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Abstract

In this paper, the distributed state estimation problem is studied for renewable energy microgrids with sensor saturations.
A system model for the microgrids with sensor saturations is proposed. Attention is focused on the design of a distributed
recursive estimation scheme such that, in the presence of the sensor saturations, an upper bound of the estimation error
covariance is guaranteed. Subsequently, such an upper bound is minimized by appropriately designing the gain matrices of
the corresponding state estimator. In particular, the sparsity of the gain matrices resulting from network topology is handled
by using a matrix simplification method. Moreover, the performance evaluation of the designed distributed state estimator
is conducted by analyzing the exponential boundedness of the estimation error in the mean square sense. Finally, simulation
experiments under two cases are carried out on a renewable energy microgrid which contains two distributed generation units.
The simulation results demonstrate that the developed state estimation scheme is effective.
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1 Introduction

Most of the electrical power that we consume today
comes from fossil-fuel power plants and these plants have
quite low efficiency in generating power while emitting
lots of carbon dioxide into the air [37]. As a kind of clean
yet environmentally friendly process for electricity gen-
eration, the renewable energy generation has recently
attracted considerable research attention [5,7,20]. Nev-
ertheless, with the increasing share of the electricity pro-
duced by renewable energy, the conventional power sys-
tem cannot be fully integratedwith diversified renewable
energy generation. In order to handle such a challenge
and minimize the number of fossil-fuel power plants that
need to be built, a new power generation infrastructure,
namely, smart grid, has been put forward in electricity
industry, which facilitates the easy integration of the re-
newable energy microgrid (REM) into the main power
grid [17, 37].
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It is worth mentioning that the nowadays popular REM
may give rise to a certain degree of uncertainties and/or
dynamics with the power system primarily due to unpre-
dictable weather conditions [12, 40]. As such, it is criti-
cally important to monitor the REM in a robust yet dy-
namical way, especially when the REM is integrated in-
to the main power grid. On the other hand, knowing the
system states is also a prerequisite for operating basic
functionalities of the microgrid and acting feedback sig-
nals [18]. It is, therefore, an essential mission to estimate
the system states with hope to ensure that the microgrid
operates in a normal yet secure manner [10, 12, 17].

Since the initial research conducted in the early 1970s
[34], the state estimation (SE) method based on the
weighted-least-square (WLS) technique has been wide-
ly studied and applied in power systems due to the
properties of easy implementation and reliable capabil-
ity [10, 16, 17]. It is worthwhile to note that the WLS-
based algorithm is performed at regular but relatively
long intervals under the assumption that the power sys-
tem evolves in the quasi-steady condition [12, 16]. The
renewable energy resources, which may inject uncertain-
ties and/or dynamics into the power systems, clearly
violate the assumption mentioned above [1, 12]. More-
over, the high resistance-to-reactance ratios, unbalanced
phase and non-ideal measurements which, in turn, also
limit the application scope of theWLS-based SEmethod
[1, 17]. Furthermore, the WLS-based SE algorithm can
only forecast the current system states while cannot gen-
erate the estimates for the next time step [16]. As such,
there is a practical need to develop new SE schemes,
which are accurate, sustainable and easy-to-implement,
for dynamical REMs in response to the ever-increasing
demand for green electricity generation processes.

State estimation has long been a fundamental research
topic in the areas of signal process and control engineer-
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ing [2–4,9,24,26,42–45]. In recent years, the distributed
state estimation (DSE) problems have gained a partic-
ular interest from many researchers [15, 25, 32, 36, 38].
Compared with the centralized SE approach, the com-
munication and computation burden of the distributed
one is much lower since the SE is performed in a parallel
manner [6,23,25,39]. Moreover, the fault-tolerant capa-
bility is improved since the high risk of the single point
failure is avoided [39]. Furthermore, the deviations of the
estimates caused by the uncertainties and/or dynamics
of the REMs can be compensated by using the neigh-
boring sensing information. Up to now, fruitful results
concerning the DSE problem for the conventional pow-
er systems have been proposed, see e.g. [16,17]. When it
comes to the microgrids, the relevant results have been
very few except the scattered results reported in [8, 11].
For instance, in [11], the optimal zone clustering algo-
rithm has been proposed for the microgrid and the DSE
issue has been considered in the design of such an algo-
rithm. In [8], the operation and protection scheme for
the microgrids has been studied by using the DSE tech-
nique, while the state estimator is a WLS-based one. As
such, there is a lack of adequate research on the design
of the DSE scheme for microgrids, and this constitutes
one of the motivations of this paper.

As the fundamental components of the sensors in pow-
er systems, the instrument transformers (e.g. current
transformers and phase voltage transformers) play a vi-
tal role in the connections between the power systems
and the measuring facilities such as the remote termi-
nal units (RTUs) and the phasor measurement units (P-
MUs) [22, 41]. However, these transformers may be sat-
urated due to the transient processes, electrical faults
or highly overloaded lines [14]. Moreover, the extreme
weather or working conditions may also saturate the sen-
sor [22]. It is worth noting that the typical nonlinear
phenomenon caused by the sensor saturations may re-
sult in bad measurements and further affect the online
control or protection of the power systems if not handled
appropriately [19,41]. In the past decades, the SE prob-
lem with sensor saturations has received considerable re-
search attention [27,28,35]. Nevertheless, when it comes
to the microgrids, most of the results rely on the assump-
tion that the measurements are ideal, see e.g. [11,12,32]
and the references therein. Therefore, it constitutes an-
other motivation for us to tackle the SE problem for mi-
crogrids in the context of sensor saturations.

Motivated by the above discussions, it can be concluded
that there is a lack of systematic investigation on the dis-
tributed SE problem for microgrids suffering from sen-
sor saturations. As such, the main purpose of this paper
is to propose distributed recursive SE algorithms for a
class of REMs such that, in the presence of sensor satura-
tions, an upper bound of the estimation error covariance
is guaranteed and subsequently minimized at each time
instant by properly designing the state estimator gains.
The main novelties of this paper can be highlighted as
follows: 1) the SE problem is, for the first time, investi-
gated for REMs with sensor saturations; 2) a distributed
recursive SE method is developed to estimate the state of
the microgrid in the presence of sensor saturations, which
is computationally efficient yet suitable for online appli-
cation; and 3) a sufficient criterion is given to guarantee
the exponential boundedness of the estimation error.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. In represents the identity
matrix of n rows and n columns. For i = 1, 2, . . . , n,
diagn{Ai} stands for a block-diagonal matrix where the
squarematricesAi are the corresponding diagonal block-
s, and coln{xi} stands for the vector [xT1 , · · · , x

T
n ]
T .

2 Problem Formulation

2.1 Preliminaries

In this paper, a sensor network consisting of n sen-
sor nodes is used to monitor the microgrid. We de-
note the topology of the network by a directed graph
G = (V , E ,A) of order n with the set of nodes
V = {1, 2, . . . , n}, the set of edges E ∈ V × V , and the
weighted adjacency matrix A = [aij ] with nonnegative
elements aij . An edge of G is denoted by ordered pair
(i, j). The adjacency elements associated with the edges
of the graph are positive, i.e., aij > 0 ⇐⇒ (i, j) ∈ E ,
which means that the i-th node can receive the informa-
tion from the j-th node. Also, we assume that aii = 1
for all i ∈ V . The set of neighbors of node i plus the node
itself are denoted by the set as Ni = {i ∈ V : (i, j) ∈ E}.

2.2 System Model of Renewable Energy Microgrid

A typical REM which contains two distributed gener-
ation (DG) units is shown in Fig. 1. In each DG unit,
the renewable energy sources are modeled as dc voltage
sources, and the voltage source converter (VSC) with a
series filter is connected to one side of the step-up trans-
former, and the other side of the step-up transformer is
connected to the point of common coupling (PCC) and
the load. Then each DG unit is connected to the trans-
mission line through the PCC. It is assumed that the
REM is operating under balanced conditions. Applying
Kirchhoff’s laws and Park’s transformation, the state-
space model of abc-frame can be transferred into a ro-
tating dq-frame with the microgrid frequency of ω0 [33]:

DG r :







V̇ dqr = −jω0V
dq
r +

dr
Cr
Idqtr +

Idqrs
Cr

,

İdqtr = −jω0I
dq
tr −

dr
Ltr

V dqr −
Rtr
Ltr

Idqtr +
V dqtr
Ltr

,

(1a)

Line rs :

{

İdqrs = −jω0I
dq
rs +

V dqs
Lrs

−
Rrs
Lrs

Idqrs −
V dqr
Lrs

,

(1b)

DG s :







V̇ dqs = −jω0V
dq
s +

ds
Cs
Idqts +

Idqsr
Cs

,

İdqts = −jω0I
dq
ts −

ds
Lts

V dqs −
Rts
Lts

Idqts +
V dqts
Lts

,

(1c)

Line sr :

{

İdqsr = −jω0I
dq
sr +

V dqr
Lsr

−
Rsr
Lsr

Idqrs −
V dqs
Lsr

,

(1d)

where (V dqr , V dqs ), (V dqtr , V
dq
ts ), (Idqtr , I

dq
ts ) and (Idqrs , I

dq
sr )

are, respectively, dq components of PCC voltages, VSC
terminal voltages, series filter currents and transmission
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Fig. 1. Diagram of the distributed state estimation for the renewable energy microgrid.

line currents of DG unit r and s. In this case, the state-
space model of the microgrid can be constructed as

ẋ = Ax+Bu (2)

wherex = [V dr V qr Idtr I
q
tr I

d
rs I

q
rs I

d
sr I

q
sr V

d
s V qs Idts I

q
ts]
T

, [x1 x2 · · · x12]
T ∈ R

nx is the state vector and

u = [V dtr V qtr V dts V qts]
T , [u1 u2 u3 u4]

T ∈ R
nu is

the known input vector. The matrices A and B can be
obtained by referring to [33].

Discretizing the system (2) with a period ∆t, we obtain
the discretized model as follows:

xk+1 = Adxk +Bduk + wk (3)

where Ad = eA∆t and Bd =
∫∆t

0
eA∆tBdt, uk is the

known input vector after discretization, and wk ∈ R
nx is

a zero mean Gaussian sequence with covarianceWk > 0
that accounts for anymodeling error. The initial state x0
is a random variable with mean η0 and covariance Σ0|0.

2.3 Distributed State Estimator for Renewable Energy
Microgrid with Sensor Saturations

A schematic overview of the DSE for the microgrid is
given in Fig. 1. Specifically, for DG unit r and s, the
abc components of PCC voltages (V abcr , V abcs ), series fil-
ter currents (Iabctr , Iabcts ) and transmission line currents
(Iabcrs , I

abc
sr ) are all measured. Note that, for every sensor

node, the specific measuring items are usually different.
As such, for sensor node i (1 ≤ i ≤ n), we use a gen-
eral expression to model the measurement with sensor
saturation as follows:

yi,k = σi(Ci,kxk) + vi,k (4)

where yi,k ∈ R
mi is the measurement output received

by the sensor node i from microgrid, Ci,k ∈ R
mi×nx is

a known matrix, and vi,k ∈ R
mi is the Gaussian mea-

surement noise with zero mean and covariance Ri,k > 0.
Throughout this paper, we assume that wk, υi,k and x0
are mutually independent.

The saturation function σi(·) : Rmi → R
mi for every

sensor node i (1 ≤ i ≤ n) is defined as

σi(ri) =
[

σ1
i (r

1
i ) σ2

i (r
2
i ) · · · σmi

i (rmi

i )
]T

(5)

with

σsi (r
s
i ) , sign(rsi )min{rsi,max, |r

s
i |}, s = 1, 2, · · · ,mi

where sign(·) is the signum function and rsi,max (i.e., the

saturation level) is the sth element of the vector ri,max.
Remark 1 In order to characterize the relationship be-
tween the measurable electrical signals in the abc-frame
and the state variables in the dq-frame, the inverse Park’s
transformation are utilized in this paper [21]. Specifical-
ly, suppose that the abc components of a three-phase AC
signal can be measured (i.e., yk = [V ak V bk V ck ]

T ), then
the relationship between the measured components and
the state variables in the dq-frame (i.e., xk = [V dk V qk ]

T )
can be characterized as yk = Ckxk with

Ck =






cos(θk) − sin(θk)

cos(θk −
2
3π) − sin(θk −

2
3π)

cos(θk +
2
3π) − sin(θk +

2
3π)






where θk = ω0k. Note that, in power systems, it is a com-
mon approach to measure at least two components of a
three-phase AC signal. As such, the sensing matrix Ci,k
relies on the measuring components we choose. Actually,
the voltages and currents are very essential measuring
items in power systems, and some additional measure-
ments (e.g. active and reactive power injections) are all
relying on the measurements of voltages and currents.
In this paper, a recursive state estimator is designed as
follows:

x̂i,k|k−1 = Adx̂i,k−1|k−1 +Bduk−1, (6)

x̂i,k|k = x̂i,k|k−1 +
∑

j∈Ni

aijGij,kỹj,k (7)

with the initial value x̂i,0|0 = E[x0] = η0, where x̂i,k|k−1

and x̂i,k|k are the one-step prediction and the estimate
of state vector xk, respectively, ỹj,k = yj,k−Cj,kx̂j,k|k−1

is the innovation sequence, and Gij,k ∈ R
mx×mj are the

state estimator gain matrices to be designed.
Remark 2 Similar with [25], the distributed state esti-
mator presented in (6) and (7) follows the well-known
prediction-correction paradigm. The difference is that we
have to meet the specified performance requirements by
using the available information of the saturated sensors
in the following state estimator design.

For node i, the one-step prediction error ei,k|k−1 , xk−

x̂i,k|k−1 and the estimation error ei,k|k , xk − x̂i,k|k can
be written as

ei,k|k−1 = Adei,k−1|k−1 + wk−1, (8)
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ei,k|k = ei,k|k−1 −
∑

j∈Ni

aijGij,k ỹj,k. (9)

For sake of simplicity, we denote

ek|k−1 , coln{ei,k|k−1}, ek|k , coln{ei,k|k},

x̄k , coln{xk}, x̂k|k−1 , coln{x̂i,k|k−1},

x̂k|k , coln{x̂i,k|k}, w̄k , coln{wk},

v̄k , coln{vi,k}, Gk , {Gij,k}n×n,

Hi , diag{ai1Im1
, · · · , ainImn

}, Ā , diagn{Ad},

C̄k , diagn{Ci,k}, σ(C̄kx̄k) , coln{σi(Ci,kxk)},

Ei , diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, Inx
, 0, · · · , 0
︸ ︷︷ ︸

n−i

}.

Furthermore, by denotingKk ,
∑n

i=1EiGkHi, the one-
step prediction error ek|k−1 ∈ R

n×nx and the estimation

error ek|k ∈ R
n×nx can be rewritten in a compact form

as

ek|k−1 =Āek−1|k−1 + w̄k, (10)

ek|k =(I −KkC̄k)ek|k−1 +KkC̄kx̄k

−Kkσ(C̄kx̄k)−Kkv̄k. (11)

Define the one-step prediction error covariance Pk|k−1 ,

E{ek|k−1e
T
k|k−1} and the estimation error covariance

Pk|k , E{ek|ke
T
k|k}. The objective of this paper is to

design a state estimator of the form (6) and (7) such
that there exists an upper bound on the estimation
error covariance Pk|k and such an upper bound is min-
imized at each time instant by appropriately designing
the estimator gains.

3 Main Results

Lemma 1 [39] For matrices X, Y and a positive scalar
λ, the following inequality holds:

XY T + Y XT ≤ λXXT + λ−1Y Y T .

Lemma 2 [43] For matrices M , N , X and K with ap-
propriate dimensions, the following equations hold

∂tr(MKN)

∂K
=MTNT ,

∂tr[(MKN)P (MKN)T ]

∂K
= 2MTMKNPNT .

3.1 Estimator Design

From (10), the one-step prediction error covariance
Pk|k−1 is calculated as

Pk|k−1 = ĀPk|kĀ
T + W̄k (12)

with W̄k = E{w̄kw̄
T
k }. Subsequently, in view of (11), we

can obtain the recursion of the estimation error covari-
ance, which is shown in the following lemma.

Lemma 3 The recursion of the estimation error covari-
ance Pk|k can be obtained as follows:

Pk|k =ΘkPk|k−1Θ
T
k +KkC̄kE{x̄kx̄

T
k }C̄

T
k K

T
k

+KkE{σ(C̄kx̄k)σ
T (C̄kx̄k)}K

T
k + F1,k + FT

1,k

+ F2,k + FT
2,k + F3,k + FT

3,k +KkRkK
T
k (13)

with

Θk = I −KkC̄k, Rk = diagn{Ri,k},

F1,k = E{Θkek|k−1x̄
T
k C̄

T
k K

T
k },

F2,k = E{−Θkek|k−1σ
T (C̄kx̄k)K

T
k },

F3,k = E{−KkC̄kx̄kσ
T (C̄kx̄k)K

T
k }.

Proof: It follows from (11) that

Pk|k =ΘkPk|k−1Θ
T
k +ΘkE{ek|k−1x̄

T
k }C̄

T
k K

T
k

+KkC̄kE{x̄ke
T
k|k−1}Θ

T
k

−ΘkE{ek|k−1σ
T (C̄kx̄k)}K

T
k

−KkE{σ(C̄kx̄k)e
T
k|k−1}Θ

T
k

+KkC̄kE{x̄kx̄
T
k }C̄

T
k K

T
k

−KkC̄kE{x̄kσ
T (C̄kx̄k)}K

T
k

−KkE{σ(C̄kx̄k)x̄
T
k }C̄

T
k K

T
k

+KkE{σ(C̄kx̄k)σ
T (C̄kx̄k)}K

T
k

+KkE{v̄kv̄
T
k }K

T
k − L1,k − LT1,k

− L2,k − LT2,k + L3,k + LT3,k

where

L1,k = E{Θkek|k−1v̄
T
kK

T
k },

L2,k = E{KkC̄kx̄kv̄
T
kK

T
k },

L3,k = E{Kkσ(C̄kx̄k)v̄
T
kK

T
k }.

Moreover, it is obvious that

E{v̄kv̄
T
k } = diagn{Ri,k} = Rk.

Noting that the one-step prediction error ek|k−1 is un-
correlated with v̄k, L1,k vanishes. Also, using the fact
that v̄k is uncorrelated with x̄k and σ(C̄kx̄k), one derives
that L2,k = 0 and L3,k = 0. The proof is complete.

Theorem 1 For positive scalars λi,k (i = 1, 2, 3, 4), as-
sume that there exist symmetric positive-definite solu-
tions Mk|k−1 ∈ R

nnx×nnx and Mk|k ∈ R
nnx×nnx to the

following difference equations:

Mk|k−1 = ĀMk−1|k−1Ā
T + W̄k−1 (14)

and

Mk|k =(1 + λ1,k + λ2,k)ΘkMk|k−1Θ
T
k

+ (1 + λ−1
1,k + λ3,k)KkC̄kΦkC̄

T
k K

T
k

+Kk

[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
KT
k (15)

with the initial condition M0|0 = P0|0, where

Φk = (1 + λ4,k)Mk|k−1 + (1 + λ−1
4,k)E{x̂k|k−1x̂

T
k|k−1},

r̄ =

n∑

i=1

mi∑

j=1

(rji,max)
2.

Then, the matrix Mk|k is an upper bound of Pk|k, i.e.,

Pk|k ≤Mk|k. (16)
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Proof: First, let us handle the right-hand side of (13)
term by term. By using Lemma 1, the unknown terms
F1,k,F2,k andF3,k in (13) can bemanipulated as follows:

F1,k + FT
1,k ≤λ1,kΘkPk|k−1Θ

T
k

+ λ−1
1,kKkC̄kE{x̄kx̄

T
k }C̄

T
k K

T
k ,

F2,k + FT
2,k ≤λ2,kΘkPk|k−1Θ

T
k

+ λ−1
2,kKkE{σ(C̄kx̄k)σ

T (C̄kx̄k)}K
T
k ,

F3,k + FT
3,k ≤λ3,kKkC̄kE{x̄kx̄

T
k }C̄

T
k K

T
k

+ λ−1
3,kKkE{σ(C̄kx̄k)σ

T (C̄kx̄k)}K
T
k .

From Lemma 1, we have

E{x̄kx̄
T
k }

=E{(ek|k−1 + x̂k|k−1)(ek|k−1 + x̂k|k−1)
T }

≤(1 + λ4,k)Pk|k−1 + (1 + λ−1
4,k)E{x̂k|k−1x̂

T
k|k−1}.

Recalling the definition of σi(·) in (5), we have

E
{
σ(C̄kx̄k)σ

T (C̄kx̄k)
}

≤E
{
tr{σ(C̄kx̄k)σ

T (C̄kx̄k)}
}
I

≤r̄I.

Summarizing the above discussions, we have

Pk|k ≤(1 + λ1,k + λ2,k)ΘkPk|k−1Θ
T
k

+ (1 + λ−1
1,k + λ3,k)KkC̄kΦ̄kC̄

T
k K

T
k

+Kk

[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
KT
k

where

Φ̄k =(1 + λ4,k)Pk|k−1 + (1 + λ−1
4,k)E{x̂k|k−1x̂

T
k|k−1}.

Based on the mathematical induction method, we can
conclude that Pk|k ≤Mk|k. The proof is now complete.

Remark 3 It should be pointed out that it is impossi-
ble to obtain the exact value of the estimation error co-
variance due to the uncertain terms in Lemma 3 such
as E{σ(C̄kx̄k)σ

T (C̄kx̄k)}. A feasible yet effective way to
get rid of this numerical problem is to establish an upper
bound of the estimation error covariance and then mini-
mize such an upper bound by properly designing the esti-
mator gain matrices at each time instant. Moreover, the
conservatism of the proposed distributed SE algorithm
can be reduced by choosing the scalars λi,k (i = 1, 2, 3, 4)
appropriately.

Having obtained the upper bound Mk|k, we are now
ready to find the estimator gains with which the upper
bound is minimized at each time instant.

Denote G
(i)
k as the i-th row of the matrix Gk, i.e.,

G
(i)
k , [Gi1,k Gi2,k · · · Gin,k]

andM
(i)
k|k−1 as the i-th row of the block matrixMk|k−1.

Moreover, we define

Pi,k ,(1 + λ1,k + λ2,k)HiC̄kMk|k−1C̄
T
k Hi

+ (1 + λ−1
1,k + λ3,k)HiC̄kΦkC̄

T
k Hi

+Hi

[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
Hi,

Qi,k ,(1 + λ1,k + λ2,k)M
(i)
k|k−1C̄

T
k Hi.

Theorem 2 The upper bound of the estimation error co-
variance Pk|k can be minimized at each time instant with
the state estimator parameter Gk = {Gij,k}n×n given by

{
Gij,k = 0, aij = 0

Ḡ
(i)
k = Q̄i,kP̄

−1
i,k , aij 6= 0

(17)

where Ḡ
(i)
k and Q̄i,k are the simplified matrices by deleting

the j-th (j /∈ Ni) column fromG
(i)
k andQi,k, respectively.

In addition, P̄i,k is a simplified matrix by removing both
the j-th (j /∈ Ni) row and j-th (j /∈ Ni) column from Pi,k.

Proof: Taking the trace of (15) yields

tr{Mk|k} =(1 + λ1,k + λ2,k)tr{ΘkMk|k−1Θ
T
k }

+ (1 + λ−1
1,k + λ3,k)tr{KkC̄kΦkC̄

T
k K

T
k }

+ tr
{
Kk

[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
KT
k

}
.

By resorting to the properties of trace, for i 6= j, we have

tr
{
EiXE

T
j

}
= 0

where X is a matrix with appropriate dimension. Based
on the properties of trace, tr{Mk|k} can be rewritten as

tr{Mk|k}

=(1 + λ1,k + λ2,k)
{

tr{Mk|k−1} − 2tr
{

n∑

i=1

EiGkHi

× C̄kMk|k−1

}
+ tr

{
n∑

i=1

EiGkHiC̄kMk|k−1

× C̄Tk (EiGkHi)
T
}}

+ (1 + λ−1
1,k + λ3,k)tr

{ n∑

i=1

EiGk

×HiC̄kΦkC̄
T
k (EiGkHi)

T
}

+ tr
{ n∑

i=1

EiGkHi

×
[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
(EiGkHi)

T
}

.

According to Lemma 2, taking partial derivation of
tr{Mk|k−1}with respect toGk and letting the derivative
be zero, we have

∂tr{Mk|k}

∂Gk

=− 2(1 + λ1,k + λ2,k)
{ n∑

i=1

EiMk|k−1C̄
T
k Hi

−

n∑

i=1

EiGkHiC̄kMk|k−1C̄
T
k Hi

}

+ 2(1 + λ−1
1,k + λ3,k)

n∑

i=1

EiGkHiC̄kΦkC̄
T
k Hi

+ 2

n∑

i=1

EiGkHi

[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
Hi
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= 0. (18)

Subsequently, as G
(i)
k represents the i-th row of matrix

Gk, we have

G
(i)
k Pi,k = Qi,k.

Noting Hi = diag{ai1I · · · ainI} and aij = 0 (j /∈ Ni),
we let Pi,k = {Pab,k}n×n and Qi,k = {Qb,k}1×n, then
we have

n∑

j=1

Gij,kPjb,k = Qb,k

for b ∈ Ni. As for b /∈ Ni, the above equation always
holds since Pjb,k = Qb,k = 0. Hence, we can choose
Gib,k = 0 when b /∈ Ni and it can be seen that

Ḡ
(i)
k P̄i,k = Q̄i,k.

Noticing that P̄i,k > 0, Ḡ
(i)
k can be calculated as follows:

Ḡ
(i)
k = Q̄i,kP̄

−1
i,k

which completes the proof.

Remark 4 In the proof of Theorem 2, the sparseness-
induced challenge caused by the sensor network topology
is tackled by applying the matrix simplification technique
proposed in [25]. Different from [25], we have to fully uti-
lize the information from the saturated sensors in the es-
timator design to guarantee the estimation performance.

Remark 5 Since it is not difficult to verify that the sec-
ond derivation of tr{Mk|k} with respect to Gk is always
positive definite, the estimator gain given by (17) is op-
timal in the sense that the upper bound is minimized.

Remark 6 Up to now, the Kalman-filter-based SE ap-
proaches for the online monitoring of the power system-
s have attracted ever-increasing research attention, see
e.g. [13, 29, 30, 41]. As for the online application in the
actual power systems, some initial progress has also been
reported in [41]. As such, we can find that the online SE
for the actual power systems is still at an exploring stage
and some efforts are needed to extended the proposed al-
gorithm to the practical large-scale microgrids.

3.2 Performance Analysis

To facilitate further analysis, the following definition is
first introduced.

Definition 1 [31] For real numbers µ > 0, ϕ > 0 and
0 < ν < 1, if

E{‖V (ξk)‖
2} ≤ µE{‖V (ξ0)‖

2}νk + ϕ

holds for all k > 0, then the stochastic process V (ξk) is
exponentially bounded in mean square sense.

For convenience of analysis, we set the weights aij = 1
for j ∈ Ni. The performance analysis of the proposed
algorithm is given in the following theorem.

Theorem 3 Assume that there exist positive real num-
bers ā, c, c̄, φ̄, w̄, w and v̄ such that the following inequal-
ities

‖Ā‖ ≤ ā, c ≤ ‖C̄k‖ ≤ c̄, tr{Φk} ≤ φ̄,

wI ≤ W̄k ≤ w̄I, Rk ≤ v̄I,

ρ = ā2
(

1 +
nc̄2

c2

)2

< 1 (19)

are satisfied, then the estimation error is exponentially
bounded in mean square sense.

Proof: Substituting (10) into (11) and noting that Θk =
I −KkC̄k, we can rewrite ek|k as

ek|k = ΘkĀek−1|k−1 + rk + sk

where

rk = Kk[C̄kx̄k − σ(C̄kx̄k)], sk = Θkw̄k −Kkv̄k.

Taking the non-sparse part of Gk into account, it follows
from (18) that

n∑

i=1

EiGkHi =

n∑

i=1

EiΛkΠ
−1
k Hi (20)

where

Λk = (1 + λ1,k + λ2,k)Mk|k−1C̄
T
k ,

Πk = (1 + λ1,k + λ2,k)C̄kMk|k−1C̄
T
k

+ (1 + λ−1
1,k + λ3,k)C̄kΦkC̄

T
k

+
[
r̄(1 + λ−1

2,k + λ−1
3,k)I +Rk

]
.

Recalling the definition Kk ,
∑n
i=1 EiGkHi and taking

the norm for the both sides of (20), we have

‖Kk‖ ≤ n‖ΛkΠ
−1
k ‖ ≤ n

c̄

c2
, k̄.

Similarly,

‖Θk‖ ≤ 1 + c̄k̄ , θ̄.

Next, it follows from Lemma 1 and (19) that

E{rTk rk}

=E
{
[C̄kx̄k − σ(C̄kx̄k)]

TKT
k Kk[C̄kx̄k − σ(C̄kx̄k)]

}

≤(1 + ς)tr
{
E{x̄kx̄

T
k }C̄

T
k K̄

T
k K̄kC̄k

}

+ (1 + ς−1)tr
{
E{σ(C̄kx̄k)σ

T (C̄kx̄k)}K
T
k Kk

}

≤(1 + ς)c̄2k̄2φ̄+ (1 + ς−1)k̄2mr̄ , γ̄

and

E{sTk sk} =E{w̄TkΘ
T
kΘkw̄k}+ E{v̄TkK

T
k Kkv̄k}

≤θ̄2nnxw̄ + k̄2mv̄ , s̄

with m =
∑n

i=1mi.

Subsequently, consider the following iterative matrix e-
quation with respect to Ψk−1:

Ψk = ΘkĀΨk−1Ā
TΘTk + W̄k−1 + εI (21)

with the initial value being Ψ0 = W̄0 + εI and ε > 0
being a scalar. Then

‖Ψk‖ ≤‖Θk‖
2‖Ā‖2‖Ψk−1‖+ ‖W̄k−1‖+ ‖εI‖

≤ρ‖Ψk−1‖+ w̄ + ε (22)
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where ρ is defined in (19). By applying the relation (22)
recursively, we have

‖Ψk‖ ≤ρk‖Ψ0‖+ (w̄ + ε)
k−1∑

i=1

ρi.

It follows from ρ < 1 that

‖Ψk‖ < ‖Ψ0‖+ (w̄ + ε)

∞∑

i=1

ρi = ‖Ψ0‖+
w̄ + ε

1− ρ
. (23)

Moreover, we can find that

Ψk ≥ εI. (24)

In view of (23) and (24), there exists a positive scalar ψ̄
such that εI ≤ Ψk ≤ ψ̄I for k ≥ 0.

Denote Vk(ek|k) , eT
k|kΨ

−1
k ek|k. For an arbitrary posi-

tive scalar σ, we have

E{Vk(ek|k)|ek−1|k−1} − (1 + σ)Vk−1(ek−1|k−1)

=E
{
[ΘkĀek−1|k−1 + rk + sk]

TΨ−1
k

× [ΘkĀek−1|k−1 + rk + sk]
}

− (1 + σ)eTk−1|k−1Ψ
−1
k−1ek−1|k−1

≤(1 + σ)E
{
eTk−1|k−1[Ā

TΘTkΨ
−1
k ΘkĀ−Ψ−1

k−1]ek−1|k−1

}

+ (1 + σ−1)E{rTk Ψ
−1
k rk}+ E{sTkΨ

−1
k sk}. (25)

Resorting to the matrix inversion lemma, we have

ĀTΘTkΨ
−1
k ΘkĀ−Ψ−1

k−1

=ĀTΘTk (ΘkĀΨk−1Ā
TΘTk + W̄k−1 + εI)−1ΘkĀ− Ψ−1

k−1

=− [I + ĀTΘTk (W̄k−1 + εI)−1ΘkĀΨk−1]
−1Ψ−1

k−1

≤−

(

1 +
ā2θ̄2ψ̄

w

)−1

Ψ−1
k−1. (26)

Substituting (26) into (25), we have

E{Vk(ek|k)|ek−1|k−1} − (1 + σ)Vk−1(ek−1|k−1)

≤− (1 + σ)

(

1 +
ā2θ̄2ψ̄

w

)−1

Vk−1(ek−1|k−1) + κ (27)

with κ = (1 + σ−1) γ̄
2

ε
+ s̄2

ε
. Then, it follows from (27)

that

E{Vk(ek|k)|ek−1|k−1} ≤ χVk−1(ek−1|k−1) + κ

where χ = (1+σ)
[

1−
(

1+ ā2 θ̄2ψ̄
w

)−1]

. It is obvious that

χ ∈ (0, 1) for some σ > 0. Accordingly, we have

E{‖ek|k‖
2} ≤

ψ̄

ε
E{‖e0|0‖

2}χk + κψ̄
k−1∑

i=1

χi

≤
ψ̄

ε
E{‖e0|0‖

2}χk + κψ̄

∞∑

i=1

χi

=
ψ̄

ε
E{‖e0|0‖

2}χk +
κψ̄

1− χ
.

Recalling Definition 1, we can conclude that the esti-
mation error is exponentially bounded in mean square
sense.

Remark 7 From Theorem 3, it can be concluded that
the exponential boundedness in the mean square sense for
the estimation error is guaranteed with a sufficient con-
dition. Moreover, the effects caused by the matrix Hi is
also reflected in Theorems 2 and 3, which means that the
topology information of the sensor network is considered
in the estimator design and performance analysis.

4 Simulation Results

In this section, the proposed SE algorithm is tested in a
case study of REM which contains two DG units. Con-
sider the sensor network with n = 4 sensor nodes, whose
topology is represented by a direct graph G = (V , E ,A)
with V = {1, 2, 3, 4} and

A =









1 0.8 0.1 0

0 1 0.2 0

0 0.4 1 0.2

0 0 0.1 1









.

The parameters of the microgrid with two DG units are
shown in Table 1 [33], and the frequency and the sam-
pling time of the microgrid are set as f0 = 60 Hz and
∆ = 1e-5 s, respectively. The measuring items of each
sensor node are listed in Table 2. The values of other pa-
rameters in the simulation are presented in Table 3, and
the saturation levels are all taken as 5. The mean square
error (MSE) is used to evaluate the estimation accuracy,

i.e., MSEk = 1
T

∑T
j=1(x̄

(j)
k −x̂

(j)
k|k)

T (x̄
(j)
k −x̂

(j)
k|k) , where T

is the number of independent experiments and T = 100.

Table 1
Parameters of Simulation Model

Term DG unit r DG unit s

VSC series filter Rtr = 1.3 mΩ Rts = 1.5 mΩ

VSC series filter Ltr = 92.6 µHLts = 92.6 µH

Shunt capacitance Cr = 62.86 µF Cs = 76 µF

Transmission line resistance Rrs = 1.3 mΩ Rsr = 1.3 mΩ

Transmission line inductanceLrs = 600 mHLsr = 600 mH

Transformer ratio Y/△ dr = 0.6/13.8 ds = 0.6/13.8

Table 2
The measuring items of each sensor node

y1,k = [V ab
1,r,k Iab1,tr,k Iab1,rs,k Iab1,sr,k V ab

1,s,k Iab1,ts,k]
T ∈ R

12

y2,k = [V abc
2,r,k Iac2,tr,k Iac2,rs,k Iac2,sr,k V abc

2,s,k Iac2,ts,k]
T ∈ R

14

y3,k = [V ac
3,r,k Ibc3,tr,k Ibc3,rs,k Ibc3,sr,k V abc

3,s,k Ibc3,ts,k]
T ∈ R

13

y4,k = [V ac
4,r,k Ibc4,tr,k Iac4,rs,k Iac4,sr,k V abc

4,s,k Iabc4,ts,k]
T ∈ R

14

4.1 Experiments Under Different Cases

Case 1 Experiments under Sensor Saturations

In this case, the saturated sensors are considered. Specif-
ically, the saturation levels of V br , I

a
tr, V

c
s and Icts are set

as 1.2, 1, 1.2 and 1.5, respectively, and the other satu-
ration levels are still chosen as 5. For the sake of sav-
ing space, the states V dr , I

d
tr , V

d
s and Idts (i.e., x1,k, x3,k,
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Table 3
Parameter Values
Parameter Value Parameter Value

Σ0|0 diag
12
{0.001} Wk diag

12
{0.1}

R1(k) diag
12
{0.25} R2(k) diag

14
{0.25}

R3(k) diag
13
{0.45} R4(k) diag

14
{0.35}

λ1,k 0.5 λ2,k 0.95

λ3,k 0.2 λ4,k 0.02

x9,k and x11,k) are taken for illustration, respectively.
The simulation results are plotted in Figs. 2-4, respec-
tively. Specifically, Fig. 2 shows the actual states and
their estimates. The curves of the measurements with
and without saturations are plotted Fig. 3. Fig. 4 shows
the curves of the MSE as well as the upper bound.

From Figs. 2-4, we can find that: 1) the degeneration of
the local estimates caused by the sensor saturations can
be compensated by using the neighboring sensing infor-
mation; 2) the proposed DSE scheme improves the over-
all reliability since some of the local estimates are de-
graded severely due to the presence of sensor saturations
while the other nodes can still track the trajectories of
the states accurately; and 3) the performance index is
satisfied since the MSE stays below the upper bound.
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Fig. 2. The estimation results under Case 1.

0 10 20 30 40 50 60 70

-1

0

1

2

Ideal

Saturated

0 10 20 30 40 50 60 70

-2

0

2 Ideal

Saturated

0 10 20 30 40 50 60 70
-3

-2

-1

0

Ideal

Saturated

0 10 20 30 40 50 60 70

Time (k)

0

2

4

Ideal

Saturated

Fig. 3. The measurements with and without saturations.

Case 2 Isolated Node Versus the Interacted Node

In this case, an isolated sensor node which only use its
own measurements is considered for the purpose of com-
parison with our proposed method. For the sake of sav-
ing space, the state x11,k estimated by node 1 is taken

0 10 20 30 40 50 60 70

Time (k)

0

5

10

15

Fig. 4. The MSE and its upper bound under Case 1.

for illustration. The corresponding results under the sat-
urated sensors are plotted in Fig. 5, where the estimates
of x11,k from the interacted node and the isolated node
are plotted in the first subfigure, and the second and
third subfigures depict, respectively, the absolute value
of estimation error of x11,k and the MSE of x11,k after
100 independent experiments. The curves of the mea-
surement Iats with and without saturation are plotted in
Fig. 6, where the saturation level is set to be 1.9 and the
other saturation levels are still chosen as 5.
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Fig. 5. The estimation results under Case 2.
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Fig. 6. The measurement with and without saturation.

From Fig. 5, we can find that: 1) when the sensor is
not saturated, the deviations of the local estimate can
be compensated by using the neighboring information;
and 2) the overall reliability of the DSE scheme is higher
than the one which uses the local measurements only.

4.2 Computational Efficiency

The proposed algorithm is tested in MATLAB R2018b.
All the test cases are performed on a PC with Intel Core
CPU i7-7700HQ, 2.80GHz and 16 GB RAM. The aver-
age computing time of our proposed algorithm for each
time step is 1.82 ms, which is much lower than the PMU
update rate (16.7 ms) reported in [41]. Therefore, the
proposed algorithm is suitable for online application.

5 Conclusion

In this paper, the DSE problems has been investigat-
ed for REM with sensor saturations. The explicit model
of microgrid with sensor saturations has been proposed.
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The distributed recursive estimator proposed in this pa-
per has guaranteed an upper bound of the estimation
error covariances, and the estimator gain matrices have
been designed by minimizing such an upper bound at
each time instant. Moreover, in order to ensure that the
estimation error is exponentially bounded in the mean
square sense, a sufficient condition has been conducted.
Finally, a simulation based on the model of REM has
been provided to verify the performance of the proposed
distributed scheme. The simulation results have demon-
strated that the developed SE scheme is effective.
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