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Abstract: According to a recently conducted survey on surgical complication mortality rate, 47% of 

such cases are due to anesthetics overdose. This indicates that there is an urgent need to moderate the 

level of anesthesia. Recently deep learning (DL) methods have played a major role in estimating the 

depth of Anesthesia (DOA) of patients and has played an essential role in control anesthesia overdose. 

In this paper, Electroencephalography (EEG) signals have been used for the prediction of DOA. EEG 

signals are very complex signals which may require months of training and advanced signal processing 

techniques. It is a point of debate whether DL methods are an improvement over the already existing 

traditional EEG signal processing approaches. One of the DL algorithms is Convolutional neural 

network (CNN) which is very popular algorithm for object recognition and is widely growing its 

applications in processing hierarchy in the human visual system. In this paper, various decomposition 

methods have been used for extracting the features EEG signal. After acquiring the necessary signals 

values in image format, several CNN models have been deployed for classification of DOA depending 

upon their Bispectral Index (BIS) and the signal quality index (SQI). The EEG signals were converted 

into the frequency domain using and Empirical Mode Decomposition (EMD), and Ensemble Empirical 

Mode Decomposition (EEMD). However, because of the inter mode mixing observed in EMD method; 

EEMD have been utilized for this study. The developed CNN models were used to predict the DOA 

based on the EEG spectrum images without the use of handcrafted features which provides intuitive 



5048 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5047-5068. 

mapping with high efficiency and reliability. The best trained model gives an accuracy of 83.2%. 

Hence, this provides further scope and research which can be carried out in the domain of visual 

mapping of DOA using EEG signals and DL methods. 

Keywords: depth of anesthesia; convolutional neural network; electroencephalography; empirical 

mode decomposition; ensemble empirical mode decomposition 

 

1. Introduction 

One of the most vital parts of surgical procedures is anesthesia which is very essential to monitor 

the depth of anesthesia (DOA). Measuring and monitoring of DOA still poses a challenge for doctors 

and researchers. Accurate analysis and prediction of anesthesia levels in a patient during a surgery 

facilitates drug administration, preventing awareness and anesthesia overdose thus improving patient 

outcome. Resorting to traditional anesthesia monitoring requires experienced anesthesiologists 

through the patient’s physiological response. 

These methods might provide inaccurate results as they are highly oriented towards the 

experience of the doctor or the anesthesiologists and do not considering the external factors like noise 

interference with the actual signal values. As per the study conducted by the World Health 

Organization [1], it shows that the mortality rate due to anesthesia overdose is significantly high in 

surgical complications. This indicates that there is a need for an improved monitoring system for 

surgical procedures to improvement patient’s care. There has been considerable amount of research 

work being carried out for establishing relation between DOA and various features which describe the 

level of anesthesia in a patient. As proposed by the authors of [2], the spontaneous change in the brain’s 

electrical activity during the transition of the different levels of anesthesia can be recorded using 

electrodes placed on the scalp (i.e., electroencephalography (EEG)). 

In the modern era the classification of DOA, EEG spectrum has gained momentum using various 

feature extraction methods. Although it cannot be assumed that EEG based DOA classification is the 

optimum method, however research work in this field seems to be quite promising. Since the EEG 

spectrum is observed to provide substantial information about the anesthesia level, different analysis 

methods have been adapted and deployed. These include time-frequency domain and wavelet 

transform (WT) [3]. A comparison between Short Time Frequency Transform (STFT) and continuous 

wavelet transform (CWT) study was carried out in [4], which shows that STFT is more efficient in 

real-time process while CWT produced high resolution and high performance which can be used in 

clinical settings. Authors of [5], used the nonlinear property of the EEG signals and the nonlinear 

chaotic parameters to identify the anesthetic depth levels. It is observed from the results that Elman 

network yields an overall accuracy of 99% in detecting the anesthetic depth levels. Hutt [6] has 

deployed a linear neural population model which predicts the concentration of anesthetic propofol 

using the power spectrum of EEG signals. Zhang et al. [7] have adopted spatio-temporal patterns in 

the electroencephalogram (EEG) using Lempel-Ziv analysis. Various pattern recognition methods for 

different cognitive task classification were carried out in [8] with an accuracy of 93% using machine 

learning algorithms. However, previous works utilizing high performance GPU are carried out over a 

limited data set using specific task-oriented features for classification. This results in accuracy 

compromise and inefficiency to resolve the internal differences for individual patient’s characteristics. 
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Achieving better performance has a tradeoff between time and convoluted methods for feature 

extraction. Therefore, for real-time processing and monitoring simple feature extraction methods are 

required with shorter computational time. This will enhance the patients’ experience and results in 

higher accuracy for a larger dataset. In this work, simple feature extraction method is used for EEG 

signals and CNN based classifiers for DOA. 

Previous research carried out in biomedical engineering focused on epilepsy [9], emotion 

recognition [10], sleep [11] and motor imagining [12]. To bring more light into the field of anesthesia 

level analysis, deep learning algorithm is proposed for DOA monitoring. It is vital to monitor the 

patient’s DOA during general anesthesia surgery. If the level of anesthesia is too low during the surgical 

operation, the patient will have a slight awareness or feel slight pain resulting in some postoperative 

memory impairment [13]. Moreover, long-term maintenance of deep anesthesia can lead to other 

complications in patients, hence anesthesia management is very important [14]. With the already 

research done in [15], it is evident that there is a correlation between the brain wave activity at different 

frequency components of the EEG signals and different phenomena. From a clinical point of view, the 

raw EEG has usually been described in terms of frequency bands: gamma (greater than 30 Hz), beta 

(13–30 Hz), alpha (8–12 Hz), theta (4–8 Hz), and delta (less than 4 Hz). With the induction of 

anesthetics there is a significant drop in the activity of the high frequency beta and alpha bands while 

there is an increased response observed in low frequency band during deep anesthesia level [16]. This 

in turn creates a feature comparison between EEG and activity intensity during anesthetics induction 

period, the maintenance period and the recovery period in the time-frequency domain image. With the 

recent advances in artificial intelligence, computer vision and computer hardware, CNN models are 

preferred over traditional machine learning algorithms and traditional ANN’s. This is the motivation 

behind proposing EEG the signal spectrum which is similar to clinical approach. Since EEG has 

been converted to a spectrum, it is quite easy to use the colormap to generate images for CNN 

algorithm to proceed. 

Various studies from [17], shows that CNN based classification models surpass the traditional 

classification models. With a large data set and adequate hardware setup it becomes easier to 

implement CNN models and can solidify the research in measuring DOA. 

Although CNN is known to be a complex algorithm, they offer better accuracy for larger data sets 

and are simpler to implement and analyze. This is the motivation for assessing DOA based on the EEG 

spectrum. Although raw EEG signals are in themselves not sufficient to provide much information 

about the brain activity of a patient therefore there is a need to extract the characteristics of the EEG 

signals which will assist in classifying the DOA. Although processing raw EEG signals is quite a 

challenging task as they have low signal to noise ratio (SNR) and often the brain activity measurement 

is often buried under multiple resources of hidden information, environmental, physiological and 

activity-specific artifacts. Various noise reduction methods and filtering methods have been discussed 

earlier to extract the true brain activity. EEG signals are also non-stationary and have their statistics 

varying across time. As a result, poor accuracy maybe observed for smaller training data and user data 

might get different results at different times for the same patient, hence it is quite essential to gather 

sufficient data to overcome this discrepancy. A lot of work has been done to handle inter subject 

variability of EEG signals. For generating a time-frequency domain analysis, short-time Fourier 

transforms (STFT) [18] has been used for visualizing the non- stationary property forth EEG signals 

in different cognitive states. Authors of [19] have used STFT and auto regressive modeling to 

effectively detect the burst suppression caused by different anesthetics level. Various other works in [20] 
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were carried out to generate the power spectrogram conversion on the EEG signals. All these reflect 

the success of STFT to determine the practical fluctuations in the brain activity with the changes in 

anesthetic features. However, another accurate method for feature extraction is EEMD which 

represents the signal at different frequency bands. The success of this method has been presented in [21], 

where they have used EMD for EEG feature extraction. Ji et al. in [22], have implemented both DWT 

and EMD for EEG feature extraction. Authors of [23] suggested the use of Multivariate Empirical 

Mode Decomposition (MEMD) provides a more robust approach to noise. As a result, in this work, 

EEMD method for is used to extract features of the EEG during different stages of anesthesia. EEMD 

solves the shortcoming of EMD by reducing the inter mode mixing and wide frequency band coverage 

of EMD signals. 

2. Experimental section 

2.1. Signal acquisition 

This study has been approved by the Research Ethics Committee, National Taiwan University 

Hospital (NTUH) in Taiwan. Furthermore, written informed consent was received for permission by the 

patients. In total, data is collected from 50 patients ranging between the ages of 23 to 72 years who 

underwent ear, nose and throat surgery at NTUH as shown in [24]. The research consists of four major 

areas which can be divided into Signal Acquisition, Pre-processing, Feature Extraction and Prediction. 

Figure 1 shows the proposed methodology carried out in this study. The datasets are collected for 

complete surgery of general anesthesia which includes an average of 2.5 hours of raw EEG signals and 

anesthesia record sheets for operations in anesthesiology department, NTUH. The datasets are processed 

at 5 seconds intervals which generate about 15,400 samples that is sufficient for experimentation. 

 

Figure 1. Block diagram of proposed framework showing the different stages involved 

throughout the research. 

Phillips IntelliVue MP60 physiological monitor is used to acquire the signals, it includes the 

Bispectral Index (BIS) Quatro Sensor module, and a portable computer are for data-logging [25]. Other 

vital signs like heart rate, blood pressure, SPO2 are also logged using the MP60 monitor. In addition, raw 

EEG, ECG and PPG signals are also logged. The BIS monitor gives a dimensionless numeric variable 

which ranges from 0–100 when the patient is under surgical operation for assessing the anesthesia level. 

The BIS monitor displays the EEG signal and the values of BIS ≤ 40, 40 < BIS ≤ 60 and BIS > 60 
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correspond to DOA as Anesthesia Deep, Anesthesia OK and Anesthesia Light as shown in Table 1. 

Additionally, the monitor displays the Signal Quality Index (SQI) which is calculated based on the 

impedance and artifacts. The SQI ranges from 0–100. Poor signal quality is defined as SQI < 50. The 

monitor is serially connected to NPort through UART (Serial Communication) and uses TCP/IP protocol 

for data transmission. The NPORT transmits the received data wirelessly to the repeater. The data 

received from the repeater is then transmitted to the PC. The connection is verified using ping and 

handshake; when the connection is released, the transmission stops. Figure 2 shows a block diagram of 

the signal acquisition process. 

 

Figure 2. Signal acquisition of the raw EEG signals and other vital signs using suitable hardware. 

Table 1. DOA categorization according to BIS Value. 

BIS Range Anesthesia Level 

BIS ≤ 40 Anesthesia Deep (AD) 

40 < BIS ≤ 60 Anesthesia OK (AO) 

BIS > 60 Anesthesia Light (AL) 

On processing of the EEG signal, it is observed that there is non-uniformity in the data for each 

DOA level hence it is often said that medical data sets are unbalanced or biased. It is important to 

acquire similar dataset size for each DOA for comparison purposes. Another way to minimize the data 

unbalance is to use the same number of data for each level of anesthesia. For classifying the EEG 

signals into their respective anesthesia levels, average BIS values are used for categorization as shown 

in Table 1. The average BIS value between 40 and 60 is classified as anesthetic OK (AO) thereby this 

can be considered “suitable for surgery”, BIS level less than 40 is considered as anesthetic deep (AD) 

indicating that the DOA value is low, and BIS ranging between 60 and 100 is classified as anesthetic 

light (AL) indicating that the DOA value is light and may only be preferable for certain types of 

operational procedures. It is quite natural that the EEG signal is under the influence of convoluted 
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environmental factors (i.e., electrode off, external frequency interference, etc.); this specific case signal 

can then be classified as signal polluted (SP) or noise. 

2.2. Pre-processing 

Using the CNN model for training, the input requires being in the form of a 2D array or in image 

format so one of the first tasks before training was to collect the images from the raw EEG data which 

will be able to provide results using deep learning methods. It is a vital point of this study to process 

the raw EEG signals into matrix like format with its associated DOA level (i.e., label data), which is 

crucial as there are many complications associated with the EEG processing signals as discussed earlier. 

The raw EEG signal is processed and to the three categories AL, AO, and AD. The EEG spectrum 

shows changes in features whenever there is a change in the brain activity using the EEMD method. 

The multi component EEG signal is converted into the Intrinsic mode functions (IMFs). The different 

wave frequencies of EEG signal shows variations with Depth of Anesthesia, so there is a need to clearly 

distinguish the IMFs for different wave frequencies. EMD has its drawbacks in identifying closely 

spaced spectral bands and components appearing intermittently in the signal when decomposing, 

which is called mode mixing and it can be reduced by adding white noise to the signal (known as 

EEMD). The effect of decomposing the signal using EEMD is that the added white noise cancels each 

other in the final mean of corresponding IMFs. This method proves to be very useful in extracting the 

constituent components of the signal. EEMD proves to be very robust and reliable for feature extraction 

of non-stationary signals which in our case is the EEG signal. Since the EEG signal comprises of high 

to low frequency waves, from Beta (β)-waves ranging from 12–35 Hz, alpha (α)-waves ranging from 

8–12 Hz, Theta (θ)-waves ranging from 4–8 Hz, Delta (δ)-waves ranging from 0.5–4 Hz and the 

frequency beyond 40 Hz can be classified as noise. Each of the different constituent frequency 

components of the EEG signal shows variation with DOA levels, hence it is used as the classification 

characteristic. Now, to generate the EEG signals spectrum plots, EEMD has been used which gives the 

spectral images of all the four constituent frequency components of the brain wave and then these 

images we divided according to the DOA levels which includes AO, AL, AD. 

The raw EEG signals were sampled at an interval of 5 seconds and sampling frequency of 125 Hz. 

With the appropriate window size, the signals are processed to generate EEG signals with respect to 

time. As known, EEG signals are non-stationary waves and its characteristics are better observed in 

the frequency domain, so the signals are decomposed using EEMD method to get the characteristics 

of the EEG signal at different frequency values. It is often noticed that the signal might be 

compromised because of noise induced in which occurs mainly because of external factors like loss of 

signal during collection phase or there might be cross connection of hardware setup. Using EEMD 

method, the noise signal can be fragmented out and use the necessary frequency bands according to 

the analysis. Previously implemented methods for spectral analysis show that there are chances of 

feature distortion of the EEG signal. Using STFT for spectral analysis also has the problem of selection 

of window type but using EEMD seems to overcome this as it uses the original signal to decompose 

into the different constituent signals which make up the original signal. Accordingly, the EEG data is 

filtered and decomposed and segmented as mentioned above. For all 50 patients, the data is processed 

and a new DOA index reflecting the three consciousness levels is obtained using the CNN method. 

For the signal pre-processing, a window of 5 seconds is considered because BIS value can provide 

from output monitor every 5 second. In addition, the sampling frequency of the raw EEG signal is 125 
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Hz from Phillips IntelliVue MP60 physiological monitor so we can obtain 625 sample points for 

every 5-second corresponding to BIS value. Therefore, each 5 seconds of 625 sample points of raw 

EEG signals are used for further preprocessing of EEMD and power spectrum analysis. Since the raw 

EEG signals are not adequate to train a prediction model, further feature extraction process has to be 

carried out. 

For getting differentiable features we have using the EEMD method to get the characteristics of 

the non-stationary signals at different frequency values. After the generation of the respective Intrinsic 

Mode Functions using EEMD, the IMFs are analyzed IMFs in the time-frequency domain using power 

spectrogram. The spectrograms were converted into jpeg format to be used for the CNN model training. 

Figure 3 shows a flowchart of the steps taken starting from pre-processing to the feature extraction and 

the prediction process. 

 

Figure 3. Flowchart for pre-processing, feature extraction and prediction of the EEG signal 

into different levels of anesthesia using CNN models. 
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2.3. Feature extraction 

The EEMD method used in this study derives the simple intrinsic characteristics dynamically 

without any prior knowledge of the system. The first step of EEMD comprises the addition of an 

independent uniformly distributed and zero mean white noise with matching intensity of the noise in 

the signal and apply EMD to generate a set of IMFs. The above step is iterated for N times to generate 

the ensemble of the IMF sets and then the ensemble is averaged to receive a set of IMFs. 

   

 (a)                               (b) 

Figure 4. The raw EEG and IMFs via EEMD method listed as: (a) Raw EEG Signal; (b) 

IMFs of EEG via EMD method. 

The basic working of the EEMD can be concluded as follows: 

(1) The original signal is assigned to x(t).  

(2) The local maxima and minima of x(t) is calculated. 

(3) The upper and lower envelope is generated using cubic spline interpolation between the local 

maxima and minima: fmax(t) and fmin(t). 

(4) Mean value of the envelope is subtracted from x(t). 

𝑟(𝑡) = 𝑥(𝑡) − 
𝑓𝑚𝑎𝑥(𝑡) −  𝑓𝑚𝑖𝑛(𝑡)

2
 

(5) The shift relative tolerance 𝑟𝑒𝑡𝑡𝑜𝑙 which is the stop criterion of IMF which is set to 0.3 for our 

study. 

𝑟𝑒𝑙𝑡𝑜𝑙 =
(𝑟𝑖−1(𝑡) − 𝑟𝑖(𝑡))2

𝑟𝑖(𝑡)2
 

(6) Check if 𝑟𝑒𝑙𝑡𝑜𝑙 is less than 0.3, if it is, stop the loop and consider the current r(t) as an IMF; 

otherwise assign r(t) to x(t) and loop over the Steps (2)–(6). 



5055 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5047-5068. 

(7) The original is then subtracted from r (t) and Steps (1)–(7) are repeated until x (t) cannot be 

decomposed. The original signal is then expressed as: 

𝑥(𝑡) =  ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑒𝑠(𝑡)

𝑛

𝑖=1

 

where n is the total number of IMFs and res (t) is the residual component. 

    

(a)                                  (b) 

    

(c)                                 (d) 

Figure 5. Decomposed Fourier transforms plots of IMF of EEG signal listed as: (a) Signal 

Polluted; (b) Beta (β)-wave; (c) Alpha (α)-wave; (d) Theta (θ)-wave. 

After the application of the EEMD method over the raw EEG signals for the 50 patients’ data to 

obtain the desired Intrinsic Mode Functions (IMF) plots for the different brain waves and the noise 

signal shown in Figure 4. Figure 5 shows a representation of Fourier transform of different IMF at 
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different frequencies. For the analysis, the first four IMF values are used. The IMF value ranging 

from 0–52 Hz is considered as the polluted signal or noise, the IMF value in the interval of 10–33 Hz 

is considered is the Beta (β)-wave while the signal varying from 7–11 Hz is the alpha (α)-wave and 

the signal with the interval of 3–7 Hz is the Theta(θ) wave. The remaining IMFs are neglected as their 

contribution to the original signal is minimal and therefore only certain frequency signals contribute 

to the generation of the original signal. 

The frequency-time domain analysis using the power spectrogram gives a relationship between 

the time-frequency domain and the respective IMF plots. As a result, the raw EEG signals were 

converted into two -dimensional matrices which gives the sample points on the vertical axis and the 

horizontal axis gives the frequency corresponding to the sample points. The raw signal was processed 

for an interval of 5 seconds and each plot generated by EEMD was classified as AO, AL, AD according 

to the average BIS value as mentioned above. Figure 6 shows the EEMD spectrum according to the 

DOA. These plots result in visual mapping of the brain activity without the actual use of any external 

setup and also reduce the cost and time of computation. It is worth noticing that by taking the above 

steps, the raw input values are digitized in accordance with the BIS values suggested by experienced 

anesthesiologists. 

   

(a)                         (b)                     (c) 

Figure 6. The power spectral plot of anesthetic states of IMFs 1 to 4 classified into levels 

as: (a) Anesthesia Light; (b) Anesthesia Okay; (c) Anesthesia Deep. 

2.4. Convolutional neural network 

As we are dealing with images belonging to anesthesia spectrum classification, it is reasonable to 

use CNN model for predicting the DOA levels in the EEG power spectrogram. However, it is very 

essential that the best fit model is selected for the classification because most of the conventional 

models were trained over a data set consisting of general objects. Previous work shows that the 

spectrum analysis of EEG signals using various models like CifarNet, AlexNet and VGGNet model, 

which effectively proves the advances in the field of computer vision. In this research, AlexNet, 

VGG16Net, VGG19Net, InceptionRESV2 5 layered, 6 layered and finally 10 layered convolution 

layers are deployed as shown in Figure 7. Research conducted in [26–29] shows that better accuracy 
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is attained using complex neural networks. However, training complex CNN has high computational 

time and GPU capacity. After using various models, it is shown that models with pre-trained weights 

of the ImageNet dataset give less accurate prediction results. But considering the GPU capacity and 

the sample data, a simple convolutional neural network can be used. CNN with 5 layers is used for 

simple analysis with much smaller 3 × 3 filters in each convolutional layer and combined them as a 

sequence of convolutions. Further improvement was made using the AlexNet model, 6 layered deep 

CNN and a 10 layers deep CNN model which uses multiple smaller kernel sized filters stacked up one 

after the other. VGG16 and VGG19 is 16 layers deep and 19 layers deep respectively with 3 × 3 sized 

filters used at different stages of convolutional layer instead of a larger sized filter used at a single 

point of the model. 

  

(a)                                 (b) 
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(c)                                 (d) 
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(e)                                 (f) 

Figure 7. The structure of deep learning model with fully connected layers and 

convolutional layers classified as: (a). AlexNet Model; (b) VGG16 Net Model; (c) VGG19 

Net Model;(d) 5 layers deep CNN Model; (e) 6 layers deep CNN Model; (f) 10 layers deep 

CNN Model. 

The back end for the model training was the TensorFlow framework and various python libraries 

were used for our analysis. For training the five layers CNN, an input RGB image of 128 × 128 × 3 

format and the output is three classes. The other models were trained with 128 × 128 size as an input 

image except for the VGG16 and VGG19Net model. By changing the dimension of the input size and 

using multiple non-linear layers to increase the depth of the network increases the capacity of the 

model to differentiate between the complex features of the input EEG spectrum images with lower 
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cost. With a given smaller receptive field of the effective area size of input image where output depends, 

the multiple nonlinear layers can increase the depth of the network which enables it to learn more 

complex features with a lower cost. VGG16 training the input and output size of the image was set 

to 224 × 224 × 3 while dropouts were added in between very dense layers with minor changes in the 

activation function (i.e., Relu, tanh). Simple processing and minimal optimization, mathematical 

operations for multi-dimensional array are used for achieving the best fit. The learning rate for the 

models varied from 0.01 to 0.0001 and the various batch sizes of 32, 64, and 128 were used to attain 

the best fit for the model. Each of the models was trained over different epochs varying from 50 to 200 

to get smoother accuracy curves. Our study focuses on comparison being made on the different CNN 

model and simple feature extraction method for DOA classification. All the models were trained over 

the same dataset and a comparative analysis was carried out. 

3. Results 

3.1. Prediction performance 

Initially a small sample size is used for our analysis and the models were compared. For a data 

set belonging to 25 patients, Table 2 shows an accuracy of 74% for the 5 layers deep CNN, an improved 

accuracy of 81.2% using 6 layers CNN, while the best accuracy of about 87.8% using 10 layers deep 

CNN model. The AlexNet model gave an accuracy of 75.6% while VGG16 and VGG19 gave 76.7 

and 74.3% respectively. While considering the distribution of the image set, the data is divided it into 

three sections namely training set, validation set and test set. 70% of the data was used as the training 

set while 20% of the images are used for validation and 10% of the images for testing. The GPU used 

in this work is Nvidia T4s which reduces the computational time to one-tenth. The time taken for 

complete training of the VGG16Net takes around 2.3 hours while the 5 layered CNN takes 1.2 hours. 

The images are complex and high-pixel input so having a deep convolutional layer provides an 

advantage to detect the features of the power spectrogram plots. As discussed earlier, the features of 

the EEG signal are changing with time so we can get better accuracy with larger sample size. At the 

beginning of training, the training steps and batch size are optimized according to the small sample 

size but the parameters have to change constantly to get better accuracy. In this way the CNN models 

provide the flexibility to change the layer size, the sub- layer size, the kernel size, learning rate and 

batch size to attain maximum accuracy of the training model. 

Another parameter that we need to monitor is the maximum epoch which depends on the size of 

the data set and is determined by the model’s ability to reach the steady state. The model is configured 

with the correct settings and deployed for training the entire dataset of 50 patients. During the training, 

a ModelCheckpoint is used from the callback function which is a major task to get the best results. 

The best model is saved at every epoch so that the model weights can later be used for the testing stage. 

After including all the images for training, Table 3 shows the accuracy for the 5 layered CNN is 72.5% 

while an accuracy of 74.6% is achieved with AlexNet whereas VGG16Net and VGG19Net gives an 

accuracy of 80.1 and 77.4% respectively. The best accuracy of 83.2% is observed for a model with 10 

layers. All the models are trained following early stopping criteria and batch- size of 128 was selected 

for AlexNet and VGG16Net while 64 batch-size is used for 5 layers CNN model. The datasets used in 

this study maintain balanced distribution in the training and testing procedures to avoid over and under 

fitting of the classes. As a result, it can be concluded that the proposed method provides a robust and 
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reliable benchmark for DOA level classification. The loss of the models can be observed using the 

confusion matrix. The confusion matrix is different for each model which is because of the variability 

of the EEG spectrum features and the CNN model helps to overcome the individualism and offers 

more precision and consistency. The highest error is observed for AL level while the AD level gave 

the best accuracy with least error. This means further fine tuning or better models can be used to 

minimize the error and help to analyze the features of the EEG signal efficiently. Although classifying 

the DOA level according to the BIS values of 40–60 and below 40 is not a standard way of classifying 

DOA levels. There is no boundary for classification, hence there are some anomalous behaviors for 

AL and AD classes. 

Table 2. Accuracy for different model structure for dataset of 25 patients. 

Model Structure Accuracy (%) 

5 Layered Model 74 

6 Layered Model 81 

10 Layered Model 88 

AlexNet Model 75 

Pre-Trained VGG16 Model 76 

Pre-trained VGG19 Model 73 

Pre-trained InceptionRESV2 Model 67 

Table 3. Accuracy for different model structure for dataset of 50 patients. 

Model Structure Accuracy (%) 

5 Layered Model 72 

6 Layered Model 74 

10 Layered Model 83 

AlexNet Model 74 

Pre-Trained VGG16 Model 80 

Pre-trained VGG19 Model 77 

Pre-trained InceptionRESV2 Model 70 
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It is observed that better accuracy is obtained using simple CNN models while models with more 

layers produce less accuracy in comparison to the 5 layers deep CNN. This trend can be explained as 

a result of the use of pre-trained weight of the VGG16Net which uses the ImageNet weights for 

classification might not be able to capture the features of the EEG spectrum images thereby giving less 

accuracy. Generally, it can be said that the classifications model predictions are in accordance with the 

expected, gives reasonable error rate and the DOA level prediction using CNN and EEMD feature 

extraction method was successful. 

4. Discussion 

The above results validate our approach and open up potential fields of research that were carried 

out in the time frequency domain. The conversion of the raw EEG signals into spectral plots using the 

EEMD method for DOA evaluation proves to have certain advantages over the already existing 

methods. In this study, simple preprocessing methods are used without the use of trivial conventional 

hardware setup. With the proposed framework, convoluted mathematical calculations and 

segmentation of the DOA level are physically avoided. This saves a lot of time, cost and even the use 

of experts to some extent. The work still needs to be done to reach a stage where machines or computer 

vision might be able to replace the anesthesiologists for classification tasks. With the help of the 

different CNN models, the reliability of the proposed method for DOA level classification can be 

verified. The application field is not unique and limited to a particular area, but its uses are widespread.  

 

Figure 8. Confusion Matrix for the best trained model for 50 patients. 

Furthermore, different layers of CNNs are used to explore the effectiveness of the proposed 

method. Few of the advantages of the proposed work are: 1) All the models and processing of the EEG 

signals were done without the use of external hardware and manual support. 2) The use of EEMD 

method provides more robustness, reliability and helps us to overcome the challenging problem of the 

inter mode mixing of the EEG signals. Although the use of our proposed work seems to be quite 

promising, there are certainly few shortcomings in our findings. Firstly, because of the availability of 
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a biased medical dataset our model might not perform as expected. Secondly, because of the use of 

different types of anesthetic drugs we cannot differentiate the DOA depending on the type of drugs 

used and the model can show poor performance. The CNN models tend to show poor performance 

during the transition of state in particular the model falls short to predict the AL class correctly as 

shown in Figure 8. The reason being that the transition states are often quite unstable and rapid change 

of brain activity might be observed which might go unnoticed by our CNN based models. 

In this work, the conventional deep learning models are trained to analyze the object as an image, 

however, in this study, the used features do not consider the time factor. That means the time-frequency 

plots have no meaningful temporal dynamics that are consistent across the 5-second segments. Hence, 

the next research step is to develop specific deep learning models which consider temporal dynamics. 

Currently, there is a CNN model called recurrent neural networks (RNN) or long short-term memory 

(LSTM) models can deal with problems in terms of time and continuity. Combining CNN and RNN 

(or LSTM) multi-layer models, image features and sequence features can be extracted for training. 

Recently, Convolutional/long short-term memory/fully connected deep neural networks (CLDNN) is 

a deep learning algorithm proposed by Google Inc [30], which uses multi-layer convolution to extract 

image features and then uses the LSTM layer for vocabulary tasks analysis improved by 4~6% 

compared with only LSTM. With the help of recent advances in computer vision, it is possible to 

decide on the model parameters, neural network layer, optimization technique, activation functions, 

batch normalization and fine-tuning to improve the accuracy. 

Table 4. Accuracy summary for different models with 25 patients and 50 patients. 

Model Structure 25 Patients Accuracy (%) 50 Patients Accuracy (%) 

5 Layered Model 74 72 

6 Layered Model 81 74 

10 Layered Model 88 83 

AlexNet Model 75 74 

Pre-Trained VGG16 Model 76 80 

Pre-trained VGG19 Model 73 77 

Pre-trained InceptionRESV2 Model 67 70 

From the training results in Table 4, it can be seen that deep CNN can accurately identify the 

DOA features in the EEG signals of the entire anesthesia patient, and the wrong classification results 

are within acceptable error. The results acquired support the use of CNN framework for DOA level 

estimation as many of the models showed accuracy over 80% and the accuracy plot of the best trained 

model for a dataset of 25 and 50 patients as shown in Figure 9. With these kinds of frameworks, the 

amount of anesthesia that the patient has to be infused can be decided depending on the type of surgical 

procedure without any delay. The scope of CNN models is very wide in this field as they are very 
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efficient and have universal application. One of the most interesting attributes of CNN is its ability to 

learn by itself, even if the data is non-uniform a deep layer CNN will be able to extract the optimal 

weights for feature training and these weights can later be used to train on similar input images. Even 

though the advantages of CNN are quite significant, improvement is still required to improve the DOA 

classification stability and accuracy. In future work, adding more features can help in categorizing the 

anesthesia levels such as ECG signals and the PPG of a patient and establishing a relation between 

these features and DOA. With the help of highspeed GPU even more deep layered CNN models can 

be used such as VGG19, InceptionNet, GoogleNet, ResNet. Use of additional data will help us to 

introduce more reliability into the models and help them understand the varying nature of the EEG 

signals. Another approach is the use of CNN which might be able to provide desired accuracy for a 

limited patient dataset. 

    

(a)                                               (b)  

Figure 9. Accuracy plots for 50 epochs of the best trained model listed as: (a) Accuracy 

plot for 25 patients; (b) Accuracy plot for 50 patients. 

Despite many CNN based methods have been proposed for EEG classification [31,32], the issue 

of the big data size is still standing. However, it is difficult to generate big dataset from hospitals or 

companies except consumer internet company (e.g., Google, Facebook, Amazon, etc.). In addition, the 

big dataset required to train CNN model will require more CPU and GPU power and memory. This is 

the reason behind the success of deep learning CNN utilization in big technology companies owning 

supercomputer. In considering the small dataset, there are several methods to solve this problem, 

such as transfer learning [33], generative adversarial networks (GANs) [34], and semi-supervised 

learning [35]. However, all these methods have black-box problems which mean we do not know why 

the results are like this or that. Recently, they are many discussions on explainable AI. From our point 

of view, Lalitha’s method [5] is a good approach for an explainable AI. In their paper, they used the 

nonlinear property of the EEG signals (i.e., nonlinear chaotic parameters, such as correlation 

dimension (CD), Lyapunov exponent (LE) and Hurst exponent (HE)) to identify the anesthetic depth 

levels. These three nonlinear parameters are like the feature extractions in CNN located in the 

convolutional layers of CNN model. The problem is we do not know what is going on for these 

convolutional layers to do these feature extractions which is like a black-box. However, feature 
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extractions using Lalitha’s method have physical meaning. In our previous study [23], similar method 

is used but feature extraction was based on entropy due to chaotic nature of the EEG signal. Such 

methods are all based on the use of ANN to model DOA which usually report good accuracy. The 

problem associated with this method is the need to understand the domain knowledge of the system. 

Then, based on physical or engineering principle, you need to find a good parameter to represent them. 

For CNN, you do not need any background for the system, just use the toolbox from CNN model and 

you can model them if you collect a big data plus big supercomputer. Which approach is better? It is 

still debatable. However, if we think how human being learn everything. It seems more toward to 

Lalitha’s method. In this study, fairly simple feature extraction methods are used (i.e., EEMD plus 

power spectrum analysis) with CNN classifier. Reducing the CNN layers will have an effect on 

reducing the training time and memory size for weights storage. In addition, the smaller feature will 

make it less opaque towards achieving explainable AI. 

5. Conclusions 

A significant research has been done in the estimation of DOA and several breakthroughs have 

been noticed in this field. It has been observed that a large number of assessments of the DOA were 

based on conventional manual processing of the EEG and a few works showed the visual mapping of 

the attributes of the EEG using the time-frequency domain. A lot of research has been seen on the use 

of raw EEG signals as time series input for RNN model training. The recently gained momentum in 

computer vision facilitates the use of CNN models with the capability to assess the DOA level. Use of 

the EEMD method for feature extraction opens up a new scope for research and this approach is rarely 

experienced. Using EEMD provides sturdiness and makes feature extraction easier and without the 

need of manually selecting the EEG signal characteristics and classifying them. With the use of 

different classes such as the AL, AO and AD we make the task of the anesthesiologist to monitor and 

evaluate the state of a patient’s brain during different anesthetics drug infusion into a patient and take 

rudimentary course of action to prevent the disparity caused by the different drug usage and the 

overdose of anesthesia. This further enhances the patient’s condition as there may be chances of 

psychological trauma if the level of anesthesia is not monitored properly during the transition state. 

This research work shows that there is a significant correlation between EEG and DOA. The use of 

EEMD method introduces a novel approach to extract and analyze the EEG features with nominal 

feature engineering provides an opportunity to establish safer surgical procedure with the use of 

simpler DOA predictive devices. 
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