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Abstract 

This dissertation aims to provide a methodology for creating a dynamic feedback loop to predict 

failures due to internal corrosion on high-pressure process piping systems in the oil and gas industry. 

This has been aided by applying machine learning capabilities to data available in a standard 

integrity management system.  

While great advances have been made in integrity management in recent years a significant number 

of failures still occur due to pipes corroding from the inside out. Although real time or “Online 

Monitoring” systems are available, they are usually only used on critical piping systems where there 

are known issues or where the loss of integrity would cause massive disruption to business or loss of 

life.  

In a typical facility, such as the one used as the basis of this dissertation, the total length of the 

pipework can easily exceed 20km. For piping systems not covered by online monitoring the 

structural integrity is managed through periodic inspection where the remaining wall thickness is 

measured by ultrasonic thickness (UT) inspection at specific points known as Condition Monitoring 

Locations (CMLs). This thickness is then compared to the minimum required thickness (Tmin) for that 

CML. 

Given that the number of CMLs governed by an integrity management system can easily exceed 

100,000 with anywhere between 25,000 to 200,000 UT readings taken on these CMLs being added 

annually, patterns in data that may have been recognised in smaller sets can go unnoticed. Machine 

Learning can offer the capability of detecting these patterns in larger datasets. 

The algorithms developed for this study aim to provide the basic input to screen for different types 

of corrosion in the entire system by  

1) Manually identifying corrosion patterns through inspection 

2) Training the system to classify this specific corrosion pattern 

3) Training the system to determine corrosion rate 

4) Generating the output, i.e. a ranking of all the CMLs in a system by how likely they are to 

experience the same corrosion pattern 

5) Determining the corrosion rate from the trained network 
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1. Introduction 

1.1. Structural Integrity Overview 

1.1.1. Oil and Gas Industry 

The oil and gas industry utilises pressure vessels connected by a network of piping systems to 

extract, separate, and refine crude oil and gas to a level which can be sent for further processing, 

such as cracking and reforming to ultimately produce common hydrocarbon products such as petrol, 

diesel, kerosene and tar[1]. In a typical extraction operation, three phase crude oil embedded in 

rocks below an impermeable layer is brought to the surface and directed downstream where it can 

be separated into its different constituents (services) and treated before being distributed to 

consumers. 

Regardless of service, all piping and pressure vessels are designed in accordance with design codes. 

The most common design code for process piping is ASME B31.3. These design codes cover material 

selection, welding procedure, and component sizing. When sizing components, design conditions are 

used. Design conditions cover the worst-case scenario of pressure and temperature that can be 

experienced for a given piece of equipment 

When considering the cost or consequence of corrosion within the oil and gas industry, there are 

several aspects to consider such as environmental, personal injury, financial losses due to repair and 

financial loss due to loss in production. 

The social consequences of failure due to corrosion are most prevalent among facilities operating in 

areas with less regulation. Dangerous gases such as H2S can be released into the atmosphere, if the 

release is ignited, the smoke can contain many dangerous sulphur and nitrogen compounds.  

Heavier liquids can seep into the ground water, or, on offshore installations, oil slicks can form which 

are harmful to aquatic life in the region. Affected species may also enter the food chain[2].  

Although there are considerable consequences related to pipes not being up to design, there can be 

equally large costs associated with overprovisioning pipes sizes.  

By increasing each pipe wall thickness by a single size, it is estimated that the 20km of pipework in a 

typical plant would use an additional 350 tonnes of steel for the pipework alone. Although the 

heavier pipework is likely to require additional support and the fabrication and transportation costs 

will be increased, the cost[3] of the steel in the pipe wall alone would cost between $225k and 

$900k using historical steel prices. Therefore, simply specifying the maximum available wall 

thickness for each given diameter is not the most economically viable solution. 
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1.1.2. Structural Integrity 

These piping systems are constructed to withstand conditions specified during the design stage. 

Once a plant is operational, the conditions are subject to change, temperatures decrease, pressures 

decrease, and the composition of the fluids being processed changes, e.g., water-cut increases[4]. 

Over time, the wall thickness in piping systems and pressure vessels reduces due to internal 

corrosion and erosion, and if not remedied will eventually lead to failure[5]. To reduce losses due to 

failure of physical infrastructure operators have structural integrity departments, the purpose of the 

departments is to triage the condition of all the pressurised equipment in an asset based on an 

inward flow of information. To parse the different sources of data effectively, a variety of standard 

actions are undertaken such as RBI, FFS and Repair. Figure 1-1 shows how data flows through to 

action to comply with the structural integrity policy. The breakdown of failure data in Figure 1-2 

shows that corrosion/erosion is a major source of failures. Therefore, developing a methodology 

which could reduce these types of failures would be hugely beneficial. 

 

 

Figure 1-1 Structural integrity will dictate what RBI/FFS/Repair actions are undertaken 
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Figure 1-2 Corrosion/Erosion is responsible for between 10% and 50% of piping failures 

1.1.3. Damage Mechanisms 

In service piping is susceptible to a variety of damage mechanisms[6], shown in Figure 1-3. Thermal 

and mechanical fatigue can cause failures. This type of damage cannot be inspected for. Stress 

Corrosion Cracking (SCC) occurs in certain combinations of material and service and is more common 

at welds. These cracks cannot be seen with the naked eye and must be inspected with dyes or shear 

wave ultrasonic inspection. Internal wall loss can occur for a variety of reasons such as corrosion, 

erosion, or cavitation. Localised corrosion may be characterised with radiography. As the thickness 

reduces, the stress in the remaining pipe wall increases. If left unchecked, loss of containment will 

occur when the localised stress exceeds the ultimate tensile stress of the material.  

 

 

Figure 1-3 Morphology of Damage Mechanisms on pipes[6] 
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1.1.4. Inspection Methods 

1.1.4.1. Ultrasonic Thickness Measurement 

There are several methods of inspection that utilise ultrasonic emissions. Generally, a piezoelectric 

crystal emits a pulse, and the response is recorded. To detect cracks, the signal needs to be emitted 

at an angle, to detect thinning, the signal must be emitted from the probe parallel to the surface of 

the pipe. The signal is then received by the probe. The signal appears on the display like in Figure 1-4 

A typical readout from a UT probe Figure 1-4 as a series of spikes called the back-wall echo. The wall 

thickness can then be determined from the distance between the backwall echoes.  

 

Figure 1-4 A typical readout from a UT probe 

As the probe will receive a signal from any part of the pipe that is in direct contact with the probe, 

the response will only be a single echo when the internal surface is uniform. Where there is pitting 

as in Figure 1-5 for instance, the probe will receive signals at 2 different times (Figure 1-6) with the 

amplitude proportional to the amount of surface area with that thickness.  
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Figure 1-5 Pitting will produce two responses from a single pulse 

 

 

Figure 1-6 A response where the signal is bouncing off a defect and the back wall 

1.1.4.2. Shear Wave 

Shear wave works on the same principal as 0° UT with the addition of an angled wedge on the probe. 

The wave is sent at an angle and any defects normal to the probe are sent back as shown in Figure 

1-7. This can pick up defects normal to the surface of the pipe[7]. 
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Figure 1-7 Shear Wave inspection[7] 

1.1.4.3. Ultrasonic Scanning 

A 0° probe can be run along a section of pipe. If the back-wall echo signal appears constant, then the 

pipe has uniform thickness and there is no localised internal corrosion. If piping is inspected by this 

methodology, then a single recorded reading is a good representation of an entire section. Thickness 

readings on small bore piping are less reliable[8] 

 

1.1.4.4. Radiography 

 

Radiography works by placing a radioactive source on one side of a location and a radiographic film 

on the other side. Any changes in density are then reflected on radio sensitive film as shown in 

Figure 1-8. A metal sphere of known diameter is placed near the area under inspection. The 

developed film is then interpreted by a competent inspector, any measurements or defect sizes 

required for future analysis will be overlaid on the image at this point. Thinning can only be 

characterised when the source is at right angles to it. If thinning is at 0° or 180° to the source, then 

the outline of the corrosion will be visible but the depth of it can’t be characterised. 
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Figure 1-8 A typical radiographic inspection 
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1.2. Risk Based Inspection  

1.2.1. Background 

Historically, inspection was carried out at fixed intervals for all known damage mechanisms on all 

equipment. As inspection resources are limited, risk-based inspection sought to maximise the 

benefit of inspection resources. The theory of risk-based inspection (RBI) is using confidence gained 

through historic inspection of equipment to reduce to focus future inspections in areas with the 

greatest requirement.  

This began as a qualitative approach; equipment was prioritised based on its subjective likelihood of 

failure and consequence of failure. As more data became available, more refined assessment 

techniques were developed. Table 1-1 tabulates the different levels and factors that risk is 

comprised of 

Table 1-1 Differences between qualitative and quantitative analysis 

Type Probability (likelihood) of Failure  Consequence of Failure 

Qualitative Failure history, operating conditions 

and operational stability. 

Equipment is assessed based on 

business criticality, health and 

environmental impact 

Semi Quantitative Remaining life is considered among 

other factors such as failure history, 

operating conditions and operational 

stability.  

The pressure, NFPA rating, 

equipment location will be factored 

into the calculation 

Fully Quantitative Models developed to encompass 

temperature, pressure, flowrate, 

fluid composition, material, 

inspection history. 

 

Numerical or full scale CFD models 

which take pressure, temperature, 

viscosity, pipe diameter into 

account are used to model the likely 

release pattern and potential 

injuries. Flowrates are also 

considered to determine the loss of 

inventory and loss of production 

due to downtime. 
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1.2.2. Current Approach  

API RBI 581 is the industry standard for fully quantitative risk of failure of pressure systems as a 

function of time. In this standard, Risk of Failure within a given time (t) RoF(t) is defined in Equation 

1-1 as  

𝑅𝑜𝐹(𝑡) = 𝑃𝑜𝐹(𝑡) × 𝐶𝑜𝐹 

Equation 1-1 

Where PoF(t) is the Probability of Failure within a given time and CoF is the Consequence of Failure.  

PoF(t) is defined in Equation 1-2 as  

𝑃𝑜𝐹(𝑡) = 𝐹𝑀𝑆 × 𝑔𝑓𝑓 × 𝐷𝑓(𝑡) 

Equation 1-2 

FMS is the management systems factor and it is constant across an installation. 

Gff is the generic failure frequency it is constant for piping. 

Integrity management systems can be governed by a risk target, i.e. higher CoF items have a lower 

allowable PoF(t). This is represented graphically in Figure 1-9: 
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Figure 1-9 Risk Matrix from API 581 

By adding time as a third dimension, time (t), the ISO Risk Line becomes a plane. Considering the risk 

profile as a 3-dimensional solid object, a date where the risk target is reached can be determined 

from the leading edge of the risk profile shown in Figure 1-10.  
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Figure 1-10 Risk profile of a pipe over time projected onto the API 581 Risk Matrix 

As PoF(t) increases, a date when the risk target is reached can be determined. Mitigating action such 

as inspection should be carried out before this date. 

Historically, probabilities and consequences of failure were assigned qualitatively by experienced 

personnel. 

Qualitative probabilities of failure ranged from  

1) No credible failure 

2) Unlikely failure 

3) Possible failure 

4) Single failure likely within 1 year 

5) Multiple failures likely within 1 year 

Qualitative consequences of failure ranged from 

1) No production loss, small financial losses, no loss of containment 

2) Small production loss, loss of containment onsite 

3) Serious personal injury 
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4) Single death, loss of unit within facility, significant environmental impact 

5) Multiple fatalities, catastrophic environmental impact, loss of facility 

 

1.3. Experience 

API 581 provides a framework for incorporating data from design, maintenance, and operation, in 

practice, the cost of retrieving comprehensive data can be prohibitive. Conservative estimates are 

often used in these situations which can result in the risk being overstated.  

Further to the risk being overstated due to lack of data, the risk calculations will not get updated 

until the next inspection or at such a time that other information becomes available. 

In instances where significant localised corrosion is discovered at a CML, the risk of that equipment 

may increase, however equipment upstream, downstream or in a parallel train to that CML will not 

be automatically updated. Upon finding significant corrosion, it is common practice for operators to 

conduct a special inspection program on any similar equipment susceptible to the same damage. 

This similarity is drawn from the operator’s experience. The special inspection program can be 

limited in scope and may not always target the highest priority equipment.  

There is a requirement in the industry for being able to prioritise equipment for inspection based on 

adverse findings in similar equipment. 

 

 

Figure 1-11 Multiple trains fed from the same pipeline 
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Figure 1-11 shows an example of a single crude pipeline feeding two trains, damage found at one 

location may warrant inspection at similar points in the same line as well as in the parallel train. 
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1.4. Aim 

The aim of this dissertation was to develop an approach of how accumulated thickness readings can 

provide a feedback loop to the corrosion rate thereby updating the overall risk of failure within an 

integrity management system which, in turn could reprioritise the inspection schedule of an entire 

process or facility.  

In a production environment, the corrosion rate is not the only consideration when calculating the 

overall risk. Figure 1-12 shows that it represents a single input to a single damage factor which in 

turn drives the probability and ultimately the risk of failure. As there are over 1000 individual inputs 

required to assess the RoF(t) of each CML, it is not practical to determine these from first principals. 

Typically, parameters such as material properties and stream properties are common throughout a 

system and others such as environmental conditions are common to the entire facility. Even though 

the corrosion rate is determined at a CML level, it does not necessarily have a bearing on the overall 

risk result, and in cases where it does, the exact impact is not clear.  

By calculating the risk on an individual CML as part of an overall system, it improves on the current 

method by making more use of inspection data rather than referenced standards 
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Figure 1-12 How corrosion rate propagates through a risk assessment 
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1.5. Objective 

To achieve the aim of the thesis the first step was to develop a relational database that could 

accommodate disparate data sources into a universal data structure that could provide consistency 

and traceability back to its source. 

The second objective was to test the data to determine the distribution or corrosion rates present to 

develop an equation that accommodated feedback from inspection results on similar equipment. 

The third objective was to apply machine learning to the thickness readings to determine the 

corrosion rates which was previously a manual process.  

The final objective was to identify any shortcomings in the new methodology by comparing the 

PoF(t) results from new methodology against the current and identifying any anomalies.  

1.6. Contribution of this research 

The contribution of this research is to develop an automated dynamic data driven approach to PoF 

calculation of process piping encompassing a feedback loop to update PoF calculations of 

uninspected CMLs. The general outline of this process is: 

1) (Re) Calculate Corrosion rate for global dataset 

2) Classify CML by criteria 

3) Determine PoF from subset of CMLs with the same classification 

4) Prioritise PoF of global dataset 

5) Add new inspection results 

6) Return to step 1 

1.7. Condition Monitoring Locations (CMLs) 

These are referred to as Thickness Monitoring Locations (TMLs) in earlier codes and standards. They 

are now referred to as CMLs as they used to record other data such as the external condition, this 

data requires a unique identifier to be stored reliably within an integrity management database. 

CMLs are located at areas that give a true representative sample of the section of piping as shown in 

Figure 1-13, i.e. straight sections may have 1 CML, changes in direction at elbows, changes in 

diameter, upstream and downstream of valves etc. There are other methods such as long-range UT 

(LRUT) that can scan for defects but do not give an accurate wall thickness reading.  
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Figure 1-13 Typical piping isometric drawing showing the location of the CMLs 

The wall thickness at these CMLs should be greater than Tmin at the time of inspection and at the 

recommended future inspection date. The typical inspection frequencies range from six months to 

six years. The projected corrosion rates (CRs) are estimated by trending the historic data per CML 

and validating them against prescriptive rates and previously estimated CRs at the same and/or 

similar locations. 

While CRs are not linear in nature[9], if the likely CR at a given CML can be estimated at a given time, 

then a recommended future inspection date can be prescribed where it is likely that, based on 

previous experience, knowledge of the process conditions and an understanding of the corrosion 

mechanisms that the predicted thickness at the CML on the future inspection date will exceed the 

Tmin. 

 

2. Literature Review 

2.1. Introduction 

Applying a new method to Asset Integrity Management to achieve the aims outlined in 1.4, a review 

of the current methods was required. Figure 1-12 shows the pathway for how corrosion rate as a 
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single value can feed forward to result in a change in risk, however, to add a feedback loop to this 

process, the requirements and purpose of each step in the calculation must be understood.  

2.2. Theory of Asset Integrity Management 

Asset Integrity management (AIM) for pressurised systems is broadly defined as ensuring the asset’s 

fitness for service over its entire life from design phase through installation, design life, possible life 

extension and eventual decommission.[10]  

There are several aspects to asset integrity management covering areas such as process, design, 

inspection, repair, replacement, mothballing, restarting, and decommissioning.  

Oil and gas processing plants are typically run continuously and are only shut down during scheduled 

maintenance windows. There is considerable cost associated with equipment shutdowns, this is due 

to several reasons including: 

1) Equipment shutdowns require considerable planning and monitoring. Depending on the 

design, the feed stock will have to go through several processes in order to achieve its final 

state, e.g. untreated gas may need to be dehydrated and have other impurities such as H2S 

removed from it. During a shutdown, the equipment within the process will have to 

depressurise slowly and reach ambient temperature before it can be inspected as rapid 

depressurisation can cause temperature variation that could undermine the integrity of the 

system. 

2) Equipment start-ups need to be reviewed by process engineers. Some equipment needs to 

reach a critical temperature before it is pressurised as its material may be too brittle at 

ambient temperature 

3) Failure due to fatigue. This is commonly detected after start-up[11]. Small bore piping 

systems (≤2” NPS) are particularly prone to this. This is due both to the magnitude of stress 

cycles involved and the vibration induced in the system by the pressurisation/ de 

pressurisation. 

Asset integrity management programs are designed to reduce unscheduled downtime by 

anticipating appropriate remedial action in a timely manner. 

2.2.1. Ageing Equipment 

“Ageing is not about how old your equipment is; it’s about what you know about its condition, and 

how that’s changing over time “ [12] 
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The most common mode of failure of pressurised equipment is internal corrosion. At the design 

stage, equipment can often have an internal corrosion allowance included in the specification. 

Corrosion allowance (CA) is calculated by Equation 2-1 

𝐶𝐴 =  𝐷𝐿 ×  𝐶𝑅 

Equation 2-1 

Where  

DL = design life and  

CR = Estimated Corrosion Rate 

Equipment is inspected regularly during its design life. The measured corrosion rate may differ from 

the estimated corrosion rate. Where the measured corrosion rate is less than the estimated 

corrosion rate, the equipment may operate well beyond its original design life. Where it is found, 

through inspection that the measured corrosion rate exceeds the estimated corrosion rate, a review 

of the process and material selection may take place. Repair or replacement may also be carried out 

at this time.  

The AIM team must be reactive enough to learn from: 

1) Inspections 

2) Process reviews 

3) Failure investigations and  

4) Root cause analyses 

If an issue is not properly understood and remediated it may have several failures and unscheduled 

shutdowns attributed to it.  

Although failure can be interpreted as loss of pressure containment or inventory, it can also mean 

operating beyond design limits. Whenever failure leads to an unscheduled shutdown, it is good 

practice to assess and repair related equipment that may be liable to cause an unscheduled 

shutdown in the future. 

2.2.2. Inspection Frequency 

Piping systems were traditionally inspected primarily for internal thinning and external corrosion. As 

external corrosion is visible to the naked eye it is more readily detected. Initially, the inspection 

frequency is prescribed based on experience of similar plants in operation. Once operation is stable, 

the inspection frequency may be adjusted. Construction codes[13] recommend that if the remaining 
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life of equipment is known then, it should, at least be inspected in half that time. As equipment 

nears the end of its design life the inspection frequency increases. 

2.2.3. The Bathtub Curve 

The bathtub curve[14] is used in asset management to describe the failure rate over time. After a 

plant has been commissioned, it is not uncommon to experience failures during commissioning due 

to oversight in design or specification. This is then followed by a long period of stable operation until 

the plant reaches the end of its design life. After this point, increasing remedial action is necessary to 

allow viable operation until such a point as the plant is decommissioned.  

The shape is derived from a combination of multiple two parameter Weibull curves. The general 

form for Weibull probability is given by Equation 2-2  

𝑓(𝑇) =
𝛽

ƞ
(

𝑇

ƞ
)

𝛽−1

𝑒
−(

𝑇
ƞ

)
𝛽

 

Equation 2-2 

Where ƞ is the scale parameter and β is the shape parameter. If β<1, the number of failures 

decreases over time. This is a physical representation of failures that present at start-up. Where β>1, 

the number of failures increases over time. This is a physical representation of failures due to 

general aging. As both types of failure are present in the system, they can be overlaid resulting in a 

curve that resembles a bathtub as shown in Figure 2-1. 

 

Figure 2-1 Bathtub curve as the sum of 2 Weibull Distributions  
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2.3. Evolution of Risk Based inspection 

It could be argued that inspection was always risk based, however, the earliest attempts at codifying 

the risk of failure of pressurised equipment by the American Petroleum Institute (API) began in May 

1993. Several API member companies including BP, Shell, Exxon, Saudi Aramco, and Texaco[15] 

organized the API 581 committee to develop and refine a quantitative risk assessment methodology. 

The First Edition API 581 was produced in May 2000, following this, there have been a second 

edition in 2008 and a third in 2016.  

2.3.1. Risk 

The first edition laid out the basis for the Risk of failure of an item given in Equation 2-3 as  

𝑅𝑖𝑠𝑘𝑖𝑡𝑒𝑚 = ∑ 𝑅𝑖𝑠𝑘𝑠

𝑠

 

Equation 2-3 

Where Risks is the risk of a scenario happening, a scenario would be the failure of a given type such 

as thinning, fatigue, stress corrosion cracking etc. The Risks for each scenario in Equation 2-4 may 

have a different failure mode and each failure mode has a different associated consequence, for a 

thinning failure on piping there are 4-hole sizes considered. ¼ inch, 1 inch, 4 inch and rupture. 

𝑅𝑖𝑠𝑘𝑠 = 𝐶𝑠 × 𝐹𝑠 

Equation 2-4 

Where Fs = Frequency Adjusted calculated by Equation 2-5. 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑔𝑒𝑛𝑒𝑟𝑖𝑐 × 𝐹𝐸 × 𝐹𝑀 

Equation 2-5 

The Frequencygeneric varies by hole size, for conditions it is possible for risk to be higher for a smaller 

hole size due to its higher Frequencygeneric. 

The second edition of API 581 introduces the concept of RoF(t) i.e., risk as a function of time.  

2.3.2. Probability of Failure 

In the first edition, Probability of Failure was calculated at a scenario level, i.e., failure due to internal 

thinning, fatigue, brittle fracture, and external damage. 
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2.3.3. Thinning Damage Factor 

The thinning damage factor has evolved over the course of the three editions. The common form of 

equations is a base factor corrected for online monitoring, dead-legs, chemical injection. The 

chemical injection and dead leg factors are the same, the online monitoring factor largely the same 

except for the exclusion of oxidation in later editions. 

In API 2000, the base thinning damage factor was determined from the Ar/t and inspection history in 

Table G-7.  

In API 581, the base thinning damage factor was determined from an equivalent Inspection history 

and Art factor. Table 5.11 is essentially the same as table G-7 (excluding corrections).  

The 3rd edition, however, has a completely different approach to the first two. This approach came 

from a need to address the shortcomings in the first two.  

Shortcomings: 

When specifying a pipe thickness, there may be excess thickness beyond the corrosion allowance. If 

this is not included in the calculation it may understate the risk. 

2000, CA not directly considered  

2008, where CA = 0, risk may not immediately take off even though the pipe is at its minimum 

required thickness 

Prescription of Tmin + CA not clear. This can range from the code based Tmin + specified corrosion 

allowance, all the way up to nominal thickness. This causes considerable deviation in results, 

particularly on small bore, heavy wall piping. 

It is found that the recommend inspection frequency can exceed the design life of a piping system, 

even if it is high risk.[16]  

 

In the 2016, the approach was updated to factor the current condition into the result using Bayesian 

updating.   
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2.4. Risk based inspection 

Risk based inspection is used as a means of focusing finite inspection resources on the most critical 

equipment. API RP581 is the most widely used recommended practice in the oil and gas industry for 

quantitative risk-based inspection.  

2.4.1. Risk of Failure 

The underlying basis for this methodology is that Risk of Failure as a function of time (RoF(t)) is 

determined by Probability of Failure as a function of time (PoF(t)) and Consequence of Failure (CoF) 

this is given by Equation 2-6 

𝑅𝑜𝐹(𝑡) = 𝑃𝑜𝐹(𝑡) × 𝐶𝑜𝐹 

Equation 2-6 

2.4.2. Risk Matrix 

Risk is displayed on a risk matrix, risk matrices vary between organisations, however, they will 

display PoF and CoF on their axes and they are generally represented on a logarithmic scale.  

2.4.3. Assessment Periods 

To represent the time dimension on a 2D Risk matrix, the PoF(t) is generally assessed at three points 

of interest.  

0AP this is the current date of assessment 

1AP this is the date of assessment when the inspection is due 

2AP this is the subsequent inspection date 

Where the RoF(2AP) is deemed to be acceptable, inspection at 1AP may be skipped depending on 

the constraints of the integrity management programme. 

2.4.4. Risk Target 

The concept of a risk target, i.e., a defined maximum level of risk is already established at a 

qualitative level. This prioritises inspection of equipment depending on its risk category. 

For quantitative risk assessment, given that a risk matrix has a logarithmic scale, a risk target, i.e. RoF 

is constant can be displayed as a straight line on the risk matrix, this is shown by transforming 

Equation 2-7 to Equation 2-8 and Equation 2-9 

𝑅𝑜𝐹 = 𝑃𝑜𝐹 × 𝐶𝑜𝐹 

Equation 2-7 



24 
 

log𝑎(𝑅𝑜𝐹) = log𝑎(PoF) + log𝑎  (CoF) 

Equation 2-8 

log𝑎(PoF) = −log𝑎(CoF) × (1 +  log𝑏

𝑎

𝑏
) + log𝑎(𝑅𝑜𝐹) 

Equation 2-9 

 

Where b is difference between the PoF categories and c is the difference between CoF categories 

As this equation takes the form y = mx + C it will have a slope of -1 provided the logs have the same 

base. 

 

 

Figure 2-2 Risk Targets API 581 2016, each scale is logarithmic with base 10 

Where the boundaries do not increase logarithmically, e.g. API 581 2008 the iso risk line becomes an 

iso risk curve as shown in Figure 2-3. 
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Figure 2-3 Risk curves in API 581 2008 as the categories are not consistently spaced 

 

As CoF is constant with respect to time for a given CML, the maximum allowable probability is 

determined from Equation 2-10  

𝑃𝑜𝐹𝑡𝑎𝑟𝑔𝑒𝑡 =
𝑅𝑖𝑠𝑘𝑇𝑎𝑟𝑔𝑒𝑡

𝐶𝑜𝐹
 

Equation 2-10 
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2.5. API 581 Approach to internal thinning 

API 581 is the leading quantitative methodology for determining the probability of failure within the 

oil and gas industry. 

1) PoF(t) must be calculated for discrete values of t, this can be readily computed with an 

appropriate software, however, if input data is incomplete it may be cause large deviations 

in the result. 

2) The calculation methodology considers failure as loss of containment. Many integrity 

management programs define failure as operation outside of design limits[17]. Furthermore, 

data management systems may just provide the assessor with a single minimum required 

thickness to compare against.  

3) There are several factors that are applied throughout the methodology that may be based 

on conservative assumptions. Assessments usually apply the worst-case conditions to the 

equipment being assessed.  

Probability of failure as a function of time is determined from Equation 2-11  

𝑃𝑜𝐹(𝑡)  =  𝑔𝑓𝑓 ×  𝐹𝑀𝑆 ×  𝐷𝑓(𝑡) 

Equation 2-11 

Where Gff is the generic failure frequency based on the equipment type, for all pipes it equals 3.06 x 

10-5 /yr. 

FMS is the management system factor; this is calculated on a plant wide level and ranges in value 

from 0.1 to 10. 

Df(t) is the damage factor as a function of time. For standard unlined pipe, API 581 uses Bayesian 

updating and posterior probabilities, determined by referencing previous inspection results in 

standardised tables to determine the future base damage factor given by Equation 2-12. 

𝐷𝑓
𝑇ℎ𝑖𝑛(𝑡) = 𝑚𝑎𝑥 [(

𝐷𝑓𝐵
𝑇ℎ𝑖𝑛(𝑡) ∙ 𝐹𝐼𝑃 ∙ 𝐹𝐷𝐿

𝐹𝑂𝑀
) , 0.1] 

Equation 2-12 

Where the base factor Dfb
thin(t) is given by equation Equation 2-13 

𝐷𝑓𝑏
𝑇ℎ𝑖𝑛(𝑡) = ∑

𝑃𝑜𝑝𝒊
𝑇ℎ𝑖𝑛 × Φ(−𝛽𝑖

𝑇ℎ𝑖𝑛)

1.56 × 10−4

3

𝑖=1

 

Equation 2-13 



27 
 

Where Φ is the standard normal cumulative distribution function. 

PoThin is determined from conditional probability of existing thinning, βi is calculated using Equation 

2-14: 

𝛽𝑖
𝑇ℎ𝑖𝑛 =  

1 − 𝐷𝑠 ∙ 𝐴𝑟𝑡 − 𝑆𝑅𝑃
𝑇ℎ𝑖𝑛

√𝐷𝑠𝑖
2 ∙ 𝐴𝑟𝑡 ∙ 𝐶𝑂𝑉∆𝑡

2 + (1 − 𝐷𝑠𝑖
∙ 𝐴𝑟𝑡)

2
∙ 𝐶𝑂𝑉𝑠𝑓

2 + (𝑆𝑅𝑃
𝑇ℎ𝑖𝑛)2 ∙ 𝐶𝑂𝑉𝑝

2

 

Equation 2-14 

The following values are recommended although they can be determined for a given system: 

COVΔt = 0.2  

COVsf = 0.2  

COVp = 0.05 

The equation is sensitive to COVΔt variation. 

Given that both Fip and Fdl are constant the final damage factor is a function of the base damage 

factor. The weighting, in a worst-case scenario would increase the PoF by 1 level. This may not be 

suitable for piping systems that don’t experience predictable linear corrosion. Localised corrosion 

may not affect the COV sufficiently in the correct area.  

The inspection effectiveness was held constant as plants typically have standardised thickness 

inspections. Where supplementary inspections take place, they are generally inspecting a damage 

mechanism such as stress corrosion cracking that would not normally be detected by conventional 

thickness measurement. 

As the FMS x gff remains constant, the variability of the corrosion rate is the only significant factor 

affecting the PoF(t). 

The PoF according to API581 is ultimately determined by the corrosion rate, however with the 

absence of empirical thickness data, this can be determined through published rates or lab 

measurements. It is stated that general corrosion rarely exceeds four times the expected amount, 

however, localised corrosion may be significantly higher. 

If an integrity management programme of recording ultrasonic thickness readings has been 

established, equal confidence can be applied to historic readings. The methodology prescribes 

assigning high confidence to the prior probabilities, lower confidences are reserved for published 

rates and comparative lab results.  



28 
 

As part of the calculation, three damage states are considered. 

As expected: although API 581 does not quantitatively prescribe what constitutes each damage 

state, for the purpose of this comparative assessment, the damage state has been categorised based 

on the actual corrosion rate CRa. 

Given that the corrosion allowance (CA) is based on the design life (DL) (typically 20 years) the 

expected corrosion rate CRe can be determined from Equation 2-15  

𝐶𝑅𝑒 =
𝐶𝐴

𝐷𝐿
 

Equation 2-15 

Damage state1: CRa ≤ CRe 

Damage state2: CRe ≤ CRa ≤ 4 x CRe  

Damage state3: 4 x CRe ≤ CRa 

Three confidence levels are considered: 

Low confidence applies to published data 

Medium confidence applies to lab data 

High confidence applies to direct measurement 

To apply this methodology in a manner that updates the risk at an uninspected cml (CMLu) given that 

elevated damage was found at a similar location (CMLd), the following assumptions must be made: 

1) the previous damage state of CMLu was p1, i.e., undamaged, otherwise, it is likely to have 

been repaired under an integrity management program. 

2) The elevated damage at CMLd is either p2 or p3. 

3) The confidence that this damage could apply to CMLu is medium as comparable in-service 

conditions approximate lab conditions. 

4) There are no other low or medium confidence data applied to the assessment.  
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2.6. ANOVA in the Nuclear Industry 

The nuclear industry, and more generally, the power generation industry has developed their own 

procedures for dealing with internal corrosion on secondary systems. These are more transferrable 

as the consequence of failure is comparable. Primary systems in the nuclear industry have a far more 

intense inspection regime than would be practicable in oil and gas.  

H. Yun et al[18] discusses the methodology of determination of thinning as either present or not. In 

this paper, the null hypothesis is that there has been no internal thinning. In general, given a known 

error in measurement, a Monte Carlo simulation was applied to the results of grid pattern. The 

paper then compares the results and threshold for several different methods of analysing the 

readings including  

1) analysis of variables (ANOVA) 

2) Total Point Method (TPM) 

3) Locational Deviation Method (LDM) 

4) Binomial variables uniformity test (BVUT) 

5) Continuous variable uniformity test (CVUT) 

Where the grid pattern was on an elbow where the thickness could not be considered uniform, the 

measurements were taken along a line with the same relative polar coordinates. 

For each subset of data, the mean, standard deviation, and variance could be calculated. Factoring in 

the known error in measurement could then prove to a degree of confidence if thinning had 

occurred.  

For a section, if the null hypothesis was rejected, i.e., where thinning had occurred between two 

inspections, corrosion rate was taken as the slope of the readings, for greater than two, a least 

squares approach was used to find the slope. 

In practice, this could be implemented in the oil and gas industry, however, inspectors are usually 

able to determine if there is localised corrosion present from the backwall pattern of the A scan 

results. 
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2.7. Norsok Models v API 581 models 

There were several published methodologies developed by NORSOK for calculating corrosion rates. 

An example is NORSOK M-506 for calculating corrosion rates based on internal pressure, 

temperature, pH, CO2 fugacity and partial pressures of H2S in carbon steel pipes.  

There have been several studies performed comparing the predicted corrosion rates with the 

observed. 

The paper Coupling Norsok Co2 Corrosion Prediction Model with Pipelines Thermal/Hydraulic 

Models to Simulate Co2 Corrosion Along Pipelines[19] dealt exclusively with pipelines; therefore, the 

results would only be applicable to straight sections of piping. There are several factors that have 

considerable effects on corrosion rate that are not found in straight sections of piping such as: 

Microbial action found in dead legs. 

Excessive corrosion found on the extrados of elbows. 

The flow state can change at fittings, the difference in corrosion rate between turbulent and laminar 

flow is discussed in this paper[20]. 

Corrosion due to cavitation can often be found on eccentric reducers on the suction side of the 

pump. 

In the above study, temperature, pressure, and viscosity were modelled as a gradient.  

The temperature gradient alone could account for double the difference in corrosion rate. 

The results of the study found: 

Both methodologies are commonly used in the specification of corrosion allowance during the 

design stages of piping systems. As they are a guide to general corrosion of a piping system, they do 

not give enough insight into local areas where variations in temperature, pressure and water 

content exceed the stated amounts in the process flow diagram. Packages such as CAESAR can 

calculate local temperatures in a piping system. Normal operating conditions can range from 

ambient temperature and pressure up to design pressure. In a separator, which is typically the first 

pressure vessel feedstock encounters in processing, the feed line will be operating close to the 

design temperature and pressure. The drain piping will operate intermittently at a lower 

temperature and pressure. 

Localised corrosion does not invalidate these scientific models for corrosion. If the models are 

retrospectively applied to areas where consideration is given to localised conditions such as the 
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presence of CO2 in water in a dead legs[21] in gas piping systems, then the actual corrosion rate can 

be reconciled with these models. However, short of measuring these conditions on site they can be 

missed. 

2.8. Failure investigations 

In most industries where a critical engineering component fails in service, a failure investigation is 

carried out. Depending on the type of failure e.g., fatigue, creep, brittle fracture, corrosion or stress 

corrosion cracking, there are an array of tests that can be performed on the failure specimen.  

A comprehensive internal thinning inspection programme will often catch corrosion before loss of 

containment, the affected area will then be replaced. Even when loss of containment does not 

occur, it is common to perform failure analysis on the replaced section (failure specimen) to gain a 

greater understanding of the damage mechanism active in the system. 

Failures can occur from either a single mechanism, or through a combination of mechanisms. Where 

internal corrosion is deemed to be a factor, the microscopy or environmental analysis may be 

performed on the failure specimen.  

The outcome of the failure analysis will be mitigating action to prevent future corrosion of this 

nature. These mitigating actions include: 

Modification of operating parameters[22] 

Increased monitoring at susceptible areas 

Addition of corrosion inhibitors. 

2.9. Distribution of Corrosion Rates 

There are many articles surrounding the probability of detection[23] [24] of corrosion given its 

presence and the probability of failure given a linear corrosion rate. There is, by comparison, 

relatively few papers that discuss the distribution of corrosion rates of a system.  

The global dataset was tested for normality and lognormality. The results contained in APPENDIX C 

show that Weibull distribution is the closest approximation. Normal distribution tends to 

underestimate the corrosion rate and lognormal tends to provide a reasonably conservative 

estimate. Ultimately lognormal distribution was ultimately chosen as it provided the most suitable 

conservative values with a minimal amount of data. 



32 
 

This chapter will outline how this methodology could be used to update risk by applying the 

knowledge that damage was found at a similar location. However, from a top level there are 

fundamental differences that make this methodology difficult to apply in practice. 

The suitability of a distribution can be determined by its ability to closely model the frequency of 

occurrence of a corrosion rate one standard deviation beyond its expected value.  

As determining the probability of failure relies on the distribution of corrosion rate. A variety of 

distribution types were examined in this study. Ultimately Log Normal distribution was selected. 

There are several sources[25] that cite internal corrosion of piping systems as a Weibull distribution. 

A modified Kolmogorov/Smirnov test was applied to each piping system individually and to the 

global data set. It was found that they did not fit a normal or lognormal distribution. The results of 

the quantile/quantile (Q-Q) plot are available in APPENDIX C. It was notable that the projected 

probability of a corrosion rate tended to be under/overstated above the mean.  

Other distribution types were considered but not used for various reasons. Gumbel distribution 

could be used to predict the maximum expected corrosion rate given data inputs.[26] As this itself is 

dependent on a confidence interval, it does not give probability of failure in exact terms. 

Extreme value theory is used on a global set. A tail weighted maximum likelihood is calculated by 

[27] this method. This distribution was found to model the tail of the distribution. 

Weibull distribution is applied in reliability engineering at predicting failures above a certain 

threshold. Binomial distribution[28] can be used to calculate the overall PoF of a piping system if 

there is a known CR limit in place. Poisson Distribution can be used to determine the number of 

expected failures within a given time frame. The general form is given in Equation 2-16 

𝑃𝑥𝑡
(𝑥) =

(𝜆𝑡)𝑥e−𝜆𝑡

𝑥!
 

Equation 2-16 

However, in practical terms, Poisson distribution reverts to the mean when applied to a single failure 

in a single year. It can, however, be used to measure current failure data over the historic failure 

data to determine if the generic failure rate is increasing. 

For a given piping system, previous observations of corrosion rates at that location and other 

representative locations can be used to determine a probabilistic distribution of the future corrosion 

rate at that point.  
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2.9.1. Distribution Selection 

CDF graphs for each individual piping system were prepared and Weibull and lognormal curves were 

fitted over the data. These plots are available in APPENDIX C . The overall results are tabulated 

below. Overall, the risk target date tended to be consistent between two parameter Weibull and log 

normal. The results diverged as the corrosion rates increased, however, they were beyond the 

practical limits of what corrosion rates are expected in the industry overall. 

2.10. Determining PoF(t) of internal corrosion 

2.10.1. Dataset 

The chosen dataset for the corrosion rate classification was a sour service gas unit. Data was 

generated from the global dataset using the data model shown in Figure 2-4: 

 

 

Figure 2-4 CML Integrity Management Data Model 

A typical summary of a piping system would look like Figure 2-5. Tnom, Tmin and Tc are all variable over 

the entire system. This is due to the variation in nominal diameter and design pressure. It is not 

uncommon for Tc to exceed Tnom as pipes have a mill tolerance of 12.5%. 



34 
 

  

Figure 2-5 Total Piping System thickness profile 

By focusing on a single section of pipe with a constant Tnom and Tmin any abnormality can be seen 

more clearly as shown in Figure 2-6. This section can be treated as a set 

 

Figure 2-6 Single Piping System thickness profile 

2.10.2. Remaining Life 

The concept of the remaining life of a CML appears in many early versions of integrity management 

practices[29] and as a footnote in construction codes. The general form of remaining life equations is 

given by Equation 2-17 
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𝑅𝐿 =  
𝑅𝐶𝐴

𝐶𝑅
 

Equation 2-17 

Where: 

RL = Remaining Life in years 

CR = Corrosion Rate in mm/year 

RCA = Remaining Corrosion Allowance in mm 

Minimum Required Thickness 

Tmin is determined by the integrity management system in place. A common value for Tmin is the 

design code pressure requirement Tmin. These equations are generally a variation of Equation 2-18 

𝑡𝑚𝑖𝑛 =  
𝑃 × 𝐷

𝑆 × 𝐸
 

Equation 2-18 

Where  

P = Design Pressure 

D = Diameter 

S = Allowable Stress of the material for a given design code 

E = Joint Efficiency 

Integrity management systems treat failure as operating beyond the permitted envelope, even 

though an actual loss of containment may not occur. When equipment is found to be operating in 

this condition, there are approaches, most notably API579 which make use of redundancy in 

pipework design, it is possible to operate where the RCA is < 0, however, where these conditions are 

found, mitigating action are generally carried out as soon as practicably possible.  

There are other probabilistic approaches where the Tmin is treated as a distribution, due to the 

variations of the Ultimate Tensile Strength (UTS) of the steel. [30] 

For the purposes of this study however, the minimum required thickness will be treated as a 

predetermined scalar value calculated from ASME B31.3. 

Remaining Corrosion Allowance (RCA) 
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The RCA at a given inspection point can be determined by Equation 2-19 from the current thickness 

(Tc) and the minimum required thickness (Tmin) 

𝑅𝐶𝐴 =  𝑇𝑐 − 𝑇𝑚𝑖𝑛 

Equation 2-19 

There are many ways to increase the RCA at a given CML such as: 

1) Reinspect, this may increase Tc if the previous inspection result was incorrect 

2) Repair, this increases the value of Tc 

3) Rerate, this reduces P thus reducing the Tmin 

4) Replace the section this increases the Tc  

Although the RCA can be increased, for the purposes of this study, it will be taken as the difference 

between Tc and the design code Tmin. 
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2.11. Machine Learning 

Machine learning covers a broad range of algorithms that predict results based on certain inputs. 

The difference between machine learning and standard predictive models is that predicted results 

from machine learning can change over time as without manual reassessment. This process is known 

as training. The predicted results may be in the form of numeric output, e.g. corrosion rate in 

mm/year or a classification e.g. corrosion type, which is discussed in chapter 4.2. 

The research conducted as part of this thesis was to demonstrate that machine learning could be 

used to supplement manual methods of PoF calculation. Due to the quality of data available, it was 

not possible to explore more sophisticated models than those outlined in this section. 

To determine the most suitable type of machine learning for determining corrosion rates and 

corrosion type classification, the data acquisition model and required outputs must be considered. 

Artificial Neural Networks (ANN) provide a methodology for obtaining a numeric output from a set 

of known inputs.  

Supervision is a term used in machine learning that trains an algorithm to give a known output. 

Manually calculated corrosion rates based on a linear least squares regression model has known 

inputs and known numeric outputs and can be trained using supervised ANN. 

Unsupervised learning is useful for pattern classification and already has many applications in the oil 

and gas industry such as anomaly detection in welds[31], an image is scanned for features which are 

then classified together.  

Despite developing a universal data model for the CMLs, the data may be incomplete for a variety of 

reasons. Because of this, multiple classification algorithms may be run on the data. Where more 

than one classification algorithm may be available, a Random Forest may be used to determine the 

overall classification of a feature. 

2.12. Summary 

From looking at the flow of corrosion rate estimation through to risk of failure in Figure 1-12, each 

step appears to be contained, i.e. each level passes a scalar number to the next level up with no 

feedback mechanism. By combining the uncertainties into a single equation, using a supervised ANN 

to calculate the corrosion rates and an unsupervised classification algorithm to group similar CMLs 

together the aim of creating a POF feedback loop can be achieved. 
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3. Data Structure 

3.1. Introduction 

The data structure has borrowed common elements from Pipeline Open Data Standard database 

(PODS) and asset management tools such as Asset Condition Evaluation Tool (ACET). There were a 

number of critical factors that were not available which are known to have an effect on corrosion 

rates such as flowrate, water content, pipe orientation and operational continuity. Were this data 

readily available, it could be incorporated into the data model. 

3.2. Risk Based Inspection 

In API581, PoF(t) is driven by several factors including fatigue, cracking and fracture. In these 

calculations, the corrosion rate is a scalar input and is independent of the entire system, therefore 

updating the PoF(t) calculations are done manually and typically not until the next inspection is 

carried out.  

 

Figure 3-1 PoF profile of a facility after 4 years vs corrosion rate 
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Figure 3-2 PoF profile of a facility after 10 years vs corrosion rate 

Figure 3-1 and Figure 3-2 show the corrosion rate (Cr) vs PoF for the facility, note that the highest CR 

does not immediately translate to a higher PoF but over time the general trend is true.  

 

3.3. PoF Calculation  

Probability of Failure  

The limit state equation for failure given in Equation 3-1 is by definition 

𝑅𝐿 ≤ 0 

Equation 3-1 

Therefore, the PoF at a time t in the future as shown in Equation 3-2 as  

     𝑃𝑜𝐹(𝑡) =  𝑃(𝑅𝐿 − 𝑡 ≤ 0) 

Equation 3-2 

Substituting Equation 2-19 into Equation 3-2 gives Equation 3-3  

𝑃𝑜𝐹(𝑡) =  𝑃(𝐶𝑅 ≥
𝑅𝐶𝐴

𝑡
) 

Equation 3-3 
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Taking {C} a set of CMLs {CML1, CML2…. CMLn} that have been classified according to similarity in 

their expected corrosion rates then be defined in terms of a mean x ̄(Equation 3-4) and standard 

deviation σ (Equation 3-5) 

�̅� = ∑
ln (𝐶𝑅(𝐶𝑀𝐿𝑖))

𝑛

𝑛

𝑖=1

 

Equation 3-4 

And 

𝜎 = √
∑ (�̅� − ln (𝐶𝑅(𝐶𝑀𝐿𝑖))2𝑛

𝑖=1

𝑛
 

Equation 3-5 

Then the likelihood of a corrosion rate being exceeded can be determined by Equation 3-6 

𝑃(𝐶𝑅 ≥ 𝑥) = 1 − Φ (
𝑙𝑛𝑥 − 𝜇

𝜎
) 

Equation 3-6 

Where Φ is the cumulative distribution function of the standard normal distribution. 

Combining all the equations together, for a thickness tc, within the set the PoF(t) can be determined 

by Equation 3-7  

𝑃𝑜𝐹(𝑡) = 1 −  Φ (
ln (

𝑡𝑐 − 𝑡𝑚𝑖𝑛
𝑡 ) − 𝜇

𝜎
) 

Equation 3-7 

3.3.1. Effect of inspection on PoF 

From the time of inspection, for a constant RCA and a known corrosion rate distribution, a 

continuous PoF curve can be drawn.  
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Figure 3-3 PoF profile of 1,3 and 6-year inspection frequency 

Figure 3-3 is the idealised PoF profile of a pipe where the initial corrosion allowance was 3mm and 

the design life was 20 years. The standard deviation for the corrosion rate was taken from Appendix 

A. The inspected curve assumes a corrosion rate of 0.15 mm/year with the wall loss being confirmed 

at each inspection. The reduced RCA at each inspection means that the PoF increases quicker and 

exceeds the previous maximum after each inspection period. 

3.4. Summary 

By defining boundary conditions of a CML, a continuous PoF(t) curve can be drawn. This curve can be 

updated as inspection data gets added. Immediately after inspection, the PoF(t) is reduced to 0 and 

as equipment approaches its minimum required thickness, the PoF(t) reaches its threshold in a 

shorter timeframe. Equation 3-7 can be used with any representative dataset, however, as it 

includes a term for standard deviation, excessive scatter or corrosion rates within the dataset may 

prematurely increase the risk. 
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4. Machine Learning Approach to Corrosion Rates 

4.1. Introduction 

This chapter outlines a novel approach to corrosion rate calculations by the application of machine 

learning. To validate the results against the current industry approach, the corrosion rate for the 

dataset was first calculated using the current approach. It was then attempted to calculate corrosion 

rate through classification and finally, corrosion rate was calculated a neural network.  

4.2. Current Approach 

Currently, where the thickness history of a CML is available, the future corrosion rate is classified 

visually based on the perceived trend 

 

Figure 4-1 Visual Assessment of a Single CML 

Each CML is reviewed in isolation, where the data does not conform to a straight line e.g. in Figure 

4-1, the reading which is least likely to help predict an accurate future corrosion rate is removed 

from consideration. There are several reasons why a reading may be removed from consideration. 

1) Replaced Section: When a section has been replaced with the exact same material, the 

previous reading may produce a trend that is useful for forecasting, however including the 

new reading would distort this calculation. This is information that may not fit the standard 

inspection reporting framework. A review of the piping systems repair history would have to 

be known in this case.  
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2) Short term corrosion: Short term corrosion is the linear corrosion rate taken between the 

last two readings. Where the short-term corrosion is higher than expected, the assessor will 

look to assess the credibility of this rate.  

There are many reasons that corrosion rate would have increased since the previous 

inspection. A commonly documented case is increasing water cut[32] in offshore 

installations. At the time of assessment, if there have already been replacements made on 

the system, and a failure investigation has indicated that the corrosion was due to the 

current operating conditions then the assessor may judge the calculated short-term 

corrosion to be credible. 

A 12.7 mm pipe may have an installation thickness anywhere between 12 and 14 mm. An 

inspection taken one year apart could easily show a difference of 1mm giving a short-term 

corrosion of 1mm/year, which likely exceeds the design corrosion rate. If the latest reading 

is greater than 12mm the assessor may conclude that there is no active corrosion at that 

location.  

3) Readings taken on fittings: Fittings such as elbows formed by bending may have thickness 

deviations of up to 20%[33]. The repeatability of thickness measurements on fittings such as 

Tees, Elbows and reducers is a well-documented issue.[34]  

All these issues are considered qualitatively in the corrosion rate assessment of each CML. Due to 

the qualitative nature of the assessment, the disparate sources of data and the sheer volume of 

CMLs to be assessed, it is too complex to consistently apply all the pertinent data at hand for each 

assessment.  
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4.2.1. Corrosion rate characteristics 

By classifying the corrosion type using the available criteria for the first 10% of points in a system, 

the remaining CMLs can be compared to see if they conform to the same rules. 10% was selected as 

a practical amount to cover all likely scenarios of corrosion. 

While design and operation data related to the piping systems can be queried quite easily, there is 

no method of searching a database for the likeness of the shape of the corrosion. A neural network 

was set up to rank all other points in the system in terms of similar corrosion history. 

If there is some commonality between the top search results and the CML being assessed, e.g. a 

common process condition, material, fitting type etc, further confidence is gained in the determined 

corrosion rate. This selection can then be grouped or further split out. 

A single CML with a reading 0.2mm less than the previous inspection may have anywhere between 0 

mm and 0.4 mm wall loss. However, if a group of points experience an average drop of 0.2mm, then 

each CML should have an increased risk profile between then and the next inspection. 

4.2.2. Linear Corrosion 

Where Tc from the latest inspection result appears to follow on from the previous inspections, then 

the corrosion is classified as linear. The corrosion rate is then determined using a least squares 

approach on all data points.  

4.2.3. Error in measurement 

The paper Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping[35] 

discusses the error in measurements taken by UT. Data collected by 12 qualified inspectors on five 

pipes and 14 fittings under laboratory conditions showed that a standard deviation of up to 0.25mm 

on fittings and 0.05mm on straight pipe. In this study, a factor of 2 was applied to these deviations to 

allow for the fact that the quality of the data was unknown, and that the resolution of the data was 

0.1mm. 

Given that inherent error in measurement is equal in magnitude to the expected change in wall 

thickness between inspections, the corrosion rate may appear to vary considerably during the early 

inspections. This is further compounded by the 12.5% mill tolerance allowed on pipes in most 

construction codes. 

To test how the PoF(t) handles errors in measurement, a Monte Carlo simulation was performed on 

the data set. It was assumed that the errors in measurement followed normal distribution.  

Each thickness reading was updated using Equation 4-1 
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𝑡𝑛𝑒𝑤 = 𝑡𝑐 + (−1)𝑛 × 𝜎√𝑙𝑛(
1

2𝜋𝑝2𝜎2
) 

Equation 4-1 

Where  

n is a random integer between 1 and 2 

p is randomly distributed between 0 and 1 

σ is the standard deviation in error measurement, a conservative value of 0.1mm was used for 

straight pipe and 0.5mm was used in this Monte Carlo simulation.  

 

Figure 4-2 CR Distribution of Monte Carlo Simulation 

The results of the simulation given in Figure 4-2 show that error in measurement causes greater 

likelihood that a given corrosion rate is exceeded. This is due to the loss in useful data. Almost 50% 

of the points had to be excluded as the CR < 0. This was coupled with the CRs on the high-end of the 

scale doubling in value. 
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4.2.4. Short Term Corrosion 

Where Tc from the latest inspection appears lower than predicted from previous inspections shown 

in Figure 4-3, it is safer to forecast the corrosion rate from the latest two inspection points. 

 

Figure 4-3 Tc is lower than expected based on all previous readings 

4.2.5. Long Term Corrosion 

Where Tc from the latest inspection appears higher than predicted from previous inspections shown 

in Figure 4-4, it is safer to forecast the corrosion rate from the overall time. 

 

Figure 4-4 Thickness Readings Over Time 

 

For each individual CML, the Min Reading and Date can be plotted. Corrosion rate is determined by 

taking a linear trend of the previous inspection readings. 
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4.3. Data Normalisation 

In order to apply machine learning to the data set, the data first needed to be normalised. The 

results of machine learning can be skewed where one parameter is significantly larger than the 

other. In this case, thicknesses in mm range from 0 to 50 whereas the dates in years ranged from 

1970 to 2017. The data was normalised at a CML level by subtracting the reading at the first year 

from all subsequent readings. The script to produce this data can be found in APPENDIX D. 

The raw data used in this study was formatted Point, Date, Tc in mm.  

Date Tc 
 

ΔY ΔTc 

May-14 7.3 
 

0.00 0 

Oct-12 7.6 
 

1.58 0.3 

Sep-11 8 
 

2.67 0.7 

Feb-03 8.5 
 

11.25 1.2 

Jan-00 9 
 

14.33 1.7 

Table 4-1 Raw values get normalised for machine learning 

4.4. Corrosion classification 

As the number of readings per cml was variable, a neural network was constructed for each number 

of readings from three up to 10. Where there were more than 10 readings at a CML, the latest 10 

readings were taken. 

This diagram is represented mathematically in Equation 4-2 by multiplying the inputs by at least one 

weight matrix, converting it through a sigmoid function to generate outputs. The sigmoid function is 

used to train the matrices as it is monotonic and differentiable for all values. 

{𝐼} 𝑥 𝜎[𝑊1] 𝑥 𝜎[𝑊2] …  𝜎 [𝑊𝑛]  =  {𝑂}  

Equation 4-2 

Where the sigmoid function σ(x) is given by Equation 4-3 as:   

𝜎(𝑥)  =  (1 +  𝑒 − 𝑥) − 1 

Equation 4-3 

The values within the weight matrices are trained by a process known as backpropagation, a 

selection of data with known outputs called a train set is run through the model. Where the output 

is used for classification, in this instance, corrosion type, the values in the output vector will equal  0 

or 1. 
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The specific type of backpropagation used to train this data was stochastic gradient descent which 

recursively apportions the error back through the network in proportion to the rate of change or 

gradient of the neuron at a given value. When the sigmoid function is used as an activation function, 

its differential is given by Equation 4-4  

𝜎′(𝑥) = 𝜎(𝑥) × (1 − 𝜎(𝑥)) 

Equation 4-4  

Initially, the weight matrices e.g. in Equation 4-5 are populated with random variables. The results 

are then compared to the expected results. The error is then run backwards through the weight 

matrices, apportioning the largest change to the weight where the rate of change of error is the 

largest. 

𝜎({

𝑌1

𝑇𝑐1

𝑌2

𝑇𝑐2

} × [

𝑤11𝑤21𝑤31𝑤41 
𝑤12𝑤22𝑤32𝑤42

𝑤13𝑤23𝑤33𝑤43

𝑤14𝑤24𝑤34𝑤44

]) = {

𝑂1

𝑂2

𝑂3

𝑂4

} 

Equation 4-5 

 

This can be represented graphically as shown in Figure 4-5: 
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Figure 4-5 Neural Network to determine corrosion mode 

 

During inspection, a reading may be taken at a location that shows significant corrosion, over and 

above what was expected. In this instance, an operator will want inspection carried out on CMLs 

that have a similar susceptibility.  

This susceptibility was determined by searching for similar location where there may historically 

have been a comparable set of readings.  

In practice, where a single CML shows a deviation from the expected thickness within 0.5 mm it is 

often accepted as being an anomaly, however, if there were many points that showed a similar 

deviation, further consideration could be given to these anomalous readings. Currently, there are no 

reliable methods of classifying or grouping points in this manner except for the recall of the assessor. 

This is a flawed method as there can be multiple assessors working on a single piping system. 

The cost function varies by application. A standard cost function applies equal cost to false negative 

predictions and false positive predictions, however, in a corrosion classification algorithm where the 

majority of cases should return false, the cost of a false negative i.e., a result that appears negative 

when it should not, should be higher than a false positive i.e., a result that appears positive when it 
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should not. In this instance, a false positive will require unnecessary inspection whereas a false 

negative may lead to the loss of integrity of a system. 

 

 No Predicted Damage  Predicted Damage 

No Real Damage No Action Unnecessary Repair 

Real Damage System Failure Necessary Repair 

 

The cost of scheduled repair on critical piping systems can be orders of magnitude lower than the 

losses in production alone. There are also environmental, safety and legislative issues associated 

with uncontrolled releases. 

Training: 

When behaviour had been observed on the training data, in this instance short term corrosion, it 

was assigned an output of 1 to the short-term corrosion output node. 

The data was collated in excel and SQL before being analysed using the package neuralnet in 

RStudio.  

Train set: 

In machine learning, data is split into training and validation sets. In the data set, where readings 

were outside the expected value, they were supplemented by an inspector’s comment. These were 

then split into 70% training and 30% validation for each known type of corrosion.  

This code is available in Appendix D.  
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4.5. Corrosion Rate Calculation 

All the CMLs had a corrosion rate calculated by manual assessment of the thickness history. Each 

point had its entire history assessed based on the assumption that corrosion rate was linear. Any 

readings that could be considered outliers by overlaying supplemental data were excluded from 

assessment.  

The pattern of exclusion was repeatable in many cases, e.g. a line that had been replaced may have 

a thickness history that reduced consistently and was then restored to its nominal thickness. In such 

cases, the restored thickness could be ignored for the purposes of corrosion rate calculation.  

Given that all the CMLs had this manual assessment performed, they had a validated corrosion rate. 

By assuming that the same thickness reading produced the same corrosion rate, a neural network 

was implemented to fit these inputs of thickness and time against a defined output of corrosion 

rate.  

The total number of readings available for each point varied from two to nine. The total number of 

readings was skewed towards the lower amount. 90% of the CMLs had less than 6 readings. An 

individual network was set up for each amount of thickness readings in order to prevent the results 

of CMLs with lower reading amount skewing the CMLs with a higher number of inspections. 

 

The results of these neural networks are available in APPENDIX B. in Figure B-0-1 and subsequent 

figures, the Neural network calculated results (y-axis) were plotted against the manually calculated 

results (x-axis).  

The network appeared to predict corrosion rates with a higher degree of accuracy where the 

readings were lower, and overall, the resulting predictions produced lognormal distribution curves 

that could be used for meaningful predictions.  

 

4.6. Summary 

The methodology used in this assessment is suitable for analysing large datasets to give general PoF 

predictions however, the classification model did not identify any useful patterns to give more 

refined predictions. 
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5. Discussion of results  

5.1. Results Overview 

 

The current neural network does not classify corrosion by type but is able to retrieve points from 

the global data set in order of decreasing similarity of the CMLs corrosion history. This data 

allows us to identify CMLs with similar corrosion history, thus providing a useful tool for manual 

classification of corrosion type.  

An attempt was made to get the neural network to automatically classify the different corrosion 

types by random forest, however the network could not be trained sufficiently to provide 

consistent output. This is due to the number of potential classifications, the variety of data 

points within each classification type and the varying number of data points within each CML 

which created too many variabilities for the tool to learn and process correctly. Where the 

number of potential corrosion types is reduced and the data points within each CML is 

consistent it will be possible to train the network to identify the corrosion types using this 

methodology.  

One of the most significant issues with this methodology is teaching the neural network to 

ignore scatter within the data sets. A significant potential application of this tool is for it to 

identify where a process change has occurred, and the rate of corrosion increases. This is 

difficult to code within the tool given the dual needs of overlooking scatter but also identifying 

significant and dramatic shifts within the pattern of readings where they are significant.  

A significant potential application for this tool is re-classifying data points that will have 

previously been manually classified as scatter, now as leading indicators of increased corrosion. 

When readings are taken and a more significant decline than expected is recorded, the tool will 

be able to identify previous readings that may have been leading indicators of the increased 

corrosion and re-classify them across CMLs.  
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5.2. Accuracy 

The corrosion rates manually calculated from the least squares approach excluding outlying data 

was compared to the calculated corrosion rates from the neural network.  

5.2.1. Overall Accuracy 

 

Comparing the real and calculated CRs of CMLs where not all the thicknesses were used in the 

assessment is less reliable. Figure 5-7 shows that some predicted rates differed significantly from 

the manually calculated value however, as these errors balance out over a large dataset, the 

resulting lognormal distribution curve in Figure 5-1 appears to give a close enough 

approximation to provide a meaningful corrosion rate distribution curve to use in a PoF 

calculation. 

 

It should be noted that directionally, most predictions made by the neural network are better 

than or equal to calculating CR using all the available points.  

The data appeared to be scattered or distributed on both sides, i.e. the Cr on some CMLs were 

calculated to be above what they were and some below. 

 

Comparing the real (x-axis) and calculated (y-axis) CRs of CMLs where all the thicknesses were 

used in the assessment Figure 5-2 show the Neural Network calculations to be reliably within 0.1 

mm/year. The results did not show a particular bias, however, Figure B-0-5 shows that the log 

normal distribution curve generated from the predicted results is closely aligned with the 

calculated results.  

The large spikes shown in Figure 5-7 are the absolute error between the corrosion rate as 

calculated by the neural network and the corrosion rate as calculated from all available thickness 

readings.  

This disconnect would be a useful methodology for screening and highlighting CMLs that would 

require manual interpretation. Figure 5-2 shows the accuracy of the entire dataset, Neural 

Network Results shows the dataset broken down by type and number of readings available.  

Figure 5-6 shows that the accuracy is reduced when compared to the entire data set but the 

majority of CMLs still fall within ±0.1 mm/year. 
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5.2.2. Accuracy of Neural Network Entire Dataset 

 

Figure 5-1 The lognormal distribution curves for the entire dataset from the calculated and predicted corrosion rates are 

relatively close 

 

Figure 5-2 All Corrosion rates vs Predicted Corrosion Rates 
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Figure 5-3 The lognormal distribution curves for the CMLs with no invalid readings 

 

Figure 5-4 All Corrosion rates vs Predicted Corrosion Rates all valid readings 
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Figure 5-5 The lognormal distribution curves for the CMLs with no invalid readings 

 

 

Figure 5-6 All Corrosion rates vs Predicted Corrosion Rates excluding readings 
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Figure 5-7 Predicted CR vs CR Including All Readings 

6. Conclusions and Future Work  

6.1. Conclusions  

The conclusions that can be drawn from this study are: 

6.1.1. Current Approach 

The current approach to determining the PoF(t) of a piping system has been difficult to implement in 

practice due to a lack of available data. The calculation is not transparent enough to determine the 

effect of supplemental data on the future forecast. 

The previous versions of API 581 were also highly subjective and did not provide a mechanism of 

applying local corrosion data to a piece of equipment. 

Since the 2008 version of API 581, the 2016 version has standardised the PoF and CoF to form 

straight line “ISO Risk” lines. Given that the CoF has remained constant, this requires that the 

Internal Thinning module be more time sensitive, however, the actual result is driven by an 

understanding of historical damage that has not yet been fixed. 
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6.1.2. Feedback 

Feedback was shown to be updated by adding a simulated inspection. 

Log normal distribution was shown to overestimate the corrosion rate slightly but more accurately 

predicted the extreme values; therefore, it is more suitable for risk assessment.  

Weibull distribution was a better fit, but it tended to underestimate the higher end corrosion rates. 

Given that the distribution follows this pattern it is more useful for forecasting the remaining life of 

an aging asset. 

The feedback loop is possible to implement across multiple piping systems and on multiple 

classifications such as diameter, fitting type service, material that are available through the integrity 

management system. The following scripts have been included in Appendix D. 

Script 1: Sql Code forData normalisation 

Script 2 calculates the corrosion rate based on the trained network. 

Script 3 trains the neural network based on a database of readings Based on the CML piping integrity 

model. 
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6.1.3. CR Calculation 

The CR could be calculated effectively and accurately by a neural network. On review, it did show a 

higher degree of effectiveness on CMLs that had their entire thickness history included in the 

corrosion rate calculations. 

It was less effective on CMLs with excluded readings however it was generally somewhere between 

the all-inclusive corrosion rate and the manually assessed corrosion rate. This was inclusive of 

corrosion rates that tended negatively, i.e. when a line was replaced the network was still capable of 

assigning the previously determined corrosion rate to that CML.  

The purpose of any of these studies is to recommend the next appropriate inspection date. The 

sensitivity of the corrosion rate as applied in an API 581 study or otherwise generally does not vary if 

the corrosion rate is ±0.05 mm/year. 

The neural network was able to calculate over 99% of CMLs to within that tolerance. The CMLs 

outside of this threshold were generally unusual cases with similar representative data not applied 

to the same network. 
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6.1.4. Classification 

The accuracy of the neural network was not high enough to use as a classification, i.e. it would not 

be enough to determine if a system is seeing elevated corrosion. There were several factors in this 

study that likely reduced the effectiveness of the classification: 

1) There was not enough known elevated corrosion data present. If the data used was on a live 

system with elevated corrosion experienced at known locations, then the exact pattern of 

elevated corrosion could be incorporated into the neural network. 

2) The majority of CMLs had a low number of readings. There are several scenarios that may 

start off with the initial 3-4 readings being identical. Because there was no clear way to 

delineate these CMLs in the study they were all considered to be the same. 

3) The exact operating conditions were unknown.  

In the original data set, comments were left by both the inspector and the analyst. The inspectors’ 

comments often provided context to the analyst and future analysts could make use of both the 

inspectors and the previous analysts’ comments.  

The inspectors’ comments often contained easily searchable terms such as pitting, scab corrosion, 

internal corrosion, confirmed reading, arrested corrosion. These all provided valuable context to an 

assessor but were not included in the neural network training data. 

A future assessment could gain accuracy if an algorithm was able to recognise these data points. 

6.1.5. Validation 

This model was not validated against the failure data as this was not available. 
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6.2. Comparison of PoF vs API 581 

The PoF as determined by API 581 is influenced strongly by the inspection effectiveness. The 

guidance in API 581 for assigning this effectiveness is subjective. A comparison of PoF was 

performed against the feedback method. There was no clear correlation between the 2 methods  

6.2.1. Effectiveness A 

 

Figure 6-1 Forecasted Risk with inspection effectiveness A 
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6.2.2. Effectiveness B 

 

Figure 6-2 Forecasted Risk with inspection effectiveness B 

6.2.3. Effectiveness C 

 

 

Figure 6-3 Forecasted Risk with inspection effectiveness C 
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6.2.4. Effectiveness D 

 

Figure 6-4 Forecasted Risk with inspection effectiveness D 

 

6.3. Future Work 

Future development and refinements of these methods could potentially be pursued in the 

following areas. 

While it did show a correlation, the PoF tended to be understated by API 581, particularly when 

there were repeated inspections at the same location confirming the corrosion rate. 

 

For the neural network to be implemented in practice, there would likely be resistance from the 

asset owners as it was equally likely to underestimate the corrosion rates. To address this issue, the 

cost function could be modified. The package used in this study did not have readily available way in 

which to modify the cost function. The package use mean squared error (MSE) which does not 

differentiate between overestimation and underestimation. Other cost options which could be 

trialled on the data set include mean error (ME) and mean absolute error (MAE). 

Asymmetric cost functions[36] can be developed to produce values that err on the side of 

conservatism. A simple asymmetric cost back propagates multiplied by a variable which depends on 

whether the cost is positive or negative.  
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More bespoke non-linear asymmetric cost functions could be developed for this purpose that 

restrict outlying i.e. negative results from being calculated.  

Random forest classification could be gradually implemented over time as inspection anomalies 

could be parameterised. This could then be used to identify the main drivers of risk within the 

system. 

6.3.1. Supplementary operation and construction data 

It is common that a process will have the same design pressure and temperature throughout, 

however, the temperature and pressure vary continuously throughout the system. Furthermore, the 

orientation and flowrate at a CML level may vary significantly. A study of corrosion in dead legs[37] 

shows the significance of orientation on CMLs at localised areas of reduced flow. 

None of the CMLs in the available dataset had the year of construction considered. NACE 

MR0175[38] is a standard developed for metallic materials exposed to H2S in the oil and gas 

industry. Although the primary requirements laid out in this standard were to prevent stress 

corrosion cracking, they have proven to be beneficial to reducing corrosion of pressurised 

equipment in sour service. Some of the piping in this study may not have been built to NACE 

requirements and its inclusion may have introduced scatter.  

6.3.2. Combining supplementary non-UT inspection results 

API 581 determines risk based on the confidence of inspection results. In this study, the manually 

determined corrosion rates were calculated by assigning TRUE or FALSE to each reading. The 

resultant corrosion rate was then used in training the neural network to produce the same corrosion 

rate with the same inputs. This could lead to a source of error if the sampling methods were 

different. It is possible that the first UT reading taken at a cml was overstated as the location may 

just be scanned for presence of corrosion. Another location may have a similar reading determined 

by radiography. These would both produce the same output form the network, whereas a manual 

review may exclude the initial UT reading.  

Adding a third input neuron per inspection which denotes confidence in the reading would produce 

more reliable results. 

6.3.3. Classification Potential 

The neural network does not identify which points are outliers, i.e., given a thickness history at a 

given CML, a CR is determined. It may be possible by analysing the data, on a case by case basis, to 

determine which reading was excluded. This is a path that could potentially lead to a successful 

classification network. 
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Reliable output from classification could not be developed from the thickness readings and dates 

alone. In the available dataset, the majority of CMLs had 5 readings or less. This didn’t appear to be 

enough to get the models to converge. Future attempts at classification could make better use of 

the supplemental data available at a CML level such as process conditions, fitting type, material etc. 

6.3.4. Corrosion Classification Potential 

A corollary of the classification would be identifying the actual corrosion type e.g. CO2, H2S etc.  

In practice, an experienced corrosion engineer would be required to manually review the thickness 

history of CMLs experiencing a known type of corrosion in order to generate a training set of data for 

the system. 

This would be beneficial when a specific corrosion type gains prevalence in a system after lying 

dormant since commissioning. 

6.3.5. Validation of Results 

For the feedback loop to be validated, the total number of failures each year would have to be 

compared to the expected number of failures. The probability of an expected number of failures 

(f) occurring within a system of CMLs(N) where each CML(i) has its own PoF is calculated with a 

modified binomial distribution formula[39] 

𝑃(𝑓) =  
𝑁!

𝑓! (𝑁 − 𝑓)!
∏(𝑃𝑜𝐹𝑖)𝑓

𝑁

𝑖=1

(1 − 𝑃𝑜𝐹𝑖)𝑁−𝑓 

Equation 6-1 

6.4. Recommendations 

Feedback Loop 

The feedback loop can be readily applied to life extension feasibility studies where the failure of a 

single location within the next assessment period is not as crucial as forecasting the likely remaining 

life of the total asset.  

The original objective of the study was to calculate a localised PoF(t) for a CML which could in turn 

drive the PoF(t) of a different CML via a feedback loop. It’s potential here is more limited because 

the corrosion type can’t be classified. I.e. it is possible to have a result change the PoF(t) however it 

may not always necessarily reflect the correct changes. 

To improve the accuracy of these calculations, failure and replacement history would need to be 

factored in to the PoF caclulations as a means of normalising the results. 
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Neural Network 

If the accuracy of the corrosion rate classification can be improved sufficiently, regression analysis 

could be performed across the data set which would be able to group the CMLs automatically.  

This study took data from a broad range of processes and attempted to unify them where possible 

into a single data model in order to provide a distribution that would react as more data became 

available. 

For this model to be applied in practice, a deeper knowledge of a single process should be sought. It 

is common in industry to have parallel streams or trains within a single process. Starting with a single 

corrosion loop, all available data should be collated for both trains, then the corrosion rates should 

be determined manually for 1 train. These results can then be fed into the neural network. 

Once the network has been trained, it should then be applied to the inspection readings on the 

second train. A manual evaluation of the points in the second train will show the effectiveness of the 

network 
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  Table of Sample Piping System Results 

 

Name AverageCR lnAverageCR SDCR SDlnCR count 

Pipe_A 0.065468 -2.31373 0.051876 0.722574 171 

Pipe_B 0.017589 -2.78851 0.005591 0.782237 8 

Pipe_C 0.070554 -2.38106 0.029472 0.623202 227 

Pipe_D 0.009037 -1.61217 0.014483 6.67E-06 14 

Pipe_E 0.029317 -2.7795 0.009797 0.617529 12 

Pipe_F 0.114406 -2.22434 0.02648 0.611624 35 

Pipe_G 0.052442 -2.82515 0.049416 1.200756 212 

Pipe_H 0.151934 -1.92195 0.01757 0.294212 22 

Pipe_I 0.048717 -2.54807 0.044553 0.736954 395 

Pipe_J 0.041035 -2.80745 0.03082 0.699943 36 

Pipe_M 0.03894 -3.27321 0.025175 0.659749 586 

Pipe_N 0.02507 -2.21332 0.012216 0.447083 12 

Pipe_O 0.083964 -2.35704 0.029869 0.699034 59 

Pipe_P 0.079491 -2.56622 0.057232 1.255287 64 

Pipe_Q 0.033605 -2.2264 0.021096 0.494004 17 

Table A-1 Aggregated data used in Appendix B and Appendix C 
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 Neural Network Results 

Accuracy of Neural Network With 3 Available Readings 

 

Figure B-0-1 All Corrosion rates vs Predicted Corrosion Rates where 3 readings have been taken 
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Figure B-0-2 All Corrosion rates vs Predicted Corrosion Rates where 3 readings, all readings 

 

Figure B-0-3 All Corrosion rates vs Predicted Corrosion Rates where 3 readings, excluding readings 
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Figure B-0-4 Comparison of manual and automatically determined corrosion rates 
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Figure B-0-5 The predicted lognormal distribution curve compared to the Calculated lognormal distributed curve and actual 

frequency of Corrosin Rates 

Accuracy of Neural Network With 4 Available Readings 

 

Figure B-0-6 All Corrosion rates vs Predicted Corrosion Rates where 4 readings have been taken 
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Figure B-0-7 All Corrosion rates vs Predicted Corrosion Rates where 4 readings, all readings 

 

Figure B-0-8 All Corrosion rates vs Predicted Corrosion Rates where 4 readings, excluding readings 
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Figure B-0-9 Comparison of manual and automatically determined corrosion rates 

 

Accuracy of Neural Network With 5 Available Readings 
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Figure B-0-10 All Corrosion rates vs Predicted Corrosion Rates where 5 readings have been taken 

 

Figure B-0-11 All Corrosion rates vs Predicted Corrosion Rates where 5 readings, all readings 
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Figure B-0-12 All Corrosion rates vs Predicted Corrosion Rates where 5 readings, excluding readings 

 

 

FigureB-0-13 Comparison of manual and automatically determined corrosion rates 



10 
 

 

Accuracy of Neural Network With 6 Available Readings 

 

Figure B-0-14 All Corrosion rates vs Predicted Corrosion Rates where 6 readings have been taken 
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Figure B-0-15 All Corrosion rates vs Predicted Corrosion Rates where 6 readings all readings 

 

 

Figure B-0-16 Comparison of manual and automatically determined corrosion rates 
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 Corrosion Rate Distributions 

Straight Sections 

 

Figure C-1 Corrosion Rate Distribution of Straight Pipe 

 

Figure C-2 Normal Distribution Q-Q Plot Straight Pipe 
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Figure C-3 Log Normal Distribution Q-Q Plot Straight Pipe 

Fittings 

 

Figure C-4 Corrosion Rate Distribution of Fittings 

 

Figure C-5 Normal Distribution Q-Q Plot Pipe Fittings 
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Figure C-6 Log Normal Distribution Q-Q Plot Pipe Fittings 

Full Dataset 

 

Figure C-7 Corrosion Rate Distribution of Entire System 

 

Figure C-8 Normal Distribution Q-Q Plot Full Dataset 
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Figure C-9 Log Normal Distribution Q-Q Plot Full Dataset  
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 Code Used for Calcualtion 

SQL Code For Data Normalsation 

USE MASTERS 

 

IF OBJECT_ID('tempdb..#TempTable') IS NOT NULL DROP TABLE #TempTable;  

IF OBJECT_ID('tempdb..#TempTable2') IS NOT NULL DROP TABLE #TempTable2;  

 

Create Table #TempTable ( 

 [PointID] nvarchar(255) not null 

, [Date] datetime  not null 

, [N]  int    not null 

); Insert Into #TempTable  

Select  

 pointID 

, min([date])  

, count(PointID)  

 

from masters.DBO.Thickness  

Where masters.DBO.Thickness.MinReading is not null 

group by masters.DBO.Thickness.PointID;  

 

Create Table #TempTable2 ( 

 [PointID] nvarchar(255) not null 

, [deltaY] float  not null 

, [tc]  float   null 

, [N]  int    not null 

, [Ntot] int    null 

);  

Insert Into #TempTable2  

select  

t.PointID 

, datediff(day, tt.[Date],t.[date])/365.25 [deltaY] 

, t.MinReading [tc] 

, ROW_NUMBER() over(Partition by t.PointID order by t.pointID, datediff(day, 

tt.[Date],t.[date])/365.25) [N] 

, tt.N [Ntot] 

from masters.DBO.Thickness t, #TempTable tt  

where  

t.PointID = tt.PointID 
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and t.MinReading is not null 

and tt.N > 2 

order by pointID, datediff(day, tt.[Date],t.[date])/365.25; 

 

--select #TempTable2.Ntot, count(#TempTable2.PointID)/#TempTable2.Ntot from 

#TempTable2 group by #TempTable2.Ntot order by Ntot 

 

--3 34830 

--4 16191 

--5 4061 

--6 1483 

--7 275 

--8 57 

--9 4 

 

 

select  

r1.PointID [pointID], r1.Ntot [Ntot] 

, r1.deltaY [Y1], r1.tc [t1] 

, r2.deltaY [Y2], r2.tc [t2] 

, r3.deltaY [Y3], r3.tc [t3] 

, r4.deltaY [Y4], r4.tc [t4] 

, r5.deltaY [Y5], r5.tc [t5] 

, r6.deltaY [Y6], r6.tc [t6] 

, r7.deltaY [Y7], r7.tc [t7] 

, r8.deltaY [Y8], r8.tc [t8] 

, r9.deltaY [Y9], r9.tc [t9] 

 

from  

 #TempTable2 r1  

,#TempTable2 r2 

,#TempTable2 r3 

,#TempTable2 r4 

,#TempTable2 r5 

,#TempTable2 r6 

,#TempTable2 r7 

,#TempTable2 r8 

,#TempTable2 r9 

 

where  

 r1.N = 1 

And r2.N = 2 
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And r3.N = 3 

And r4.N = 4 

And r5.N = 5 

And r6.N = 6 

And r7.N = 7 

And r8.N = 8 

And r9.N = 9 

 

And r1.Ntot = 9 

 

And r1.PointID = r2.PointID 

And r1.PointID = r3.PointID 

And r1.PointID = r4.PointID 

And r1.PointID = r5.PointID 

And r1.PointID = r6.PointID 

And r1.PointID = r7.PointID 

And r1.PointID = r8.PointID 

And r1.PointID = r9.PointID 
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R Code for corrosion rate calculation 

#CHECK IF ALREADY INSTALLED 

#Steps for talking to the sql DB 

#install.packages("RODBC") 

setwd("C:/@develop/Phd/R") 

getwd() 

 

library(RODBC)          

con <- RODBC::odbcConnect("R") 

#RODBC::sqlQuery(con,"select count(*) from masters.DBO.THICKNESS") 

 

#load point thickness and thickness summary tables 

sqlThickness = "SELECT T.POINTID, T.DATE, T.MINREADING, T.Valid FROM MASTERS.DBO.tHICKNESS 

T WHERE POINTID in (select pointID from masters.DBO.points) ORDER BY T.MINREADING DESC" 

sqlPoints = "select p.PointID ,p.LineDesignation ,p.DesignPressure ,p.[System] ,f.[Type], f.[Straight] 

,m.code [Material] ,s.NPS ,p.Tnom ,sy.[service] from masters.DBO.points p ,masters.DBO.FittingDesc 

f ,masters.DBO.Material m ,masters.DBO.Size s ,masters.DBO.[System] sy where POINTID in (select 

Distinct pointID from masters.DBO.Thickness) and p.FittingDesc = f.FittingDesc and p.Material = 

m.material and p.Size = s.Size and p.[System] = sy.[system] ORDER BY P.PointID DESC"  

sqlTsum = "select t.PointID PointID, count(*) N, Sum(datediff(DAY,'1970-01-01',t.[date])/365.25) 

sumx, Sum(t.MinReading) sumy , Sum(power(datediff(DAY,'1970-01-01',t.[date])/365.25,2)) sumx2 , 

Sum(power(t.MinReading,2)) sumy2 , Sum(datediff(DAY,'1970-01-

01',t.[date])*t.MinReading/365.25) sumxy from Masters.dbo.Thickness t where Valid = 1 Group by 

t.PointID" 

 

#get thickness from DB 

Thickness<-data.frame(RODBC::sqlQuery(con,sqlThickness)) 

Points<-data.frame(RODBC::sqlQuery(con,sqlPoints)) 
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TSum<-data.frame(RODBC::sqlQuery(con,sqlTsum)) 

Tnorm<-read.csv("Tnorm.csv") 

TSum = TSum[TSum$N > 1,] 

 

 

 

#Read in Values generated by normalise.sql 

Thick3<-read.csv("Thick3.csv") 

Thick4<-read.csv("Thick4.csv") 

Thick5<-read.csv("Thick5.csv") 

Thick6<-read.csv("Thick6.csv") 

Thick7<-read.csv("Thick7.csv") 

Thick8<-read.csv("Thick8.csv") 

Thick9<-read.csv("Thick9.csv") 

 

 

#Calculate corrosion rate from sql query results from TSUM 

 

TSum$CR<- -1 * ((TSum$N*TSum$sumxy) -(TSum$sumx*TSum$sumy))/((TSum$N*TSum$sumx2)-

TSum$sumx^2)#((TSum$N*TSum$sumxy) -(TSum$sumx*TSum$sumy))/((TSum$N*TSum$sumx2)-1) 

#(TSum$Sumx^2) 

TSum$RSQ <- ((TSum$N*TSum$sumxy-TSum$sumx*TSum$sumy)^2)/((TSum$N*TSum$sumx2-

TSum$sumx^2)*(TSum$N*TSum$sumy2-TSum$sumy^2)) 

 

TSum = TSum[TSum$CR > 0,] 

TSum = TSum[TSum$RSQ > 0,] 
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TSum = TSum[TSum$RSQ <= 1,] 

 

 

#Add calculated CR to Thick Table for each N 

 

 

#tidy up data frames 

names(Thick3)[names(Thick3) == "ï..pointID"] <- "PointID" 

names(Thick4)[names(Thick4) == "ï..pointID"] <- "PointID" 

names(Thick5)[names(Thick5) == "ï..pointID"] <- "PointID" 

names(Thick6)[names(Thick6) == "ï..pointID"] <- "PointID" 

names(Thick7)[names(Thick7) == "ï..pointID"] <- "PointID" 

names(Thick8)[names(Thick8) == "ï..pointID"] <- "PointID" 

names(Thick9)[names(Thick9) == "ï..pointID"] <- "PointID" 

 

 

Thick3<-merge(Thick3, TSum , by.x = "PointID", by.y = "PointID") 

Thick3$sumx<-NULL 

Thick3$sumy<-NULL 

Thick3$sumxy<-NULL 

Thick3$sumx2<-NULL 

Thick3$sumy2<-NULL 

 

 

Thick4<-merge(Thick4, TSum , by.x = "PointID", by.y = "PointID") 
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Thick4$sumx<-NULL 

Thick4$sumy<-NULL 

Thick4$sumxy<-NULL 

Thick4$sumx2<-NULL 

Thick4$sumy2<-NULL 

 

Thick5<-merge(Thick5, TSum , by.x = "PointID", by.y = "PointID") 

Thick5$sumx<-NULL 

Thick5$sumy<-NULL 

Thick5$sumxy<-NULL 

Thick5$sumx2<-NULL 

Thick5$sumy2<-NULL 

 

Thick6<-merge(Thick6, TSum , by.x = "PointID", by.y = "PointID") 

Thick6$sumx<-NULL 

Thick6$sumy<-NULL 

Thick6$sumxy<-NULL 

Thick6$sumx2<-NULL 

Thick6$sumy2<-NULL 

 

Thick7<-merge(Thick7, TSum , by.x = "PointID", by.y = "PointID") 

Thick7$sumx<-NULL 

Thick7$sumy<-NULL 

Thick7$sumxy<-NULL 

Thick7$sumx2<-NULL 
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Thick7$sumy2<-NULL 

 

Thick8<-merge(Thick8, TSum , by.x = "PointID", by.y = "PointID") 

Thick8$sumx<-NULL 

Thick8$sumy<-NULL 

Thick8$sumxy<-NULL 

Thick8$sumx2<-NULL 

Thick8$sumy2<-NULL 

 

Thick9<-merge(Thick9, TSum , by.x = "PointID", by.y = "PointID") 

Thick9$sumx<-NULL 

Thick9$sumy<-NULL 

Thick9$sumxy<-NULL 

Thick9$sumx2<-NULL 

Thick9$sumy2<-NULL 

 

 

 

#get neural net  

install.packages("neuralnet") 

require(neuralnet) 

 

#add in other paramters to Thick model 

Thick3<-merge(Thick3, Points , by.x = "PointID", by.y = "PointID") 

Thick4<-merge(Thick4, Points , by.x = "PointID", by.y = "PointID") 
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Thick5<-merge(Thick5, Points , by.x = "PointID", by.y = "PointID") 

Thick6<-merge(Thick6, Points , by.x = "PointID", by.y = "PointID") 

Thick7<-merge(Thick7, Points , by.x = "PointID", by.y = "PointID") 

Thick8<-merge(Thick8, Points , by.x = "PointID", by.y = "PointID") 

Thick9<-merge(Thick9, Points , by.x = "PointID", by.y = "PointID") 

 

#generate random sample of thick 

set.seed(222) 

ind3 <- sample(2,nrow(Thick3),replace = TRUE, prob = c(0.05,0.95)) 

ind4 <- sample(2,nrow(Thick4),replace = TRUE, prob = c(0.05,0.95)) 

ind5 <- sample(2,nrow(Thick5),replace = TRUE, prob = c(0.05,0.95)) 

ind6 <- sample(2,nrow(Thick6),replace = TRUE, prob = c(0.05,0.95)) 

ind7 <- sample(2,nrow(Thick7),replace = TRUE, prob = c(0.05,0.95)) 

ind8 <- sample(2,nrow(Thick8),replace = TRUE, prob = c(0.05,0.95)) 

ind9 <- sample(2,nrow(Thick9),replace = TRUE, prob = c(0.05,0.95)) 

 

 

Thick3$AllValid<-(Thick3$Ntot == Thick3$N) 

Thick4$AllValid<-(Thick4$Ntot == Thick4$N) 

Thick5$AllValid<-(Thick5$Ntot == Thick5$N) 

Thick6$AllValid<-(Thick6$Ntot == Thick6$N) 

Thick7$AllValid<-(Thick7$Ntot == Thick7$N) 

Thick8$AllValid<-(Thick8$Ntot == Thick8$N) 

Thick9$AllValid<-(Thick9$Ntot == Thick9$N) 
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#First attempt, zoomed in on a specific type 

#Training <- Thick3[which(Thick3$Type == "PIP" & Thick3$Material=="API 5L Gr.B"&Thick3$service 

=="Gas"),] 

 

Training3 <- Thick3[ind3==1,] 

Training4 <- Thick4[ind4==1,] 

Training5 <- Thick5[ind5==1,] 

Training6 <- Thick6[ind6==1,] 

Training7 <- Thick7[ind7==1,] 

Training8 <- Thick8[ind8==1,] 

Training9 <- Thick9[ind9==1,] 

 

Testing3 <- Thick3[ind3==2,] 

Testing4 <- Thick4[ind4==2,] 

Testing5 <- Thick5[ind5==2,] 

Testing6 <- Thick6[ind6==2,] 

Testing7 <- Thick7[ind7==2,] 

Testing8 <- Thick8[ind8==2,] 

Testing9 <- Thick9[ind9==2,] 

#sqr(n) layers and nodes 

nn3 = neuralnet(CR~t1+Y2+t2+Y3+t3+Straight+NPS,data = Training3, hidden = c(7,7,7), linear.output 

= FALSE) 

 

nn4 = neuralnet(CR~t1+Y2+t2+Y3+t3+Y4+t4+Straight+NPS,data = Training4, hidden = c(9,9,9), 

linear.output = FALSE) 
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nn5 = neuralnet(CR~t1+Y2+t2+Y3+t3+Y4+t4+Y5+t5+Straight+NPS,data = Training5, hidden = 

c(11,11,11,11), linear.output = FALSE) 

nn6 = neuralnet(CR~t1+Y2+t2+Y3+t3+Y4+t4+Y5+t5+Y6+t6+Straight+NPS,data = Training6, hidden = 

c(13,13,13,13), linear.output = FALSE) 

nn7 = neuralnet(CR~t1+Y2+t2+Y3+t3+Y4+t4+Y5+t5+Y6+t6+Y7+t7+Straight+NPS,data = Training7, 

hidden = c(15,15,15,15), linear.output = FALSE) 

nn8 = neuralnet(CR~t1+Y2+t2+Y3+t3+Y4+t4+Y5+t5+Y6+t6+Y7+t7+Y8+t8+Straight+NPS,data = 

Training8, hidden = c(17,17,17,17), linear.output = FALSE) 

 

 

#check network converged 

plot(nn3) 

plot(nn4) 

plot(nn5) 

plot(nn6) 

plot(nn7) 

plot(nn8) 

 

 

#compare to real 

Testing3$pred <- predict(nn3,Testing3[,c("t1","Y2","t2","Y3","t3","Straight","NPS")]) 

Testing4$pred <- predict(nn4,Testing4[,c("t1","Y2","t2","Y3","t3","Y4","t4","Straight","NPS")]) 

Testing5$pred <- 

predict(nn5,Testing5[,c("t1","Y2","t2","Y3","t3","Y4","t4","Y5","t5","Straight","NPS")]) 

Testing6$pred <- 

predict(nn6,Testing6[,c("t1","Y2","t2","Y3","t3","Y4","t4","Y5","t5","Y6","t6","Straight","NPS")]) 
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Testing7$pred <- 

predict(nn7,Testing7[,c("t1","Y2","t2","Y3","t3","Y4","t4","Y5","t5","Y6","t6","Y7","t7","Straight","N

PS")]) 

Testing8$pred <- 

predict(nn8,Testing8[,c("t1","Y2","t2","Y3","t3","Y4","t4","Y5","t5","Y6","t6","Y7","t7","Y8","t8","Str

aight","NPS")]) 

 

 

 

 

#output to to excel  

write.csv(Testing3,"predNN3OUT.csv") 

write.csv(Testing4,"predNN4OUT.csv") 

write.csv(Testing5,"predNN5OUT.csv") 

write.csv(Testing6,"predNN6OUT.csv") 

write.csv(Testing7,"predNN7OUT.csv") 

write.csv(Testing8,"predNN8OUT.csv") 

 

 

 

install.packages("ggplot2") 

library(ggplot2) 

 

 

ggplot(Training,aes(x=CR,y=pred)) 
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write.csv(Training,"NN3OUT.csv") 

write.csv(Thick3,"TestingNN3OUT.csv") 

 

sumTest3<-

Testing3[,c("PointID","Ntot","N","CR","RSQ","LineDesignation","DesignPressure","System","Type","S

traight","Material","NPS","Tnom","service","AllValid","pred")] 

sumTest4<-

Testing4[,c("PointID","Ntot","N","CR","RSQ","LineDesignation","DesignPressure","System","Type","S

traight","Material","NPS","Tnom","service","AllValid","pred")] 

sumTest5<-

Testing5[,c("PointID","Ntot","N","CR","RSQ","LineDesignation","DesignPressure","System","Type","S

traight","Material","NPS","Tnom","service","AllValid","pred")] 

sumTest6<-

Testing6[,c("PointID","Ntot","N","CR","RSQ","LineDesignation","DesignPressure","System","Type","S

traight","Material","NPS","Tnom","service","AllValid","pred")] 

sumTest7<-

Testing7[,c("PointID","Ntot","N","CR","RSQ","LineDesignation","DesignPressure","System","Type","S

traight","Material","NPS","Tnom","service","AllValid","pred")] 

sumTest8<-

Testing8[,c("PointID","Ntot","N","CR","RSQ","LineDesignation","DesignPressure","System","Type","S

traight","Material","NPS","Tnom","service","AllValid","pred")] 

sumTestAll<-rbind(sumTest3,sumTest4,sumTest5,sumTest6,sumTest7,sumTest8) 

 

write.csv(sumTestAll,"SumTestAll.csv")  
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R Code for PoF calculation 

R Code for corrosion classification 

#install.packages("neuralnet") 

require(neuralnet) 

#?neuralnet 

setwd("C:/@develop/phd/R") 

train <- read.csv("tcc.csv") 

#dim(train) 

#?neuralnet 

nn = neuralnet(y1+y2~i1+i2+i3+i4+i5+i6,data=train,hidden = c(6,6,6,6,6,6)) #+i2+i3+i4+i5+i6 +y2 

nn = neuralnet(A+B+C+D+E+F+G+H+I+J+M+O+R+S+V+Y+AA~t1+t2+t3+t4+t5+t6+t7,data=train,hidden 

= c(6,6,6,6,6,6)) #+i2+i3+i4+i5+i6 +y2 

 

plot(nn) 

write.csv(nn$net.result, "result.csv") 

write.csv(nn$weights[[1]][[1]][,], "weightsW1.csv") # , row.names = FALSE, check.rows = FALSE, 

check.names = FALSE) 

write.csv(nn$weights[[1]][[2]][,], "weightsW2.csv") 

write.csv(nn$weights[[1]][[3]][,], "weightsW3.csv") 

write.csv(nn$weights[[1]][[4]][,], "weightsW4.csv") 

write.csv(nn$weights[[1]][[5]][,], "weightsW5.csv") 

write.csv(nn$weights[[1]][[6]][,], "weightsW6.csv") 

write.csv(nn$weights[[1]][[7]][,], "weightsW7.csv") 

 

 

plot(nn) 
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nn$weights 

nn$net.result 

nn$response 

write.csv(nn$net.result, "result.csv") 

write.csv(nn$data, "data.csv") 

 

predNN <- function(i) 

 { 

setwd("C:/@develop/phd/R") 

 

 #test is the data to be analysed 

test<-data.frame(read.csv((paste("test" , i , ".csv", sep = ""))))  

 

#unique list of pointids with i readings 

ids <- data.frame(test[,1]) 

 

#NN is the neural network for i readings 

NN<-readRDS(paste("NN", i , ".RDS", sep = "")) 

 

#pred is the predicted cr type per point id 

pred <- predict(NN,test [,-1]) 

 

#classify 

pr <- apply(pred, 1, which.max) 

pc<-c("a","b","c","d","e") 
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crtype <- data.frame(ids, pc[pr])  

 

#output 

write.csv(pred,paste("pred" , i , ".csv", sep = "")) 

write.csv(test,"ids.csv") 

 

} 

#source("PredNN.r") 

 

 


