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Abstract
Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous informa-
tion of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories 
have been proposed and extended in various applications. However, most existing MVC algorithms are shallow models, 
which learn structure information of multi-view data by mapping multi-view data to low-dimensional representation space 
directly, ignoring the nonlinear structure information hidden in each view, and thus, the performance of multi-view clustering 
is weakened to a certain extent. In this paper, we propose a deep multi-view clustering algorithm based on multiple auto-
encoder, termed MVC-MAE, to cluster multi-view data. MVC-MAE adopts auto-encoder to capture the nonlinear structure 
information of each view in a layer-wise manner and incorporate the local invariance within each view and consistent as 
well as complementary information between any two views together. Besides, we integrate the representation learning and 
clustering into a unified framework, such that two tasks can be jointly optimized. Extensive experiments on six real-world 
datasets demonstrate the promising performance of our algorithm compared with 15 baseline algorithms in terms of two 
evaluation metrics.

Keywords  Multi-view Clustering · Auto-encoder · Complementary information · Consistent information · Local 
geometrical information

1  Introduction

Multi-view data, collected from different information 
sources or with distinct feature extraction approaches, is 
ubiquitous in many real-world applications. For instance, an 
image can be described by color, texture, edges and so on; a 
piece of news may be simultaneously reported by languages 
of different countries. Since different views may describe 

distinct perspectives of data, only using the information of 
a single view is usually not sufficient for multi-view learning 
tasks. Therefore, it is reasonable and critical to synthesize 
heterogeneous information from multiple views.

As there are a lot of unlabeled multi-view data in real 
life, unsupervised learning, especially multi-view cluster-
ing, has attracted widespread interest from researchers. To 
exploit the heterogeneous information contained in differ-
ent views, various MVC algorithms have been investigated 
from different theory aspects, such as graph-based clustering 
algorithms [1], spectral clustering-based algorithms [2], sub-
space clustering-based algorithms [3], nonnegative matrix 
factorization-based algorithm [4, 5] and canonical correla-
tion analysis-based algorithms [6, 7]. Although these exist-
ing multi-view clustering algorithms have achieved reason-
able performance, most of them are not capable of modeling 
the nonlinear nature of complex data, because they use shal-
low and linear embedding models to reveal the underlying 
clustering structure in multi-view data.

To overcome this drawback, one effective way is to inte-
grate deep learning into clustering algorithms to comprehen-
sively utilize the feature learning ability of neural networks. 
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Recently, several works have been devoted to developing 
deep multi-view clustering algorithms, e.g., deep canoni-
cal correlation analysis (DCCA) [6] and multi-view deep 
matrix factorization (DMF-MVC) [9]. DCCA learns the data 
of each view, fuses information of different views into a 
common consensus representation and then conducts some 
clustering approaches (such as k-means) on the learned rep-
resentation; DMF-MVC uses a deep semi-NMF structure to 
capture the nonlinear structure and generated a valid con-
sensus at the last level. However, these two algorithms do 
not simultaneously model consistent and complementary 
information among multiple views. Similar to DCCA and 
DMF-MVC, [4, 5] just focus on exploring consistent infor-
mation with different formulations, while [3, 11] concentrate 
on exploring complementary information. In fact, exploring 
consistent or complementary information among multiple 
views is an important research direction [10]. Recently, [12, 
13] have also shown that simultaneously discerning these 
two kinds of information can achieve better representation 
learning, but they belong to semi-supervised learning-based 
methods, i.e., partial label information of multi-view data 
must be provided. Therefore, it is still worth researching how 
to learn a low-dimensional representation with consistent 
and complementary information across multiple views via 
neural networks for multi-view clustering.

In addition, most existing multi-view clustering methods 
cluster data in two separate steps: They first extract the low-
dimensional representation of multi-view data and then use 
traditional clustering methods (such as k-means and spectral 
clustering) to process the obtained representation. This two-
step learning strategy may lead to unsatisfactory clustering 
performance, because the learned low-dimensional represen-
tation is not necessarily suitable for subsequent clustering 
tasks and the correlation between these two steps is not fully 
explored. DEC [8] designs a clustering embedding layer to 
integrate representation learning and clustering tasks into 
a unified framework, which realizes the mutual benefit of 
these two steps by co-training the clustering together with 
representation learning, i.e., minimizing the KL (Kull-
back–Leibler) divergence between the predicted cluster label 
distribution with the predefined one. Nevertheless, DEC 
is just suitable for dealing with single-view data, without 
consideration of the complementary information between 
multi-view data; therefore, the clustering performance in 
multi-view data is unsatisfactory.

In this paper, we propose a multi-view clustering algo-
rithm based on multiple auto-encoder, named MVC-MAE 
(see Fig. 1). Specially, MVC-MAE first employs multiple 
auto-encoders to capture the nonlinear structure information 
in multi-view data and derive the low-dimensional represen-
tations of data in different views. Then, MVC-MAE designs 

Fig. 1   The architecture of MVC-MAE. L(s1,s2)
2CC

 denotes the regulariza-
tion loss of consistent and complementary information between views 
X
(s1) and X(s2) , L

CC
 denotes the sum of losses between any two views, 

and Z denotes the concatenation of learned low-dimensional repre-
sentations (i.e., {H(s)}S

s=1
 ) from different views. At the clustering step, 

the clustering embedding layer performs clustering based on Z and in 
return, adjusting Z according to the current clustering result
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a novel cross-entropy-based regularization to guarantee the 
obtained low-dimensional representations between any two 
views more consistent as well as complimentary. Mean-
while, a local regularization is also incorporated to protect 
the local invariance within each view. In addition, MVC-
MAE integrates the representation learning and clustering 
into a unified framework, such that two tasks can be jointly 
optimized, which can achieve mutual benefit for the cluster-
ing step and representation learning, avoiding the shortcom-
ings resulted from performing a post-processing step (e.g., 
k-means) after obtaining the low-dimensional representa-
tion, because in this way the learned representation may not 
be best suited for clustering.

The contributions of this paper are summarized as 
follows:

•	 We propose a novel deep multi-view clustering algorithm 
(MVC-MAE), which learns a low-dimensional repre-
sentation with consistent and complementary informa-
tion across multiple views via multiple auto-encoder 
and identifies clusters in a unified framework. The deep 
model captures the hierarchical and nonlinear nature of 
multi-view data, and the joint optimization of representa-
tion learning and clustering can achieve mutual benefit 
for each other, such that improving the clustering perfor-
mance.

•	 A novel cross-entropy-based regularization and an affin-
ity graph-based local regularization are designed and 
incorporated into the objective function. The former is 
used to force the low-dimensional representations of the 
same samples in different views to be as consistent and 
complementary as possible, while the latter is used to 
protect the local geometrical information within each 
view.

•	 We conduct extensive experiments on six real multi-view 
datasets and compare the results of our MVC-MAE with 
that of fifteen baseline algorithms to evaluate the per-
formance of the proposed approach. The experimental 
results demonstrate that the MVC-MAE outperforms 
baseline algorithms in terms of two evaluation metrics.

The rest of this paper is arranged as follows. Section 2 
describes some related work. Section 3 introduces MVC-
MAE algorithm in detail. Extensive experiments are con-
ducted in Sect. 4. Finally, we give conclusions in Sect. 5.

2 � Related Work

2.1 � Shallow Multi‑view Clustering Algorithms

Shallow multi-view clustering algorithms use shallow and 
linear embedding models to reveal the underlying clustering 

structure in multi-view data. For example, Liu et al. [4] and 
Wang et al. [5] adopted nonnegative matrix factorization 
(NMF) techniques, aiming to obtain a consensus indicator 
factorization among multi-view data; Cao et al. [3] extended 
subspace clustering into the multi-view domain and uti-
lized the Hilbert–Schmidt independence criterion (HSIC) 
as a diversity term to preserve the complementary of multi-
view representations; Wang et al. [31] proposed a position-
aware exclusivity regularizer to enforce the affinity matri-
ces of different views to be as complementary as possible 
and employed a consistent indicator matrix to support the 
label consistency among these representations; Kumar et al. 
[14] developed a spectral clustering and kernel learning-
based co-training style; Li et al. [30] learnt the optimal label 
matrix by capturing the diversity and consistency between 
data space and label space and designed a self-weight strat-
egy to weight each view in data space; Kamalika et al. [15] 
projected the data in each view to a lower-dimensional sub-
space based on canonical correlation analysis (CCA); and 
Nie et al. [16] tried to find a fusion graph across all views 
and then use graph-cut algorithms or spectral clustering on 
the fused graph to produce the clustering results.

Although these shallow multi-view clustering algorithms 
have achieved reasonable performance, they cannot fully 
capture hierarchical and nonlinear structure information in 
each view. Meanwhile, because the optimization ways of 
these algorithms are either based on eigenvalue decompo-
sition or matrix decomposition, such that a lot of memory 
space and running time must be consumed, this makes these 
algorithms cannot be applied to large-scale multi-view 
datasets.

2.2 � Deep Multi‑view Clustering Algorithms

Complex data are usually composed of various hierarchical 
attributes, each of which is helpful to understand the sample 
at different abstract levels. In recent years, deep multi-view 
clustering algorithms have been proposed, because deep 
learning can effectively and efficiently learn the hierarchi-
cal information embedded in data. Zhao et al. [9] extended 
deep matrix factorization to multi-view case to enforce the 
last layer nonnegative representation of each view in deep 
matrix factorization to be the same, so as to maximize the 
consensus information among views; the model proposed 
by Huang et al. [32] revealed the hierarchical information 
of data in a layer-wise way and automatically learned the 
weight of each view without introducing extra parameters; 
Li et al. [34] combined local manifold learning and nonnega-
tive matrix factorization to propose a deep graph regularized 
NMF model, which extracts more discriminative representa-
tions through hierarchical graph regularization; and Andrew 
et al. [6] adopted two deep networks to extract the nonlinear 
features of each view and then maximized the correlation 
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between the extracted low-dimensional representations at 
the top layer by utilizing the CCA.

Although these deep multi-view clustering algorithms 
have captured the nonlinear structure, they did not simul-
taneously model consistent and complementary informa-
tion among multiple views. Our MVC-MAE is also a deep 
multi-view clustering algorithm, but it captures consistent 
and complementary information across different views as 
well as the local geometrical information in a unified frame-
work. Meanwhile, it incorporates a clustering embedding 
layer into the deep structure to co-train the clustering step 
together with representation learning.

3 � The Proposed Algorithm

In this section, we present our MVC-MAE algorithm in 
detail.

3.1 � Notations

Let X = {X(s) ∈ ℜm×ns}S
s=1

 represent the original data of all 
views, where S denotes the number of views, ns is the feature 
dimension of s-th view, m is the number of samples, and X(s)

,X(s)

i
,X(s)

i,j
 represent the s-th view multi-view data, the i-th 

sample of the s-th view and the (i, j)-th element in the s-th 
view data, respectively.

Given X = {X(s) ∈ ℜm×ns}S
s=1

 , MVC-MAE aims to group 
samples into CCluster clusters by integrating the hierarchical 
and heterogeneous information of X , such that data samples 
within the same cluster are more similar than those in differ-
ent clusters. The similarity sim(X(s)

i
,X

(s)

j
) between the sample 

X
(s)

i
 and X(s)

j
 can be measured by some function, such as 

Euclidean distance or Pearson correlation based on X(s).

3.2 � The Architecture of MVC‑MAE

The critical issue for multi-view clustering is to reasonably 
fuse intra-view information and inter-view information to 
derive more high-quality results. To this end, MVC-MAE 
first uses multiple auto-encoders to capture the hierarchi-
cal and nonlinear information and then constructs affinity 
graphs with respect to different views to respect the local 
geometrical information, as well as exerts regularizations 
to preserve the consistent and complementary information 
among different views. To jointly optimize the representation 
learning and clustering, MVC-MAE develops a clustering 
embedding layer after the auto-encoders. The architecture of 
MVC-MAE is shown in Fig. 1. Based on this architecture, 
we try to capture four kinds of information, i.e., hierarchi-
cal and nonlinear structure information, local geometrical 

information, consistent and complementary information and 
clustering structure information of data samples.

3.2.1 � Hierarchical and Nonlinear Structure Information

The hierarchical and nonlinear structure information of 
multi-view data is captured by multiple deep auto-encoder. 
As an excellent framework to capture hierarchical and non-
linear structure information between the low-dimensional 
representation and the input data, auto-encoder [17] has been 
popularly practiced in various areas. Deep auto-encoder is 
composed of two components, i.e., the encoder component 
mapping the input data to the low-dimensional space and 
the decoder component mapping the representations in low-
dimensional space to reconstruction space. Both of them 
consist of multiple nonlinear functions. Generally speaking, 
the decoder component can be regarded as the mirror image 
of the encoder component and they have the same number 
of network layers and share a middle-hidden layer.

MVC-MAE contains multiple encoder components and 
multiple decoder components, where E(s) and D(s) correspond 
to the encoder and decoder component of s-th view, respec-
tively. Let E(s) and D(s) be composed of L layers nonlinear 
functions and H(s,l)

i
 be the low-dimensional representation of 

i-th sample at l-th layer of E(s) . Then, the encoder component 
E(s) of the s-th view can be formulated as follows:

where �(⋅) represents the nonlinear activation function, and 
W (s,l) and b(s,l) denote the weight matrix and bias vector of 
l-th layer of the encoder component in the s-th view. The 
decoder components are dedicated to reconstructing multi-
view data as {X̃(s)}S

s=1
 from the low-dimensional representa-

tion {H(s,L)}S
s=1

 . Thus, the decoder component D(s) of the s-th 
view can be formulated as follows:

Finally, the loss function of multiple auto-encoders is 
defined as follows:

(1)

H
(s,1)

i
= �

(
W (s,1)X

(s)

i
+ b(s,1)

)

…

H
(s,l)

i
= �

(
W (s,l)H

(s,l−1)

i
+ b(s,l)

)

…

H
(s,L)

i
= �

(
W (s,L)H

(s,L)

i
+ b(s,L)

)

(2)

H
(s,L+1)

i
= �

(
W (s,L+1)H

(s,L)

i
+ b(s,L+1)

)

…

H
(s,2∗L−1)

i
= �

(
W (s,2∗L−1)H

(s,2∗L−2)

i
+ b(s,2∗L−1)

)
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where ⊙ means the Hadamard product and B(s) = {B
(s)

i
}m
i=1

 
denotes the weight of s-th view, which is used to impose 
more penalty on the reconstruction error of the nonzero ele-
ments than that of zero elements [18]. In this way, LAE can 
alleviate the instability caused by sparse data reconstruction 
to a certain extent and distinguish some more important fea-
tures. B(s) = {B

(s)

i
}n
i=1

 is defined as:

where β≥0. By minimizing LAE , auto-encoders not only 
smoothly capture the data manifolds but also preserve the 
similarity among samples [19].

3.2.2 � Local Geometrical Information

The local geometrical information [20] is captured by affin-
ity graphs {W (s)}S

i=1
 that are constructed from multi-view 

data X = {X(s) ∈ ℜm×ns}S
s=1

 . Firstly, Euclidean distance is 
adopted to measure the similarities between samples, and 
then, each sample is represented as a node, which is con-
nected to its k most similar nodes (k-NN). The process is 
repeated S times, each dealing with a view. The procedure 
for constructing affinity graphs with respect to different 
views is shown in Algorithm 1, where Nk(X

(s)

i
) is the set of k 

nearest neighbors of sample X(s)

i
 , and jk is the k-th neighbor 

of sample X(s)

i
.

(3)

LAE =

S∑

s=1

m∑

i=1

‖‖‖(X̃
(s)

i
− X

(s)

i
)⊙ B

(s)

i

‖‖‖ =

S∑

s=1

‖‖‖(X̃
(s)

i
− X(s))⊙ B(s)‖‖‖

(4)B
(s)

i,j
=

{
� X

(s)

i,j
≠ 0

0 X
(s)

i,j
= 0

where (H(s)

j
)T means the transpose of the matrix H(s)

j
 . Then, 

the local geometrical information within each view can be 
respected by maximizing the following likelihood 
estimation:

With the negative log-likelihood, maximizing Eq. (6) is 
equivalent to minimizing Eq. (7):

3.2.3 � Consistent and Complementary Information

The consistent of multi-view data means that there is 
some common knowledge across different views, while 
the complementary principle of multi-view data refers to 
some unique knowledge contained in each view that is not 
available in other views. Since different views describe the 
same sample from different perspectives, the consistent and 
complementary information contained in multi-view data 
should be preserved as much as possible. Therefore, how 
to capture consistent and complementary low-dimensional 
representation across different views is a key issue of MVC. 
A straightforward method is to concatenate these represen-
tations 

{
H(s,L)

}S

s=1
 directly as the final representation, but 

it cannot guarantee consistent information among multiple 
views. Another widely used method is to enforce multi-view 

(6)LLocal =

S∑

s=1

∏

W
(s)

i,j
>0

(P
(s)

i,j
)

(7)LLocal =

S∑

s=1

(−
∑

W
(s)

i,j
>0

logP
(s)

i,j
)

Let P(s)

i,j
= P

(s,s)

i,j
 be the joint probability between sample 

X
(s)

i
 and X(s)

j
 in the s-th view, which is defined as:

(5)P
(s,s)

i,j
=

1

1 + exp(−H
(s)

i
(H

(s)

j
)T )

data to share the same highest encoder layer (i.e., H(s,L) ). 
However, this way will lead to the loss of a lot of comple-
mentary information from multi-view data, because all low-
dimensional representations are enforced to be in a unified 
latent space.
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In this study, we design a novel regularization strategy 
inspired by the cross-entropy loss function of binary clas-
sification. In the binary classification problem, let Yt

i
∈ {0, 1} 

be the true label of i-th sample and Yp

i
 be the prediction prob-

ability of i-th sample, then the loss function of the cross-
entropy is defined as:

If Yt
i
= 1 , i.e., the true label of i-th sample is 

1 ,  LB(Y
t�Yp) = −

∑m

i=1
log

�
(Y

p

i
)Y

t
i

�
 ;  o t h e r w i s e , 

LB(Y
t|Yp) = − log

(
(1 − Y

p

i
)(1−Y

t
i
)
)
.

However, no label information can be available in MVC. 
So, we use C(s1,s2)

i,j
 to indicate whether two representations 

H
(s1)

i
 and H(s2)

j
 from two views describe the same sample, if 

it is true, C(s1,s2)

i,j
=1 ; otherwise, C(s1,s2)

i,j
= 0 . In other words, 

C
(s1,s2)

i,j
=1 , if i = j ; otherwise, C(s1,s2)

i,j
 = 0. Based on C(s1,s2)

i,j
 , we 

propose a novel cross-entropy loss function for MVC.
In order to improve clustering quality, we hope the differ-

ences between low-dimensional representations ( H(s1)

i
 and 

H
(s2)

j
 ) of the same sample ( i = j ) from different views are as 

small as possible, while the differences between those rep-
resentations ( H(s1)

i
 and H(s2)

j
 ) of different samples ( i ≠ j ) from 

different views are as large as possible. Therefore, L(s1,s2)

2CC
 

with respect to view s1 and s2 is defined as:

where P(s1,s2)

i,j
 is the joint distribution between X(s1) and X(s2) 

views, which is defined as follows:

(8)

LB(Y
t|Yp) = −

m∑

i=1

(Yt
i
log(Y

p

i
) + (1 − Yt

i
) log(1 − Y

p

i
))

= −

m∑

i=1

(log(Y
p

i
)Y

t
i + log(1 − Y

p

i
)(1−Y

t
i
))

= −

m∑

i=1

log
(
(Y

p

i
)Y

t
i ⋅ (1 − Y

p

i
)(1−Y

t
i
)
)

= −
m

Π
i

(
(Y

p

i
)Y

t
i ⋅ (1 − Y

p

i
)(1−Y

t
i
)
)

(9)

L
(s1,s2)

2CC

=

m∏

i,j

(
(P

(s1,s2)

i,j
)Ci,j(s1,s2)(1 − P

(s1,s2)

i,j
)1−Ci,j(s1,s2)

)

=

m∑

i,j=1

log
(
(P

(s1,s2)

i,j
)Ci,j(s1,s2)(1 − P

(s1,s2)

i,j
)1−Ci,j(s1,s2)

)

=

m∑

i,j=1

log
(
(P

(s1,s2)

i,j
)Ci,j(s1,s2)(1 − P

(s1,s2)

i,j
)1−Ci,j(s1,s2)

)

=

m∑

i,j=1

(C
(s1,s2)

i,j
log(P

(s1,s2)

i,j
) + (1 − C

(s1,s2)

i,j
) log(1 − P

(s1,s2)

i,j
))

when C(s1,s2)

i,j
=1 , L(s1,s2)

2CC
=
∑m

i,j=1

�
C
(s1,s2)

i,j
log(P

(s1,s2)

i,j
)

�
 , thus 

maximizing L(s1,s2)

2CC
 means to enforce the two representations 

c l o s e  t o  e a c h  o t h e r ;  i f  C
(s1,s2)

i,j
= 0  , 

L
(s1,s2)

2CC
=
∑m

i,j=1

�
(1 − C

(s1,s2)

i,j
) log(1 − P

(s1,s2)

i,j
)

�
 , maximizing 

L
(s1,s2)

2CC
 means to push them away.

In the case that two samples X(s)

i
 and X(s)

j
 are not the same 

sample ( i ≠ j ), but they are similar according to the local 
geometrical information, the representations H(s)

i
 and H(s)

j
 

should also be similar, and they should not be pushed away. 
Therefore, Eq. (9) is relaxed as follows:

The loss function with respect to the case that S > 2 is 
extended in formula (12):

3.2.4 � Clustering Structure Information

To preserve the clustering structure in low-dimensional rep-
resentation, a clustering embedding loss (CEL [8]) is 
adopted, which is measured by KL-divergence in MVC-
MAE. Specifically, based on the learned representations of 

different views, we concatenate them as Z =
S

||
s=1

H(s) , where 

|| represents concatenation operation, which can also pre-
serve the complementary information in each view to some 
extent. Given the initial cluster centroids {�j}

CCluster

j=1
 , accord-

ing to [8], we use the Student’s t distribution as a kernel to 
measure the similarity between the representation Zi and 
centroid �j:

where Qi,j is interpreted as the probability of assigning the 
sample i to cluster j . Let Ei,j be the auxiliary distribution of 
Qi,j , it is computed by raising Qi,j to its second power and 
normalized with the frequency per cluster, i.e.:

(10)P
(s1,s2)

i,j
=

1

1 + exp(−H
(s1)

i
(H

(s2)

j
)T )

(11)

L
(s1,s2)

2CC
=

m∑

i,j=1

(
C
(s1,s2)

i,j
log(P

(s1,s2)

i,j
)

)

+

m∑

i,j=1,W
s1
i,j
=0,W

s2
i,j
=0

(
(1 − C

(s1,s2)

i,j
) log(1 − P

(s1,s2)

i,j
)

)

(12)LCC =

S∑

s1=1

S∑

s2=s1+1

L
(s1,s2)

2CC

(13)Qi,j =
(1 +

���Zi − �j
���
2

)−1

∑
j� (1 +

���Zi − �j�
���
2

)−1
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where fj =
∑

i Qi,j is the soft cluster frequencies of the clus-
ter j.

Then, the KL divergence loss between the soft assignment 
Qi,j and the auxiliary distribution Ei,j is defined as follows:

During the training procedure, we optimize the clustering 
loss according to Eq. (15) for helping auto-encoder to adjust 
the representation Z and to obtain the final clustering results, 
such that the representation learning and clustering can be 
jointly optimized.

3.2.5 � Total Loss

By integrating the above loss functions, the total loss func-
tion is defined as:

where �,� and 𝜃 > 0 are hyper-parameters. By minimizing 
the total loss function, we obtain the final clustering results 
directly from the last optimized Q by arg

i

max(Qi) , which is 

the most likely assignment.

3.3 � Model Optimization

To optimize the proposed algorithm, we apply the Adam 
optimizer to minimize the objective in Eq. (16). In specific, 
the optimization process of the proposed algorithm is mainly 

(14)Ei,j =

Q2
i,j

�
fi

∑
j� Q

2
i,j�

�
fj�

(15)LCLU =
∑

i

∑

j

Ei,j log
Ei,j

Qi,j

(16)L = LAE + �LLocal + �LCC + �LCLU

divided into two stages: the pre-training stage and the fine-
tuning stage.

3.3.1 � Pre‑training stage

In order to avoid falling into the local optimal solution, we 
first pre-train the auto-encoding of each view layer by layer 
under the learning rate of 1e-3 through the minimization 
formula (3). The representation 

{
H(s)

}S

s=1
 is obtained through 

forwarding propagation, and then, they are concatenated as 
Z . Before the first training, the cluster centers {�j}

CCluster

j=1
 , the 

auxiliary distribution E and the soft assignment distribution 
Q need to be initialized. Here, we use k-means cluster Z to 
initialize {�j}

CCluster

j=1
 and calculate E and Q through Eqs. (14) 

and (13), respectively. Moreover, we calculate the affinity 
matrices of different views by calling ConsAG.

3.3.2 � Fine‑tuning stage

In this training stage, the cluster centers {�j}
CCluster

j=1
 are 

updated together with the embedding Z using the Adam opti-
mizer based on the gradients of LCLU with respect to 
{�j}

CCluster

j=1
 and Z . We first calculate E and Q with the updated 

{�j}
CCluster

j=1
 and Z by Eq. (14) and (13). It is worth noting that 

to avoid instability in the training process, we update E every 
10 iterations in the optimization process. We calculate clus-
tering loss LCLU according to Eq. (15) and update the whole 
framework of our proposed algorithm by minimizing 
Eq. (16). Finally, we compute final Q by Eq. (13) and infer 
clustering labels based on Q . The algorithm step is shown in 
Algorithm 2. The corresponding source codes are available 
at https://​github.​com/***********.

Table 1   Statistics of six datasets Dataset #sample #view #cluster #n1 #n2 #n3 #n4 #n5 #n6

BBCSport(text) 544 2 5 3183 3203 – – – –
HW2sources(image) 2000 2 10 76 240 – – – –
100leaves(image) 1600 3 100 64 64 64 – – –
ALOI(image) 10,800 4 100 77 13 64 125 – –
Caltech101(image) 9144 6 102 48 40 254 1984 512 928
NUSWIDEOBJ(image) 30,000 5 31 65 226 145 74 129

https://github.com/
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3.4 � Complexity Analysis

The MVC-MAE consists of four components: S auto-encod-
ers, the consistent and complementary regularizer, the local 
geometrical information, the CEL. We analyze the time com-
plexity of each part in turn. The time complexity of a single 
auto-encoder is O(m ∗ n ∗ L) , where n denotes the maximum 
dimension of all layers. Thus, the total time complexity of m 
auto-encoders is O(S ∗ m ∗ n ∗ L) . The time complexity of 
the consistent and complementary regularizer is O

(
S2 ∗ m2

)
 . 

The time complexity of the local geometrical component is 
O
(
m2 ∗ k

)
 . The time complexity of the CEL component is 

O
(
m ∗ nz ∗ Ccluster

)
 , where nZ denotes the dimension of the 

embedding Z . Finally, the total time complexity of MVC-
MAE is O

(
S ∗ m ∗ n ∗ L + S2 ∗ m2 + m2 ∗ k

)
.

1  http://​mlg.​ucd.​ie/​datas​ets/​segme​nt.​html.
2  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​One-​hundr​ed+​plant+​speci​
es+​leaves+​data+​set.
3  https://​cs.​nyu.​edu/​roweis/​data.​html.
4  https://​elki-​proje​ct.​github.​io/​datas​ets/​multi view.
5  http://​mlg.​ucd.​ie/​datas​ets/​segme​nt.​html.

4 � Experiments

4.1 � Experiments Setting

4.1.1 � Datasets

We carry out extensive experiments on six real-world data-
sets, including one text dataset (BBCSport1), five image 
datasets (HW2source,2 100leaves3, ALOI,4 Caltech101,5 
and NUSWIDEOBJ [33]). Their statistics are summarized 
in Table 1, where #sample, #view, #cluster and #ns denote 
the number of samples, the number of views, the number 
of clusters and the feature dimension of the s-th view in 
the corresponding dataset, respectively. We also present the 
detailed descriptions of each dataset below.

http://mlg.ucd.ie/datasets/segment.html
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
https://cs.nyu.edu/roweis/data.html
https://elki-project.github.io/datasets/multi
http://mlg.ucd.ie/datasets/segment.html
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4.1.2 � BBCSport

A text dataset contains 544 sports news and 5 topical areas. 
Each piece of news is divided into two parts, corresponding 
to two views.

4.1.3 � HW2source

A handwritten numerals (0–9) dataset contains 2000 sam-
ples and 10 digits. Two types of features, i.e., Fourier coef-
ficients of the character shapes and the pixel, are selected 
as two views.

4.1.4 � 100leaves

An image dataset contains 1600 samples and 100 plant spe-
cies. Three types of features, i.e., texture histogram, fine-
scale margin and shape descriptor, are generated to represent 
three views.

4.1.4.1  ALOI  An image dataset contains 100 subjects and 
110,250 samples. We select 108 samples for each subject, 
a total of 10,800 samples for experimental evaluation. For 
each image, four types of features, i.e., RGB color histo-
grams, HSV color histograms, color similarity, Haralick 
features, are generated to represent four views.

4.1.5 � Caltech101

An image dataset contains 102 subjects and 9144 samples. 
For each image, six types of features, i.e., GABOR feature, 
wavelet moments (WM), Centrist feature (CENT), HOG 
feature, GIST feature and LBP feature, are generated to rep-
resent six views.

4.1.5.1  NUSWIDEOBJ  An image dataset for object recogni-
tion contains 31 classes and 30,000 images. For each image, 
six types of features, i.e., color histogram, CM, CORR, edge 
direction histogram and wavelet texture, are generated to 
represent six views.

4.1.6 � Compared Algorithms

We compare the proposed MVC-MAE with the following 
clustering algorithms:

	 1.	 NMF [21] (Single view): a standard nonnegative 
matrix factorization (NMF) method, which is executed 
on data of each view and results from all views are 
reported.

	 2.	 AE [22] (Single view): a single-view clustering algo-
rithm, which is executed on data of each view and 

results from all views are reported. The number of each 
layer of AE is the same as that of MVC-MAE.

	 3.	 AE-C: a single-view clustering algorithm, which con-
catenates the features of multiple views as its input. 
The number of each layer of AE-C is the same as that 
of MVC-MAE.

	 4.	 AE-CS: a shallow version of AE-C, only one nonlinear 
function layer is contained in the encoder and decoder 
component of AE-CS, respectively.

	 5.	 CoregSC [14]: an approach with centroid-based co-
regularization, which enforces the clustering results of 
different views to be consistent with each other.

	 6.	 MultiNMF [4]: an NMF-based method, which searches 
for a factorization that gives a consensus clustering 
scheme across all views.

	 7.	 MultiGNMF [5]: an improved version of MultiNNMF, 
which integrates manifold learning into MultiNMF, 
such that the local geometrical information of each 
view can be considered.

	 8.	 DiMSC [3]: a subspace clustering method, which uses 
the Hilbert–Schmidt independence criterion (HSIC) as 
the diversity term to explore complementary informa-
tion across different views.

	 9.	 RMSC [23]: a spectral clustering-based robust method, 
which employs Markov chain to solve the latent tran-
sition probability matrix from the similarity matrices 
of different views with the low-rank and sparse con-
straints.

	10.	 MVCF [24]: a concept factorization-based method, 
which makes full use of data correlation between 
views.

	11.	 MVGL [25]: a multi-view graph clustering method, 
which optimizes a global graph with an exact number 
of the connected components from a different single-
view graph and then obtains the clustering indicators, 
without post-process or any graph techniques.

Table 2   The configurations of MVC-MAE on different datasets. We 
only show the architecture of the encoder (the second column). The 
decoder reverses the encoder. The number of neurons in the cluster 
embedding layer is set to the number of clusters in the corresponding 
dataset (the third column)

Dataset #neurons in each layer 
of the encoder

#neurons in cluster-
ing embedding 
layer

BBCSport n
s-256–64-16 5

HW2sources n
s-512–128-32 10

100leaves n
s-500–100 100

ALOI n
s-500–200-100 100

Caltech101 n
s-512–128-32 102

NUSWIDEOBJ n
s-512–128-32 31
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	12.	 SwML [26]. a self-weighted multi-view graph cluster-
ing method, which optimizes a unified similarity graph 
by introducing a self-weighted learning strategy.

	13.	 AMGL [16]. a parameter-free multi-view graph clus-
tering method, which can automatically assign suitable 
weights to all graphs without introducing any param-
eters.

	14.	 DCCA [6]. a deep CCA-based method, which captures 
nonlinear structure information by adopting two deep 
networks and employs CCA to maximize the consistent 
information between two deep networks.

	15.	 DMF-MVC [9]. a deep MF-based method, which 
learns the hierarchical information in multi-view data 
by designing a deep semi-nonnegative matrix factori-
zation framework and maximizes the consensus infor-
mation from each view by enforcing the final represen-
tation of each view to be similar.

Among these MVC algorithms, NMF, AE, AE-C, AE-CS, 
CoregSC, MultiNMF, MultiGNMF, DiMSC, MVCF, 
RMSC, DCCA and DMF-MVC require an additional clus-
tering step to assign cluster label for each sample based on 
the learned representation or affinity graph. In this study, we 
use k-means or spectral clustering to assign cluster labels 
according to the original papers.

4.1.7 � Evaluation Metrics

The quality of clustering results is evaluated by comparing 
the obtained cluster labels with the original labels provided 
by the datasets. Two commonly used metrics, i.e., the accu-
racy (ACC) and the normalized mutual information metric 
(NMI) [28], are selected to measure the effectiveness of the 
proposed algorithm. ACC is used to compute the percent-
age of agreements between the true labels and the clustering 
labels, which is defined as:

where m is the total number of samples; Ci and Ci are the 
true label and the clustering label of i - th sample, respec-
tively. �{x} is the indicator equation, when the result is 
assigned to be 1 if the predicted result is the same as the 
true result and 0, otherwise.

The normalized mutual information is employed to meas-
ure the similarity of two clusters, which is defined as:

(17)ACC =

∑m

i=1
�

�
Ci = Ci

�

m

Table 3   Cluster performance on three small datasets (HW2sources, BBCSport and 100leaves)

The best results are highlighted in bold

Type Algorithm Accuracy (%) Normalized mutual information (%)

HW2sources BBCSport 100leaves HW2sources BBCSport 100leaves

Single view NMF-1 View 70.15(0) 37.86(0.00) 35.62(0.00) 63.00(0) 24.60(0.00) 66.17(0)
NMF-2 View 71.00(0) 44.60(0) 20.87(0.00) 68.74(0) 51.90(0) 52.49(0)
NMF-3 View – – 37.75(0.00) – – 66.40(0.00)
AE-1 View 69.45(2.40) 48.49(7.39) 60.28(1.31) 63.85(1.89) 30.75(7.43) 80.90(0.51)
AE-2 View 71.97(6.17) 44.98(1.26) 20.61(1.32) 70.13(3.72) 53.88(2.41) 54.53(1.62)
AE-3 View – – 47.66(1.84) – – 73.18(0.6)
AE-CS 84.45(1.88) 46.54(6.49) 62.88(1.62) 79.58(0.99) 21.02(9.73) 83.25(0.51)
AE-C 87.39(1.26) 51.61(3.1) 66.4(1.16) 80.03(1.52) 49.89(2.7) 85.35(0.4)

Multi-view MultiNMF 88.28(1.2) 86.01(3.17) 67.15(2.4) 80.58(1.5) 74.25(2.16) 86.35(0.8)
MultiGNMF 92.05(0) 44.57(0) 69.31(0) 86.0(0) 12.74(0) 86.88(0)
MVCF 82.53(3.7) 66.49(1.1) 79.06(1.1) 76.13(2.1) 46.08(1.4) 90.09(0.9)
DMF-MVC 73.88(0.17) 68.38(0) 23.66(0.57) 78.69(0.32) 51.04(0) 53.95(0.31)
CoregSC 79.35(6.05) 43.31(2.11) 65.19(2.30) 76.43(0.01) 22.55(0.59) 84.57(0.00)
DiMSC 38.28(1.8) 85.91(0.1) 51.84(1.4) 35.64(0.9) 70.75(0.2) 74.48(0.7)
RMSC 77.52(0.9) 87.78(1.4) 74.09(0.4) 74.49(1.9) 81.51(2.5) 89.83(0.6)
MVGL 72.04(6.7) 35.35(4.3) 81.06(1.5) 79.35(2.21) 15.04(5.3) 91.30(0.8)
SwML 73.65(0) 36.21(0) 80.94(0) 80.38(0) 1.55(0) 92.07(0)
AMGL 72.15(0.02) 35.99(0.00) 87.99(1.6) 76.69(0.02) 1.45(0.00) 76.32(0.02)
DCCA​ 74.5(4.8) 77.21(3.5) 41.25(3.56) 70.5(3.6) 61.92(3.2) 68.76(3.74)
MVC-MAE 94.64(0.16) 93.15(0.20) 90.56(0.81) 88.46(0.25) 80.68(0.49) 96.54(0.22)
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where mj denotes the number of samples contained in clus-
ter Cj(1 ≤ j ≤ CCluster) , m̂y denotes the number of samples 
belonging to the class Yy(1 ≤ y ≤ CCluster), and mj,y denotes 
the number of samples that are in the intersection between 
cluster Cj and Yy.

For these two metrics (ACC and NMI), the larger value 
indicates better clustering performance.

4.1.8 � Implementation Details

We implement MVC-MAE, AE, AE-C and AE-CS by using 
Python language and TensorFlow framework, adopt Adam 
optimizer to train our model and employ LeakyReLU [27] 
as the activation function of all internal layers except for 
the input layer, output layer and clustering embedding layer. 
For baseline algorithms, we adopt the same network layer 
configuration on each dataset as MVC-MAE, as shown in 
Table 2. For MVC-MAE, �,� and � are set to 10, 0.1 and 0.1, 
respectively, in the experiment. Besides, we run each algo-
rithm 20 times on each dataset on the platform of Ubuntu 
Linux 18.04 with NVIDIA 1080ti Graphics Processing Units 
(GPUs) and 64 GB memory size and then record the average 
results as well as the standard deviations. All codes of com-
pared algorithms are downloaded from the authors’ home 
pages, and they are carried out by comprehensively tuning 
the corresponding hyper-parameters.

(18)NMI =

∑
j,y

mj,y

m
log

mmj,y

mjm̂y

��∑
j mj log

mj

m

��∑
y m̂y log

m̂y

m

�

Besides, DCCA can only deal with the dataset with two 
views, so we run DCCA on subdatasets composed of two 
views and report the best results.

4.2 � Clustering Performance

Table 3 shows ACC and NMI of the proposed algorithm and 
15 comparison algorithms on three datasets (HW2sources, 
BBCSport and 100leaves), and Table 4 shows ACC and NMI 
of the proposed algorithm and 7 compared algorithms (AE, 
AE-C, AE-CS, CoregSC, MVCF, RMSC and DCCA) on 
the other three datasets (ALOI, Caltech101and NUSWIDE-
OBJ). In Table 4, the results of some algorithms, such as 
MultiNMF, MultiGNMF and DMF-MVC, are not pro-
vided, because the scale of datasets ALOI, Caltech101 and 
NUSWIDEOBJ, i.e., the number of samples, the number 
of views and the feature dimension of each view, is rela-
tively large, and these algorithms are very time-consuming. 
In Tables 3 and 4, the best results are highlighted in bold, 
where the value 0.00 in brackets indicates that the value 
is close to zero, 0 indicates zero, and “-” denotes that the 
dataset does not have the corresponding view. OOM denotes 
“out of memory.”

From Tables 3 and 4, we make the following observations:

1.	 MVC-MAE is superior to all the compared algorithms 
in two evaluation metrics on most datasets. These results 
clearly show that the proposed algorithm can achieve 
the promising clustering performance. Although both 
DCCA and DMF-MVC are deep MVC algorithms, they 
cannot achieve the desired performance, where DCCA 
does not capture complementary information, while 
DMF-MVC does not fully capture hierarchical informa-

Table 4   Cluster performance on three big datasets (ALOI, Caltech101 and NUSWIDEOBJ)

The best results are highlighted in bold

Type Algorithm Accuracy (%) Normalized mutual information (%)

ALOI Caltech101 NUSWIDEOBJ ALOI Caltech101 NUSWIDEOBJ

Single view AE-1 View 36.80(2.20) 6.27(0.33) 13.47(0.31) 60.24(1.70) 18.34(0.64) 9.31(0.11)
AE-2 View 15.01(0.17) 10.35(0.68) 11.17(0.03) 39.98(0.04) 26.85(0.49) 10.13(0.24)
AE-3 View 47.21(1.54) 9.73(0.32) 11.06(0.20) 68.01(0.53) 25.63(0.55) 9.15(0.14)
AE-4 View 44.65(1.02) 20.97(0.62) 14.43(0.61) 67.12(0.59) 45.68(0.41) 12.06(0.28)
AE-5 View – 19.73(0.42) 12.26(0.35) – 42.50(0.41) 9.31(0.46)
AE-6 View – 17.16(0.68) – – 36.64(0.62) –
AE-CS 14.91(0.17) 10.22(0.64) 14.11(0.42) 39.97(0.05) 26.01(1.12) 14.59(0.37)
AE-C 14.98(0.16) 14.91(4.71) 14.86(0.49) 40.01(0.03) 36.82(8.7) 14.93(0.47)

Multi-view CoregSC 77.44(1.23) 22.31(0.97) OOM 84.52(0.89) 46.60(1.12) OOM
MVCF 34.71(1.46) 20.33(1.12) OOM 57.00(1.13) 44.30(0.98) OOM
RMSC 77.04(2.60) 22.77(0.93) OOM 82.45(0.68) 41.52(0.33) OOM
DCCA​ 50.82(2.23) 12.89(1.12) 15.12(0.19) 78.36(1.89) 31.26(1.76) 14.56(0.22)
MVC-MAE 84.63(0.14) 22.53(0.19) 17.25(0.10) 91.25(0.21) 45.73(0.26) 16.92(0.09)
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tion in each view and complementary information across 
views, because the nonlinear activation function is not 
added between layers of deep neural network. DiMSC 
does not achieve a good result on all datasets because it 
is just a shallow model and requires an extra clustering 
step. MultiNMF and MultiGNMF show relatively good 
results, but both are inferior to MVC-MAE.

2.	 We also can find from Table 4 that MVC-MAE not 
only obtains better clustering results but also is easily 
applied to large-scale data through mini-batch training. 

Although CoregSC, MVCF and RMSC can perform 
clustering tasks on the ALOI and Caltech101 datasets, 
OOM occurs when these three algorithms deal with a 
larger dataset (NUSWIDEOBJ).

3.	 The clustering performance of AE and NMF varies 
across different views, and the clustering results of AE 
are better than those of NMF, AE-C superior to AE and 
AE-CS. It indicates that the deep learning algorithm is 
superior to NMF in single-view clustering algorithms, 
because the deep learning algorithm captures the com-

Table 5   Cluster performance on ablation study

The best results are highlighted in bold

Algorithm Accuracy (%) Normalized mutual information (%)

Digits BBCSport 100leaves Digits BBCSport 100leaves

MVC-MAE-No-CC 92.20(0.14) 90.43(0.62) 89.69(1.45) 86.01(0.23) 75.57(0.68) 96.33(0.36)
MVC-MAE-No-Local 92.23(0.19) 87.76(0.51) 89.92(1.22) 86.07(0.32) 69.34(0.99) 96.37(0.35)
MVC-MAE-Mean 87.45(0.89) 84.56(0.62) 85.62(0.85) 77.08(0.46) 64.67(0.36) 93.63(0.42)
MVC-MAE 94.64(0.16) 93.15(0.20) 90.56(0.81) 88.46(0.25) 80.68(0.49) 96.54(0.22)

Algorithm Accuracy (%) Normalized mutual information (%)

ALOI Caltech101 NUSWIDEOBJ ALOI Caltech101 NUSWIDEOBJ

MVC-MAE-No-CC 83.58(0.29) 21.16(0.26) 16.78(0.11) 90.41(0.37) 43.91(0.23) 16.59(0.13)
MVC-MAE-No-Local 86.44(0.19) 20.03(0.24) 16.12(0.06) 90.92(0.28) 43.38(0.19) 16.34(0.10)
MVC-MAE-Mean 79.86(0.23) 18.56(0.56) 15.56(0.09) 86.78(0.25) 38.45(0.29) 15.18(0.14)
MVC-MAE 84.63(0.14) 22.53(0.19) 17.25(0.10) 91.25(0.21) 45.73(0.26) 16.92(0.09)

Fig. 2   The clustering performance of MVC-MAE on six datasets under various �,�,�
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plex hierarchical information of data; integrating infor-
mation from multiple views can improve the perfor-
mance of MVC; and directly concatenating all views 
does not distinguish the importance of each view.

4.	 RMSC also obtains good experimental results due to the 
suppression of noise. In addition, the results of MVCF, 
MVGL and SwML are also good, second only to MVC-
MAE. This demonstrates that it is important to distinguish 
the weight of consistent information about different views.

4.3 � Ablation Study of the Proposed Algorithm

In this subsection, we carry out some ablation studies of 
MVC-MAE, aiming to explore the contributions of consist-
ent and complementary, local geometric regularization and 
the fusion of low-dimensional representations from different 
views on the clustering results. To this end, we define the fol-
lowing three variants of MVC-MAE: 1) MVC-MAE-No-CC, 
which optimizes Eq. (16) with � = 0, represents that MVC-
MAE does not consider the consistency and complemen-
tary information; 2) MVC-MAE-No-Local, which optimizes 
Eq. (16) with � = 0, represents that MVC-MAE does not 
consider the local geometrical information; and 3) MVC-
MAE-Meansums all the representations 

{
H(s)

}S

s=1
 of different 

views and averages them to get the representations Z as to 
the input of CEL. The clustering results of these algorithms 
are reported in Table 5. From Table 5, we can observe that 

the clustering results of MVC-MAE on six datasets are sig-
nificantly better than those of three variants, which proves 
that consistent and complementary, local geometric regu-
larization and the concatenation of low-dimensional rep-
resentations of different views are helpful to improve the 
performance of clustering, and all of them are indispensable. 

4.4 � Parameter Sensitivity

To explore how the clustering performance of MVC-
MAE varies with the hyper-parameters � , � and � , we 
run MVC-MAE under different parameter configura-
tions. In the experiments, we vary the value of � from 
[0.001,0.01,0.1,1,10,100] and set �=0.1 , �=0.1 ; or vary 
the value of � from [0.001,0.01,0.1,1,10,100] and set �=10
,�=0.1 ; or vary the value of � from [0.001,0.01,0.1,1,10,100] 
and set �=10,�=0.1 . The ACC and NMI of MVC-MAE 
under different parameter configurations are shown in Fig. 2. 
It can be seen from Fig. 2 that the clustering performance of 
MVC-MAE is relatively stable under 0 < 𝛼 < 1 , 0 < 𝜃 < 1

,0 < 𝛾 < 0.1 . It indicates that MVC-MAE is robust and set-
ting parameters is not a complex task.

4.5 � Visualization

In this study, the visualization tool T-SNE [29] is employed 
to map low-dimensional representations obtained by the 

Fig. 3   Visualization on HW2sources dataset. Each point indicates one sample
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proposed MVC-MAE and matrix factorization-based algo-
rithms into a two-dimensional (2D) space for exploring the 
co-relationship between samples. Taking HW2sources as 
an example, the visualization results are plotted in Fig. 3, 
where different clusters are identified by different colors and 
symbols.

From Fig. 3, we can see that points with the same color 
are grouped except for Fig. 3e. The layout of points in 
Fig. 3b and f has clearer boundary than that of other sub-
graphs; meanwhile, the points within each cluster in Fig. 3b 
are more compact than in Fig. 3f, but the gaps among clus-
ters in Fig. 3b are narrower than in Fig. 3f.

4.6 � Consumed Time

In this section, we compare the running time of MVC-MAE 
and some representative algorithms on HW2sources, BBC-
Sport, 100leaves and NUSWIDEOBJ. The corresponding 
results are shown in Fig. 4. It can be seen from Fig. 4 that 
single-view clustering algorithms are generally more effi-
cient than multi-view clustering because the multi-view 
clustering methods need to process multi-view data. Among 
multi-view clustering methods, DiMSC and MVGL have 

the longest running time, and our method MVC-MAE runs 
much faster than DiMSC and MVGL. Moreover, MVC-
MAE can also process large-scale multi-view data quickly. 
In Fig. 4d, we do not provide the running time of Multi-
NMF, CorgSC and DiMSC, because they are very slow on 
NUSWIDEOBJ. These results indicate that the MVC-MAE 
algorithm has higher efficiency.

5 � Conclusion

In this paper, we proposed a deep multi-view clustering 
algorithm based on auto-encoder, termed MVC-MAE, which 
adopts auto-encoder to capture the nonlinear structure infor-
mation of each view in a layer-wise manner and incorpo-
rates the local invariance within each view and consistent as 
well as complementary information between any two views 
together. To preserve consistent and complementary infor-
mation among views, the affinity graphs are constructed and 
the cross-entropy-based regularizer is developed. Besides, 
representation learning and clustering are integrated into a 
unified framework for jointly optimizing. Extensive experi-
ments are carried out on six real-world datasets, including 

Fig. 4   Running time of different algorithms on four datasets



337Deep Multiple Auto‑Encoder‑Based Multi‑view Clustering﻿	

1 3

three small-scale and three large-scale datasets, and the 
experimental results are compared with fifteen baseline 
algorithms. The experimental results demonstrate that 
MVC-MAE outperforms other compared algorithms.

As the next step, we plan to simultaneously consider the 
clustering results obtained by clustering different hierarchi-
cal representations of each auto-encoder, instead of just uti-
lizing the output of the last layer of encoder components to 
perform clustering tasks, aiming to comprehensively learn 
knowledge from multi-view data. Another research direction 
is to capture discriminative features from multiple views by 
utilizing mutual information maximization theory.
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