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Abstract 

The complex nature of fibre reinforced composites, their non-homogeneity and anisotropy 

make their modelling a very challenging task. Although the linear – elastic behaviour of 

composites is well understood, there is still a significant uncertainty regarding prediction of 

the damage initiation, damage evolution and material failure especially for the tri-axial state 

of stress or strain. Therefore, simplifying assumptions are inevitable in the constitutive 

modelling.  

This work shows development of a new composite damage constitutive model. The model 

is based on the concept of spectral decomposition of the stiffness tensor of a material. 

Spectral decomposition leads to identification of the number of the strain energy modes. 

They are used to define the material strain energy limits. Present material model is 

thermodynamically consistent and was developed in the framework of irreversible 

thermodynamics with internal state variables. The development process was supported by 

the mesoscale model analysis. The purpose of mesoscale models was twofold. Firstly, it 

allowed to understand of the mesoscale damage effects on the continuum (macroscopic) 

material behaviour. Secondly, it provided invaluable insight into the stress and strain state of 

the composite loaded in different deformation eigenmodes. The mesoscale modelling 

resulted in postulating a simplifying assumption that principal stiffnesses of the material are 

invariant for the composite subjected to damage in the applicability range. Moreover, the 

mesoscale model analysis was used to determine the strain energy limits in the material. 

The model is capable of predicting dynamic material response by coupling with equation of 

state. The form of the equation of state used in this work is applicable to anisotropic 

materials.  

The model was implemented in Dyna3D and was validated against the experimental data 

showing good agreement of damage extent shock wave propagation. 

Keywords 

composite, CFRP, damage, failure criteria, dynamic response, constitutive model, 

thermodynamic framework, equation of state 
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1 Introduction 

 Motivation 

Rapid expansion of composite materials, especially in aerospace and automotive industries 

necessitates development of composite modelling tools to be able to assess the structure 

strength. Unfortunately, due to complex nature of composites, prediction of strength of the 

material and the failure characteristics is not a straightforward task. Intentional material 

anisotropy and existence of different constituents (and interfaces between them) significantly 

limit the application of tools and criteria developed for homogeneous materials. 

Development of the composite material models would allow for more reliable finite element 

analysis (FEA) which can replace the mechanical tests and decrease costs of composite 

structures. Moreover, better understanding of the composite failure may increase the design 

safety.  

A number of constitutive composite models were developed recently, however they are rarely 

trusted by the practitioners (Soden, Kaddour and Hinton, 2004). Soden, Kaddour and 

Hinton, driven by lack of a reliable comparison between models and reality started the 

World-Wide Failure Exercise (WWFE) (Soden, Kaddour and Hinton, 2004) whose objective 

was to assess the capabilities of the existing composite models to predict the failure. The 

models were benchmarked against experimental data. One of the aims of the WWFE was to 

mend the knowledge gap between theoreticians and practitioners studying composite failure. 

Citing Soden, Kaddour and Hinton (2004) composite models were often developed because 

of ‘academic curiosity’. So far, three editions of WWFE were finished. The first two editions 

of WWFE concentrated on 2D (two dimensional) and 3D (three dimensional) load cases. 

They identified a few more accurate theories; however, the general conclusion was that none 

of the theories developed to that date were capable of predicting the strength of material for 

all examined load cases. The third Failure Exercise  focused mainly on progressive damage 

of composites (Kaddour, Hinton, Li, et al., 2013; Kaddour, Hinton, Smith, et al., 2013). The 

overall conclusion from WWFE-III was that the models are immature (Kaddour et al., 2014). 

Although WWFE covered a wide range of loading conditions it did not go beyond quasi-

static loading. In aerospace, defence and automotive industries, identified as leading sectors 

using composites, material response to high strain rates (e.g. impact) is relevant and, although 

difficult to model and test experimentally, should not be neglected. As high velocity 
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phenomena result in shockwaves formation, quasistatic models cannot be used. Thus, 

determination of the state of the material behind a shock wave necessitates including an 

equation of state (EOS) in the model definition. Lack of equation of state in currently existing 

composite models is a significant limitation in their applicability.  

 Aims and objectives 

The main aim of this work is to develop a composite material constitutive model capable of 

accurate prediction of material behaviour under dynamic loads. Such a model needs to 

account for major damage mechanisms evolving in the composite during impact. 

Furthermore, it should be thermodynamically consistent and allow coupling with EOS. The 

constitutive model described in this work assumes continuum level approach and 

hyperelastic material formulation. The model uses internal state variables to define its damage 

state.  It is applicable to unidirectional composites with possibility of generalisation to other 

composite types.  

The objectives were identified as:  

• analysis of the material damage behaviour using the mesoscale models’ simulations 

• analysis of different deformation modes using the mesoscale models 

• theoretical development of the composite constitutive model 

• implementation of the model in Dyna3D 

• validation of the model 

 Thesis outline 

The thesis consists of seven chapters. The first three chapters present the background and 

the motivation for the research and developed composite model.  Chapter 1 gives the 

motivation, aims and objectives of the project. Chapter 2 is dedicated to composites, their 

mechanics, damage behaviour and modelling approaches.  The framework for the model is 

presented in Chapter 3. It includes continuum mechanics, thermodynamics, damage 

mechanics and EOS theory used in this work.  

Chapters 4, 5 and 6 present the methods and research work completed in this project. The 

fourth chapter focuses on mesoscale modelling of damage. It was aimed at assessing the 

continuum scale damage effects. The use of the mesoscale models in investigation of the 
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constituents’ states under different deformation modes is described in Chapter 5. The 

development of the material constitutive model is presented in Chapter 6. Additionally, 

Chapter 6 covers the model implementation and validation followed by a proposal of further 

development. 

Chapter 7 provides the thesis summary including the comments on the developed model 

capabilities and limitations. Furthermore, it proposes possible future improvements of the 

model.  In addition to the seven main chapters there are five appendices that provide 

supplementary information, derivations and detailed models characteristics.  

An outline of the thesis structure is graphically presented in Figure 1.3.1. Spectral 

decomposition was original core idea for research, the investigations presented here follow 

from it. 
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Figure 1.3.1 Thesis structure
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2 Composite mechanics and modelling 

Modelling of a material is the development of the set of equations that define its behaviour. 

The constitutive equations interrelate the material variables. Development of a good 

material model requires sound understanding of the material mechanics. This chapter 

provides general information about composites covering their mechanics, damage and 

commenting on existing composite failure criteria and constitutive models. What is also 

important, this chapter introduces the notation used in the model development. 

The first part of the chapter (Section 2.1) gives short introduction to composites and damage 

mechanics. This helps to identify key features of the composite models and recognise 

capabilities and limitations of existing formulations. The spectral decomposition of the 

material stiffness tensor, which is fundamental in this work, is given in Section 2.1.4. The 

review of existing composite failure criteria and damage models is given in the second part 

of the chapter (Section 2.2).  

 Carbon fibre reinforced composites 

Composites are materials composed of two or more constituents, which together give better 

(or more suitable) properties than each of the constituents separately. Among composites 

there are those existing naturally (e.g. bones) and human made (e.g. concrete). Composites 

can be manufactured to exhibit desired sets of material properties impossible to obtain with 

conventional materials. An example of such a composite is a carbon fibre reinforced polymer 

(CFRP). The high strength fibres assure required strength and stiffness while the matrix has 

its role in joining and protecting fibres. As a result, a composite formed of heavy fibres and 

light matrix has superior strength to specific weight ratio over other structural materials. 

These properties make CFRP a perfect choice for lightweight structures such as aircrafts. 

In fibre reinforced composites the fibres’ character plays significant role in the behaviour of 

material. The short fibres randomly arranged in matrix give almost isotropic macroscopic 

material behaviour. If long fibres are used, their alignment determine the macroscopic 

properties, which are usually strongly anisotropic. Long fibres can be either aligned in one 

direction (Figure 2.1.1 -a) or can form a weave (Figure 2.1.1 -b, -c). Unidirectional material 

has one high strength and stiffness direction (fibre direction) and is isotropic in other 

directions. Therefore, it can be described as the transversely isotropic material. Woven 
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composites have orthotropic or higher symmetries (e.g. tetragonal) depending on the weave 

pattern. The symmetries and resulting stiffness tensors for these materials are presented in 

Section 2.1.2. This work is mainly focused on unidirectional composites. 

a) 

 

b) 

 

c) 

 

  

Figure 2.1.1 Fibre allignment: a) unidirectional, b) plain weave, c) 4H weave (Carbon Fiber - All  Patterns 
Explained, 2015) 

CFRPs demonstrate anisotropy both in strength and stiffness with the highest values for the 

fibre direction. The variation of the strength of the material with respect to its direction is 

clearly explained in Figure 2.1.2.  

 

Figure 2.1.2 Variation of composite strength depending on the loading direction for unidirectional composite 
(Askeland, Fulay and Wright, 2010, p.662) 
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2.1.1 Linear elastic behaviour of CFRP composites 

Because of anisotropy, the stress-strain relation of composites cannot be fully described by 

single Hooke’s Law curve. For an arbitrary, anisotropic material in which no planes of 

symmetry can be identified the relation is defined by Equation 2.1.1, which is referred to as 

a generalised Hooke’s law: 

:=σ εC , 2.1.1 

where σ  and ε  are second order stress and strain tensors respectively. A tensor that 

describes the relation between stress and strain is the fourth order stiffness tensor C . The 

generalised Hooke’s law, stated using second and fourth order tensors has the form:  

1111 1122 1133 1123 1131 1112 1132 1113 1121

2211 2222 2233 2223 2231 2212 2232 2213 2221

3311 3322 3333 3323 3331 3312 3332 3313 3321

11 12 13 2311 2322 2333 2323 2331 2

21 22 23

31 32 33

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C  

  

  

 
 

=
 
  

312 2332 2313 2321

3111 3122 3133 3123 3131 3112 3132 3113 3121

1211 1222 1233 1223 1231 1212 1232 1213 1221

3211 3222 3233 3223 3231 3212 3232 3213 3221

1311 1322 1333 1323 1331 1312 1332 1313 1321

2

C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C

11 12 13

21 22 23

31 32 33

111 2122 2133 2123 2131 2112 2132 2113 2121

:

C C C C C C C C

  

  

  

 
 
 
 
 

  
  
  
    

 
 
 
 
 

 

2.1.2 

Equation 2.1.2 can be simplified as a consequence of the symmetries of stress tensor and 

strain tensor (Cowin and Mehrabadi, 1992). These are postulated by the equivalence of the 

stiffness tensor components as shown below: 

ijkm jikm ijmkC C C= = . 2.1.3 

This results in reducing the number of independent stiffness tensor variables from 81 to 36. 

The symmetries allow for rewriting the stress – strain relation in commonly used Voigt 

notation, which assigns the indices as presented below: 

11 1

22 2

33 3

 

 

 

=

=

=

 

12 21 4

13 21 5

23 32 6

  

  

  

= =

= =

= =

 

11 1

22 2

33 3

 

 

 

=

=

=

 

1
12 21 4 42

1
13 21 5 52

1
23 32 6 62

   

   

   

= = =

= = =

= = =

 2.1.4 
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1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 16 62 63 64 65 66 6

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 

 

 

 

     
     
     
     

=      
     
     
     
          

 2.1.5 

Note that in Voigt notation the engineering shear strains are used instead of true strains. The 

additional symmetry in the stiffness tensor is the major tensor symmetry with respect to the 

main diagonal. This symmetry is the consequence of the thermodynamic requirement that 

no work can be generated by the elastic deformation of the material in the closed loading 

cycle (Cowin and Mehrabadi, 1985). It is expressed as: 

ijkm kmijC C= . 2.1.6 

Accounting for the major symmetry of the stiffness tensor it can be rewritten as: 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

=  
 
 
 
  

C  2.1.7 

Voigt notation does not map the stress and strain tensors from 3D space to 6D space (Cowin 

and Mehrabadi, 1992; Helbig, 1994). Despite the use of six indices, it does not have a 

tensorial character (Mehrabadi and Cowin, 1990). In Voigt notation the contraction of the 

stress and stiffness vectors with themselves does not give the same result as the contraction 

of the second order stress and strain tensors in full notation (using summation over repeated 

indices): 

ij ij     , 

ij ij     . 

2.1.8 

So, the tensor norms are not preserved, which is a serious limitation. An alternative tensor 

contraction representation is presented in Equation 2.1.9.  
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11 12 13 14 15 161 1

2 212 22 23 24 25 26

3 3
13 23 33 34 35 36

4
14 24 34 44 45 46

5
15 25 35 45 55 56

6
16 26 36 46 56 66

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 







  
  
  
  
   = 
  
  
  
  
    

4

5

6

2

2

2







 
 
 
 
 
 
 
 
 
 

 2.1.9 

In this tensor, the norms are preserved: 

ij ij    = , 

2.1.10 

ij ij    = . 

It is used throughout this work as the mapping of the tensors from 3D space to 6D space.  

2.1.2 Material symmetries and stiffness tensors 

The equations given in Section 2.1.1 represent linear elastic behaviour of any anisotropic 

material. If symmetry planes can be found in the material, the stiffness tensor can be 

simplified. There are 34 symmetry classes recognised by geologists (Cowin and Mehrabadi, 

1985) such as isotropy, tetragonal or triclinic etc. However, only few of them are important 

for fibre reinforced composites. The symmetry classes that are relevant for this work are 

described in the following paragraphs. 

Orthotropy is the symmetry class in which three perpendicular symmetry planes can be 

identified (note, that if there are at least two orthogonal planes of symmetry, the third one 

must exist) (Cowin and Mehrabadi, 1985). Example of an orthotropic material is a woven 

composite with different fibre properties of warp and weft fibres. Following the contracted 

tensor notation, the stiffness tensor of the orthotropic material can be represented as: 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

C C C

C C C

C C C
C

C

C

C



 
 
 
 

=  
 
 
 
  

 2.1.11 
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In orthotropic materials there is no coupling between shear and normal stresses and strains. 

Furthermore, the shear stresses are also decoupled. 

The materials in which another symmetry plane exists are called tetragonal materials. 

Excellent example of this kind of symmetry is a woven CFRP with the same properties in 

two fibre directions. For such materials the following relations hold:  

22 33C C= , 55 66C C= , 12 13C C= . 2.1.12 

Therefore, the stiffness tensor simplifies to: 

11 12 12

12 22 23

12 23 22

44

66

66

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

C C C

C C C

C C C
C

C

C

C



 
 
 
 

=  
 
 
 
  

 2.1.13 

Another class of symmetry is transverse isotropy. Transversely isotropic materials have one 

plane of isotropy (exhibit the same properties in one plane regardless the direction). An 

example of such is a unidirectional composite. For transversely isotropic materials, the 

symmetry imposes an additional constraint: 

44 22 232C C C= − . 2.1.14 

So, the stiffness tensor becomes: 

11 12 12

12 22 23

12 23 22

22 23

66

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2

C C C

C C C

C C C
C

C C

C

C



 
 
 
 

=  
− 

 
 
  

 2.1.15 

The last symmetry class described here is isotropy. For isotropic materials the stiffness 

tensor is given by: 
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11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C C

C C

C C



 
 
 
 

=  
− 

 −
 

−  

 2.1.16 

There are only two independent stiffness tensor members in isotropic materials. The 

graphical representation of the described symmetry classes is presented in Figure 2.1.3.  

a) Orthotropic b) Tetragonal 

   
c) Transversely isotropic d) Isotropic 

  

 
 

zero component 
non-zero component 

 
 

equal components 

11 12C C− (or 11 12S S− ) 

Figure 2.1.3 Graphical representation of stiffness tensors of: a) orthotropic, b) tetragonal, c) transversely 
isootropic and d) isotropic material.  The numbers in brackets indicate the number of independent parameters 

needed to define the material stiffness tensor (after Nye (1985)) 

2.1.3 Compliance tensor and engineering constants constraints 

Although, the stiffness tensor sufficiently describes the material’s linear elastic behaviour it 

is convenient to introduce the compliance tensor, which is an inverse of the stiffness tensor. 

Compliance tensor is related to the macroscopic material constants of the composites (e.g. 

Young’s moduli – iE , Poisson’s ratio – ij  and shear moduli – ijG ) in a more 

straightforward way than the stiffness tensor.  
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The compliance tensor for an orthotropic material is given by: 
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 

 2.1.17 

For tetragonal materials the following conditions apply:  

22 33S S= , 55 66S S= , 12 13S S= . 2.1.18 

They lead to the following constraints on the engineering constants: 

2 3E E= , 12 31G G= , 12 13 = , 23 32 = , 21 31 = . 2.1.19 

Moreover, for transversely isotropic materials the following is true:   

44 22 23

1

2
S S S= − , 

( )
2

23

232 1

E
G


=

−
. 2.1.20 

In this case plane 23 is the isotropy plane of a material. Note that Equation 2.1.20 is the 

relation between Young’s and shear moduli for an isotropic material.  

The fact that work done by all the stresses must be positive imposes a constraint on the 

engineering constants. Thus, both stiffness and compliance tensors must be positive-definite 

(Lempriere, 1968), which leads to the following set of requirements for stiffness tensors 

(Jones, 1998):   

11 22 33 23 31 12, , , , , 0C C C C C C  . 2.1.21 
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As a result, the following set of constraints apply: 

1 2 3 23 31 12, , , , , 0E E E G G G  . 2.1.22 

Furthermore, the off diagonal terms must satisfy the following relations:  

23 22 33S S S , 13 11 33S S S , 12 11 22S S S .  

It can also be expressed as a set of constraints on Poisson’s ratios (Jones, 1998):   

1
12

2

E

E
  , 2

23

3

E

E
  , 3

31

1

E

E
  , 

2.1.23 

2
21

1

E

E
  , 3

32

2

E

E
  , 1

13

3

E

E
  . 

The Poisson’s ratios for majority of homogeneous, isotropic materials vary between 0 and 

0.5. Note, that for composite materials the theoretical limits are much higher. According to 

Equations 2.1.23, for material with strong anisotropy manifested by 1 2E E  the Poisson’s 

ratio 12  can attain values much higher than one, which is the theoretical limit for isotropic 

materials.  

2.1.4 Spectral decomposition of the stiffness tensor 

The idea of a decomposition of the stiffness tensor was attributed by Rychlewski (1984) and 

Cowin and Mehrabadi (1992) to Lord Kelvin (Thomson, 1857). Every symmetric, second 

order tensor can be represented as a symmetric, positive definite matrix and therefore can 

be diagonalized. Diagonalization allows representing a tensor in terms of its eigenvalues 

(principal values) and eigenvectors (principal vectors): 

3

1

i i i

i


=

= A v v , 2.1.24 

where A  is a symmetric tensor, 
i

v  is an eigenvector and 
i is an eigenvalue of the tensor. 

Conveniently, mapping to six-dimensional space, as described in Section 2.1.1, reduces the 

order of the stiffness tensor from fourth to second (and stress and strain second order 

tensors to vectors).  
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The stiffness tensor of any material can therefore be given as:  

6

1

i i i

i


=

= C v v , 2.1.25 

with 
i  being the i-th eigenvalue (or principal stiffness) and 

i
v  being the corresponding 

eigenvector (in six dimensions). To avoid confusion with the spatial indices, the modes are 

denoted with upper indices and roman numbers in this work. 

The symmetries of the material, as explained in Section 2.1.2, reduce the number of distinct 

eigenvalues. Direct solutions for eigenvalues and eigenvectors for woven and tetragonal 

materials (in terms of stiffness tensor members) are presented in Table 2.1.1. 

Table 2.1.1 Eigenvalues and eigenvectors of tetragonal and transversely isotropic materials 

Eigenvalues Eigenvectors 

( ) ( )
2 2

11 22 23 11 22 23 12

1
8( )

2

I C C C C C C C  = + + + − − +
    

 
2

1
1 1 0 0 0

2

TI 


=
+

v

 

22 23

II C C = −
  

1
0 1 1 0 0 0

2

TII = −v

 

( ) ( )
2 2

11 22 23 11 22 23 12

1
8( )

2

III C C C C C C C  = + + − − − +
    

 
2

1
1 1 0 0 0

2

TIII 


=
+

v

 

442IV C =
  0 0 0 1 0 0

TIV =v
 

662V C =
  0 0 0 0 1 0

TV =v
 

662VI VC = =
  0 0 0 0 0 1

TVI =v
 

For transversely isotopic materials an additional relation 22 23

IV IIC C = − =  holds. 

Coefficients   and   are: 

12

11

2
I

C

C



=

−
, 12

11

2
II

C

C



=

−
, 2 = − . 2.1.26 

 

  



15 

In case of a tetragonal material the stiffness tensor can be defined as: 

( )

VI
i i i

i I

I I I II II II III III III

IV IV IV V V V VI VI



  

 

=

=  =

=  +  +  +

+  +  + 

C v v

v v v v v v

v v v v v v

 
2.1.27 

And for a transversely isotropic material: 

( )

( )

VI
i i i

i I

I I I III III III II II II IV IV

V V V VI VI



  



=

=  =
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+  + 
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v v v v v v v v

v v v v

 
2.1.28 

By definition, eigenvectors 
i

v have the unit length. Mathematically this is postulated by:  

1i i =v v . 2.1.29 

The eigenvector solution for the general orthotropic material is lengthy and requires the 

number of simplifying assumptions to be determined explicitly. Neither of the references on 

eigensystems of materials (Cowin and Mehrabadi, 1985, 1992; Mehrabadi and Cowin, 1990; 

Sutcliffe, 1992; Mehrabadi, Cowin and Horgan, 1993; Schreyer and Zuo, 1995) present the 

direct eigenvalue solution for the orthotropic symmetry. Nevertheless, it is not vital for this 

work, as the materials considered have the tetragonal or higher symmetries. 

Spectral decomposition of the isotropic material stiffness tensor gives two distinct modes. 

One of them is a volumetric (or spherical) mode and the other one is a deviatoric mode. 

They are defined as: 

11 122v C C = + ,  
1

1 1 1 0 0 0
3

Tv =v , 

2.1.30 

11 12

d C C = − , 
2 1 3 1 3

1 1 1
6 6 6

T

d
 − − +

=  
 

v . 

2.1.5 Damage in composites 

Damage in a material depends on its life cycle starting with design process, through 

manufacturing, assembly and, finally, exploitation. Design, manufacturing and assembly are 
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complex processes. They depend on a large number of parameters, which determine the final 

material quality. An example is generation of residual stresses between fibres and matrix due 

to different thermal expansion during curing process. Design and manufacturing of 

composites, although important for the material quality, lies beyond the scope of this work. 

This work focuses on the in-service performance of composites. 

The extent and character of damage in composites depends on many aspects e.g. composite 

structure, properties of its constituents, loading rates and load types. Among in-service 

composite damage, impact induced damage is one of the most severe and detrimental.  

Depending on the loading rate low and high velocity impact (HVI) are distinguished. In low 

velocity impact structures respond globally – time scales allow for impact energy transfer 

from the impact zone to the rest of the structure. Low velocity impacts are typically modelled 

as quasi-static events, where inertial and strain rate effects are neglected (Orłowski, 2014). 

Low velocity impact is characterised by velocities much lower than the speed of sound in the 

material. In the case of low velocity impact danger does not lie in an instantaneous collapse 

of the structure but in reduction of its stiffness, strength and reduction in fatigue life 

combined with low detectability. The commonly used example of low velocity impact is tool 

dropping which can lead to material delamination. This type of damage is difficult to detect 

as it usually forms under material surface leaving no visible trace. Nevertheless, it can cause 

serious strength and stiffness reduction and undetected is a significant threat to the safety of 

the structure. Composite behaviour under low velocities has been widely studied to provide 

an insight into dominant damage mechanisms evolving at different impact stages (Wu and 

Tsai, 2000). Kim (2000) reports three principal damage modes – interlaminar, intralaminar 

and fibre breaking. Interlaminar damage (delamination) affects the interface between layers 

of composite and is dependent on matrix properties and the properties of the fibre-matrix 

interface. Intralaminar damage between fibres, also driven by matrix and fibre-matrix 

interface properties, is affecting the material within one ply by matrix cracking and fibre-

matrix debonding. Last damage mode identified by the author is intralaminar damage across 

the fibres such as fibre breaking in tension and fibre buckling in compression. 

Investigation of damage in composites under high velocity impact is far more complicated, 

but equally important. Because of short time scales of the impact, difficulties arise in 

experiment design especially in terms of constraining the specimen and observation of 

damage effects (Reid and Zhou, 2000). Understanding materials’ high velocity impact 
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behaviour is most important for sectors where high velocities are encountered such as 

aeronautics, aerospace, automotive, military and defence. Some typical examples of high 

velocity impact are bird and debris impact. Both can lead to fatal accidents – one tragic 

example is Concorde accident in Paris in 2000. Debris from the runway hit the fuel tank of 

the aircraft leading to fire. In case of wind turbines, the blades can be destroyed by hailstones 

during heavy storms.  

Existence of at least two constituents in composite materials necessitates existence of the 

additional feature which is the interface between the constituents. The interface properties 

differ from properties of the constituents. Damage mechanisms that evolve in the material 

can be related to either of the phases or their interface. Among damage mechanisms 

described in (Talreja and Singh, 2012) there are matrix microcracking, fibre breakage, fibre 

micro-buckling, interfacial debonding and delamination (interlaminar cracking).  

Matrix microcracking of composite is a damage mechanism identified within a ply of a 

laminate. It affects solely the matrix phase but can sometimes promote other damage 

mechanisms. Matrix microcracks are typically consequence of tensile, cyclic or thermal 

loading as well as errors in manufacturing. This damage mechanism does not affect the 

stiffness properties significantly. 

In contrast, the overall material performance is strongly affected by fibre breaking. This 

significantly reduces the fibre direction stiffness and residual strength.  Fibre breaking usually 

occurs under tensile loading in the fibre direction. Due to uncertainties in manufacturing and 

assembly processes, as well as the fibre material microstructure defects that have a statistical 

nature the strengths of different fibres may not be equal. Following failure of the weakest 

fibres the stress is redistributed to the remaining fibres, which now need to carry higher loads. 

It is also important to note, that breaking of the fibre often promote matrix cracking or fibre 

matrix delamination. 

Fibre micro-buckling is a damage mechanism induced by the compressive loading in plane 

of fibres. It is a consequence of the initial fibre misalignment generated during the 

manufacturing process. Misalignment leads to fibres bending resulting in their buckling and 

finally structural collapse. As in case of fibre breaking, fibre micro-buckling can contribute 

to matrix cracking. 
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Damage mechanism characteristic for the interface between fibres and matrix is interfacial 

debonding. It can be either the result of manufacturing faults in bonding between fibres 

and matrix or solely the result of loads acting on the material. Interfacial debonding starts 

with matrix cracking around the fibre, which results in different deformation of the 

constituents. Higher deformation of the fibre results in higher Poisson’s contraction, which 

can be high enough to cause debonding between the fibre and the matrix (Talreja and 

Singh, 2012). 

Delamination is damage mechanism which develops between the adjacent plies. It may be 

seen as matrix cracking which occurs in the plane of the interface between the two composite 

layers. Delamination does not need high energy to evolve (Wu and Tsai, 2000) but can cause 

significant reduction in stiffness of the material.  

The fact that the material is composed of at least two phases and their interface whose 

mechanical properties differ (often significantly) makes predictions of damage character very 

difficult. It is also important to note that damage in one phase can promote damage in the 

other. These interactions make the physics of damage in composites complex and difficult 

to model or predict.  

 Review of existing material models 

Previous section gave an overview of the composite (elastic and damage) behaviour and 

introduced the necessary terminology and notation. It also provided the list of damage 

mechanisms. These allow identifying the most important features of a composite constitutive 

model. First of all, the model should be able to accurately represent the linear elastic 

behaviour of the composite and reliably predict the damage onset, damage evolution and 

failure. Whilst linear elastic behaviour is well described by the generalised Hooke’s Law, 

modelling of the damage is much more complex. Hence, second important aspect in 

constitutive models is damage and more specifically its evolution and influence on materials’ 

properties. 

This section focuses on evaluation of existing composite models highlighting their main 

features, assumptions, accuracies and limitations. A number of frequently used composite 

constitutive models is reviewed showing different approaches used for damage onset and 

evolution modelling.  
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Over the last decades a large number of researchers tried to address these issues and 

developed relevant theories and models. These models can be generally classified into three 

groups: phenomenological, physically based and statistical models (Krajcinovic and 

Silva, 1982; Puck and Schürmann, 1998). The review presented here is mainly limited to the 

theories and models implemented in LS-Dyna or Dyna3D and the models otherwise relevant 

to this work.  

2.2.1 Damage initiation criteria used in composite constitutive models 

Basic material characterisation consists in defining its stiffness and strength. Standard tests 

are designed to characterise the material under a priori defined stress state. The stress state in 

an elastic, isotropic, homogeneous material is easy to define. Stress-strain relation for 

anisotropic material is given by generalised Hooke’s Law (Section 2.1.1). Lack of 

homogeneity, however, is the factor significantly complicating the strength analysis. The 

macroscopic state of stress established for the representative volume does not give the 

information about the stress variations due to material micro- or mesostructure. Naturally 

arising question is how to define the load carrying capability under complex load case 

knowing the material strength in different directions. It is usually expressed by failure criteria. 

There are number of failure mechanisms in composites as described in Section 2.1.5, which 

can be associated with different loading conditions.  

Special care was taken to use the consistent notation in this paragraph. Stresses are denoted 

using the contracted notation ( i , 1, 2, ..., 6i = ). X , Y  and Z  are used as labels for the 

normal strengths in 1 , 2  and 3directions that can be determined from the uniaxial stress 

tests. The subscripts t  and c  indicate tension and compression. The shear strengths are 

denoted by iS  with the subscript corresponding to the shear plane ( 4, 5, 6)i = . 

The most basic damage initiation criteria are maximum stress and maximum strain 

criteria. They assume that the material fails under the stress or strain that exceeds material’s 

strength or critical strain in a given direction. These are accurate for plane stress or plane 

strain load cases respectively. However, if a complex triaxial stress or strain state is generated 

in the material, maximum stress and strain criteria overestimate the material load carrying 

capacity by not taking into account interaction between different stress or strain components 

(Echaabi, Trochu and Gauvin, 1996) both for isotropic and anisotropic materials. 

Nevertheless, the maximum stress criterion was found to be accurate for predicting 
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longitudinal strength of composites and was used in failure criteria such as Hashin’s failure 

criterion  (Hashin, 1980) or LaRC03 (Dávila and Camanho, 2003).  

For isotropic materials probably the most common elastic limit criterion is von Mises yield 

criterion (or Maxwell–Huber–Hencky–von Mises theory). Although the von Mises criterion 

is directly applicable only to isotropic materials, the possibility of extending the formulation 

to anisotropic materials was postulated by number of researchers, starting with Hill (1950). 

He suggested that yield criterion for anisotropic metals can be defined by: 

( ) ( ) ( ) ( )
2 2 2

2 3 3 1 1 2

2 2 2

4 5 6

2

2 2 2 1.

f F G H

L M N

      
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= − + − + − +

+ + + =
 2.2.1 

where F , G , H , L , M  and N are the parameters characteristic for a material anisotropy. 

The coefficients are dependent on the material yield strengths in the material’s anisotropy 

directions: 
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1
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= , 

2
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1
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S
= . 

2.2.2 

The criterion was proposed for the orthotropic material in which the hydrostatic/isotropic 

stress (calculated as ( )1 2 3 / 3p   = + + ) does not contribute to yielding. Note that 

different definition of pressure is used in this work (Section 3.5.1).  

A systematic approach to define failure in anisotropic materials was suggested by Tsai and 

Wu (1971). The basic assumption of Tsai and Wu failure criterion was the existence of a 

function defining the failure surface (with summation over repeated indices): 

( ) 1f F F       = + = , 2.2.3 

where F and F  are strength tensors of second and fourth order (in contracted notation 

they are vectors and second order tensors respectively).  
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The tensors can be determined for an orthotropic composite using compressive, tensile and 

shear strengths as follows: 
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 2.2.4 

Note, that if the expressions below are satisfied the Tsai and Wu criterion simplifies to Hill’s 

criterion (Equation 2.2.1). 

t cX X X= =  

t cY Y Y= =  

t cZ Z Z= =  
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 
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23 2 2 2

1 1 1 1

2
F
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2.2.5 

Tsai – Wu failure criterion can also be simplified if the composite is unidirectional with fibres 

in direction X subjected to the plane state of stress. This simplification yields the commonly 

used form of Tsai and Wu criterion: 

22 2

61 1 2 2

2 2 2 2
1f

X X Y S

   
= − + + = . 2.2.6 

Chang and Chang (1987) suggested failure criteria with three in plane failure modes – matrix 

cracking, fibre – matrix shearing and fibre breaking. Chang-Chang criteria are based on 

failure criteria proposed by (Yamada and Sun, 1978), but are generalised to account for non-

linear elastic behaviour. Failure criterion for matrix cracking is given by Equation 2.2.7. Fibre-

matrix shearing and fibre breaking failure modes are described by the same Equation 2.2.8.  
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 2.2.7 
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 2.2.8 

In case of linear elastic behaviour of a laminate 0 =  and Equations 2.2.7 and 2.2.8 simplify 

to Equation 2.2.9, which is the failure criterion proposed by Yamada and Sun (1978):  
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2.2.9 

Chang and Chang (1987) considered, to some extent, the progressive damage of material. 

The authors suggested that fibre damage results in reduction of the longitudinal Young’s 

modulus following the Weibull distribution. The matrix related failure modes were assumed 

to lead to reduction of Young’s modulus and Poisson’s ratios to zero with no change in 

longitudinal and shear stiffness properties.  

Significant progress in predicting composites failure was development of the Hashin failure 

criterion (Hashin, 1980). Hashin introduced two major failure modes: one connected to 

matrix and the other to fibre failure. Each of them is treated separately for tension and 

compression. It is important to note that the criteria developed by Hashin are empirical, i.e. 

an approximation based on a best fit to empirical data, not a physically based failure theory. 

In his approximation, Hashin used quadratic curves justifying it by their good fitting 

capabilities and lower computational cost compared to higher order equations.  
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Hashin suggested two equations (2.2.10 and 2.2.11) for fibre tensile failure. First one 

accounts for shear strengths influence, the second is simply maximum stress criterion. 
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 2.2.11 

Fibre tensile failure mode assumes that only stress components: 1 , 5  and 6  influence 

the mode. Corresponding tensile ( )tX  and shear strengths 5(S  and 6 )S  are used to define 

the fibre failure. 

For fibre failure in compression Hashin suggested maximum stress criterion: 
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. 2.2.12 

Hashin’s matrix failure criterion is described by the quadratic formulation given by 

Equation 2.2.13, which takes into account interaction between transverse normal stresses 

and shear stresses in all planes.  
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Hashin’s matrix failure in compression is given by: 
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 2.2.14 

According to Hashin (1980) the best results for matrix failure would be given by finding the 

plane of the maximum principal stress (Mohr’s failure theory), but at that time it appeared to 

be too complex to use in computations. This idea was evaluated later by Puck and Schürmann 

(1998). 

LaRC03 failure criteria were developed by Dávila and Camanho (2003). These are the 

phenomenological failure criteria which are based on works by Hashin (1980) and Puck and 

Schürmann (1998). Authors analysed how different load cases influence the strength of a 

material. For transverse matrix compression the failure criteria were based on the Mohr – 
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Coulomb criterion. Following the Mohr’s circle maximum stresses in material were 

established by: 

T T T

eff n   = + , 

L L L

eff n   = + , 

2.2.15 

where T  and L are respectively transverse and longitudinal influence coefficients 

(determined experimentally), n  is stress normal to the fracture surface, 
L and 

T are 

longitudinal and transverse components of stress lying on the fracture plane that can be 

determined from 2 , 6  and fracture angle   (Figure 2.2.1).  

 

Figure 2.2.1 Fracture of a unidirectional lamina subjected to transverse compression and in-plane shear  
(adjusted from Dávila, Camanho and Rose, 2005) 

Failure criterion proposed by Dávila and Camanho (2003) is given by: 

2 2

1

4 6

1

T L

eff eff

is
f

S S

    
= + =      
   

, 2.2.16 

where 4S  and 6

isS  denote transverse shear strength and longitudinal in situ shear strength. In 

situ effect stands for increased strength of composite layer lying between other layers of 

different orientation. 

For transverse matrix failure in tension authors suggest use of: 

( )
2 2
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1 1
t t

f r g
Y Y S

    
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   
, 2.2.17 

where r  is given by: 
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where is

tY is in situ transverse strength in tension and 6

isS  in situ longitudinal shear strength; 

1E , 2E , 12G , 12  are Young moduli in longitudinal and transverse directions, longitudinal 

shear modulus and Poisson’s ratio respectively. It is worth noticing that if 1r =  

Equation 2.2.17 simplifies to form in Equation 2.2.16, which can be also seen as 2D case of 

Hashin’s failure criterion (Dávila, Camanho and Rose, 2005). The only difference is that 

Equation 2.2.17 uses the in-situ strengths rather than ply strengths. 

Fibre failure under tension is assumed to occur under the maximum strain criterion: 

1
3

1

1
cr

f



= = . 2.2.19 

Fibre failure under longitudinal compression was attributed to fibre kinking, which is 

phenomenon of generation of shear stress between the fibres due to initial misalignment (see 

Figure 2.2.2). 

 

Figure 2.2.2 Fibre misalignment (adapted from Dávila and Camanho (2003)) 

An important effect included in the model is reduction of the effects of kinking by transverse 

compression, whilst transverse tension promotes it. Thus, there are two criteria to describe 

kinking failure. Equation 2.2.20 gives the criterion for compressive transverse stress and 

Equation 2.2.21 the criterion for tensile transverse stress. 
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where superscript m  denotes the change of coordinate system to the misalignment frame 

using the stress components 1 , 2 , 6  and misalignment angle (Figure 2.2.2) that yields: 

2 2

1 1 2 6cos sin 2sin cosm    = + + , 

2 2

2 1 2 6sin cos 2sin cosm    = + − , 

( )2 2

6 1 2 6sin cos sin cos cos sinm         = − + + − . 

2.2.22 

The last case of damage analysed by Dávila and Camanho (2003) was high transverse 

compression coupled with moderate longitudinal compression. Under these conditions the 

kink band is not likely to form, so damage would occur as matrix damage. The criterion is 

given by: 

2 2

6 1

mT mL

eff eff

T L

is

f
S S

    
= + =      
   

, 2.2.23 

where stresses in the misalignment frame are defined by: 

( )2 cos sin cosmT m T

eff  = −   −  , 

( )6 2cos cosmL m L m

eff   =  +  . 

2.2.24 

Note that the criterion definition is exactly the same as the matrix failure criterion 

(Equation 2.2.16) but is calculated in the material misalignment frame. LaRC03 failure criteria 

were used for composite constitutive models developed by Pinho, Iannucci and Robinson 

(2006a) and Maimí et al. (2007a).  

The last failure criterion that is most important for this work is another approach to 

generalisation of von Mises yield criterion. It was suggested by Mehrabadi and Cowin (1990) 

and mathematically derived by Schreyer and Zuo (1995). If von Mises criterion is treated as 

the maximum distortional strain energy criterion it can be obtained by the spectral 

decomposition of the stiffness tensor of an isotropic material and calculation of the modal 

strain energy. The same procedure can be followed for the non-isotropic material stiffness 

tensor. This leads to identification of the strain energy modes corresponding to each of the 

principal stiffnesses. In case of isotropic materials decomposition yields two distinct modes 
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that can be identified as spherical and deviatoric. The deviatoric mode in the case of material 

isotropy is the exact form of von Mises Yield criterion. In case of non-isotropic materials 

there are at most six distinct strain energy modes. For some material symmetries (transverse 

isotropy, tetragonal) the number of the modes decreases as a result of repeated eigenvalues.  

Direct procedure of the derivation of the yield surface was described by Schreyer and Zuo 

(1995). Following this approach six strain energy modes can be defined for each material. 

Assuming that the material fails if the strain energy in a mode exceeds its limit, six scalar 

failure criteria can be defined for each material. Schreyer and Zuo (1995) proposed definition 

of the eigenstresses characteristic for each mode (here in contracted notation): 

( )i i i i i i=  =  =σ P σ v σ v v , 2.2.25 

where tensor i
P is the projection operator tensor corresponding to the i-th eigenmode 

defined as the tensor product of two eigenvectors 
i

v . For the materials with tetragonal 

symmetry and transverse isotropy the explicit solution for eigenstresses is possible (Schreyer 

and Zuo, 1995):  
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For transversely isotropic materials there are only four modes. First, third and fifth (which 

becomes fourth) modes remain the same as in Equations 2.2.26 and the second mode is a 

combination of the second and the fourth mode from Equation 2.2.26, i.e.:  

( ) ( )
2 22

2 3 4

1
: : 2

2

II II II IV IV   = + = − +σ σ σ σ . 2.2.27 
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Following Schreyer and Zuo (1995) suggestion, the experiments can be designed to activate 

only one strain energy mode. Subsequently, the strengths related to each of the modes can 

be determined for a given material. The similar approach was used by Hebda (2006) for the 

laminae (in 2D).  

The failure criteria presented in this section represent a small selection of many other 

developed over the years. A more complete list of failure criteria was provided by Orifici, 

Herszberg and Thomson (2008). Furthermore, comprehensive evaluation of the composite 

failure theories was the aim of the World-Wide Failure Exercise (WWFE) (Soden, Kaddour 

and Hinton, 2004). The exercise compared and contrasted the range of failure theories 

against each other and experimental data for the number of load cases. It revealed lack of 

the universally accurate and robust theory. 

The approach used in this work is based on the definition of the strain energy modes. The 

only difference is that failure criteria are defined in strain rather than stress domain in this 

work (see Section 5.1). Such failure criteria have benefit of being physically sound and 

consistent with theory applicable to arbitrary loading conditions.  

2.2.2 Material progressive damage models 

The most basic material models include failure models that are not capable of modelling 

progressive damage. In these models the engineering constants are set to zero resulting in 

zero stress after failure criterion is reached. The example of such a model is Chang-Chang 

Composite Failure Model (e.g. MAT_022 in LS-Dyna).  

The other type of models includes progressive damage models which can describe material 

gradual deterioration. Examples of such models are (Pinho, Iannucci and Robinson, 2006b, 

2006a; Maimí et al., 2007a, 2007b; Gama, 2015; Zhao et al., 2018) among many others. 

Majority of progressive damage models are based on the continuum damage mechanics 

(Section 3.3). 

Matzenmiller, Lubliner and Taylor, (1995); Maimí et al., (2007a); Gama, (2015) model 

progressive damage by modifying the elements of the compliance tensor. Each of failure 

criteria activates separate damage variables which adjust diagonal terms of the compliance 

tensor as show in Equation 2.2.28. Within this general idea different failure criteria were 
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considered. In case of Maimí et al. (2007a) LaRC03 criteria were used. Gama (2015) used 

Hashin failure criterion for fibres and he developed his own failure criteria for matrix. 
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2.2.28 

An interesting approach to modelling of progressive damage was presented by Zhang et al., 

(2016) and improved by Zhao et al., (2018). They suggested seven Hashin-based failure 

criteria: fibre tension (FT), fibre compression (FC), matrix tension (MT), matrix compression 

(MC), fibre-matrix shear-out (FMs), interlaminar tension (IT) and interlaminar compression 

(IC). Each of the criteria activates a corresponding damage mode. In this model damage is 

defined by the number of damage factors applied to material elastic constants (presented in 

Table 2.2.1). Unlike in previously described models, this damage model affects also off-

diagonal terms of the compliance and stiffness tensors.  

According to Zhao et al., (2018) degradation factors x

yd  can be obtained from the mesoscale 

periodic models. In their analysis single fibre models were used. It was claimed, following 

Trias et al., (2006) that it is sufficient to accurately model the degradation of a material.  
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Table 2.2.1 Mode dependent degradation model (Zhao et al., 2018) 

Failure 

mode 

Degradation factors for elastic constants 

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 

FT 
11

FT

Ed  1 1 
12

FT

Gd  
13

FT

Gd  1 
12

FTd  
13

FTd  1 

FC 
11

FC

Ed  1 1 
12

FC

Gd  1 1 
12

FCd  
13

FCd  1 

MT 1 
22

MT

Ed  1 
12

MT

Gd  1 
23

MT

Gd  
12

MTd  1 
23

MTd  

MC 1 
22

MC

Ed  1 
12

MC

Gd  
13

MC

Gd  
23

MC

Gd  
12

MCd  1 
23

MCd  

FMS 1 
22

FMS

Ed  
33

FMS

Ed  
12

FMS

Gd  
13

FMS

Gd  
23

FMS

Gd  
12

FMSd  
13

FMSd  
23

FMSd  

IT 1 1 
33

IT

Ed  1 
13

IT

Gd  
23

IT

Gd  1 
13

ITd  
23

ITd  

IC 1 1 
33

IC

Ed  1 
13

IC

Gd  
23

IC

Gd  1 
13

ICd  
23

ICd  

2.2.3 Models implemented in LS-Dyna 

There are numerous constitutive models available in any FE software. There is no material 

model that is universally applicable to all materials and load cases. Some models are only 

suitable for elastic analysis and infinitesimal strains. Some more advanced models are 

applicable to large strains and include plasticity and damage effects. Another aspect that 

should be considered is the strain rate – some materials exhibit strain rate dependence, which 

can also be accounted for in material model. Furthermore, if high velocity phenomena are 

modelled the dynamic material response requires use of equation of state. All these aspects 

should be considered while choosing the material model suitable for analysis. The 

appropriate choice of the material constitutive model is therefore of vital importance to 

assure the meaningful result. Only few composite damage models such as Hashin, Tsai-Wu 

and Tsai-Hill failure criteria are available in commercial software. The model developed in 

this thesis is implemented in Dyna3D software, which focuses specifically on the dynamic 

modelling. Dyna 3D is a code developed by Lawrence Livermore National Laboratory 

(LLNL) in USA for which source code is available in house which allows implementing new 

subroutines, including new material models. The commercial version of this program, 
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LS Dyna currently supports eleven composite material models for structural analysis. Few 

most relevant models are described below. Equations defining damage criteria for these 

models are presented in Appendix A. 

Material MAT_COMPOSITE_DAMAGE (MAT_022) uses Chang and Chang failure 

criterion. There are three failure modes considered – tensile fibre mode, tensile matrix mode 

and compressive matrix mode. The model requires five material strength parameters: 

longitudinal tensile strength, transverse tensile strength, in-plane shear strength, transverse 

compressive strength and nonlinear shear stress parameter. First four can be determined 

from simple mechanical tests and the latter from shear stress-strain measurements. Reaching 

failure criterion sets the selected material constants to zero. 

Another composite model available in LS Dyna comes in two versions. Both are based on 

MAT_022. The model name is MAT_ENHANCED_COMPOSITE_DAMAGE 

(MAT_054/MAT_055). The models differ by the failure criterion for matrix failure. 

MAT_054 uses the Chang and Chang failure criterion (like MAT_022), and MAT_055 Tsai 

– Wu criterion. This material model is valid only with shell element formulation. There are 

five strength input parameters – tensile and compressive longitudinal and transverse stresses 

and in-plane shear stress. Additionally, the parameters that define the final failure, such as 

final rupture shear strain ot maximum damage can be specified for MAT_054.  

Material MAT_COMPOSITE_FAILURE (MAT_059) is vaguely described in keyword 

manual (LSTC, 2014) and not at all in the Dyna theory manual (Hallquist, 2006). The material 

is shortly described in (Schweizerhof et al., 1998), according to which the ellipsoidal failure 

surface is defined by failure surface similar to the Tsai-Wu criterion. It was suggested that 

this model works well for the materials whose different strengths do not differ significantly. 

Depending on the input the material can be either elastic – perfectly plastic, which results in 

constant stress after failure or elastic with damage, which results in setting the tensile 

strengths to zero (material can carry only compressive loads). The input parameters for the 

solid model are: tensile and compressive strengths in fibre, transverse and through thickness 

directions and three shear strengths. 

Materials MAT_COMPOSITE_MSC (MAT_161 and MAT_162) are the material models 

based on Hashin failure criteria. MAT_162 is the same as MAT_161, but it accounts for 

progressive damage. Progressive damage affects the normal and shear stiffnesses following 
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approach in Equation 2.2.28. There are ten strength parameters required for the model 

(longitudinal tensile strength, longitudinal compressive strength, transverse compressive 

strength, through thickness tensile strength, crush strength, fibre mode shear strength, matrix 

mode shear strengths in three planes). The critical values for damage parameter, compressive 

volume strain and tensile volume strain may be defined for final element failure (element 

erosion). The model MAT_161 correlates failure criteria with the set of stiffnesses. Tensile 

and shear failure criteria lead to instantaneous loss of load carrying capability of the layers. 

The compressive modes are treated differently. For fibre compressive failure, the residual 

strength is assumed and defined by the input scale factor. For matrix in compression normal 

stress is assumed to be linearly elastic, but the shear stresses are set to constant equal to 

fracture strength (like in perfect plasticity models, where stress is constant and equal to yield 

limit).  

Material MAT_LAMINATED_FRACTURE_DAIMLER_PINHO (MAT_261) is the 

progressive damage model. The fibre failure was modelled by maximum stress for tensile 

failure and fibre compressive failure was based on LaRC03 (Dávila and Camanho, 2003). 

Matrix transverse tension and compression failure criteria were based on (Puck and 

Schürmann, 1998, 2002). The progressive damage was modelled by damage variables 

affecting the stress components. The damage variables evolve linearly basing on the fracture 

toughness. The model requires six strength parameters: tensile and compressive longitudinal 

and transverse strengths and longitudinal and in-plane shear strengths. Additional parameter 

defined in the input is the fracture angle in pure transverse compression and four fracture 

toughness that are used in the progressive damage part of the model. 

Another model, MAT LAMINATED FRACTURE DAIMPLER CAMANHO 

(MAT_262) is similar to MAT_261. It also bases on the LaRC03 failure criteria and uses 

fracture toughness to control the progressive damage. The input parameters are the six 

strength parameters (tensile and compressive longitudinal and transverse strengths and 

longitudinal and in-plane shear strengths). Seven fracture toughnesses determine damage 

evolution. 

  



33 

 Summary 

This chapter provided necessary background on composite mechanics. It commented on the 

types of composites, their linear elastic behaviour and damage mechanisms. Furthermore, 

the notation used throughout this work was introduced as well as the spectral decomposition, 

which is crucial to the proposed model development. 

The popular composite failure criteria were presented in this chapter. They are by no means 

all of the developed theories. The most popular theories were presented here. The large 

number of the theories and models makes it almost impossible to evaluate all of them at 

once. Different notation used in each of the theories additionally hinders recognising 

similarities between them. A very good evaluation of composite constitutive models was 

completed during WWFE by Soden, Kaddour and Hinton, (2004). It revealed that neither 

of sometimes very elaborate models was capable of predicting the strength of the material 

accurately in all load cases. Orifici, Herszberg and Thomson (2008) also provided a good list 

of failure theories. The large number of strength theories for the composites is not reflected 

in the number of available composite models in commercial FE software. There are few 

models available in LS-Dyna. Among the well-documented ones, for which the failure criteria 

can be easily tracked three models use the Chang and Chang (1987) failure theory (or closely 

related one). Two models use the Hashin failure criteria and two are strongly based on 

LaRC03 failure criteria. In LS-Dyna models damage is incorporated by changing material’s 

elastic stiffnesses, which results in affecting the diagonal of the compliance tensor. Damage 

initiation criteria suggested in the model developed in the thesis uses a different approach.  

It was not directly compared to above mentioned formulations, nevertheless, it would be a 

natural next step in material behaviour comparison. 

Summing up, the available theoretical and implemented material models have their 

limitations. Majority of the models assume a priori stiffness parameters that are affected by 

damage. One very significant limitation in all presented material models is lack of 

consideration for the high velocity impact as none of the models mentions coupling with 

equation of state. In contrast to above-mentioned empirical models, the model introduced 

in this work offers a consistent physical description of failure mechanisms. This allow 

incorporating an equation of state and in turn high velocity impact modelling. 
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3 Continuum mechanics, thermodynamics and damage 

mechanics framework 

Modelling is an attempt to describe complex reality by a finite number of equations and 

variables. It aims at simplifying the physics laws so that they can be calculated effectively but 

still be able to accurately predict most important phenomena and capture materials’ or 

structures behaviour. Therefore, derivation of material model should start with physics laws 

and rules. Along way simplifications and additional assumptions should be added to focus 

on the most important features and conditions. There are three main fields that aid material 

modelling, namely, continuum mechanics, thermodynamics and damage mechanics. 

Continuum mechanics describes motion (translation and rotation) and deformation of 

materials using conservation laws (mass, momentum and energy). It also gives the necessary 

definitions for quantification of internal forces in the material (stresses) depending on the 

deformation (strains) through constitutive laws.  

Continuum thermodynamic framework assures that the material model is thermodynamically 

consistent i.e. it does not violate the thermodynamic laws.  

Damage mechanics provides a basis for representation of the micro- and mesoscale damage 

mechanisms at the continuum scale by the effect they have on the macroscopic material 

properties.  

The constitutive model presented in this work is developed in the framework of continuum 

mechanics and thermodynamics. Damage in the model is represented by the damage 

(internal) variables that are defined consistently with the thermodynamic laws. This assures 

that every thermodynamic damage state in the material is physically admissible. All the 

important theories and concepts that were used in the model development are presented in 

this section for the sake of clarity and completeness.  

 Continuum mechanics 

The fact that matter is built of atoms is obvious nowadays. However, analysis of a behaviour 

of a structure taken as a collection of atoms (or even more fundamental particles) is not 

practical. This is firstly due to the scale at which the structures are designed and observed, 

which is extremely large in comparison to the atomic scale. Secondly, the assessment of the 
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properties (e.g. by mechanical tests) is performed on the specimens, that have relatively large 

dimensions (Mase and Mase, 1999). These two facts justify the use of the concept of 

continuum, which postulates that the matter can be described as continuous with no regards 

to its discrete structure at large enough scales.  

Detailed knowledge of the microscopic structure of a material is not required in continuum 

mechanics. The continuum is instead described by macroscopic field quantities such as 

density, temperature or velocity. Three main parts of continuum mechanics can be identified, 

i.e. the study of motion and deformation (kinematics), the study of stress (the concept of 

stress) and the mathematical description of the fundamental laws of physics governing the 

continuum motion (balance principles) (Holzapfel, 2000).  

Continuum mechanics can be used to describe fluids and solids, which in turn identifies two 

main fields in continuum mechanics – fluid and solid mechanics. Only the latter is relevant 

for this work. The concepts and aspects of continuum mechanics that are essential in the 

model development are presented in the subsequent chapters. 

3.1.1 Representative volume element 

Continuum mechanics offers a convenient way of describing material’s behaviour without 

insight into its microscopic structure. Treating material as a continuum requires 

homogenisation of its properties. This highlights an important concept which is the 

Representative Volume Element (RVE). There are several definitions of the RVE 

(conveniently listed in Gitman, Askes and Sluys (2007)). Generally, the RVE can be described 

as the minimum volume of the material that is capable of capturing material deformation 

processes accurately and giving the representative, mean response of the material (Ostoja-

Starzewski, 2002; Kanit et al., 2003; Khisaeva and Ostoja-Starzewski, 2006; Gitman, 2007; 

Gitman, Askes and Sluys, 2007; Li, Singh and Talreja, 2009; Kamiński and Pawlak, 2015).  

It is therefore required that the RVE is sufficiently large with respect to the microstructure 

of the material. The RVE is well defined under either of the two conditions: if a material has 

a periodic structure or the size is large enough to be statistically representative (consists of 

sufficiently large number of microscale elements) (Ostoja-Starzewski, 2002). This brings in a 

concept related to the RVE, a Repetitive Unit Cell (RUC), which is the material ‘portion’ 

whose structure is repeated throughout the material. Examples of RUC in a composite are 

presented in Figure 3.1.1. 
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a) 

  

b) 

 
 

Figure 3.1.1 Repetitive Unit Cell: a) woven composite, b) unidirectional composite 

3.1.2 Stress 

Material loaded by the set of external forces maintains its integrity due to existence of the 

internal forces. If the body is in static equilibrium, the sum of the external and internal forces 

must be equal to zero. Figure 3.1.2 shows the imaginary cut of a material. 

 

Figure 3.1.2 Forces acting on the imaginary cut in a material (Malvern, 1969, p.69, adjusted notation) 

If a material is in static equilibrium, the internal force acting on the cut surface must balance 

the external forces. This holds for any point of the continuum. If elementary surface ( )A  

is considered, the traction vector (force per unit area) can be defined as: 

0
lim
A A →


=



f
t  . 3.1.1 
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Splitting of the traction vector into components collinear with Cartesian coordinate system 

leads to identification of the stress state as presented in (Figure 3.1.3).  

a) 

 

b) 

 
Figure 3.1.3 a) Traction vectors, b) cartesian stress tensor components (Malvern, 1969, pp. 70-71)  

The stress tensor can be defined as: 

=f σn , i ij jf = n , 3.1.2 

where σ  is the second order symmetric Cauchy stress tensor. The stress components for 

which the traction vector is collinear with the vector normal to the surface ( 11 , 22  and 

33 ) are called the normal stresses. All other stress components ( 12 21 = , 13 31 =

and 23 32 = ) are known as tangential or shear stresses. 

3.1.3 Displacement, deformation and strain 

When the external force is applied to the material it changes its state. Depending on the 

conditions and material properties it can result in displacement, deformation or both. To 

determine how a material reacts to application of the external force, concepts of 

displacement, deformation and strain are necessary.  

The simplest example of displacement is a rigid-body displacement (translation or rotation). 

In the rigid body particles do not change the relative position, and thus the body preserves 

its volume and shape. In other words, the rigid body motion can be defined by the changing 

material frame.  

However, displacement is not limited to rigid bodies. On the contrary, an arbitrary 

displacement of a body, besides a rigid body displacement, includes deformation, i.e. change 

in shape or volume.  
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Displacement sequence that leads to the certain material state is called motion. 

Mathematically, it can be expressed as: 

( )=x X , 3.1.3 

where   is motion, x  is position of the point X at time t and X  is position of the same 

point at the reference time. For hyperelastic materials motion is independent of time history. 

Definition of the deformation in a material requires introduction of another concept, namely, 

deformation gradient F , which is given by the differential of Equation 3.1.3: 

d d


=


x
x X

X
, ( )

( )
d


= =


Xx
F X

X X
. 3.1.4 

For undeformed body, the deformation gradient simplifies to the identity tensor, giving.  

d d=x X . 3.1.5 

Deformation gradient is then used to define strain tensors. Left and right Cauchy-Green 

deformation tensors (C  and b  respectively) are defined by the product of deformation 

gradient as: 

T=C F F , 
T=b FF . 3.1.6 

The above tensors can be used as independent variables in the material constitutive model. 

However, often use of the strain tensors whose value equals to zero for an undeformed body 

is more convenient. The commonly used strain tensors are Green-Lagrange and Euler-

Almansi strain tensors given respectively by: 

( )1
2

1T= −E F F  ( )11
2

1 T− −= −ε F F  3.1.7 

Composites are the elastic-brittle materials with practically no plastic deformation. 

Consequently, the strains that are expected in the material can be described as infinitesimal. 

The strain tensor used in the constitutive model developed in this work is the Euler-Almansi 

strain tensor which is conjugate to the Cauchy stress tensor ( )σ , which was introduced in 

the previous section. 
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 Continuum thermodynamics 

Thermodynamics is a study of energy and energy related phenomena. Two major branches 

can be identified within. Statistical thermodynamics deals with molecules and atoms and 

classical (continuum) thermodynamics is related to continuous matter. The latter is an 

obvious and consistent choice to be used along with continuum mechanics.  

A deformed continuum possesses both thermal and mechanical energy. A thermodynamic 

state of a continuum is defined by macroscopic thermodynamic state variables. The 

necessity to consider thermodynamics in material constitutive model is dictated by the 

dissipative character of damage and need to model dynamic response of the material. During 

damage evolution energy is lost and entropy increases. To assure that the fundamental laws 

of physics are not violated and that the modelled material state is physically admissible, it is 

inevitable to consider thermodynamics.  

3.2.1 Thermodynamics with internal variables 

There are few thermodynamic theories used to describe the dissipative processes – 

thermodynamics of irreversible processes, rational thermodynamics and 

thermodynamics with internal variables (Ostoja-Starzewski, 2002). The latter is most 

appealing for this work. It does not have the limitation of being applicable only to the states 

close to equilibrium which is characteristic of the thermodynamics of irreversible processes 

(Djordjevic, 2011). Internal variables allow for definition of the fictitious thermodynamic 

equilibrium state.  Therefore, determination of the current thermodynamic state is based on 

the current values of deformation gradient, temperature and set of internal variables without 

reference to the history of these variables  (Holzapfel, 2000). This shows the superiority of 

thermodynamics with internal variables over rational thermodynamics in which the 

knowledge of the deformation history is essential.  

In thermodynamics with internal variables the material state is described by two different 

types of variables: external and internal. External variables are typical thermodynamic 

quantities such as temperature or deformation gradient which can be easily measured and 

controlled. The other type of variables used in material modelling are the internal variables 

(or hidden variables), which are used to account for structural changes within the material at 

microscopic scale. These variables are more elusive and not as well defined as external 

variables. They may be the inelastic strains (often used to model plasticity in metals), damage 
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and dislocation densities among others (Holzapfel, 2000). Internal variables indirectly 

provide information about the material deformation history and thus are often called history 

variables. Internal variables can be neither directly measured nor controlled. However, they 

may be determined by phenomenological experiments (Holzapfel, 2000). They can be either 

scalar or tensor quantities. The choice of the set of history variables, their mathematical form 

and evolution laws is one of the challenges of material modelling.  

3.2.2 Basic laws of thermodynamics 

The principle laws of thermodynamics that are most important in constitutive modelling are 

the first and the second law of thermodynamics. The first law of thermodynamics, known as 

the energy balance principle, states that the rate of change of the energy within a system is 

equal to the energy supplied to the system minus the work the system performs on its 

surroundings. Thus, for any isolated system the total internal energy is constant but can 

change its form (e.g. thermal, mechanical, chemical etc.).  

The second law of thermodynamics states that the entropy cannot decrease in time. It is 

particularly important in modelling of irreversible processes. The entropy maximum 

postulate is also widely used in material modelling (Fischer and Svoboda, 2007). It states that 

‘values assumed by the extensive parameters […] are those that maximise the entropy’ 

(Callen, 1998). In other words, between the two material states the entropy rate have to be 

maximised to maximise the total entropy. Practically, this introduces an additional constraint 

needed for relating the internal variables.  

3.2.3 State variables 

Thermodynamics with internal variables makes use of the set of the quantities that uniquely 

define the state of the material. These quantities are called state variables. State variables, 

depending on their nature can be divided into extensive and intensive variables. Mass, 

entropy, volume, displacement and strain are the examples of the extensive quantities. The 

characteristic feature of extensive quantities is size-dependence. This distinguishes extensive 

variables from the intensive variables, which are e.g.: stress, temperature and pressure. The 

intensive quantities are sometimes referred to as generalised forces and extensive quantities 

– generalised displacements by the analogy with force and displacement giving the 

mechanical work.  
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An important notion which is often used with regard to state variables are conjugate 

variables. The variables are conjugate if their product gives the result in energy units (e.g. 

stress and strain, temperature and entropy or force and displacement).  

The increment of energy ( )du  can therefore be defined as the sum of the conjugate forces 

( )ky  and displacements ( )kde  product: 

1

N

k k

k

du y de
=

= . 3.2.1 

Consequently, the conjugate force can be defined as the partial derivative of the energy with 

respect to the conjugate variable: 

k

k

u
y

e


=


. 3.2.2 

In this work the forces conjugate to damage variables were used to define the damage 

potentials (defining the damage initiation and evolution). 

3.2.4 State potentials 

Thermodynamic state potentials are the scalar quantities that define the thermodynamic 

state of the material. State potentials are useful in definition of hyperelastic materials, as they 

can be explicitly defined by the current values of the state variables. First of the examples of 

the state potential is internal energy, which can be defined as the capacity of the material to 

release energy in the form of work or heat. Another example of the state potential is enthalpy. 

It is the measure of the energy that can be released in the form of non-mechanical (e.g. 

chemical) work and heat. Gibbs energy defines the amount of energy that can be released 

as non-mechanical work. The last state potential described in this work is the Helmholtz 

free energy which is the capacity of the material to release energy as work. The relation 

between the state potentials is presented in Figure 3.2.1. 
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Figure 3.2.1 Relationship between thermodynamic potentials (Djordjevic, 2011) 

Helmholtz free energy is the state potential commonly used in material modelling. It defines 

the material capability of performing work at constant temperature. Thus, not only is it 

inseparably connected to the strain energy, but also includes the chemical or damage 

potential. Helmholtz free energy is a function of strain and temperature: 

 ( ) ( ), ,u s s  = −E E , 3.2.3 

where E  is Green-Lagrange strain tensor that is energy conjugate to Second Piola Kirchhoff 

stress tensor S ,   is temperature and s is entropy. The specific definition of Helmholtz free 

energy used in this work is presented in Section 6.1. 

3.2.5 Damage potentials 

Initiation and evolution of internal damage variables is controlled by the so-called pseudo 

or damage potentials. The damage potentials consist of the loading potential and the limit 

function value which separate the elastic and inelastic (e.g. plastic or damage) material 

behaviour. The loading potential 1( )  is the function of the forces conjugate to variables 

defining the inelastic processes ( )iy . It assumes different forms depending on the state 

potentials and damage variables used in the model. The hardening potential 2( )  depends 

on the forces conjugate to internal state variables defining hardening of the material ( )jy  

and controls the evolution of failure surface initially defined by 0 . The general form of 

damage potential is expressed by: 
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( ) ( ) ( )( )1 2 0       ,i j i jy y y y = −  + . 3.2.4 

Function 2  is required for modelling of hardening and softening behaviour of materials 

whose material load limit varies with evolution of inelastic processes. The common approach 

in damage modelling is associative flow. It restricts the damage potential values to the non-

positive values: 

( ) ( ) ( )( )1 2 0        0,i j i jy y y y   +−=  . 3.2.5 

Elastic material behaviour is observed when loading potential is lower than the limit: 

( ) ( )1 2 0   i jy y  + . 3.2.6 

If loading potential reaches a limit defined by hardening potential and initial failure threshold 

the material starts to behave non-elastically which results in evolution of the internal damage-

related variables. During damage evolution the damage-related internal variables must satisfy 

Equation 3.2.7 as a consequence of associative flow: 

( ) ( ) ( )1 2 0        0,i j i jy y y y  −−= = . 3.2.7 

If material exhibits no hardening or softening behaviour (perfect inelastic behaviour), the 

hardening function equals to zero, so: 

( ) ( )1 0    0i iy y  −=   3.2.8 

The hardening potential ( )2  jy  is greater than zero for the materials that exhibit hardening 

behaviour. Therefore, with damage evolution the allowed loading potential increases. The 

contrary behaviour – softening is associated with negative hardening potential ( )2 jy . The 

different behaviours are described by Figure 3.2.2. 
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Figure 3.2.2 Different material beahviour – perfect, herdening and softening 

The most commonly used loading potential is stress, which is the force conjugate to the 

strain. After reaching the critical value of stress, perfectly plastic materials stress is equal to 

its stress limit (Figure 3.2.3 - a)). It is associated with the evolution of plastic strain, which is 

the internal variable describing plastic deformation. If a material exhibits strain hardening 

the stress level behind the yield limit is higher (Figure 3.2.3 - b)) than for the equivalent strain 

for the perfectly plastic material. Strain softening results in lower stress after yield initiation 

(Figure 3.2.3 - c)). 

a)

 

b)

 

c)

 

Figure 3.2.3 Plasticity: a) perfect plasticity, b) strain hardening, c) strain softening 

The plasticity is the simplest example, as stress and are commonly used and well understood 

variables. However, such graphs are characteristic for any choice of conjugate force displayed 

on the vertical axis and the internal variable giving the magnitude of conjugate displacement 

on the horizontal one.  
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In case of this work, damage is defined by damage variable (not inelastic strain). Thus, the 

damage conjugate force is a function of strain energy instead of stress. For such a case, the 

damage potential with respect to squared strain can be represented by Figure 3.2.4 - a) and 

the corresponding stress vs strain graph by Figure 3.2.4 - b).  

a) 

 

b) 

 

Figure 3.2.4 a) Loading potential vs squared strain and b) stress vs strain characteristic for the developed 
model   

The graphs were presented here to avoid confusion between the stress - strain behaviour 

(being at the same time the damage potential graph) presented in Figure 3.2.3 and Figure 

3.2.4 (where stress is not a damage potential). Note, that increase in stress after damage 

initiation is not observed in composite mechanical tests. Therefore, behaviour presented in 

Figure 3.2.4 - b) is typical of brittle composites. Hence, here terms hardening and softening 

are used in slightly different sense than usually. They refer to the deviation from the assumed 

perfect damage behaviour rather than the stress behaviour (drop or increase after 

damage/plasticity initiation). The specific form of the damage potential used in this work is 

given in Section 6.1.2.  

 Continuum damage mechanics 

Damage is very often associated with the macroscale which is a natural scale to observe it as 

macroscopic cracks, scratches, voids etc. One should remember that it evolves from an 

atomic scale. The slips in the atomic structure, microcracks and voids are present in the 

material well before they can be observed at macroscopic level. They affect the material 

performance and can evolve to larger scales. The thorough analysis of material’s damage 
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should start at atomic scale, where basic phenomena occur. It should be followed by the 

analysis of microscale damage and progressed to mesoscale analysis. 

  
Figure 3.3.1 Scales of damage (Murakami, 2012, p.4) 

All the scales mentioned above are important for understanding of the nature of damage. 

However, for engineering applications it would be difficult and inefficient to concentrate on 

atomic and microscales while evaluating the structures. Far more convenient is the approach 

of homogenisation and treating damage at a continuum scale by analogy to the continuum 

mechanics. Statistical nature of the materials justifies the use of the continuum damage 

mechanics (CDM). It allows for assessment of the extent of damage in the material without 

insight into its structure. The introduction of CDM is attributed to Kachanov (Krajcinovic 

and Silva, 1982; Lemaitre, 1985), whose ideas are presented in the Section 3.3.1. CDM is a 

representation of damage by its effects on material thermo-mechanical properties at a 

continuum scale. Typically, modelling of damage includes four steps – representing damage 

by the damage variable, defining damage growth (evolution equation), determination of a 

material response to damage and solving the equations for the particular case (Murakami, 

2012).  

3.3.1 Effective stress 

Damage, unlike strain or force, cannot be directly measured. According to Chaboche (1988) 

one of approaches to measure an extent of damage is to investigate the materials’ 

microstructure. Nevertheless, he recognised three major difficulties in this approach. The 

first one is the need to destroy material to be able to perform microstructural analysis. 

Secondly, the characterisation of the material initial state is difficult e.g. because of 

manufacturing defects. With increasing progress in all engineering branches it is nowadays 

possible to measure the extent of microstructural defects in a material by non-destructive 

tests (NDT) such as radiography (including computed tomography – CT), ultrasonics, 
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acoustic emission and infrared thermography (Kim, 2000). Thus, the two first difficulties can 

be solved. The final difficulty identified by Chaboche is need for the macroscopic variables 

corresponding to damage, which is more fundamental problem. 

Alternative way of determination of a damage extent in a material was suggested by 

Kachanov (Kachanov, 1999). He proposed assessing damage by the effect it has on the 

material macroscopic properties. This idea became the foundation of CDM. Kachanov 

assumed the existence of the scalar function of ‘continuity’, which for the initial (undamaged) 

state of material is equal to one. With progressing damage, the continuity of a material 

reduces leading to rupture after reaching zero. Later the ‘continuity’ function was replaced 

for convenience by damage function ranging from zero for undamaged material, up to unity 

for fully destroyed one (Rabotnov, 1969; Murakami, 2012). 

The above introduces one of the most important notions in CDM which is the effective 

stress concept. It follows directly from Kachanov’s idea. He introduced the concept of 

effective stress as the ‘mean density of forces acting on the elementary surface that effectively 

resists’ external loading (Lemaitre, 1985). 

 It can be represented by: 

1 d


 =

−
, 3.3.1 

where   is effective stress that is higher than nominal stress   for positive damage variable

d . Practically, this idea can be viewed as a reduction of the effective load carrying area caused 

by damage: 

DA A A
d

A A

−
= = , 3.3.2 

where DA  and A  are surface area of damaged and undamaged material respectively. The 

effective and nominal stress are linked by the following equation: 

F A A = = , 3.3.3 

where  is effective stress in the material.   
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3.3.2 Damage variables 

Following the introduction of CDM, the number of related theories evolved. Initially, 

isotropic damage (and what follows, scalar damage variable) was considered. However, later 

damage was generalised to anisotropic cases and in turn represented by tensors. Since the 

first definition of damage variable there has been significant amount of research in the field 

of continuum damage mechanics. One of the important considerations of the research in 

CDM field is the mathematical formulation of damage. Damage as a scalar is only applicable 

to the cases where the it can be assumed isotropic i.e. where there is a uniform distribution 

of cavities, voids etc. However, in reality damage is rarely isotropic (Schreyer, 1995). Several 

authors tried to represent damage in the form of vectors (e.g. Krajcinovic and Fonseka 

(1981)), second order tensors (e.g. Vakulenko and Kachanov (1971), Betten (1986, 1992), 

Cordebois and Sidoroff (1982)) and higher order tensors (e.g. Chaboche, Lesne and Maire 

(1995), Onat and Leckie, 1988)(Murakami, 1987).  

It is highly relevant to choose an appropriate mathematical representation of damage, to be 

able to account for all its effects without extreme computational effort. According to Cauvin 

and Testa (1999) the proper choice of damage variables remains the most difficult part of 

development of material damage model.  

The effective stress concept was introduced in scalar notation for one dimensional problem 

with scalar damage variable. However, it can be generalised for the tensor damage variable 

by (Murakami, 2012): 

( )
1
:

−
= −σ I D σ . 3.3.4 

Note that this equation implies that the effective stress tensor is not necessarily symmetric. 

3.3.3 Equivalence hypotheses 

Equivalence hypotheses are strictly related to the effective stress theory. Effective stress is a 

stress that results in the same material response in an undamaged material as an applied stress 

induces in a damaged one. Two equivalence hypotheses are commonly used – the elastic 

strain equivalence hypothesis and the elastic strain energy hypothesis (Hansen and Schreyer, 

1994; Murakami, 2012).  
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Strain equivalence hypothesis states that the effective stress acting on an undamaged 

material gives the same strain as applied stress to a damaged material:  

( ) 0=  = ε S σ S σD . 3.3.5 

where ε ,σ  andσ  are respectively strain, stress and effective stress tensors. ( )S D  and 0S  

are compliance tensors of damaged and undamaged material. Strain equivalence hypothesis 

is well illustrated by Figure 3.3.2. 

 

Figure 3.3.2 Concept of effective stress (Murakami, 2012 p.18)  

The relation between a compliance tensor of a damaged and an undamaged material is: 

( ) ( )
1

0 0

−
=  =  −  = ε S σ S I D σ S σD  3.3.6 

Consequently, compliance and stiffness tensors of a damaged material can be respectively 

expressed as: 

( ) ( )
1

0

−
=  −S S I DD , ( ) ( )0=  −C C I DD . 3.3.7 

Strain energy equivalence hypothesis states that the strain energy ( )W  of the damaged 

material under applied stress is equal to the strain energy of an undamaged material under 

effective stress. This is postulated by: 

( )2 0W =   =  σ S σ σ S σD . 3.3.8 

After substitution of the effective stress from equation 3.3.4, the following relation is 

established: 

( ) ( ) ( )
1T

0

− −
  =  −   − σ S σ σ I D S I D σD . 3.3.9 
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The damaged material compliance and stiffness tensors can therefore be defined as: 

( ) ( ) ( )
1T

0

− −
= −   −S I D S I DD , ( ) ( ) ( )

T

0= −   −C I D C I DD . 3.3.10 

The difference between strain and strain energy equivalence hypotheses is illustrated in 

Figure 3.3.3. Material loaded from point 1 is within its elastic region up to point 2. Damage 

evolution results in reduction of the material load carrying capability. Upon further loading, 

material stress – strain state is described by point 3. The stress – strain relation defined by 

strain equivalence hypothesis is marked with point 7. It is clear that the effective stress acting 

on the undamaged material (with Young’s modulus 0E ) results in the same strain as the 

nominal stress on the damaged material (with reduced Young’s modulus E ). On the other 

hand, the strain energy equivalence hypothesis is marked with point 5 that identify the 

effective stress and strain. The energy equivalence hypothesis assures that the strain energy 

given by the equivalent stress and strain for the undamaged material Young’s modulus (area 

between points 1, 5 and 4) is equal to the strain energy of the damaged material (area between 

points 1, 3, 6). 

 

Figure 3.3.3 Difference between strain and strain energy equivalence hypotheses (Hansen and Schreyer, 1994) 

 Thermodynamic framework 

Constitutive model is defined by the set of constitutive equations that interrelate model’s 

variables. Different materials require different sets of equations to fully determine material’s 

response to strain and/or temperature changes. If an elastic material state can be described 

by its’ elastic energy, it is called the hyperelastic (or Green-elastic) material. The model 



52 

presented in this work is based on hyperelastic formulation. Thus, the constitutive laws can 

be derived using the irreversible thermodynamics with internal variables. Considering 

material’s thermomechanical behaviour, it is convenient to use Helmholtz free energy. It 

defines material capability to perform work at constant temperature and thus is suitable as a 

material’s thermodynamic potential. 

3.4.1 State potential 

Thermodynamic framework for the material model developed in this thesis was based on the 

general framework presented by Hansen and Schreyer (1994). The relation between the 

Helmholtz free energy and the internal energy densities is given by: 

u s= − , 3.4.1 

where  , u  and s  are respectively Helmholtz free energy, internal energy and entropy all 

given per unit volume and   is temperature. The quantities defined per unit volume 

(densities) are convenient choice for FEA. 

Following Hansen and Schreyer (1994) the isothermal assumption gives the fair 

approximation of the processes in which the amount of heat generated is not significant and 

those that occur rapidly. Helmholtz free energy density can be defined as a function of strain 

( )ε  and damage variables. In the most general form the damage variables are tensors. D  

defines the degradation of material integrity, S
D defines the shift of a damage surface and 

H
D  defines the evolution of a damage surface. 

( ), , ,S H = ε D D D . 3.4.2 

The Helmholtz free energy density is a portion of energy stored in a material due to 

mechanical or chemical work. It consists of the strain energy density ( )W  and damage energy 

density ( ) :H  

( ) ( ) ( ), , , , ,S H S HW H  +ε D D D ε D D D . 3.4.3 
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The strain energy depends on strain and stiffness of a material. Following the effective stress 

concept, the stiffness of a material reduces due to damage, so the strain energy of a material 

can be expressed as: 

( ) ( )
1

, : :
2

W =ε D ε D εC , 3.4.4 

where stiffness tensor ( )DC  is a function of a damage variable. A form of a damage 

potential strongly depends on the damage mechanism of the material (e.g. reorganisation of 

chains in polymers or slip in the atomic structure in metals etc.). 

3.4.2 Energy dissipation, damage conjugate forces, damage potential 

Damage is a dissipative process, which means that the initial material’s state cannot be 

recovered without performing work. The energy dissipation due to damage can be explained 

by necessity to break interatomic bonds to create a crack or dislocation in a material. The 

total Helmholtz free energy rate can be defined as: 

: : : :S H

S H

   
 = + + +

   
ε D D D

ε D D D
. 3.4.5 

The dissipation of the Helmholtz free energy (per unit volume) is defined by the rate of 

change of the state potential related to the damage variables: 

: : :S H

S H

  
 = − − −

  
D D D

D D D
. 3.4.6 

Recalling the definition of Helmholtz free energy (Equation 3.2.3) and differentiating it with 

respect to time: 

0u s=  + = , 3.4.7 

the entropy rate can be determined as: 

1
: : :S H

S H
s

 

    
= = + + 

   
D D D

D D D
. 3.4.8 

The forces conjugate to damage variables are identified as: 


= −


Y

D
, 

S

S


= −


Y

D
, 

H

H


= −


Y

D
. 3.4.9 
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The damage potential function is a function of damage conjugate forces. S
Y is the force 

resulting in the shift of damage surface and H
Y  results in the damage surface evolution. 

( ) ( ) ( )1 2 0, , 0S H S H   − − − Y Y Y Y Y Y . 3.4.10 

According to Hansen and Schreyer, (1994) scalar components of a damage potential should 

be homogeneous functions of degree one (HODO) of their arguments. The function F  is 

called a homogenous function of degree one if the following holds: 

( ) ( ), ,F cx cy cF x y=  3.4.11 

An important property of a HODO function that is used later is: 

 
( )

( ):
i

i

 
=  

 

X
X X

X
. 3.4.12 

It was already pointed out in Section 3.2.5 that damage potential is the function controlling 

the damage initiation and evolution in the material. It serves the function of both damage 

criterion and constraint in damage evolution laws. 

3.4.3 Damage variables evolution 

A relation between damage variables is established using the maximum energy dissipation 

rule. It states that among all the possible states the material assumes the one that maximises 

the entropy (Hansen and Schreyer, 1994). Therefore, evolution of the internal, damage 

related variables must maximise the energy dissipation rate.  

Maximum energy dissipation rate is found using the Lagrangian functional L  and Lagrange 

multiplier  . This method allows for calculation of minimum of the function, given specific 

constraints. In this case the constraint comes from the associative flow i.e. damage potential 

during damage evolution equals to zero 0= :  

L = −+  3.4.13 
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Damage variable evolution is determined by calculation of the minimum of the Lagrangian 

functional ( )L : 

( )1
0

S

L  −
= − + =

 

Y Y
D

Y Y
, 

( )1
0

S

S

S S

L  −
= − + =

 

Y Y
D

Y Y
, 3.4.14 

( )2
0

H

H

H H

L 
= − + =

 

Y
D

Y Y
.  

Consequently, rate of damage variables is equal to: 

( )1

S −
= 



Y Y
D

Y
, 

( )1

S

S

S

 −
= 



Y Y
D

Y
, 

( )2

H

H

H


= 



Y
D

Y
. 3.4.15 

Explicit result for damage variables given in terms of the Lagrange multiplier requires 

knowledge about specific functions 1( )  and 2( )  that are characteristic for the model. 

The Lagrange multiplier value can be obtained from the initial constraint, i.e. 0=  and 

consistency condition 0 = . 

General material constraints that define the loading and unloading conditions are defined 

using Kuhn-Tucker optimality conditions (Hansen and Schreyer, 1994):  

0   0  0 =  3.4.16 

The damage variables’ rates ( )D  and ( )S
D  can be easily related by observing that (using 

chain rule): 

( )
( ) ( )

( ) ( )1 1 1

S S S

S S

 −  −  −
= =

  −  −

Y Y Y Y Y YY

Y YY Y Y Y
, 

3.4.17 

( )
( ) ( )

( ) ( )1 1 1

S S SS

S SS S

 −  −  −
= = −

  −  −

Y Y Y Y Y YY

Y YY Y Y Y
, 

thus: 

( )
( )

( )
( )

1 1

S S

S

 −  −
= −

 

Y Y Y Y

Y Y
. 3.4.18 
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It leads to the following relation between the damage variables D  and S
D : 

S = −D D . 3.4.19 

Recalling that damage functions are HODO functions the dissipation rate can be rewritten 

using Equations 2.1.9, 2.1.11, 2.1.15 and 2.1.22 as: 

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

1 1 2

1 2

1 2 0

: : :

: : :

: :

, ,

S S H H

S S H

S H

H

S H

S H

H

S H S H 

 = + + =

 −  − 
=  −  +  =

  

  − 
 =  − + =

   

   =   − + =   +
   

Y D Y D Y D

Y Y Y Y Y
Y Y Y

Y Y Y

Y Y Y
Y Y Y

Y Y

Y Y Y Y Y Y

 3.4.20 

Optimality conditions given by Equation 3.4.16, allow simplification of the dissipation rate: 

0 =  . 3.4.21 

Finally, entropy production per unit volume is defined as a function of one argument as: 

0s


 


= = . 3.4.22 

 Equation of state 

In contemporary hydrocodes (codes for modelling of shock wave propagation) constitutive 

models typically separate material compressibility effects from strength effects which enables 

a consistent calculation of stresses.  Further, this allows for the mean pressure to be defined 

through a scalar equation of state.  These concepts were originally developed for isotropic 

materials with limited amount of research on anisotropic materials such as composites.  

Quasi-static deformation process can be, with high degree of accuracy, defined as the 

isothermal process. In the isothermal process the change of pressure in the material is 

dependant only on the change of its volume (as the temperature is constant). Parameter that 

describes this relation is the bulk modulus ( )K . It relates the volumetric strain ( )v  and 

pressure ( )p  by: 
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3 vp K= − , 
3.5.1 

where volumetric strain is: 

( )1 2 3 / 3v   = + + . 
3.5.2 

Bulk modulus of an isotropic material is defined from other material parameters such as 

Young’s modulus and Poisson’s ratio e.g.: 

( )3 1 2

E
K


=

−
. 3.5.3 

If deformation process is dynamic, the assumption of constant temperature within the 

material is no longer valid and the deformation process is defined as adiabatic. Thus,  

pressure ( )p  is not only a function of volume ( )V  or volumetric strain ( )v  but also of 

temperature ( ) . The equation that relates pressure, volume and temperature is called 

equation of state (EOS). The general form of EOS is: 

( ), , 0f p V  = , 3.5.4 

where the function f  is defined by the specific form of equation of state. The most well-

known equation of state is the ideal gas EOS: 

pV mR=  3.5.5 

where m  is number of moles and R  is ideal gas constant. This EOS, however, is only 

applicable to the limited number of substances (characterised as ideal gases) under specific 

conditions (e.g. moderate temperatures). The equation of state accurately describing all kinds 

of matter regardless their physical state and conditions does not exist. The choice of an 

appropriate form of EOS for the specific material and loading case is therefore of vital 

importance. There is a large number of already developed equations of states. It was not in 

the scope of this work to thoroughly analyse them, nor to develop a new one. Equation of 

state chosen for this work is the Gruneisen EOS. It is commonly used to model solids, and 

was proved to be accurate in modelling of non-isotropic solids under dynamic loads 

(Vignjevic et al., 2008; Vignjevic and Djordjevic, 2010). One of the noteworthy advantages 

of the Gruneisen EOS is that it has an analytical derivation. Furthermore, it has well 

established methods for defining the material constants and the large number of materials 
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was already characterised (Marsh, 1980; Steinberg, 1996). The theoretical bases of the 

Gruneisen EOS are presented in Appendix B. 

3.5.1 Definition of pressure in non-isotropic materials 

It was already pointed out that in order to model material’s dynamic behaviour a material 

model needs to be coupled with equation of state. In this work, Gruneisen equation of state 

was chosen. This section expands the EOS theory to account for material anisotropy. 

Definition of pressure in a non-isotropic material is more challenging than in an isotropic 

one. In isotropic materials pressure is the average of three normal stresses: 

( ) ( )1 2 3 / 3p    = − + + . 3.5.6 

Alternatively, it can be defined using normal strains and the bulk modulus ( )K : 

( ) ( )1 2 3p K   = − + + . 3.5.7 

For isotropic materials equations 3.5.6 and 3.5.7 are identical, so either can be used to define 

pressure yielding the same result. However, it does not hold for non-isotropic materials.  

It was postulated by Anderson et al., (1994) that pressure in orthotropic materials is an 

average of normal stress components (Equation 3.5.6). Therefore, it depends not only on 

the volumetric strain but also on the shear strain: 

( ) ( ) ( )

( ) ( ) ( ) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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1
23 32 21 31 23 31 21 32 1
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13 31 32 12 31 21 31 23 2
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1
1 1 1
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1
3

1
3

1
3

v

d

d

p E E E
b

E E E

E

b

E

b

E

b

     

         

        

        

      

= − − + − + −

+ + + + + +  

+ − + + + +  

+ − + + + +  

+ − + + + +( )32 3 ,d   

 3.5.8 

where: 12 21 13 31 23 32 12 23 31 13 21 321b            = − − − − − . 

Note that EOS defines pressure as a function of volume change; therefore, definition 3.5.7 

seems more appropriate choice as it defines pressure in terms of volumetric strain. In fact, it 
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was proved that such an approach can give more accurate results for dynamically loaded 

orthotropic materials (Vignjevic et al., 2008). Two methods for obtaining pressure were 

evaluated and discussed in (Vignjevic et al., 2008). The one that was found more accurate was 

chosen for this model and is presented below. It is suggested that pressure in non-isotropic 

materials is a vector and can be defined (in full tensor notation) by: 

/ 3ij ijkl kl ssp C  − = , 3.5.9 

where p  and ij  are pressure magnitude and vector respectively, ijklC  is a stiffness tensor, 

kl  is Kronecker delta and / 3ss  is volumetric strain – v  (with summation over repeated 

indices). Volumetric strain definition was already introduced in Equation 3.5.2 but the form, 

which is later used (in contracted notation) is repeated here for convenience: 

( )1 2 3 / 3v   = + + . 3.5.10 

Equation 3.5.9 in a matrix (contracted) notation is: 

11 12 131

12 22 232

13 23 333

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 2 0 00 0

0 0 0 0 2 00 0
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C C C
p

C

C

C

 

 

 

    
    
    
    

= −     
    
    
    
     

. 3.5.11 

From this, pressure magnitude p  is equal to: 

( ) ( ) ( )
2 2 2

11 12 13 12 22 23 13 23 33
3

3
v v

C C C C C C C C C
p K 

+ + + + + + + +
= = − , 3.5.12 

where K  is bulk modulus of orthotropic material. Pressure vector i  is defined as: 

( )

( ) ( ) ( )

1 2 3

2 2 2

11 12 13 12 22 23 13 23 33

3

i i i

i

C C C

C C C C C C C C C


+ +
=

+ + + + + + + +

. 
3.5.13 
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This leads to decomposition of the stress vector to volumetric and deviatoric parts by: 

/ 3 d

ij ijkl kl ss ijkl kl ij ijC C p s    = + = − + . 3.5.14 

In such a definition the stresses generated by volumetric and deviatoric strains are not 

perpendicular, i.e.  0ij ijp s  . To assure that volumetric and deviatoric parts of stress are 

independent, they should be redefined as follows: 

ij ij ij ij ijp s p s  = − + = − + . 3.5.15 

Consequently, pressure and deviatoric stress assumes the form: 

3 3

ij ij ij ijs
p p

  
= − = − , 

3

kl kl
ij ij ij ij ij

s
s s p


  = − = − . 

3.5.16 

In such a definition the part of a deviatoric stress that is perpendicular to pressure vector ij  

is considered as pressure. The same part must be deduced from the stress vector obtained 

from deviatoric strain ijs . This assures that deviatoric and volumetric stress vectors are 

mutually perpendicular and their sum equals to the total stress vector. 

The total stress vector consists of pressure and deviatoric part, where pressure part should 

be obtained from the EOS: 

ij EOS ij ijp s = +  3.5.17 

The Gruneisen EOS for compressed solids is (for details see Appendix B): 

( )
( )

( )

2 20
0

0
2 3

1 2 3 2

1 1
2 2

1 1
1 1

EOS

a
C

p a u

S S S


   

 
 


 

  
+ − −  
  = + +

 
− − − − 

+ +  

, 3.5.18 

where u  is initial internal energy density, C  is the intercept of the shock-particle velocity 

curve (described in more detail in Section 6.2), 1S , 2S , 3S  are slope coefficients of this curve, 
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0  is initial density, 0  is initial Gruneisen constant and a  is volume correction to 0 . Last 

variable in the equation,   accounts for relative change in volume. 

For large number of materials the relation between the particle and shock velocity which is 

defined by constants C , 1S , 2S  and 3S  using the cubic approximation is in in fact linear.  

Thus, assuming 2 3 0S S= =  the expression can be simplified to: 

( )
( )

2 20
0

0

1

1 1
2 2

1 1
EOS

a
C

p a u
S


   

 


  
+ − −  
  = + +
− −

 
3.5.19 

For solids under tension Gruneisen EOS is: 

( )2

0 0EOSp C a u   = + + , 3.5.20 

 Summary 

Chapter 3 introduces the most important concepts and provides the basis for development 

of the composite constitutive model. A few features, foundations and assumptions of the 

model can be identified following this chapter.  

Firstly, the model is a continuum scale model in which damage is represented using effective 

stress concept and strain energy equivalence hypothesis (described in Section 3.3). Damage 

variables describe damage in the material as a reduction of stiffness whilst damage evolution 

variables control the evolution of damage limit (allowing for damage hardening or softening 

in the material). Damage evolution follows the maximum entropy production (maximum 

energy dissipation) rule.  

Section 3.4 gives the thermodynamic framework of the model which is further expanded to 

incorporate spectral decomposition in Chapter 6. The equation of state theory is presented 

in Section 3.5. It introduces an approach to decompose stress into volumetric and deviatoric 

parts. The main feature of this decomposition is a definition of pressure as a stress that is 

generated by a volumetric deformation and assuring that deviatoric and volumetric stresses 

are orthogonal. 
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4 Mesoscale modelling of damage 

As mentioned in previous chapters, the aim of modelling is to describe the material’s 

behaviour at macroscopic scale accounting for most important phenomena occurring within 

(usually at microscopic level). This chapter describes the analysis of material at mesoscale, 

i.e. the scale at which anisotropy was introduced. Mesoscale modelling was intended to 

provide insight and help in understanding of the material behaviour, focusing on effect of 

damage in constituents on the material stiffness tensor.  

Composite material with unidirectional fibre reinforcement was modelled at mesoscale i.e. 

fibres, matrix and their interface each having its own mechanical properties. This work bases 

on the mesoscale models available in the commercial code Digimat provided by  

e-Xtream. Damage effects are represented by reduction of the material stiffness in the 

selected elements within the representative volume element (RVE) models with results being 

averaged over RVE. Considerations of the following damage cases are presented in this work: 

fibre cracking, matrix microcracking and fibre-matrix debonding. 

 Model 

RVE of a unidirectional composite comprised 16 fibres randomly distributed in a matrix 

(Figure 4.1.1). The modelled material was a repetitive unit cell (RUC), as presented in Figure 

4.1.1 - b) and thus automatically satisfied the requirements of being the RVE (see 

Section 3.1.1). 

a) 

 

b) 
 

Figure 4.1.1 Unidirectional material model representative volume element a) isometric view, b) RVE 

The model was a cube with an edge length of 0.026 mm. Fibres of 5 μm diameter constituted 

the 50% of the material volume. The model was divided into hexagonal elements of equal 
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size. Number of elements in the model and their aspect ratio depend on the damage 

mechanism modelled. Material model assigned to matrix constituent was MAT ELASTIC 

(MAT_001) and to fibres MAT ORTHOTROPIC ELASTIC (MAT_002). Material 

properties used for an undamaged model are listed in Table 4.1.1. They were provided by  

e-Xtream with the model.  

Table 4.1.1 Matrix properties used for undamaged mesoscale model 

Matrix 

E  Young’s modulus 4.7 GPa 
  Poisson’s ratio 0.400 MPa 

Fibres 

xE  Young’s modulus, x-direction  265 GPa 

yE  Young’s modulus, y-direction  13 GPa 

zE  Young’s modulus, z-direction  13 GPa 

yz  Poisson’s ratio, yx-plane  0.0126 - 

zx  Poisson’s ratio, zx-plane  0.0126 - 

xy  Poisson’s ratio, yz-plane  0.2060 - 

yzG  Shear modulus, yz-plane  5.4 GPa 

zxG  Shear modulus, zx-plane  15.5 GPa 

xyG  Shear modulus, xy-plane  15.5 GPa 

Unidirectional composite is a transversely isotropic material. Therefore, the corresponding 

symmetries in the stiffness, compliance and damage tensors are expected in the simulation 

results (see Section 2.1.2). However, they were not presumed – all elements of stiffness 

tensor were extracted separately and the symmetry check was used as a validation and an 

accuracy check of the simulations. 

4.1.1 Loads and boundary conditions 

Apart from defining desired geometry and material properties the vital aspect of the model 

is boundary conditions setting. Two types of boundary conditions are used in the models. 

The boundary conditions constraining cube faces force the plane strain state in the material, 

whilst periodic boundary conditions are used to model the continuity of the material. 

Periodic boundary conditions map the nodal displacements from one cube face to the 

corresponding nodes on the other face. 

Plane strain state is generated in the material to determine material stiffness tensor based on 

simulation results. Each model was successively loaded by six displacements – three normal 
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displacements and three shear displacements. For normal load cases one face of the RVE 

was loaded in tension, while remaining faces were constrained from movement in the 

direction normal to them as schematically presented in Figure 4.1.2 for X direction plane 

strain. The load was applied by the set displacement of 
52.6 10 mm −=  , which results in 

strain 31 10i
−=  .  

Plane shear strain was obtained by constraining one face in all directions and applying the 

load parallel to the opposite face (Figure 4.1.3). The load was applied as a set displacement 

of magnitude 
52.6 10 mm −=  , which results in the shear strain 45 10ij

−=   (or engineering 

shear strain 31 10ij
−=  ). 

  

Figure 4.1.3 Loads and boundary conditions inducing shear in XY plane 

The strain magnitudes used in plane strain loading were small enough to be considered as 

small strains. 

Damage is modelled by reducing stiffness parameters of constituents by so-called damage 

factors. Different parameters are affected depending on the damage mechanism modelled 

(described in more detail in following sections). Damage factor of 1 describes the non-

damaged constituent whilst damage factor of 100 means that constituent stiffness was 

reduced 100 times due to damage. Same loading and boundary conditions were used for all 

the cases regardless damage factor. 

 
  

Figure 4.1.2 Loading and boundary conditions inducing plane strain in X direction 
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4.1.2 Fibre cracking damage mode  

In unidirectional composite subjected to longitudinal tension the most important damage 

mechanism is fibre cracking. Fibre cracking was modelled by reducing the stiffness of the 

fibres elements lying in one plane (Figure 4.1.4). Following the effective stress concept, it 

can be interpreted as reduction of load carrying area of the fibres.  

a) 

 

b) 

 

Figure 4.1.4 Mesoscale model with fibre cracking damage mechanism a) the whole model, b) 
highlighted elements with changed properties – the crack 

The damaged fibre layer was modelled with MAT_ORTHOTROPIC_ELASTIC 

(MAT_002) material.  Damage was introduced as degradation of all Young’s and shear 

moduli by damage factor (see Appendix C). Seven damage factors were used in the broken 

fibres model. It resulted in 42 simulations – seven damage cases each requiring six 

simulations for the stiffness tensor determination.  

4.1.3 Matrix uniform microcracking damage mode  

Matrix damage is considered to be of lower importance than fibre damage as it usually does 

not have catastrophic consequences. However, it reduces the materials transverse and shear 

stiffnesses. Matrix microcracking was modelled by reducing Young’s modulus of all matrix 

elements subsequently by the number of damage factors (see Appendix C). The Poisson’s 

ratio remained unchanged, so the shear modulus of the material changed by the same factor 

as Young’s modulus. In total 36 mesoscale simulations were performed for this damage 

mechanism – six for each damage factor. 

4.1.4 Fibre-matrix interfacial debonding damage mode  

One of the damage mechanisms that can seriously affect stiffness of a material is fibre matrix 

debonding. It is often preceded by cracking of matrix in proximity of fibres. It may start 

from shear in the plane of fibres and result in difference in displacements in the fibre-matrix 

interface. The modelling approach used for this damage mechanism was similar to the one 
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used for fibre cracking model. Debonding of the fibre matrix interface was modelled by 

stiffness reduction of the matrix elements adjacent to fibres (green elements in Figure 4.1.5).  

a) 

 

b) 

 

Figure 4.1.5 Mesoscale model with fibre-matrix debonding damage mechanism a) the whole model, b) elements 
with changed properties – debond layer 

Debond layer was modelled with material model MAT_ORTHOTROPIC_ELASTIC 

(MAT_002) and the material properties were based on the reduced matrix properties 

(Appendix C). Despite the use of isotropic properties, MAT_002 was used here as, unlike 

MAT_001 it has the capability of modelling finite strains which were expected in the debond 

layer. Eight damage factors were used which resulted in 48 simulations of fibre-matrix 

debonding model. 

4.1.5 Combined damage model 

Interactions between several damage mechanisms are not easily predicted. To investigate the 

influence of joined fibre breaking and fibre-matrix interface damage mechanisms in the 

material a combined damage model was generated. The model was a superposition of fibre 

breaking model and fibre-matrix debonding mode. The same damage factor was used to 

reduce the properties of fibres and matrix (see fibres and matrix reduced properties in 

Appendix C).  

 Damage mode stress analysis  

Stress analysis is highly relevant to assessment of damage. Loads in models were applied as 

set displacements. Therefore, with reduced stiffness of elements, stress was expected to 

decrease. The full stress analysis comprises an analysis of all damage models loaded 

subsequently by all the plane strains. For the sake of clarity only the most revealing and 

important results are presented here. This includes the fibre direction stress, displacement 

for broken fibre model and transverse direction stress and strains for matrix related damage 

mechanisms.  
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4.2.1 Broken fibres 

Figure 4.2.1 shows stress distribution in the RVE models for the subsequent damage factors 

used. It can be observed that for lower values of damage factor the longitudinal load was 

transferred mainly through fibres resulting in high longitudinal stress in the fibres. The 

significant load transition from fibres to matrix is first observed for the damage factor close 

to 40 (Figure 4.2.1 - d)) and becomes more evident with increasing damage. For higher 

damage factors (see Figure 4.2.1 - e) and h)) stress around the cracked region was transferred 

mainly through the matrix. The fibre longitudinal stiffness in the simulations was 

approximately 57 times higher than the matrix stiffness. This suggests that the stress 

redistribution in the material starts to be pronounced when longitudinal stiffness approaches 

matrix stiffness. 

  
 

   

   

Figure 4.2.1 Distribution of X stress component of unidirectional model with broken fibres under X load for 
damage factor: a) 1 (no damage), b) 4, c) 10, d) 40, e) 100, f) 400, g) 1000, h) 10000 
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The X-displacements graphs are presented in Figure 4.2.2. Change in the nodal 

displacements starts to be significant at damage factor of 40. It is a consequence of a 

comparable stiffness of matrix and fibres for this damage factor.  With increasing damage 

factor two distinct regions in the fibres are found. One with displacement 2.6e-5 and one 

with zero displacement. It suggests the complete failure of fibres as two disjoined fibre parts 

move separately – one remains constrained and the second moves due to applied 

displacements.  

    

 
  

 
 

  

Figure 4.2.2 X-displacement of unidirectional model with broken fibres under X load for damage factor: a) 1 
(no damage), b) 4, c) 10, d) 40, e) 100, f) 400, g) 1000, h) 10000 

4.2.2 Matrix uniform microcracking 

Figure 4.2.3 shows the Y stress component in the material under Y load direction. It is clear 

that matrix stiffness was the dominant in transverse direction. The high stress paths are 
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located in the regions, where the fibres are in line with the load direction. High stress paths 

are present in the matrix regardless of the damage magnitude, but they cannot be observed 

in Figure 4.2.3 - d) and e) because of the chosen scale (consistent for all damage factors to 

allow for direct comparison). The results confirm that the matrix is a key constituent for the 

transverse stiffness of unidirectional composite. Reduction of the matrix stiffness (resulting 

from evolution of voids and microcracks) significantly reduce the transverse stiffness of the 

whole composite.  

   

  
  

Figure 4.2.3  Y-stress of unidirectional model with damaged matrix under Y load for damage factor: a) 1 (no 
damage), b) 4, c) 10, d) 40, d) 100, 400, 1000 and 10000 

Figure 4.2.4 shows stress distribution in fibre direction (X). Only two extreme cases are 

presented – case with no damage in matrix, and the one with matrix stiffness reduced by 

10000. There is no change in stress distribution observed in fibres. Obviously, if matrix is 

analysed separately, it shows the difference in stress, but it is not significant for the whole 

RVE. This supports the statement, that the matrix state does not have a big influence on the 

fibre direction in the unidirectional composite material. 

    
Figure 4.2.4 X-stress of unidirectional model with damaged matrix under X load for damage factor: a) 1, b) 

10000 
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4.2.3 Fibre-matrix debonding 

Stress distribution in a fibre-matrix debonding model, as expected, does not change for 

longitudinal (X) direction of load and therefore is not presented here. The analysis of the 

stresses in a fibre-matrix debonding model is based on the Y load direction. The model 

loaded in Z direction has similar stress distribution to the model loaded in Y direction and 

thus only one of them is described here. Figure 4.2.5 shows the Y stress component resulting 

from Y load for different damage factors.  

   

   

  

 

Figure 4.2.5 Distribution of Y stress component of unidirectional model with fibre-matrix debonding under Y 
load for damage factor: a) 1 (no damage), b) 4, c) 10, d) 40, e) 100, f) 400, g) 1000, h) 10000 

High stress paths can be seen in Figure 4.2.5 - a). The paths are passing through the fibres 

arranged in line. Figure 4.2.5 - c) shows that for damage factor of 10 there were no high 

stress paths. The explanation for this behaviour can be given by a simple example by 

considering material as a system of springs. If the equivalent stiffness of the series of springs 

(matrix, fibres and debonds) is equal to the matrix stiffness there would be uniform stress 

distribution in the material as presented in Figure 4.2.5 - c). Damage factor for which the 

equivalent stiffness of the fibre with debonds is equal to the matrix stiffness is roughly equal 

to 20. For the higher damage factors (100 – 10000) stress distribution is different – stress is 
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transferred mainly through matrix. The high stress paths are located between the fibres rather 

than in line of fibres. The highest stresses in the matrix are found in regions, where distance 

between fibres is shortest, which gives the smallest load carrying area of matrix. 

Figure 4.2.6 shows the displacements in the RVE. Figure 4.2.6 - f), g) and h) are the most 

revealing ones – they show that displacements within one fibre are equal. This suggests that 

the displacement in the fibres can be attributed to the rigid body motion of the fibres rather 

than their deformation.  

   

   

  
 

Figure 4.2.6 Y-displacement of unidirectional model with fibre-matrix debonding under Y load for damage factor: 
a) 1 (no damage), b) 4, c) 10, d) 40, e) 100, f) 400, g) 1000, h) 10000 

This conclusion was confirmed by the strain results in the separate constituents (for fibres 

strains were equal to zero). The set displacement was applied to generate the RVE strain of 

0.1%. As a result of material’s inhomogeneity, the strain is not uniformly distributed in the 

element’s volume. The average strain in the fibres does not exceed 0.015%. The highest 

strains are found in the debond layer and their average slightly exceeds 1% (note that debond 

layer mimic the discontinuity in the material, so it is hardly surprising that it experienced 
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highest strain). The strain in the matrix varied depending on the region. The highest strain in 

the matrix is over 0.5% and the average strain in the matrix part is around 0.05%.  

4.2.4 Combined damage 

In combined damage models damage effects are significant in all directions. At the first sight 

stress in the combined damage model under X plane strain (Figure 4.2.7) resembles the 

corresponding stress in the broken fibre model (Figure 4.2.1). However, the important 

difference is lack of significant stress redistribution from the broken fibres to the matrix in 

combined damage model. The longitudinal stress of fibres is reduced due to fibre fracture 

but because of no stress redistribution it remains constant within the fibre. 

  
 

   

Figure 4.2.7 Distribution of X stress component of unidirectional model with combined damage X load for 
damage factor: a) 1 (no damage), b) 10, c) 100, d) 1000, e) 10000 

Figure 4.2.8 shows the X displacement of combined damage model elements under 

longitudinal load. It is evident that fibres are fully disjoined from matrix for higher damage 

factors. 
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Figure 4.2.8 X-displacement of unidirectional model with combined damage under X load for damage factor:  
a) 1 (no damage), b) 10, c) 100, d) 1000, e) 10000 

Stress distribution in the combined damage model (Figure 4.2.9) loaded in transverse 

direction (Y) does not vary significantly from the fibre-matrix debonding model (Figure 

4.2.5). High stress paths are found for the fibres distributed in line with Y direction. Almost 

uniform stress is observed for the RVE for damage factor of 10 (Figure 4.2.9 - b)). 

   

  
 

Figure 4.2.9 Distribution of Y stress component of unidirectional model with combined damage Y load for damage 
factor: a) 1 (no damage), b) 10, c) 100, d) 1000, e) 10000 
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For higher damage factors the high stress paths are located between the fibres. The stress 

level depends strongly on the distance between the fibres – the lower is the distance (in 

Z direction), the smaller is the load carrying area and subsequently the higher is the stress. 

Deformation in transverse (Y) direction of the combined damage model is consistent with 

the fibre-matrix debonding model. However, for higher damage factors, the fibres are not 

deformed but moved – displacements in the fibres was uniform leading to no strain (Figure 

4.2.10 - d) and e)). 

  
 

  

  

Figure 4.2.10 Y-displacement of unidirectional model with combined damage under Y load for damage factor: 
a) 1 (no damage), b) 10, c) 100, d) 1000, e) 10000 

 Stiffness tensors 

One of the purposes of mesoscale modelling was to investigate the influence of damage 

mechanisms on the overall material stiffness. Stress analysis presented in the previous 

sections validated the model and damage mesoscale modelling approach by giving the 

expected material response. However, the main aim of mesoscale modelling was linking the 

mesoscale damage to its macroscopic effects. This can be done by extracting stiffness tensors 

of the damaged materials. A stiffness tensor of a transversely isotropic material consists of 

twelve non-zero elements, five of which are independent. Therefore, in order to construct a 

stiffness tensor six simulations are needed for each damage case. Each simulation result gives 

the stresses, which along with the known strain value allow to calculate of one column of a 
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stiffness tensor. The stress strain relation for a unidirectional strain in longitudinal direction 

can be written in a matrix form as:  
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 4.3.1 

This reduces to the following set of equations that allow to obtain a stiffness tensor column: 

62
11 1 11 2 21 1 21

1

1
1 61 1

1

616

1

σσ σ
σ 2, ,. .σ , 2σ.C C CC CC








=  = = ==  = . 4.3.2 

The symmetries in the stiffness tensor were not pre-assumed. All the data in the model was 

collected separately disregarding the major symmetry of stiffness tensor. This allowed for the 

accuracy check of the model. As a consequence of transverse isotropy symmetry, the 

elements of the stiffness tensor are constrained by: 

22 33C C= , 

12 21 13 31C C C C= = = , 

23 32C C= , 

55 66C C= , 

422 32 42C C C− = , 

 

4.3.3 
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The full stiffness tensor (repeated from Section 2.1.3 for convenience): 
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Stiffness tensors are also analysed in decomposed form by their eigenvalues and eigenvectors. 

The spectral decomposition of stiffness tensors is described in Section 2.1.4. Eigenvalues of 

the stiffness tensor can be seen as the material principal stiffnesses. The investigated material 

is a transversely isotropic material for which two of the eigenvalues were repeated ( II IV =  

and )V VI = .  

Analysis of the eigenvalues without considering eigenvectors offers limited information in 

assessment of damage. As mentioned in the previous sections of this work, the shear related 

eigenvectors ( IV
v , 

V
v  and )VI

v  of the stiffness tensor are known and do not depend on 

the eigenvalues. The eigenvectors that may change as a consequence of damage are 

eigenvectors 
I

v , 
II

v  and 
III

v .  

Generic expressions for eigenvalues and eigenvectors are presented in Section 2.1.4. Below, 

the specific results obtained from the mesoscale undamaged model simulations are 

presented: 

139.4 5.4 5.4 0 0 0

5.4 11.2 5.4 0 0 0

5.4 5.4 11.2 0 0 0

0 0 0 5.7 0 0

0 0 0 0 11.0 0

0 0 0 0 0 11.0

C GPa

 
 
 
 

=  
 
 
 
 

 

4.3.5 

139.5I GPa = ,  0.998 0.044 0.044 0 0 0
TI =v , 

5.8II GPa = ,  0 0.707 0.707 0 0 0
TII = −v , 

16.1III GPa = ,  0.062 0.706 0.706 0 0 0
TIII = −v , 

5.7IV IIGPa =  ,  0 0 0 1 0 0
TIV =v , 

11.0V GPa = ,  0 0 0 0 1 0
TV =v , 

11.0VI VGPa = = ,  0 0 0 0 0 1
TVI =v . 
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Recalling the generic form of the first and the third eigenvectors (repeated from Table 2.1.1) 

coefficients   and    can be determined: 

 
2

1
1 1 0 0 0

2

TI 


=
+

v ,   
2

1
1 1 0 0 0

2

TIII 


=
+

v . 4.3.6 

For the investigated undamaged material coefficient   is equal to 22.73, and coefficient   

is equal to 0.09− . Note, that for undamaged material the first eigenvector is almost perfectly 

aligned with fibre direction. 

For a transversely isotropic material the second and fourth eigenvalues should be equal. The 

discrepancy between their values obtained in the simulations does not exceed 3.0%. The 

discrepancy between the other pair of repeated eigenvalues, fifth and sixth, is lower than 

0.2%. This indicates accuracy of the mesoscale model. 

The results in the sections below are presented for normalised eigenvalues, i.e. the damaged 

material eigenvalues divided by the corresponding undamaged stiffness eigenvalues.   

4.3.1 Broken fibres model 

The stiffness change of the RVE due to the fibre damage was significant which is clearly 

observed in Figure 4.3.1. 

 

Figure 4.3.1 Normalised eigenvalues of the model with broken fibres 

The most significant change is observed for the first eigenvalue, which is associated with 

fibre direction. Fibre breaking has a moderate influence on the fifth and sixth eigenvalue 
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(related to shear in fibre plane). Change in the third eigenvalue is observable. It is a direct 

consequence of the eigensystem rotation which is further commented below.  

Figure 4.3.2 shows eigenvectors of the undamaged material and the material with damage 

factor of 10000. It is revealing in several ways. Firstly, despite the significant damage there is 

no observed change in the second eigenvector, which confirms the assumption that the 

material does not lose any of its symmetries.  Eigenvectors 
Iv  and 

IIIv  are rotated around 

vector 
IIv by the same angle. This is expected but noteworthy – eigenvectors must remain 

perpendicular, so if one of them is unchanged the other two must rotate by the same angle. 

The eigenvectors 
IVv , 

Vv  and 
VIv  are not shown in the figure, because they span the 

dimensions that cannot be represented in a 3D Cartesian coordinate system and are, by 

definition, perpendicular to the rest.  

 

Figure 4.3.2 Eigenvectors in 3D space for broken fibre model for undamaged material (green) and material with 
damage factor 10000 (blue) 

Figure 4.3.3 shows three first eigenvalues and rotation angles of eigenvectors. Increasing 

damage results in the first eigenvalue reduction and subsequently eigenvector rotation. This 

can be interpreted as loss of material’s privileged high stiffness direction. The rotation of the 

eigenvectors started to be noticeable after the stiffness of the fibres approached the matrix 

stiffness. 
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Figure 4.3.3 Eigenvalues and eigenvectors rotation angle of the model with broken fibres  

Figure 4.3.3 clearly shows that rotation of the third eigenvector followed the rotation of the 

first one. Rotation of the eigenvector starts to be significant for damage factor 100. For lower 

values of damage factor the rotation did not exceed 5°. Figure 4.3.3 shows that for damage 

factor 100 the first eigenvalue which, with high degree of accuracy, describes the longitudinal 

direction was reduced by 60%.  

The rotation of the eigenvectors is strictly connected to the change in value of coefficient   

whose evolution due to damage is described below. The following equations are repeated 

from the previous sections of this work for the reader’s convenience: 
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4.3.7 

Hypothetically, when the first element of stiffness tensor is much greater than the remaining 

elements 
11( )ijC C  its value becomes the first eigenvalue ( 11

I C → ). Subsequently, 

coefficient   tends to a large number, which results in the first eigenvector being aligned 

with X axis  ( 1 0 0 0 0 0 )
TIv = . The situation is not far from reality. As long as 

the 11C  element of a stiffness tensor is much higher than all other elements the direction of 

the eigenvector 
Iv  would be close to direction of the X axis. When longitudinal stiffness is 
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reduced and fibre stiffness approaches matrix stiffness the influence of other stiffness tensor 

elements becomes more pronounced which leads to the first eigenvector being higher than 

the first tensor element 
11( )I C   and subsequently to reduction of coefficient   and 

rotation of the eigensystem.  

4.3.2 Matrix uniform microcracking 

Figure 4.3.4 shows the normalised eigenvalues of the stiffness tensor of models with uniform 

damage in matrix. The first eigenvalue, identified before as the one corresponding to the 

fibre direction is much higher than the other eigenvalues but its change due to matrix damage 

was minor. Significant reduction is observed in all other eigenvalues. The second, third and 

fourth eigenvalues are reduced by an order of magnitude for damage factor 40. What is 

interesting is that the second, third and fourth eigenvalues seems to be reduced by the same 

factor, which is evident in Figure 4.3.4. Second and fourth eigenvalues are equal, which 

suggests that material did not lose the transverse isotropy symmetry due to matrix uniform 

damage. The fact that the first eigenvalue did not change significantly due to matrix 

microcracking is not surprising. 

 

Figure 4.3.4 Normalised eigenvalues of the model with matrix uniform damage 
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Figure 4.3.5 shows eigenvalues of the stiffness tensor and rotation angles of the 

corresponding eigenvectors.  

 

Figure 4.3.5 Eigenvalues and eigenvectors rotation angle of the model with matrix uniform damage 

It can be observed in Figure 4.3.5 that first and third eigenvectors rotate by the same angle 

and that their rotation do not exceed 5° regardless damage factor used. Rotation of the 

second eigenvector is well below 1°.  

4.3.3 Fibre-matrix debonding 

Figure 4.3.6 shows the stiffness eigenvalues of the fibre-matrix debonding mesoscale model 

with respect to damage factor. It is clear from this plot, that the first eigenvalue is not 

significantly affected by interfacial debonding between fibres and matrix. On the other hand, 

all other eigenvalues seem to be considerably dependant on this damage mechanism. Figure 

4.3.6 reveals slight discrepancy between second and fourth eigenvalues.  

 
Figure 4.3.6 Normalised eigenvalues of the model with fibre-matrix debonding 
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Note that for fibre matrix debonding the longitudinal stiffness remains unchanged and much 

higher than other components. As evaluated earlier for the fibre cracking model, the higher 

is the first element of stiffness tensor ( 11C ) in comparison to other elements, the closer it is 

to the first eigenvalue ( )I . Subsequently the angle between the first eigenvector and X 

direction becomes lower. Figure 4.3.7 shows eigenvectors of damaged and undamaged 

material. Second eigenvector does not rotate at all. Furthermore, there was only slight change 

in the first and the third eigenvectors despite the significant damage (factor 10000).  

 

Figure 4.3.7 Eigenvectors in 3D space for fibre-matrix debonding model for undamaged material (green) and 
material with damage factor 10000 (blue) 

Figure 4.3.8 shows the first three eigenvalues and corresponding eigenvectors rotation. It is 

clear that despite the significant change of second and third eigenvalues the rotation of the 

eigenvectors do not exceed the 5°, and therefore the material does not lose its symmetry. 

 

Figure 4.3.8 Eigenvalues and eigenvectors rotation angle of the model withfibre-matrix debonding 
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Note that the discrepancy between second and fourth eigenvalues (in Figure 4.3.6) may be a 

result of a slight rotation of the second eigenvector which may be caused by the numerical 

errors. If transverse material properties are reduced the difference between the eigenvalues 

(highest and lowest) can reach two orders of magnitude. It is significant and can lead to 

numerical inaccuracy. 

4.3.4 Combined damage 

Figure 4.3.9 shows the stiffness eigenvalues of the combined damage model. The combined 

damage was the damage mechanism affecting fibres and the interface between fibres and the 

matrix, so it is not surprising that all eigenvalues were affected.  

 
Figure 4.3.9 Normalised eigenvalues of the model with combined damage 

Joined graphs of the first three eigenvalues and eigenvectors’ rotation angles of combined 

damage model are presented in Figure 4.3.10. The figures show that the maximum rotation 

angle does not exceed 15° for the first and the third eigenvectors. It was also kept well below 

5° for damage factor 1000 and below 2° for damage factor 100. The second eigenvalue 

rotation is insignificant as it does not exceed 0.5°. 
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Figure 4.3.10 Eigenvalues and eigenvectors rotation angle of the model withfibre-matrix debonding 

These results were presented to show, that the rotation of the eigenvectors in fibre and matrix 

damage model do not exceed the rotations observed with broken fibre model in 

Section 4.3.1.  

 Summary 

The number of simulations of mesoscale damage models was performed. The considered 

damage mechanisms were fibre breaking, fibre-matrix interfacial debonding, matrix uniform 

damage and combined fibre breaking with interfacial debonding. Simulations were 

performed with different extent of damage that was controlled by the damage factor. Neither 

of the modelled damage cases violated the RVE conditions.   

Results of this study demonstrate a clear trend of a gradual reduction of the stiffness tensor 

eigenvalues due to damage. In the case of fibre breaking it is followed by the rotation of the 

material eigensystem around the second eigenvector. However, it was found to be significant 

only for the reduction of the first principal stiffness by more than 60%. For such severe 

damage matrix starts to play a significant role in carrying load. At this point the material can 

be regarded as having no load carrying capacity and undergo final failure. In the matrix related 

damage mechanisms, the eigenvectors remained unchanged regardless the magnitude of 

damage. Therefore, the assumption of not rotating eigenvectors is valid for material with 

reasonable damage extent (not fully failed) and is one of the key assumptions of the model.  





87 

5 Mesoscale modelling - deformation eigenmodes  

Previous chapter showed the mesoscale damage modelling results that aimed at better 

understanding of the changes brought by damage into the material at continuum level. It was 

also proved that damage can be successfully represented by changing stiffness eigenvalues.  

Second, but equally important purpose of the mesoscale modelling, which is addressed in 

this chapter, is an investigation of the state of material loaded in a single deformation mode 

(strain eigenmode). The analysis of the mesoscale simulations was based on the effect that 

continuum scale loading has on the material constituents. Knowledge of how the eigenstrain 

loading affects the material constituents allows to determine the strain energy limits and 

possible damage mechanisms. 

The motivation for this analysis lies in a postulate given by Schreyer and Zuo (1995) that the 

material fails if the strain energy in a spectrally decomposed mode exceeds its limit value. For 

isotropic materials there are two modes i.e. volumetric and deviatoric. The deviatoric mode 

is the exact form of von-Mises yield criterion. For symmetries different than isotropy a 

number of modes can be defined and for each of them its strength limit can be determined. 

Whilst the postulate formulated by Schreyer and Zuo (1995) uses the eigenstresses (not to 

be confused  with principal stresses) it is shown in Section 5.1.1 that eigenstrains can be used 

as well in the definition of strain energy. The authors suggested that the experiments can be 

designed so that the stresses (or strains) applied to the material activate only one of the strain 

energy modes. Whereas, it might be a challenge to design such mechanical tests it is 

straightforward to apply a specific deformation mode in FE. Simulations that activated the 

single strain energy mode are described in the following section. They were analysed in terms 

of the effect they have on the separate constituents. 

In Section 5.1.1 the strain based eigenmodes characteristic for the modelled material are 

defined. The FEA was performed to check the state of a material loaded elastically in single 

strain energy mode. The simulations that activate single strain energy mode are described in 

Section 5.1.2. Results of the simulations are given in Section 5.2. Interaction between first 

three strain energy modes was also investigated by loading the material to activate two strain 

energy modes simultaneously. Similar analysis was not carried out for the fourth, fifth and 

sixth eigenmodes due to difficulty in modelling of those interactions. 
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 Model 

Geometry of a model used for the analysis of deformation eigenmodes is the same as the 

geometry used for modelling damage shown in Section 4.1 but for self-consistency of the 

chapter the main characteristics are repeated here. The RVE consists of 16 randomly 

arranged fibres surrounded by matrix. The fibre diameter is approximately 5μm. The whole 

RVE is a cube with edge length of 0.026mm. Matrix material is modelled with MAT_001 

and fibre with MAT_002 (simple elastic and orthotropic elastic materials). The material 

properties can be found in Appendix C. Loads and boundary conditions that were applied 

to activate a single strain energy mode are presented in Section 5.1.2. 

5.1.1 Definition of strain energy modes 

Existence of strain, stress and stiffness modes allow to define modes of strain energy 

(Lubarda and Chen, 2009). Strain energy density for a material is equal to: 

( ) 2

1 1 1 1

1 1 1 1 1

2 2 2 2 2

n n n n
i i i i i i i i

i i i i

W  
= = = =

=  =   =  =  =   σ ε σ P ε σ ε ε ε ε , 5.1.1 

with σ  and ε  being respectively stress and strain tensors, P  is projection operator tensor 

and   is eigenvalue. Superscript i  denotes the i-th deformation mode. For a transversely 

isotropic material (material of tetragonal symmetry) the projection operator and subsequently 

strain vector in a mode is: 

( )i i i i=  = ε P ε v ε v , 5.1.2 

where 
i

v  is eigenvector of i-th mode. It can be demonstrated that the single contraction of 

a modal strain vector with itself is: 

( ) ( ) ( ) ( )
2 2

2 2i i i i i i i i i i i i=  =    =   =  =ε ε ε v ε v v ε v v ε v v v ε , 5.1.3 

where the magnitude of the modal strain vector is: 

i i = v ε . 5.1.4 

The explicit formulas that define the modal strain magnitudes in terms of the total strain 

vector members are presented below: 
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42IV IV = =ε , 

2 2 2

52V V = =ε , 

2 2 2

62VI VI = =ε . 

5.1.5 

Roman numbers in upper indices in the equations denote the mode number. A single strain 

energy mode is activated if one of the modal strains is nonzero. Therefore, by solving the set 

of equations, where only one of the equations is nonzero, the relation between the strain 

components can be obtained for each eigenmode. Subsequently each modal strain can be 

defined by a single variable   as presented in Table 5.1.1. 

Table 5.1.1 Activation of a single strain energy mode 

Activated 
mode 

Strain component 

1  2  3  4  5  6  

2 0I ε    1



 

1



 

0  0  0  

2 0II ε  0    −  0  0  0  

2 0III ε    

2


−  

2


−  

0  0  0  

2 0IV ε  0  0  0    0  0  

2 0V ε  0  0  0  0    0  

2 0VI ε  0  0  0  0  0    

Coefficient   is a material characteristic coefficient accounting for its anisotropy. It equals 

to 22.7 for the material used in mesoscale simulations. Because of such a high value (resulting 

from high anisotropy) the first strain mode is almost a plane strain in the fibre direction.  
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Figure 5.1.1 shows the graphical representation of strain energy modes of a transversely 

isotropic material. Note that for the negative value of   the modes would be reversed, i.e. 

instead of tension there would be compression and instead of compression there would be 

tension. The signs of the modes were assigned arbitrarily, and are used consistently 

throughout this work.  

Mode 1 

 

Mode 2 

 

Mode 3 

 

Mode 4 

 

Mode 5 

 

Mode 6 

 
Figure 5.1.1 Graphical represetation of the strain vectors activating a single strain energy mode  

For a transversely isotropic material the second and the fourth mode share the same 

eigenvalue and result in the same material loading type (shear deformation in the plane of 

isotropy (Figure 5.1.2). Although, they can be coupled, they were modelled separately in this 

chapter and their results were compared to check the modelling approach and accuracy. 

 

Figure 5.1.2 Equivalent states of stress in pure shear and tension-compression (Tsai and Wu, 1971) 
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The third mode is the transverse strain mode which has a small component in longitudinal 

direction. The longitudinal strain in this mode has different sign from the transverse strains.   

Modes five and six are both the shear modes in the fibre plane. They share the same 

eigenvalue, and for a transversely isotropic material can be coupled. However, in simulation 

their equivalence was not assumed a priori, so they were modelled separately. 

The strain modes are defined using the coefficient  , and therefore their applicability is 

limited to the material states that do not affect  significantly – the states for which material 

eigensystem (system of eigenvectors) does not rotate. It was demonstrated in the previous 

chapter that excluding significant fibre damage this requirement is fulfilled. It is accounted 

for in the material model development (Chapter 6) by setting a critical value for a fibre-

related damage variable. 

Similar approach to define strain energy modes was used by Schreyer and Zuo (1995). Instead 

of strain tensors they used the stress tensors in the definition, which is convenient for the 

plasticity models. For composites, however, strains seem a more reasonable choice.  

5.1.2 Loads and boundary conditions 

The strain vectors presented in Figure 5.1.1 were applied to the RVE of unidirectional 

composite to check its response to activation of a single strain energy mode. The loads were 

chosen so that the magnitude of the strain vector was 0.001 in all modelled cases. The strain 

vectors applied to the RVE are given below.   

  30.998 0.044 0 0 0 0. 44 10 0
TI −=ε , 

  30 0.707 0. 0707 0 0 0 1
TII −= −ε , 

  30.706 0.70.06 064 0 0 0 10
TIII −= −ε , 

  30 1 0 00 0 10
TIV −=ε , 

  30 0 10 0 0 10
TV −=ε , 

  30 0 0 10 0 10
TVI −=ε . 

5.1.6 
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The boundary conditions applied to activate the first three modes were the same. Three faces 

X, Y and Z were constrained from movement along the normal direction as presented in 

Figure 5.1.3. 

 
  

Figure 5.1.3 Boundary conditions for modes I, II and III 

The three unconstrained faces were loaded by set displacements that result in the strain states 

given by Equations 5.1.6. The displacements for the modes are listed in Table 5.1.2. 

Table 5.1.2 Displacements applied to RVE to activate a single strain energy mode 

Mode I: Mode II: Mode III: 

52.59 105x
−=   0x =  61.668 10x

−= −  

6.141 102y
−=   5.831 108y

−=   5.831 105y
−=   

6.141 102z
−=   5.831 108z

−= −   5.831 105z
−=   

Modes IV, V and VI were activated by constraining one face in all directions and loading the 

opposite face with set displacement as presented in Figure 5.1.4. 

Mode IV

 

Mode V

 

Mode VI

 

Figure 5.1.4 Loads and boundary conditions for modes IV, V and VI 
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Such loading condition generates the engineering state of strain in a material in YZ, ZX and 

XY planes respectively. The displacement that corresponds to the principal strain of 

magnitude 0.001 is equal to 5.67 *3 16 0i
−= . It was calculated considering the notation used, 

the edge length and fact that the engineering strain was generated instead of pure strain. 

5.1.3 Mechanical tests that activate single strain energy mode  

The possibility of designing the mechanical tests that activate single strain energy mode was 

already postulated in Section 5.1.1. The modes that are most easily activated by the 

mechanical test are fifth and sixth modes which are simple shear modes in fibre direction. 

The test that is commonly used to investigate the shear behaviour of composites is 

IOSIPESCU shear test (Walrath and Adams, 1983) – see Figure 5.1.5. Therefore, it can also 

be used to determine the strain energy limit in the fifth and sixth modes. The critical strain 

(or strain energy) values in these modes should be equal because of transverse isotropy of 

unidirectional composite. IOSIPESCU shear test can be also used to determine shear 

behaviour in the plane of material isotropy (mode IV critical energy).  

 

 
t = ‘as received’, w = 7.62mm, d = 2.54mm, L = 

50.8mm 

Figure 5.1.5 IOSIPESCU shear test and specimen (Broughton, K and Hull, 1990) 

Equivalence of modes II and IV (presented in Section 5.1.1 in Figure 5.1.2) allows to 

determine only one strain energy limit for both modes. Moreover, the second mode can also 

be activated by biaxial tension – compression test (Van Hemelrijck et al., 2008). 

There are no standard tests that activate modes I and III. Mode I critical energy can be 

determined from known critical longitudinal strain of fibres by: 

2

0

I I f

cr = ε  5.1.7 

There are no standard and commonly used mechanical tests that can give the accurate value 

of the mode III threshold energy. Mode III threshold energy can be only approximated by 
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the biaxial tension – tension test while omitting the longitudinal strain in the mode. As a 

consequence, the mode I is also activated.  

The tests presented here are only a suggestion – any mechanical activating a single strain 

energy mode can be used. In this work the threshold energies were determined using the 

mesoscale models’ simulations. 

 Single strain energy modes results 

The simulation results were analysed in terms of stresses generated in fibres and the matrix. 

The longitudinal (X) stress component was assumed to be critical for fibres. Therefore, all 

results for fibres are analysed in terms of longitudinal direction. The matrix material was 

analysed in terms of the X, Y and Z stress components. Moreover, pressure and von Mises 

stress were investigated. The maximum stresses in the fibres (maximum longitudinal (X) 

stress) and the matrix (maximum von Mises (VM) stress) were determined by averaging the 

20 highest values in the middle cross-section of constituents. The von-Mises stress is the 

second mode eigenstress for an isotropic material (see Section 2.2.1). It is a measure of 

distortional strain energy in the material, and thus is consistent with energy and spectral 

decomposition approach adopted in this work. The elements lying on boundaries of the 

model were disregarded, as the stress values in them might be affected by boundary 

conditions. Maximum strain and strain energy values were obtained assuming proportionality 

of stress and strain in linear elastic analysis.  

The limit stress values for fibres and matrix were obtained from the manufacturer’s data. 

Assumed fibre strength was 4900 MPa (Hexcel Corporation, 2016), and the yield limit of 

matrix 81 MPa (Cytec Engineered Materials, 2012). Knowledge of both the maximum stress 

in a material (for known strain magnitude) and the stress limit allows to calculate the limit 

strain and consequently limit strain energy in each mode.  

5.2.1 Mode I 

In the first mode a dominant direction is the fibre direction. The RVE was loaded by set 

displacements in X, Y and Z directions. The resultant displacements (Figure 5.2.1) show that 

the state of strain required for activation of the first mode was achieved. 
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X displacement 

 

Y displacement 

 

Z displacement 

 

Figure 5.2.1 Mesoscale model loaded in the first mode 

The first eigenvector is almost collinear with fibre direction, so this mode is almost perfectly 

longitudinal, i.e. the load in X direction is much higher than that in Y and Z directions. 

Therefore, it is not surprising that the longitudinal stress in fibres was highest. Fibres were 

loaded equally up to stress 268.6 MPa (Figure 5.2.2).  

 

Figure 5.2.2 RVE loaded in the first deformation mode – X stress component in fibres 

Stress in matrix in longitudinal direction ranged from 9.4 MPa to 10.2 MPa, but the vast 

majority of elements were stressed up to 9.8 MPa (Figure 5.2.3 - a)). Matrix stresses in Y and 

Z direction ranged from 5.1 MPa to 7.0 MPa (Figure 5.2.3 - b) and c)).  
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a)

 

b)

 

c)

 

Figure 5.2.3 RVE loaded in the first deformation mode: a) X stress component, b) Y stress component,  
c) Z stress component in matrix 

Due to equality of transverse stresses and the fact that the longitudinal stress in matrix was 

of the same order of magnitude there was a high pressure component in the matrix  

(Figure 5.2.4 - a)). Note that all the stress components were tensile, which in LS-Dyna gives 

negative pressure. The magnitude of the pressure was 7.0 MPa and it was uniform within the 

RVE matrix elements. The von Mises stress in the RVE ranged from 3.3 to 3.7 MPa.  

a) 

 

b) 

 

Figure 5.2.4  RVE loaded in the first deformation mode: a) pressure, b) von Mises stress in 
matrix 

Table 5.2.1 shows the averaged stress results obtained for 20 most loaded elements in fibres 

and matrix, strength of the constituents and calculated limit strain. The limit strain was 

determined by multiplying the input strain by the ratio of strength and stress.   

Table 5.2.1 Mesoscale modelling of the first deformation mode results 

 Input strain [%] Stress [MPa] Strength [MPa] Limit strain [%] 

Fibre 0.1 268.6 4900 1.82 

Matrix 0.1 3.8 81 2.13 

Note that the limit strain calculated for fibres is 1.82%, which is close to 1.70% – limit strain 

for carbon fibres reported in (Hexcel Corporation, 2016). Strain limit for matrix is higher 

than that of fibres, therefore it can be stated that the principal damage mechanism in the first 

mode is fibre breaking. However, matrix damage cannot be neglected. Straining the material 
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in the first mode up to failure of fibres results in the matrix stress being 67.3 MPa, which is 

83% of its strength.  

5.2.2 Mode II 

The second mode is a shear mode in the isotropy plane (YZ). Figure 5.2.5 shows the 

displacements in the RVE that activated a second deformation mode. Displacement and 

subsequently strain in longitudinal direction were zero. Displacements in transverse 

directions were equal in magnitude but opposite in sign. This resulted in equal but opposite 

strains. 

 

X displacement 

 

Y displacement 

 

Z displacement 

 
Figure 5.2.5 Load and displacements in the second mode 

Figure 5.2.6 - a) shows the X stress component in fibres. Disregarding the slight boundary 

effects, the longitudinal stress in fibres was equal to zero. The fibre stresses in Y and Z 

directions were more significant – up to 10 MPa in tension (Y stress component) and 

compression (Z stress component). Nevertheless, they were neglected in the analysis. The 

first reason is the difficulty in defining the fibre transverse strength – it can hardly be 

determined by the mechanical tests. Secondly, as fibre transverse stress was comparable to 

matrix transverse stress, the latter is of greater importance for the overall material strength 

as matrix strength is undoubtedly lower than fibre strength.  
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a)

 

b)

 

c)

 
Figure 5.2.6 RVE loaded in the second deformation mode: a) X stress component, b) Y stress component and 

c) Z stress component in fibres 

Figure 5.2.7 shows the stress in matrix of the RVE loaded in the second deformation mode. 

X stress component in the matrix varied from 4 MPa in compression to 4 MPa in tension as 

presented in Figure 5.2.7 - a). The highest Y and Z stresses were found between the fibres 

aligned with deformation direction as shown in Figure 5.2.7 - b) and c). Y stress components 

were tensile whilst Z stress components were compressive. The maximum stress magnitude 

in both directions was smaller than 9 MPa. 

a)

 

b)

 

c)

 
Figure 5.2.7 RVE loaded in the second deformation mode: a) X stress component, b) Y stress component, c) Z 

stress component in matrix 

Pressure in matrix elements was not uniform. The highest pressure was found for the matrix 

elements located between the neighbouring fibres (Figure 5.2.8 - a)). Pressure did not exceed 

5.1 MPa in tension and compression and for large number of elements was close to zero. 

Von Mises stress in matrix in the second mode reached 9.0 MPa (Figure 5.2.8 - b)). The 

highest von Mises stress was observed in the elements lying on the paths where the 45° 

direction distance between the fibres was shortest. 

a) 

 

b) 

 
Figure 5.2.8 RVE loaded in the second deformation mode: a) pressure, b) von Mises stress in matrix 

 



99 

The stress results obtained for the second mode are presented in Table 5.2.2. Input strain of 

0.1% resulted in matrix equivalent stress of 8.6 MPa and zero longitudinal fibre stress. Limit 

strain was calculated for the stress equal to strength of the material and is displayed in the 

last column of the table.  

Table 5.2.2 Mesoscale modelling of the second deformation mode results 

 Input strain [%] Stress [MPa] Strength [MPa] Limit strain [%] 

Fibre 0.1 0.0 4900 - 

Matrix 0.1 8.6 81 0.94 

The limit strain in the fibres tends to infinity, as the stress was close to zero. The maximum 

strain determined for matrix elements was 0.948%. The conclusion is that the second mode 

can be described as the matrix shear mode. 

5.2.3 Mode III 

The third mode is a three-dimensional strain mode for which the strain in longitudinal 

direction is more than ten times lower than the strain in both transverse directions as 

presented in Figure 5.2.9. 

 

X displacement 

 

Y displacement 

 

Z displacement 

 

Figure 5.2.9 Load and displacements in the third mode 

Figure 5.2.10 shows the longitudinal stress in the fibres obtained for the mesoscale RVE 

loaded in the third mode. The stress was uniform and equal to 11.2 MPa in compression for 

all elements.  
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Figure 5.2.10 RVE loaded in the third deformation mode – X stress component in fibres 

Matrix stresses are presented in Figure 5.2.11. Despite the compressive strain in longitudinal 

direction, the X stress component in matrix was positive and equal to 8.7 MPa for all 

elements (Figure 5.2.11 - a)). Transverse Y and Z stress components were equal to 10.8 MPa 

in all elements. The variation of stress between the elements did not exceed 0.01 MPa. 

a) 

 

b) 

 

c) 

 

Figure 5.2.11 RVE loaded in the second deformation mode: a) X stress component, b) Y stress component, c) Z 
stress component in matrix 

The fact that the compressive strain resulted in tensile stress, although at first surprising, is 

justified by Poisson’s effect. Significant transverse strain would lead to higher contraction of 

the material in X direction was it unconstrained. Thus, the resultant X stress component in 

matrix was tensile.  

The equality of Y and Z stress, and the fact that the longitudinal stress was tensile stress of 

the same order of magnitude resulted in a significant pressure in the matrix – equal to 

10.0 MPa in tension (Figure 5.2.12 - a)). Von Mises stress in this mode was much lower – 

equal to 2.5 MPa (Figure 5.2.12 - b)). 

a) 

 

b) 

 
Figure 5.2.12 RVE loaded in the third deformation mode: a) pressure, b) von Mises stress in matrix 
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Table 5.2.3 shows input strain, stress in the elements, strength of constituents and resultant 

limit strain for fibres and matrix. Fibres tensile strength was used despite compressive 

character of load. 

Table 5.2.3 Mesoscale modelling of the third deformation mode results 

 Input strain [%] Stress [MPa] Strength [MPa] Limit strain [%] 

Fibre 0.1 11.2 4900 43.5 

Matrix 0.1 2.5 81 3.1 

It is clear that the third mode is the matrix-based mode, as the matrix limit strain is much 

lower than that of fibres. The magnitude of strain that would cause matrix damage is 3.1%, 

which is a very high value – the limit strain commonly used in aerospace industry is 0.4% 

(Tsai and Melo, 2014). 

5.2.4 Mode IV 

The fourth mode is the shear mode in the plane of isotropy (YZ). Ideally it should be 

combined with the second mode, as both share the same principal stiffness, however due to 

simulation convenience the modes were modelled separately. The RVE displacements that 

activated only the fourth mode of deformation are presented in Figure 5.2.13.  

 

X displacement

 
Y displacement 

 

Z displacement

 
Figure 5.2.13 Loads and displacements in the fourth mode 

Longitudinal component of stress in fibres was found to be insignificant. For the vast 

majority of the fibres it was close to zero as can be seen in Figure 5.2.14 - a). The highest 
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stress component in fibres was YZ stress presented in Figure 5.2.14 - b). It varied from 

3.7 MPa to 5 MPa for the majority of elements, with some higher stress regions – up to 

6.3 MPa. 

a) 

 

b) 

 
Figure 5.2.14 RVE loaded in the fourth deformation mode: a) X stress component in fibres, b) YZ stress component 

in fibres 

The highest stress components in the matrix were Y, Z and YZ and thus they are displayed 

in Figure 5.2.15 - a), b) and c) respectively. Normal stresses varied from compressive to 

tensile in the range of -6.4 MPa to 5.6 MPa. The large number of elements had normal 

stresses equal to zero. In case of YZ stress component all elements were loaded in shear, vast 

majority in range 1.5 MPa to 4.5 MPa. 

a) 

 

b) 

 

c) 

 
Figure 5.2.15 RVE loaded in the fourth deformation mode: a) Y stress component, b) Z stress component, c) YZ 

stress component in matrix 

The highest pressure in the matrix component can be found between the fibres in 45° 

directions which can be observed in Figure 5.2.16 - a). On the other hand, the highest von 

Mises stress paths have an angle 0°/90° with respect to the coordinate axes.  The von Mises 

stress varied between 2.7 MPa in low stress regions up to 9.0MPa in the high stress zones.  

a) 

 

b) 

 
Figure 5.2.16 RVE loaded in the fourth deformation mode: a) pressure, b) von Mises stress in matrix 
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Table 5.2.4 shows the results of the limit strain calculated from the input strain multiplied by 

ratio of strength and stress. The limit strain for fibres is not shown as it greatly exceeds one. 

The limit strain for matrix material was calculated to be 0.95%.  

Table 5.2.4 Mesoscale modelling of the fourth deformation mode results 

 Input strain [%] Stress [MPa] Strength [MPa] Limit strain [%] 

Fibre 0.1 0.1 4900 - 

Matrix 0.1 8.5 81 0.95 

Note that the limit strain for matrix in the fourth mode (0.95%) was very close to the limit 

strain in the second mode (0.94%), which was expected as the modes are equivalent in terms 

of generated stress state.  

5.2.5 Mode V 

The fifth mode is a ZX shear mode. The RVE was constrained on the Z face and the 

opposite Z face was loaded with set displacement in X direction. The resultant displacements 

in the RVE are presented in Figure 5.2.17. 

 

X displacement

 

Y displacement 

 

Z displacement 

 

Figure 5.2.17 Loads and displacements in the fifth mode 

The fibre X stress component was, for majority of elements close to zero as presented in 

Figure 5.2.18 - a). The only nonzero stress component in fibres was ZX stress, shown in 

Figure 5.2.18 - b). It varied from 3.4 MPa to 12.6 MPa. Majority of elements’ stresses were 

in the range 5.0 MPa to 10.0 MPa.  
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a) 

 

b) 

 

Figure 5.2.18  RVE loaded in the fifth deformation mode: a) X stress component in fibres, b) YZ stress 
component in fibres 

The X and Z stress components in matrix were equal to zero if the boundary effects were 

ignored (Figure 5.2.19 - a)). The most significant stress component in this mode was ZX. 

Stress in matrix in majority of elements was between 0.5 MPa and 7.5 MPa. The elements 

with highest stresses were localised between the neighbouring fibres, where the distance 

between the fibres was smallest. This can be observed in Figure 5.2.19 - c). 

a) 

 

b) 

 

c) 

 
Figure 5.2.19 RVE loaded in the fourth deformation mode: a) X stress component, b) Z stress component, c) ZX 

stress component in matrix 

Pressure part of the stress in the all elements (ignoring boundary effects) was equal to zero 

as presented in Figure 5.2.20 - a). The von Mises stress varied from 1.0 MPa to 22.2 MPa. 

The highest values of von Mises stress were found where the distance in Z direction between 

the fibres was shortest. 

a) 

 

b) 

 

Figure 5.2.20 RVE loaded in the fifth deformation mode: a) pressure, b) von Mises stress in matrix 

The resultant limit strain was calculated and presented in Table 5.2.5. The limit strain is not 

shown for fibres, as it greatly exceeds one. The matrix limit strain of was 0.39%.  
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Table 5.2.5 Mesoscale modelling of the fifth deformation mode results 

 Input strain [%] Stress [MPa] Strength [MPa] Limit strain [%] 

Fibre 0.10 0.1 4900 - 

Matrix 0.10 20.9 81 0.39 

5.2.6 Mode VI 

The sixth mode is the XY shear mode. Because of the transverse isotropy the material 

properties in YZ plane are the same. This results in the sixth mode being equivalent to the 

fifth mode. The RVE displacements are presented in Figure 5.2.21. 

 

X displacement 

 

Y displacement 

 

Z displacement 

 
Figure 5.2.21 Loads and displacements in the sixth mode 

Fibre longitudinal stress was equal to zero. The highest stress component in fibres was the 

XY stress. It ranged between 3.8 MPa and 13.6 MPa. Fibre stresses are displayed in Figure 

5.2.22. 

a) 

 

b) 

 
Figure 5.2.22  RVE loaded in the sixth deformation mode: a) X stress component in fibres, b) XY stress 

component in fibres 
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The normal stress components were equal to zero (ignoring small boundary effects). The X 

and Y stresses in Figure 5.2.23 - a) and b were given as an example. The most significant 

stress component in matrix was the XY shear stress. It ranged from 0.5 MPa to 8.6 MPa. 

a) 

 

b) 

 

c) 

 

Figure 5.2.23 RVE loaded in the fourth deformation mode: a) X stress component, b) Z stress component, c) ZX 
stress component in matrix  

Pressure component of stress was zero in the matrix constituent under the sixth deformation 

mode as is presented in Figure 5.2.24 - a). The von Mises stress in matrix was significant. 

The highest values were reached in the regions where the distance between the fibres in 

Y direction was smallest. The von Mises stress varied in this mode between 1.3 MPa to 

22.0 MPa.  

a) 

 

b) 

 

Figure 5.2.24 RVE loaded in the sixth deformation mode: a) pressure, b) von Mises stress in matrix 

Stress averaged from the 20 most loaded elements was equal to 20.5 MPa, which resulted in 

the limit strain of 0.40%. Note that this limit strain is close to the limit strain obtained for 

the fifth deformation mode. Considering the equality of the modes, this result validates the 

model and the approach used.   

Table 5.2.6 Mesoscale modelling of the sixth deformation mode results 

 Input strain [%] Stress [MPa] Strength [MPa] Limit strain [%] 

Fibre 0.10 0.1 4900 - 

Matrix 0.10 20.5 81 0.40 
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 Combined strain energy modes 

For the material treated as a continuum the strain energy modes are not interacting which is 

a consequence of the orthogonality of the eigenstresses and eigenstrains. Due to 

nonhomogeneity of CFRP, constituent stresses vary from continuum scale stresses. Thus, 

whilst there is no mode interaction at a continuum level, it exists at constituent level. 

Subsequently, it leads to elevated effective stress levels in separate constituents.  

The previous section commented on the stresses in fibres and matrix under the single 

deformation mode loading. This section shows the similar analysis of the first three modes 

activated simultaneously in pairs. The aim of these simulations was the analysis of the joined 

mode loading on the constituent stress levels.  

Activation of the two strain energy modes simultaneously was modelled using the boundary 

conditions that were used in single mode analysis (for convenience repeated in Figure 5.3.1).  

 

 
 

Figure 5.3.1 Boundary conditions for combined modes 

The displacements that activate two strain energy modes were determined as the sum of 

displacements activating single strain energy modes. Note that each mode can be positive or 

negative, which results in four possible combinations of loading conditions for each pair. 

Only two of them are distinct for linear elastic simulation and assumption of no difference 

in compressive and tensile critical stresses and Young’s moduli. The other two can be 

determined by reversing the signs of the strain vectors. This allows for reduction of the cases 

shown here to two for each pair of modes. The remaining load cases are characterised by the 

same stress levels but opposite stress character (tension/compression). This applies to X, Y 

and Z stress components and the pressure. The effective stress is by definition positive, and 

does not have any direction indication, therefore it does not change the sign for reversed 
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deformation cases. The combined modes in which two principal deformation modes have 

the same sign were designated by ‘+’ and the modes with the opposite signs ‘-’. Note that 

the sign of the principal deformation mode was assigned arbitrarily and does not have any 

physical meaning. The displacements applied to the models combining the modes are 

presented in Table 5.3.1. 

Table 5.3.1 Combined modes applied displacements 

Mode I/II + Mode II/III + Mode III/I + 

52.59 105x
−=   61.668 10x

−= −  52.428 10x
−=   

5.951 103y
−=   53.673 10y

−=   5.941 109y
−=   

5.721 104z
−= −   8.783 107z

−= −   5.941 109z
−=   

Mode I/II - Mode II/III - Mode III/I - 

52.59 105x
−=   61.668 10x

−= −  52.762 10x
−= −  

5.721 104y
−= −   8.783 107y

−= −   5.721 101y
−=   

5.951 103z
−=   5.673 103z

−=   5.721 101z
−=   

5.3.1 Modes I/II 

The first mode is the 3D mode with the privileged longitudinal direction (X), the second 

mode is the shear mode in the isotropy plane (YZ) generated by transverse tension and 

compression. It can be observed that the second mode is insensitive to the sign change as in 

transversely isotropic material all transverse directions are equivalent. As a consequence also 

summation with the first mode does not yield the difference and modes I/II+ and I/II- are 

equal. The displacements obtained for the modes are presented in Figure 5.3.2. 
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 Figure 5.3.2 Mesoscale model loaded in the first and second mode (I/II+ ,I/II-) 

Longitudinal stress component in the fibres obtained for joined mode did not differ from 

the stress in the fibres generated only by the first mode as presented in Figure 5.3.3. 

a) 

 

b) 

 

c) 

 

 

Figure 5.3.3 X stress component in fibres in the RVE loaded in: a) I mode, b) I/II+ mode and c) I/II- mode 

The normal stress components in matrix are presented in Figure 5.3.4. The pictures clearly 

show that the modes I/II+ and I/II- are equivalent in the stress state. Moreover, exactly the 
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same stress would be obtained for the rotated coordinate system (for interchanged Y and Z 

directions). Despite this, the analysis was carried out for both joined modes for completeness. 

Furthermore, this can be another indication of mesoscale modelling accuracy.  

 X stress component Y stress component Z stress component 
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 Figure 5.3.4 Normal stress components in matrix in RVE loaded in the first and second deformation 
modes (I/II+ and I/II-) 

The most important aspect of the joined modes analysis was determination of the critical 

stresses for the modes in the presence of other modes. Figure 5.3.5 shows the pressure and 

effective stress for the combined modes. In mode I/II+ only the pressure in tension was 

observed. The highest pressure was found between the fibres in Y direction and was equal 

to 12.2 MPa (in tension). The opposite condition was observed for the mode I/II-, where 

pressure was higher for the regions between the fibres in Z direction. The highest pressure 

magnitude in I/II- mode was 12.2 MPa, which was equal to I/II+ pressure. The effective 

stress distribution for modes I/II+ and I/II- was similar and alike the second mode effective 

stress. However, the slight change in the direction of the high stress regions can be observed. 

The highest effective stress was 9.9 MPa for mode I/II+ and 10.2 MPa for mode I/II-. The 

discrepancy between the highest stresses observed in the elements results from the material 

microstructure. The effective stress levels averaged from the 20 elements with highest 

stresses were 9.5 MPa and 9.4 MPa for modes I/II+ and I/II- respectively. 
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Figure 5.3.5  RVE loaded in the first and second deformation modes 

The effect of the mode interaction on the constituent maximum stress levels is clearly 

presented in Figure 5.3.6. It shows the maximum longitudinal stress in fibres and maximum 

effective stress in matrix averaged from 20 highest stress elements. 

a) 

 

b) 

 
Figure 5.3.6 Comparison of maximum stress for one and two activated modes: a) longitudinal fibre stress, b) 

effective matrix stress 

It is evident that the fibre stress depends only on the first mode, i.e. the combined mode 

fibre stress is equal to the first mode fibre stress as presented in Figure 5.3.6 - a). The case 

of matrix stress is more interesting, as the effective stress in combined modes is higher than 

for single modes. Figure 5.3.6 - b) shows that the first mode noticeably increases the 

maximum stress in matrix. Therefore, the first mode has an influence on the second mode. 

The exact interaction between the modal constituent stresses was established analytically and 

is presented in Section 6.4. 
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5.3.2 Modes II/III 

The second and the third modes are both primarily related to matrix properties. The second 

mode is in-plane 2D mode and the third mode is the 3D mode. In the third mode the 

longitudinal (fibre) direction strain is an order of magnitude lower than the transverse strains. 

Using the same magnitudes of modal strains for both modes results in generating 2D strain 

state in the material (the third strain component is three orders of magnitude lower than the 

highest one). This is presented in Figure 5.3.7, where continuum Y displacement in modes 

II/III-  and Z displacement in modes and II/III+  of the RVE is negligible. 
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 Figure 5.3.7 Mesoscale model loaded in the second and third mode (II/III+ ,II/III-) 

The longitudinal stress in fibres generated by such a displacement was uniform within the 

fibre constituent and exactly the same as the longitudinal stress in fibres coming from 

mode III. The influence of the second mode on the longitudinal fibre stress cannot be 

observed. 
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a) 

 

b) 

 

c) 

 

 

Figure 5.3.8 X stress component in fibres in the RVE loaded in: a) III mode, b) II/III+ mode and c) II/III- mode 

Matrix normal stress components are presented in Figure 5.3.9. The modes II/III+ and 

II/III- can be treated as the equivalent modes, as the change of coordinate system would 

yield the similar stress distribution 
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 Figure 5.3.9 Normal stress components in matrix in RVE loaded in the first and second deformation 
modes (II/III+ and II/III-) 

Pressure and effective stress results for combined modes II and III are presented in Figure 

5.3.10. The highest pressure in the modes II/III+ was 15.6 MPa (tension). It was observed 

in the regions between the fibres neighbouring in Y direction. The highest pressure for 

modes II/III- was 15.6 MPa (tension) in the regions of shortest Z distance between the 

fibres. In the modes II/III+ the highest effective stress reached 9.5 MPa and in 

modes II/III- 9.6 MPa. Note that the high stress regions are very similar for modes II/III+ 

and II/III-. 
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Figure 5.3.10  RVE loaded in the second and third deformation mode 

The longitudinal stress results for fibre elements (uniform stress) and effective stresses results 

averaged for 20 most significantly stressed matrix elements are presented in Figure 

5.2.11 - a) and b) respectively. 

a) 

 

b) 

 

Figure 5.3.11 Comparison of maximum stress for the second and third mode and their combination: 
a) longitudinal fibre stress, b) effective matrix stress 

It is transparent in Figure 5.2.11 - a) that the fibres stress depends only on the third mode. 

The influence of both modes on the matrix effective stress can be observed, however the 

second mode seems to be more significant. 

Both modes II and III are the modes that are matrix dependant. However, the mode that 

affects the matrix effective stress most significantly is the second mode. Consequently, it was 

assumed to be matrix principal failure mode – i.e. the matrix fails in the second mode, unless 

its eigenstrain is zero. Only then the matrix is assumed to fail under the third mode. Exact 

expression for summation of the modes stresses is presented in Section 6.4. 
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5.3.3 Modes III/I 

Both modes I and III are the 3D modes with equal transverse strains. Consequently, the 

transverse strains in the combined models are also equal. The displacements of the RVE are 

presented in Figure 5.3.12. 
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 Figure 5.3.12 Mesoscale model loaded in the first and second mode (III/I+ ,III/I- ) 

The longitudinal stress in fibre elements was 256 MPa in tension in the vast majority of 

elements in the III/I+ mode and 278 MPa in compression in the III/I- mode (Figure 5.3.13). 

In mode III/I+ the longitudinal stresses in single modes had different signs, thus the addition 

lead to reduction of the stress magnitude. On the other hand, in mode III/I- the longitudinal 
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stresses in both modes were negative resulting in increase in the stress magnitude for the 

combined modes.  

a) 

 

b) 

 

Figure 5.3.13 X stress component in fibres in the RVE loaded in: a) III/I+ mode, b) III/I- mode 

The normal stress components in matrix for modes III/I+ and III/I- are presented in Figure 

5.3.14. Longitudinal stress varied from 18.1 to 18.9 MPa in tension for III/I- mode. In mode 

III/I- majority of the elements were stressed between 0.9 to 1.2 MPa in compression. 

Transverse stresses varied from 16.5 to 18.3 MPa in both directions in mode III/I+. For 

mode III/I- the variation in transverse stresses was from 4.4 to 6.3 MPa.  
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Figure 5.3.14 Normal stress components in matrix in RVE loaded in the third and first deformation 
modes (III/I+ and III/I- ) 

Pressure in matrix elements was almost uniform for both considered modes. In mode III/I+ 

it varied from 17.5 MPa to 18.4 MPa in tension and in mode III/I- from 2.6 to 3.5 MPa in 

tension. The maximum value of effective stress in mode III/I+ was 1.6 MPa. The critical 

stresses were found in the regions where distance between the fibres was smallest. The 

effective stress in the mode III/I- reached 6.2 MPa. 
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Figure 5.3.15  RVE loaded in the first deformation mode: a) pressure, b) von Mises stress in matrix 

Longitudinal stress in fibres and effective stress in matrix in 20 highest stress elements are 

compared against the single modes results in Figure 5.3.16. 

a) 

 

b) 

 

Figure 5.3.16 Comparison of maximum stress for one and two activated modes: a) longitudinal fibre stress, b) 
effective matrix stress 

The fibre stress depends on both deformation modes. However, as the first mode is primary 

fibre mode, its influence is more significant than that of the third mode. The effective stress 

in matrix also depends on both modes. The more insight into how the modes interact is 

given in Section 6.5. 

 Summary 

The mesoscale modelling of the deformation modes, presented in this chapter, aimed at 

understanding of the stress state in the material under single strain energy mode. Whilst 

the analytical solution for the stress state at continuum scale is trivial (defined by the 
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generalised Hooke’s Law), the stress state in the separate constituents is not easy to predict. 

The mesoscale modelling gave an insight into the constituent scale stresses.  

Moreover, by means of linear elastic analysis it provided the critical modal strain values 

characteristic for each mode, and subsequently, allowed to calculate of the critical strain 

energy densities required for the model definition. For convenience the set of results is 

presented in Table 5.4.1. 

Table 5.4.1 Deformation eigenmodes mesoscale modelling results 

Mode Critical eigenstrain 

[%] 

Principal stiffness 

[GPa] 

Strain energy limit 

[kJ/m3] 

Damage 
mechanism 

I 1.82 139.5 23104.0 fibre 

II 0.94 5.8 256.2 matrix 

III 3.12 16.1 7836.2 matrix 

IV 0.95 5.7 257.2 matrix 

V 0.39 11.0 83.7 matrix 

VI 0.40 11.0 88.0 matrix 

The combinations of the first three modes were analysed. They revealed that mixed mode 

loading increases the constituent stresses. Consequently, they may lead to reduction of the 

modal threshold energies, which is evaluated analytically in Section 6.4.
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6 Progressive damage model 

Work presented in the previous chapters was the foundation of the development of a new 

constitutive composite model. An overview of the continuum mechanics, thermodynamics 

and continuum damage mechanics gave a good framework for the mathematical formulation 

of the new material constitutive model. Development of the model was supported by the 

mesoscale models analysis (Chapter 4 and Chapter 5). It helped with understanding of the 

damage effect in the non-homogeneous composite and the stress state in the material where 

a single strain energy mode is present. Deformation process in the material was assumed to 

be adiabatic i.e. without temperature or matter transfer. For static deformation this is easily 

justified by insignificant temperature change and for dynamic deformation – the deformation 

time does not allow for heat transfer. 

Spectral decomposition of the stiffness tensor was incorporated in the thermodynamic 

framework, giving six strain energy modes in the basic model. At continuum scale the modes 

are not interacting as the eigenvectors corresponding to modes form the orthogonal 

coordinate system. The basic model described in Section 6.1 was developed at continuum 

scale without insight into the mode interaction at mesoscale. The possibility of expanding 

the model to account for interaction between the modes at constituent scale was also 

evaluated. The suggested extension to the model is presented in Section 6.4.  

 Theoretical model 

The model presented here is strongly inspired by the work of Schreyer (1995) and Schreyer 

and Zuo (1995). It uses spectral decomposition of a stiffness tensor to define the non-

interacting strain energy modes. The assumption is made that damage does not change the 

material (stiffness) eigenvectors. This assumption is perfectly justified for the damage 

mechanisms that do not violate material symmetries and is additionally supported by the 

mesoscale model analysis (Chapter 4). Damage modes in the model are associated with strain 

energy modes.  
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6.1.1 Spectral decomposition of Helmholtz free energy potential 

State potential that defines the material state in the model is the Helmholtz free energy. The 

Helmholtz free energy consists of the strain energy potential ( )W  and the sum of damage 

associated potentials ( )H : 

W H = +  
6.1.1 

Strain energy potential is a measure of elastic strain energy stored in the material. It is the 

part of the free energy that can be recovered during material unloading (under condition of 

perfect elasticity). Damage potentials describe a non-recoverable part of the free energy that 

is associated with damage. They allow for modelling of the strain hardening and softening 

behaviour in the material. 

Elastic strain energy ( )W  is defined by: 

( )
1

2
W =  ε ε C ε , 6.1.2 

where ε  is strain vector and C is second order stiffness tensor. Application of the spectral 

decomposition (Equation 2.1.25, Section 2.1.4) leads to definition of the total strain energy 

as the sum of the modal strain energies: 

( )
1 1 1 1

2 2 2 2

VI VI VI VI
i i i i i i i i

i I i I i I i I

W W  
= = = =

 
=   =   =   =  = 

 
   ε ε C ε ε P ε ε P ε ε ε , 6.1.3 

where   is a stiffness tensor eigenvalue, P  is a projection operator tensor and index i  

denotes the mode. The strain energy equivalence hypothesis is used to model the damage 

effect on stiffness of the material. It is defined in Section 3.3.2 as: 

( ) ( ) ( )
T

0= −   −C D I D C I D , 6.1.4 

where D  and I  are damage and identity tensor respectively. Note that the basic assumption 

in the model is that the eigenvectors of the stiffness tensors do not change. Therefore, the 

damaged material stiffness tensor has the same projection operators and vary only by the 

eigenvalues from the undamaged one. Thus, the following relation holds: 

( ) ( ) ( ) ( )
VI VI

i i i i

i I i I

 
= =

= = C D D P D D P . 6.1.5 
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Substituting 6.1.5 into 6.1.4 gives: 

( ) ( ) ( ) ( )

( ) ( )

0

0 0 ,

VI VI
Ti i i i

i I i I

VI VI
Ti i i T i

i I i I

 

 

= =

= =

= = −   − =

= −   − =  

 

 

C D D P I D P I D

I D P I D M M P

 6.1.6 

where M  is a damage effect tensor ( )= −M I D . Damage affects a single mode only if 

damage effect tensor M  is collinear with projection operator corresponding to the mode. 

Therefore, damage effect tensor can be defined as: 

(1 )
VI

i i

i I

d
=

= −M P , 6.1.7 

with damage effect being accounted for by a damage variable .d  This allows to model 

damage by the set of scalar damage variables corresponding to the strain energy modes: 

( ) ( )
2

01
VI

i i i i

i I

d d 
=

= −C P . 6.1.8 

Consequently, strain energy of a damaged material assumes the following form: 

( ) ( )
2

21
02

, 1
VI

i i i i

i I

W d d 
=

= −ε ε , 6.1.9 

where: 

2 2i i i i=  =ε ε ε , 
i i = v ε . 6.1.10 

It is of utmost importance to assure that the strain vector is defined consistently as a second 

order tensor projected on the 6D space (introduced in Section 2.1.1). Note that using the 

Voigt notation would lead to discrepancy between the double contraction of the (original) 

strain second order tensor and a contraction of a (reduced order) strain vector, which is 

unacceptable.  

Damage potential in the model is assumed to be a quadratic function of damage hardening 

variable as suggested by Schreyer (1995). It is expressed by: 

( ) 21
2

H h h= , 6.1.11 

where   is a material parameter and h  is a damage evolution variable.  
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Both damage and damage evolution variables are unitless in the model. It follows, that the 

material parameter   has a unit of energy and is later referred to as a damage evolution 

energy. 

Damage hardening is a function associated with damage evolution, so it is assumed to be 

mode characteristic like damage variable. The final form of the Helmholtz free energy can 

be rewritten as: 

( ) ( )

( )( )

2
2 21 1

02 2

2
2 21

02

, 1

1 .

VI VI
i i i i i i i

i I i I

VI VI
i i i i i

i

i I i I

,d h d h

d h

  

  

= =

= =

 = − + =

= − + = 

 

 

ε

 6.1.12 

The above equation shows the possibility of decoupling the strain energy modes and treating 

them separately, which simplifies the model immensely. In the following section the model 

derivation is shown for a single mode. 

6.1.2 Conjugate forces, damage potential and damage variables definition 

The modal Helmholtz free energy for a single mode equals: 

( ) ( )
2

2 21 1
02 2

, , 1i i i i i i i id h d h   = − +ε , 6.1.13 

and its rate of change: 

( ), ,
i i i

i i i i i i

i i i
d h d h

d h




  
 = + +

  
ε . 6.1.14 

The first element in the equation is an elastic non-dissipative strain energy rate. The variables 

that correspond to dissipative part are damage and damage evolution variables. The total 

energy dissipation can therefore be defined as: 

( ), ,
i i i

i i i i i i i i

i i i
d h d h

d h
 



  
 = − = − −

  
. 6.1.15 

This expression can be used to determine the conjugate forces and the rates of displacements. 

The forces conjugate to damage variable ( )id  and damage evolution variable ( )ih  are 

defined respectively as: 
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( ) 2

01
i

i i i i

d i
y d

d



= − = −


ε , 

i
i i i

h i
y h

h



= − = −


. 6.1.16 

Both damage initiation and evolution are controlled by damage potential which makes the 

model associative damage model. Following the general thermodynamic framework (Hansen 

and Schreyer, 1994), damage potential for scalar damage variables should be a linear function 

of the conjugate forces: 

( ) ( )0, 0i i i i i i

d h d hy y y y   − +  , 6.1.17 

where 0

i  is a scalar constant that define damage threshold (and thus in this work is called 

damage threshold energy). Material is linear elastic as long as the damage potential function 

has a negative value. Damage initiates and evolves when the damage potential is equal to 

zero. Evolution of damage and damage evolution variables is defined by the maximum 

entropy production (or maximum dissipation) rule. The energy dissipation (Equation 6.1.15) 

is maximised in the models by Lagrange multipliers method. The function iL  is defined as: 

i i i iL = − +  . 6.1.18 

In the function the constraint i  is multiplied by Lagrange multiplier i . The constraint in 

the Lagrange function comes from the associative flow rule: 

( ), 0i i i

d hy y = . 6.1.19 

Solution for the minimum of the objective function iL  gives damage and damage evolution 

variables in terms of Lagrange multipliers: 

i
i i i

i

d

d
y


=  = 


, 

i
i i i i

i

h

h d
y


=  = − = −


. 6.1.20 

Kuhn-Tucker optimality conditions constrain the variables and the damage function giving 

the loading and unloading conditions for the model (Hansen and Schreyer, 1994): 

0i id =  , 0i  , 0i i  = . 6.1.21 
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To assure that during damage evolution material state does not violate Equation 6.1.17, the 

consistency condition must be satisfied, i.e. not only the damage function but also its time 

derivative must be equal to zero. This is postulated by: 

( ), 0i i i i i

d h d hy y y y  − = . 6.1.22 

The rates of the forces conjugate to damage and damage evolution variables are defined by: 

( ) ( )2

0 0, 2 1
i i

i i i i i i i i i i id d
d i i

y y
y d d d d

d
     



 
= + = − + −
 

ε , 

( )
i

i i i i i i i i ih
h i

y
y h h h d

h
  


= = − =  =


. 

6.1.23 

Note that the convenient relation between the variables obtained in Equation 6.1.20 is used. 

After substitution into Equation 6.1.22 the following relation can be established: 

( )
0

2

0

21

1

i i
i i

i i ii
d

d

 


  
=

+−
. 6.1.24 

Integration of this equation gives the explicit solution for the damage variable (the integration 

steps are presented in Appendix D): 

( )2

0

1
1i

i i i
d

c 
= −

+ ε
, 6.1.25 

where c  is integration constant that can be determined knowing that damage function equals 

to zero (using Equations 6.1.25, 6.1.16 and 6.1.19). As 
i id h= −  and 0 0 0i i

t td h= == =  we can 

write that i id h= − . Using this relation, the integration constant is further simplified and 

equals to: 

0

1
i i

c
 

=
+

. 6.1.26 

Finally, damage variable is established as: 

2

0 0

2

0

i i i
i

i i i
d

  

  

−
=

+
. 6.1.27 



125 

6.1.3 Failure criteria and damage variables for transversely isotropic material 

Theoretical derivation of the model state potentials and variables was presented in the 

previous section. Derivation, in its most basic form assumed existence of (maximum) six 

number of strain energy modes. For transversely isotropic materials the number of modes 

can be reduced to four because of the repeated stiffness eigenvalues ( II IV = and

)V VI = . This allows to combine the modes that share the same eigenvalue. The 

Helmholtz free energy can therefore be split into four modes as: 

( ) ( )
2

2 21 1
02 2

, , 1I I I I I I I Id h d h   = − +ε , 

( ) ( ) ( )
2

2 2 21 1
02 2

, , 1II II II II II II IV II IId h d h    = − + +ε , 

( ) ( )
2

2 21 1
02 2

, , 1III III III III III III III IIId h d h   = − +ε , 

( ) ( ) ( )
2

2 2 21 1
02 2

, , 1V V V V V V VI V Vd h d h    = − + +ε . 

6.1.28 

where the first and the third mode are the modes depending only on the first and third 

principal strain. The second mode is a function of the second and fourth principal strain and 

the fourth mode is a function of fifth and sixth principal strain. The four damage potentials 

that are the failure criteria in this model are: 

( ) ( ) 2

0 0, , 1 0I I I I I I I I Id h d h    = − − − =ε , 

( ) ( ) ( )2 2

0 0, , 1 0II II II II II II IV II II IId h d h     = − + − − =ε , 

( ) ( ) 2

0 0, , 1 0III III III III III III III III IIId h d h    = − − − =ε , 

( ) ( ) ( )2 2

0 0, , 1 0V V V V V V VI V V Vd h d h     = − + − − =ε . 

6.1.29 
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The damage variables are defined as: 

2

0 0

2

0

I I I
I

I I I
d

  

  

−
=

+
, 

( )
( )

2 2

0 0

2 2

0

II II IV II

II

II II IV II
d

   

   

+ −
=

+ +
, 

2

0 0

2

0

III III III
III

III III III
d

  

  

−
=

+
, 

( )
( )

2 2

0 0

2 2

0

V V VI V

V

V V VI V
d

   

   

+ −
=

+ +
. 

6.1.30 

The first mode failure criterion is the fibre failure criterion because the first eigenvector (and 

subsequently the first mode strain) is aligned almost perfectly with fibres. It was also shown 

in the mesoscale model analysis (Chapter 5) that fibres are the weakest constituent under the 

first deformation eigenmode. The second mode is the isotropy plane shear mode that 

combines the two possible ways of generating the shear stress in the material. One of them 

is transverse tension-compression and the second pure shear. The third mode can be viewed 

as the volumetric matrix failure mode. The fifth mode is the shear failure mode in the plane 

of fibres. 

 Equation of state parameters determination 

Accurate modelling of the material response to HVI necessitates including the equation of 

state in the model definition. EOS theory was presented in Section 3.5. The EOS parameters 

are established for a large number of commonly used materials (Marsh, 1980). This includes 

data for carbon (also carbon fibres specifically) and different types of epoxies (Munson and 

May, 1972; Marsh, 1980; Ahrens and Johnson, 1994; Millett, Bourne and Barnes, 2002; 

Hazell, Stennett and Cooper, 2008). However, determination of the shock EOS parameters 

for CFRP was done only by few researchers including (Riedel, Nahme and Thoma, 2004; 

Millett et al., 2007; Hazell, Stennett and Cooper, 2009; Dattelbaum and Coe, 2012). Difficulty 

in composite materials lies in the fact that their properties depend on the specific 

constituents’ properties used (e.g. different matrices), the specific manufacturing processes 

(e.g. curing of the epoxy) and the material geometry (e.g. weave and layup). Furthermore, the 
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impact direction is also of significance. One of the objectives of this work was to develop a 

model suitable for HVI modelling. The accuracy check of the model should include a 

validation of the impact response of the material, which requires determination of dynamic 

material properties. Data presented below was collected in the EXTREME project. The 

following chapters shortly comment on the experiments that were performed by the project 

partner. They also show the method and calculations of the EOS parameters of the 

unidirectional CFRP through thickness direction done in this work.   

6.2.1 Plate impact tests 

The plate impact test is a test performed to characterise a shock wave propagation in a 

material. It allows the determination of constants (C , 1S , 2S  and 3S ) needed for the 

Gruneisen EOS. Typically, an impactor made of material with known dynamic properties is 

fired against the target made of a material to be characterised. The impact results in 

generation of the shock wave in the target. Measurements in the test allow measurement of 

relation between the shock and particle velocity in the material and between pressure and 

particle velocity (EOS). Due to inertial constraints the state induced in the material is the 

uniaxial strain state in which the only non-zero strain component is in the impact direction. 

The plate impact test setup is schematically presented in Figure 6.2.2. 

 

Figure 6.2.1 Plate impact test experimental setup (adjusted from Appleby-Thomas, Hazell and Stennett, 2009) 

Two types of flyer plates were used in the experiments: aluminium and copper. Velocity of 

the flyer plate was measured by a velocity pin block situated before the target. The cover 

plate of a matching material was used to avoid impedance mismatch at the impact surface. 
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The back surface of the specimen was supported by a 12 mm thick polymethyl-methacrylate 

(PMMA) backing plate. A schematic representation of the target is presented in Figure 6.2.2. 

 

Figure 6.2.2 Plate impact test target (adjusted from Appleby-Thomas, Hazell and Stennett, 2009) 

Manganin pressure gauges were calibrated according to Rosenberg (Rosenberg, Yaziv and 

Partom, 1980). They were located at the front and the back surfaces of the specimen. The 

front gauge was insulated by a 25 μm film made of biaxially-oriented polyethylene 

terephthalate (boPET commercially known as Mylar) from the 1 mm thick cover plate (Al 

or Cu – matching the impactor) and the specimen. The back gauge was insulated by boPET 

from the specimen and it was supported by the PMMA backing plate.  

The specimens used in the experiment were 6mm thick CFRP panels comprising 23 plays of 

a unidirectional CFRP laminae aligned in 0° direction. The material density was 1.54 g/cm3. 

CYCOM® 997 epoxy resin was used. The experiment programme, with the impact velocities 

recorded by the pin block, is presented in Table 6.2.1. 

Table 6.2.1 Plate impact test programme 

Specimen 
Impact direction 

[km/s] 
Impactor material 

[km/s] 
Impact velocity 

[km/s] 

UD CFRP 1 Through thickness Aluminium 0.352 

UD CFRP 2 Through thickness Aluminium 0.463 

UD CFRP 3 Through thickness Copper 0.625 

UD CFRP 4 Through thickness Copper 0.806 
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6.2.2 Results 

The stress traces, recorded by front and rear gauges, are shown in Figure 6.2.3. Front gauge 

recording clearly shows the formation of the shock wave – the stress rise time was well below 

200 ns for all of the shots. The shock arrival to the back gauge is also well defined. Note that 

the stress recorded by the back gauge for velocity of 0.625 kms-1 degraded to zero rapidly 

after reaching the maximum value, which suggests that the gauge was damaged by impact. 

However, it is assumed that up to the failure point its readings were correct and can be used 

for determination of shock parameters, although the results should be treated with caution.  

a) b) 

  

c) d) 

  

Figure 6.2.3 Shock wave propagation in the specimens hit with the impact velocity: a) 0.352 kms-1 , b) 0.463 
kms-1, c) 0.625 kms-1, d) 0.806 kms-1 

The stress behind the shockwave, also known as the Hugoniot stress, was calculated by taking 

a mean value of the plateau readings. These results are presented in Table 6.2.2. There is a 

strong correlation between the impact velocity and the Hugoniot stress, which is an expected 

result. 
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Table 6.2.2 Plate impact test results 

Impact 
velocity 
[km/s] 

Shock 
velocity 
[km/s] 

Particle 
velocity 
[km/s] 

Rise time - 
front gauge 

[ns] 

Rise time - 
back gauge 

[ns] 

Hugoniot 
stress 
[GPa] 

0.352 (Al) 3.186 0.256 176 106 1.297 

0.463 (Al) 3.391 0.334 80 64 1.832 

0.625 (Cu) 3.504 0.541 86 40 3.088 

0.806 (Cu) 3.882 0.690 51 61 4.078 

Velocities were calculated by dividing the known distance between the gauges (∆x) by a time 

interval required for the shock to arrive at the back gauges (∆t): 

SU = x / t  . 6.2.1 

The shock velocity increased with increasing velocity of impact. This trend was also observed 

for the particle velocities. The particle velocities were found by impedance-match technique 

(Meyers, 1994) using the known density of the target, known shock properties of the flyer 

material (Marsh, 1980) and calculated shock velocity. Impedance-match technique is based 

on the two physical restrictions at the shock interface. These are equality of pressure and 

equality of particle velocities at the target-flyer interface.  

Shock velocities and particle velocities were used to construct a S PU U−  plot in Figure 6.2.4. 

Following Ruoff (1967), Davison and Graham (1979) and Meyers (1994) the linear relation 

between particle and shock velocities can be determined for majority of materials, giving the 

shock velocity as: 

S 1 PU = C+S U . 6.2.2 

This approximation was successfully applied to composites by a number of researchers 

(Riedel, Nahme and Thoma, 2004; Millett et al., 2007; Hazell, Stennett and Cooper, 2008, 

2009; Appleby-Thomas, Hazell and Stennett, 2009; Appleby-Thomas and Hazell, 2012; 

Gautam et al., 2017). The linear approximation of the shock velocity – particle velocity 

relation seems reasonable for the data obtained in this work. The coefficients of 

Equation 6.2.2 for the performed tests were determined as: 2.84 /C km s=  and 1.421S = .  
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The error bars in the graph were based on the earliest and latest possible arrival times 

deduced from the pressure traces. 

  

Figure 6.2.4 a) Shock velocity vs particle velocity, b) Pressure vs specific volume 

A comparison of the calculated values of the coefficients C  and 1S  against data found in 

literature is presented in Table 6.2.3. Dattelbaum and Coe (2012) investigated the 

unidirectional composite in the through thickness direction for impact velocities ranging 

from 0.670 to 3.307 km/s. The values of C  and 1S  coefficients reported by Dattelbaum 

were 2.87 km/s and 1.17 respectively. Firstly, the small overlap of the particle velocities 

between two sets of data should be noted. The impact velocities used in (Dattelbaum and 

Coe, 2012) were generally higher than velocities used in our experiments. Secondly, the wider 

range of impact (and subsequently particle) velocities were investigated. However, given the 

small number of shots performed in this work and the narrower velocity range, the 

agreement of data is good. 

The coefficients values presented here also exhibit a good agreement with the coefficients 

obtained by Millett et al. (2007) and Riedel, Nahme and Thoma (2004) – see Figure 2.1.1. 

Both publications considered woven composites rather than unidirectional. However, the 

suggestion of Millett et al. (2007) that the through thickness behaviour of composites is 

dominated by matrix properties encourages including also woven composites data. 

Moreover, it additionally justifies the comparison of the CFRP in through thickness direction 

with pure epoxy resins whose behaviour has been more extensively studied e.g. by Munson 

and May (1972); Boettger (1994); Millett, Meziere and Bourne, (2007); Hazell, Stennett and 

Cooper, (2008) and Appleby-Thomas, Hazell and Stennett, (2009) among others. The full 
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comparison of the data shock EOS parameters obtained in this work against the other 

available data is presented in Table 6.2.3.  

Table 6.2.3 Plate impact test results comparison with available data 

Specimen 
Impact 

direction 
ρ0 [g/c3] C [km/s] S1 [-] 

CFRP unidirectional through 
thickness 

1.597 2.84 1.42 

CFRP unidirectional 

(Dattelbaum and Coe, 2012)  

through 
thickness 

1.536 2.87 1.17 

CFRP woven 

(Millett et al., 2007)   

through 
thickness 

1.5 3.23 0.92 

CFRP woven 

(Riedel, Nahme and Thoma, 2004)  

through 
thickness 

- 2.54 1.41 

CFRP woven 

(Hazell, Stennett and Cooper, 2009)  

fibre 1.51 2.27 2.26 

Epoxy  

(Millett, Bourne and Barnes, 2002) 

- 1.14 2.58 1.47 

Epoxy  

(Hazell, Stennett and Cooper, 2008) 

- 1.41 2.65 1.55 

Epoxy  

(Munson and May, 1972) 

- 1.194 2.64 1.66 

Epoxy 

(Boettger, 1994) 

- 1.154 2.63 1.52 

Therefore, it is clear from the table that the data obtained in this work are comparable to the 

CFRP data in literature (Riedel, Nahme and Thoma, 2004; Millett, Meziere and Bourne, 2007; 

Dattelbaum and Coe, 2012). Note that the through thickness impact properties of CFRP are 

very close to the pure epoxy impact properties reported in (Munson and May, 1972; Boettger, 

1994; Millett, Bourne and Barnes, 2002; Hazell, Stennett and Cooper, 2008). 

The comparison between the CFRP data from literature and data obtained in this work is 

given in Figure 6.2.5. The results obtained in this work are in good agreement with (Riedel, 

Nahme and Thoma, 2004; Millett et al., 2007; Dattelbaum and Coe, 2012). Figure 6.2.5 shows 

the data points and the linear approximation of EOS parameters for a range of particle 

velocities from 0 to 2.5 km/s. The best match of the speed of sound C was obtained with 
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Dattelbaum and Coe, (2012). Coefficient 1S determined in this work is closest to the one 

obtained by Riedel, Nahme and Thoma (2004) which is manifested by almost parallel lines 

in Figure 6.2.5. Note that results determined in this work and those generated by Millett et al. 

(2007) and Riedel, Nahme and Thoma (2004) considered the particle velocities up to 1 km/s. 

Dattelbaum and Coe (2012) investigated shock behaviour for a wider range –  

up to 2.2 km/s. 

 
Figure 6.2.5 CFRP shock parameters comparison in particle velocity range: a) 0-1 kms-1, b) 0-10 kms-1 

6.2.3 Summary 

The purpose of this study was to determine the equation of state for CFRP 977-2 

unidirectional composite. The characterisation in through thickness directions covered 

velocities in a range from 0.352 km/s to 0.806 km/s. The coefficients C  and S  were found 

to be 2.84 km/s and 1.42 respectively. These results are in a good agreement with existing 

data for unidirectional CFRP (Dattelbaum and Coe, 2012). They also exhibited similarity 

with the properties of woven composite in through thickness direction (Riedel, Nahme and 

Thoma, 2004; Millett et al., 2007). A very good match between the current study and the 

pure epoxy equation of state (Munson and May, 1972; Boettger, 1994; Millett, Meziere and 

Bourne, 2007; Hazell, Stennett and Cooper, 2008; Appleby-Thomas, Hazell and Stennett, 

2009) was found. This corroborates the hypothesis that matrix material drives the through 

thickness EOS for a composite. It cannot be underestimated, that the current findings add 

to a growing, but still insufficient, body of literature on composite shock equation of state. 
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 Model implementation 

The theoretical model presented in Section 6.1 was implemented in Dyna3D (Lin, 2004). 

The implementation required a direct calculation of the theoretically derived state variables 

from the input data and variables computed in Dyna3D solver. The model follows a standard 

FEM procedure which can be split into four major parts – input, initialisation, solution and 

output as presented schematically in Figure 6.3.1. 

 

Figure 6.3.1 Model flow chart - general 

Material constants that are required in the constitutive model are read from a material card 

in the input part. Model constants that are not defined in the input file, but are required in 

solution phase are defined and computed during initialisation. The major part of the model 

is the solution where all the variables are determined following the constitutive equations. 

The output consists of typical outputs, stress and strain, and model specific internal variables 

including modal damage variables and their conjugate forces.  

6.3.1 Input  

Input parameters in the model are material density ( )  three Young’s moduli 1( ,E 2 ,E 3),E

three shear moduli 12( ,G 23 ,G 31)G  and three Poisson’s ratio 21( , 31 32, )  . For transversely 

isotropic material, the nine elastic material parameters can be reduced to five. However, the 

model was implemented in a way to allow for future generalisation to other material 

symmetries than transverse isotropy. Additional variables that are required for damage part 

of the model are the energy limits 
0 0 0 0 0 0( , , , , , )I II III IV V VI      . Damage evolution can be 

controlled by six damage evolution energies ( , , , , , )I II III IV V VI      , whilst final material 

failure can be controlled by critical damage parameters ( , , , , , )I II III IV V VI

cr cr cr cr cr crd d d d d d . Setting 

the damage evolution energies to non-zero values allow for modelling of strain hardening or 

softening of the material. Critical damage variables set limits for damage state variable, used 

as the final failure criterion. When the critical damage parameter is reached, element is failed 

which results setting the element stresses to zero (for stability reasons it is performed in 100 

time steps). Both damage evolution energies and critical damage variables are commented in 

more detail in Section 6.3.7. The input is shown in the flow chart in Figure 6.3.2. 
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Figure 6.3.2 Model flow chart – input 

6.3.2 Initialisation 

During the initialisation step the model constants are declared and calculated and constitutive 

model specific variables are set to zero. All material constants including the undamaged 

material stiffness tensor, its eigenvalues and two coefficients (  and  ) that uniquely define 

the eigenvectors are calculated. The initialisation is shown in the flow chart in Figure 6.3.3. 

 

Figure 6.3.3 Model flow chart - initialisation 

The stiffness tensor entries are calculated from the material constants as: 
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It is important to note that the order of shear related constants is different than it was 

described in the previous sections due to consistency with Dyna3D. In Voigt (or contracted 

tensor notation) the shear indices order is: 23, 31, 12 whilst in Dyna D it is 12, 23, 31. Thus, 

in the implementation, the fourth and sixth modes are equal (two fibre plane shear modes) 

and the fifth mode is the isotropy plane shear mode whose stiffness eigenvalue equals to the 

second mode stiffness eigenvalue.  

The initial stiffness tensor eigenvalues 
0 0 0 0 0 0( , , , , , )I II III IV V VI       are calculated from the 

stiffness tensor members by: 

( ) ( )
2 2

0 11 22 23 11 22 23 12

1
8( )

2

I C C C C C C C  = + + + − − +
  

, 
0 442IV C = , 

6.3.2 0 22 23

II C C = − , 0 552V C = , 

( ) ( )
2 2

0 11 22 23 11 22 23 12

1
8( )

2

III C C C C C C C  = + + − − − +
  

, 
0 662VI C = . 

Material coefficients   and   are defined as: 

12

0 11

2
I

C

C



=

−
, 12

0 11

2
III

C

C



=

−
. 6.3.3 

The assumption of not rotating eigenvectors is equivalent to the assumption that these 

coefficients are constant in the model. 

6.3.3 Solution – damage part 

Solution part of the model includes time integration, calculation of deformation rate tensor, 

processing of damage part of the model and update of the internal energy with stress update. 

It is shown in the flow chart in Figure 6.3.4. The solution steps down to a calculation of rate 

of deformation tensor are performed by Dyna3D existing algorithms. 
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Figure 6.3.4 Model flow chart - solution 

The implementation of the model presented in Section 6.1 starts with the calculation of the 

trial conjugate forces. This part of the solution is presented in detail in Figure 6.3.5. 

 
Figure 6.3.5 Model flow chart - solution - damage part 
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A calculation of trial conjugate forces is performed using Equations 6.3.4 consequently for 

all modes. The trial value is computed for the damage variable from the previous time step 

( )nd  and the current time step strain 1( )n + . 

( )* 1 1 2

01n i n i i n i

dy d  + += − , * 1n i i n i i n i

hy h d + = − = . 6.3.4 

The squares of the modal strains in the definition of the trial conjugate forces are determined 

from the strains at time step 1n+  by: 

( )
2

1 1 1

1 2 31 2

22

n n n

n I
   




+ + +

+ =
+ +

+
, 

6.3.5 

( )
2

1 2 1 1

2 3

1

2

n II n n  + + +−= , 

( ) ( )
( )

2 2
1 1 1 1 1 1

1 2 3 1 2 31 2

2 2

2

2 2 2

n n n n n n

n III
        


 

+ + + + + +

+
+ + − + +

=
+ +

= , 

1 2 1 2

42n IV n + += , 

1 2 1 2

52n V n + += , 

1 2 1 2

62n VI n + += . 

Initial values of damage and damage evolution variables equal to zero. The trial values of 

damage potentials are calculated using damage and damage hardening forces 

(Equations 6.3.4) for all modes:  

( )* 1 * 1 * 1

0

n n n

i di hi iy y + + + = − + . 6.3.6 

If trial damage potential for all modes is lower or equal to zero damage does not evolve in 

any of the modes. Thus, the damage and damage evolution variables for the current time 

step are equal to the previous time step variables. 

1n i n id d+ = , 
1n i n ih h+ = . 6.3.7 

Consequently, the damage and damage hardening conjugate forces are equal to their trial 

values: 

1 * 1n i n i

d dy y+ += , 1 * 1n i n i

h hy y+ += . 6.3.8 
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If the trial damage potential exceeds zero for any of the modes, the corresponding damage 

variable evolves, and its current value is determined as: 

1 2
1 0 0

1 2

0

i n i i i
n i

i n i i
d

  

 

+
+

+

+ −
=

+

ε

ε
, 1 1n n

i ih d+ += − . 6.3.9 

And the conjugate forces for the current time step become: 

( )1 1 1 2

01n i n i i n i

dy d + + += − ε , 1 1n i n

h i iy h+ += − . 6.3.10 

6.3.4 Solution – stress update 

Stress in the model depends on the strains but also on the pressure calculated from the EOS 

(see Section 3.5). Stress update is therefore required to correctly determine the stress 

components within elements. To update the stress tensor, the deviatoric stress increment 

needs to be determined first. In the most general terms the new deviatoric stress is equal to:  

1
2 11

2n+ nn+1 n n n

ij ij ij ij ijs = s + s t s + s
+ + =  , 6.3.11 

where 
n

ijs  and 
n+1

ijs  are deviatoric stress tensors for subsequent time steps and 
1

2n+

ijs  is rate 

of deviatoric stress which multiplied by increment of time gives an increment of deviatoric 

stress 
1n

ijs+  . The deviatoric stress rate depends on the deviatoric strain rate and damage 

rate, which can be expressed as: 

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 21 0 0n n n n n n n nn

ij ij ijkl kl ijkl kls s t M t s M s t
+ + + + + + + ++  =  =  +  , 6.3.12 

where tensor ijklM  is a damage effect tensor. Damage in the model is mode-characteristic, 

and thus the damage effect tensor can be constructed from damage variables multiplied by 

the corresponding projection operators: 

( )
2

1 i i

ijkl ijklM d P= −  6.3.13 

The increment of damage effect tensor is: 

( ) ( )( )1 1 1
2 2 2

2 2
1 11 1

n n n n n n i n i i

ijkl ijkl ijkl ijkl ijklM t M M M d d P
+ + + + + =  = − = − − − . 6.3.14 
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Thus, the deviatoric stress increment coming from deviatoric strain: 

( ) ( )( )
( )

1
2

1 1
2 2

2 2
1 1

0

2

0

1 1

1

nn n i n i i i i

ij mn mn ij

n ni i i i

mn mn ij

s d d v v

d v v

 

 

++ +

+ +

 = − − − +

+ − 





'

'

 6.3.15 

where 
mn '  is the deviatoric strain and mid-step damage variables 

1
2n id

+
 can be calculated 

from the mid step strains as: 

1
2

1
2

1
2

2

0 0

2

0

ni i i
n i

nI i i
d

  

  

+
+

+

−
=

+
. 6.3.16 

The explicit solution for the stress tensor can be determined after substitution of known 

eigenvectors: 

1

1
2 22 2

n I IIIs x x
 

 

+  = +
+ +

, 

1

2
2 2

1 1 1

22 2

n I II IIIs x x x
 

+  = − +
+ +

, 

1

3
2 2

1 1 1

22 2

n I II IIIs x x x
 

+  = + +
+ +

, 

( ) ( ) ( )( )( )1 1 1
2 2 2

2 2 2
' 1 '

0 44 4

1 1 1 1n n n nIV IV n IV n IVλ d d ds  
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2 2 2

2 2 2
' 1 '

0 55 5

1 1 1 1n n n nV V n V n Vλ d d ds  
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2 2 2
' 1 '

0 66 6
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6.3.17 

where 
ix are variables introduced for the sake of clarity: 

( ) ( )
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6.3.18 
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Following the stress decomposition suggested by Vignjevic et al. (2008) the final form of the 

deviatoric stress should be perpendicular to the pressure vector, which does not hold for the 

above expressions. The new deviatoric stress vectors can be determined from: 

1 1 2 2 3 3

1 1 2 2 3 3

s s s
s

  

     

 +  + 
 =

+ +
, 

6.3.19 1 1 1s s s =  − , 

3 3 3s s s =  − , 

5 5s s =  , 

2 2 2s s s =  − , 

4 4s s =  , 

6 6s s =  , 

where pressure vector is defined as (repeated from Section 3.5.1): 

( )

( ) ( ) ( )

1 2 3

2 2 2

11 12 13 12 22 23 13 23 33

3

i i i

i

C C C

C C C C C C C C C


+ +
=

+ + + + + + + +

. 
6.3.20 

Following Equations 6.3.19, the new deviatoric stress is determined: 

1

1 1 1

n ns s s+ = +  , 1

2 2 2

n ns s s+ = +  , 

6.3.21 
1

3 3 3

n ns s s+ = + , 1

4 4 4

n ns s s+ = +  , 

1

5 5 5

n ns s s+ = + , 1

6 6 6

n ns s s+ = +  . 

The pressure in the model is calculated using the modified Gruneisen Equation of State 

where the total stress is calculated using the new deviatoric stress and the pressure (EOS) 

multiplied by pressure vector: 

1 1 1

1 1 1

n n n

EOSs p + + += −  1 1 1

2 2 2

n n n

EOSs p + + += −  

6.3.22 
1 1 1

3 3 3

n n n

EOSs p + + += −  1 1

4 4

n n s+ +=  

1 1

5 5

n n s+ +=  1 1

6 6

n n s+ +=  

The minus sign results from sign convention in Dyna3D, where the tensile pressure is 

negative and compressive one is positive as opposed to the stresses which are positive when 

tensile and negative when compressive. 

6.3.5 Output 

The model output includes the stress and strain tensors components (given in global 

coordinates), modal strain magnitudes, damage variables, damage evolution variables and 
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damage conjugate forces. Pressure calculated from modified Gruneisen EOS is also written 

as a history variable. Note that the default pressure output in LS PrePost is calculated by the 

post processor as the average of the normal stresses. Therefore, it is not equal to the modified 

Gruneisen EOS pressure calculated in the model, unless the material is isotropic. The 

implementation was verified in the series of single element tests as described in the following 

section.   

6.3.6 Single element tests 

In order to check the implementation, single element tests were performed. Their objective 

was to investigate the single element behaviour under a simple load for which material 

response is known. The element behaviour was checked for the six deformation eigenmodes. 

The single element of edge length 1cm was generated and was subsequently loaded to activate 

the deformation eigenmodes depending on the load case. Model input data is presented in 

Table 6.3.1. Damage threshold for the first mode was determined from the failure strain of 

fibres (knowing that the first eigenstrain is almost exactly equal to the fibre strain). Shear 

modes critical strains were taken from the critical shear stresses. The second mode threshold 

is equal to the fifth mode threshold, as the modes share the same eigenvalue. The threshold 

energy of the last remaining mode – the third mode was taken from the mesoscale 

simulations. 

Table 6.3.1 Input data of the model for single element validation 

Density 
[g/cm3] 

  1.622 

Stiffness 
[GPa] 

1E  165.00 

2 3E E=  9.84 

12 31G G=  4.98 

23G  3.00 

Poisson’s ratio 
[-] 

21 31 =  0.0169 

32  0.4535 

Damage threshold 
[MPa] 

I  46.210 
II V =  2.096 

III  7.836 
IV VI =  3.138 

Critical damage 
variable 

Id  0.3 
II IIId d=  0.5 

IV V VId d d= =  0.7 
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The single element tests were run without pressure update from Gruneisen EOS to directly 

check behaviour of the damage part of the model implementation. However, it was also 

proved that the EOS gives expected results. Figures below (Figure 6.3.6 to Figure 6.3.7) show 

material’s strain, damage and damage conjugate force as a function of time as well as the 

eigenstress – eigenstrain curve. Only the first mode is presented here, however all the modes 

behave in the same way. Figure 6.3.6 clearly shows that an element was loaded to activate a 

single strain energy mode and indeed, only the first eigenstrain is present. Damage initiated 

when the damage conjugate force reached its critical value ( 46dy MPa= ) for time 

160dt s=  which is presented in Figure 6.3.8. At this time damage starts to grow which can 

be observed in Figure 6.3.7. Damage grows until its critical value ( 0.3crd = ) is reached at 

time 200failt s= . Eigenstress – eigenstrain plot (Figure 6.3.9) shows that stress grows 

linearly up to the damage initiation (at strain d  and time dt ). With damage evolution stress 

is reduced and it is set to zero in 100 time steps after damage variable reached its critical 

value. The model behaves as expected in the first mode. All the graphs clearly show, that 

only one strain energy mode was activated in the simulation as only the variables 

corresponding to the first mode are non-zero. 

  

Figure 6.3.6 Strain vs time plot of the first deformation 
eigenmode single element simulation 

 

Figure 6.3.7 Damage conjugate force vs time plot of 
the first deformation eigenmode single element 
simulation 
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Figure 6.3.8 Damage vs time plot of the first 
deformation eigenmode single element simulation 

 

Figure 6.3.9 Stress – strain plot of the first 
deformation eigenmode single element simulation 

The similar analysis was carried out for the remaining modes. It was confirmed that in all the 

modes damage was initiated when damage conjugate force reached the damage threshold. 

After initiation damage growth was observed up to the point of final failure after which stress 

was reduced to zero. This confirms that the experimental single element results follow the 

analytical expectations which proves that the model is implemented correctly. 

6.3.7 Analysis of the hardening variables and critical damage variables 

The previous section showed that the proposed model works at a single element level. The 

parameters used in the model were a basic set including density, stiffness constants, damage 

energy thresholds and the critical damage variables. However, the model also allows to 

introduce the damage evolution energies that can control damage evolution in the material. 

Having the full modal stress – modal strain curves for material would univocally describe the 

material behaviour. It would allow for determination of both damage threshold and damage 

evolution variables by curve fitting. Nevertheless, lacking the curves one can try to 

analytically estimate the hardening values or allowable ranges, which is the aim of this 

paragraph.  

Damage evolution is controlled by hardening potential ( h ) in Equation 6.3.23 which results 

in modal stress-strain curve shape being determined by the evolution energy ( ): 

( )0 0d hy y  = + − = , 

6.3.23 

( ) 2

01dy d  = − , hy h= − . 
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Note that damage conjugate force ( )dy  is dependent on the sum of hardening potential ( )hy  

and energy threshold 0( ) . Moreover, damage evolution variable ( )h  grows from 0 to -1. 

It is therefore sensible to analyse the evolution energy as a multiplicity of energy  

threshold 0( ) . Figure 6.3.10 shows the theoretical predictions of damage conjugate force 

and stress-strain behaviour for different damage evolution energies. 

a)

 

b)

 

Figure 6.3.10 Theoretically predicted: a) damage conjugate force and b) stress strain behvaviour for different 
evolution energies 

For 0 =  perfect damage behaviour can be observed with damage conjugate force at the 

level of damage threshold after damage initiation. For higher values of   damage conjugate 

force can increase after damage initiation. More information can be gained from Figure 

6.3.10 - b). For 0 =  stress after damage initiation drops rapidly. The higher the damage 

evolution energy, the less rapid is stress reduction. For 05 =  after damage initiation stress 

is almost constant (very slightly increasing), starting to drop gradually with increasing strain 

(and damage). Finally, for 010 = the maximum stress that the material can withstand is 

significantly higher than stress at damage initiation. Such a behaviour is not observed in 

composites in normal load directions, thus 05 =  can be assumed to be a limit for the 

damage evolution energy. On the other hand, stress increase after damage initiation was 

observed in some mechanical tests in shear damage modes. Therefore, addition of damage 

evolution energies can provide more realistic modelling. 

Another model parameter that needs to be determined is a critical damage variable (one for 

each mode). It is the parameter that defines what is the critical damage extent of a material 
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after which it completely loses the load carrying capability. Critical damage variable can be 

determined from a mechanical test activating a single strain energy mode. With knowledge 

of the stress-strain material behaviour and the final failure strain it is possible to determine 

the critical damage variable. Final failure usually occurs in material as rupture or loss of 

stability. Figure 6.3.11 - a) shows the stress strain graph of a material (no hardening) with 

several potential damaged principal stiffnesses each calculated using different damage 

variable. At the interception of stress-strain graph with the potentially determined stiffnesses, 

material has the critical damage variable corresponding to the respective stiffness line. Figure 

6.3.11 - b) shows an example of determination of critical damage variable.  

a)

 

b)

 

Figure 6.3.11 Damage dependency of principal stiffness: a) concept, b) example 

The material in the example failed in the point marked with asterisk. By reading the stress 

and strain at failure it is possible to calculate the critical damage variable using: 

( )
2

01fail cr faild  = − , 6.3.24 

which leads to direct expression: 

0

1
fail

cr

fail

d


 
= − . 6.3.25 

Carbon fibre composites are brittle materials, and their rupture usually occurs not long after 

damage initiation for fibre direction (i.e. 0.3crd  ). For other material directions, damage 

can attain higher values, but for normal directions 0.5crd   seems a reasonable constraint. 



147 

Such analysis is also valid for materials (or single modes) with nonzero damage evolution 

energies. 

Having a full material modal characterisation would allow to determine of all model 

parameters directly. However, there is lack of such experimental data available. Thus, in this 

work the parameters were assumed rather than experimentally determined. 

 Model validation 

Having established the theoretical foundations and numerical calculation procedures the next 

step is to validate the model. Validation of the model was performed to check the model’s 

accuracy, its capabilities and limitations. During validation, it became apparent that strong 

anisotropy of the material poses a serious threat to simulations numerical stability. In case of 

unidirectional composites fibre direction is stiffer by a factor of 15 than matrix direction. It 

was found to generate the significant numerical error in pressure calculation which grows 

constantly in time if applied to small elements. Thus, the model becomes visibly unstable 

after approximately 6 µs. To overcome this numerical stability problem the model was 

validated using an orthotropic material with two fibre directions of equal stiffness and 

strength. In such a material stiffness in all directions is of the same order of magnitude, which 

considerably improves pressure calculation. The symmetry class that corresponds to chosen 

material is called tetragonal. It can be modelled with the same approach as transversely 

isotropic material. Furthermore, the eigenvalues and eigenvectors of tetragonal material can 

be explicitly determined using the same equations as for the transversely isotropic material 

(obviously, yielding different results). The one exception is lack of equivalence of the second 

and the fifth mode (in Dyna3D numbering convention). Nevertheless, the current code can 

be successfully used for tetragonal material.  

Material data for validation was taken from (Vignjevic et al., 2008; Vignjevic, Djordjevic and 

de Vuyst, 2012) – presented in Table 6.4.1. 

Table 6.4.1 Orthotropic material engineering constants used in model validation 

Young’s moduli GPa / [-] Shear moduli GPa Poisson’s ratio [-] 

xE  10.0 
yzG  4.57 

yz  0.039 

yE  68.5 
zxG  3.57 

zx  0.045 

zE   68.5 
xyG   3.57 

yx   0.045 
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The Y and Z directions were assumed to be fibre directions. It was dictated by the 

implementation, which requires those directions to be equal. Corresponding stiffness tensor 

and its eigenvalues and eigenvectors are: 

10.00 0.47 0.47 0 0 0

0.47 68.63 2.70 0 0 0

0.47 2.70 68.63 0 0 0

0 0 0 7.14 0 0

0 0 0 0 9.14 0

0 0 0 0 0 7.14

C GPa

 
 
 
 

=  
 
 
 
 

 

6.4.1 

71.3I GPa = ,  00.011 0.707 0 0 0.707
TI =v , 

65.9II GPa = ,  0 0.707 0.707 0 0 0
TII = −v , 

10.0III GPa = ,  0.9999 0.008 0.008 0 0 0
TIII = −v , 

7.1IV GPa = ,  0 0 0 1 0 0
TIV =v , 

9.1V GPa = ,  0 0 0 0 1 0
TV =v , 

7.1VI IVGPa = = ,  0 0 0 0 0 1
TVI =v . 

Coefficients   and    which define the material anisotropy can be determined as (repeated 

from Table 2.1.1): 

 
2

1
1 1 0 0 0

2

TI 


=
+

v ,   
2

1
1 1 0 0 0

2

TIII 


=
+

v . 6.4.2 

For the orthotropic material used for validation coefficient   is equal to 0.015 , and 

coefficient   is equal to 131− . Due to such a high   coefficient, the third mode is aligned 

exactly with X direction with negligible influence of  Y and Z direction. Note, that X direction 

only non-fibre direction here, so the third mode is the matrix plane strain in tension or 

compression. Modes I and II are the fibre related modes. The first one is the fibre tension – 

tension (or compression – compression) mode whilst the other one is fibre tension – 

compression mode. The graphical representation of the modes corresponding to the material 
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used in validation is presented in Figure 6.4.1. The fourth, fifth and sixth modes are the shear 

modes in XY, YZ and ZX planes respectively (in Dyna3D numbering). 

Mode 1 

 

Mode 2 

 

Mode 3 

 

Mode 4 

 

Mode 5 

 

Mode 6 

 

Figure 6.4.1 Graphical representation of the modes of orthotropic material used for validation 

6.4.1 Plate impact test 

Plate impact test was described in Section 6.2 for the purpose of determination of material’s 

EOS parameters. The same test was also used for validation of the EOS part of the model. 

The solid FE model of the plate impact test was created (Figure 6.4.2). To reduce the 

computational cost only a small part of the plate was modelled. Model dimensions in X and 

Y directions (which in experiment were considerably larger) were modelled by the periodic 

boundary conditions. Thus, only a small part of the model could be generated to avoid high 

computation cost. This allowed to generate the plane strain state in the material, which is the 

key assumption in the plate impact test. The model consists of four solid elements in X and 

Y directions that model the 4 mm x 4 mm section of the material. The flyer plate (5 mm) was 

modelled with 40 elements in Z direction, cover plate (1 mm) with eight elements. The 

woven material specimen for through thickness plate impact test was 5.7 mm thick which 

was modelled with 48 elements. The backing plate (12 mm) was modelled with 100 elements 

in Z direction. 
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Figure 6.4.2 Plate impact test model for through thickness direction (square section of the plates) 

The flyer and the cover plate were made of aluminium while the backing plate of PMMA. 

All were modelled using MAT_10 (isotropic-elastic-plastic-hydrodynamic) Material data for 

aluminium and PMMA was taken from (Steinberg, 1996). Contact between the flyer and the 

cover plate was modelled using a sliding interface with separation and friction (slide surface 

type 3 in Dyna 3D)(Lin, 2004). Velocity of the flyer in the experiment and simulation 

was 504m/s. Initially, the target was modelled using the isotropic epoxy material properties 

(Table 6.4.2).  

Table 6.4.2 Input parameters for isotropic material for plate impact test 

GPa / [-] MPa [-] MPa 

E  3.52 
0

I  4x109 I II

cr crd d=  1.0 I  0.0 

G  1.35 
0

II  4.0 IIId  1.0 II  0.0 

  0.33 
0

III  4.0 IVd  1.0 III  0.0 

  
0

IV  4.0 IVd  1.0 IV  0.0 

  
0

V  4.0 Vd  1.0 V  0.0 

  
0

VI  4.0 VId  1.0 VI  0.0 

Modal critical energies that define damage initiation of the material were determined from 

the strength of epoxy. For isotropic materials the first mode is the volumetric mode. As it is 

assumed that volumetric deformation does not lead to damage the corresponding strength 

was set to a very high value. Simulation results were compared against the experimental 

(composite) results. Comparison is reasonable as epoxy properties are dominant in 

composites in through thickness direction. The stress traces are displayed in Figure 6.4.3. In 

the figure red and pink colours represent the experiment and blue and light blue to the 

simulation. The figure shows the good agreement of epoxy simulation results to the 

experimental results. Time of shock propagation through the specimen is equal in experiment 

and in simulation (1.6 µs). The shock-direction stress level of epoxy at the front gauge (dark 

blue line in Figure 6.4.3) was 1.66 GPa. It gives 10% discrepancy when compared to the 

experimental 1.85 GPa stress at the cover-target interface. The front gauge stress relaxation 
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is slightly steeper in the simulation than in the experiment. Stress level at the back surface 

(light blue in Figure 6.4.3) is in perfect agreement with the stress level in the experiment 

(pink). However, unloading of back surface of the target starts around 3.2 µs which is later 

than in the experiments (2.9 µs) and it is steeper than the experimental back gauge unloading. 

 
Figure 6.4.3 Plate impact test simulation vs experimental results - isotropic epoxy 

Note that stress-reloading at the front gauge after 2 µs comes from the target side. This 

loading is a result of use of the cover plate. It is best illustrated on the X-t diagram given in 

Figure 6.4.4. The shock wave initiates when the flyer and cover plate get in contact (point ‘a’). 

It results in the compressive wave travelling through the cover plate and the flyer– blue and 

orange lines. At the interface between the cover plate and the target (point ‘b’), the shock 

wave is transferred into the target (grey line) but is also partially reflected as a release wave 

back into the cover plate (orange line), from where it progresses back to the flyer (points ‘b’ 

to ‘d’). When the initial shock wave and the wave reflected from the cover plate – target 

interface reach back surface of the flyer they are reflected (points ‘c’ and ‘d’). The release 

wave, generated by the reflection of the shock wave, define the loading pulse length. The 

loading pulse length is equal to the time required for the shock wave to travel twice the 

thickness of the flyer:  

2 f

f

s
t

C
 = , 6.4.3 

where fs  is the flyer thickness and fC is the speed of sound in flyer material. Points ‘b’ and 

‘e’ mark the shock initiation in the target and start of the unloading, which correspond to the 

plateau observed in Figure 6.4.3 (also labelled with letters for clarity).  The reflection of the 

cover plate – target interface release wave causes reloading of the target (point ‘g’ also marked 
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in both figures). Consequently, due to the superposition of the waves coming from the target 

and the sample, the loading in material becomes complicated and the experimental results 

are not reliable after approximately 2.5 µs. 

 

Figure 6.4.4 X-t diagram for shock waves travelling in the plate 

Good agreement of the simulation and experimental results confirms that the through 

thickness composite behaviour is dominated by epoxy properties. 

The next step in the validation was use of linear elastic woven composite properties in the 

plate impact test. The woven composite properties were taken from (Vignjevic and 

Djordjevic, 2010) with the EOS data determined in this work. The strengths were set to high 

values to assure no damage in the model. The model input is presented in Table 6.4.3. 

Table 6.4.3 Input parameters for linear elastic woven composite for plate impact test 

GPa / [-] 1010*MJ/m3 [-] MJ/m3 

xE  10.0 
0

I  36.5 I

crd  1.0 I  0.0 

y zE E=  68.5 
0

II  16.0 II

crd   1.0 II  0.0 

yzG  4.57 
0

III  6.3 III

crd  1.0 III  0.0 

zx xyG G=  3.57 
0

IV  3.1 IV

crd  1.0 IV  0.0 

yz  0.039 
0

V  2.1 V

crd  1.0 V  0.0 

zx xy =  0.045 
0

VI  3.1 VI

crd  1.0 VI  0.0 

The simulation results were compared against the experimental results. Figure 6.4.5 shows 

the stress traces obtained with the linear elastic woven composite model.  
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Figure 6.4.5 Stress traces from front and back gauges - through thickness plate impact test – linear elastic 

properties 

Clearly, a good agreement was achieved in the stress magnitude both at the front and at the 

back gauge. The front stress trace has a good length and the unloading region is also well 

aligned with the experimental results. The shock arrival at the back surface was predicted 

quite well, but the stress rise is less rapid than in the simulations. The back-surface stress 

trace is longer than the experimental one and has a steeper unloading slope. However, its 

length matches the length of the front gauge signal. The simulation results are reasonable for 

the linear elastic material properties. The shape of the experimental back gauge trace (pink 

line in Figure 6.4.5) suggests damage in the material or the stress gauge. 

Another modelled case was the woven material with modal damage initiation energies 

determined from the quasi-static strengths (see Table 6.4.4).  

Table 6.4.4 Input parameters for woven composite for plate impact test 

GPa / [-] MJ/m3 [-] MJ/m3 

xE  10.0 
0

I  36.5 I

crd  1.0 I  0.0 

y zE E=  68.5 
0

II  16.0 II

crd   1.0 II  0.0 

yzG  4.57 
0

III  6.3 III

crd  1.0 III  0.0 

zx xyG G=  3.57 
0

IV  3.1 IV

crd  1.0 IV  0.0 

yz  0.039 
0

V  2.1 V

crd  1.0 V  0.0 

zx xy =  0.045 
0

VI  3.1 VI

crd  1.0 VI  0.0 

Note that the current code sets the stresses to zero after final failure (in subsequent 100 

timesteps), disregarding the character of the load (tension/compression). In case of tensile 

stress this is accurate, as the material completely loses its integrity and load carrying capability. 

However, for compressive loads the bulk of material (even after failure) is still capable of 

transferring loads. The damage part of the model at its current stage cannot distinguish 
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between tensile and compressive loads. Thus, to overcome the problem of total loss of load 

carrying capability in compression due to failure, the final failure of the model was disabled 

in the plate impact tests (by setting the critical damage variables to 1).  

Stress traces for that model are presented in Figure 6.4.6 together with the experimental data. 

The first thing that is clear is that the shock passage through the specimen does not follow 

the experiment. Time required for the shock wave to travel through the specimen was 2.5 µs, 

which is roughly 50% more than the experimental result (1.6 µs). The stress magnitude 

obtained for the front of the target was 1.31 GPa, which is 30% lower than the experimental 

stress. The back-surface stress has a magnitude of 1.42 GPa which agrees well with the 

experimentally obtained 1.52 GPa (error lower than 7%). 

 
Figure 6.4.6 Stress traces from front and back gauges - through thickness plate impact test – material with 

finite strength 

What is interesting is that the back surface trace of the damaged material has a similar length 

and a slope of the unloading region (see Figure 6.4.7). This confirms that the back-surface 

stress was affected by damage of the composite plate in the experiment. 

 
Figure 6.4.7 Stress traces from back gauge in through thickness plate impact test of woven material allowing 

for damage 
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To conclude, proposed material model can accurately predict the shock passage through 

material thickness if linear elastic properties are used. If a finite strength material is 

considered, the failure in material occurs too early and has significant influence on the stress 

both at the front and at the back of the specimen. It leads to the simulated stress at the 

beginning of the load being much lower in comparison to the experimental one. The reason 

for that is twofold. Firstly, material properties for the composite were estimated from the 

tensile properties rather than compressive, which may introduce an error in damage 

initiation. Current version of the damage part of the model does not have the functionality 

to distinguish between tension and compression, which may be addressed in future. 

Secondly, homogenisation of a strongly anisotropic material leads to different pressure 

vector orientation than for an isotropic homogeneous material. This may also affect the 

material stresses and damage behaviour especially for the through thickness direction, which 

is known to be matrix dependent. It points out to another subject of future investigations, 

namely, detailed analysis of coupling of the material model with EOS and its implications. 

6.4.2 Plate impact test – fibre direction 

Plate impact test performed in the fibre direction was carried out on the 6 mm long specimen 

of woven composite with stacking sequence [0/90,45] with fibres in XZ plane. The model 

dimensions perpendicular to the impact are 3.8 mm x 3.8 mm with eight elements in 

directions X and Y (Figure 6.4.8). The continuity of the material was achieved by using the 

periodic boundary conditions. The 5 mm flyer plate and 1 mm cover plate were modelled 

respectively with ten and two elements in the impact direction (Z). Both the flyer and the 

cover plate were modelled using MAT_15  (Johnson Cook material model) with copper 

properties taken from (Vignjevic et al., 2008). The backing PMMA plate of 12 mm was 

modelled with 25 elements with MAT_10 (isotropic-elastic-plastic-hydrodynamic) and the 

material properties were taken from (Steinberg, 1996). The composite target consisted of 

eight layers each modelled with twelve elements in the impact direction.  

 
Figure 6.4.8 Plate impact test model in fibre direction 
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Due to different layer orientations, the stress traces at the front and at the back were averaged 

from the four front and back elements of the target. The experimental stress trace from the 

front gauge was not available because of the front gauge failure. Thus, simulation results 

were only compared against the back-surface stress trace. Initially, linear elastic material 

model was simulated (material input parameters can be found in Table 6.4.3). The linear 

elastic behaviour was modelled by setting the modal damage initiation energies to high values. 

The back-surface stress is presented in Figure 6.4.9. In general, the simulation results match 

the experimental results well. The stress rise was steep and its magnitude was only slightly 

overestimated. The simulation stress signal was longer than the experimental one.  

 

Figure 6.4.9 Back surface stress for plate imact test with linear elastic woven material 

After setting the energy thresholds ( )  to the values given in Table 6.4.4, material strengths 

seem to be slightly underestimated (Figure 6.4.10). Moreover, stress starts to drop down quite 

early and rapidly in comparison to the experimental results. 

 

Figure 6.4.10 Back surface stress for plate imact test with woven material with nonzero hardening constants 
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The third case investigated in the fibre direction plate impact test was damage with hardening 

with input parameters given in Table 6.4.5. 

Table 6.4.5 Input parameters for woven composite for plate impact test in fibre direction 

GPa / [-] MJ/m3 [-] MJ/m3 

xE  10.0 
0

I  36.5 I

crd  1.0 I  73.0 

y zE E=  68.5 
0

II  16.0 II

crd   1.0 II  32.0 

yzG  4.57 
0

III  6.3 III

crd  1.0 III  12.6 

zx xyG G=  3.57 
0

IV  3.1 IV

crd  1.0 IV  6.2 

yz  0.039 
0

V  2.1 V

crd  1.0 V  4.2 

zx xy =  0.045 
0

VI  3.1 VI

crd  1.0 VI  6.2 

Following the analysis from Section 6.3.7 damage evolution variable can attain values 

between two to five of the damage threshold value. In this case value of two was chosen for 

all the modes. Figure 6.4.11 shows the results of the stress trace obtained in the simulations 

compared against the experimental curve. It is evident, that these results follow the 

experimental curve well. The stress rise is steep and stress plateau has excellent agreement in 

terms of stress level. The only part that does not follow the experiments as well is the  

stress drop, which starts earlier in the simulations (around 3.3 µs) comparing to the  

experiments (3.6 µs). 

 

Figure 6.4.11 Back surface stress for plate imact test with woven material with nonzero hardening constants 

In general, it can be concluded that the proposed model has the capability of modelling fibre 

direction plate impact test accurately. 
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6.4.3 Hard projectile impact 

Another test that was used for the model validation was a hard projectile impact test. The 

test consists in firing a small steel sphere against a target panel. The sphere penetrates the 

panel generating a crater. Although, the craters dimensions are close to the spheres it was 

observed in experiments (e.g. (Vignjevic, Djordjevic and de Vuyst, 2012) and (Hazell et al., 

2009)) that damage in the target is not contained to the crater. It propagates through the 

panel in the form of delamination, matrix or even fibre damage. The extent of damage in the 

composites after a sphere impact was investigated by Hazell et al. (2009), and thus, the same 

panel dimensions and layup was used in the simulation to assure the best results comparison. 

The hard projectile test model was generated. The panel was a 6 mm thick, 16 layer woven 

composite laminate with asymmetric layup given in Figure 6.4.12. The full panel was 

modelled (dimensions 200 mm x 200 mm x 6 mm) with each of 16 layers being modelled 

with 200 x 200 x 1 elements. The resulting element size was 1 mm x 1 mm x 0.37 mm. The 

sphere was modelled with butterfly mesh with 2432 elements using Johnson Cook material 

model (steel properties taken from (Steinberg, 1996)). Initial velocity of the sphere 

was 1200 m/s. 

a) 

 

b)  

 

Figure 6.4.12 Hard projectile test: a) full model, b) material layup – red 0/90 layer, blue 45 layer 

The same set of elastic and damage properties was used as in the plate impact test (see Table 

6.4.5) but for the critical damage variables. The critical damage was allowed and the critical 

damage variables were chosen following the analysis in Section 6.3.7 to be: 0.3I II

cr crd d= = , 

0.5III

crd =  and 0.7IV V VI

cr cr crd d d= = = . For consistency the full data set is given in Table 6.4.6. 
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Table 6.4.6 Input parameters in hard projectile impact simulations 

GPa / [-] MJ/m3 [-] MJ/m3 

xE  10.0 
0

I  36.5 I

crd  0.3 I  73.0 

y zE E=  68.5 
0

II  16.0 II

crd   0.3 II  32.0 

yzG  4.57 
0

III  6.3 III

crd  0.5 III  12.6 

zx xyG G=  3.57 
0

IV  3.1 IV

crd  0.7 IV  6.2 

yz  0.039 
0

V  2.1 V

crd  0.7 V  4.2 

zx xy =  0.045 
0

VI  3.1 VI

crd  0.7 VI  6.2 

Contact between sphere and panel initiated at 0.2 µs. This was calculated analytically given 

the sphere offset and velocity, because the output print frequency was rather low, due to 

memory limit. The output was set to be printed every 1 µs which determines the time 

resolution in all simulation results (time step was less than 0.01 µs). The largest sphere 

diameter passed the bottom layer at time 12 µs, which resulted in the sphere losing contact 

with all not fully damaged elements. Elements in the last layer were not removed. However, 

this is not a major problem. As stated before, element deletion was only introduced to avoid 

computational problems associated with poor element Jacobian. Elements of concern 

reached the critical damage and thus do not introduce any stress into the calculations. The 

sphere top passed the bottom layer at time 16 µs.  

a) t=0 µs 

 

b) t=16 µs 

 
Figure 6.4.13 Panel and sphere at: a) t=0µs, b) t=16µs 

The most interesting part of the results is the analysis of damage evolution and damage extent 

in the panel. There were six damage modes. Fibre-related modes (first and second) did not 

propagate far through the panel and they were contained close to the crater (Figure 6.4.14). 

The diameter of damage affected zone was 26 mm in the first layer and 22 mm in the middle 

(eighth) layer for the first mode. Damage distribution obtained at the back of the target panel 

(bottom layer in Figure 6.4.14) did not vary much from the front (top layer in Figure 6.4.14). 

In the second mode a diameter of the damage affected zone was 31 mm in the top layer 

(similar in the bottom layer) and 22 mm, in the middle layer (Figure 6.4.14 - b). 
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Figure 6.4.14 Damage affected zone in the: a) first mode, b) second mode in the XZ crossection 

The third mode, related to matrix damage was more severe. Damage extent in the first layer 

reached 39 mm, in the middle layer 25 mm and 29 mm in the bottom layer (Figure 6.4.15). 

The characteristic hourglass shape of damage is evident just like in the first and 

second modes. 

 
Figure 6.4.15 Damage affected zone in the third mode in the XZ cross-section 

The remaining three modes are the shear modes of which the fifth mode was expected to 

behave differently as it is the only in-plane shear mode and it is not related to the impact 

(and through thickness) direction. Note that Dyna3D mode numbering convention was 

used here. 

In the fourth mode damage extent in the first layer was 71 mm, in the eighth layer 32 mm 

and 61 mm in the last layer as presented in Figure 6.4.16. 
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Figure 6.4.16 Damage affected zone in the fourth mode in the XZ cross-section 

In the fifth mode damage extent in the first layer was 46 mm, in the middle layer 26 mm and 

in the bottom one 36 mm. Note that in this mode the layer direction clearly affects damage 

diameter which can be observed in Figure 6.4.17. It is evident that layers in which fibres are 

aligned with X and Y directions (red) develop more damage than the layers oriented at the 

45° angle (blue). 

  
 

Figure 6.4.17 Damage affected zone in the fifth mode in the XZ cross-section 

Damage in the sixth mode was slightly smaller than the damage in the fourth mode (Figure 

6.4.18). The highest damage was found in the first layer. Its diameter reached 54 mm. The 

middle layer damage was 35 mm and the bottom one 47 mm. 

 
Figure 6.4.18 Damage affected zone in the sixth mode in the YZ cross-section 
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The results can be compared to the experimental results of the similar material (woven 

composite 12 mm in thickness) reported by Vignjevic, Djordjevic and de Vuyst (2012) 

presented in Figure 6.4.19. The figure shows the front and rear sides of the panel after impact.  

a) 

 

b) 

 

Figure 6.4.19 Distribution of damage in 12mm thickness woven composite impcated by 12mm sphere at 
1219m/s: a) impact and b) rear face (Vignjevic, Djordjevic and de Vuyst, 2012) 

There is a clear fibre failure on the both sides of the panel that are similar in size and shape 

to the first and second mode of damage presented in Figure 6.4.20. 

a) 

 

b) 

 

Figure 6.4.20 Distribution of the second damage mode in simulations: a) impact and b) rear face 

According to Vignjevic, Djordjevic and de Vuyst (2012) delamination measured by C-scan 

ultrasonography in the experiments was between 35 mm and 43 mm in the front layers and 

between 41 mm and 45 mm in rear layers. The simulation results in shear modes varied from 

46 mm and 71 mm in front layer to 36 mm and 61 mm for rear layers. It seems that the 

material model slightly overestimates damage in the panel. However, it is not clear that all of 

these damage modes can be correctly captured by the C-scan.  

If the basic delamination modes are considered: opening mode, shearing mode and tearing 

mode (not to be confused with deformation eigenmodes), only the opening mode might be 

captured by the C-scan as shearing and tearing modes may not give any layer separation. The 

two latter delamination modes are likely to occur under the models’ damage modes IV 
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and VI. Delamination in the opening mode can be reflected by model mode III, which is 

matrix mode for which damage in the front layers reached 39 mm and in the back 29 mm.  

Comparing to experimental results obtained by Hazell et al. (2009) the model predicts matrix 

damage accurately. Delamination and matrix damage reported therein reached 20 mm in 

radius (Figure 6.4.21) whereas damage diameter in the matrix related mode III in simulation 

reached 39 mm.  

 
Figure 6.4.21 Matrix damage extent in hard projectile test in experiment by Hazell et al. (2009) 

Analysis of damage evolution revealed that with progressing time damage started to evolve 

more unstably. It is clearly visible in Figure 6.4.22. Up to time t=16 μs damage evolved 

continuously Figure 6.4.22 - a). For time 20 μs significant amount of scatter (single damaged 

elements) can be observed around the continuous damage zone Figure 6.4.22 - b).  

a) t = 16 μs 

 

b) t = 20 μs 

 

Figure 6.4.22 Damage in the first layer in the first mode for: a) t=16μs, b) t=20μs 

It is worth noticing that stresses reach the boundaries of the panel roughly in 20 μs for all 

layers. Therefore, for simulation time exceeding 20 μs it is possible that the boundary 

conditions of the model affect the results by introducing additional stresses.  

The sudden increase in the damage diameter is well captured in Figure 6.4.23. The graph 

shows the damage diameter as a function of time. Damage diameter was measured in the 
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first layer in XZ cross-section by checking for the most distant non-zero damage elements. 

It is clear that at the beginning damage evolution was stable. At time t1=6 μs the sphere lost 

contact with the first layer which resulted in the slight change in damage evolution trend. 

Another noteworthy time is t2=12 μs at which the sphere’s largest diameter passed the 

bottom of the panel. After that point damage evolution should remain stable as there was no 

energy transferred into the panel. Around time t3=20 μs there was a significant increase in 

the damage diameter. As it was commented before, this increase was attributed to reaching 

material boundaries. 

 
 

Figure 6.4.23 Simulations results of damage evolution in time for the first layer in the first mode 

As this sudden increase of the damage extent hinders reliable measurement of the damage 

diameter a heuristic fit to the data (damage diameter vs time) was proposed as an attempt to 

effectively filter out numerical instabilities. Therefore, a function was fitted to the results in 

the range of sphere interaction with the panel (grey line in Figure 6.4.23). An exponential 

function was found to be most suitable for this purpose: 

( )t /by A 1 e−= −  6.4.4 

It allowed control of the function initial slope by time constant ( )b  as well as the asymptotic 

rise to certain value ( ) . It can be observed that a very good fit was achieved for the part 

of the function up to 15 μs. A similar analysis was carried out for the remaining modes. All 

the graphs are presented in Figure 6.4.24. The best fit was achieved for the first three modes. 

The fit for the shear modes seems a bit less accurate. One of the reasons might be the strong 

influence of neighbouring layers. Due to extremely large model each layer was modelled only 
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with one element in through thickness direction, which allowed for reasonable 

computational efficiency, but may have influenced the shear modes behaviour.  

a) First mode

 

b) Second mode 

 
c) Third mode

 

d) Fourth mode 

 
e) Fifth mode

 

f) Sixth mode (in YZ plane)

 
Figure 6.4.24 Damage evolution for the first layer in the: a) first, b) second, c) third, d) fourth, e) fifth,  

f) sixth mode 

It is important to mention that the curve fitting parameter ( )  is meaningful. It gives the 

damage diameter for an infinite time, so it can be treated as a maximum extent of damage in 

the mode (given stable damage growth). The similar analysis was carried out for the eighth 
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and the last layers (all the chosen layers had the same layer orientation). The curve fitting 

parameters are presented in Table 6.4.7 for selected layers. 

Table 6.4.7 Fitting parameters (A) for modes for selected layers 

Damage diameter Layer 1 Layer 8 Layer 16 

Mode I 22 22 30 

Mode II 26 22 28 

Mode III 30 25 30 

Mode IV 46 30 30 

Mode V 30 30 22 

Mode VI 30 40 45 

It can be observed, that the maximum extent of damage for different layers vary, however 

not significantly. In principle, the shear modes have higher parameters. It was expected, as 

these modes account for delamination (shearing mode and tearing mode) in the material, 

which has greater extent than other damage mechanisms in the material. Damage mode III 

may account for delamination opening mode as was mentioned before. 

Figure 6.4.25 shows the comparison between damage extent measured from mechanical tests 

(Hazell et al., 2009) and the overall damage from simulation results (highest damage 

disregarding the modes for the time assuring stable damage growth). The described 

experiments used exactly the same material along with the same composite layup as was 

assumed in the simulations, therefore direct comparison is possible. 

a) 

 

b) 

 
 

Figure 6.4.25 Comparison between damage extent in: a) experiment by Hazell et al. (2009) and b) simulation 

The first thing to observe in Figure 6.4.25 - a) is that there is a large amount of scatter in 

damage diameter between the layers. This may be due to imperfections, that lead to higher 

damage evolving in some layers. It can also be stated that generally middle layers were less 

affected, however some of them still developed significant amount of damage. The highest 
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damage extent in the material reached 20 mm in experiments. The simulations predicted 

25 mm as the highest damage extent in the chosen cross-section. Note that there was some 

randomness in damage in the middle layers, but the general trend of more severe damage 

being located close to the top and the bottom of the panel was preserved. 

Concluding, the material model has the capability to accurately predict damage in the material 

due to high velocity impact. There are some stability issues that were presumably caused by 

the coupling with equation of state (building up the numerical error coming from the 

pressure vector) and introduced by boundary conditions. Nevertheless, up to the point of 

sphere exiting the panel, the model behaviour is stable, with stable damage growth. Damage 

extent seems reasonable, and could be significantly improved with reliable material 

characterisation tests that would allow to determine model input parameters accurately. The 

model distinguishes between damage modes that can be easily linked to different damage 

mechanisms such as fibre tensile damage (modes I and II), fibre compressive 

damage (mode II), matrix damage or opening mode of delamination (mode III), intralaminar 

shear (mode V) and shearing and tearing delamination (modes IV and VI).  

 Theoretical model with mode interaction 

The material model presented in Section 6.1 was developed at continuum scale without 

looking at the influence of the combined mode loading on the material constituents. Analysis 

carried out in Section 5.3 revealed that combination of the modes leads to an increased stress 

levels within the fibres and matrix. This does not violate the existence of the non-interacting 

modes of strain energy at continuum level. However, it may lead to increase or decrease in 

the modal limit energy subject to the existence of the other modes. Such an approach was 

adopted in the second version of the model. The limit energy was defined as a function of 

the strain in the other modes: 

( )i i j  =  6.5.1 

The exact forms of interactions were defined for a combination of the first three modes 

analytically in the subsequent sections. Moreover, they were compared against the simulation 

results. Note that this section describes the mode interaction for unidirectional composite, 

as this was the one investigated in simulations and initially derived. In following sections only 

interaction between first three modes is considered as an example. Nevertheless, the analysis 
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can be expanded in future to account for interactions with the shear modes. The 

implementation of the model proposed in this section lies beyond the scope of this work. It 

is however the suggested extension that can be applied to improve the basic model.  

6.5.1 Fibre related modes interaction 

The first mode was identified as a leading fibre mode. The longitudinal fibre stress generated 

by the first mode is dominant; however, the third mode also weakly affects it. As a 

consequence, the limit energy in the first (fibre) mode ( )I  can be defined as a function of 

the strain in the third mode ( )III : 

( )I I III  = . 6.5.2 

The longitudinal strain in fibres is the strain associated with X direction. Therefore, it is 

affected by the first components (X components) of the modal strain vectors (Table 6.5.1). 

Table 6.5.1 Modal strain vectors of transversely isotropic material 

Modal strain vectors ( 22.73 = , 0.09 = − ) 

 
2

1
1 1 0 0 0

2

TI I 


=
+

ε   
1

0 1 1 0 0 0
2

TII II= −ε  

 
2

1
1 1 0 0 0

2

TIII III 


=
+

ε   0 0 0 1 0 0
TIV IV=ε  

 0 0 0 0 1 0
TV V=ε   0 0 0 0 0 1

TVI VI=ε  

As only first and third eigenstrains have non-zero first components 1 1( , )I III   it can be 

concluded that these are the only modes affecting longitudinal fibre strain. The components 

of modal strains are proportional to the total modal strain magnitude, so the effective 

longitudinal strain is expressed by: 

1 1
2 2

2

2 2 4

f I III I III
    

 
= + = −

+ +
. 6.5.3 

If the fibres strength is characterised by a critical longitudinal strain f

cr  the failure of the 

fibres occurs when: 

f f

cr  . 6.5.4 
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The critical strain in the first mode can be defined as a function of the strain in the third 

mode by combining Equations 6.5.3 and 6.5.4: 

2 2 2f III
I cr
cr

  




+ +
= . 6.5.5 

Limit energy and the critical strain are related by equating damage potential (introduced in 

Equation 6.1.29) to zero: 

( ) 2

0, 0, 0 0I I I I I I

crd h    = = = − =ε , 2

0

I I I

cr  = . 6.5.6 

In case of the investigated material ( 22.73) =  the limit energy ( )I  is: 

2
2

2

0 0

2 2

0 0 0

2

0 0 0

2 2

0.125 0.004

0.125 0.004 ,

f III
I I I I cr

cr

I f I f III I III

cr cr

I I f III I III

cr

  
   



      

     

 + +
= =  

 
 

= + + =

= + +

 

6.5.7 

where 2

0

I f

cr   is equal to the limit energy of the first mode identified before as 0

I . The limit 

energy can increase or decrease depending on the sign of the third mode strain (signs were 

assigned arbitrarily and are used consistently). Note that the influence of the third mode on 

the first mode is weak. Unless the first mode strain is significantly lower than the third mode 

one this influence can be practically neglected leaving the first mode in the form unchanged 

from the initial formulation (repeated Equation 6.1.29): 

( ) ( ) 2

0 0, , 1 0I I I I I I I I Id h d h    = − − − =ε . 6.5.8 

6.5.2 Matrix related modes interaction 

Matrix itself is an isotropic material. Therefore, analytical considerations of matrix related 

modes interactions started by analysis of a stress state in an isotropic, homogeneous matrix 

subjected to deformation modes characteristic of a transversely isotropic material 

(Section 5.1.1). For isotropic materials there are only two distinct strain energy modes – 

volumetric and deviatoric. The purpose of this study was to define the relation between the 

isotropic and transversely isotropic deformation modes. The strain driven model is a great 

advantage in this case. The stress in the pure matrix and matrix in the presence of fibres 
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would vary only slightly because of the local influence of the microstructure. The strain 

tensors for the single modes are given by: 

  2 2 2
2

1
1 1 0 0 0 0 0 0

2

TTI I I I I    


 = =  
+

ε , 

  2 2

1
0 1 1 0 0 0 0 0 0 0

2

TTII II II II   = − = − ε , 

  2 2 2
2

1 2
2 0 0 0 0 0 0 ,

4 2

T
TIII III III III III     



− 
= − =  

 +
ε  

6.5.9 

where 
i denotes a modal strain magnitude. Equations above are given in terms of the second 

elements of the total strain vector for the sake of convenience. The volumetric strains of 

matrix subjected to the first three (transversely isotropic) modes are calculated following 

Equation 3.5.2 as: 

2

2

3

I I

v


 

+
= , 0II

v = , 2

2 2

3

III III

v


 



−
= . 6.5.10 

Note that the volumetric strain magnitude is proportional to the total modal strain 

magnitude. Deviatoric strain vectors, which are also proportional to the total strain 

magnitude, are defined as: 

( )
  22 1 1

1
0 0

3
0

TI I

d

α
−

−
=ε , 

  20 1 1 0 0 0
TII II

d = −ε , 

( )
  20

2
2 1 1 0 0

3

TIII III

d

α

α


+
−=ε . 

6.5.11 

It is worth noticing that the deviatoric strain vectors defined from the first and third modes 

are mutually collinear and perpendicular to the third mode deviatoric strain. The magnitude 

of deviatoric strains can be calculated as the square root of the vectors dot product given by 

Equation 6.5.12: 

( )3 2
2 1 II I I

d d d  =  = −ε ε , 

22II II II II

d d d =  =ε ε , 

2
23

2III III III III

d d d


 



+
=  =ε ε . 

6.5.12 
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Therefore, deviatoric strain magnitudes are proportional to the total strain magnitude. 

The combined mode strains are by definition the sums of modal strain vectors: 

/

2 2 2 2 2 0 0 0
T

I II I II I I II I II     = + = − + ε ε ε , 
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6.5.13 

The calculation of the volumetric part of combined strains reveals that they are simple sums 

of the volumetric parts of single mode strains: 

( )/

2

2

3

I II I I

v v


  

+
= = , 

/

2

2 2

3

II III III III

v v


  



−
= = , 

( )/

2 2
3 3

III I I III III I

v v v

α α

α
    

+   
+ +

−
= = . 

6.5.14 

It follows, that the deviatoric part of the combined strain vectors is also a sum of the modal 

deviatoric strain vectors 

( ) ( ) ( )2
2 1 1
3 3
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6.5.15 
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Note that only for the combination of modes I and III the transverse strains are equal. The 

deviatoric strain magnitudes for the combined modes are: 

( )/ / / 2 22
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2 2
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21 2I II I II I II I II I II
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6.5.16 

The deviatoric strain magnitudes of modes I and III can be simply added to obtain the total 

deviatoric strain in the combined modes. This is a consequence of the collinearity of the 

deviatoric strains in those modes. On the other hand, mode II is perpendicular to both mode 

I and mode III. Therefore, the combined strain magnitude in those cases is a square root of 

the modal strain magnitude squares. Concluding, the matrix deviatoric strain in a composite 

can be expressed in terms of transversely isotropic material modes as: 

( ) ( )
2 2

m I III II

d d d d   +=  , 6.5.17 

The signs in the mode III/I correspond to the signs arbitrarily assigned to the modes in this 

work. The above equations show the possibility of defining the distortional strain magnitude 

in matrix from the transversely isotropic modal strain magnitudes. If there is a limit in 

material’s elastic energy of distortion (Hencky’s interpretation of von Mises yield criterion 

(Hill, 1950)) it is expressed by:   

( ) ( )( )2 2
21 1

2 2

d I III II d

d d d d d d crW W     = =   + , 6.5.18 

where dW  is distortional (deviatoric) strain energy, d  is an eigenvalue of an isotropic 

material deviatoric mode, 2

d  is deviatoric strain, I

d , II

d  and III

d  are deviatoric strains 

coming from the first, second and third mode of transversely isotropic material. It is 

important to highlight that by definition an eigenvalue of an isotropic material deviatoric 

mode equals to twice its shear modulus, which can be expressed as:  

1
2

m

dG = . 6.5.19 
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Consequently, Equation 6.5.18 can be rewritten as: 

( ) ( )( )2 2
2d m m I III II d

d d d d crW G G W   = =  +  . 6.5.20 

In the previous chapters, the second mode was identified as the principal matrix damage 

mode. By transforming Equation 6.5.20 the critical strain in the second mode can be 

determined as: 

( )
2

d
II I IIIcr
cr d dm

W

G
  = −  . 6.5.21 

Note that the second mode is purely deviatoric, so II II

d = . Thus, the critical matrix 

distortional strain energy ( )d

crW  can be easily related to the critical stress obtained from the 

uniaxial tensile test. Therefore, it can be treated as material model’s input parameter just like 

the shear modulus ( )mG . The damage potential for the second mode (ignoring influence of 

the fourth mode) was defined previously as (6.1.29): 

( ) ( ) 2

0 0, , 1 0II II II II II II II I IId h d h    = − − − =ε . 6.5.22 

Thus, for the damage onset the limit energy is defined as (using Equation 6.5.21): 

( ) ( )
2 2

2

0 0 0 0

d d
II II II II I III II II I IIIcr cr

cr d d d dm m

W W

G G
         

 
= = −  = −   

 
, 6.5.23 

where the threshold energy for a single second mode activated can be defined as: 

0
0

II
II d

crm
W

G


 = . 6.5.24 

Deviatoric strains in the modes can be related to the total modal strains leading to the final 

form of the threshold energy (substituting Equations 6.5.12 into Equation 6.5.23): 

( )

( )
( ) ( )( )

2
0

0

2
0

0 2
2 1 2 .

3 2

d II
II II I IIIcr

d dm

d II
II I IIIcr

m

W

G

W

G


   


    



= −  =

= − − +



+
+

 6.5.25 
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If the second mode strain equals to zero, the third mode becomes the principal matrix failure 

mode. Then, by rearranging Equation 6.5.18 and substituting Equations 6.5.12 the relation 

between strains and constants becomes: 

( ) ( )( )
( )

2

2

2 1 2

3 2

I III
d

cr

m

W

G

   



+− +
=

+
. 6.5.26 

After further transformations it becomes: 

( )
( ) ( )

23 2
2 1 2

d

cr I III

m

W

G


   ++

+
= − . 6.5.27 

It leads to two solutions for the critical third mode strain III

cr : 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

2

3 2 2 11
, 2 1 2 0

2 2

3 2 2 11
, 2 1 2 0

2 2
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cr I I III
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d

cr I I III

m

W

G

W

G

 
    

 


 
    

 

 + −
 − − + 
 + +

= 
 + −
− − − ++ 

+ +

+



 6.5.28 

Finally, the threshold energy in the third mode can be obtained by substituting the critical 

energy in Equation 6.5.29 by the critical strain from Equation 6.5.28: 

2

0

III III III

cr  = . 6.5.29 

6.5.3 Effect of microstructure 

In the previous section the matrix was analysed as a continuum homogeneous constituent. 

It was shown in Chapter 5 that the effective stress (and thus effective strain) was not uniform 

within the RVE. Existence of a microstructure introduces local variations in strains and 

stresses. The assumption that was adopted for simplification is that the microstructure 

changes elements of the (continuum) modal strain vector proportionally, which can be 

expressed by: 

1 2 3 0 0 0i i i i i i i

micro m m   = = ε ε , 6.5.30 

where 
micro
ε  is a local strain vector accounting for microstructure influence and 

im  is 

coefficient of proportionality.  
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Thus, the local deviatoric strain magnitude in the material under i-th deformation mode is 

proportional to the modal strain magnitude: 

i i i

d z = , 6.5.31 

where factor iz accounts for the microstructure strain variation ( )im  but also includes terms 

that transform the total modal strain magnitude to distortional strain magnitude (depending 

on material constant  ). The total local deviatoric strain in the material is therefore 

described by: 

( ) ( )
2 2

/ / 2 2 2I II III I III II I I III III II II

d d d d z z z      = + + = + + . 6.5.32 

For such an assumption the distortional strain energy in matrix can be expressed by: 

( )( )2
2 2 2d m m I I III III II II d

d crW G G z z z W   = = + +  . 6.5.33 

Consequently, the second mode critical strain can be defined as: 

( )
2

2 0
0 2

II d
II II II I I III IIIcr

cr II m

W
z z

z G


    

 
= = − + 

 
. 6.5.34 

In the absence of the second mode strain, the third mode becomes the principal matrix mode 

with the threshold energy: 

2 2 20
0 2

2
III d d

III III III I I I Icr cr
cr III m m

W W
z z

z G G


    

 
= = +  

 
 

. 6.5.35 

6.5.4 Mode summation – mesoscale model check 

The accuracy of the mode addition presented in the previous sections was checked against 

the mesoscale models’ simulations. Maximum distortional strain magnitudes sim

d  were 

obtained by averaging distortional strains for twenty critical elements. The analytical results 

were calculated using Equation 6.5.33. Coefficients iz  were determined from single mode 

simulation results by dividing nominal modal strains ( )i  by maximum distortional strain 

magnitudes ( )sim

d : 

i
i

sim

d

z



= , 6.5.36 



176 

Comparison between the analytical and simulation results is presented in Figure 6.5.1. 

a)

 

b)

 

c)

 

Figure 6.5.1 Comparison between the modal distortional energy obtained in simulations and calculated 
analytically for a) I/II modes, b) II/III modes, c) III/I modes  

Note that the analytical results, although subjected to the number of simplifying assumptions, 

are very close to the simulation results for all loading cases. They are also much more accurate 

than the simple summation of the modal distortional energies. The closest match between 

the simulation and analytical results was obtained for modes II/III. The error did not 

exceed 1%. The discrepancy between the modes I/II reached 5% for mode I/II+ and 2% 

for mode I/II-. The error of mode III/I- was 4%.  The highest difference was found for the 

mode III/I+, it reached 47%, but in this case the energies were subtracted. Therefore, 

although an absolute error was similar to III/I- case, relative error was much larger. The 

coefficients iz obtained from the mesoscale model simulations were equal to: 

0.79Iz = , 1.83IIz = , 0.55IIIz = . 6.5.37 

 Summary 

Two versions of the composite constitutive damage model were presented in this section. 

The first one is the basic version based on the spectral decomposition leading to 

identification of the non-interacting strain energy modes. The basic version of the model is 

a purely continuum approach without looking at the constituent stresses and strains. This 

version of the model was implemented in Dyna3D software. 

Validation of the model was based on two dynamic test cases for which experimental data 

was available. These were plate impact tests and a hard projectile test. The former tested the 

EOS part and proved that the model can accurately predict the shock wave passage through 

the plate. It also revealed some issues related to coupling with EOS and determination of 

damage vector, that may be researched and developed further. The hard projectile test 
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showed that the model is capable of predicting damage in the panel. The six damage modes 

available can be linked to damage mechanisms such as fibre failure, matrix failure and 

different modes of delamination. Comparison with the experimental results showed that the 

damage was predicted accurately. The definite improvement may be achieved with more 

reliable material input data after the full material characterisation for this specific material 

model and possibly accounting for differences in tension and compression behaviour. 

Nevertheless, the current approach that used commonly available composite strengths to 

determine model input proved to be successful. 

The extended version of the model was proposed. It accounts for the mesoscale stress 

interaction between the deformation eigenmodes by change in the limit energies in the 

modes. This version of the model has not yet been implemented. 
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7 Conclusions 

The new composite damage constitutive model was developed, which was the principal aim 

of this work. The model was developed within the thermodynamic framework. State 

potentials are used to define the material’s state and the state variables are rigorously 

determined based on thermodynamics laws. The foundation of the model was a spectral 

decomposition of the stiffness tensor. It allows the diagonalisation of the stiffness tensor 

and determination of the non-interacting strain energy (deformation) modes. The modes are 

specific to the material symmetry class and can be linked to damage mechanisms evolving in 

the material. In the case of transversely isotropic material, the first mode was identified as a 

fibre mode, modes II and IV as the isotropy plane shear modes, mode III as the matrix 

damage mode and modes V and VI as the fibre plane shear modes.  

In this newly developed constitutive model, damage is associated with the deformation 

eigenmodes. Damage is assumed to occur if the strain energy in a mode exceeds a set limit. 

The proposed model is a progressive damage model in which damage evolution leads to 

degradation of the material principal stiffnesses (eigenvalues of the material stiffness tensor) 

corresponding to the damage modes. The principal stiffnesses degradation was modelled 

using continuum damage mechanics concepts – effective stress with strain energy 

equivalence hypothesis. Possibility of modelling different damage evolution behaviour was 

assured by defining the damage potential (included in the Helmholtz free energy). If no 

damage evolution energies are set, the model is a perfect damage model, i.e. limit energy of 

deformation remains constant with damage evolution. Otherwise, it can change depending 

on the sign of the hardening constant – either increase or decrease.  

Model development was supported by a wide range of mesoscale model simulations which 

provided an insight into the material mesoscale behaviour. They led to formulation of the 

assumption that the eigensystem of a material remains unchanged with progressing damage. 

Furthermore, mesoscale models were used to determine modal threshold energies. 

Additionally, mechanical tests allowing extraction of threshold energies were proposed as a 

first step towards real-life application of the model. 

The model was coupled with the EOS adapted for non-isotropic materials, which makes it 

applicable to dynamic load cases. It is a significant progress in composites modelling, as none 
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of the commercially available constitutive models has this capability. The Gruneisen EOS 

parameters were defined for unidirectional CFRP.  

The model was validated against experimental data for composites with tetragonal symmetry 

by two mechanical tests – plate impact and hard projectile test. The model accurately 

predicted shock waves and damage extent in the material. Some instabilities of the model 

were observed at large times of simulation. Nevertheless, the analysis carried out allowed to 

determine damage extent before instabilities appear. 

Below, the model summary is presented in bullet points to emphasize the most important 

aspects of this work. It includes: features of the developed model, novel aspects of this work 

and recommended future work.  

Features of the composite model: 

• Developed at continuum scale 

• Applicable to transversely isotropic materials with hyperelastic behaviour 

• Applicable to orthotropic materials (of tetragonal symmetry) with hyperelastic 

behaviour 

• Capable of predicting of HVI response including shock wave modelling 

• Rigorously derived in the framework of continuum thermodynamics with internal 

variables 

• Energy based, physically justified damage initiation criteria – assuming that damage 

starts when the modal strain energy exceeds the limit value 

• Scalar damage variables  

• Damage affecting only the mode in which critical energy was exceeded (mode 

characteristic) 

• Associative damage evolution 

• Strain driven 

• Relatively few, easy to determine input parameters 

The novel aspects of this work include: 

• Mesoscale modelling of damage – investigation of the influence of material damage 

mechanisms on its stiffness tensors and its eigenvalues and eigenvectors 
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• Investigation of the material mesoscale response to single and combined 

deformation mode loading 

• Definition of the new transversely isotropic material damage initiation criteria that 

are based on the critical modal strain energy 

• Linking damage variables with principal strain energy modes and definition of their 

conjugate forces 

• Determination of the EOS parameters for the transversely isotropic CFRP material 

The recommended future work is: 

• Expanding the model to be applicable to wider range of materials (especially generally 

orthotropic) 

• Adjusting the damage part of the model to differentiate between the tensile and 

compressive material failure 

• Further work on coupling with EOS to assure stability and more accurate pressure 

prediction 

• Implementation and validation of the extended model accounting for mode 

interaction 

• Development of the method to investigate laminates using the spectral 

decomposition approach
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Appendix A Failure criteria in composite models in LS-Dyna 
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Appendix B Derivation of Gruneisen Equation of State 

The Mie – Gruneisen EOS was derived from principal physics laws with use of quantum and 

statistical mechanics concepts. It necessitates understanding of the micromechanics of 

material especially its resistance to an externally applied force or pressure.  

An average distance between atoms in a material is governed by the balance of long range 

attractive and short range repulsive forces. Therefore, atoms are experiencing potential 

energy as shown in Figure A1. Due to material’s temperature, the atoms are not staying 

simply in the minimum energy but they are vibrating around their equilibrium position 

(Meyers, 1994). 

a) 

 

b) 

Figure A1 a) Energy vs Distance, b) Force vs Distance (Meyers, 1994) 

Thus, at the microscopic scale the atoms in a material can be represented as oscillators that 

vibrate in three dimensions. According to the quantum theory, the oscillator has discrete 

energy levels, which have energies equal to: 

1
2iu ih h = + , A.1 

where h  is Planck constant ( 34 2 16.626*10h m kgs− − ), i  denotes the energy level, and   is 

a vibration frequency. The total vibrational energy of a material is given by a sum of the 

oscillators’ vibrational energies: 
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u u
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= , A.2 

where N  is a number of oscillators and ju  is a mean vibrational energy of an oscillator. The 

energies are summed over 3N  because each atom has three degrees of freedom that define 

the three components of the vibrational energy each related to one of the dimensions. 

The mean energy of an oscillator ju  can be calculated using the quantum statistics. The 

relative probability of finding an oscillator in the i-th energy level depends on temperature 

and is given by (Meyers, 1994): 
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where ig  is degeneracy, k  is the Boltzmann’s and   is absolute temperature (in K).  

The absolute probability is the relative probability divided by the sum of the probabilities of 

the whole system given as:  
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As in any kind of material there are numerous atoms, using the above probability distribution 

allows to calculate relevant properties. Thus, the mean vibrational energy can be expressed as: 
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where partition function f  is introduced for convenience: 
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i
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= . A.6 

The energy levels are not degenerate in this case, as the energy level univocally defines the 

state of the oscillator, so 1ig = . 
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After substitution of Equation A.1A. to Equation A.5 and summing for all the energy levels 

,i   the partition function becomes: 

( ) ( )( )1 1 1
2 2 2

2/ / // / / /

0 0

1 ...
ih k h k h kih k h k h k h k

i n

f e e e e e e e
            

 
− − −− − − −

= =

= = = + + +   A.7 

This forms a geometric series with a scale factor equal to 
1
2

/h k
e
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 (related to the ground 

state’s energy) and the common ratio being 
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. The sum of such a geometric series is 

easily found as: 
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Knowing that: 
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The partition function simplifies further to: 
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Therefore, the mean vibrational energy of an oscillator is: 
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The total vibration energy of a system of oscillators is: 
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The total energy comprises the potential energy and vibration energy. It is therefore given by: 
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Knowing that entropy of the system can be expressed as (Huang, 1963): 
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By multiplying both sides of Equation A.14 by temperature and rearranging it the following 

relation is obtained: 

lnk f u s − = − . A.15 

Note that it gives the Helmholtz free energy. To define the Helmholtz free energy for a 

system of oscillators, each having three vibration directions Equation A.14 needs to be 

summed as follows (adding a potential energy  ): 
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Derivative of Helmholtz free energy with respect to volume (at constant temperature) is, by 

definition, negative pressure: 
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At this point one can introduce the Gruneisen constant j  being: 
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And use it in the following expressions: 
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Finally, substituting Equations A.19 to A.17, pressure is obtained as: 

3

/
1

1 1

2 1j

N
j

j j vibh k
j

hd
p h u

V dV V V Ve
 



  
 

=

   
= − = − + + = − +  

 −   
 , A.20 

where vibu stands for vibrational energy including the ground state. 

Assuming that all oscillators have the same vibrational frequency, j  becomes   - the 

Gruneisen constant defined as: 

ln

ln

V

V V 

 




    
= − = −   

    
. A.21 

Pressure in the material for 0K can be calculated by Equation A.22 as: 

0 0K Kp u
V V

 
= − +


. A.22 

Subtracting Equation A.22 from Equation A.20 yields:  

( )0 0K Kp p u u
V


− = − , A.23 

which is the Gruneisen equation of state. 
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One can also use other reference state. The often used reference state is the state on the 

Hugoniot curve that is established experimentally. It gives pressure Hp  and corresponding 

energy Hu  of a material. The relation is expressed as: 

( )H Hp p u u
V


− = − . A.24 

The most universal formula is the incremental form of pressure (Equation A.25). It simply 

relates the change in pressure to the change in energy at any reference point. 

vibdp du
V


=  A.25 

The Gruneisen constant can be written in a form that allows it to be linked with the 

macroscopic material properties as: 

V V V V pv v

p p V p V p V
V V

u u c c V 




  

                
= = = = −           

                
 A.26 

And ( )/
V

u    is the heat capacity at constant volume ( )vc , ( )( )1/ /
p

V V    is 

volumetric thermal expansion and ( )( )/V p V


−    is isothermal bulk modulus ( )K .  

Note that for isotropic materials volumetric thermal expansion is equal to 3   where   is 

longitudinal thermal expansion coefficient. Finally, the Gruneisen constant for isotropic 

materials is related to these material properties by: 

3

v

K

V c


=  A.27 
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Appendix C Material data used in mesoscale models 

Table A.1 Undamaged matrix properties 

Matrix 

E  Young’s modulus 4668 MPa 

  Poisson’s ratio 0.400 MPa 

Table A.2 Undamaged fibre properties  

Fibres 

xE
 

Young’s modulus, x-direction  2.654∙105 MPa 

yE
 

Young’s modulus, y-direction  1.298∙104 MPa 

zE
 

Young’s modulus, z-direction  1.298∙104 MPa 

yz
 

Poisson’s ratio, yx-plane  0.0126 - 

zx
 

Poisson’s ratio, zx-plane  0.0126 - 

xy
 

Poisson’s ratio, yz-plane  0.2060 - 

yzG
 

Shear modulus, yz-plane  5.380∙103 MPa 

zxG
 

Shear modulus, zx-plane  1.550∙104 MPa 

xyG
 

Shear modulus, xy-plane  1.550∙104 MPa 

Table A.3 Broken fibre layer properties used for broken fibre and combined damage mesoscale model 

Broken fibres layer 

x  Damage factor 1, 4, 10, 40, 100, 400, 1000, 10000 

xE
 

Young’s modulus, x-direction  2.654∙105/x MPa 

yE
 

Young’s modulus, y-direction  1.298∙104/x MPa 

zE
 

Young’s modulus, z-direction  1.298∙104/x MPa 

yz
 

Poisson’s ratio, yx-plane  0.0126 - 

zx
 

Poisson’s ratio, zx-plane  0.0126 - 

xy
 

Poisson’s ratio, yz-plane  0.2060 - 
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yzG
 

Shear modulus, yz-plane  5.380∙103/x MPa 

zxG
 

Shear modulus, zx-plane  1.550∙104/x MPa 

xyG
 

Shear modulus, xy-plane  1.550∙104/x MPa 

Table A.4 Damaged matrix properties used for uniform matrix damage, fibre-matrix debonding and combined 
damage mesoscale models 

Matrix 

x  Damage factor 1, 4, 10, 40, 100, 400, 1000, 10000 

E  Young’s modulus 4668/x MPa 

  Poisson’s ratio 0.400/x MPa 
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Appendix D Integration of damage variable 

To describe damage behaviour of the proposed material model determination of damage 

variables is vital. Following theoretical considerations in Section 6.1 damage variable rate was 

related to the strain rate (Equation 6.1.24). However, the equation requires integration which 

is presented in this appendix. Integration consists of purely mathematical operations with no 

additional assumptions, thus it was not seen as important part of the thesis main body. 

Nevertheless, it is presented here for completeness.  

The integration starts with Equation 6.1.24 (repeated below for convenience): 

( )
0

2

0

21

1

i i
i i

i i ii
d

d



 
=

+−

ε
ε

ε
 A.28 

In this form damage variable and its time derivative are at the left side of the equation and 

strain and its time derivative are at the right side. If equation is rewritten as: 
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21

1
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ε ε
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 A.29 

one can observe that the equation can be integrated as: 
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 A.30 

It results in the following steps: 

( ) ( )2

0 0ln 1 lni i i id c − − = + +ε  

( ) ( )2
0 0ln 1 lni i i id c

e e
 − − + +

=
ε

 

( )
( ) ( )02 2
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1
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e c
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−
ε ε  

( )2
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1
1i

i i i
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+ ε
 

A.31 
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Finally, recalling that damage potential must be equal to zero (for damage evolution): 

( ) ( )1 1 1 2 1

0 01 0n i n i i n i i n i id d  + + + + = − − + =ε  A.32 

integration constant can be obtained as: 

0

1
i i

c
 

=
+

 A.33 
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Appendix E Woven material properties 

Table A.5 Woven material properties 

Stiffness 

xE  Young’s modulus, x-direction  10.0 GPa 

yE  Young’s modulus, y-direction  68.5 GPa 

zE  Young’s modulus, z-direction  68.5 GPa 

yz  Poisson’s ratio, yx-plane  0.0390 - 

zx  Poisson’s ratio, zx-plane  0.0301 - 

xy  Poisson’s ratio, yz-plane  0.0044 - 

yzG  Shear modulus, yz-plane  3.00 GPa 

zxG  Shear modulus, zx-plane  4.98 GPa 

xyG  Shear modulus, xy-plane  4.98 GPa 

Strength 

tX  Tensile strength in x-direction 2690.0 MPa 

cX  Compressive strength in x-direction 1580.0 MPa 

tY  Tensile strength in y-direction 81.4 MPa 

cY  Compressive strength in y-direction 158.0 MPa 

tZ  Tensile strength in z-direction 87.2 MPa 

cZ  Compressive strength in z-direction 158.0 MPa 

yzS  Shear strength in fibre plane 125.0 MPa 

zxS  Out of plane shear strength 79.3 MPa 

xyS  Out of plane shear strength 79.3 MPa 

 


