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Abstract

In this paper, a general theoretical framework is established for the robust fusion filtering problem of discrete time-varying
stochastic multisensor systems under energy harvesting constraints. The energy harvesting technology is utilized to provide the
needed energy for persistently maintaining the operation of the multisensor systems. The energy level at the energy harvester
is characterized by a random variable obeying a certain probability distribution. For the communication between sensors and
filters, we consider a scenario where the measurements received by sensors are broadcasted via networks and then obtained
by filters according to a set of preassigned communication links. The aim of this paper is to design the fusion filter over
a multisensor system with locally minimized variance of the estimation error. Specifically, the local filter is firstly designed
such that, in the presence of energy harvesting constraints and parameter uncertainties, an upper bound on the filtering error
covariance is guaranteed and subsequently minimized by appropriately choosing the filter parameters at each time instant.
Then, all the local estimates obtained by local filters are fused by using the covariance intersection fusion strategy for fusion
estimation purposes. Finally, an illustrative simulation is carried out to demonstrate the usefulness of the proposed fusion

filtering scheme.
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1 Introduction

Along with the increasing popularity of the multisensor
systems, the multi-sensor data fusion technology has re-
ceived more and more attention due to its obvious ad-
vantages in improving the system reliability and robust-
ness, enhancing the data credibility as well as increas-
ing the information utilization efficiency [1,6, 18,22, 30,
34]. In fact, a large number of multi-sensor data fusion
schemes have been developed with successful applica-
tions in many military and civilian fields such as iner-
tial navigation, traffic control and marine surveillance
and management. As a key issue in multi-sensor data
fusion, the distributed fusion filtering/estimation prob-
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lem has attracted considerable research interest and, in
the past few years, a variety of distributed fusion fil-
tering/estimation algorithms have been proposed, see.
e.g [2,5,11,20,21,23,42-44]. For example, in [4,36], the
distributed Kalman fusion filtering schemes have been
put forward over the multisensor systems and, in [15], the
distributed particle fusion filtering approach has been
proposed via the optimal fusion of Gaussian mixtures.
In [41], an ellipsoidal fusion estimation method has been
provided to deal with the bounded noises and, in [3],
a distributed mixed Hs/H, fusion estimator has been
designed to handle the energy-bounded noises.

Parameter uncertainties are often encountered in prac-
tical engineering for various reasons such as modeling
errors and inaccurate measurements, which would have
a significant impact on the system performance. In the
past few decades, there has been an enormous research
effort directed towards the robust control/filtering prob-
lems with parameter uncertainties [10,16,19,29,38]. For
example, in [24], the robust control problem has been
investigated for systems with unknown norm-bounded
parameter uncertainties while, in [8,35,39,45], the ro-
bust filters have been analyzed/designed for uncertain
systems. In particular, in [39], an online robust filtering
algorithm has been proposed for uncertain discrete-time
stochastic systems by using matrix decomposition ap-
proach, where the derived estimator minimizes an upper
bound on the variance of the estimation error. Never-
theless, in the context of fusion filtering/estimation, the
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phenomena of parameter uncertainties have been largely
overlooked and the corresponding results on the multi-
sensor robust fusion filtering problems have been rela-
tively few.

Energy supply is an indispensable component when
monitoring and controlling a system simply because
the information transmission/processing do require
adequate energy consumption, and this is particular-
ly true for multisensor systems where the information
transmissions among the large number of sensor nodes
demand large amounts of energy. As such, it becomes
imperative to have effective energy replenishing schemes
for energy collection/storage so as to maintain the nor-
mal operation of the overall network. Energy harvesting
technology, which serves as an ideal solution for green
energy supply, has recently attracted much attention
from both academy and industry [7,9, 26, 28] especial-
ly the control community. For example, in [13,27], the
power control problems of harvesting sensor have been
investigated in the framework of remote state estima-
tion. In [14,25], several transmission schemes have been
designed for state estimation and control with an ener-
gy harvesting sensor. In [31], the finite-horizon filter has
been designed for nonlinear time-delayed systems with
an energy harvesting sensor.

Apparently, it makes practical sense to consider the dis-
tributed fusion filtering problem over multisensor sys-
tems subject to energy harvesting constraints (EHCs),
which looks to be particularly challenging due primarily
to the fundamental difficulties brought from the intro-
duction of the energy harvesting technology. For exam-
ple, we are unavoidably confronted with the following
issues: 1) how can we formulate the distributed fusion
filtering problem with multiple sensors equipped with
the energy harvesters? 2) how can we deal with the com-
plex information communications within the multisen-
sor systems with the EHCs? 3) how can we develop an
effective distributed fusion filtering approach such that
the desired fusion estimation error is achieved under the
EHCs? It is, therefore, the primary motivation in this
paper to provide satisfactory answers to the aforemen-
tioned three questions by designing a set of distributed
fusion filters over multisensor systems with EHCs.

In the light of the discussions made above, in this pa-
per, we are set to investigate the robust distributed fu-
sion filtering problem for a class of discrete time-varying
stochastic uncertain systems over multisensor system-
s with EHCs. The main contributions of this paper are
summarized as follows: 1) we make the first attempt to
introduce the energy harvesting technology in the dis-
tributed filtering problem, and examine the effects from
both EHCs and parameter uncertainties onto the multi-
sensor-based fusion filtering performance; 2) the level of
received energy at the energy harvester is characterized
by a random wvariable obeying a certain probability dis-
tribution, and the parameter uncertainties are described
by unknown but norm-bounded matrices; and 3) in the
presence of EHC's and parameter uncertainties, the local
filter is first designed to ensure the existence of an up-
per bound on the filtering error covariance that is subse-
quently minimized by choosing the filter parameters, and
then all the local estimates obtained by local filters are
fused by the covariance intersection (CI) fusion strategy.
Finally, an illustrative example is provided to verify the

effectiveness of the proposed fusion filtering scheme.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. R™ denotes the n dimen-
sional Euclidean space. The notation X > Y (respective-
ly, X > Y), where X and Y are real symmetric matrices,
means that X — Y is positive semi-definite (respective-
ly, positive definite). M7 represents the transpose of the
matrix M. tr(A) means the trace of the matrix A. I de-
notes the identity matrix of compatible dimension and I
means a square matrix of compatible dimension with all
elements being 1. diag{. ..} stands for a block-diagonal
matrix. E{z} stands for the expectation of the stochas-
tic variable z. Prob{-} means the occurrence probabil-
ity of the event “.”. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

2 Problem Formulation

Sensor energy
[ I Sensor
Energy harvester

m m @ Filter
@ - (High) (Low)

Fig. 1. Distributed fusion filtering structure.

A schematic diagram of the addressed distributed fu-
sion filtering problem is given in Fig. 1, where the M
sensors are responsible for sensing the measurements
from the plant and broadcasting the measurements in
the network. M filters, based on the received measure-
ments, produce estimates separately for the plant state.
Then, all the estimates produced by filters are fused in
the fusion center. For the communications between sen-
sors and filters, we consider the case where the mea-
surement broadcasted by a sensor is received by filter-
s according to a set of given communication links. The
given communication links are represented by a scalar
a;; € {0,1}, where a;; = 1 indicates that there is a com-
munication channel f)etween sensor ¢ and filter j, and
a;; = 0 otherwise. Thus, the set of sensors from which
filter i receives the measurements can be denoted by

M E{je{1,2,-- M} :aj; =1}.
The plant in Fig. 1 is described by the following class of
discrete time-varying stochastic systems:

Tht1 = (Ak + AAk)fEk + Erwy (1)

where x, € R"” is the system state, w, € R?is the process
noise, Ay and E}, are known time-varying matrices with
appropriate dimensions, and A A is an unknown matrix
representing the parameter uncertainty. The initial value
T¢ is a random variable with mean Zy and covariance Xg.

The parameter uncertainty matrix A Ay satisfies the fol-
lowing condition:

AAk = HkOka (2)



where Oy, satisfies OkOg < I and Hj, and N, are known
time-varying matrices with appropriate dimensions.

For each sensor ¢ (i = 1,2,---, M), the measurement
models is expressed by

Yi.k =Ci xTk + Vik (3)

where y; ;, € RP is the measurement sensed by sensor
i, v; ), € RP is the measurement noise, C; i, is a known
time-varying matrix with appropriate dimensions.

The noises wy, and v; are represented by zero-mean
white noises with covariances W and V;, respectively.
In this paper, the stochastic variables wy, v (i =
1,2,---, M), and z( are assumed to be mutually inde-
pendent.

The measurement after being broadcasted by sensor ¢,
denoted as y; , is expressed by

Yik = Yi,kYi k (4)

where v; 1, is defined by

1, zix >0
A ) i )
ik 2 ) 5
ok {07 Zik _07 ( )

and z; i, is the energy level of sensor ¢ at time instant k.

It is seen from (4) and (5) that the current energy status
of sensor ¢ determines whether or not the measuremen-
t sensed by sensor i is successfully broadcasted. In this
paper, we consider the situation that each sensor broad-
casts a measurement with 1 unit energy consumption if
the energy level that the sensor stores is nonzero. More-
over, at each time instant, an extra energy is harvested
from the environments and then stored in the sensor.

Let the set of energy levels of sensor ¢ be denoted by
{0,1,2---,5;} where S; is the maximum number of en-
ergy units that sensor ¢ can store. Then, the evolution of
the amount of energy in the sensor ¢ can be described by

Zik+1 = min{z g + hi g — Vi, Si} (6)
with the initial condition z; o = 2; < S;. Here, h; j, is the
amount of energy harvested by sensor ¢ at time instant

k, which is an independently identically distributed ran-
dom process with the following probability distribution

Prob(h;r =m) =pm, m=0,1,2,---, (7)

where p,, satisfies 0 < p,, < 1 and E+ —oPm = 1. Al-
so, hiy (i=1,2,---, M) and other stochastic variables
mentioned previously are mutually independent.
Remark 1 It is seen from (5) and (6) that the random
variable 7, i, is correlated with ~v;; (1 < k), which makes
the measurement model (4) distinguish from the tradi-
tional missing measurement model.

Remark 2 In the practical application, the probability
distribution pp, can be obtained through the statistical
methods on the sufficient energy data collected from the
energy sources. In order to cater to more practical appli-
cations, the probability distribution (7) could be gener-
alized to Prob(h;, = m) = p;m and the corresponding

a) for each filter ¢ (¢ = 1,2, - -,

fusion filtering method can be easily obtained by simply
replacing Py, With p; m .
For filter i, we adopt the following structure:

Tig1 = FipTin + Z G Yjk
JEM; (8)
Ti0 =0

where Z; , € R" is the state estimate from filter i, F; j

and sz (j € M,) arefilter parameters to be determined.
From the definition of the set M, it can be seen that
the effect of scalar a;; is embodied in the set M.

Denote by m; the element number of the set M; and
reorder the elements in M; as {j1,52, -+, jm,; }- Then,
the information related to filter i can be organized as
follows:

. T T
i . I
Vg = {v j1,k Jz; v]mi,k} )
Gi = [Gm GY? ... G,jml},
T
Ci = C es
k Jl k JMI;]‘? ’

Aj = dag{%l,klmp,kf Vi kLY

and the filter ¢ can be further expressed by
Ei k1 =Fipdig + GLALClay + GiALvl. (9)

Remark 3 Note that the estimates derived from differ-
ent filters according to (9) may contain the measure-
ments from identical sensors. Due to the complicated net-
worked communications and the randomness from the
energy harvested, it is usually difficult to obtain the cross-
covariance matrix of the estimation error for different
estimates. In this case, we adopt the CI fusion strategy
proposed, in [12].

Suppose that the estimation error covariance of the esti-
mate &; x is bounded by a positive definite matrix P; j.
Then, the CI fusion criterion can be given by the follow-
ing convex combination

M
2 =PEY vkl dn (10)

=1

where
—1

M
P2 (Z Vi,kPij;) (11)
i=1

and v; (1 =1,2,---, M) are weighting coefficients sat-
isfying 0 < v; , < 1 and E?il vk = 1.

We are now in a position to state the robust distributed
filtering fusion problem as follows:

M) of the structure (8),

find an upper bound P, for the estimation error co-
variance of the estimate Z; , and then look for filter

parameters F; ;, and sz (j € M;) such that the ob-
tained upper bound P; j is minimized; and



b) fuse all the obtained estimates according to the CI fu-
sion criterion (10) with (11). That is, based on the de-
rived estimates Z; , (¢ = 1,2,---, M) and the locally
minimized upper bound of its estimation error covari-
ance P; i, (1 =1,2,---, M), determine the parameters
vir (1=1,2,---, M) such that the trace of the fused

covariance matrix P} is minimized.
3 Main Results

3.1 The Computation of the Probability Distribution of
Random Variable v; 1,

It is known from (5) that the probability distribution
of random variable «; ;. is closely related to that of the
energy level z; ;.. Hence, let’s start with the computation
of the probability distribution of the energy level z; ;.

Denote the probability distribution of the ener-

T
gy level z;; by Pik [p?,k pzl,k pf%} where
P 2 Prob(zi = m) for each m = 0,1, ,5,. It s

seen from (6) that the energy level z; ;, is independent
of h; 1, and hence, for each m = 0,1,---,5; — 1, one has

Pigy1 =Prob(z; pp1 = m)
:Prob(min{ziﬁk + hi,k — Yik» SZ} = m)
=Prob(z; k + hix — Yik =m)
=Prob(z;x =0, h;x =m)
m—+1
+ ) Prob(zix = lLhix=m+1-1)
I=1
=Prob(z; x = 0)Prob(h; x = m)
m—+1
+ ) Prob(zi = [)Prob(h;x =m +1—1)
=1
m+1

:p?,kpm + Z pé,kpm-l—l—l' (12)
=1

Then, the probability pis k41 can be expressed by

S;—1
Si _ m
Digyr = 1 — E : Di k41
m=1

Si—1 Si—1m+1 (13)
=1 —P?,k Z DPm — Z Z pé,kpmﬂ—l-
m=1 m=1 [=1

By combining (12) and (13), a recursion for the proba-
bility distribution p; j is obtained as follows

Pi g1 =L + Mip; . (14)

Do Do 0 0
D1 D1 Po e 0
D2 D2 p1 0
Ps;—1 Ps;—1 Ps;—2 o Po
S;i—1 S;i—1 S;i—2
L™ Zm:() Pm — Zmzo Pm — Zmzo Pm - —Po]

According to the recursion (14), a computation method
for the probability distribution of +; ;. is provided in the
following lemma.

Lemma 1 The random variable ~y; i defined by (5) obeys
the following probability distribution

Prob(vix =1) =ik, Prob(vir=0)=1—71 (15)

where

Vi k £1-— A4iP; gy A £ [1 0--- 0]7

and p; . is recursively obtained by (14).
Proof: From (5), one immediately has

Prob(v;x = 0) = Prob(z;x = 0) = a;p;
Prob(vy;r = 1) =1 —Prob(z;x, =0) = 1 — a;p, .-

Then, the proof of this lemma follows readily. O
3.2 The Design of Filters

T
Setting ;. = [3:{ :i:lTk] , we have from (1) and (9) that

Finrr =(Aig + HLORNR)Zi o + W5 g + C’Zkii,k (17)

T
with the initial value Z; = [xOT O} , where

) Ar 0 [
A2 | 0 . B 2 |TF
GiALCE Fyy, 0
) E
N, & [Nk 0} g R | YR
Gi ALy (18)
0 0

YA
Cz‘,k =

)

G(Af = AL)CL 0
72 £ diag{ﬁjl,kla ’_Yj2,kjv T 7:iji1kj}'

In order to derive the evolution of the covariance matrix
Xik £ E{izkiﬂ?k}, the following terms are calculated:

Wik & E{d; 107 }

— diag { W EL, GL(N, 0 VI)GIT ],
Ry (Xix) 2 B{C], 2131, CTL} (19)
0 0
0 Gi(A} © (CLZoX; k23 CIT))GiF




where

Z2é{1 0}7 Viédiag{‘/jlvvjm"'vvjmi}a
Aj, = diag{7;, x(1 — :le,k)j_v )
Yok (L= Vo) L+ s Vg, (L= T, ) L}

Then, the difference equation that the covariance matrix
X i satisfies is given by

Xi ki1
:(Ai,k + ﬁkOka)Xl7k(Ai7k + ﬁkOka)T + Wk
+ R;;(Xi,k) + E{(Ai)k + ﬁkOka)jz,kajkézz}
+ E{(A@k + ﬁkOka)ji,ki'g:kézg}T (20)

with initial value X; o = diag{ X, 0}.
By using the elementary inequality ab” +ba” < eaa™ +
e~ 1bb” where a and b are vectors of compatible dimen-

sions and ¢ is a positive scalar, it is immediately obtained
that

Xip < Fr(Xig) (21)
where
Fi(Xix)
21+ ein)(Aig + HLOpNK) X,k (Ai gk + HyOpNy) T
+(1+ &) Ri(Xik) + Wi (22)

The monotonicity of the matrix function % (-) defined
by (22) is discussed in the following lemma.

Lemma 2 For any positive definite matrices X and'Y
as well as the matriz function % () defined by (22), one

Proof: According to (19), we have

Ry(Xik)
0 0
[0 GLE{(A, - A Clanaf CF (A, — A} G
Note that
1EKA2—£%M%xm€C?XAi—AU}
—E{E{(A} - A)Charl O (A} - A1)
=K {(A?c - Mc)oliE {IkxﬂAk} Ok AL — Ai)}

=B { (A} - A))CL 2 XinZE G (A, - A}

It is now easily seen that % (X) defined by (22) satisfies
Fr(X) < F(Y) if X <Y. The proof is complete. 0
In the following theorem, an upper bound is provided
for the covariance matrix X; j, given by (20).

Theorem 1 For a given positive scalar €, let the matriz

X 1. be a solution to the following Riccati-like difference
equation

Xi k41
=(14eip)Aip(Xig + Xi,kNgNkXi,k)AZk
+ (1 +er)(1+ )\max(NkXi,kaT))gkng + Wi
+ (14 )R (Xik) (23)

with the initial value XZ 0= XZ o. Then, the.matrix Xk
is an upper bound on the covariance matriz Xk given by

(20), i.e.,

Xi,k < Xix
forallk > 0.
Proof: We prove this theorem by induction. Obviously,
)_(l 0= XZ o is guaranteed by the initial condition. As-
sume that Xl < Xl & holds and we need to show the
inequality X; p41 < X pt1-

By using Lemma 2, we obtain from (21) that

Xin < F(Xin) < Fu(Xig). (24)

On the other hand, noting that

(/L,k + gkOka)X’L,k(A'L r + HyOp Np)T
=A; 1 X; kAL, + H,O, N X,  NFOTHE

+ A1 Xi k NFOLHE + HyOp N X, 1 AT,
=Ai o (Xip + X NL O Ok Ni X 1) AT,

+ H,Ox N X o NFOTHT + H HE

+ A1 Xi ,NEOLHT + HyOp N X, 1 AT,

— A 1 X kN OF Ou Nk X, 1 AT, — HoHYY
<Aip(Xik + Xi k NLOL O NL X 1) AT,

+ Ade(Nle WNOYHLO0,OF HEY + H HE
<A 1(Xi + Xi ke NI NG X ) AL,

+ (1+ Amax (N X, . NE ))HkH;g ,

we have

Fe(Xik) < Xikt1 (25)
where X; ;41 is defined by (23).
It follows directly from (24) and (25) that X; k41 <
X k+1, which completes the proof of this theorem. [
In Theorem 1, an upper bound is obtained for the co-
variance matrix Xj; ;. Noting the relation xy — £; 1 =
Z12;, where Z7 = [I —I}, we know easily that Pm £
Zl)_(i,ka is an upper bound on the estimation error co-
variance matrix of the estimate Z; . In what follows, the
filter parameters F; , and Gl& shall be designed such that
the obtained upper bound P, ;.1 is minimized.

o[ XL X3

i,k

Denote



and select the filter parameters F; ;, and G}C as follows:
Fyp =(Ay, — GLALCEH) (I + P NN,
X (I+(Xi), = Pio)N{Ng) ™Y, (26)
=(1+ &) AxSinCm A Y0

where
Sik ZPpNE (I 4 Ni(X}
+ pi k
Yik 2(1+60)ALCLS; kCITAT + AL O V!
+(1+ Q,;J( L O (Cy i,kck ))-

— Py )N NPy

(27)

Lemma 3 Under the selection of the parameters F;
and G, as the form of (26), one has Xii = sz and
Py =X} — X2,

Proof: See Appendix 6. (|
By using Lemma 3, we have from (23) that

Xz Jk+1
=(1 + i 0) Ar( X}y + XL NE N X )AL + ExWE]
+ (14 €ik) (14 Amax(Ne X N ) Ho HY, (28)

with initial value X} o = Xo, and
P ki1
=(1+4e¢ix) [Ak - G%AZC,@ _Fi,k}

— — ~ ~ — PR . T
% (Xip + Xk NT N X p) [Ak —GiRLCI —Fy
+(L+e)GL(AL 0 (G X L) G
+GL(AL o VG + Ey,WEF
+ (14 eip) (1 + Amax(Ne X N Hi HYE (29)

with initial value Pz',o = Xo.

In the following theorem, it is shown that the parameters
F; 1, and G}, defined in (26) minimize the upper bound
Pt

Theorem 2 The upper bound on the estimation error
covariance matriz P; 11 given by (29) is minimized by
the parameters F; i, and Gi. defined in (26), and the min-

1mized upper bound satisfies
P, g1
2(1 =+ Ei,k)AkSi,kAz + EkWEg
— (14 i 0)* AeSi ki AT Y i ALCLSi R A
+ (14 eip) (14 Amax(Ne X N HeHE - (30)

with initial value PLO = Xo, where S;, and Y, are
defined in (27).

Proof: Note that, in (29), only the first term is dependent
on parameter F j.. By setting U4 £ A, —GLALCE —F)

and using Lemma 3, the first term can be written as
follows

[Ak Gl Al Ck —F; k} (Xi,k + Xi,kNgNkXi,k)
« [Ak _GiALC] —Fi,k}
=((Ak = GLALCDZ1 + [0 W] ) (X + X NT X )
< (4 - Gidepz + [0 wy) )
=(A, — GLALCD Z1 (X + Xi o NI NL X 1)
x ZT (A — GiALCIT
. — > "’T < g ; T
+ [0 W] (R + X NT N Xo) [0 wi ]
+ [0 Wi] (Kik + Xk NI R Xi ) 27 (Ak - GRALCH)T
T
+ (Ay — GUALODZ1 (Ko + Xoa N X [0 wi ]
(Ak - GZ Al Ck)( ik + PZ kNgNkPl k)(Ak - GZ Al Ck)T
+ LXK 4+ XN NG X))
+ UL X7 N Nk P (A — GLALCH)T
+ (A, — GLALC) Py NT N X2, 0T
—(Ay — GLALCY)(Pig + P NT NP, ) (A, — GLALCH)T
(W = W) (X2 + X2 NI NG X)) — 0,07
— (A — G, A’ WO Pk NE (I — (I + N X7, NOTY
x NP (A, — GpALCL)T

where
0. L= — (A — GZ Al Ck) 0 ka Ni(I+ Xz ka Nk)

Therefore, the upper bound matrix P, ;1 defined by
(29) is minimized by the parameter F; j defined in (26)

and the minimal ]5“6“ with respect to parameter F; j
is given as follows:

Pz k+1

=(1+ &5 k) (Ar — GLALCL) (Po + PNy N Pig) (A

— GLALCT — (1 + eip) (Ap — GLALCL) P N},

x (I —(I+ N X2 N NGB e (Ak — GLALCH)T

+ (14, )G (M o (CGL.XLON) G

+GL(AL o VHGT + EyWEF

+ (1+in) (1 + Amax(Ne X} N He HYE
=1+ ;1) (Ax — GEALCH)S, 1 (A — GLALCH)T

+ (14, )G (M © (CLXLC) G

+GL(AL o VHGT + E,ZWEF

+ (14 £ip) (14 Amax(No X N He HYY
=(1+&;1)GiALCLS k NiTGIT + (1 4 €4) A S 1 AT

— (1 + €i0)ARS; 1, CiT AT GiIT
— (1 + & x)GLALCLS; 1 AT



+(L+e; )G (AL © (CLX LG G
+GL(AL o VHGT + E,WEF
(1 +ei k)(l + Amax(NkX;kN{))HkH,{
=(Gy ) i k(Gk o, k)T
—(1+e k)zAkSZ RCL AT Y ALCLS kAT
+ (1 +€ik)ArS;, R AL+ EJCWE,C
+ (L+ i) (14 Amax(Ne X} N ) Hie Hy,

where

bk 2 (L4 er) ARSi kG AT

It is now seen that the upper bound matrix P; k41 18
further minimized by the parameter Gj, given in (26),

and the minimized P; x1; is given by (30). Therefore,
the proof of this theorem is complete. O

3.8 The Fusion Scheme of State Estimates

For the obtained estimates &; (i = 1,2,--- , M) and the
locally minimized upper bounds P,y (i = 1,2,---, M),
we use the CI fusion criterion (10) with (11) to achieve
the fusion estimation purpose, where the weighted pa-
rameters v; (i = 1,2,--- /M) are obtained by solving
the following optimization problem:

mingy, o war st E(EF)
Zi]\il Vi =1, (31)
0<y;,<1, i=1,2,---, M.

subject to

Remark 4 Note that the above optimization problem is
nonlinear and, as pointed out in [40], it is difficult to de-
rive the analytical solutions of the weighted parameters
by directly solving the above nonlinear optimization prob-
lem. Fortunately, the corresponding numerical solution-
s can be obtained by utilizing the function “fmincon” in
Matlab optimization toolbox. Also, the consistency of the
CI fusion scheme can be demonstrated by following the
similar lines in [37].

Until now, the robust distributed fusion filtering prob-
lem has been solved, and the design algorithm of the

se’lr(}lnafl‘1 ; Hﬁi %%156 %%lepg’l% ntke csizslz/pngu% de }iugzsoﬁ temng
problem s dealt with over multisensor systems subject
to EHCs. The distributed fusion filtering problem is first
formulated with multiple sensors equipped with the ener-
gy harvesters. Then, the complez information communi-
cations are modelled within the multisensor systems with
the EHCs. Afterwards, an effective distributed fusion fil-
tering approach is developed to achieve the desired fusion
estimation error under the EHCs. Note that, in the fu-
sion filtering problem under consideration, in order to
maintain the normal operation of the overall sensor net-
work, an effective energy replenishing schemes, i.e., en-
ergy harvesting technology has been employed for energy
collection/storage, which is different from the traditional
ones in the existing literature [3, 4, 40, 44].

Remark 6 In comparison to the vast existing literature
on the fusion estimation problems for multisensor sys-
tems, the main results developed in this paper exhibit the

Algorithm 1. Robust Distributed Fusion Filtering Algo-
rithm

Step 1. Set initial conditions X}, = Xo, Pio = Xo,

Pio = [0+ 0 1 - 0T, Z0 = 0 for al-
’ Hf_/ R/—’
li={1,2,- M}andkzO

Step 2. Compute the probability 7;, by (16), gain ma-
trices Fyx and G% by (26) with (27) for all i =
{1,2,---, M}, and derive the estimates &; p+1 ac-
cording to (8) for all ¢ = {1,2,--- ,M};

Step 3. Obtain the weighted parameters v;, (i =
1,2,---, M) by solving the optimization problem
(31) and derive the fused estimate #% according to
(10) with (11);

Step 4. Obtain the probability distribution p; ;. , the upper
bound matrices X/ ,; and P; y41 according to (14),
(28) and (30), respectively, and set k = k + 1;

Step 5. If k < N, then go to Step 2., else go to Step 6.

Step 6. Output the fused estimate 27 ;
Step 7. Stop.

following three distinctive merits: 1) the energy harvest-
ing mechanism is introduced into the framework of fu-
sion filtering; 2) the parameter uncertainties are taken
into account in the multi-sensor robust fusion filtering
problems; and 8) a robust fusion filtering scheme is pro-
posed in the simultaneous presence of EHCs and param-
eter uncertainties. In next section, the effectiveness of
the proposed robust fusion filtering scheme will be verified
through a numerical simulation example.

4  An Illustrative Example

Consider a multisensor system with three sensor nodes.
Let a11 = a2 = azz = a1 = 1, a13 = a12 = a3 =
az1 = agz = 0 and the system parameters be given as
follows:

4 [0.75 ~0.66sin(k) [ 02 0
"Tlos 068 | |—0.1cos(k) —0.2
Or [0.1sin(k) 0 v, |02 04 sin(2k) |

0 0.1 cos(k) 0 0.1

B =[-02 0.1} ,Crj = [0.6 0} :
Caox=[02],Cop = [1035].

The covariances of noises are given as Wy, = 0.05, V} j, =
0.82, Vo, = 0.2 and V3, = 0.3. The statistical prop-
erties of initial value are o = [0.3 0.2]7 and X, =
diag{0.3,0.4}.

Let the maximum number of energy units and the initial
energy stored in sensors be S; = 3 and z;jo =1 (i =
1,2, 3), respectively. Moreover, it is assumed that py =
0.4, p1 = 0.2, po = 0.1 and p3 = 0.1. Other parameters
are chosen as €1 = 0.1 + (0.2 cos(k))?, g2 = 0.05 +
(0.1sin(k))? and €3, = 0.1 + (0.2sin(2k))%.

With the above parameters, the desired filter gains Fj j
and Gi, can be obtained by (26) and the minimized upper



bound P;  can be recursively derived according to (30).
Based on P;; and the Cl-fusion method, P} can be
derived from (11). Then, by solving the optimization
problem (31), the parameters v; i, (i = 1,2, 3,4) at each
time instant are obtained (see Table 1).

Table 1

The values of v; , on each sampling instant
k 0 1 2 3
V1 0.3333 0.3767 0.4917 0.4794
Vo 0.3333 0.0001 0.0002 0.2545
Vs 0.3334 0.6232 0.5018 0.2661

In order to exhibit the fusion filtering performance, two
experimental results are presented in Figs. 2-5. Fig. 2
shows the evolutions of the amounts of energy stored in
each sensor on the first experiment and Fig. 3 plots the
trajectory of real state xj and its estimates in local filters
and fusion center on this experiment. The corresponding
results for the second experiment are shown in Figs. 4
and 5.

To compare the fusion filtering performance, we de-
fine the mean square errors (MSEs) as MSE; =

K@l —gd ad —zd T .
ZFI( k }f)( Sy where, for ¢ € {1,2,3}, z; and
55?,1@ are, respectively, the actual state and its estimates
in local filters and fused estimate at the jth iteration of
Algorithm 1.

Algorithm 1 has been implemented 100 times and the
upper bound Py and the MSEs are depicted in Figs. 6 and
7. Fig. 6 exhibits the first component in main diagonal
of MSE; and P;; (i = 1,2,3), and the corresponding
results for the second component are shown in Fig. 7. It
can be seen from Figs. 6 and 7 that the MSE; (i = 1,2, 3)
stay below their upper bounds, which is consistent with

the main results. Fig. 8 plots the traces of Pi,k and P]f
from which it is seen that the trace of P]f is less than that

of P; i.. Therefore, the designed fusion filtering approach
performs very well.

Remark 7 It is worth mentioning that the estimation
accuracy is closely related to the given parameters €;
(it = 1,2,3). The optimal selection of these parameter-
s could be obtained with the help of the intelligent opti-
mization algorithms.

5 Conclusions

In this paper, the robust distributed fusion filtering
problem has been studied for a class of discrete time-
varying stochastic uncertain systems over multisensor
systems with EHCs. The energy level received by the
energy harvester has been characterized by a random
variable obeying a certain probability distribution and
the parameter uncertainties have been assumed to be
unknown yet norm-bounded matrices. The local filter
has firstly been designed such that, for all possible pa-
rameter uncertainties and EHCs, an upper bound on
the filtering error covariance is guaranteed and mini-
mized by selecting the filter parameters. Then, all the
local estimates obtained by local filters have been fused

©
i>-‘ 5 F % sensorl
s ok Hkkkk Fk o derkok doliokk ok Fk ok ek K ok dokk
=2 * * * LR I S N 3
2 % * ok * ¥
L 0 Skl : : L * Hok L
0 10 20 30 40 50
Time (k)
H [0 semeorz]
] 5r sensor 2
>
=
o
S o ‘ ‘ : ‘ ‘
0 10 20 30 40 50
Time (k)
©
i>) 5F + sensor 3
3 B T - = T O o o o O B B e
S +H o+ + o+ + + + + + + +
2 4 o+ 4 + + ++
W 0 A+ : : : : et
0 10 20 30 40 50
Time (k)

Fig. 2. Energy amounts in sensors on experiment 1.

x} and its estimates

0 10 20 30 40 50
Time (k)

1 its estimates

T Z and

2

Time (k)

Fig. 3. State ) and its estimates on experiment 1.

by CI fusion strategy. Finally, a numerically simula-
tion example has been presented to demonstrate the
effectiveness of the proposed fusion filtering scheme. It
should be pointed out that, in this paper, the proba-
bility distribution of the amount of energy harvested is
simply assumed to be exactly known. In the practical
application, the probability distribution may contain
uncertainties due to the unreliable measurement. Fur-
ther research topics include the extension of the main
results to 1) the set-membership filtering over multisen-
sor systems subject to EHCs with uncertain probability
distributions [17,46]; 2) the moving horizon estimation
problem over multisensor systems with EHCs [47, 48];
and 3) the state-saturated recursive filtering problem of
networked systems subject to EHCs [32, 33].

6 Proof of Lemma 3

In order to prove Lemma 3, we employ the mathematical
induction approach.

First, by setting the initial values as Xio = diag{):(o, 0}
and P; o = Xo, it is easily obtained that P = X/, —
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X7?oand X}§ = X?2. Then, assuming that P; , = X}, —
Xi%k and X}? = )_(ﬁk hold at the sampling instant &, we

are now in a position to show that P11 = X}, | —

Xi%k+l and X’i{%ﬂ = _ﬁkﬂ are true at the sampling
instant k + 1.

It is obtained from (23) that

X =0+ Ei,k)Ain,k,lekETk

+ (14 i) AkOi i1 X CL AT GIT
X1 =0+ 1) CLALCLO1 i XL O BTG
+(1+ Ei,k)ﬂ,k@i,k,ngkFﬂc
+ (1 +€ik)GLALCLO; k1 X2 F,
+(1+ Ei,k)ﬂ,kXiz,kez:k,lOlicTA?CTG?CT
(4 0 (] 6 (CLRL G )G
+Gi(AL o VHGT

(32)
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where

Oik1 =1+ X} NNk, Oipo=1+X2 NN (33)

Note the fact that ©; 51 = (I + Pi,kN,;‘FNkGi_’,i’Q)@i)kyg,
it is easily known from (26) that

Fir = (Ax — G ALCL)Oi k10, 4 o (34)

On the other hand, we have

Qi1 (X} — X710;,,,0011)
=ikt (X7 — 074, X707 1 1)
:@th@;é,z(@;ézxi{k - XZk@Z:k,l)
=i k10, 42 Pik = Sik- (35)
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Then, it follows from (32), (34) and (35) that

Xior =1+ €ik) ArOi k107,07, 1 AL

+ (1 +ein) AeSikCLT AT GIT,
X1 =1+ €ik) ArOi k107,07, 1 AL
+ (1 + i) G CuSin O A G
+(1+e, )G (AL © (CLX 1O GIT
T GL(RL © VG

(36)

Furthermore, from (26), (27) and (36), it is obtained that

2
Xikt1

T AT AT
=1+ i k) AkOik,10; ;205 1 14

e ((1 t e ) ALCIS, R CITAIT &+ AL & 7

Do (GG )G
=(1+€ik)AkOi k10 1,07} | AL
+ (L4 ein)ApSikCir AT G (37)

By (36) and (37), it is readily obtained that X%,Hl =

(2
712
Xi,k+1-

Utilizing (26), (28) and (36), we further obtain that

Xil,kﬂ - Xﬁkﬂ

=(1+eip)Au(X}y + X NENGX )AL
+ (L4 €in) (1 + Amax(Ne X} N He HY,
— (14 £ik)ArOi k10, 107 1 1 AL — GLYikGY1
+ ExWE}

=(1+ &) AxOi k1 (X} — 0,00 )AL
+ (L4 eik) (1 + Amax(Ne X} N ) Hi HY

10

- (1 + Ei)k)zAkSi)kC]iTAZTT;]iAZC;iSi,kAz

+ ExWEF. (38)

Then, the conclusion of P11 = X}, — X2, is

drawn from (30), (35) and (38), and the proof of Lem-
ma 3 is complete.
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