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Abstract 

We consider second kind integral equations of the form x(s) -  ∫ )(= )(
Ω

s dttk(s,t)x y

(abbreviated x -  K x =  y  ) ,  in  which Ω  i s  some unbounded subset  of  Rn .  Let  

Xp denote the weighted space of functions x continuous on 
−
Ω  and satisfying x (s) = 

O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ 
for some sufficiently large q (and some other mild conditions on k are satisfied), then 
K  ∈ B(XP)  (the set  of bounded l inear operators on Xp),  for 0  ≤  p ≤   q.  If  also 
( I  -  K ) - 1  ∈ B (X 0 )  then  ( I  -  K ) - 1  ∈ B (X P )  fo r  0  <  p  <  q ,  and  ( I -  K ) - 1

∈ B (X q )  
if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| →  ∞ ,  and 
y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x  may be estimated 
as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that 
the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms 
of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established 
for certain cases (Ω a half-space or cone). 

A boundary integral equation, which models three-dimensional acoustic propaga-
tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the 
practical application and sharpness of the above results. This integral equation mod-
els, in particular, road traffic noise propagation along an infinite road surface sur-
rounded by absorbing ground. We prove that the sound propagating along the rigid 
road surface eventually decays with distance at the same rate as sound propagating 
above the absorbing ground. 
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1 Introduction 

We consider integral equations of the form 

                                        (1.1)  ,Ωs,(s)t)x(t)dt(s,kx(s)
Ω

−
∈=− ∫ y

where Ω is some unbounded open subset of Rn, dt is n-dimensional Lebesgue measure 

and x, y ∈  X, the Banach space of bounded and continuous functions on 
−
Ω . We 

abbreviate (1.1) in operator form as 

x - K x = y      (1.2) 
where the operator K  is defined as 

                                    .       (1.3) −∈∫= Ωs,Ω (t)dtψt)k(s,(s)ψK

Let . We suppose throughout that  for −∈= Ωts,,t)k(s,(t)ak  )Ω(1Lak,Ω0 ∈−∈

each , and that k satisfies the following assumptions:  −∈ Ωs

.Ω ||
Ω

sup1||||
Ωs

supA. ∞<∫−∈
=−∈

dtt)k(s,
s

sk  . 

B.     For all  .Ωs'withss'as0dt|t),k(s'Ω t)k(s,|,Ωs −∈→→−∫
−∈

These hypotheses imply that K ∈ B{X), the set of bounded linear operators on X, 
with norm and that if S ⊂ X is bounded then KS is bounded ,1||sk||Ωssup||K|| ∈=

and equicontinuous, but, since Ω  is unbounded, do not imply that K is compact. 
For p > 0 let wp (s) = (1 + |s|)p and let Xp denote the weighted space Xp := 

∞∞<∞=∞∈ ||.(||}||||:||||:X{ xpwpxx  denotes the supremum norm on X). Then 

x ∈ Xp if and only if x is continuous on −Ω  and x (s) = O (|s|-p) as |s| → ∞ uniformly 
in s. 

We are concerned in this paper to develop sufficient conditions on the kernel k 
(in addition to A and B) to ensure that K G B(XP), the space of bounded linear 
operators on Xp, for p > 0, and conditions which ensure that (I — K)-1 ∈ B{Xp) 
or, at least, that I — K is Fredholm as an operator on Xp. A main result is that if 

k satisfies A and B and |k(s,t) ≤  |к(s-t) | ,  s  , t   ∈ ,  where K is locally integrable −Ω
and к(S) = O(|s|-q) as |s| →  ∞ ,  for some sufficiently large q, then K ∈  B(XP) ,  
0 ≤ p ≤  q. If also I — K is Fredholm as an operator on X then it is Fredholm as an 
operator on Xp for 0 ≤ p < q, and with the same index; and if (/ — K)-1 ∈ B(X) 
then (I — K)-1 ∈ B(XP) for 0 ≤ p ≤ q. With the help of further conditions on the 
kernel k we are able to sharpen these latter results to include the case p = q. 

In terms of the integral equation (1.1), these results help us to bound the asymp-
totic behaviour at infinity of the solution x:   if (I — K)-1 ∈  B(XP  ),   p > 0, and 
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y (s) =O(|s|_p), |s |  → ∞ ,  uniformly in s, then x (s) = O(|s| -p), |s|→∞ ,  uniformly 
in s. In the case of a pure convolution kernel, k(s,t) — K(S — t), our results show 
that if K(S) = O(|s|-q) and y{s) = O(|s|-p), |s| →∞, then x (s) = O(|s|-r), |s| → ∞,  
where r = min(p, q). 

Our results and methods of proof generalise and extend previous results for integral 
equations on the real line and on the half line in Chandler-Wilde [1,2]. 

A main step in the argument is to show that, with the assumptions we make on the 

kernel k, K – K(p) is a compact operator on X for 0 ≤ p ≤  q, where pw
1Kp:(p)K W= . 

In Section 2, preliminary to the main results, we present sets of sufficient conditions 
on k which ensure that K is a compact operator on X. These conditions are of some 
interest in their own right. 

Section 3 presents the main results of the paper. In Section 4 we consider further 

the important case when k(s,t) = K(S — t), s,t∈ −
Ω , SO that (1.1) is an equation of 

Wiener-Hopf type. Illustrating the results of Section 3 we give sufficient conditions, 
in terms of the behaviour of K at infinity and the symbol of the operator I — K, for 
(I — K)-1 ∈ B(XP) in the case in which Ω is the whole or half space, and for I — K to 
be Fredholm on Xp in the more general case when Ω, is a cone, extending the results 
of [3,4] to weighted function spaces. 

In Section 5 we illustrate the general results of Sections 3 and 4 by a boundary 
integral equation in acoustics of Wiener-Hopf type which models acoustic scattering 
by an infinite rigid strip set in an impedance plane. In particular this models sound 
propagation from a motor vehicle along a road which is surrounded by sound absorb-
ing ground. Using the results of Section 4 we are able to show that, at least if the 
road is not too wide, the sound level eventually decays with distance at the same rate 
along the rigid road surface as it does over the absorbing ground. This application in 
Section 5 also illustrates the sharpness of the results obtained in Section 3. 

Throughout we shall use the following notation. Define, for A > 0 and s∈ Rn, 

B A ( s )  : = { u ∈ R n  :|s-u|<A}.    (1.4) 

Also, for A > 0, let 

ΩA :=Ω∩BBA(0) , 

and let KA  denote the "finite section" approximation to K ,  defined by 
−∈∫= Ωs,ΩA (t)dtt)ψ)k(s,:ψ(s)AK .  (1.5) 

2 Conditions for Compactness 

Various conditions for the compactness of the integral operator K in the case n = 1 
and Ω = R+ are given in Anselone and Sloan [5,6]. We generalise and modify these 
results to provide conditions for the compactness of K for arbitrary Ω ⊂ Rn. 
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Our first result (cf  Anselone and Sloan [5]) is that K is compact if k satisfies A 
and B and the following additional assumption: 

C.  as  |s|  →   ∞  with ,  uniformly in s.  ∫ →Ω 0dt|t)(s,| k −∈Ωs

Lemma 2.1 If k satisfies A, B and C then K is a compact operator on X. 

Proof Suppose that ψn  is a bounded sequence in X and let Xn  =  Kψn Since K 

maps bounded sets onto bounded equicontinuous sets, Xn is bounded and equicon-

tinuous on the whole of . Thus by the Arzela-Ascoli theorem applied to successive −Ω

regions  ,..., and a diagonal argument, X−−
21 Ω,Ω n has a subsequence  φm= Xnm which 

converges uniformly on A−Ω  for every A > 0. Now, for any integers n and m, 

.|)()(|
Ω

sup)()(|
Ω

sup||| snsm
s

snsm
s

nm|
AA

φφφφφφ −
∉

+−
∈

≤−  

For all ∈ > 0 the second term is less than ∈/2 for A sufficiently large by Assumption 
C. Also, for all A > 0, the first term is less than ∈/2 for all sufficiently large n and 
m. Thus φm is a Cauchy sequence and, since X is a Banach space, is convergent. We 
have shown that the image of every bounded sequence has a convergent subsequence, 
so that K is compact.             

For the case Ω = R+, Chandler-Wilde [2] shows that if the integral operator K is 
compact then k satisfies A, B, and the following additional assumption: 

D. ∞→→∫−∈
=− Aasdttsk

s
KK

AA 0|),(|
Ω

sup|||| Ω\Ω . 

Since the subspace of compact operators is closed in B(X), K is compact if k satisfies 
A, B, and D and if KA is compact for all A > 0. This is the case if the kernel of KA 
satisfies C for all A > 0 ie if the following assumption (cf Atkinson [7]) is satisfied: 

E. For all A > 0, , uniformly in s. −∈∞→→∫ Ωswith|s|as0dt|
AΩ

t)k(s,|

Thus 
A,B,D,E  ⇒  K compact.    (2.1) 

From our final lemma (cf Anselone and Sloan [6]) it follows that also 

A,B,D,F ⇒  K compact,    (2.2) 

where F is the following condition: 

F. For all A > 0 there exists C > 0 such that, for all , k(s,.) is Cs  Ω\Ω−∈
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continuous in ΩA ,  uniformly in s.  

Lemma 2.2 If k satisfies A, B, and F then KA is compact on X for all A > 0. 
Proof   For any subset G of Ω let BC( G ) denote the Banach space of bounded and 
continuous functions on G  . Suppose that k satisfies F and write KA as 

AKE~
AK~EAK

∧∧
+=      (2.3) 

where )cΩ\ΩBC(X:ˆand)c
_
ΩBC(X:A

~ →→ AKK ) are defined by 

,,)(),(:)(~
CA sdtttsksK

A

Ω∈ψ=ψ ∫Ω
 

   ,\,)(),(:)(ˆ
CA sdtttsksK

A

ΩΩ∈= ∫Ω ψψ  

and the extension operators )~ (ΩL)ΩBC(:E C ∞→  and )\ˆ (ΩL)CΩΩBC(:E ∞→  

are defined by 

    
⎩
⎨
⎧

ΩΩ∈

Ω∈
=

,\,0
,),(

:)(~

C

C

s
ss

sE
ψ

ψ  

    
⎩
⎨
⎧

Ω∈
ΩΩ∈

=
.,0

,\),(
:)(~

C

C

s
ss

sE
ψ

ψ  

Since k satisfies A and B, AK~  maps bounded sets in X onto bounded equicontin-

uous sets in )ΩBC( C . Thus, by the Arzelà-Ascoli theorem, AK~  is compact. 

Choose a sequence of subdivisions of  such that the measurable sets ,ΩΩ n
i

i,n
AA U 1=

=
ni,

AΩ  are disjoint and their diameters satisfy { } ∞→→Ω≤≤ nni
ni as0diammax ,

A1 . 

Now select points   and consider the sequence of operators  ni
ni

,
A,t Ω∈ →X:n

AK )(ˆ

)Ω\Ω( CBC , defined by 

   ∫∫∑ ΩΩ
=

φ=φ=φ
A

ni
A

dtttskdtttsksK n

n

i
ni

n
A )(),()(),(:)(ˆ

,
1

,
)(

Where  k n (s , t )  :=  .,...,1,\),,( ,
,, nitstsk ni

ACni =Ω∈ΩΩ∈  Then  each   i s  )(ˆ n
AK

bounded and compact since it has a finite dimensional range. Since k satisfies F, for 
all   there exists an integer N(∈) such that 0∈>

),N(n,Ω\Ωs,
dt

t)(s,kt)k(s, C

Ω

n

A

∈≥∈
∈

≤−
∫

 

so that ∈≤− )(ˆˆ n
AA KK  for )(∈≥ Nn . Thus KA is the limit of a norm convergent 

sequence of compact operators and so is compact. 
We have shown that AK~  and  are compact and, clearly, AK̂ E~  and Ê  are bounded. 

Thus, from (2.3), we see that KA is compact as an operator from X onto . But )(Ω∞L
KA maps X onto X and any sequence in X convergent in )(Ω∞L  is convergent in X. 
Thus KA is compact also as an operator from X onto X.     � 
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3 Asymptotic Behaviour at Infinity 

Let 

⎭
⎬
⎫

⎩
⎨
⎧ ∞<−+=∞∈=Ω ∫Ω

−

Ω∈
dttsGqQ q

s
q )1(sup::),0[:)(      (3.1) 

and let .  Then 0 ≤  q* ≤  n :  for example, q* = n if Ω  = R)(inf:)(** Ω=Ω= Qqq n ,  
q* = 1 if  Ω = {t = (t1, t2, ..., tn) : t1 ∈  R, |t2|,…, |tn| < 1}, and q* = 0 if Ω  has finite 
measure. 

The following assumption is stronger than Assumption A and imposes a bound 
on the rate of decay of the kernel as |s — t| → ∞: 

A ' .  Ω∈−≤ tststsk ,,)(),( κ ,  w h e r e  κ  i s  l o c a l l y  i n t e g r a b l e  o n  R n  a n d ,  
for some q > q*, κ (S)  =  O (|s| -q) as |s|  →  ∞ , uniformly in s. 

If k satisfies A' then, for some M, C > 0 and all s, t Ω∈ , 

( )
,,

1
)(),( Cts

ts
Mtstsk q >−

−+
≤−≤ κ     (3.2) 

and, since q > q* and κ  is locally integrable, 

∞<−= ∫
∈

     (3.3) 

Note that equation (1.1) is equivalent to 

  ∫Ω Ω∈=− ssdttxtsksx pp
p

p ),()(),()( )( y      (3.4) 

where  and ywyw pppp xx == :,: ).,(
)(
)(

:),()( tsk
t
s

tsk
p

pp

w
w

=  Defining the integral 

operator K(p)  by (1.3) with k replaced by K(p)  we may abbreviate (3.4) as 

xp - K(p)xp  =  yp.     (3.5) 

From the equivalence of equations (1.1) and (3.4) and the observation that, for   
X∈ψ  and , 0≥p

,)()/1(),/( )()( ψψψψψ p
P

ppp
p wKwKKwK ==    (3.6) 

it follows straightforwardly that 

),()( )( XBKXBK p
p ∈⇔∈      (3.7) 
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{ } ( ) )()( 1)(1 XBKIXBKI p
p ∈−⇔∈−

−−     (3.8) 

Also notice that 

  I — K   injective on  X   I — K  injective on   X⇒ p   (3.9) 
      ⇔  I – K(p)  injective on X.   (3.10) 

Before we proceed with the first theorem the following technical lemmas are re-
quired. 

Lemma 3.1 For q > q* 

   ∫Ω

− ∞→→−+
)(\

2
1

0)1(
sB

q

s

sasdtts  

with Ω∈s ,  uniformly in s. 
Proof  Let   Then (see (3.1) and the definition of is .02/)( * >−= qqε

ε+*)*
q

Gq  

finite. Also, for all Ω∈ts, , 

( ) ( ) ( ) εε −+−− −+−+=−+ tststs qq 111 )( *

 

and hence 

∫∫ Ω

+−−

Ω

− −++≤−+
)(\

)(2/1

)(\
2
1

*

2
1

)1()1()1(
sB

q

sB

q

ss

dttssdtts εε
 

   ε
ε

−
+

+≤ )1( 2/1
* sG

q
 

       0→

as ∞→s , uniformly in s.         □ 

Lemma 3.2 For , define *,0, q>+≥ βαβα

∫Ω

−− Ω∈−++= sdttstsf ,)1()1(:)( βα
αβ  

Then 

,)(sup: ∞<= ∫ΩΩ∈
sfF

s
αβαβ  

and, moreover, if  ∞→→> ∫Ω
sassf 0)(,0, αββα  with Ω∈s ,  uniformly in s. 

Proof  Since , *q>+ βα

   .)1(sup )( ∞<−+= ∫Ω

+−

Ω∈
+ dttsG

s

βα
βα  



Asymptotic behaviour at infinity 

Clearly  if either α = 0 or β = 0. βααβ +≤ Gsf )(
Suppose now that α  > 0, β > 0. Define the functions 

 

    ,
1

1
,1min:)(1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
+

=
β

ts
t

tH s  

    ,
1

1
,1min:)(2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
β

t
ts

tH s  

Then 

( ) ( ) ( )
( )⎪⎩

⎪
⎨
⎧

≥−−+

≥−+
=−++

+−

+−
−−

,),(1

,),(1
11

2)(

1)(

ttstHts

ttstHt
tst

s

s

βα

βα
βα  

and hence 
)()()( 21 sIsIsf +≤αβ      

where 
   ( ) ( ) ,,)(1:)( 1

1 Ω∈+= ∫Ξ

+− sdttHtsI s
βα  

  ( ) ( ) .,)(1:)( 2
2 Ω∈−+= ∫Ξ

+− sdttHtssI s
βα  

Now ,,,1)(),( 21 Ω∈≤ tstHtH ss  so 

,2,1,)( =≤ + jGsI j βα  

so that  Also .2 βααβ +≤ GF

∫∫ ∩Ω

+−

Ω

+− +++=
)0(

1)(

)0(\

1)(
1

2
1

2
1

)()1()()1()(
ss

B sB s dttHtdttHtsI βαβα  

βα

β

βα
+Ω

+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+

+
++≤ ∫ G

ss

s
dtt

s
B

2
1

2
1

)0(\

)(

1

1
)1(

2
1

 

 → 0 

as |s| → ∞ with Ω∈s , uniformly in s.similarly 

∫∫ ∩Ω
+−

Ω
+− −++−+=

)(
2)(

)(\
2)(

2
2
1

2
1

)()1()()1()(
sB ssB s

ss

dttHtsdttHtssI βαβα  

βα

α

βα
+Ω

+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+

+
+−+≤ ∫ G

ss

s
dtts

sB
s 2

1

2
1

)(\
)(

1

1
)1(

2
1

 

 → 0 
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as |s| → ∞ with Ω∈s , uniformly in s, by Lemma 3.1.     □ 

Our first main result is that A' and B are sufficient conditions to ensure, that 
)( pXBK ∈ for 0  ≤  p ≤ q.  

Theorem 3.3 If k satisfies A' and B and 0 ≤ p ≤ q then k(p) satisfies A and B and 
).(,)( )( XBKXBK p

p ∈∈  

Proof  For s,  ,nRt ∈
p

p

p

t
ts

t
s

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+=
1

1
)(
)(

w
w

 

             ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+≤
p

p

t
ts

1
12  .     (3.11) 

From the above inequality and equation (3.2), 
{ }

( )⎪⎩

⎪
⎨
⎧

>−−+

>−−+++−+
≤

−−−

,,)(1

,,)1()1()1(2
),()(

ctstskc

ctststtsM
tsk

p

qppqp
p    (3.12) 

Hence we have, for Ω∈s , where  and are defined in Lemma 3.2,  αβf αβF

.}{2||||)C1(

)}()({2||||)C1(|)(|

,0

,0
)(

pqp,q
pp

pqp,q
ppp

FFk

sfsfkdtts,k

−

Ω −

+++≤

+++≤

Ω

Ω∫  

Thus k(p) satisfies Assumption A. To show that k(p) satisfies Assumption B, note that 

)|t(k')s()t(k)s(tk
t
s

tk
t
s

'spsps
p

p
s

p

p ww
w
w

w
w

−≤− |)(
)(
)'(

)(
)(
)(

'  

since | |  1. Hence ≥)(twp

      . 11
)()( |||||)(||||||)()(|),(),(| s'spspp

pp kksks'sdtts'ktsk −+−≤−∫Ω www

But WP is continuous and k satisfies Assumptions A and B, so k(p) satisfies Assump- 

tion B. The rest of the lemma follows from the equivalence in (3.7).   □ 

The next theorem shows that, under the same assumptions, K — K(p) is in fact 

compact for 0 ≤ p ≤ q. 

Theorem 3.4 If Assumptions A' and B are satisfied by k and 0 ≤ p ≤ q then 

∫Ω
→− 0|),(),(| )( dttsktsk p  
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as |s| → oo with Ω∈s , uniformly in s, so that K — K(p) is a compact operator on X. 

Proof Define 

.dttsktsksF p |),(),(|:)( )(−= Ω∫  
 

We have immediately from Assumption A' that, for Ω∈s , 

)()(

|)(|1
)(
)(

)(

21 sFsF

dttsk
t
s

sF
p

p

+≤

−−≤ ∫Ω w
w

    (3.13) 

where 

∫∫ ∩ΩΩ
−−=−−=

)(2)(/1

2
1

2
1

||||

)(|1
)(
)(

:)(,|)(|1
)(
)(

:)(
sB

p

p

sB
p

p

ss

dttsk
t
s

sFdttsk
t
s

sF
w
w

w
w

. 

From (3.2) and (3.11), for |s| sufficiently large we have 

0

|)(|2|)|1()12()(
)(2

1 s1
||s

→

+−++≤ ∫Ω −
−

B
sfMdttsMsF pqp,

qqp

 

as | s |→ ∞ with Ω∈s , uniformly in s, by Lemmas 3.1 and 3.2. Let 

.1
||||1

||1
)(
)(

1sup:)(
2
1

)(
2
1

||

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−+

+
=−=

∈

p

p

p

s
s

Bt
p

ss

s
t
s

sc
w
w

    (3.14) 

Then 

0
2 ||||)()(

→
Ω≤ kscsF p  

  
as |s| → ∞, uniformly in s. We have just shown that F(s) → 0 as |s|→ ∞, ie that 
k-k(p) satisfies Assumption C. Hence K-K(p) is compact from Theorem 3.3 and 
Lemma 2.1.           □ 
 
Theorem 3.5 If k satisfies A' and B, 0 ≤ p < q, and (I - K)-1 ∈B(X), then               
(I-K(p))-1∈B(X)and(I-K)-1∈B(Xp). 
Proof Suppose that Assumptions A' and B are satisfied by k and that (I-K)-1∈   
B(X). Then, for 0 ≤ p < q, K(p)

 ∈(X) and K(p-K is a compact operator on                 
X, by Theorems 3.3 and 3.4 respectively. Moreover, from (3.10), I-K(p) is injective 
on X.  Thus (I – K(p))-1 ∈B(X) since I – K(p)  = (I-K) +(K –K(p)) is the 
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sum of an invertible operator and a compact operator and so satisfies the Fredholm 
alternative. That (I - K)-1∈B(XP) then follows from (3.8).    □ 
 
As a corollary to the above theorem we have 
 
Corollary 3.6 Suppose that the conditions of the previous theorem are satisfied and 
that y∈ Xp for some 0 ≤ p < q. Then equation (1.1) has a unique solution x ∈Xp   
and 

 ,,|)|1(||||)(| Ω∈+≤ −
∞ ssCsx pp

p y          (3.15) 

where Cp denotes the norm of (I-K)-1 ∈ B(XP). 

The previous results do not extend as they stand to the case p = q, since A' and 
B are not sufficient conditions on k to ensure that K-K(q) is compact: see [2]. We 
now examine the case p = q further. Define 

),,(
)(

)(
:),()( tsk

t
ts

tsktk
q

q
s

w
w −

==     (3.16) 

and the operator K , with kernel K , by (1.3) with K(k) replaced by )(kK . 

Lemma 3.7 If k satisfies A' and B then k  satisfies Assumptions A, B and D. 
Proof  Let )0(:*

AA BΩ=Ω  Recalling the inequality (3.2), for A ≥ 0 and Ω∈s  we 
have 

∫

∫ ∫ ∫

ΩΩ

Ω ∩Ω Ω

+⎟
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⎞
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⎝
⎛

+
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dttsk
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q

sB sB
qq

q

w

ww
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Thus k  satisfies Assumptions A and D. Further, since k satisfies Assumption B so 
does k  (cf proof of Theorem 3.3).                              

We now show that K-K(q) + K  is a compact operator. 

Theorem 3.8 If k satisfies Assumptions A' and B then 

∫Ω →+− 0|)()()t,s(k| )( dtts,kts,k q    (3.17) 

as |s| → ∞ with Ω∈s , uniformly in s, so that K — K^ + K is a compact operator   
on X. 
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Proof Since k satisfies A', from (3.13) and (3.14), 

∫ ∩Ω Ω →≤−
)s(B

2
1

s|

)(

|

0||||)(),(),(| kscdttsktsk q
q    (3.18) 

as |s| → ∞. Thus, and since k  satisfies Assumption D, it remains only to show that 
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By (3.2) and Lemma 3.1, for |s| sufficiently large, 

.||,0|)|1()(
)(\

2
1

|s|

1 ∞→→−+≤ ∫Ω
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Now 

∫Ω →≤ 0
)(

)()(1 t
dtscMsJ
q

q w
    (3.21) 

as |s| → ∞, uniformly in s. Further, from (3.11), 
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so that 
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as |s|→ ∞ with Ω∈s , uniformly in s, by Lemma 3.1.          □ 
 
Define AK  a "finite section" version of the operator K , by 

∫Ω Ω∈=
A

,)(),()( sdttψtsksψK A     (3.23) 

We have the following extension of Theorem 3.5 to the case p = q. 
 
Theorem 3.9 Suppose that k satisfies A' and B, that (I-K)-1 ∈  B(X) and that 

AK  is compactor all A > 0. Then (I-K)-1 ∈B(Xq)  and (I-K(q))-1∈B(X). 
Proof Since AK  is compact for all A > 0 and, by Lemma 3.7, k  satisfies A, B and D, 
K  is compact. Thus, and by Theorem 3.8, K-K(q) is compact. The result follows 
as in the proof of Theorem 3.5.        □ 
 
From Lemmas 2.1 and 2.2, AK  is compact for all A > 0 if k  satisfies E or F. Applying 
Lemmas 2.1 and 2.2 we obtain the following additional criterion for compactness of 

, utilised in Sections 4 and 5. AK
 
Lemma 3.10 Suppose that k satisfies A' and B and that, for every A > 0,            
wq(s-t)k(s,t) = k*(s,t) + o(l) as |s|→ ∞ with Ω∈s , uniformly in s and t                  
for t∈  and that k* is continuous and bounded on AΩ ΩΩ ×  and satisfies F. Then   

 is compact for all A > 0 so that K  is compact. AK
P r o o f  Def ine ,letand),,(),(),(),(/),(*),( ,1121 AKtsktsktsktwtsktsk q −==   

A,2K  denote the integral operators defined by (1.3) with k replaced by 21 kandk ,   
respectively. Then it is easy to see that 1k  satisfies A, B, and F, so that, by Lemma 
2.2, AK ,1  is compact for all A > 0. Hence and by Lemma 3.7, 2k  satisfies A and B. 

Moreover, 2k (s,t) = (wq(s-t)k(s,t)-k*(s,t))/wq(t) → 0 as s → ∞ with Ω∈s , 
uniformly in s and t for 2so, kt

A
Ω∈  also satisfies E. Thus A,2K  is compact and so 

 is compact for all A > 0.         AAA KKK ,2,1 +=
  
Combining Theorem 3.9 and Lemma 3.10 we have the following extension of Corol-
lary 3.6. 
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Corollary 3.11 Suppose that the conditions of the previous lemma are satisfied, that 
(I-K)-1 ∈ B(X), and that y ∈ Xp for some 0 ≤ p ≤ q. Then equation (1.1) has a 
unique solution x ≤ Xp, and this solution satisfies the inequality (3.15). 
 

The above theorems, 3.5 and 3.9, give conditions for the invertibility of I-K   
in the weighted space Xp. In cases where we do not know that (I-K)-1 ∈ B(X)     
these results do not apply, but we may still be able to obtain information about the 
Fredholm properties of I-K. For p ≥ 0 let φ (XP) ⊂ B(Xp) denote the set of all 
Fredholm operators on Xp (see eg Jörgens [8] for definitions). We have the following 
result: 

 
Theorem 3.12 Suppose that k satisfies A' and B and that I - K∈ φ (XP) for some       
p in the range 0 ≤ p < q. Then I - K ∈ φ  (Xp) for all 0 ≤ p < q, and the index of       
I - K is the same in each of these spaces. 
Proof Note that the inverse operations of multiplication by wp and multiplication by 
1/wp are isometric isomorphisms from Xp to X and from X to Xp, respectively. Thus 
each of these operations is a Fredholm operator of index zero. It therefore follows 
from (3.6) and a standard result on the composition of Fredholm operators (see eg [8, 
Theorem 5.6]) that 

I – K ∈φ  (Xp) ⇔ I - K(p) ∈ φ  (X)         (3.24) 

and that if I – K ∈φ(Xp) then the indices of I - K ∈φ  (Xp) and I – K(p) ∈φ (X)        
are the same. 

Now suppose that I - K∈φ (Xp) for some p with 0 ≤ p < q. Then, by the above 
remarks, I - K(p)∈ φ(X) with the same index, and since, by Theorem 3.4, K – K(p) 
is compact, it follows (see [8,Theorem 5.12]) that I – K ∈φ(X) with the same index. 
Reversing this argument we can show that, if I - K ∈φ(X) then, for any p with 
0 ≤ p < q, I - K ∈φ (Xp) with the same index. The result follows.   □. 
 
Remark 3.13 The above result depends on the compactness of K - K(p). If the 
conditions of Lemma 3.10 are satisfied then K - K(q) is also compact and Theorem 
3.12 holds with the range 0 ≤ p < q extended to 0 ≤ p < q. 
 
4 Wiener-Hopf Integral Equations 

We consider the important special case when k(s,t) = k (s -t), s, t∈ Ω , so that (1.1) 
is an equation of Wiener-Hopf type (see eg [3,4,8-11]). The conditions of the previous 
section simplify somewhat in this special case as the following lemma illustrates. 

Lemma 4.1 If k(s, t) = k(s- t), s, t ∈ Ω , k is locally integrable, and, for some q > q*, 
k(S)  = O(|s| -q) as |s| → ∞, uniformly in s, then k satisfies A' and B. 



Asymptotic behaviour at infinity        14 
 
 
 
Proof Clearly k satisfies A'. To see that k satisfies B note that, for all A > 0, 

     

0

|))(()(|

|)()(||),(),(|

)0(A
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→
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dtts'κtsκdtts'ktsk
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BB AA

as s' → s, since к is locally integrable. Also, for some M, C > 0 and all s,t ∈ Ω  к   

satisfies (3.2). Thus, for |s'- s| ≤ 1 and A ≥ C, 
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⎞
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++

sB q

B qqB
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ts
dtM
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as A → ∞  by Lemma 3.1.          □. 
 
Note further that if k satisfies the conditions of Lemma 4.1 and also 

|s |q κ  (s) = *(s) + o(l) as |s| → ∞, uniformly in s,  (4.1) κ
with * bounded and uniformly continuous on Rκ n, 

then the conditions of Lemma 3.10 are satisfied. 

Throughout the remainder of the section we suppose that k(s,t) = κ  (s - t), 
s,t ∈ Ω , with k locally integrable. 

Combining the above lemma and remark with Theorems 3.5, 3.9, and Lemma 3.10 
we obtain 

 
Theorem 4.2 Suppose that, for some q > q*, k(s)  = O(|s |-q) as |s| → ∞, uniformly 
in s. Then K ∈  B(XP) ,  0 ≤  p  ≤  q. If also (I -K) -1  ∈  B(X)  then (I -  K) -1∈  B(XP) ,  
0 ≤  p < q. If,  moreover, (4.1) holds, then (I  -  K) -1  ∈  B(Xq) .  
 

In the specific cases {s==Ω=Ω + :and nn RR 1,…,sn}∈Rn : sn > 0} necessary 
and sufficient conditions for (I - K)-1 ∈ B(X) are known in terms of the Fourier 
symbol of the operator I - K, defined by 
 
     nn si ds,sκe RR ∈∫−= ξξφ ξ )(1)( .

 
(ξ.s the scalar product of ξ and s). If κ ∈ L1 (Rn) and either (a) Ω = Rn; or (b) 

n
+=Ω R  and n ≥ 2; then (I - K)-1 ∈ B(X) if and only if 

           (4.2) nR∈≠ ξξφ ,0)(ˆ
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(see [8,3]). (Note that if Ω, = Rn or n
+R  then q* = n so that  ∈ Lκ 1(Rn) if the condi-

tions of Lemma 4.1 are satisfied.) Thus, as a corollary of the previous theorem, we 
have the following extension of the results of Wiener [8, page 340] and of Goldenstein 
and Gohberg [3] to the weighted spaces Xp. 
 
Theorem 4.3 Suppose that Ω = Rn or n

+R  (with n  2 in the second case). Suppose ≥
further that, for some q > n, (S)  = O(|s|κ -q) as |s| → ∞, uniformly in s, and that 
(4.2) holds. Then (I - K)-1 ∈ B(XP), 0 ≤ p < q. If, moreover, (4.1) holds, then also 
(I - K)-1 ∈ B(Xq). 
 
Note that the case Ω = R+ is excluded from the above result. Sufficient conditions 
for the invertibility of I - K on Xp in the case Ω = R+ are given in [2]. 

For a larger class of regions Ω the non-vanishing of the symbol , while not known φ̂
to guarantee the invertibility of I – K on X, still ensures that I – K is Fredholm. For 
example, this is the case if Ω is a connected open conic set, provided the boundary 
of Ω, except at the point 0, is a smooth surface (the case if Ω is a circular cone, etc.).  

Combining these observations with Theorem 3.12 and Remark 3.13 we have the 
following extension of the results of Simonenko [4] to the weighted space Xp. 
 

Theorem 4.4 Suppose that  is a connected open conic set, and 2)(RΩ ≥⊂ nn

that the boundary of Ω, except at the point 0, is a smooth (C1) surface. Suppose 
also that, for some q > n, κ(S) = 0(|s|-q) as |s| → ∞, uniformly in s, and that (4.2) 
holds. Then I – K ∈ φ (Xp), 0 ≤ p < q, and has index zero in each of these spaces. 
If, moreover, (4.1) holds, then also I — K φ∈ (Xq) with index zero. 
Proof Simonenko [4] established that if (4.2) holds then I — K ))Ω(( pLφ∈ , for 
1  p < ∞ , and this result is established also for p = ≤ ∞  in [12]. Since K is a 
continuous mapping from  to the closed subspace X it is easy to see that ⇒∞ ))Ω(L
/ - K ⇒∈ ∞ ))Ω((Lφ  I - K )(Xφ∈ . Thus I - K )(Xφ∈ . Further, Simonenko 
[4] shows that I — K has index zero as an operator on , and the ∞<≤ pLp 1),Ω(
homotopy argument he uses applies equally to I - K as an operator on X. Thus 
I — K )(Xφ∈  with index zero. The result now follows from Theorem 3.12 and 
Remark 3.13.               □. 

5 An Application in Acoustics 

Consider the following boundary value problem for the Helmholtz equation in the 
half space : }0:R),,({:R 3321 >∈==+ sssss 33
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,RinΔ 3
+=+ Fuu  

,RRon0 32
+∂==+

∂
∂ ui
n
u β               (5.1) 

u satisfies the Sommerfeld radiation condition. 

In (5.1) the functions  and F are supposed given, with  )R( 2
∞∈ Lβ )R( 3

2 +∈ LF
compactly supported and 0≥ℜ βe . 

Le t   denote  the  s t r ip  32 RRΩ +∂=⊂ }R0:),{( 2121 ∈<< ssss .  Def ine  β  by  

              (5 .2)  
⎪⎩

⎪
⎨
⎧

∈

∈
=

,Ω\R,

,Ω,0
)(

2
c s

s
s

β
β

where Cc ∈β  with 0c >ℜ βe . 
The boundary value problem (5.1) models outdoor sound propagation from the 

source region (the support of F) over a flat ground plane. In this context |u | is the 
amplitude of the pressure fluctuation due to the sound wave and β the relative surface 
admittance of the ground plane: its value β(s) at a particular point s ∈  R2 depends 
on the frequency of the sound source and on local properties of the ground at that 
point [13]. Where β = 0 the ground is perfectly rigid while where 0≥ℜ βe  the 
ground is energy absorbing. Thus the choice (5.2) models a rigid infinite strip (Ω) in 
an otherwise homogeneous energy absorbing plane. In particular, the boundary value 
problem (5.1) with β given by (5.2) is a good model of sound propagation above a 
long straight road (the rigid strip Ω) surrounded by absorbing ground (for example 
grassland) [14]. 

An interesting practical question is at what rate the sound generated by a motor 
vehicle decays with distance along the road. Using the results of the previous section 
we .shall show that, at least if the width of the road is not too large, for an observer 
on the road surface, while the decay in the sound pressure with distance may initially 
be the same as above a completely rigid ground (O(|s | -1)) the decay with distance 
must ultimately be that for a completely absorbing ground (O(|s | -2)). To the best 
of our knowledge this result has not been previously been established. 

The Green's function (s,t) which satisfies (5.1) with F(s) = 
c

Gβ δ (s — t) and 

β(s) = , is given by [15] 2
c R, ∈sβ

  
||4||4)(c t's

e
ts

e
ts,G

|t'si||tsi|

−
−

−−=
−−

ππβ  

      
22 )γ()1(22

cc

u|t's|
|t'si|c

βuiu

dueei

+−+−

∞
+

−−
− ∫

γβπ
β  

      ,)1r(
2

)33(2)1(
0

tsc
c

c eHβ +−−+ ββδ      (5.3) 
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fo r  s  =  ( s 1 , s 2 , s 3 ) ,  t  = ( t 1 , t 2 , t 3 )  .  Here  t '  =  ( tts ≠∈ + ,R3
1 , t 2 , - t 3 )  deno tes  the  

image  o f  t  in  the  g round  p lane ,  r  =  |,|/)(γ,)()( 33
2

22
2

11 t'stststs −+=−+−  
and δ  is given by 

  |}]|r1)({[][ 2
33c t'stseHmH cc −−−++ℜ−ℑ= βββδ  

    
⎩
⎨
⎧

≤
>

=
.0,0
,0,1

][
u
u

uH

In (5.3),  01( 2 ≥−ℜ ce β  and the branch cut for the square root in the integrand 
should be chosen so that the square root depends continuously on u and takes the 
value )γ( ci β+  at u = 0. 

From (5.3) it is easy to see, using Watson's lemma and the asymptotic behaviour 

of the Hankel function  for large argument in the case )1(
0H cβeℜ  > 0, that, for any 

constant C > 0, as |s - t |  with s∞→ 3 + t3 , ≤  C, 

     
⎪
⎩

⎪
⎨

⎧

>ℜ−=

=

−

−

−
−

,0),||(

,0,~
)t,s(cG

2

||2

|)|exp(

c

c
ts

tsi

etsO β

β
β π     (5.4) 

uniformly in s and t. A full asymptotic expansion for  in the limit |s - t | 
c

Gβ ∞→  

is given in [16]. The asymptotic result (5.4) illustrates the faster decay rate over 
absorbent ground ( ceβℜ  > 0) than over rigid ground ( cβ  = 0). 

Applying Green's theorem to u and   in , the boundary value problem (5.1), 
c

Gβ
3R+

with β given by (5.2), can be reformulated as the following boundary integral equation 
for x, the restriction of u to Ω  [7]: 

  ,Ω(t))(β)()( βΩ
∈−+= ∫ sdt,xtsissx

cc gy     (5.5) 

with, for s = ( s 1 , s 2 )  ∈  R2, 
         (5.6) ,)()),0,,((:)( 213 dttFtssGs cR β∫ +

=y

            )0),0,,((:)(
21 ssGs

cc ββ =g

              
22 202||2
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us||
c

s|i|

iuu

due|s|iei
s

e

βπ
β

π −−

∞
+−=

−

∫  

             .)1|(|
2

2)1(
0 c

c sH ββδ −+      (5.7) 

Equation (5.5), a convolution equation on the strip Ω, is identical to equation (1.1) 
if we define 

           .Ω),(:)(:)( cc ∈−=−= ts,tsitsts,k ββκ g    (5.8) 
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From (5.4), since  > 0, it follows that y(s) = O(|s |ceβℜ -2,) as |s| , uniformly ∞→

in s. Further it can be seen from (5.3), or more conveniently from an inverse Hankel 

transform representation of (s,t) [17] that (.,t) is continuous in 
cβ

G
cβ

G +
3R  except at 

t. Thus y ∈  Xp for 0 ≤  p  2. Also, from (5.7) it can be seen that is continuous ≤
cβ

g

in R2 except for an integrable singularity at 0. Thus k and κ  satisfy the conditions 
of Lemma 4.1 with q = 2, so that k satisfies A' and B. 

We have shown that k satisfies the conditions of Theorem 3.3 so that, where K is 
the integral operator (1.3) with k given by (5.8), we have 

Theorem 5.1 For 0 ≤  p  2, K ∈  B(X≤ p) and K(p) ∈  B{X). 

To obtain similar mapping properties for the inverse operator (/ — K)-1 and 
establish the asymptotic behaviour of the solution x of equation (5.5) we need first 
that (I — K)-1 ∈B(X). Now it is easily seen that 

   ∫
∈

=
Ω

Ω

sup dt|)s,t(k|||K||
s

 

             ∫≤
Ω

ββ .dt|)t(|||2 cc g      (5.9) 

Thus || K || < 1 provided d (the width of Ω) is sufficiently small. Thus we obtain 

Theorem 5.2 Provided d is sufficiently small so that the right hand side of (5.9) 
is < 1, (I — K)-1  B(X) so that equation (5.5) has a unique bounded continuous ∈
solution x. 

As y E Xv for 0 ≤  p  2 and k satisfies A' and B with q = 2 we can combine ≤
Theorems 3.6 and 5.2 to immediately obtain that also (I — K)-1 ∈  B(XP) and that 

      ∞→−= s,|s|Osx p )()( , 
for 0 ≤  p < 2. To sharpen this result, note that, from Rawlins [16],    

        ,/i:a,sae~s c
|s|i

c
⎟
⎠
⎞⎜

⎝
⎛−=− 22 2)( πββg     (5.10) 

as s , uniformly in s ∈  R∞→ 2. Thus (4.1) is satisfied with *κ (S) := | . We can s|iae
therefore apply Theorem 4.2 to obtain 

Theorem 5.3 If the condition of the previous theorem is satisfied then (I— K)-1 ∈  
B(XP), 0  p  2, so that the solution of equation (5.5) satisfies x(s) =O(|s|≤ ≤ -2) as 
|s|  uniformly in s ,∞→
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This example we have given, of practical interest, also serves to illustrate the 

sharpness of the results we have obtained in Section 3. From (5.10) it follows that if 
X∈ is compactly supported then ψ

   ,sedt)t(ea~)s(K |s|it.ŝi 2

Ω

−−∫ ψψ          (5.11) 

as |s|  uniformly in  ,∞→ |s|/sŝ = , where ŝ .t denotes the scalar product of ŝ  and t. 
In general the integral on the right hand side of (5.11) will not vanish for any s Ω∈  
so that  pxK ∉ψ  for  p > 2 even though ,X p∈ψ  for all p > 0. Thus  for )( pXK ∉

p > 2. 
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