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Abstract: Molecular distribution, structural conformation and catalytic activity at the interface
between enzyme and its immobilising support are vital in the enzymatic reactions for producing
bioproducts. In this study, a nanobiocatalyst assembly, β-galactosidase immobilized on chemically
modified electrospun polystyrene nanofibers (PSNF), was synthesized for converting lactose
into galacto-oligosaccharides (GOS). Characterization results using scanning electron microscopy
(SEM) and fluorescence analysis of fluorescein isothiocyanat (FITC) labelled β-galactosidase
revealed homogenous enzyme immobilization, thin layer structural conformation and biochemical
functionalities of the nanobiocatalyst assembly. The β-galactosidase/PSNF assembly displayed
enhanced enzyme catalytic performance at a residence time of around 1 min in a disc-stacked column
reactor. A GOS yield of 41% and a lactose conversion of 88% was achieved at the initial lactose
concentration of 300 g/L at this residence time. This system provided a controllable contact time of
products and substrates on the nanofiber surface and could be used for products which are sensitive
to the duration of nanobiocatalysis.

Keywords: β-galactosidase; polymer nanofibers; nanobiocatalyst; interfacial characterization;
interfacial reaction; conformational change

1. Introduction

Nanobiocatalysts synthesized by immobilizing enzyme onto nanocarriers can enhance enzyme
stability and activity, and importantly enzyme recycling and reuse ability for industrial bioprocess [1–3].
However, enzymes may encounter structural change upon immobilization due to protein conformation
change at the interface, resulting in a reduction of their biocatalytic activity. There are many factors
involved in enzyme conformational changes including the features of enzyme molecules and the
support material (size and topography), systematic conditions (e.g., pH and temperature) as well as
interaction forces (e.g., polar or hydrophobic/hydrophilic) [4–6]. The functionality and stability of
the immobilized enzymes in a bioreactor system remain a major challenge in large scale operation.
In addition, the strategies for recovering biocatalysts are also still poorly developed. Hence, a
continuous study is highly pursued to develop enzyme supports with robust and separable features
while effectively preserving enzyme activity.
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The breakthroughs in nanotechnology and biotechnology have led to immobilization of enzymes on
nanostructured materials as a promising approach in enhancing enzyme performances. Nanomaterial
carriers allow the creation of a nanoenvironment that favours desirable biochemical kinetics and
selectivity of enzyme molecules for maximal reaction efficiencies. We have reported that incorporation
of β-galactosidase on functionalized polystyrene nanofiber can provide a nanoenvironment that
favours the enzymatic bioreaction to maximize galacto-oligosaccharide production [7]. Functionalized
nanocarriers enable assembling enzyme in an ordered structure besides providing a high enzyme
payload attributed by its large surface area [8]. To date, enzymes have been introduced onto
various functional nanomaterials including nanofiber scaffolds [9], nanotubes [10], nanoparticles [11],
nanocomposites [12] and nanosheets [13] and nanofibers [14].

Recent studies reported that enzymes could be immobilized on various nanofibers made from
cellulose polymers [15], polystyrene [7], poly(ε-caprolactone) [16], polyaniline [17], chitosan [18],
polyethylene oxide [19], polylactic acid [20], and polyacrylonitrile [21]. Nanofiber is fabricated using
an electrospinning device, and the size of fibrous mats ranges from nanometers to a few micrometres.
Its outstanding characteristics, including high porosity and interconnectivity that reduce mass transfer
resistance and a high ratio of surface area to mass that provides a much greater loading capacity,
make nanofiber as a promising enzyme carrier. Furthermore, nanofiber provides great opportunities
to be applied in a bioreactor system due to its recyclability and specific surface properties with
self-assembling behaviour.

We have explored β-galactosidase on a chemically modified polystyrene nanofiber (PSNF)
as nanobiocatalyst (β-galactosidase/PSNF) to catalyze bioconversion of lactose in dairy industry
wastes into valuable and marketable products, galacto-oligosaccharides (GOSs) [22,23] as GOSs are
a high value-added functional food ingredient, offering a range of important health functions in
living systems including prebiotic benefits and low-calorie sugar alternatives [24]. The catalytic
process by the nanobiocatalyst in the static system [22] resulted in 28 wt% GOS and a conversion of
lactose of 40%, while in a spiral reactor [23], both GOS yield and lactose conversion using the same
nanobiocatalyst has been significantly improved. One key factor was found to be the residence time of
feed stream on the nanofiber surface: too long GOS was further hydrolysed into glucose and galactose,
too short the GOS yield was also reduced. To further control the residence time of products and
substrates on the nanofiber, we designed a column bioreactor in which the feed/product stream had a
controlled contact time with the nanobiocatalyst. To understand the enzyme-nanofiber interactions,
the β-galactosidase/PSNF nanobiocatalyst was systematically characterized. The nanobiocatalyst
performance in the scalable bioreactor for GOS production was evaluated. Correlation between the
enzyme conformation structure and its engineering performance was built, which may provide great
insights into fabricating other nanobiocatalysts.

2. Results and Discussion

2.1. Textural Properties of Polymer Nanofibers

It has been recognized that an investigation of protein adsorption on a solid surface is a
fascinating endeavour but a great complexity [25]. In comparison to the free enzyme, the presence of
enzyme supports, or carriers can complicate both experimental data collections and their theoretical
interpretations [4]. Several techniques can provide key information of not only the characteristics
of enzyme supports but also of the enzyme distribution on the surface and the interfacial reactions
between enzyme and its support. We employed SEM, fluorescence microscopy and Fourier transforms
infrared (FTIR) to characterize the prepared nanobiocatalyst.

The chemical characteristics of the nanofibers play an important role in β-galactosidase binding
and enzyme-catalyzed reactions. To introduce functional groups for enzyme immobilisation and
tune the nanoenvironment for enzyme reaction, the PSNF surface was treated by concentrated HNO3

(63%) for 2, 10 and 24 h to generate oxygen-containing functional groups such as carboxyl (COOH)
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and hydroxyl (OH) to facilitate β-galactosidase binding [26]. The effect of surface modifications on
mechanical stability and wettability of the nanofibers was first examined. Figure 1 indicates that surface
modification leads to changes in the surface properties of the nanofiber. Unmodified PSNFs exhibit a
smooth surface and a uniform-sized structure (Figure 1a) with a diameter of around 2.25 ± 0.76 µm for a
single nanofiber, while surface damages are observed on the acid-treated PSNFs with minor defects for
2 h modified PSNFs but the dimension is nearly the same as the unmodified PSNFs (Figure 1b). More
destructions are found after longer treatment (10 or 24 h) (Figure 1c–d) with a rougher surface, more
heterogeneous size distribution, some observable small pieces ripped off from the original nanofibers,
and size shrinkage of the diameter of a single nanofiber. The 2 h treated PSNFs were therefore selected
for further characterization and investigation in comparison with the untreated PSNFs.
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Figure 1. SEM images of (a) untreated, (b) 2 h acid-treated, (c) 10 h acid-treated, and (d) 24 h acid-treated
nanofibers, (e) and (f) nanofibers with immobilized enzyme at 20 µm and 50 µm SEM scale.
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2.2. Physical Characterization of Nanofibers/β-Galactosidase Assembly

After the nanofibers were treated, they were employed for the preparation of nanobiocatalysts.
One of the key issues for the nanobiocatalyst is the distribution of bound proteins on the support
nanocarriers. The most common method is to visualize the morphological changes of the nanofibers
after enzyme immobilization under an SEM. Alternatively, the molecular distribution can be analysed
from fluorescence-assisted images under a fluorescence microscope after the enzyme is tagged with
fluorescence molecules [27]. For our nanofiber/β-galactosidase hybrids, although minor cracks are
noticed on 2 h treated nanofibers, all enzyme-loading nanofibers have a nearly identical thickness,
which means that a thin layer of enzyme coating uniformly covers the PSNF surface (Figure 1e,f at
20 µm and 50 µm magnification, respectively). This thin layer is formed by the enzyme molecule
interaction with functional groups distributed on the nanofiber surface that is characterized by our
previous reports [7,26]. A similar layer of homogenous antibody coating was recently reported on
electrospun polyethersulfone nanofibrous membrane due to hydrophobic interactions [28].

The fluorescence microscope that provides an efficient and unique approach to visualize proteins
on various support matrices was also used to further investigate the nanofiber/β-galactosidase hybrids.
The enzyme was initially labelled with FITC, immobilized onto the PSNF surface afterwards and
imaged directly under a fluorescence microscope (Figure 2). PSNFs without enzyme under the same
fluorescence conditions were used to account for the fluorescence background (Figure 2a). It is clearly
seen from Figure 2b that green fluorescence is emitted from the FITC-labelled β-galactosidase/PSNF
nanobiocatalyst and the green colour is distributed on the entire surface of nanofibers, indicating the
presence of homogeneously distributed enzyme on the fibre surface. The observations of enzyme
loaded nanocarriers were compared with the negative control of PSNFs-β-gal without fluorescence
excitation as shown in Figure 2c. A similar technique has been applied to reveal the presence of trypsin
entrapped in electrospun poly (caprolactone) nanofibers [29].
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polystyrene nanofiber bands which are found at 1602, 1493, 1451, 1180, 905, 754 and 700 cm−1 as 
reported by Liang CY [30]. Meanwhile, the β-galactosidase spectra show the peaks at 3290, 1640, 1405, 
1310, 1230, 1100 and 1050 cm−1. After assembling β-galactosidase on PSNFs, three new peaks were 
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Figure 2. Visualization of FITC-tagged enzyme using fluorescence microscope: (a) PSNF fluorescence
background, (b) FITC-PSNF-β-Gal with fluorescence excitation (c) negative control PSNF-β-gal without
fluorescence excitation.

2.3. Chemical Characterization of β-Galactosidase/Nanofibers

The interaction of β-galactosidase at the surface of the nanofibers was further clarified using
FTIR in Figure 3. The characteristic signals of the β-galactosidase-free PSNFs are represented by
the peaks at 3100, 1493, 1451, 1150, 905, 754 and 700 cm−1. It is consistent with the characteristics
of polystyrene nanofiber bands which are found at 1602, 1493, 1451, 1180, 905, 754 and 700 cm−1 as
reported by Liang CY [30]. Meanwhile, the β-galactosidase spectra show the peaks at 3290, 1640,
1405, 1310, 1230, 1100 and 1050 cm−1. After assembling β-galactosidase on PSNFs, three new peaks
were detected at 3290, 1641 and 1230 cm−1. According to Verma et al. [31], the vibrations of O-H
and N-H groups of the enzyme occur between 3000 and 3500 cm−1. Therefore, the peak detected at
3290 cm−1 corresponds to the spectra generated by β-galactosidase which is absent at the enzyme-free
nanofiber. Similarly, the peak at 1641 cm−1 corresponds to C=O stretch vibrations of peptide linkages
produced by amide I protein [32], whereas the signal at 1230 cm−1 ascribes to C-N stretching and
N-H bending. The FTIR analysis demonstrates successful incorporation of β-galactosidase onto the
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polymer nanofibers. Khoshnevisan, et al. [33] reported a successful binding of cellulase onto Fe3O4

nanoparticles which were confirmed by the characteristic bands of protein at 1624, and 1408 cm−1

using the FTIR technique.

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 12 

 

corresponds to the spectra generated by β-galactosidase which is absent at the enzyme-free nanofiber. 
Similarly, the peak at 1641 cm−1 corresponds to C=O stretch vibrations of peptide linkages produced 
by amide I protein [32], whereas the signal at 1230 cm−1 ascribes to C-N stretching and N-H bending. 
The FTIR analysis demonstrates successful incorporation of β-galactosidase onto the polymer 
nanofibers. Khoshnevisan, et al. [33] reported a successful binding of cellulase onto Fe3O4 
nanoparticles which were confirmed by the characteristic bands of protein at 1624, and 1408 
cm−1using the FTIR technique. 

 
Figure 3. FTIR spectra of enzyme-free PSNF, enzyme-loaded PSNF and free β-enzyme. 

2.4. Biocatalytic Performance of PSNF-β-Galactosidase 

The biocatalytic performance of PSNF-β-galactosidase for GOS production was evaluated in an 
in-house fabricated recirculating column reactor system. Enzyme-loaded nanofiber sheets were 
placed inside holders which were stacked on top each other as represented by the schematic diagram 
of the operation shown in Section 3.5. A pump was used to control the flow rate, the capacity of 
processing feed streams and the retention time inside the reactor. The recirculation cycle, or also 
known as the capacity of handling the feed stream, increases as the flow increases while the retention 
time reduces correspondingly as tabulated in Table 1. 

Table 1. Lactose conversion with respect to operation conditions of recirculating column reactor 
system: feeding flow rate, total recirculation cycle and residence time. 

Flow Rate (mL/min) Capacity of Handling Flow Rate Cycle (h−1) Retention Time (h) 
2 20 0.050 
4 40 0.025 
6 60 0.017 
8 80 0.013 

10 100 0.010 

Figure 3. FTIR spectra of enzyme-free PSNF, enzyme-loaded PSNF and free β-enzyme.

2.4. Biocatalytic Performance of PSNF-β-Galactosidase

The biocatalytic performance of PSNF-β-galactosidase for GOS production was evaluated in an
in-house fabricated recirculating column reactor system. Enzyme-loaded nanofiber sheets were placed
inside holders which were stacked on top each other as represented by the schematic diagram of the
operation shown in Section 3.5. A pump was used to control the flow rate, the capacity of processing
feed streams and the retention time inside the reactor. The recirculation cycle, or also known as the
capacity of handling the feed stream, increases as the flow increases while the retention time reduces
correspondingly as tabulated in Table 1.

Table 1. Lactose conversion with respect to operation conditions of recirculating column reactor system:
feeding flow rate, total recirculation cycle and residence time.

Flow Rate (mL/min) Capacity of Handling Flow Rate Cycle (h−1) Retention Time (h)

2 20 0.050
4 40 0.025
6 60 0.017
8 80 0.013
10 100 0.010

In the β-galactosidase-catalyzed reaction, lactose conversion is generally performed in two
different pathways: (1) hydrolysis to glucose and galactose; and (2) transgalactosylation to GOS [34,35].
Hydrolysis occurs when water acts as galactosyl acceptor, yielding glucose and galactose as main
products, [36,37]. Meanwhile, sugars such as lactose, glucose and galactose that present in the reaction
medium, act as the nucleophiles and become the acceptors to produce GOS in transgalactosylation
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pathway. Therefore, the products from β-galactosidase-catalyzed reaction include glucose, galactose,
GOS and the remaining lactose. GOS comprises of mono and disaccharides with a degree of
polymerization of up to 8–9 [38], were determined by the mass balance difference between the initial
lactose and the total amount of remaining lactose, glucose and galactose.

The effect of flow rate on lactose conversion and GOS production was systematically investigated
throughout the experiments using the recirculating column reactor system. The results are presented in
Figure 4. As the feeding rate increases up to 6 mL/min, corresponding to a feed rate of 150 g lactose/h,
the lactose conversion reaches up to 80%. The results show that the conversion increases with the
increasing the capacity of streams fed into the reactor. A previous study conducted by Kim, et al. [39]
showed an enhanced treatment rate of organic pollutants with increased batch cycles. Beyond 6 mL/min
flow rate, a remarkable reduction in the conversion is observed (Figure 4a). The formation of GOS,
glucose and galactose show a similar production profile and trend in Figure 4b. The highest GOS yield
is 145 g/L in a trial at a feed rate at 6 mL/min flow rate, producing 113 g/L glucose and 72 g/L galactose.
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Figure 4. The effect of feed flow rate on (a) lactose conversion and (b) products yield from biocatalysis
from immobilizedβ-galactosidase on PSNFs in a recirculating column reactor. Reactions were conducted
at an initial lactose concentration of 400 g/L at 37 ◦C with an enzyme concentration of 2 mg/mL at pH 7
for 24 h reaction. Triplicate biological samples were prepared and data are shown as mean ± SD.

It is observed that the GOS yield exceeds that of glucose and galactose when the reactor is
operated up to 6 mL/min flow rate, or residence time of 1 min in each unit of the column reactor,
implying transgalactosylation is favoured. This is in agreement with our previous study conducted
in a recirculating spiral reactor, where enzyme-carrying nanofibers were spread onto mesh support
and the mesh was rolled in a spiral form before locating inside a reactor [23]. However, in that spiral
reactor, the highest GOS production was accompanied by a reduced lactose conversion. Under the
optimal flow rate in this column bioreactor, the highest GOS production and lactose conversion are
achieved. Lactose molecules diffuse rapidly into the enzyme reaction sites as the thickness of the
concentration boundary layer is reduced. GOS molecules move out of the reaction sites while the
β-galactosidase-galactosyl complexes form in favour of transgalactosylation. Increasing the flow rate
up to 10 mL/min, hydrolysis was found to become the dominated reaction over transgalactosylation
that is supported by a drastic decrease in GOS. These observations are likely to be correlated with
reduced contact time for interfacial interaction between lactose nucleophiles and enzyme-galactosyl
complex, promoting hydrolysis activity to yield glucose and galactose.

The bioconversion and production profile of PSNF-β-galactosidase with a range of lactose
concentrations in the recirculating column reactor are presented in Figure 5. The results reveal that the
conversion and product yields are dependent on the initial lactose concentration. A gradual decrease
of lactose conversion is found with an increase in the concentration of lactose (Figure 5a). The highest
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lactose conversion (88%) is achieved at the initial lactose concentration of 300 g/L. When the lactose
concentration reaches up to 600 g/L, approximate 80% of lactose remains unconverted. Longer reaction
time is required to catalyse the lactose conversion. It has been recognized that the conversion efficiency
is normally determined by the availability of catalytic sites of the immobilized enzyme [23]. Saturation
of the enzyme active sites by substrate molecules results in a lower conversion at a higher lactose
concentration. Furthermore, lactose at a high concentration is oftentimes associated with low solubility
with the presence of crystal-like substances in the reaction medium that reduces the conversion rate [40].
Interestingly, except for 600 g/L lactose concentration, the yield of GOS exceeds that of glucose and
galactose, indicating the β-galactosidase/PSNF system favours the desired transgalactosylation at a
relatively high lactose concentration in the feed stream (Figure 5b). The highest GOS yield (160 g/L) is
obtained at an initial lactose concentration of 500 g/L, which is 1.3 times higher than that of 300 g/L
lactose concentration.
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Figure 5. Profiles of (a) lactose conversion and (b) products yield of immobilized β-galactosidase
on PSNF in a recirculating column reactor using lactose at various concentrations. Reactions were
conducted on a lactose concentration ranging from 300 to 600 g/L at a feed flow rate of 6 mL/min, using
2 mg/mL enzyme concentration at 37 ◦C at pH 7 for 24 h reaction. Triplicate biological samples were
prepared and data are shown as mean ± SD.

Overall, the nanobiocatalyst of PSNF-β-galactosidase shows an excellent catalytic performance in
the recirculating column reactor for conversion of lactose-rich dairy wastes into valuable products.
The bioconversion performance using PSNF-β-galactosidase is also comparable or greater than that in
other reported studies as briefed in Table 2. It can be concluded that the interface from the nanofiber and
the newly developed PSNF-Gal recirculating column reactor provide favourable nanoenvironments
that maximize the biocatalytic performance. More importantly, comparing to static feed as reported
in our previous study [7], the process in the recirculating column bioreactor enhances the lactose
bioconversion from 40% to 88% and the GOS yield from 110 to 160 g/L. The superiority of the disc
reactor in this study was further demonstrated by its higher yield per area than that in the spiral reactor.
For example, at an initial substrate concentration of 300 g/L, the yield per area in the disc reactor is
4.17 g/L cm−2, approximately 4.3 times higher than that in the spiral reactor (0.33 g/L cm−2). Hence,
the disc reactor may be further optimized for an industrial process.



Catalysts 2020, 10, 81 8 of 12

Table 2. Comparison on lactose bioconversion and GOS yield by immobilized enzymes in various
types of support materials.

Source of
β-Galactosidase Reactor Support Material Lactose Conversion GOS Reference

- - - g/L % % -

Kluyveromyces
lactis

Disc reactor Polystyrene
nanofibers

300 88 41 This work
400 83 35 This work

Kluyveromyces
lactis

Spiral reactor Polystyrene
nanofibers

300 86 31 [38]
400 86 40 [38]

Kluyveromyces
lactis

Batch process Polystyrene
nanofibers

300 38 20 [41]
400 40 28 [41]

Kluyveromyces
lactis

Continuous
ultrafiltration

membrane
reactor

Membrane 300 76 80 [42]

Bacillus circulans Repetitive
batch-wise Eupergit C250L 550 - 64 [43]

Bacillus circulans Repeated batch Glyoxyl agarose 500 60 39 [44]
Bacillus circulans Batch process - 400 50 41 [45]

Aspergillus
oryzae Batch process Polysiloxane-

polyvinyl alcohol 500 55 26 [46]

3. Materials and Methods

3.1. Materials

Polystyrene (MW 350,000), N,N-dimethylformamide (DMF), nitric acid (HNO3), 69%, Fluorescein
isothiocyanate (FITC), bovine serum albumin (BSA) and Kluyveromyces lactis β-galactosidase were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Lactose monohydrate was from Chem Supply
and potassium phosphate buffer (PBS, pH 7.2) was from Life Technologies (Carlsbad, CA, USA).

3.2. Synthesis of Polymer Nanofibers

Polystyrene (20%, w/v) was prepared by dissolving in DMF in a flask stirring at 100 rpm for
overnight at room temperature. The solution was then transferred to a 5 mL syringe of electrospinning
device, and the syringe was attached to a 1 mm inner diameter needle tip which was connected
to a Glassman high voltage power supply (25 kV). The flow rate of the polymer solution was
controlled at 2.5 mL/h by an Adelab Scientific syringe pump. The electrospun PSNFs were cast
onto a metal-surface collector, and the distance between the needle tip and the collector was fixed at
10 cm. After electrospinning, the PSNFs were detached from the collector surface and stored at room
temperature for further use.

3.3. Nanofibers Modification and β-Galactosidase Immobilization

The surface of PSNFs was further treated by oxidation in acid. In detail, 20–30 mg PSNFs were
immersed into 5 mL HNO3 (69%) for 2 h at room temperature [7]. After surface treatment, the
PSNFs were rinsed with water three times to remove excess acid and then equilibrated with PBS
(pH 7.2) overnight prior to enzyme immobilization. β-galactosidase immobilization was carried out by
submerging the treated approximately 10 mg PSNFs into 1 mL β-galactosidase PBS solution (2 mg/mL)
overnight with gentle stirring at 4 ◦C. The β-galactosidase–loading PSNFs were rinsed thoroughly
with water to remove unbound enzyme.

3.4. Characterization of Nanobiocatalyst

The textural and morphological properties of PSNF, β-galactosidase and β-galactosidase-loaded
PSNFs were characterized by a Philips XL30 field emission scanning electron microscope (FESEM)
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operated at 10 kV. A Zeiss Axio fluorescence microscope was used to image the distribution of
FITC-labelled β-galactosidase on nanofiber surfaces. The enzyme was initially labelled using FITC
dye and it was prepared by mixing 100 mg of β-galactosidase with 10 µg of FITC in 1 mL ethanol
(70%) solution with gentle mixing before the addition of PSNF. The FITC-tagged β-galactosidase on
PSNF was allowed to react for 2 h at 4 ◦C in dark before observation under a fluorescence microscope.
Fourier transforms infrared (FTIR) spectra of free β-galactosidase, PSNF, and PSNF-β-galactosidase
were recorded on a Thermo Scientific NICOLET 6700 FTIR spectrometer at room temperature.

3.5. Experimental Set-Up of a Recirculating Column Reactor

The bioengineering performance of PSNF-β-galactosidase was further assessed in an in-house
recirculating column reactor (RCR). The RCR system comprises a reservoir tank maintained at 37 ◦C
using a water bath, a Masterflex 7021-24 pump to control the feed flow rate, and a column reactor
containing enzyme-loading nanofiber sheets fitted into a holder (25mm, Waterman) which were stacked
on top of each other to form a 12-cm height column with a total working volume of 6 mL. The schematic
diagram of the RCR system is illustrated in Figure 6. Eur-Pharm silicone tubing was used to connect the
reservoir tank to the column reactor. Lactose solution in the feed reservoir was prepared by dissolving
lactose into PBS (pH 7.2). The solution was fed from the bottom inlet of the reactor using a peristaltic
pump and passed through the RCR containing immobilized β-galactosidase on PSNF and returned
back into the feed reservoir through the top outlet. Variable operation parameters including flow
rate (2–10 mL/min) and lactose initial concentration (300–600 g/L) were evaluated to optimize the
GOS production. The capacity of handling feed per hour and the retention time inside the reactor, as
calculated using Equations (1) and (2) respectively, was determined by the flow rate.

Capacity of handling feed per hour (h−1) =
Flow rate (ml/min)

Feed working volume (ml)
× 60 (1)

Retention time (h) =
Reactor volume (ml)
Flow rate (ml/min)

×
1

60
(2)
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The conversion and the yield of glucose, galactose, and GOSs were determined using
Equations (2)–(5), where brackets represent mass concentration.

Conversion (%) =
[Initial lactose] − [Final lactose]

[Initial lactose]
× 100% (3)
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Glucose (%) =
[Glucose]

[Initial Lactose]
× 100% (4)

Galactose (%) =
[Galactose]

[Initial Lactose]
× 100% (5)

GOS (%) = % conversion−% glucose−% galactose (6)

3.6. Chemical Analysis

Filtered substrates and products were analysed by an Agilent 1100 Series HPLC equipped with an
Aminex HPX-87H column (300 × 7.8 mm) and a refractive index detector The flow rate of pre-degassed
mobile phase (8 mmol/L-H2SO4) was set to 0.5 mL/min. The column and the detector cell were
maintained at 60 ◦C and 40 ◦C [41]. Chromatograms were integrated using the ChemStation software.

4. Conclusions

A comprehensive analysis study has been carried out to advance the understanding of
β-galactosidase/nanofiber nanobiocatalyst structure. The homogenous biocatalyst distribution on the
support surface was demonstrated by SEM and fluorescence microscopy images. The FTIR confirmed
successful biocatalyst attachment on the PSNF surface and the native structures of biocatalyst were
retained after the formation of the nanobiocatalyst. The nanocatalyst in a column bioreactor had
the highest lactose conversion and GOS production at a flow rate of 6 mL/min, or residence time of
1 min. However, both GOS production and lactose conversion were dependent on the initial lactose
concentration, a lower concentration for higher conversion and a higher concentration for a higher
GOS yield. Further optimization of this system will be conducted to maximize the GOS production
and improve the lactose conversion.
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