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Abstract—In this letter, the performance of millimeter-wave
(mmWave) communications with selection combining (SC) over
non-identical fluctuating two-ray (FTR) fading channels is an-
alyzed. Consequently, the exact expressions and asymptotic
approximations at high signal-to-noise ratio (SNR) regime of
the moment generating function (MGF) and probability density
function (PDF) of the maximum of non-identical FTR variates
are provided. To this effect, mathematically tractable expressions
of the outage probability (OP), outage capacity (OC), average bit
error probability (ABEP), and average channel capacity (ACC)
are derived. The truncation of the infinite series of the cumulative
distribution function (CDF) for a specific number of terms is also
given. A comparison between the numerical and simulated results
is performed to verify the validation of our analysis.

Index Terms—Selection combining, fluctuating two-ray, outage
probability, outage capacity, average bit error probability.

I. INTRODUCTION

M ILLIMETER-wave (mmWave) communications have
been considered as the basis of the fifth-generation

(5G) of wireless systems [1]. Hence, several efforts have been
dedicated to model the channel of mmWave communications.
In [2], the Rician distribution was used for small-scale fading
in both line-of-sight (LoS) and non-LoS (NLoS) mediums.
However, the Rician fading does not provide an accurate rep-
resentation for the random fluctuating of the received signal.
Therefore, to obtain close results to practical measurements
of 28 GHz outdoor mmWave channels, the authors in [3]
proposed the fluctuating two-ray (FTR) fading model.

Based on the above observations, the probability density
function (PDF), cumulative distribution function (CDF), and
moment generating function (MGF) of the signal-to-noise ratio
(SNR) over FTR fading channels were derived in [4] and ap-
plied to the average bit error probability (ABEP). The secrecy
performance of the physical layer over FTR fading conditions
was investigated in [5]. The secrecy outage probability (SOP)
in cognitive radio networks (CRNs) over FTR fading was
derived in [6]. The effective capacity of FTR fading channel
was given in [7]. The average channel capacity (ACC) over
FTR fading was studied in [8]. In [9], the authors analyzed
the performance of a mixed free-space optics/mmWave system
over Gamma-Gamma/FTR fading channels. The wireless pow-
ered unmanned aerial vehicle (UAV) relay over FTR fading
model was presented in [10].
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Recently, several works have been dedicated to analyze the
statistical properties of the mathematical operations on the
FTR random variables (RVs). For example, the distributions
of the products and ratio of the products of FTR variates with
independent and non-identically distributed (i.n.i.d.) fading
severity indices were introduced in [11] and [12], respectively.
In [13], the authors derived the PDF and CDF of the sum of
arbitrarily distributed FTR variates with applications to the OP
and ABEP of maximal ratio combining (MRC) diversity re-
ception. The asymptotic and non-asymptotic expressions of the
OP and ABEP with non-identically distributed MRC receivers
over FTR fading channels were given in [14]. The 5G relay
system for high-speed trains over FTR fading conditions with
MRC scheme was considered in [15]. In [16], the statistics of
the sum of the products of i.n.i.d. FTR variates were utilized
to study the performance of mmWave communications with
reconfigurable intelligent surface (RIS).

Motivated by the performance of mmWave communications
with selection combining (SC) scheme over i.n.i.d. FTR fading
channels has not been yet investigated in the literature, our
main contributions in this letter are summarized as follows.
• Deriving both the exact expression and asymptotic ap-

proximation at high SNR values of the PDF and MGF of
the maximum of non-identical FTR variates.

• Capitalizing on the above, mathematically tractable ex-
pressions of the OP, outage capacity (OC), ABEP, and
ACC are obtained. In contrast to [17] in which the
performance of mmWave communications with identical
dual-branch SC scheme was investigated, our analysis can
be used for N receivers over i.n.i.d. FTR fading channels.

• Truncating the infinite series of the CDF up to a certain
number of terms that satisfies a specific accuracy.

II. FLUCTUATING TWO-RAY FADING CHANNELS

The CDF of the instantaneous SNR at lth receiver, γl, over
FTR fading channel is expressed as [4, eq. (7)]
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with ml is the fading severity index, Kl is the average
power ratio between the dominant component to the scattering
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multipath, ∆l ∈ [0, 1] is the similarity of two dominant waves,
2σ2

l = γ̄l/(1 + Kl) with γ̄l denotes the average SNR at
lth receiver, Γ(.) is the gamma function, γ(., .) is the lower
incomplete gamma function [19, eq. (8.350.1)], and Rµυ(z) is
defined as [18, eq. (20)](
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where (.)a is the Pochhammer symbol [19, eq. (1.2.2)].
The asymptotic of the CDF in (1) at γ̄l → ∞ for l =

1, · · · , N , is given by [6, eq. (18)]

F∞γl (x) ≈ ml(1 +Kl)djl=0

Γ(ml)γ̄l
x (4)

where djl=0 is the value of djl in (2) at jl = 0.

III. STATISTICS OF THE MAXIMUM OF FTR VARIATES

Proposition 1: Assume all RVs, γl ∼
FT R(ml,Kl,∆l, 2σ

2
l ) for l ∈ {1, · · · , N} where N is

the number of the variates, follow i.n.i.d. FTR distribution,
the MGF of γ = max{γ1, · · · , γN} is provided in (5) shown

at the top of this page, where Θjl ,
m
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It can be observed that (5) is written in terms of the
multivariate Lauricella hypergeometric function, F (N)

A (.), [20,
eq. (1.7.1)]. Although this function is not yet implemented
in the popular mathematical software packages, it can be
efficiently computed via downloading a MATLAB code from
[21].

The asymptotic approximation of the MGF at high average
SNR regime is obtained as

M∞γ (s) ≈
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l=1
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)
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. (6)

Proof: The CDF of the maximum i.n.i.d. variates can be
evaluated as

Fγ(x) =
N∏
l=1

Fγl(x). (7)

Substituting (1) into (7) and invoking the identity [22, eq.
(6.5.12)], this yields
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Plugging (8) inMγ(s) = sL[Fγ(x); s] where L[.] indicates
the Laplace transform, and recalling [20, eq. (2.i), p. 260], the
proof of (5) is accomplished.

Inserting (4) in (7), the asymptotic of the CDF of the
maximum i.n.i.d. FTR variates is obtained as

F∞γ (x) ≈
( N∏
l=1

ml(1 +Kl)djl=0

Γ(ml)γ̄l

)
xN . (9)

Next, inserting (9) in M∞γ (s) = sL[F∞γ (x); s] and making
use of [19, eq. (3.381.4)], (6) is deduced and this finishes the
proof.

Proposition 2: The PDF of γ is given in (10) presented at
the top of this page and the asymptotic expression of the PDF
is derived as
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)
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In (10), H
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[.] denotes the multivariate H-

function defined in [23, eq. (A.1)]. This function is not avail-
able as a built-in function in MATLAB and MATHEMATICA
software packages. Thus, a MATLAB code that is written in
[24] can be used to compute this function.

Proof: With the help of [25, eq. (1.10.7)], the MGF of γ
that is given in (5) can be expressed in multiple Barnes-type
closed integral contours as
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where Tl is the lth suitable contour in the t-plane from νl−i∞
to νl + i∞ with νl is a constant number.

Plugging (12) in fγ(x) = L−1[Mγ(s);x] where L−1[.]
represents the inverse Laplace transform and applying the
Fubini’s theorem to interchange the order of the integrations,
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this deduces
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Evaluating the inverse Laplace transform of (13) via recall-
ing [19, eq. (17.13.3)] and then employing [23, eq. (A.1)], the
result is (10).

The asymptotic of the PDF can be easily derived via
utilizing f∞γ (x) = dF∞γ (x)/dx. Furthermore, (11) can be
obtained via substituting (6) into f∞γ (x) = L−1[M∞γ (s);x]
and invoking [19, eq. (17.13.3)/ eq. (8.331.1)] which completes
the proof.

IV. PERFORMANCE ANALYSIS OF SC SCHEME

Due to its low implementation complexity, the SC diversity
reception has been widely used to improve the performance
of wireless communication systems. In SC, the receiver with
the highest SNR is selected among number of branches.

A. Outage Probability
The OP is employed to measure the performance of wireless

communication systems over fading channels. It can be defined
as the probability of the instantaneous SNR at the output of the
combiner falls below the predetermined threshold λ, namely,
Po = Pr{γ < λ} where Pr{.} denotes the probability.

The OP can be evaluated by [9, eq. (25)]

Po = Fγ(λ). (14)

To this effect, the OP and its asymptotic behaviour of
mmWave communications with SC scheme can be readily
obtained by using (8) and (9), respectively.

It is worth noting that the asymptotic of the OP can be
further approximated as P∞o ≈ γ̄−Gd where Gd is the diversity
order. From (9), one can see that Gd is proportional to the
number of branches, N . This result is matched with [13] that
is given for MRC diversity.

B. Outage Capacity
The OC is used to quantify the spectral efficiency over

fading channels. It can be defined as the probability of the
instantaneous capacity Cγ is less than a certain threshold value
ϕ, that is, Co = Pr{0 6 Cγ < ϕ}, where Cγ = B log2(1+γ)
and B is the bandwidth of the transmitted signal. Conse-
quently, the OC can be expressed as

Co = Fγ(2ϕ/B − 1). (15)

Based on (15), the exact and asymptotic expressions of the
OC of mmWave communications with SC receivers can be
evaluated by (8) and (9), respectively.

C. Average Bit Error Probability

The ABEP can be calculated by [4, eq. (15)]

Pb =
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2Γ(ρ2)

∫ ∞
0
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where (ρ1, ρ2) = (1, 0.5) for binary phase shift keying (BPSK)
and (ρ1, ρ2) = (0.5, 0.5) for coherent binary frequency shift
keying (C-BFSK) modulations.

Inserting (8) in (16) and making utilize of [20, eq. (2.i), p.
260], the ABEP is deduced as in (17) given at the top of this
page.

When γ̄l → ∞ for l = 1, · · · , N , the asymptotic of the
ABEP is derived via substituting (9) into (16) and recalling
[19, eq. (3.381.4)]. Thus, this yields
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It is evident that Gd of the ABEP also depends on N .

D. Average Channel Capacity

The normalized ACC can be computed by [4, eq. (11)]

C =
1
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Plugging (10) in (19) and using [23, eq. (A.1)], this yields
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The inner integration of (20) is recorded in [19, eq.
(4.293.3)]. Thus, after recalling the identity [20, eq. (1.1.8)]
and doing some mathematical simplifications, we have
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TABLE I
REQUIRED TERMS Ml FOR THE TRUNCATION ERROR

(ε(Ml) ≤ 10−7) FOR DIFFERENT N AND FADING PARAMETERS.

N ml Kl ∆l Ml ε

1 0.5 0.5 0.3 36 5.0461 ×10−8

2 0.5 0.5 0.3 38 5.3024 ×10−8

2 1.5 1.5 0.5 33 7.1688 ×10−8

3 1.5 2.5 0.5 25 9.5214 ×10−8

4 1.5 2.5 0.5 19 3.7726 ×10−8

With the aid of [23, eq. (A.1)], the exact expression of C
is yielded as in (22) provided at the top of this page.

The asymptotic expression of the normalized ACC at γ̄l →
∞, can be calculated by [26, eq. (27)]

C∞ ≈ 1

ln(2)

T∑
r=0

wr
1−M∞γ (yr)

yr
. (23)

where M∞γ (.) is given in (6), T is the number of terms for
the Gaussian-Laguerre integration whereas wr and y1 are the
weight and abscissas factors, respectively [22].

V. TRUNCATING ERROR OF THE DERIVED STATISTICS

It is apparent that all the derived expressions include multi-
ple infinite series. Therefore, the convergence acceleration with
a certain figure of accuracy should be applied with truncating
error ε(Ml) that is given by [13, eq. (10)]

ε(Ml) , Fγ(∞)− F̂γ(∞). (24)

where F̂γ(∞) is the truncated CDF up to Ml first terms.
Using the fact that lim

x→∞
Fγ(x) = 1 and substituting (1)

into (7) along with the relation lim
x→∞
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From (25), it is clear that ε(Ml) → 0 as Ml → ∞ for
l = 1, · · · , N .

Table I explains the required truncation terms Ml for
different N and fading parameters of the channel. It can be
noted that 40 terms are enough for all diversity branches to
obtain highly accurate results (e.g., ε(Ml) ≤ 10−7) in all
considered cases.

VI. ANALYTICAL AND SIMULATION RESULTS

In this section, the exact analytical and simulated results are
presented for different scenarios of mmWave communications
with SC diversity reception over FTR fading channels.
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Fig. 1. OP versus γ̄l for different ∆, K, m, N = 1, N = 2 and λ = 0 dB.
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Fig. 2. OC versus normalized threshold value for different N and γ̄l.

Fig. 1 depicts the OP versus γ̄l for different values of
the fading parameters and λ = 0 dB of mmWave commu-
nications with single receiver and dual-branch SC scheme
over identically distributed FTR fading channels. From this
figure, it is clear that the OP is remarkably diminished when
the SC scheme is employed. This is due to the increasing
in the diversity gain which is related to N . Furthermore,
the OP decreases as m or/and K increase. This is because
the increasing in m corresponds to less fluctuating in the
received signal whereas a high value of K means the total
power of the dominant components is larger than the total
power of the scattered waves. On contrary, the OP sightly
degrades as ∆ increases. The reason is that a higher value of
∆ corresponds to a large phase difference between the two
dominant waves. These observations are consistent with the
results in [4] and [13] that are given for no diversity and MRC
scheme, respectively.

Fig. 2 plots the OC versus ϕ/B for γ̄ = 0 and −3 dB of
mmWave communications with single branch and dual, triple,
and quadruple SC receivers over non-identical FTR fading
channels whilst Fig. 3 demonstrates the ABEP for BPSK and
C-BFSK modulations versus γ̄l. In these figures, the fading
parameters are m1 = 0.5, m2 = 1.5, m3 = 2.5, m4 = 3.5,
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Fig. 3. ABEP versus average SNR for different N and modulation schemes.
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Kl = 5, and ∆l = 0.3 for l = 1, 2, 3, 4. In both figures, as
anticipated, the performance of the considered system can be
further improved via increasing the number of the diversity
receivers. This is because a larger branch number can achieve
higher diversity gain. For example, in Fig. 3, when γ̄l is
constant at 10 dB, the ABEP of the BPSK modulation for
L = 3 is roughly 88.2% and 98.9% lower than the ABEP of
L = 1 and L = 2, respectively. In the same context, the BPSK
modulation outperforms the C-BFSK modulation, which is in
line with the results in the open literature. Additionally, the
results of Figs 2 and 3 are confirmed in Fig. 4 which explains
the normalized ACC versus γ̄l. In this figure, in order to obtain
highly accurate results for the asymptotic of the ACC, we have
used T = 15.

In all figures, an excellent agreement between the numer-
ical and simulated results can be noticed, which proves the
correctness of our derived expressions. Moreover, these results
are matched with the asymptotic behaviour at γ̄l.

VII. CONCLUSIONS

In this letter, the performance of mmWave communications
with SC receivers over non-identical FTR fading channels
was studied. To this effect, both the exact and asymptotic
expressions of the CDF, MGF and PDF of the maximum
i.n.i.d. variates were provided first. Thereafter, the OP, OC,
ABEP, ACC were derived in mathematically tractable exact
expressions. The results showed that the system performance
can be greatly enhanced via using the SC diversity reception.
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