direction, and start and end angles [29]. A circle and an

arc are special cases for elliptical arcs. When free-form

curves are classified, B-splines are used to fit a set of

sketched points. Once a 2D primitive or a B-spline

segment is specified, it is displayed on the screen.

3.3 System behaviour and 2D interaction

Nevertheless, there will always be cases where the

system makes a wrong interpretation of the user’s

intention. It is therefore essential to provide designers

with a simple way of correcting erroneous

interpretations. In our system, the user can quickly click

on x-icon and then select an intended shape icon from

the toolbar icon menu. Then the system refits sketched

points with the specified shape.

On the other hand, users can utilise the icon menu to

input 2D primitives quickly and more accurately, as in

any 2D CAD system. With these tools, users can mix

freehand sketching and interactive 2D input to quickly

specify 2D primitives. Some features, such as fillet

elliptical arcs might be difficult to sketch. The reason for

that could be individual’s low-level sketching skill or

vibration from sketching devices. Anyway, the system

can enable users to mix the two input methods to any

content they want. If the system could only accept

sketched input, users with poor sketching skills are likely

to be dissatisfied.

All 2D primitives are stored in a drawing history

database in time order. The following figures show some

examples (sketches to the left, and fitted curves to the

right). Figure 2 shows examples of finding obtuse

segmentation points between different primitives: lines,

circular arcs, elliptical arcs and free-form curves. For

detecting acute corner points, examples are shown in

Figure 3. Figure 4 is employed to demonstrate a B-spline

fitting and inflection point finding. Examples of

identification of circles and arcs from general ellipse

fitting are shown in Figure 5. The system is checking the

sketch for closed arcs (circular or elliptical) before the

generation. If an closed arc is over-drawn, the system

will make the two end points to meet together, as shown

in the middle graphics of Figure 5. If the angle formed

from the centre point of the arc to its two end points is

too small, for example 5°, the system will change the arc

to a whole circle or ellipse, as in the case shown just

 4

above the bottom one in Figure 5. The example at the

bottom is a normal arc identification.

4. Relationship inference engine

Once the closest fitting primitives have been found,

the system’s relationship inference engine tries to infer

certain relationships between them. Relationships can be

classified into three categories: connectivity; unitary; and

pairwise relations [27].

The inference engine firstly searches for connectivity

relations. It looks at the end points of a pair of

primitives, and determines whether they are within a

certain adaptive distance tolerance. If they are, the two

end points of the two primitives are connected. In this

case, relation code 1 is assigned (default is 0, meaning

free end). The adaptive distance tolerance is related to

the lengths of lines or radii of arcs. Then, the inference

engine tries to infer second or third type relations for a

free end. Second type connection is touching relation, in

which an end point of a primitive falls on the path of the

other primitive. The relation code in this case is 2. The

third type connection (relation code 3) is tangent

relation, in which one end of a primitive is tangent to

another primitive, as between lines, circles, ellipses, arcs,

or elliptical arcs. The fourth type connection is an ellipse

tangent to, or on the path of the other primitive. Its

relation code is 4. For example, when sketching slot

features from a box or a cylindrical object, users will

meet the second type connection, and when silhouette

lines are drawn to express a cylindrical object or feature,

the third type connection will be obtained. The type 4

connection is met, when an ellipse from a projection of a

section circle touches the path of a silhouette curve to

express a revolution feature.

Unitary relations are properties of a single primitive.

The unitary relations apply to lines, ellipses, arcs, and

elliptical arcs. For the lines, the engine examines the

slope of the straight line, to see if it is close to one of

special directions: horizontal; vertical; and isometric

projection of principle axes. If it is close, to the straight

line will be assigned corresponding unitary relation

code: HOR, VER (or ISO-Y), ISO-X, or ISO-Z.

Subsequently, this line will be changed to its

corresponding direction. For an ellipse, we check the

direction of its axis to determine if it is close to one of

the special directions. If so, the ellipse gets the same

unitary relation codes as in the line cases. In the case of

circular arcs, the angles formed from the centre of the

arc to its two end points are examined to check if they

match any of the special direction angles. If so, the angle

subtended by the arc will be changed. For an elliptical

arc, we first check its direction, as for an ellipse, and

then examine its start and end angles, as for a circular

arc.

Pairwise relations are geometric properties shared by

two primitives. Currently, the system supports

parallelism and perpendicularity relations between pairs

of lines, ellipses, or elliptical arcs. Each line, or ellipse,

may have only one pairwise relation with previous

primitive: parallelism or perpendicularity. Once this

relation is found, the system will stop further backward

search for that type relation.

After all these relations are examined, the inference

engine will clean up the drawing by using the relations as

geometric constraints. First, the engine corrects the

primitives in accordance with unitary relations and with

the least amount of local changes. Then, the engine gives

correction for the primitives, according to the pairwise

relations and connectivity constraints. Finally, the 2D

geometry with its relationships is configured, using the

inference engine.

Figure 6 shows sketches of a house with a square

door, an elliptical window, etc. Before tidying up, the

primitives are not clearly connected. For example: the

elliptical window is not quite vertical (or horizontal); the

left wing line of the roof is not parallel to the grid lines;

the sun ray lines do not start exactly from the circle to

outwards, etc. However, after tidying up, the 2D

geometry from Figure 6 becomes more exact, which is

shown in Figure 7.

5. Recognition in 3D

After the 2D correction, the 2D geometry has its

correct primitives and topology connections. The

problem remaining is how to recognise 3D objects from

a 2D topology and geometrical information. From

previous research [23], it is believed that design with

features will bring some significant benefits for the

design process itself and further for the manufacturing

process as well. Therefore, the system combines solid

modelling methods with feature based design methods to

develop a 3D inference engine for machined parts. This

method brings the following advantages:

• It processes input model data rapidly and efficiently.

Once a specific feature is recognised, it is not

necessary to continue with inputting the complete

model data. For example, if a closed 2D profile with

one extrusion edge is recognised as a extrusion

object, further input of any edges will be

unnecessary. In this case, the user can input any

extrusion edge, no matter whether it is visible edge

or not. So, the user is not interactively interrupted in

order to determine which edges should be inputted;

• Once the design is finished, the feature model is

available. This makes unnecessary the creation of a

feature model by decomposing the solid model for

further manufacture processing;

• It simulates parametric modelling methods in the

design process. The design is conducted feature by

feature in temporal order. The constraints and

geometric variables are easy to set up and if the

design system is used as an interface to a

 5

commercial parametric CAD system, such as,

Pro/Engineer, we can effectively integrate the

conceptual design process with more detailed

design.

Although the number of features required for

modelling complex mechanical parts is huge, it can be

reduced significantly if the main focus is on the

conceptual design, because at this stage rough design

ideas are expressed mainly by solid primitives and their

Boolean operations: union; subtraction; and intersection.

In order to apply features to the design process, the

system first recognises feature information from the 2D

freehand sketches. It then transforms the recognised

feature to its proper 3D position. Once a feature is

created, the user can examine all features in a wireframe

model or in a shaded solid model. The user can continue

to add features based on wireframe or shaded model.

Users may, therefore, begin to sketch in a real 3D world.

In this way, the system can support an iterative creative

design process: thinking; creating; and evaluating.

5.1 Features and system setting

In order to recognise 3D features, the system makes

following assumptions:

• 2D input is a isometric drawing. The origin of the

isometric projection co-ordinate system is the same

as the origin of the display window (lower-left

corner). The system selects isometric drawing for

two reasons: first one, that parallel lines in the

objects appear as parallel lines in the drawing; and

second one, that edges parallel to the principle axes

are drawn with lengths proportional to the actual

dimensions of the objects (about 0.8165 of the

actual dimensions);

• The projection co-ordinate system has the same

scale as the display system (default value is 1);

• Dimension unit is a screen pixel.

In general, the system can recognise the following

features:

• Box feature, which can be transformed into

protrusion of a rectangular shift (Fig. 8(a)), or

depression of a rectangular hole, or slot (Fig. 8(b));

• Cylindrical feature, which can be recognised as a

cylindrical shift (Fig. 8(c)), or a hole including blind

and through holes (Fig. 8(d));

• Revolution feature, which can be any revolution,

solid or hollow (Fig. 8(e));

• Spherical feature, which express a solid ball;

• Ruled surface feature (Fig. 8(f));

• Sweeping surface (Fig. 8(g));

• Modified feature, which can be a chamfer or a fillet

(Fig. 8(h));

• Complex extrusion feature.

• Due to limited developing time, this prototype

system has implemented box features, cylindrical

features and simple revolution features.

5.2 Knowledge representation

Our 3D recognition engine expresses its recognition

knowledge in knowledge rules and integrates them into a

programme by conditional statements (if-then). The

system examines combinations of 2D sketched elements

and topology information (connectivity information from

2D) to infer a 3D feature. Different features have

different inference rules. General extrusion objects

feature a closed profile and extrusion edges. The closed

profile may consist of only one ellipse, or two pair

parallel lines, or combined line segments with arcs.

Therefore, the system first examines whether a closed

profile exists, then finds the direction of extrusion (for

box features, this direction information can come from

the direction of the extrusion edge, as for cylindrical

features, this direction information can be obtained from

the direction of the ellipse). Finally, the system

determines where the closed profile comes from

(reference plane) by checking if its centroid is within a

projection area of a boundary plane of previous objects.

Once a specific feature type is found and the reference

plane and direction information are known, the system

obtains all the necessary 3D information and can

produce the 3D feature. The 2D connectivity information

here is used to find a closed profile and to determine

which line is an extrusion line. For example, if the closed

profile (representing a face) is an ellipse, which has

either second, or third type connection with a straight

line, the feature might be a cylindrical shift (Fig. 8(c)),

or a hole (Fig. 8(d)). Alternatively, this could be a

revolution feature if the ellipse touches the edge line

with a type four connection (Fig. 8(e)). In this case the

ellipse represents a section circle, and the extrusion edge

represents one of the silhouette lines. For a type 4

connection, the corresponding feature might be a general

revolution object if the edge is a curved line. Some

inference rules are given in pseudo-code below.

Rules for a box feature:

if

- the feature is composed of a closed profile and one

extrusion line

- and the closed profile is composed of 4 lines (two pair

parallel lines)

- and the extrusion direction is determined (by the

extrusion line)

- and the reference plane is found (default reference is

XOZ, XOY, or YOZ plane correspondingly to the

special extrusion directions)

then

- a box feature is defined.

 6

Rules for a sweeping surface could be:

if

- the feature is composed of two curves

- and the two curves are end-connected

- and the two reference planes for two curves belong to

one box feature.

then

- a sweeping feature is found.

Once a feature is created, it is stored in an Object-

Oriented database. Its class construction function will

record features size and position parameters (3D shifting

and rotating parameters), and will produce information

about all boundary faces, both in 3D and in the

projection plane. All this information is used for

determining the reference planes.

5.3 Interaction in 3D

Similarly to the 2D input, icon menus can be used to

input 3D primitives and mix freehand sketching with

interactive 3D input, to quickly specify 3D primitives.

For example, the users can quickly specify a 3D box by

drawing a diagonal line for a top face and subsequently

dragging the face vertically, to produce height

information. From the menus, the users can input vertical

cylinders, semi-cones, or cones.

On the other hand, the system provides assistant grid

lines in accordance with the isometric projection. These

grid lines can help users to sketch in 3D.

Theoretically speaking, users can correct the 3D

feature recognised by the engine, if it is wrong.

However, correcting a 3D feature is more difficult than

correcting a 2D fitting, therefore, this function needs

further refinement.

6. Discussion and conclusion

With series of figures (Fig. 9(a) to Fig. 9(f)) we

demonstrate the process of producing an object that

combines a cylinder with a box. First, we sketch two

ellipses and two lines for a cylinder (Fig. 9(a)). Fig. 9(b)

shows the recognised 2D primitives. After 3D

recognition, we receive a 3D cylinder, and continue to

sketch a box over the wireframe model of the cylinder

(Fig. 9(c)), obtaining five 2D lines for the box (Fig.9(d)).

Again, 3D recognition is performed, and finally, the

combined object is shown in wireframe (Fig. 9(e)) and in

shaded model (Fig. 9(f)).

We use this prototype system to deal with a

conceptual design geometric model of a lathe machine.

This geometric model consists of 10 parts: two base

parts; a headstock; a spindle; a gear box; a lead screw; a

feed rod; a carriage; a tailstock; and a cross slide. The

spindle is expressed as a cylindrical feature. The feed

rod is modelled as a revolution object. Most of the parts

are presented as box features. Fig. 10 shows a wireframe

model of the lathe (with some 2D input geometry). The

shaded model is shown in Fig. 11. When working on this

model, we draw some features on the previous wireframe

model, and some features on the shaded model, because

it is easier to draw on the 3D faces.

Fig. 12 describes a model of a scene including a desk

and a small bench. Fig. 13 shows its shaded model. The

left desk foot is a semi-cone, formed from revolution

feature. On the desk, there is a vertical shelf (a thin box),

which holds a horizontal lump tube (a cylinder). A small

clock (cone feature) is situated on the shelf. There is also

a small bench in front of the desk, modelled by three box

features.

This system is implemented on Windows’95, using

Visual C++ and Open GL. A part of the system has also

been developed on SGI workstation and UNIX platform,

in C++, Motif and Open GL. The results show that the

fuzzy knowledge based system can interpret users’

intention on 2D and 3D geometry satisfactorily. From

real-time sketches, the system can give proper

segmentation and curve fitting in variety of 2D shapes:

straight lines, circles, arcs, ellipses, elliptical arcs, spiral

lines, spring lines and free-form curves. The 2D

relationship engine can generate 2D connectivity, unitary

constraint, and pairwise constraint information. This

information is used for tidying up the 2D geometry and

for inferring a 3D object. After the 2D cleaning up, a

rule-based 3D recognition is conducted. The system

combines interactive input of 2D and 3D primitives, with

sketched input recognition. This system gives users

greater freedom to quickly specify 2D and 3D geometry,

than those with sketched input only [23]. This mixed

automatic and interactive design environment can

encourage users with poor sketching skills to use it for

creative design tasks. In principle, the system has a

potential capability of supporting 3D surface design. It

can model scenes, which are difficult for the labelling

schemes and optimisation-based methods, although it

requires corresponding recognition knowledge for the

different features.

References

[1] Eggli L, Hsu CY, Bruderlin BD, Elber G. Inferring

3D models from freehand sketches and constraints.

Computer-Aided Design 1997;29(2):101-112.

[2] Lipson H, Shpitalni M. Optimisation-based

reconstruction of a 3D object from a single freehand

line drawing, Computer-Aided Design

1996;28(8):651-663.

[3] Lipson H, Shpitalni M. A new interface for

conceptual design based on object reconstruction

from a single freehand sketch. Annals of the CIRP

1995;44(1):133-136.

[4] Dorsey J, McMillan L. Computer graphics and

architecture: State of the art and outlook for the

 7

future. ACM SIGGRAPH- Computer Graphics

1998;32(1):45-48.

[5] Grimstead IJ, Martin RR. Creating solid models

from single 2D sketches. In: Proceedings of the

Third Symposium on Solid Modeling Applications,

ACM SIGGRAPH 1995:323-337.

[6] Yan QW, Chen CP, Tang Z. Efficient algorithm for

the reconstruction of 3D objects from orthographic

projections. Computer-Aided Design

1994;26(9):699-717.

[7] Masuda H, Numao M. A cell-based approach for

generating solid objects from orthographic

projections. Computer-Aided Design

1997;29(3):177-187.

[8] Dori D. A scheme for 3D object reconstruction

from dimensioned orthographic view. Engineering

Application of Artificial Intelligence 1996;9(1):53-

64.

[9] Horaud R. New methods for matching 3-D objects

with single perspective views, IEEE Pattern

Analysis and Machine Intelligence 1987;9(3):401-

411.

[10] Hale BJ, Burton RP, Olsen DR, Stout WD. A three-

dimensional sketching environment using two-

dimensional perspective input. Journal of Imaging

Science and Technology 1992;36(2):188-196.

[11] Ulupinar F, Nevatia R. Constraints for

interpretation of line drawings under perspective

projection. Computer Vision, Graphics and Image

Processing: Image Understanding 1991;53(1):88-

96.

[12] Wang W, Grinstein G. A survey of 3D solid

reconstruction from 2D projection line drawing.

Computer Graphics Forum 1993;12(2):137-158.

[13] Huffman DA. Impossible objects as nonsense

sentences. In: Meltzer, Michie D, editors. Machine

Intelligence, Edinburgh: University Press,

1971;6:295-323.

[14] Clowes MB. On seeing things. Artificial

Intelligence 1971;2(1):79-112.

[15] Kanade T. Recovery of the three dimensional shape

of an object from a single view. Artificial

Intelligence 1980;17:409-460.

[16] Sugihara K. Machine interpretation of line

drawings. Cambridge, Massachusetts: MIT Press,

1986.

[17] Lamb D, Bandopadhay A. Interpreting a 3D object

from a rough 2D line drawing. In: Proceedings of

Visualization’90, pp. 59-66, 1990.

[18] Leclerc YG, Fischler MA. An optimization-based

approach to the interpretation of single line

drawings as 3D wire frames. International Journal

of Computer Vision 1992;9(2):113-136.

[19] Marill T. Emulating the human interpretation of

line-drawings as three-dimensional objects, Int.

Journal of Computer Vision 1991;6(2):147-161.

[20] Fukui Y. Input method of boundary solid by

sketching. Computer-Aided Design

1988;20(8):434-440.

[21] Pugh D. Designing solid objects using interactive

sketch interpretation, ACM SIGGRAPH-Computer

Graphics Special Issue on 1992 Symposium on

Interactive 3D Graphics, 1992:117-126.

[22] Hwang T, UIIman D. The design capture system:

Capturing back-of-the envelope sketches. Journal

for Engineering Design 1990;1(4):339-353.

[23] Hwang T, UIIman D. Recognize features from

freehand sketches. ASME Computers in

Engineering 1994;1:67-78.

[24] Chen P, Xie S. Freehand drawing system using a

fuzzy logic concept, Computer-Aided Design

1996;28(2):77-89.

[25] Wan W, Venture J. Segmentation of planar curves

into straight-line segments and elliptical arcs.

Graphics Model and Image Process

1997;59(6):484-494.

[26] Qin SF, Wright DK, Jordanov IN. Intelligent

recognition of 2D design sketches. In: Hamza M,

editor. Proceedings of the International Conference

on Intelligent Systems and Control, Santa Barbara,

California, USA, October 28-30 1999:246-251.

[27] Jenkins DL, Martin RR. Applying constraints to

enforce users’ intentions in free-hand 2-D sketches.

Intelligent Systems Engineering 1992;1(1):31-49.

[28] Qin SF, Wright DK, Jordanov IN. Intelligent

classification of sketch strokes. In: Hu H, Wu M,

editors. Proceedings of CACUK, Derby, UK,

September 24-25 1999:189-194.

[29] Qin SF, Jordanov IN, Wright DK. Freehand

drawing system using a fuzzy logic concept,

Computer-Aided Design 1999:31(5):359-360.

 8

Figure 1 System flowchart

Figure 2. Finding obtuse corner

Data Collecting and Filtering

Segmentation

Classification

Identification &Generation

2D Relationship Engine

3D Recognition

Input

 9

Figure 3. Finding acute corner

Figure 4. Curve fitting and segmenting

Figure 5 Circle and arc fitting

Figure 6. 2D primitives before tidying up

 10

Figure 7 2D Geometry after tidying up.

 11

Figure 8. Figure 8. Features: (a) box; (b) rectangular

hole; (c) cylindrical shift; (d) cylindrical hole; (e)

revolution; (f) ruled surface; (g) sweeping surface; (h)

chamfer

Figure 9. (a)

S1
S2

L1

S1
S2

(a) (b) (c) (d)

(e) (f) (g) (h)

 12

Figure 9 (b).

Figure 9 (c)

Figure 9 (d)

Figure 9 (e).

Figure 9 (f)

Figure 9. Processes of building objects: (a) sketch of a

cylinder; (b) 2D primitives; (c) sketching on the previous

wireframe model; (d) 2D primitives for the box; (e)

wireframe model of the combined objects; (f) shaded

model for the combined objects.

 13

Figure 10 A wireframe model of a lathe

Figure 11 A shaded model of a lathe

Figure 12 A wireframe model of a scene

Figure 13 A shaded model of a scene

 14

 15

Author photographs and biographical notes

Sheng Feng Qin is a

Research Assistant and a

PhD candidate at the

University of Wales Institute

Cardiff (UWIC). He gained

his BEng (1983) and MSc

(1988) in CAD from the

Southwest Jiaotong

University, China. He was an

Associate Professor at East

China Jiaotong University

and an academic visiting

scholar at the University of

Birmingham from 1996 to 1997. He did his first year PhD

in the Brunel University in 1998. His research interests

include CAD/CAM, CIMS, feature-based modelling, and

Multimedia Applications.

David K. Wright is currently

a Reader in the Department of

Design, Brunel University,

and head of Interaction Design

Research Group. He gained

his PhD in Physics at the

University of Warwick,

subsequently becoming Senior

Research Fellow. At UWIC,

he was Visiting Professor in

the Design Engineering

Research Centre (DERC) and Research Director of

School of Product & Engineering Design. His teaching

and research interests are in CAD, computer simulations

of biomechanical systems; virtual prototype of products;

as well as CSCW and CAL methodolgies.

Ivan N. Jordanov is a

Senior Research Fellow at

DERC, UWIC, UK. He

obtained BSc (1976), MSc

(1978) and PhD (1988)

from the Technical

University of Sofia (TUS),

BG. He was an Associate

Professor at the Department

of Programming and

Computer Applications at

TUS. His teaching and research activities include:

Programming and Application Development;

Optimisation of Dynamic Systems; and Neural

Networks Learning.

