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Abstract

Cardiovascular disease (CVD) was the second-largest cause of death in the United

Kingdom in 2014 [1], accounting for 32% of all deaths in 2009 [2]. CVD encompasses

many diseases, one of which is coronary artery disease (CAD), otherwise known as

atherosclerosis. Atherosclerosis is the build-up of fatty material, called plaque, inside

the wall of the artery. Over time, this plaque will grow too large or break off, causing

a blockage resulting in a heart attack. Currently, mortality from CAD has decreased by

72% between 1979 and 2013 [3]. However, predictions show that if the increasing trend

of Body Mass Index (BMI) continues, then mortality from CAD could start increasing

again [4]. There are several different methods currently available to the National Health

Service (NHS) to diagnose CAD. However, there are long waiting lists and expensive costs

associated with current diagnosis methods.

Our aim is to look at a non-invasive approach of diagnosing CAD. We have limited

our investigation to simple model problems. Therefore, further work would be required

to consider more complex cases which align with the real-world application.

In this thesis, we consider both 1-dimensional (1D) and 2-dimensional (2D) problems

modelled by an acoustic wave equation with a forcing function which attempts to emulate

a localised disturbance caused by CAD. We use an explicit finite difference method (FDM)

to approximate the solution in our partial differential equation (PDE) and discard the

disturbance location used. Having added noise to these approximations in an attempt to

mimic noise from real readings, we record these approximations at specific locations on

the surface of our domains to imitate data collected from actual sensors. Using this data

in the Kalman filter (KF), where guesses for the disturbance location are made, we can

estimate the approximation of u throughout our domain. Using data generated by the

KF, we compute likelihood estimates for each guess made and obtain the most probable

disturbance location used to generate our sensor readings.
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x̃n+1, otherwise known as the predicted mean in KF literature.
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Ã A matrix, equivalent to Φ̃
T
AΦ̃ which is used only to simplify

notation in this thesis.
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Ṽ n
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Chapter 1

Introduction

In this chapter, we first look at the motivation behind conducting this research. We

follow this with a brief literature review linking our model problems to their real-world

application while detailing how much more research would be required to make this

concept a reality. We finish this chapter by outlining the aims for this thesis, the contents

chapter-by-chapter and our achievements and contributions to knowledge.

1.1 Motivation

Cardiovascular disease (CVD) was the second-largest cause of death in the United

Kingdom in 2014 [1]. CVD is responsible for almost 32% of all deaths in 2009 and a

significant cause of morbidity in England [2]. CVD encompasses diseases of the heart

and venous system, including coronary artery disease (CAD), cerebrovascular disease and

peripheral arterial disease. Coronary arteries supply blood which carries oxygen and

essential nutrients to the heart muscle, enabling it to function, see Figure (1.1)(a). In

CAD, arteries become blocked by a process known as atherosclerosis. Atherosclerosis

is the build-up of fatty material inside the wall of the artery, called plaque, see Figure

(1.1)(b). This plaque has the potential of becoming too large or breaking off and getting

lodged in a narrow coronary artery, resulting in the loss of blood supply to the heart

muscle, causing a heart attack and permanent damage to the heart tissue.

Mortality from CAD in England has reduced by 72% between 1979 and 2013.

However, the proportion of the population suffering from CAD has remained constant

at 3% [3]. CAD remains a substantial burden to society, and it was reported in 2017 to

1
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(a) Human heart diagram depicting the

location of the coronary arteries [5].

(b) Different stages of atherosclerosis

[6]. Left-right: no obstruction - severe

obstruction caused by a build-up of plaque.

Figure 1.1: Graphical interpretations of a human heart (illustrating the location of

coronary arteries) and the different stages of atherosclerosis.

be amongst a set of diseases which result in the most years of life lost [7]. In 2002 it

was reported that CAD had a large economic impact, estimated to cost the UK economy

£7.06 billion annually resulting from health care costs, informal care and productivity loss

[8]. Not only does CAD affect the economy, but it also destroys the lives of the individual

involved and their family.

The World Health Organisation estimates that over 75% of premature CVD is

preventable. By targeting risk factors, the burden of CAD on both individuals and

healthcare providers could be reduced [9].

Risk factors for the development of CAD can stem from lifestyle choices such as

smoking, physical inactivity and obesity but also family history, ethnicity, sex and age

[10]. It is suggested by Lassale et al. (2017) that whether or not someone is obese should

be considered as an independent risk factor [11], due to an increased risk of CAD, by 28%,

when compared to those in the healthy weight range.

Amongst the UK population, obesity is rising. In 2017, approximately 64% of adults

were either overweight or obese. Moreover, 29% of adults in 2019 were classed as obese

which is an increase of 26% since 2016 where 23% of adults were classed as obese [12].

It is predicted that if Body Mass Index (BMI), the score used to define if someone is

overweight or obese, continues to increase then mortality from CAD could increase [4].
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1.2 Context

There are several different methods currently available to the National Health Service

(NHS) to diagnose CAD. These include, for example, an electrocardiogram (ECG) and

magnetic resonance imaging (MRI) [13]. Access to this specialised equipment and the

requirement for a trained professional to analyse the results can cause delays in diagnosis

- with a median waiting time of 2 weeks for an MRI scan, and as much as 2% of patients

waiting longer than 6 weeks for diagnosis [14]. Additionally, the cost of these procedures

is expensive. Within the NHS, an ECG costs £160, and an MRI scan costs £130 [15].

There is extensive literature available that makes known the importance for early

detection of CAD; [16], [17] and [18]. There have been numerous studies that look into

the possibility of diagnosing CAD using acoustic detection of coronary turbulence; [19],

[20], [21], [22], [23], [24] and [25]. These studies look at a wide range of techniques and

include some clinical trials, with a varying level of success. However, these papers mainly

focus on the medical aspect of acoustic detection of coronary turbulence. Two elementary

systems for diagnosing CAD using acoustic detection of coronary turbulence are discussed

in detail, see [24]. Both systems make use of a commercially available digital electronic

stethoscope to record noises, with the aim of determining if someone is at high risk of

suffering from CAD. Small clinical trials were conducted in both cases, resulting in a

success rate of 89% and 76%.

Given the associated costs and the duration of time taken to get diagnosed with

CAD currently, we will be looking at a cheaper and non-invasive approach for localising

CAD using acoustic detection of coronary turbulence in this thesis. This work is purely

theoretical, so would need support from clinical trials in the future. In addition to this,

we have limited our investigation to model problems in simple cases. Therefore, further

work in this field would be required in the future where more complex cases are considered

such that this theory could be applied to the real-world application of diagnosing CAD.

Acoustic detection of coronary turbulence revolves around the idea that a auditory

signature is created around the location of CAD due to blood flow disturbance. Studies

conducted show that when a coronary artery is partially blocked due to plaque build-up,

blood flow is disturbed causing a sound to be emitted with a frequency range of

300 − 800Hz; [26], [27], [28], [29], [30] and [31]. However, due to the presence of other

sounds generated in the human thorax, with a frequency range of 10-400Hz, it can be
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challenging to identify the disturbance caused by the partially blocked coronary artery

using non-invasive techniques, [24] and [20]. Therefore if our concept is to be applicable in

this real-world application, specialised sensors capable of picking up the sound generated

from blood flow disturbance in coronary arteries would need to be engineered.

1.2.1 Outlining our approach in this thesis

In this thesis, we construct simple model problems which attempt to mimic an audible

signal caused by CAD. In the real-world application being considered for this work, the

domain would be a human thorax. However, such a domain is too complicated for this

initial exploratory work, and so, in this thesis we opt for simpler 1-dimensional (1D) and

2-dimensional (2D) domains illustrated in Figure (1.2) and Figure (1.3), respectively.

The reason for choosing these domain dimensions stemmed from an interdisciplinary

project we have been involved with. The aim of this project was to collect surface

readings from a 3-dimensional (3D) block, with a fabricated disturbance within the

domain which would attempt to mimic atherosclerosis. Therefore, the domains we have

chosen represent 1D and 2D cross sections of this 3D domain.

x

0.2m

Figure 1.2: Detailed outline for our 1D domain, where all measurements are in meters.

y

x

0
.0

2
m

0.2m

Figure 1.3: Detailed outline for our 2D domain, where all measurements are in meters.

In this thesis our aim is to construct a series of model problems that will simulate the

propagation of a localised disturbance within a domain. Given the real-world application
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being considered for the motivation behind this research, an appropriate governing

equation for our model problems would be a viscoelastic wave equation with a forcing

function that generates a localised disturbance within the domain. However, due to the

infancy of this research and the added complexity of using a viscoelastic wave equation as

our governing equation, we instead choose our governing equation to be the acoustic wave

equation. Therefore, the general form for the model problem considered in this thesis is

given as

utt −∇2u = f in (0, T ]× Ω, (1.1)

u = 0 on [0, T ]× ΓD1 , (1.2)

∂u

∂n
= 0 on [0, T ]× ΓN1 , (1.3)

u = 0 on {0} × Ω, (1.4)

ut = 0 on {0} × Ω (1.5)

where Ω denotes our domain in Rp for p ∈ {1, 2}, ΓD1 and ΓN1 represent Dirichlet and

Neumann boundaries, respectively, [0, T ] is our time domain, ut and utt represent the

first and second order partial derivatives of u with respect to time, respectively, and ∇2u

represents the Laplacian of u in Rp.

There is no readily available literature that outlines what our initial conditions should

be. As a result of this, we set both initial conditions to zero. Doing this does limit

the findings in this thesis, but it would be simple to change these initial conditions

if experimental data became available that would enable us to choose accurate initial

conditions.

The reason for choosing our boundary conditions stem from the domains we have

chosen. Recall that the domains in this thesis are taken to be 1D and 2D cross sections of

a 3D domain used in another interdisciplinary project that we were involved with. This

3D domain represents a container with solid boundaries on each side, with an open side on

the top. Therefore we choose Dirichlet boundary conditions equal to zero for our 2D model

problem, with a Neumann boundary condition equal to zero on the top. We extended

this 2D problem to consider Neumann boundary conditions that equal zero on all sides

of our 2D domain, apart from one, as this results in a more complex model problem that

we wanted to explore. A similar scenario is applied for our 1D model problem in chapter

3.



CHAPTER 1. INTRODUCTION 6

Recall that the real-world application for this work is to locate a disturbance caused

by atherosclerosis, using sensors placed on the surface of the human chest. Therefore, the

domain in this scenario would be a human thorax that contains bones, organs and muscle

tissue amongst other materials. These different materials will interact with an acoustic

signal differently since they all have a different acoustic impedance, see [32]. This research

goes further by illustrating that at a boundary between media with different acoustic

impedance, for example, bone and muscle tissue, some wave energy is reflected. Therefore,

it is possible that a Dirichlet or Neumann boundary condition could be applicable.

However, more in-depth experiments in the future, closely aligned with our application,

would need to be conducted so we could choose more accurate boundary conditions in

our model problems.

Before choosing a forcing function for our model problems, denoted by f in (1.1), we

first looked for relevant literature that could inform our decision. However, there was

very little available literature that could have helped guide our choice for the forcing

function used in our model problems for our primary application. Therefore, we used our

intuition to construct a realistic forcing function that will be used in our model problems.

If experiments are conducted in the future that could help improve the choice of our

forcing function, then this could be changed without difficulty.

Therefore, the forcing function that will be used in our model problems is given by

f(x, t; x0) = A sin2 (πt) exp−||x−x0||2/ε sin (2πFt) (1.6)

where x and t denote the continuous spatial and time domains, x0 denotes the location of

our disturbance, A represents the amplitude of the disturbance, F is the carrier frequency

of our disturbance, and the magnitude of ε controls the Gaussian spread of the disturbance.

Having now defined our forcing function, we need to explain why we chose it, and what

values we take for the unknown parameters in (1.6). The first sine function in (1.6) has a

modulation frequency of 1Hz, and is attempting to mimic a heartbeat with 60 beats per

minute (BPM). We include this in our forcing function because the real-world application

would involve placing sensors on a human thorax to record all sound signatures generated,

which would include a heartbeat. Recall that we have taken the heartbeat to have 60

BPM, however, it would be easy to modify this to reflect a different BPM.

The second sine function in (1.6) attempts to mimic the disturbance caused by CAD.

We have already discussed that the frequency of this disturbance in our real-world
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application would be between 300 − 800Hz. In this thesis, we consider disturbance

frequencies of F = 25Hz, F = 150Hz and F = 300Hz for simplicity.

Lastly, the exponential function in (1.6) localises the entire forcing function in our

domains, resulting in a Gaussian spread which decays further away from the disturbance

location. The value chosen for ε is problem-dependent, and so we discuss this in the result

chapters.

Figure (1.4) shows our forcing function in (1.6), when x = x0, with disturbance

frequencies of F = 5Hz and F = 25Hz. The reasoning for our choice of the amplitude

will be discussed in the result chapters.

(a) Disturbance frequency F = 5Hz. (b) Disturbance frequency F = 25Hz.

Figure 1.4: An illustration of the amplitude for the spatial exponential term in our

forcing function, see (1.6), for a simulation duration of T = 10 seconds and with A = 106.

Having outlined our domains and their governing equations, we are now interested in

giving a broad outline to the stages taken in our model problems to locate the source of

our acoustic wave equation, see Figure (1.5). We first chose a location for the source of our

acoustic wave equation within our domain and generated explicit finite difference method

(FDM) approximations of u across our domain. The mathematics used at this stage is

common practice when approximating a PDE within simple domains. The reason we

chose to use explicit FDM approximations of u rather than implicit FDM approximations

of u was due to the requirement to inverse a matrix after each time step with the implicit

method. We experimented with both methods, and similar results were obtained. The

mathematics used to approximate u in (1.1) for this stage of our model problem is outlined

in chapter 2.
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We have utt −∇2u = f in 1D and 2D domains, where f is given in (1.6). A small

value of ε is chosen which results in f being spatially local at our disturbance

location, denoted by x0, which is known.

Simulate u(x, tn) using derived approximations from an explicit finite difference

method (FDM) for n ∈ {0, 1, 2, ...}. A subset of these are used to represent our

sensor traces across all n ∈ {0, 1, 2, ...}.

We add two forms of random noise to our sensor traces. One represents the error

which arises from our FDM approximations of u. The second attempts to account

for inaccuracies we would expect in real data recorded on a human thorax.

Form a singular value decomposition

(SVD) using a snapshot of the derived

approximations of u(x, tn) to reduce

the dimension of the FDM system

used in the next step.

Given an array of equally spaced

initial guesses for x0, we use a

minimisation algorithm in the next

step alongside the Kalman filter (KF),

whose latent state is modelled after

our FDM model, with sensor traces

produced from a known x0.

Given an array of equally spaced

guesses for x0, we use the KF whose

latent state is modelled after our

FDM model, with sensor traces

produced from a known x0.

Compute the likelihood that our guess of x0, or the optimal x0 for each initial

guess used in the minimisation algorithm, is our actual disturbance location

used to generate our sensor traces. From the likelihood estimates evaluated,

we determine the smallest and deduce the corresponding x0 to be our models

prediction of the disturbance location used to form the sensor traces.

Figure 1.5: A schematic showing the broad steps required to locate the source of our

acoustic wave equation.
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We then make use of the Kalman filter (KF) to estimate our latent state for an array

of guesses for the location of our disturbance, which uses sensor traces that correspond

to the explicit FDM approximations of u at specific nodes in our mesh. This stage of

our model differs throughout the thesis, as different strategies are used to reduce the

run-time and RAM requirements for our model problems, which are discussed in the next

two sections of this chapter.

The final stage of our model is to use a maximum likelihood estimator, which requires

data generated from the KF, to predict which of the array of guesses for the location

of our disturbance is the most likely to be the disturbance used to generate the sensor

traces. Again, this part of the model differs throughout this thesis and several alternatives

were tried as using a minimisation algorithm with an array of initial guesses required a

significant amount of run-time. For more detail, see the schematics outlined in chapters

3-7.

1.3 Thesis outline

Having defined our aim for the work in this thesis, we break down the work presented

chapter-by-chapter in the following set of bullet points

• Chapter 2: This chapter outlines the methodology used in this thesis. We start

by introducing the acoustic wave equation in both 1D and 2D, which will govern

our model problems. We derive explicit FDM solutions to approximate u in the

acoustic wave equations. We test the convergence of these approximations against

an exact solution. We outline the KF, then derive a likelihood estimator. Lastly,

we set out the singular value decomposition (SVD), and subsequently, modify the

KF equations to reduce the matrix dimensions.

• Chapter 3: This chapter contains results corresponding to our 1D model problem,

with a disturbance frequency of F = 25Hz in our forcing function, denoted by f .

• Chapter 4: This chapter contains results corresponding to our 1D model problem,

with disturbance frequencies of F = 150Hz and F = 300Hz in our forcing function,

denoted by f .
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• Chapter 5: This chapter contains results corresponding to our 2D model problems,

with a disturbance frequency of F = 25Hz in our forcing function, denoted by f .

• Chapter 6: This chapter contains results corresponding to our 2D model problems,

with disturbance frequencies of F = 150Hz and F = 300Hz in our forcing function,

denoted by f .

• Chapter 7: This chapter contains results corresponding to our 1D model problem

where we consider both the pressure, denoted by u, and partial derivatives of u in

time to predict the location of our disturbance.

• Chapter 8: This chapter contains the conclusion, where we discuss the work

presented in this thesis and highlight the significance and weaknesses of the results.

In addition to this, several recommendations for future work are discussed which

outline multiple directions to extend the work presented in this thesis.

1.4 Achievements and contributions to knowledge

In this section, we outline our achievements and contributions to knowledge in the

following set of bullet points

1. We solved 1D and 2D model problems which attempt to mimic a localised source

representing CAD. We first do this in chapter 3, based on a 1D model with a

disturbance frequency of F = 25Hz. In chapter 4, we remain spatially in 1D, but

consider disturbance frequencies of F = 150Hz and F = 300Hz. In chapter 5, we

outline our 2D model problems and consider a disturbance frequency of F = 25Hz.

In chapter 6, we remain spatially in 2D and instead look at disturbance frequencies

of F = 150Hz and F = 300Hz. Lastly, in chapter 7 we consider our 1D model, but

instead of having only explicit FDM approximations of u as our sensor traces, we

consider ∂u/∂t only, and both u and ∂u/∂t. There is some literature within the

medical field involving different methods of diagnosing CAD using sensors and the

knowledge of blood flow disturbance caused by plaque build-up at the site of CAD;

[24] and [20]. However, these publications do not explain the mathematical model

behind the method used to diagnose CAD. The mathematics used to approximate

the solution of our PDE in (1.1) are commonly used for similar purposes.
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2. We discovered that we could use explicit FDM approximations of u from a coarse

mesh for our sensor traces used in the KF. As a result of this, we incorporate the

error created by these coarse explicit FDM approximations into the noise elements of

the KF, resulting in substantially smaller matrices in the KF, which for limitations

in system random access memory (RAM) and run-time, made our more complex

model problems viable. This is a significant discovery, and something that is not

documented in available literature. Therefore, this discovery forms part of the novel

research presented in this thesis. In chapter 3, we consider both fine and coarse

explicit FDM approximations of u in (1.1). We were able to do this since in 1D

and with a disturbance frequency of F = 25Hz, the required density of the mesh to

form a good FDM approximation was not beyond our computational reach. In the

remaining chapters, we only consider coarse explicit FDM approximations of u and

subsequently partial derivatives of u in time in chapter 7.

3. We formed an SVD from our explicit FDM approximations of u, and by taking

a subset of the principal components, we were able to reduce the size of several

matrices within the KF. It is widely known that by constructing an SVD for a

matrix and taking a subset of the principal components with the largest singular

values, you can reduce the dimensions of that matrix. In addition to this, there are

several cases where an SVD has been used in conjunction with the KF to reduce

the dimensions of the matrices in the KF; [33], [34] and [35]. In this thesis, we

repeatedly used this technique to reduce the run-time and RAM constraints of the

KF. Results that use this technique can be found in chapters 3-7.

4. The remaining limitation in our model problems arises from the number of

discrete-time steps required when running the KF. We discovered that the KF could

be terminated after 40% of the total discrete-time steps and still yield good results.

This is another significant discovery, and something that is not documented in

readily available literature within this area of mathematics. Therefore, this discovery

forms part of the novel research presented in this thesis. This is shown in chapter 5

for our 2D model problem with F = 25Hz.

5. In chapter 7, we formed sensor traces that corresponded to approximations of ∂u/∂t

which yielded similar results to using explicit FDM approximations of u as our sensor
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traces. The mathematics used to form these sensor traces using the explicit FDM

approximations of u is outlined in chapter 7. The mathematics used here is common

within this field and so does not warrant a novel piece of research within its own

right. However, what is interesting with these results is our ability to use a range

of different sensors with little effect on the success of our model problems. If future

experiments were to be carried out, this finding could prove to be vital when deciding

what sensors to use when recording data.

In this chapter we have outlined the motivation behind this research, written a short

literature review linking our model problems to their real-world application, given a broad

outline of the model problems considered, a breakdown of the work presented in each

chapter, and portrayed our achievements and contributions to knowledge. We now move

on to our next chapter which outlines the mathematical theory and more details for the

different model problems used in this thesis.



Chapter 2

Methodology

In this chapter, we outline our model problems in 1D and 2D. After which, we discretise

the corresponding domains and produce FDM approximations, which at specific locations

are used as our sensor traces. The errors associated with these FDM approximations

are calculated, and convergence of the approximate solutions are checked against exact

solutions which are both dependent on time and space.

We outline the Kalman filter and illustrate why noise is added. In addition to this,

we make modifications to the KF enabling it to work with our discrete model problems.

Lastly, we outline the likelihood estimator - allowing us to predict the location of our

disturbance.

In cases where we require fine meshes from the discretisation of our model problems,

requiring large amounts of system RAM and time for the KF to run, we approximate the

FDM approximations using an SVD, resulting in considerably smaller matrix dimensions

in the KF. In this chapter, we outline the SVD and the associated modifications required

to the KF.

2.1 Discretisation of the 1D wave equation

In this section, we look at discretising our 1D wave equation. Recall the general form

for the model problem considered in this thesis, see (1.1)-(1.5). For our 1D model problem,

utt ≡ ∂2u/∂t2, ∇2u ≡ ∂2u/∂x2 and f is our forcing function in (1.6) with x ≡ (x), and

x0 ≡ x0 which represents the location of our disturbance.

Now we have defined our PDE in (1.1) for our 1D model problem, we look at outlining

13
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the domain and the boundary. From the general form in (1.1)-(1.5) to our 1D model

problem, we alter the notation used for both the domain and boundaries. We defined our

1D domain as Ω1D := (0, 0.2), see Figure (1.2). The corresponding boundary, denoted by

∂Ω1D, is made up from

1. ∂u
∂x

:= 0 on ΓN1 :=
{
x ∈ Ω1D : x = 0.2

}
,

2. u := 0 on ΓD1 :=
{
x ∈ Ω1D : x = 0

}
.

Now we have defined our 1D model problem, we approximate the solution, u, at equally

spaced nodes across the domain. We achieve this by discretising our model problem, see

Figures (2.1) and (2.2), into a mesh with N + 1 nodes in space and L + 1 in time. The

interval between nodes in space and time are denoted by Hx := 0.2/N and tn := n∆t

respectively, where n ∈ {0, 1, ..., L},∆t := T/L and T is the duration of our simulation.

V n
1

V n
2 V n

i−1 V n
i V n

i+1 V n
i+2 V n

N

V n
N+1

Hx

Figure 2.1: The discretisation of our 1D domain where Hx denotes the spacing between

the nodes in our mesh, V n
i denotes the explicit FDM approximation of u at node xi and

discrete-time step tn for i ∈ {1, 2, ..., N + 1} and n ∈ {0, 1, 2, ..., L}.

t0
t1 t2 t3 tL−3 tL−2 tL−1

tL

∆t

T

Figure 2.2: The discretisation in time for all model problems considered in this

thesis, where ∆t denotes the spacing between our discrete-time steps, tn represents the

discrete-time steps for n ∈ {0, 1, 2, ..., L}, and T is the duration of our simulation.

Let us first denote u(xi, tn) as the solution of our PDE, denoted by u, at node xi =

(i − 1)Hx and time tn = n∆t, where i ∈ {1, 2, ..., N + 1} and n ∈ {0, 1, 2, ..., L}. Now

we have defined all the relevant notation, we start by discretising at the interior nodes
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in space. That is, xi for i ∈ {2, 3, ..., N}. To achieve this, we need to approximate

all partial derivatives in (1.1), in this case, that is both ∇2u ≡ ∂2u/∂x2 and utt using

Taylor series. Starting with ∂2u/∂x2, we formulate the solution, u, at nodes denoted by

(xi+1, tn) ∈ Ω1D × [0, T ] and (xi−1, tn) ∈ Ω1D × [0, T ] giving us

u(xi+1, tn) = u(xi, tn) +Hxux(xi, tn) +
H2
x

2
uxx(xi, tn) +

H3

3!
uxxx(xi, tn) +O(H4

x), (2.1)

u(xi−1, tn) = u(xi, tn)−Hxux(xi, tn) +
H2
x

2
uxx(xi, tn)− H3

3!
uxxx(xi, tn) +O(H4

x) (2.2)

respectively where ux ≡ ∂u/∂x and Hx := 0.2/N . We now add both (2.1) and (2.2)

together, resulting in several terms cancelling to get

u(xi+1, tn) + u(xi−1, tn) = 2u(xi, tn) +H2
xuxx(xi, tn) +O(H4

x). (2.3)

Recall that we want to determine an approximation to our partial derivative, ∂2u/∂x2 ≡

uxx, at all interior nodes. Hence, we make uxx(xi, tn) the subject of (2.3) to get

uxx(xi, tn) =
u(xi+1, tn) + u(xi−1, tn)− 2u(xi, tn)

H2
x

+O(H2
x). (2.4)

To approximate ∇2u, we need to neglect the higher-order terms in (2.4). We do this

later as we are interested in the combined higher-order terms being neglected for the entire

expression. First, we must approximate utt.

We now look at approximating the second partial derivative in (1.1), that is utt. Again,

similar to above, we use the Taylor series and get

utt(xi, tn) =
u(xi, tn−1) + u(xi, tn+1)− 2u(xi, tn)

∆t2
+O(∆t2). (2.5)

Substituting both (2.4) and (2.5) into (1.1), we eliminate the original partial derivatives

in the strong form to get

u(xi, tn−1)− 2u(xi, tn) + u(xi, tn+1)

∆t2

+
2u(xi, tn)− u(xi−1, tn)− u(xi+1, tn)

H2
x

= f(xi, tn) +O(∆t2 +H2
x) (2.6)

where f(xi, tn) is f at the node defined by xi and tn in time. We are interested in making

u(xi, tn+1) the subject of (2.6), enabling us to approximate u at all interior nodes at the

next time step with initial conditions. Therefore, we get

u(xi, tn+1) = ∆t2f(xi, tn)− u(xi, tn−1) +

(
2− 2∆t2

H2
x

)
u(xi, tn)
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+
∆t2

H2
x

(
u(xi−1, tn) + u(xi+1, tn)

)
+ ∆t2O(∆t2 +H2

x). (2.7)

We now want to make (2.7) an approximation of (1.1). Therefore, we denote V n
i ≈

u(xi, tn). Recall that our approximate to (1.1) became approximate by neglecting the

higher-order terms in (2.7), and so, we arrive at an explicit FDM approximation to (1.1)

at interior nodes, given by

V n+1
i = ∆t2f(xi, tn)− V n−1

i +

(
2− 2∆t2

H2
x

)
V n
i +

∆t2

H2
x

(
V n
i−1 + V n

i+1

)
(2.8)

for i ∈ {2, 3, ..., N}.

Having discretised the interior nodes, we now discretise the nodes which lie on the

boundary of our domain. We start to discretise the Neumann boundary, denoted by ΓN1

at xN+1. Therefore we use Taylor series like before, but start at the node denoted by

(xN , tn) ∈ Ω1D × [0, T ] giving

u(xN , tn) = u(xN+1, tn)−Hxux(xN+1, tn) +
H2
x

2
uxx(xN+1, tn) +O(H3

x). (2.9)

Recall that the boundary condition defined on ΓN1 is ∂u/∂x = 0, at the node xN+1 and

tn where n ∈ {0, 1, ..., L}. Another way to write this using notation already used is

ux(xN+1, tn) = 0. Therefore, by substituting this into (2.9), we get

u(xN , tn) = u(xN+1, tn) +
H2
x

2
uxx(xN+1, tn) +O(H3

x). (2.10)

We still have a partial derivative in (2.10) which needs approximating. By rearranging

(1.1), we can eliminate the partial derivative, denoted by uxx(xN+1, tn), to get

u(xN , tn) = u(xN+1, tn) +
H2
x

2

(
utt(xN+1, tn)− f(xN+1, tn)

)
+O(H3

x). (2.11)

Using (2.5) with i := N +1, we can eliminate the last partial derivative in (2.11), denoted

by utt(xN+1, tn), to get

u(xN , tn) = u(xN+1, tn) +
H2
x

2∆t2

(
u(xN+1, tn−1)− 2u(xN+1, tn) + u(xN+1, tn+1)

)
− H2

x

2
f(xN+1, tn) +O(H3

x + ∆t2). (2.12)

Recall that we want to approximate u on ΓN1 , that is we want to find an approximation

at the node denoted by xN+1 across all time intervals using initial conditions. Since our
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problem is recursive, we want to make u(xN+1, tn+1) the subject of (2.12). Therefore, we

get

u(xN+1, tn+1) = ∆t2f(xN+1, tn)− u(xN+1, tn−1) +

(
2− 2∆t2

H2
x

)
u(xN+1, tn)

+
2∆t2

H2
x

u(xN , tn) +
2∆t2

H2
x

O(H3
x + ∆t2). (2.13)

Currently, in (2.13), the higher-order terms imply that in space, we would be neglecting

terms of order Hx and higher, which is not sufficient. We are looking at neglecting terms

of H2
x and higher. To do this, we look at the condition required for our approximations of

u in our PDE to be stable. The stability of approximate solutions for an array of partial

differential equations (PDE) are discussed in [36]. On page 187 of this book, the condition

required for a stable approximate solution of a hyperbolic PDE in the same form as our

PDE in (1.1) is identified to be
∆t

Hx

≤ C

where C is a positive constant. Using this knowledge, we replace the ∆t2/H2
x multiplier

before the higher-order term in (2.13) with a squared constant, C2. Hence, we get

u(xN+1, tn+1) = ∆t2f(xN+1, tn)− u(xN+1, tn−1) +

(
2− 2∆t2

H2
x

)
u(xN+1, tn)

+
2∆t2

H2
x

u(xN , tn) +O(H3
x + ∆t2). (2.14)

Now we have the desired higher-order terms in (2.14), we can neglect the higher-order

terms to arrive at our approximation of u at the node denoted by xN+1 across all time

steps. Again, using V n
i ≈ u(xi, tn), we get

V n+1
N+1 = ∆t2f(xN+1, tn)− V n−1

N+1 +

(
2− 2∆t2

H2
x

)
V n
N+1 +

2∆t2

H2
x

V n
N . (2.15)

Recall that part of the boundary on our domain is a Dirichlet boundary, whose

boundary condition is denoted by u(x1, tn) = 0 for n ∈ {0, 1, 2, ..., L}. Since this has

no partial derivatives, this does not need discretising. Hence, to keep in-line with the

notation used we rewrite it as V n
1 = 0 for n ∈ {0, 1, 2, ..., L}.

Together (2.8) and (2.15) approximate u at every node in our mesh, across all time

steps. Using these, we now construct a matrix system to approximate (1.1). Given that
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our domain, denoted by Ω1D, has N + 1 nodes we can define Vn and Fn as

Vn =


V n
1

V n
2

...

V n
N+1

 and Fn =


f(x1, tn)

f(x2, tn)
...

f(xN+1, tn)


respectively. In addition to this, we define a matrix B, which contains all the coefficients

of V n
i for i ∈ {1, 2, · · · , N + 1} in (2.8), (2.15) and the boundary condition defined on the

Dirichlet boundary. Having defined our notation, we can deduce the matrix system to be

Vn+1 = BVn −Vn−1 + ∆t2Fn (2.16)

for n ∈ {1, 2, ..., L− 1}.

2.1.1 MATLAB implementation

In this section, we look at verifying whether the MATLAB code which approximates

u in (1.1) using (2.16) works as intended. We achieve this by computing the maximum

absolute error between an exact solution and the approximated solution across all nodes

at tL := T , where for these convergence tests, T = 1. First, we must construct an exact

solution for u such that all boundary conditions are satisfied.

Manufactured space and time-dependent solution

We choose an exact solution for u which contains trigonometric functions since this

is similar to the sensor traces we would expect to observe using our forcing function in

(1.6) within our acoustic wave equation. Hence, a reasonable choice for u such that the

boundary conditions are satisfied is

u(xi, tn) = sin

(
2πxi
0.8

)(
1 + sin(tn)

)
(2.17)

where i := {1, 2, ..., N +1} and n ∈ {0, 1, ..., L}. Subsequently, by substituting (2.17) into

(1.1) we get

f(xi, tn) = sin

(
2πxi
0.8

)(
6.25π2

(
1 + sin(tn)

)
− sin(tn)

)
(2.18)

which we will use in this convergence test.

Recall the matrix system in (2.16) which approximates u in (1.1) at every node across
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all time steps. This matrix system is recursive and so initially requires both V0 and V1 to

be known. That is, we need the approximation of u when t0 := 0 and t1 := ∆t respectively.

We have two initial conditions given by u(xi, t0) and ut(xi, t0) for i ∈ {1, 2, ..., N + 1}.

Therefore, V0 is known. However, to get V1, we need to use Taylor series and both initial

conditions.

In this convergence test, we know the exact solution to u, and so by using (2.17), the

initial conditions across all nodes, defined for all i ∈ {1, 2, · · · , N + 1}, are both

u(xi, t0) = ut(xi, t0) = sin

(
2πxi
0.8

)
. (2.19)

Therefore, directly from (2.19), V0 = sin
(
2πxi
0.8

)
for all i ∈ {1, 2, ..., N + 1}. Using Taylor

series in conjunction with (2.19), we get

u(xi, t1) = u(xi, t0) + ∆tut(xi, t0) +O(∆t2),

= sin

(
2πxi
0.8

)
(1 + ∆t) +O(∆t2).

By neglecting the higher-order terms, we get V1 ≈ sin
(
2πxi
0.8

)
(1 + ∆t) for all i ∈

{1, 2, ..., N + 1}.

Error convergence

Recall that our approximation to (1.1) became approximate because we disregarded

the higher-order terms in (2.7) and (2.14). These higher-order terms directly correlate to

the magnitude of error we expect to get between an exact solution and our approximation

of u. Recall that the higher-order terms were O(∆t2 + H2
x) at the interior nodes and

O(H3
x +∆t2) along the Neumann boundary. It is trivial that the maximum error recorded

would correlate to the higher-order terms resulting in the larger error. Hence, to find out

what these are we combined both higher-order terms to get

O
(
∆t2 +H2

x +H3
x + ∆t2

)
= O(H2

x + ∆t2).

Therefore, we would expect the maximum absolute error to decrease by a factor of

four as both Hx and ∆t half. Table (2.1) displays the maximum absolute error across all

nodes in our mesh at T = 1 between an exact solution in (2.17) and our approximations

of u for increasing values of N , which subsequently decrease Hx, and decreasing ∆t. We

can deduce that as N doubles, that is Hx halves, and ∆t halves the error convergence

approaches four which is what we expected.
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N ∆t Maximum

|Error|

Error

Percentage†

Error

Convergence

Computation

Time†† (s)

4 250−1 0.021495477 1.153830611 N/A 0.004961

8 500−1 0.005489642 0.297225719 3.915642769 0.003367

16 1000−1 0.001381220 0.074950142 3.974487772 0.003710

32 2000−1 0.000346053 0.018788657 3.991353926 0.009028

64 4000−1 0.000086585 0.004701703 3.996685338 0.030778

128 8000−1 0.000021654 0.001175883 3.998568394 0.101443

† Error Percentage = [maximum error at node (i, j)]/[approximation at node (i, j)]× 100.

†† Computed using an i5− 4590 @ 3.30GHz, 16GB RAM @ 1333 MHz and Intel HD Graphics 4600.

Table 2.1: The error convergence of the explicit FDM approximations of u for our

acoustic 1D wave equation.

The Lax equivalent theorem states that if a finite difference scheme is both stable and

consistent, then it is convergent [37]. We already know that our finite difference scheme in

(2.16) is stable, see page 187 in [36]. For our finite difference scheme to be consistent, the

maximum absolute error in Table (2.1) must approach zero as both Hx = 0.2/N and ∆t

approach zero. Upon inspection of Table (2.1), we can see that this is the case. Therefore,

we can conclude that our finite difference scheme is convergent.

2.2 Discretisation of the 2D wave equation

In this section, we look at discretising our 2D wave equation. Recall the general

form for the model problem considered in this thesis, see (1.1)-(1.5). For our 2D model

problem, utt ≡ ∂2u/∂t2, ∇2u ≡ ∂2u/∂x2 + ∂2u/∂y2 and f is our forcing function in (1.6)

with x ≡ (x, y), and x0 ≡ (x, y) which represents the location of our disturbance.

Now we have defined our PDE in (1.1) for our 2D model problem, we look at outlining

the domain and the boundary. From the general form in (1.1)-(1.5) to our 2D model

problem, we alter the notation used for both the domain and boundaries. We defined

our 2D domain as Ω2D := (0, 0.2) × (0, 0.02), see Figure (1.3). We consider two model

problems in 2D, each with different boundary conditions. For our first model problem,

the boundary, denoted by ∂Ω2D1 , is made up of
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1. ∂u
∂y

:= 0 on ΓN2 :=
{

(x, y) ∈ Ω2D : 0 < x < 0.2, y = 0.02
}
,

2. u := 0 on ΓD2 := ∂Ω2D1 \ ΓN1 .

The boundary for our second problem, denoted by ∂Ω2D2 , is made up from

1. ∂u
∂y

:= 0 on ΓN2 :=
{

(x, y) ∈ Ω2D : 0 < x < 0.2, y = 0.02
}
,

2. ∂u
∂x

:= 0 on ΓN3 :=
{

(x, y) ∈ Ω2D : x = 0, 0 < y < 0.02
}
,

3. ∂u
∂x

:= 0 on ΓN4 :=
{

(x, y) ∈ Ω2D : x = 0.2, 0 < y < 0.02
}
,

4. u := 0 on ΓD3 := ∂Ω2D2 \
{

ΓN2 ∪ ΓN3 ∪ ΓN4

}
.

Having defined both 2D model problems, we are interested in approximating the

solution, u, across the domain. At interior nodes, the method for approximating u for

both model problems is the same. However, on the boundary, they are mostly different

and so will be computed separately where necessary. To approximate u we discretise our

domain, see Figures (2.3) and (2.2), into a mesh with (N + 1)× (M + 1) nodes and L+ 1

intervals in time. We define our intervals in space by Hx := 0.2/N and Hy := 0.02/M

in the x and y-directions respectively. Our time step variable is the same as in 1D. Let

us denote the solution of our PDE, denoted by u, at the node (xi, yj) for xi = (i− 1)Hx

where i ∈ {1, 2, ..., N + 1}, and yj = (j − 1)Hy where j ∈ {1, 2, ...,M + 1} as u(xi, yj, tn)

at the time step tn = n∆t for n ∈ {0, 1, 2, ..., L}.

Having all relevant notation defined, we can discretise the domain to get the

approximation of u at the interior nodes. That is, nodes denoted by (xi, yj) for

i ∈ {2, 3, ..., N} and j ∈ {2, 3, ...,M}. We need to approximate all partial derivatives

in (1.1), that is ∂2u/∂x2, ∂2u/∂y2 and ∂2u/∂t2 from ∇2u, and utt. We achieve this using

Taylor series as demonstrated in 1D already.

We start with ∂2u/∂x2 and evaluate u at nodes (xi+1, yj, tn) ∈ Ω2D × [0, T ] and

(xi−1, yj, tn) ∈ Ω2D × [0, T ] to get

u(xi+1, yj, tn) = u(xi, yj, tn) +Hxux(xi, yj, tn) +
H2
x

2
uxx(xi, yj, tn)

+
H3
x

3!
uxxx(xi, yj, tn) +O(H4

x), (2.20)

u(xi−1, yj, tn) = u(xi, yj, tn)−Hxux(xi, yj, tn) +
H2
x

2
uxx(xi, yj, tn)
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− H3
x

3!
uxxx(xi, yj, tn) +O(H4

x) (2.21)

respectively where ux ≡ ∂u/∂x. By combining both (2.20) and (2.21), we can cancel like

terms resulting in

u(xi+1, yj, tn) + u(xi−1, yj, tn) = 2u(xi, yj, tn) +H2
xuxx(xi, yj, tn) +O(H4

x). (2.22)

Recall that we aim to approximate our partial derivative, denoted by ∂2u/∂x2, at all

interior nodes. We know that uxx ≡ ∂2u/∂x2, and so we make uxx(xi, yj, tn) the subject

of (2.22) to get

uxx(xi, yj, tn) =
u(xi+1, yj, tn) + u(xi−1, yj, tn)− 2u(xi, yj, tn)

H2
x

+O(H2
x). (2.23)

By repeating steps (2.20)-(2.23), we can approximate ∂2u/∂y2 by changing the nodes

u is evaluated at in Ω2D to (xi, yj+1, tn) ∈ Ω2D × [0, T ] and (xi, yj−1, tn) ∈ Ω2D × [0, T ] to

give

uyy(xi, yj, tn) =
u(xi, yj+1, tn) + u(xi, yj−1, tn)− 2u(xi, yj, tn)

H2
y

+O(H2
y ). (2.24)

By combining both (2.23) and (2.24), we have evaluated the first two derivatives in

(1.1) to get

−∇2u(xi, yj, tn) =
2u(xi, yj, tn)− u(xi+1, yj, tn)− u(xi−1, yj, tn)

H2
x

+
2u(xi, yj, tn)− u(xi, yj+1, tn)− u(xi, yj−1, tn)

H2
y

+O(H2
x +H2

y ). (2.25)

We now evaluate the final partial derivative in (1.1), denoted by utt, at the interior

nodes. We achieve this by following the steps outlined above but instead change the nodes

u is evaluated at in Ω2D to (xi, yj, tn−1) ∈ Ω2D × [0, T ] and (xi, yj, tn+1) ∈ Ω2D × [0, T ] to

get

utt(xi, yj, tn) =
u(xi, yj, tn+1)− 2u(xi, yj, tn) + u(xi, yj, tn−1)

∆t2
+O(∆t2). (2.26)
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Figure 2.3: The discretisation of our 2D domain where Hx and Hy denote the spacing

between nodes in our mesh for the x and y-directions respectively. Moreover, V n
i,j

represents the explicit FDM approximation of u at the node denoted by (xi, yj) and

discrete-time step tn for i ∈ {1, 2, ..., N + 1}, j ∈ {1, 2, ...,M + 1} and n ∈ {0, 1, 2, ..., L}.

Now we have evaluated all partial derivatives in (1.1), we substitute (2.25) and (2.26)

into (1.1) to get

u(xi, yj, tn+1)− 2u(xi, yj, tn) + u(xi, yj, tn−1)

∆t2

+
2u(xi, yj, tn)− u(xi−1, yj, tn)− u(xi+1, yj, tn)

H2
x
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+
2u(xi, yj, tn)− u(xi, yj−1, tn)− u(xi, yj+1, tn)

H2
y

= f(xi, yj, tn) +O(H2
x +H2

y + ∆t2)

(2.27)

where f(xi, yj, tn) represents the forcing function in (1.1) at the node denoted by (xi, yj)

and time step denoted by tn. We are interested in evaluating u across the mesh, given

initial conditions. We achieve this by making u(xi, yj, tn+1) the subject of (2.27) resulting

in

u(xi, yj, tn+1) = ∆t2f(xi, yj, tn)− u(xi, yj, tn−1)

+

(
2− 2∆t2

H2
x

− 2∆t2

H2
y

)
u(xi, yj, tn) +

∆t2

H2
x

(
u(xi−1, yj, tn) + u(xi+1, yj, tn)

)
+

∆t2

H2
y

(
u(xi, yj−1, tn) + u(xi, yj+1, tn)

)
+O(H2

x +H2
y + ∆t2). (2.28)

Lastly, we neglect the higher-order terms to arrive at an explicit FDM approximation of

u at all interior nodes. Therefore, let us denote V n
i,j ≈ u(xi, yj, tn), and so we have

V n+1
i,j = ∆t2f(xi, yj, tn)− V n−1

i,j +

(
2− 2∆t2

H2
x

− 2∆t2

H2
y

)
V n
i,j

+
∆t2

H2
x

(
V n
i−1,j + V n

i+1,j

)
+

∆t2

H2
y

(
V n
i,j−1 + V n

i,j+1

)
(2.29)

where n ∈ {1, 2, ..., L− 1}.

In our two model problems, the boundary conditions defined on ∂Ω2D1 and ∂Ω2D2 are

different, and so, need discretising separately. We note that in both model problems,

ΓN2 is a common boundary. Therefore, we start by discretising ΓN2 which is defined at

nodes denoted by (xi, yM+1, tn) ∈ Ω2D × [0, T ] for i ∈ {2, 3, ..., N}. This is achieved by

representing u at the nodes denoted by (xi, yM , tn) ∈ Ω2D × [0, T ] for i ∈ {2, 3, ..., N}

using Taylor series to get

u(xi, yM , tn) = u(xi, yM+1, tn)−Hyuy(xi, yM+1, tn)+
H2
y

2
uyy(xi, yM+1, tn)+O(H3

y ). (2.30)

We can represent both partial derivatives in (2.30) using the boundary condition and the

strong form given in (1.1) at specific nodes. We achieve this by rearranging the latter

such that uyy(xi, yM+1, tn) is the subject. Therefore, by substituting both into (2.30), we

get

u(xi, yM , tn) = u(xi, yM+1, tn)
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+
H2
y

2
[utt(xi, yM+1, tn)− uxx(xi, yM+1, tn)− f(xi, yM+1, tn)] +O(H3

y )

(2.31)

where f(xi, yM+1, tn) is the forcing function in (1.1) at the nodes defined by (xi, yM+1)

for i ∈ {2, 3, ..., N} and time step tn. However, this attempt to eliminate the partial

derivatives in (2.30) has caused two more partial derivatives to arise. To evaluate the

partial derivatives in (2.31), we use the central difference scheme at specific nodes in

space and time given by

− uxx(xi, yM+1, tn) =
−u(xi−1, yM+1, tn) + 2u(xi, yM+1, tn)− u(xi+1, yM+1, tn)

H2
x

+O(H2
x),

utt(xi, yM+1, tn) =
u(xi, yM+1, tn−1)− 2u(xi, yM+1, tn) + u(xi, yM+1, tn+1)

∆t2
+O(∆t2)

respectively. Hence, once we substitute both into (2.31), we get

u(xi, yM , tn) = u(xi, yM+1, tn)

+
H2
y

2

[
u(xi, yM+1, tn−1)− 2u(xi, yM+1, tn) + u(xi, yM+1, tn+1)

∆t2

]
−
H2
y

2

[
u(xi−1, yM+1, tn)− 2u(xi, yM+1, tn) + u(xi+1, yM+1, tn)

H2
x

]
−
H2
y

2
f(xi, yM+1, tn) +O(∆t2 +H3

y +H2
x). (2.32)

We now rearrange (2.32) to obtain an expression which represents a discrete solution of

our PDE, denoted by u, at nodes along ΓN2 and the (n + 1)th time step. Therefore, we

make u(xi, yM+1, tn+1) the subject of (2.32) to get

u(xi, yM+1, tn+1) = ∆t2f(xi, yM+1, tn)− u(xi, yM+1, tn−1) +
2∆t2

H2
y

u(xi, yM , tn)

+

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
u(xi, yM+1, tn) +

∆t2

H2
x

u(xi−1, yM+1, tn)

+
∆t2

H2
x

u(xi+1, yM+1, tn) +
2∆t2

H2
y

O(H2
x +H3

y + ∆t2). (2.33)

Currently, the higher-order terms in (2.33) result in an error term in y of Hy. However,

when we neglect these higher-order terms, we want the error term in y to be H2
y .

Therefore, noting that from the translated version of the original paper, see [38], where

the convergence of a solution to a PDE when solved numerically was first discussed. Given

our PDE in (1.1), the following condition is required to ensure our approximation of u in

(2.33) is stable
∆t

Hx

+
∆t

Hy

≤ C
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where C is a positive constant. Since in our model the spacing in the x and y-directions,

Hx and Hy, are equivalent we get
∆t

Hy

≤ C. (2.34)

Using this knowledge, we can replace the ∆t2/H2
y multiplier before the higher-order term

in (2.33) with a constant squared, denoted by C2, resulting in the desired higher-order

terms. To obtain an approximation for u at the exterior nodes along ΓN2 , we neglect these

higher-order terms. Therefore, by denoting V n
i,j ≈ u(xi, yj, tn) we get

V n+1
i,M+1 = ∆t2f(xi, yM+1, tn)− V n−1

i,M+1 +
2∆t2

H2
y

V n
i,M

+

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
V n
i,M+1 +

∆t2

H2
x

V n
i−1,M+1 +

∆t2

H2
x

V n
i+1,M+1 (2.35)

for i ∈ {2, 3, ..., N}.

We now look at the implementation of the boundary conditions defined on our Dirichlet

boundary, denoted by ΓD2 . Since there are no partial derivatives in boundary conditions

defined on Dirichlet boundaries, we do not need to approximate anything. Instead, we

ensure that V n+1
i,j = 0 under the following conditions

1. ∀i ∈ {1, 2, ..., N + 1} when j := 1,

2. ∀j ∈ {1, 2, ...,M + 1} when i := 1 and i := N + 1.

We now consider the boundary for our second model problem, denoted by ∂Ω2D2 :={
ΓN2 ∪ ΓN3 ∪ ΓN4 ∪ ΓD3

}
. Currently, we have only approximated u at nodes along ΓN2 ,

meaning we still need to approximate u on nodes along ΓN3 , ΓN4 and ΓD3 .

Starting with ΓN3 , we know that ∂u/∂x = 0 is satisfied along the nodes denoted by

(x1, yj, tn) ∈ Ω2D × [0, T ] for j ∈ {2, 3, ...,M + 1}. Since we have a partial derivative,

we need to approximate u at the nodes along ΓN2 using Taylor series. We start by

approximating u at the nodes defined by (x2, yj, tn) ∈ Ω2D× [0, T ] for j ∈ {2, 3, ...,M+1},

resulting in

u(x2, yj, tn) = u(x1, yj, tn) +Hxux(x1, yj, tn) +
H2
x

2
uxx(x1, yj, tn) +O(H3

x). (2.36)

We can eliminate the partial derivatives using the boundary condition and a

rearrangement of (1.1) to get

u(x2, yj, tn) = u(x1, yj, tn) +
H2
x

2

[
utt(x1, yj, tn)− uyy(x1, yj, tn)− f(x1, yj, tn)

]
+O(H3

x).

(2.37)
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Despite attempting to remove the partial derivatives in (2.36), two new partial derivatives

have arisen in (2.37). We can eliminate these using the central difference scheme, denoted

by

−uyy(x1, yj, tn) =
−u(x1, yj−1, tn) + 2u(x1, yj, tn)− u(x1, yj+1, tn)

H2
y

+O(H2
y ) and

utt(x1, yj, tn) =
u(x1, yj, tn−1)− 2u(x1, yj, tn) + u(x1, yj, tn+1)

∆t2
+O(∆t2).

By substituting these both into (2.37) we get

u(x2, yj, tn) = u(x1, yj, tn) +
H2
x

2

[
u(x1, yj, tn−1)− 2u(x1, yj, tn) + u(x1, yj, tn+1)

∆t2

+
2u(x1, yj, tn)− u(x1, yj−1, tn)− u(x1, yj+1, tn)

H2
y

− f(x1, yj, tn)

]
+O(H3

x +H2
y + ∆t2). (2.38)

Recall that we are interested in evaluating u at the nodes along ΓN3 denoted by

(x1, yj, tn) ∈ Ω2D × [0, T ] for j ∈ {2, 3, ...,M + 1}. Therefore, we rearrange (2.38) to

make u(x1, yj, tn+1) the subject to get

u(x1, yj, tn+1) =
2∆t2

H2
x

u(x2, yj, tn) + u(x1, yj, tn)

[
2− 2∆t2

H2
x

− 2∆t2

H2
y

]
− u(x1, yj, tn−1) +

∆t2

H2
y

[
u(x1, yj−1, tn) + u(x1, yj+1, tn)

]
+ ∆t2f(x1, yj, tn) +

2∆t2

H2
x

O(H3
x +H2

y + ∆t2). (2.39)

The higher-order terms in (2.39) mean we only have an accuracy of Hx in the

x-direction, rather than the desired accuracy of H2
x. We can rectify this by recalling that

for (1.1) to be stable (2.34) holds. Therefore, substituting this into the ∆t2/H2
x multiplier

before the higher-order terms in (2.39) results in the desired level of accuracy in the

x-direction. We now want to approximate u along ΓN3 . We achieve this by neglecting the

higher-order terms in (2.39), and by denoting V n
i,j ≈ u(xi, yj, tn), we get

V n+1
1,j =

2∆t2

H2
x

V n
2,j +

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
V n
1,j − V n−1

1,j

+
∆t2

H2
y

(
V n
1,j−1 + V n

1,j+1

)
+ ∆t2f(x1, yj, tn) (2.40)

for j ∈ {2, 3, ...,M}. Since V n
1,j+1 is required to approximate V n+1

1,j , (2.40) cannot

approximate u at all the nodes along ΓN3 because when j := M + 1 we would require



CHAPTER 2. METHODOLOGY 28

V n
1,M+2 to compute V n+1

1,M+1, which does not exist.

Instead, to obtain the approximation of u at the node defined by (x1, yM+1, tn) ∈

Ω2D× [0, T ], we must take a different approach. Using Taylor series, we evaluate u at the

nodes defined by (x2, yM+1, tn) ∈ Ω2D × [0, T ] and (x1, yM , tn) ∈ Ω2D × [0, T ] to get

u(x2, yM+1, tn) = u(x1, yM+1, tn) +Hxux(x1, yM+1, tn)

+
H2
x

2
uxx(x1, yM+1, tn) +O(H3

x), (2.41)

u(x1, yM , tn) = u(x1, yM+1, tn)−Hyuy(x1, yM+1, tn)+
H2
y

2
uyy(x1, yM+1, tn)+O(H3

y ) (2.42)

respectively. At the node defined by (x1, yM+1, tn), both ΓN2 and ΓN3 hold, and so, the

boundary conditions along these two boundaries are also valid. Therefore, we know that

ux(x1, yM+1, tn) = 0 and uy(x1, yM+1, tn) = 0. Substituting these into both (2.41) and

(2.42), we get

u(x2, yM+1, tn) = u(x1, yM+1, tn) +
H2
x

2
uxx(x1, yM+1, tn) +O(H3

x), (2.43)

u(x1, yM , tn) = u(x1, yM+1, tn) +
H2
y

2
uyy(x1, yM+1, tn) +O(H3

y ). (2.44)

By multiplying (2.43) by H2
y and (2.44) by H2

x, adding the two equations together and

substituting in (1.1), we can eliminate the spatial second-order partial derivatives to get

H2
yu(x2, yM+1, tn) +H2

xu(x1, yM , tn) = H2
yu(x1, yM+1, tn) +H2

xu(x1, yM+1, tn)

+
H2
xH

2
y

2

[
utt(x1, yM+1, tn)− f(x1, yM+1, tn)

]
+O(H3

xH
2
y +H2

xH
3
y ).

(2.45)

Using the central difference scheme at the nodes defined as (x1, yM+1, tn) ∈ Ω2D × [0, T ],

that is

utt(x1, yM+1, tn) =
u(x1, yM+1, tn−1)− 2u(x1, yM+1, tn) + u(x1, yM+1, tn+1)

∆t2
+O(∆t2),

we can eliminate the final partial derivative in (2.45) to get

H2
yu(x2, yM+1, tn) +H2

xu(x1, yM , tn) = H2
yu(x1, yM+1, tn) +H2

xu(x1, yM+1, tn)

+
H2
xH

2
y

2

[
u(x1, yM+1, tn−1)− 2u(x1, yM+1, tn) + u(x1, yM+1, tn+1)

∆t2
− f(x1, yM+1, tn)

]
+O(H3

xH
2
y +H2

xH
3
y +H2

xH
2
y∆t2). (2.46)
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Recall that we want to approximate u at the node defined by (x1, yM+1, tn), across all

time intervals. Therefore, we make u(x1, yM+1, tn+1) the subject of (2.46) to get

u(x1, yM+1, tn+1) = ∆t2f(x1, yM+1, tn)− u(x1, yM+1, tn−1)

+

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
u(x1, yM+1, tn)

+
2∆t2

H2
x

u(x2, yM+1, tn) +
2∆t2

H2
y

u(x1, yM , tn)

+
2∆t2

H2
xH

2
y

O(H3
xH

2
y +H2

xH
3
y +H2

xH
2
y∆t2). (2.47)

To approximate u we need to neglect the higher-order terms in (2.47). But first, we

must ensure the approximation is sufficiently accurate. We start by recalling that for our

PDE in (1.1), the approximation of u in (2.47) is stable if the condition in (2.34) holds.

Substituting this into the multiplier before the higher-order terms in (2.47), we get

2C2

H2
y

O(H3
xH

2
y +H2

xH
3
y +H2

xH
2
y∆t2),

= O(H3
x +H2

xHy +H2
x∆t2).

In our model, the spacing in both the x and y-directions are equivalent. Therefore, using

the fact that Hx ≡ Hy, we get our higher-order terms to be

O(H3
x +H2

x∆t2). (2.48)

Now we have determined that the higher-order terms in (2.47) result in a sufficiently

accurate solution for u, we neglect these higher-order terms and denote V n
i,j ≈ u(xi, yj, tn)

to get

V n+1
1,M+1 = ∆t2f(x1, yM+1, tn)− V n−1

1,M+1 +

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
V n
1,M+1

+
2∆t2

H2
x

V n
2,M+1 +

2∆t2

H2
y

V n
1,M (2.49)

for n ∈ {1, 2, ..., L− 1}.

Having approximated u along ΓN3 , we move on to ΓN4 . The boundary condition defined

along this boundary is given by ∂u/∂x := 0, which is satisfied along the nodes denoted

by (xN+1, yj, tn) ∈ Ω2D × [0, T ] for j ∈ {2, 3, ...,M + 1}. We start by representing u using

Taylor series at the nodes denoted by (xN , yj, tn) ∈ Ω2D × [0, T ] for j ∈ {2, 3, ...,M + 1},

to get

u(xN , yj, tn) = u(xN+1, yj, tn)−Hxux(xN+1, yj, tn)+
H2
x

2
uxx(xN+1, yj, tn)+O(H3

x). (2.50)
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We can eliminate the partial derivatives in (2.50) using the boundary condition and a

rearrangement of (1.1) to get

u(xN , yj, tn) = u(xN+1, yj, tn)

+
H2
x

2

[
utt(xN+1, yj, tn)− uyy(xN+1, yj, tn)− f(xN+1, yj, tn)

]
+O(H3

x).

(2.51)

This technique has resulted in two more partial derivatives to arise. To evaluate the partial

derivatives in (2.51), we use the central difference scheme at specific nodes in space and

time given by

utt(xN+1, yj, tn) =
u(xN+1, yj, tn−1)− 2u(xN+1, yj, tn) + u(xN+1, yj, tn+1)

∆t2
+O(∆t2),

−uyy(xN+1, yj, tn) =
2u(xN+1, yj, tn)− u(xN+1, yj−1, tn)− u(xN+1, yj+1, tn)

H2
y

+O(H2
y ).

Therefore, after substituting both central difference schemes into (2.51), we get

u(xN , yj, tn) = u(xN+1, yj, tn)

+
H2
x

2

[
u(xN+1, yj, tn−1)− 2u(xN+1, yj, tn) + u(xN+1, yj, tn+1)

∆t2

+
2u(xN+1, yj, tn)− u(xN+1, yj−1, tn)− u(xN+1, yj+1, tn)

H2
y

− f(xN+1, yj, tn)

]
+O(H3

x +H2
y + ∆t2). (2.52)

Recall that we are interested in evaluating u at the nodes along ΓN4 , that is (xN+1, yj, tn) ∈

Ω2D × [0, T ] for j ∈ {2, 3, ...,M + 1}. To do this, we rearrange (2.52) to make

u(xN+1, yj, tn+1) the subject which results in

u(xN+1, yj, tn+1) = ∆t2f(xN+1, yj, tn)− u(xN+1, yj, tn−1)

+

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
u(xN+1, yj, tn) +

2∆t2

H2
x

u(xN , yj, tn)

+
∆t2

H2
y

[
u(xN+1, yj−1, tn) + u(xN+1, yj+1, tn)

]
+

2∆t2

H2
x

O(H3
x +H2

y + ∆t2).

(2.53)

Recall that for our PDE in (1.1), the approximation of u in (2.53) is stable if the

condition in (2.34) holds. Using this, we deduce the higher-order terms in (2.53) to be

O(H3
x +H2

y + ∆t2) (2.54)
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which illustrates a sufficient level of accuracy for what will be our approximation of u. To

find this approximation of u at the nodes along ΓN4 , we denote V n
i,j ≈ u(xi, yj, tn), and

neglect the higher-order terms in (2.53) to get

V n+1
N+1,j = ∆t2f(xN+1, yj, tn)− V n−1

N+1,j +

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
V n
N+1,j +

2∆t2

H2
x

V n
N,j

+
∆t2

H2
y

(
V n
N+1,j−1 + V n

N+1,j+1

)
(2.55)

for j ∈ {2, 3, ...,M}. Since we require V n
N+1,j+1 to compute V n+1

N+1,j, (2.55) cannot

approximate u at all the nodes along ΓN4 because when j := M + 1, we would require

V n
N+1,M+2 to compute V n+1

N+1,M+1, which does not exist.

Instead, to obtain the approximation of u at the node defined by (xN+1, yM+1, tn) ∈

Ω2D × [0, T ] we must take a different approach. Using Taylor series, we evaluate u at the

nodes defined by (xN , yM+1, tn) ∈ Ω2D × [0, T ] and (xN+1, yM , tn) ∈ Ω2D × [0, T ] to get

u(xN , yM+1, tn) = u(xN+1, yM+1, tn)−Hxux(xN+1, yM+1, tn)

+
H2
x

2
uxx(xN+1, yM+1, tn) +O(H3

x), (2.56)

u(xN+1, yM , tn) = u(xN+1, yM+1, tn)−Hyuy(xN+1, yM+1, tn)

+
H2
y

2
uyy(xN+1, yM+1, tn) +O(H3

y ). (2.57)

At the node defined by (xN+1, yM+1, tn), both ΓN2 and ΓN4 are valid boundaries. We know

that the boundary conditions on these two boundaries are satisfied. Therefore, we know

that ux(xN+1, yM+1, tn) = 0 and uy(xN+1, yM+1, tn) = 0. Substituting these into both

(2.56) and (2.57), we get

u(xN , yM+1, tn) = u(xN+1, yM+1, tn) +
H2
x

2
uxx(xN+1, yM+1, tn) +O(H3

x), (2.58)

u(xN+1, yM , tn) = u(xN+1, yM+1, tn) +
H2
y

2
uyy(xN+1, yM+1, tn) +O(H3

y ). (2.59)

By multiplying (2.58) by H2
y and (2.59) by H2

x, adding the two equations together and

substituting in (1.1), we can eliminate the spatial second-order partial derivatives to get

H2
yu(xN , yM+1, tn)−H2

yu(xN+1, yM+1, tn) +H2
xu(xN+1, yM , tn)−H2

xu(xN+1, yM+1, tn)

=
H2
xH

2
y

2

[
utt(xN+1, yM+1, tn)− f(xN+1, yM+1, tn)

]
+O(H3

xH
2
y +H2

xH
3
y ). (2.60)
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This technique has caused another partial derivative to arise. To evaluate the partial

derivative in (2.60), we use the central difference scheme at a specific node in space given

by

utt(xN+1, yM+1, tn) =
u(xN+1, yM+1, tn−1)− 2u(xN+1, yM+1, tn) + u(xN+1, yM+1, tn+1)

∆t2

+O(∆t2).

Substituting this central difference scheme into (2.60), we eliminate the last partial

derivative to get

H2
yu(xN , yM+1, tn)−H2

yu(xN+1, yM+1, tn) +H2
xu(xN+1, yM , tn)−H2

xu(xN+1, yM+1, tn)

+O(H3
xH

2
y +H2

xH
3
y +H2

xH
2
y∆t2) =

H2
xH

2
y

2∆t2

[
u(xN+1, yM+1, tn−1)− 2u(xN+1, yM+1, tn)

+ u(xN+1, yM+1, tn+1)−∆t2f(xN+1, yM+1, tn)

]
. (2.61)

Recall that we want to approximate u at the node denoted by (xN+1, yM+1, tn) ∈ Ω2D ×

[0, T ]. Therefore, we make u(xN+1, yM+1, tn+1) the subject of (2.61) resulting in

u(xN+1, yM+1, tn+1) = ∆t2f(xN+1, yM+1, tn)− u(xN+1, yM+1, tn−1)

+

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
u(xN+1, yM+1, tn) +

2∆t2

H2
x

u(xN , yM+1, tn)

+
2∆t2

H2
y

u(xN+1, yM , tn) +
2∆t2

H2
xH

2
y

O(H3
xH

2
y +H2

xH
3
y +H2

xH
2
y∆t2).

(2.62)

Recall that for our PDE in (1.1), our approximation of u in (2.62) is stable if the

condition in (2.34) holds. Using this, we can deduce the higher-order terms in (2.62) to

be

2C2

H2
y

O(H3
xH

2
y +H2

xH
3
y +H2

xH
2
y∆t2),

= O(H3
x +H2

xHy +H2
x∆t2).

Since our model has the same spacing in both the x and y-directions, that is Hx ≡ Hy,

we get our higher-order terms in (2.62) to be

O(H3
x +H2

x∆t2) (2.63)

which yields a sufficient level of accuracy for what will be our approximation of u. To find

this approximation of u at the specific node denoted by (xN+1, yM+1, tn) ∈ Ω2D × [0, T ],
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across all time steps, we denote V n
i,j ≈ u(xi, yj, tn) and neglect the higher-order terms in

(2.62) to get

V n+1
N+1,M+1 = ∆t2f(xN+1, yM+1, tn)− V n−1

N+1,M+1 +

[
2− 2∆t2

(
1

H2
x

+
1

H2
y

)]
V n
N+1,M+1

+
2∆t2

H2
x

V n
N,M+1 +

2∆t2

H2
y

V n
N+1,M (2.64)

for n ∈ {1, 2, ..., L− 1}.

Lastly, we now look at the implementation of the boundary conditions defined on

the Dirichlet boundary, denoted by ΓD3 . Since there are no partial derivatives in these

boundary conditions, we do not need to approximate anything. Instead, we ensure that

V n+1
i,j = 0 for all i ∈ {1, 2, ..., N + 1} when j := 1.

Now we have equations to approximate u at every node in our mesh across all

discrete-time steps in both model problems, we construct a matrix system for each to

approximate u in (1.1). Given that our domain, denoted by Ω2D, has (N + 1)× (M + 1)

nodes we define Vn and Fn below:

Vn =
(
V n
1,1 V n

2,1 · · · V n
N+1,1 V n

1,2 V n
2,2 · · · · · · V n

N,M+1 V n
N+1,M+1

)T
,

Fn =
(
f(x1, y1, tn) f(x2, y1, tn) · · · f(xN+1, y1, tn) f(x1, y2, tn) f(x2, y2, tn) · · ·

· · · f(xN , yM+1, tn) f(xN+1, yM+1, tn)
)T
.

In addition to this, we define a matrix B which contains all the coefficients of V n
i,j for

i ∈ {1, 2, 3, ..., N + 1} and j ∈ {1, 2, 3, ...,M + 1} in (2.29), (2.35), (2.40), (2.49), (2.55),

(2.64), and the Dirichlet boundaries defined above. Having defined all of our notation,

the matrix system is given by

Vn+1 = BVn −Vn−1 + ∆t2Fn (2.65)

for n ∈ {1, 2, ..., L− 1}.

2.2.1 MATLAB implementation

In this section, we look at verifying whether the MATLAB code which approximates

u in (1.1) using (2.65) works correctly for both model problems. We achieve this by

computing the maximum absolute error between an exact solution of our PDE and an

approximated solution of our PDE across all nodes at tL = T . For both model problems,
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we take the total simulation time to be T = 1. The two model problems have different

boundary conditions, and so require different exact solutions for u which satisfy them

accordingly.

First Model Problem

The boundary of our first model problem is defined by ∂Ω2D1 . In the following sections,

we construct an exact solution for u such that all boundary conditions are satisfied and

test the convergence of the error which arises from the FDM approximation of u.

Time and space-dependent manufactured solution

We choose an exact solution for u which contains trigonometric functions since this

is similar to the sensor traces we would expect to observe using our forcing function in

(1.6) within our acoustic wave equation. Therefore, a reasonable choice for u such that

all boundary conditions are satisfied is

u(xi, yj, tn) = sin

(
2πxi
0.2

)
sin

(
2πyj
0.08

)(
1 + sin (tn)

)
(2.66)

where i ∈ {1, 2, ..., N + 1}, j ∈ {1, 2, ...,M + 1} and n ∈ {0, 1, ..., L}. Subsequently, by

substituting (2.66) into (1.1) we find the forcing function, denoted by f , which will be

used in this convergence test. Hence, we get

f(xi, yj, tn) = sin

(
2πxi
0.2

)
sin

(
2πyj
0.08

)(
725π2

(
1 + sin(tn)

)
− sin(tn)

)
. (2.67)

Recall the matrix system in (2.65) which approximates u in (1.1) at every node across

all time steps. The matrix system is recursive and so initially requires both V0 and V1 to

be known. That is, we need the approximation of u at t0 := 0 and t1 := ∆t respectively.

We have two initial conditions given by u(xi, yj, t0) and ut(xi, yj, t0) for i ∈ {1, 2, ..., N+1}

and j ∈ {1, 2, ...,M + 1}. Therefore, V0 is known. However, to get V1, we need to use

Taylor series and both initial conditions.

In this convergence test, we know the exact solution to u, and so by using (2.66), the

initial conditions across all nodes, defined for all i ∈ {1, 2, ..., N+1} and j ∈ {1, 2, ...,M+

1}, are both

u(xi, yj, t0) = ut(xi, yj, t0) = sin

(
2πxi
0.2

)
sin

(
2πyj
0.08

)
. (2.68)
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Therefore, by definition in (2.68), V0 := sin
(

2πxi
0.2

)
sin
(

2πyj
0.08

)
for all i ∈ {1, 2, ..., N + 1}

and j ∈ {1, 2, ...,M + 1}. Using Taylor series and substituting in (2.68), we get

u(xi, yj, t1) = u(xi, yj, t0) + ∆tut(xi, yj, t0) +O(∆t2),

= sin

(
2πxi
0.2

)
sin

(
2πyj
0.08

)
(1 + ∆t) +O(∆t2). (2.69)

By neglecting the higher-order terms in (2.69), for all i ∈ {1, 2, ..., N + 1} and j ∈

{1, 2, ...,M + 1} we get

V1 := sin

(
2πxi
0.2

)
sin

(
2πyj
0.08

)
(1 + ∆t) .

Error convergence

Recall that our approximation to (1.1) became approximate because we neglected

the higher-order terms in (2.28) and (2.33). These higher-order terms directly correlate

to the magnitude of error we would expect to get between an exact solution and our

approximation of u. Recall that the higher-order terms were O(H2
x + H2

y + ∆t2) at the

interior nodes and O(H2
x + H3

y + ∆t2) along the Neumann boundary. It makes sense

that the maximum error recorded would correlate to the higher-order terms resulting

in the most substantial error. Therefore to find out what these are, we combined both

higher-order terms to get

O
(
H2
x +H2

y + ∆t2 +H2
x +H3

y + ∆t2
)

= O(H2
x +H2

y + ∆t2).

Therefore, we would expect the maximum absolute error to decrease by a factor of four

as Hx, Hy and ∆t half. Table (2.2) displays the maximum absolute error across all nodes

in our mesh at T = 1 between an exact solution in (2.66) and our approximations of u

for increasing values of N and M , which subsequently decreases Hx and Hy, respectively,

and decreasing ∆t. We can deduce as both N and M double and ∆t halves, the error

convergence approaches four which is what we expected. Therefore, we can conclude that

the mathematics set-out in this section and the code are correct and working.
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N M ∆t Maximum

|Error|

Error

Percentage†

Error

Convergence

Computation

Time†† (s)

30 3 1800−1 0.046423654 2.472227298 N/A 0.038300

60 6 3600−1 0.013846597 0.746319520 3.352712150 0.137714

120 12 7200−1 0.003532304 0.191452475 3.919990182 0.975390

240 24 14400−1 0.000886343 0.048109192 3.985256272 7.748006

480 48 28800−1 0.000221782 0.012042293 3.996460488 63.326669

960 96 57600−1 0.000055459 0.003011588 3.999026308 577.356112

† Error Percentage = [maximum error at node (i, j)]/[approximation at node (i, j)]× 100.

†† Computed using an i5− 4590 @ 3.30GHz, 16GB RAM @ 1333 MHz and Intel HD Graphics 4600.

Table 2.2: The error convergence for our explicit FDM approximation of u from the

acoustic 2D wave equation, at T = 1, with the boundary defined on ∂Ω2D1 .

The Lax equivalent theorem states that if a finite difference scheme is both stable and

consistent, then it is convergent [37]. We already know that our finite difference scheme in

(2.65) is stable, see [38]. For our finite difference scheme to be consistent, the maximum

absolute error in Table (2.2) must approach zero as Hx = 0.2/N , Hy = 0.02/M and ∆t

approach zero. Upon inspection of Table (2.2), we can see that this is the case. Therefore,

we can conclude that our finite difference scheme is convergent.

Second Model Problem

The boundary of our second model problem is defined by ∂Ω2D2 . In the following

sections, we construct an exact solution for u such that all boundary conditions are

satisfied and test the convergence of the error which arises from the FDM approximation

of u.

Time and space dependent manufactured solution

We choose an exact solution for u which contains trigonometric functions since this

is similar to the sensor traces we would expect to observe using our forcing function in

(1.6) within our acoustic wave equation. Therefore, a reasonable choice for u such that

all boundary conditions are satisfied is

u(xi, yj, tn) = cos

(
2πxi
0.4

)
sin

(
2πyj
0.08

)(
1 + sin (tn)

)
(2.70)
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where i ∈ {1, 2, ..., N + 1}, j ∈ {1, 2, ...,M + 1} and n ∈ {0, 1, ..., L}. Subsequently, by

substituting (2.70) into (1.1) we find the forcing function, denoted by f , which will be

used in this convergence test. Hence, we get

f(xi, yj, tn) = cos

(
2πxi
0.4

)
sin

(
2πyj
0.08

)(
650π2

(
1 + sin(tn)

)
− sin(tn)

)
. (2.71)

Recall the matrix system in (2.65) which approximates u in (1.1) at every node across

all time steps. The matrix system is recursive and so initially requires both V0 and V1 to

be known. That is, we need the approximation of u at t0 := 0 and t1 := ∆t respectively.

We have two initial conditions given by u(xi, yj, t0) and ut(xi, yj, t0) for i ∈ {1, 2, ..., N+1}

and j ∈ {1, 2, ...,M + 1}. Therefore, V0 is known. However, to get V1, we need to use

Taylor series and both initial conditions.

In this convergence test, we know the exact solution to u, and so by using (2.70), the

initial conditions across all nodes, defined for all i ∈ {1, 2, ..., N+1} and j ∈ {1, 2, ...,M+

1}, are both

u(xi, yj, t0) = ut(xi, yj, t0) = cos

(
2πxi
0.4

)
sin

(
2πyj
0.08

)
. (2.72)

Therefore, by definition in (2.72), V0 := cos
(

2πxi
0.4

)
sin
(

2πyj
0.08

)
for all i ∈ {1, 2, ..., N + 1}

and j ∈ {1, 2, ...,M + 1}. Using Taylor series and substituting in (2.72), we get

u(xi, yj, t1) = u(xi, yj, t0) + ∆tut(xi, yj, t0) +O(∆t2),

= cos

(
2πxi
0.4

)
sin

(
2πyj
0.08

)
(1 + ∆t) +O(∆t2). (2.73)

By neglecting the higher-order terms in (2.73), for all i ∈ {1, 2, ..., N + 1} and j ∈

{1, 2, ...,M + 1} we get

V1 := cos

(
2πxi
0.4

)
sin

(
2πyj
0.08

)
(1 + ∆t) .

Error convergence

Recall that our approximation to (1.1) became approximate because we neglected the

higher-order terms in (2.28), (2.33), (2.39), (2.48), (2.54) and (2.63). These higher-order

terms directly correlate to the magnitude of error we expect to get between an exact

solution and our approximation of u. Recall that the higher-order terms were O(H2
x +

H2
y+∆t2) at the interior nodes, and O(H2

x+H3
y+∆t2), O(H3

x+H2
y+∆t2), O(H3

x+H2
x∆t2),

O(H3
x +H2

y + ∆t2) and O(H3
x +H2

x∆t2) along the Neumann boundaries. It makes sense
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that the maximum error recorded would correlate to the higher-order terms resulting in

the largest error. Hence, to find out what these are we combined all higher-order terms

to get

O
(
H2
x +H2

y + ∆t2 +H2
x∆t2

)
. (2.74)

Recall that for our PDE in (1.1), our approximation of u in (2.65) is stable if the

condition in (2.34) holds. Therefore, by multiplying the last term in (2.74) by H2
x/H

2
x,

we can use the stability condition in (2.34) to get

O
(
H2
x +H2

y + ∆t2
)
. (2.75)

Looking at the combined higher-order terms in (2.75), we would expect the maximum

absolute error to decrease by a factor of four as Hx, Hy and ∆t half. Table (2.3) displays

the maximum absolute error across all nodes in our mesh at T = 1 between an exact

solution in (2.66) and our approximations of u for increasing values of N and M , which

subsequently decreases Hx and Hy, respectively, and decreasing ∆t. We can deduce as

both N and M double, and ∆t halves the error convergence approaches four which is what

we expected. Therefore, we can conclude that the mathematics set-out in this section and

the code are correct and working.

N M ∆t Maximum

|Error|

Error

Percentage†

Error

Convergence

Computation

Time†† (s)

30 3 1800−1 0.058812755 3.094945955 N/A 0.031026

60 6 3600−1 0.011568330 0.624289521 5.083945133 0.140547

120 12 7200−1 0.002655675 0.144007174 4.356078963 1.044969

240 24 14400−1 0.000648499 0.035203959 4.095110401 8.344721

480 48 28800−1 0.000161100 0.008747699 4.025443824 68.401874

960 96 57600−1 0.000040204 0.002183191 4.007063974 619.233829

† Error Percentage = [maximum error at node (i, j)]/[approximation at node (i, j)]× 100.

†† Computed using an i5− 4590 @ 3.30GHz, 16GB RAM @ 1333 MHz and Intel HD Graphics 4600.

Table 2.3: The error convergence for our explicit FDM approximation of u from the

acoustic 2D wave equation, at T = 1, with the boundary defined on ∂Ω2D2 .

The Lax equivalent theorem states that if a finite difference scheme is both stable and

consistent, then it is convergent [37]. We already know that our finite difference scheme in
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(2.65) is stable, see [38]. For our finite difference scheme to be consistent, the maximum

absolute error in Table (2.3) must approach zero as Hx = 0.2/N , Hy = 0.02/M and ∆t

approach zero. Upon inspection of Table (2.3), we can see that this is the case. Therefore,

we can conclude that our finite difference scheme is convergent.

2.3 Standard Kalman filter outline

The aim of this thesis is to solve an inverse problem. That is, given time-series data

at specific locations on the surface of our domain, we want to be able to find the location

of the disturbance used to generate this data. The KF has the ability to solve inverse

problems when it is coupled with a likelihood estimate, see [39]. Therefore, we will be

using the KF alongside a likelihood estimate in this thesis to solve our inverse problems.

The KF was first proposed by Rudolf Kalman in 1960, see [40], and was first applied

to aid the navigation of Project Apollo in the 1960s [41]. Since the first application of

the KF, it has proved to be an extremely valuable tool, which earned the author the

National Academy of Engineering Draper prize in 2008. To this day, the KF is used in

many applications including but not limited to navigation, GPS, tracking objects and

finance [42], [43] and [44].

The KF is a set of equations which estimate a latent state, which we model after our

explicit FDM approximations of u, over recursive steps using noisy observations from the

same recursive steps [42]. This is achieved by minimising the mean squared error between

the estimate and expected solution – that is we attempt to minimise the trace of the

covariance matrix for this error.

Considering a discrete-time case in this thesis, we define the state to be x̃n and the

observations as yn. The KF formulation depends on a state space representation of a

dynamic system, which we describe first. The state at the discrete-time step (n + 1) is

formed from the previous state at n as follows

x̃n+1 := Gx̃n + gn + wn (2.76)

where G and gn are a matrix and a vector, respectively, of compatible dimensions.

Additionally, wn represents random Gaussian noise with zero mean, that is wn ∼

N(µ,S2) = N(0,Q), where Q is the covariance matrix of wn and S is any positive

definite square root of Q.
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At the discrete-time step n, we construct the noisy observations as follows

yn := Cx̃n + zn (2.77)

where C extracts data from x̃n at specific locations, hereafter known as our sensor

locations. Additionally, zn represents random Gaussian noise with zero mean, that is

zn ∼ N(0,R), where R is the covariance matrix of zn.

The purpose of the KF is to compute an estimate for x̃n+1 in (2.76), given the estimate

and observations at the previous discrete-time step. Since this procedure is recursive, we

can imply this for n ∈ {1, 2, ..., L− 1}.

Let us denote x̂n+1|n as the estimate of x̃n+1, and note that x̂1|0 is required to be

known. In our numerical experiments, we take this to be zero, although its choice may

be guided by the application under consideration. The covariance matrix of the estimate

is denoted by Pn+1|n, where P1|0 is taken to be the identity matrix. As our study in

chapters 3-7 result in state estimate values which are much smaller than 1, our choice

of P1|0 denotes a large dispersion in our estimate of x̂1|0. Despite this, if these initial

conditions are bad it has little effect on the success of the KF, with the only impact being

slower convergence [42].

Having already defined both (2.76) and (2.77), we now outline seven KF equations

which estimate the mean, and covariance of the state variable in (2.76) using (2.77). The

KF has two steps: the prediction step and the update step as outlined below

Prediction step:

Predicted mean x̂n+1|n := Gx̂n|n + gn, (2.78)

Covariance of predicted mean Pn+1|n := GPn|nGT + Q. (2.79)

Update step:

Innovations vn := yn −Cx̂n|n−1, (2.80)

Covariance of innovations Σn := CPn|n−1CT + R, (2.81)

Kalman gain Kn := Pn|n−1CT
(
Σn
)−1

, (2.82)

Updated mean x̂n|n := x̂n|n−1 + Knvn, (2.83)

Covariance of updated mean Pn|n := (I−KnC) Pn|n−1. (2.84)
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Both (2.78) and (2.79) estimate the mean and covariance matrix of x̃n+1 in (2.76) using

observations up to and including the discrete-time step n. In (2.80), we calculate the error

between the observations and the models prediction of (2.76), and the corresponding

covariance matrix is constructed and given in (2.81). The updated mean in (2.83) is

formulated, where the KF estimation of (2.76) is improved using the Kalman gain in

(2.82). As previously discussed, we compute the Kalman gain by minimising the trace of

the covariance matrix in (2.84), which results in an improved estimate of (2.76).

Before we conclude this section, we can reduce the seven KF equations in (2.78)-(2.84)

to only six. The reason for this is because (2.79) is independent of any observations, and

so we combine it with (2.84), to give us the following equations which outline the standard

KF

vn := yn −Cx̂n|n−1, (2.85)

Σn := CPn|n−1CT + R, (2.86)

Kn := Pn|n−1CT
(
Σn
)−1

, (2.87)

x̂n|n := x̂n|n−1 + Knvn, (2.88)

x̂n+1|n := Gx̂n|n + gn, (2.89)

Pn+1|n := GPn|n−1GT + Q−GPn|n−1CT
(
Σn
)−1

CPn|n−1GT (2.90)

for n ∈ {1, 2, ..., L− 1}.

2.4 Our application of the Kalman filter

In this thesis, we use both the KF and likelihood estimation to predict a latent

state, using sensor traces obtained from our explicit FDM approximations of u, and

predict an unknown parameter in our forcing function. Since the structure of our FDM

approximation equations in (2.16) and (2.65) are different from the latent state in (2.76),

we have to modify the structure of both (2.76) and (2.77), and subsequently (2.85)-(2.90).

Doing this means we can apply the KF to estimate our latent state using our FDM

approximations in (2.16) or (2.65) for our 1D and 2D model problems, respectively.

In this section, we look at the modifications required to the KF, derive a likelihood

function, and outline the singular value decomposition used to reduce matrix dimensions

within the KF.
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2.4.1 Alterations made to the standard Kalman filter

To modify the KF equations, we use block matrices which enables the combination of

both Vn and Vn−1 in (2.16) or (2.65). Having constructed the required block matrices,

the following forms our discrete-time recursive equations, to be used in conjunction with

the KF, based on our explicit FDM approximation equations outlined in (2.16) and (2.65)

x̃n+1 := Ax̃n + ∆t2F̃n
+ w̃n, (2.91)

ỹn := C̃x̃n + z̃n (2.92)

where A :=

 B −I

I 0

 , x̃n :=

 Vn

Vn−1

 , F̃n
:=

 Fn

0

 , w̃n :=

 wn

0

 ,

ỹn :=

 yn

yn−1

 , C̃ :=

 C 0

0 C

 and z̃n :=

 zn

zn−1

 .

In this modified formulation, matrices B, Vn, Vn−1 and C, and vectors yn and yn−1 are

known. A new block matrix, F̃n
, contains the forcing function for a given model problem,

at the n− th discrete-time step across every node in our mesh, denoted by Fn.

Now we have outlined the changes made to (2.76) and (2.77) in (2.91) and (2.92),

respectively, we outline the KF for n ∈ {1, 2, ..., L− 1} below:

vn := ỹn − C̃x̂n|n−1, (2.93)

Σn := C̃Pn|n−1C̃
T

+ R̃, (2.94)

Kn := Pn|n−1C̃
T(

Σn
)−1

, (2.95)

x̂n|n := x̂n|n−1 + Knvn, (2.96)

x̂n+1|n := Ax̂n|n + ∆t2F̃n
, (2.97)

Pn+1|n := APn|n−1AT + Q̃−APn|n−1C̃
T(

Σn
)−1

C̃Pn|n−1AT (2.98)

where for symmetric, positive definite covariance matrices Q and R

Q̃ :=

 Q 0

0 Q

 and R̃ :=

 R 0

0 R

 .
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2.4.2 Derivation of the likelihood function

Now that we have outlined the modified KF equations, we want to estimate the location

of a disturbance in our forcing function, which we denote by x0 or x0 in our 1D and 2D

model problems respectively. For more information regarding the forcing function used

in our model problems, see our approach outline in the introduction.

Let us first denote Gi−1 := {ỹi−1, ỹi−2, ..., ỹ1, ỹ0} as the family of observations up

to and including the discrete-time step (i − 1) where i ∈ {1, 2, ..., L − 1}. We want to

construct a likelihood function which can determine how likely a guess for our unknown

parameter, denoted by x0 or x0 in our 1D and 2D model problems respectively, is at being

the actual value used to form the observations denoted by ỹi for all i ∈ {1, 2, ..., L−1}. To

achieve this, we need to evaluate the probability density function for P(ỹi|Gi−1), denoted

by h(ỹi;x0) or h(ỹi; x0) for our 1D and 2D model problems respectively. In the following

derivation, we use the notation associated with our 2D model problems. Assuming that

P(ỹi|Gi−1) ∼ N(µ,S2), we can deduce the multivariate Gaussian density function for a

particular value of i to be

h(ỹi; x0) :=
1√

2π det
(
S2
) exp

(
− 1

2

(
ỹi − µ

)T (
S2
)−1 (

ỹi − µ
))

(2.99)

where det(·) denotes the determinant.

Before we proceed with deriving the likelihood function, we must first find µ and S2

in (2.99). Starting with the mean, we have

µ = E(ỹi|Gi−1). (2.100)

Substituting (2.92) into (2.100), noting that the noise is independent of the observations

and matrix C̃ is constant we get

E(ỹi|Gi−1) = E(C̃x̃i|i−1 + z̃i),

= C̃E(x̃i|i−1) + E(z̃i),

= C̃x̂i|i−1. (2.101)

Therefore, µ = C̃x̂i|i−1 for i ∈ {1, 2, ..., L − 1}. We are now interested in deriving the

variance, denoted by S2. We know that the variance of a vector, in our case ỹi given Gi−1,

can be computed using

S2 = Var
(
ỹi|Gi−1

)
,
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= E
[(

ỹi − E[ỹi]
)(

ỹi − E[ỹi]
)T∣∣∣Gi−1]. (2.102)

Substituting (2.101) into (2.102), noting that ỹi for all i ∈ {1, 2, ..., L−1} are independent,

and making use of (2.93) to simplify further, we get

S2 = E
[(

ỹi − C̃x̂i|i−1
)(

ỹi − C̃x̂i|i−1
)T]

,

= E
[(

vi
)(

vi)T
]
,

= Var
(
vi
)
. (2.103)

Recall that (2.94) represents the covariance matrix for (2.93), and so, using this in (2.103)

we can conclude that

S2 = Σi (2.104)

for i ∈ {1, 2, ..., L− 1}.

Substituting both (2.101) and (2.104) into (2.99), and recalling that our observations

are independent, we can compute the likelihood function by taking the product of all

multivariate Gaussian density functions to get

L(x0) =
L−1∏
i=1

h(ỹi; x0),

=
L−1∏
i=1

1√
2π det(Σi)

exp

(
− 1

2

(
ỹi − C̃x̂i|i−1

)T(
Σi
)−1(

ỹi − C̃x̂i|i−1
))
,

=
L−1∏
i=1

1√
2π det(Σi)

exp

(
− 1

2

(
vi
)T(

Σi
)−1

vi
)
. (2.105)

Since (2.105) contains an exponential function, we can simplify further by taking the

natural logarithm. The natural logarithm is an increasing function, meaning the value

of x0 which maximises (2.105), will also maximise the natural logarithm of (2.105).

Therefore, making use of logarithmic and exponential identities, we can further simplify

to get

log
(
L(x0)

)
=

L−1∑
i=1

log

 1√
2π det(Σi)

exp

(
− 1

2

(
vi
)T(

Σi
)−1

vi
) ,

= −1

2

L−1∑
i=1

log
(
2π
)
− 1

2

L−1∑
i=1

(
log
(

det(Σi)
)

+
(
vi
)T(

Σi
)−1

vi
)
. (2.106)
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Since the first term in (2.106) is parameterless, we neglect it. Therefore, to be able to

determine the value of x0 which maximises log
(
L(x0)

)
, we need to find x0 which minimises

the following function:

− log
(
L(x0)

)
=

1

2

L−1∑
i=1

(
log
(

det(Σi)
)

+
(
vi
)T(

Σi
)−1

vi
)
. (2.107)

For our 1D model problems, we use a minimisation algorithm within a MATLAB

function called fminsearch which uses the Nelder-Mead algorithm. The Nelder-Mead

algorithm was first published in 1965, see [45]. Its purpose is to find the minimum

of a function in Rn, see [46], which in our case is (2.107). We are interested in

obtaining the smallest negative logarithmic likelihood function in (2.107) for an unknown

parameter in our forcing function. The initial guess chosen for the unknown parameter

in the minimisation algorithm is essential, otherwise, we run the risk of converging to a

non-stationary point [47]. As a result of this, we make an array of initial guesses for x0,

requiring the KF to be run in each case, increasing the possibility that we deduce the value

of x0 used to generate our sensor traces. This approach proves to be a problem in our

2D model problems, and when we consider higher frequencies within our forcing function.

Therefore, we devise an alternative strategy in chapter 3 under alternative approaches.

In the next section, we outline the SVD and further modify the KF equations, resulting

in substantial matrix dimension reductions within the KF, enabling us to solve problems

with disturbances with higher frequencies in the forcing function. We investigate this for

both our 1D and 2D model problems in chapters 4 and 6, respectively.

2.4.3 Singular value decomposition outline

In this thesis, we aim to solve inverse problems using time-series data along the surface

of our domains. This involves using the KF whose matrix dimensions are linked to the

mesh density used to generate our approximations of u in our PDE, which at specific nodes

in our mesh represent the time-series data along the surface of our domains. The density of

this mesh, and subsequently the size of the matrices in the KF, increase significantly when

we consider higher-dimensional model problems, and disturbances with higher frequencies

in chapters 4, 5 and 6. Therefore we use the SVD to decompose our matrix containing

the approximations of u for our PDE, from which we take the principle components which

correspond to the largest singular values. By doing this, we can modify the KF to reduce
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the system RAM and run-time requirements, while retaining a significant amount of the

information from the original data.

The SVD is a technique which decomposes a real rectangular matrix, denoted by

M̂ ∈ Rr×c into

M̂ = ÛΣ̂V̂
T

(2.108)

where Û ∈ Rr×r and V̂ ∈ Rc×c are real orthogonal matrices and Σ̂ is a matrix containing

the singular values of M̂ along its main diagonal, see [48] and [49]. The singular values

of M̂ are positive square roots of the eigenvalues of M̂M̂
T

. Since V̂ is an orthogonal

matrix, we know that V̂
T
≡ V̂

−1
. Matrices Û and V̂ contain the left and right singular

vectors for M̂, respectively, which correspond to the eigenvectors for M̂M̂
T

and M̂
T
M̂

respectively.

The SVD can be used to reduce the dimension of a matrix, in our case M̂, see [50].

Using the SVD is essential for us when the dimension of matrices in the KF become too

large due to higher-dimensional models or higher frequencies within our forcing function.

From the SVD formed, we are able to extract the principal components which correspond

to the largest singular values in matrix M̂. Using these principal components, we are able

to dynamically modify the KF equations resulting in matrix dimension reductions.

Before we modify our explicit FDM approximation of u and KF equations, we must

first extract the principal components from the SVD. In our case, matrix M̂ contains

the FDM approximations of u at every node in our mesh across a range of consecutive

discrete-time steps, whose choice is illustrated in Figure (3.14), and so, matrix M̂ is given

by

M̂ =
(

V(2−Ts)LT V(2−Ts)LT +1 · · · V
2L
T

)
(2.109)

where Ts represents the duration of time, in seconds, we use the FDM approximations of

u to form the SVD, L is the total number of discrete-time steps, and T is the duration of

our simulation.

Using (2.109) in (2.108), we get the SVD of our matrix M̂, where the singular values

in Σ̂ are in descending order. We then take the first d columns of Û, otherwise known

as the principal components. Since the singular values in Σ̂ are in descending order, the

data in the first d columns of Û accounts for the largest amount of variance in matrix M̂.

We use the MATLAB built-in function, called svds, to form the SVD of M̂ for our model

problems.
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Now we have outlined how to construct an SVD for our matrix M̂, we want to modify

our explicit FDM approximation equations and the KF equations. Let us first denote the

first d columns in Û as

Φ =
(

φ1 φ2 · · · φd

)
(2.110)

where φi is the i-th column in Û for i ∈ {1, 2, · · · , d}, where d ≤ r. Since Û is an

orthogonal matrix, the columns of Û form an orthonormal basis of Rr [51]. The matrix

Φ is a subset of the columns in Û. Therefore, the columns of Φ form an orthonormal

basis of Rd. As a result of this, we know that ΦTΦ = I since the inner product, denoted

by 〈·, ·〉, is given by

〈φi,φj〉 =

1 if i = j,

0 otherwise

as illustrated by [52]. To reduce the dimensions of the matrices in the KF, we use ΦTΦ = I

and assume that ΦΦT ≈ I when σd+1 is sufficiently small, where σd+1 ≥ 0 denotes the

(d + 1)th largest singular value of matrix M̂. As shown in [53], this results in an error

term of ||M̂−ΦΦTM̂|| = σd+1. Using this assumption, we can approximate M̂ to get

M̂ ≈ ΦΦTM̂,

M̂
j
≈ Φβj,

Vj ≈ Φβj (2.111)

where M̂
j

and βj are the jth columns of M̂ and ΦTM̂ respectively for j ∈ {1, 2, · · · , c}.

With this knowledge, we modify the explicit FDM model equation outlined in (2.16)

or (2.65) for our 1D and 2D model problems, respectively. We use (2.111) to deduce

Vn+1 ≈ Φβn+1, Vn ≈ Φβn and Vn−1 ≈ Φβn−1. We then substitute these into (2.16) or

(2.65) to get

Φβn+1 ≈ BΦβn −Φβn−1 + ∆t2Fn. (2.112)

Recall that ΦTΦ = I. Therefore, by multiplying (2.112) on the left by ΦT we get

ΦTΦβn+1 ≈ ΦTBΦβn −ΦTΦβn−1 + ∆t2ΦTFn,

βn+1 ≈ BNewβ
n − βn−1 + ∆t2ΦTFn (2.113)

where BNew := ΦTBΦ. Now we have modified our explicit FDM approximation equations,

we move on to modifying the KF equations.
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Recall that the KF consists of six equations outlined in (2.93)-(2.98). Starting with

the innovations in (2.93), we use (2.111) to deduce Vn|n−1 ≈ Φβn|n−1 and Vn−1|n−1 ≈

Φβn−1|n−1. We substitute these into (2.93) to get

vn ≈ ỹn − C̃

 Φβn|n−1

Φβn−1|n−1

 ,

= ỹn −

 C 0

0 C

 Φ 0

0 Φ

 βn|n−1

βn−1|n−1

 ,

= ỹn − C̃Newβ̂
n|n−1

(2.114)

where C̃New := C̃Φ̃ =

 C 0

0 C

 Φ 0

0 Φ

 and β̂
n|n−1

:=

 βn|n−1

βn−1|n−1

. We

continue with the covariance of the innovations in (2.94). From the assumption that

ΦΦT ≈ I, we arrive at the assumption that Φ̃Φ̃
T ≈ I. Therefore, by substituting this

assumption into (2.94), we get

Σn ≈ C̃Φ̃Φ̃
T
Pn|n−1Φ̃Φ̃

T
C̃

T
+ R̃,

= C̃NewΦ̃
T
Pn|n−1Φ̃C̃

T

New + R̃ (2.115)

since C̃
T

New :=
(
C̃Φ̃

)T
= Φ̃

T
C̃

T
. Let us denote P̃

n|n−1
= Φ̃

T
Pn|n−1Φ̃, and so, by

substituting this into (2.115) we get

Σn ≈ C̃NewP̃
n|n−1

C̃
T

New + R̃. (2.116)

Moving on to the Kalman Gain in (2.95), we multiply through on the left side by Φ̃
T

to

get

Φ̃
T
Kn = Φ̃

T
Pn|n−1C̃

T(
Σn
)−1

. (2.117)

Recall the assumption that Φ̃Φ̃
T ≈ I. Using this in (2.117) we can further simplify to get

Φ̃
T
Kn ≈ Φ̃

T
Pn|n−1Φ̃Φ̃

T
C̃

T(
Σn
)−1

,

=
(
Φ̃

T
Pn|n−1Φ̃

)(
C̃Φ̃

)T(
Σn
)−1

,

= P̃
n|n−1

C̃
T

New

(
Σn
)−1

. (2.118)

Let us denote K̃
n

:= Φ̃
T
Kn, and so, after substituting this into (2.118) we get

K̃
n ≈ P̃

n|n−1
C̃

T

New

(
Σn
)−1

. (2.119)
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Next, we look at the updated mean in (2.96). Substituting (2.111) again, at different

conditional time intervals, into (2.96) we get Φβn|n

Φβn−1|n

 ≈
 Φβn|n−1

Φβn−1|n−1

+ Knvn,

 Φ 0

0 Φ

 βn|n

βn−1|n

 ≈
 Φ 0

0 Φ

 βn|n−1

βn−1|n−1

+ Knvn,

Φ̃β̂
n|n
≈ Φ̃β̂

n|n−1
+ Knvn. (2.120)

Recall that Φ̃
T
Φ̃ = I. Therefore, we multiply (2.120) on the left by Φ̃

T
to get

Φ̃
T
Φ̃β̂

n|n
≈ Φ̃

T
Φ̃β̂

n|n−1
+ Φ̃

T
Knvn,

β̂
n|n
≈ β̂

n|n−1
+ K̃

n
vn. (2.121)

Next, we look at the predicted mean in (2.97). Substituting (2.111) again, at different

conditional time intervals, into (2.97) results in Φβn+1|n

Φβn|n

 ≈ A

 Φβn|n

Φβn−1|n

+ ∆t2F̃n
,

 Φ 0

0 Φ

 βn+1|n

βn|n

 ≈ A

 Φ 0

0 Φ

 βn|n

βn−1|n

+ ∆t2F̃n
,

Φ̃β̂
n+1|n

≈ AΦ̃β̂
n|n

+ ∆t2F̃n
. (2.122)

Recall that Φ̃
T
Φ̃ = I. Using this, we multiply (2.122) on the left by Φ̃

T
to get

β̂
n+1|n

≈ Φ̃
T
AΦ̃β̂

n|n
+ ∆t2Φ̃

TF̃n
. (2.123)

Let us denote Ã := Φ̃
T
AΦ̃ =

 ΦTBΦ −I

I 0

. Substituting this into (2.123), we can

simplify further to get

β̂
n+1|n

≈ Ãβ̂
n|n

+ ∆t2Φ̃
TF̃n

. (2.124)

Finally, we look at the covariance matrix (2.98). We start by multiplying (2.98) by Φ̃
T

and Φ̃ on the left and right respectively, to get

Φ̃
T
Pn+1|nΦ̃ = Φ̃

T
APn|n−1ATΦ̃+Φ̃

T
Q̃Φ̃−Φ̃

T
APn|n−1C̃

T
(
Σn
)−1

C̃Pn|n−1ATΦ̃. (2.125)

Recall that we assume Φ̃Φ̃
T ≈ I. Substituting this into (2.125) where required results in

Φ̃
T
Pn+1|nΦ̃ ≈ Φ̃

T
AΦ̃Φ̃

T
Pn|n−1Φ̃Φ̃

T
ATΦ̃ + Φ̃

T
Q̃Φ̃
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− Φ̃
T
AΦ̃Φ̃

T
Pn|n−1Φ̃Φ̃

T
C̃

T
(
Σn
)−1

C̃Φ̃Φ̃
T
Pn|n−1Φ̃Φ̃

T
ATΦ̃,(

Φ̃
T
Pn+1|nΦ̃
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Ã
T

(2.126)

where Q̃New := Φ̃
T
Q̃Φ̃. Therefore in summary, as outlined above in (2.114), (2.116),

(2.119), (2.121), (2.124) and (2.126), the modified KF using the SVD is defined by

vn ≈ ỹn − C̃Newβ̂
n|n−1

, (2.127)

Σn ≈ C̃NewP̃
n|n−1

C̃
T

New + R̃, (2.128)

K̃
n ≈ P̃

n|n−1
C̃

T

New

(
Σn
)−1

, (2.129)

β̂
n|n
≈ β̂

n|n−1
+ K̃

n
vn, (2.130)

β̂
n+1|n

≈ Ãβ̂
n|n

+ ∆t2Φ̃
TF̃n

, (2.131)

P̃
n+1|n ≈ ÃP̃

n|n−1
Ã

T
+ Q̃New − ÃP̃

n|n−1
C̃

T

New

(
Σn
)−1

C̃NewP̃
n|n−1

Ã
T
. (2.132)

Having now dynamically modified our explicit FDM model equation in (2.113) and

the KF equations in (2.127)-(2.132), we can control the size of our matrices by altering

the number of principal components taken from the SVD, denoted by d. To illustrate how

significant this is, we look at two examples. The vector dimensions of (2.16) and (2.65)

are 2(N + 1) and 2(N + 1)(M + 1), respectively. After modifying our explicit FDM model

equation, the vector dimensions in both (2.16) and (2.65) are reduced to 2d in (2.113).

The matrix dimensions of (2.98) are 2(N + 1)2 or 2
(
(N + 1)(M + 1)

)2
for our 1D and 2D

model problems, respectively. After modifying our KF equations, the matrix dimension

of (2.132) is only 2d2.

2.5 Summary

Having outlined the methodology used in this thesis, we want to investigate the

effectiveness of the theory in an array of different cases. Over the next five chapters,

we look at the possibility of localising a disturbance of varying frequency within both 1D

and 2D domains, using explicit FDM approximations of u for (1.1) and (1.1), respectively,

at sensor locations. In chapter 7 we extend the model problem considered in chapter 3 to
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use partial derivatives of u at sensor locations in addition to, and instead of, using only

the pressure, denoted by u. In the next chapter, we look at our 1D model problem with

a disturbance frequency of F = 25Hz.



Chapter 3

1D Model Problem

In this chapter, we outline our 1D model problem using the forcing function outlined

in chapter 1 with a disturbance frequency of F = 25Hz, we detail the noise added to our

explicit FDM approximations of u, and we outline a schematic for our 1D model problem

detailing the stages required to locate x0 in our forcing function.

We present probabilistic results using a minimisation algorithm to find x0 which

minimises (2.107), using our explicit FDM approximations of u from a fine and coarse

mesh. We look at alternative approaches, one without using a minimisation algorithm

and another utilising an SVD to reduce matrix dimensions in the KF. We compare the

run-time for the different approaches considered in this chapter to illustrate the issues that

could arise when we consider higher dimensional model problems, and higher disturbance

frequencies in chapters 4, 5 and 6 of this thesis. For our 1D model problems with a

disturbance frequency of F = 25Hz, these alternative approaches are not essential but are

important to illustrate the use of data from a coarse mesh yield good results - enabling

us to explore 2D model problems and higher frequencies in our forcing function.

3.1 Model problem outline

3.1.1 Forcing function

In this section we recall the forcing function we outlined in chapter 1, see (1.6), and

illustrate our choices for the unknown parameters for the 1D model problem with a

disturbance frequency of F = 25Hz considered in this chapter. Firstly, we discuss the

value chosen for the amplitude in (1.6).

52



CHAPTER 3. 1D MODEL PROBLEM 53

The amplitude, denoted by A, was initially taken to be one for simplicity. However,

when A = 1 in (1.6) the covariance matrix in (2.94) was close to singular, and

subsequently, (2.94) was also close to being singular. We discovered that when A = 106 in

(1.6), the covariance matrix in (2.94) was invertible. Therefore, for our model problems

we set A = 106.

The choice for ε in (1.6) alters the Gaussian spread of our disturbance. If we take ε to

be too small and the location of our disturbance is not near a node in our mesh where u is

approximated, f in (1.6) would decay before reaching a node meaning the approximations

of u would be unreliable. Additionally, if our choice for ε is too large, there is a risk that

the Gaussian spread of our disturbance would be so large our model could struggle to

pinpoint the exact location of the disturbance in our domain. In the results section of

this chapter, we take ε = 5.77 × 10−6 in (1.6) by investigating the level of success based

on whether our model problem deduces the actual disturbance location, for an array of

different values for epsilon.

x = 0.2x = 0 0.004 0.002

Figure 3.1: A snapshot of the Gaussian spread, given our value of ε, around the location

of the disturbance denoted by a cross. The disturbance here has a frequency of F = 25Hz.

The grey dots represent where we evaluate the likelihood function in (2.107) and the

position of the nodes in our coarse mesh (50 in total).

Now we have chosen a value for ε in our forcing function we look at the Gaussian

spread around a disturbance location. Figure (3.1) shows a snapshot of the Gaussian

spread caused by our chosen value of ε in (1.6) in the worst-case scenario. The worst-case

scenario is when the distance between the actual disturbance location and a position we

evaluate the likelihood function in (2.107) is as larger as possible. The black cross in

Figure (3.1) represents the location of our disturbance, denoted by x0, and the grey dots

illustrate the position of the nodes in our coarse mesh (50 in total). At the nearest node
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to the disturbance location, in the worst-case scenario, only 50% of the peak is remaining.

At the next node along, a distance of 0.006 from the disturbance location representing

3% of the domain size, the signal decays to approximately zero. This is good since we

want the disturbance to be localised in our domain, and we have seen that the Gaussian

spread decays to zero just 3% of the domain away from the disturbance location.

Having defined our forcing function in (1.6) to be used in (1.1), we want to investigate

the convergence of our explicit FDM approximations of u in (2.16). To do this, we need

to know both V0 and V1 in (2.16). The initial conditions of u for (1.1) are u(xi, t0) := 0

and ut(xi, t0) := 0 for all i ∈ {1, 2, ..., N + 1}. As a result, we know V0. However, we do

not know V1. Using both initial conditions of u, and Taylor series, we can approximate

V1 to get

u(xi, tn+1) = u(xi, tn) + ∆tut(xi, tn) +O(∆t2)

and subsequently, when n = 0, we substitute in both initial conditions of u to get

u(xi, t1) = O(∆t2).

Neglecting higher-order terms, and recalling Vn ≈ u(xi, tn) for all i ∈ {1, 2, ..., N + 1}, we

get the second initial condition required in (2.16) to be V1 ≈ 0.

N ∆t Maximum absolute solution over

all nodes and discrete-time steps

% from N = 800

50 3000−1 47.096540561132862 0.66237463

100 6000−1 48.124952897427079 1.50678765

150 9000−1 47.714573116812034 0.64120066

200 12000−1 47.574614025259791 0.34599418

250 15000−1 47.511043619546868 0.21190932

300 18000−1 47.476504975870455 0.13905924

350 21000−1 47.456264515091256 0.09636737

400 24000−1 47.443047317756452 0.06848921

800 48000−1 47.410576190783118 0

Table 3.1: The convergence of our explicit FDM approximation of u in (1.1) for a

simulation duration of T = 1 second, a disturbance frequency of F = 25Hz and a

disturbance location at x0 = 0.05.
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Using these initial conditions in (2.16), we can look at the convergence of the maximum

absolute explicit FDM approximation of u across all nodes and discrete-time steps for

different mesh densities in both space and time. Table (3.1) shows the results gathered at

different mesh densities, and we decide to use a mesh density of N = 50 and ∆t = 3000−1

for our coarse mesh, whereas for our fine mesh, we will use a mesh with N = 250 nodes

and L = 15000 discrete-time steps.

In this chapter we investigate the feasibility of using explicit FDM approximations

of u from a coarse mesh for our sensor traces to reduce the matrix dimensions in the

KF. Therefore, we compare the results obtained when our sensor traces originated from

explicit FDM approximations of u from a coarse mesh to explicit FDM approximations

of u from a fine mesh.

3.1.2 Added noise

Recall from chapter 1 that we add two different forms of random Gaussian noise to our

explicit FDM approximations of u in (2.16), denoted by w̃n and z̃n in the KF. We scale the

first by the error associated with the explicit FDM approximations of u in (2.16). For our

1D model problem considered in this chapter, this error is measured by the combination

of the higher-order terms neglected at the interior nodes and the Neumann boundary

in (2.7) and (2.14), respectively. The second random Gaussian noise added attempts to

mimic inaccuracies recorded by sensors within a real-life scenario, be that ambient noise

in the background or errors due to manufacturing defects. Without experimental data,

we cannot accurately predict the magnitude of this noise. As a result, we model it by the

error associated with the explicit FDM approximation of u in (2.16) and scale it ensuring

it is the larger of the two random Gaussian noises added since we would expect this noise

to be the dominant of the two. We scale the noise added so that the original explicit

FDM approximations of u are still recognisable but significantly obscured.

Figure (3.2) illustrates the effect the added noise has on our explicit FDM

approximations of u in (2.16) for our 1D model problem. These figures show a sensor trace

at x := 0.2 formed using a mesh density of N = 50 nodes with L = 3000 discrete-time

steps for a simulation duration of T = 1 second, a disturbance frequency of F = 25Hz,

and a disturbance location at x0 = 0.004. We scale the random Gaussian noise added to

our explicit FDM approximations of u, see Figure (3.2)(b) by 5× 104, and by 1× 107 in
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Figure (3.2)(c). In total, the noise added is significant, see Figure (3.2)(d), but does not

overwhelm the explicit FDM approximations of u, see Figure (3.2)(a).

(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 3.2: Illustration of the noise added to our explicit FDM approximations of u in

(2.16) using a single sensor trace at x := 0.2, a mesh dimension of N = 50 nodes and

L = 3000 discrete-time steps, a disturbance frequency of F = 25Hz and a disturbance

location at x0 = 0.004.

3.1.3 Model problem schematic

In this section we outline the placement of sensors in our domain and detail the

stages involved to obtain a prediction for the location of our disturbance. We will start

by defining where sensors are placed, that is the nodes in the mesh the explicit FDM
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approximations of u are recorded across all discrete-time steps.

In Figure (3.3), we outline the position of our sensors depending on how many are

present. We always place a sensor at x := 0.2, on the Neumann boundary. On the

occasions we have more than a single sensor, the rest are equidistant from one another.

Since u = 0 at x := 0, we never place a sensor here. As illustrated in the results section,

see Figure (3.6), having more than six sensors present has negligible impact on our models

ability to accurately predict the location of the disturbance, and will result in increased

matrix dimensions in the KF. Therefore, for our 1D model problems, we consider having

between 1 and 6 sensors present in our domain.

x = 0.2x = 0 0.2m

1 sensor

2 sensors

3 sensors

4 sensors

5 sensors

6 sensors

Figure 3.3: The distribution of 1-6 sensors, denoted by black squares, present on our

1D domain.

In chapter 1, we outlined a schematic in Figure (1.5) which gives a broad approach to

the steps involved to obtain a prediction for the disturbance location, denoted by x0. In

this section we construct another schematic which goes into more detail for our 1D model

problem without using the SVD.

Figure (3.4) shows a schematic illustrating the steps required to predict the location of

our disturbance, denoted by x0, for our 1D model problem without using an SVD. Our first

step has two different routes. One route involves creating 50 random disturbance locations

in our 1D domain defined on Ω1D := (0, 0.2). When creating these, if the same location
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occurs twice, we remove the duplicate and replace it with another random location until

all 50 are unique. These are generated once for our 1D model problems, with the same 50

random disturbance locations used to ensure consistency between our probabilistic results.

The second route in our first step involves taking 50 disturbances positioned where we

evaluate the likelihood function in (2.107), that is x0 := {0.004, 0.008, ..., 0.2}.

Moving onto the second step in our schematic, we solve the acoustic wave equation

in (1.1) by approximating u using an explicit FDM approximation, see (2.16), over a

total simulation duration of T = 1 second. We add two different forms of noise to the

approximations of u, which we illustrated in Figure (1.5), and in the previous section of

this chapter. Having added noise to our approximations of u, we store these across all

discrete-time steps at the nodes in our mesh which correspond to sensor locations, see

Figure (3.3).

Having obtained our sensor traces across all discrete-time steps from our explicit FDM

approximations of u, we move onto step 3. We use these sensor traces as our observations

in (2.92) for the KF in (2.93)-(2.98). We run the KF over a series of initial guesses for

x0, given by x0 := {0.004, 0.008, ..., 0.2}, and compute the likelihood function in (2.107)

using a minimisation algorithm for each initial guess using time-dependent data derived

in the KF. From the 50 likelihood estimates obtained, one for each initial guess of x0, we

determine the smallest and deduce the corresponding x0 to be the models prediction of

the actual disturbance location used to generate the sensor traces. Using only a single

initial guess for x0, rather than 50, yielded bad results due to local minimums in (2.107).

We solved this issue using the 50 initial guesses, however, this lengthened the run-time of

our 1D model problem.

In chapters 4, 5 and 6 we consider model problems which result in infeasible run-times

for our approach with the minimisation algorithm. As a result, we investigate the

feasibility of a different method for our 1D model problems so we can compare the two

approaches. In this approach, instead of using a minimisation algorithm, we simply take

50 equidistant guesses for x0 and run the KF and compute the likelihood function in

(2.107) for each. From the 50 likelihood estimates obtained, one for each guess of x0, we

determine the smallest and deduce the corresponding x0 to be the models prediction of

the actual disturbance location used to generate the sensor traces.
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Step 1: We generate 50 random

disturbance locations, each denoted

by x0.

Step 1: We generate 50 disturbance

locations, each denoted by x0, at the

same positions the likelihood function

in (2.107) is evaluated.

Step 2: Solve the acoustic wave equation in (1.1) using our explicit FDM

approximation of u in (2.16) over a simulation duration of T = 1 second. We store

the approximations of u across all discrete-time steps at nodes in our mesh which

correspond to our sensor locations after the noise has been added.

Step 3: We use the KF in

(2.93)-(2.98) and subsequently

compute the likelihood function

in (2.107) using a minimisation

algorithm for 50 uniformly spaced

initial guesses of x0, that is x0 :=

{0.004, 0.008, ..., 0.2}. From the 50

likelihood estimates computed, we

deduce the smallest and determine

the corresponding x0 to be the models

prediction of the actual disturbance

location.

Step 3: We use the KF in

(2.93)-(2.98) and subsequently

compute the likelihood function

in (2.107) for 50 uniformly spaced

guesses of x0, that is x0 :=

{0.004, 0.008, ..., 0.2}. From the 50

likelihood estimates computed, we

deduce the smallest and determine

the corresponding x0 to be the models

prediction of the actual disturbance

location.

Step 4: Having completed steps 2-3 for each disturbance location outlined in

step 1, we compute a probabilistic success rate for an absolute x-error given a

percentage of tolerance.

Figure 3.4: A schematic for our 1D model problem without using the SVD.

In step 4, having completed steps 2-3 in Figure (3.4) for each disturbance location in

step 1, we compute probabilistic success rates for an absolute x-error given a percentage

of tolerance. For our alternative approach without the minimisation algorithm, when



CHAPTER 3. 1D MODEL PROBLEM 60

the disturbance locations are random we will not be evaluating the likelihood function in

(2.107) where the actual disturbance is positioned. As a result, in the worst-case scenario

when the distance between the actual disturbance location and a position we evaluate the

likelihood function in (2.107) is as larger as possible, we have an unavoidable error of 1%.

3.2 Results

In this section we explain our choice for our value of ε in (1.6) and how many sensors

is enough. Trivially, insufficient sensors will result in less data being known to the

KF resulting in worse results, and too many will result in longer run-times since the

matrix dimensions in the KF, see (2.93)-(2.98), are dependent on the number of sensors

present. Additionally, we discuss the results obtained from our 1D model problems using

a minimisation algorithm. We compare the results from sensor traces collected from a

coarse mesh with N = 50 nodes and L = 3000 discrete-time steps, to results from a fine

mesh with N = 250 nodes and L = 15000 discrete-time steps. This is important because

the matrix dimensions in the KF are dependent on the size of our mesh used to get our

explicit FDM approximations of u.

In Figure (3.5) we have the success rate of our model for an array of different ε values,

given three different tolerances using 50 different random disturbance locations for x0

with a single sensor present at y := 0.2. The ε values chosen were dependent on the

percentage of the Gaussian spreads peak remaining in the worst-case scenario. Recall

that the worst-case scenario is when the distance between the actual disturbance location

and a position we evaluate the likelihood function in (2.107) is as larger as possible, and

so, since the results in Figure (3.5) have used explicit FDM approximations of u from a

mesh with 50 equidistant nodes, this distance is 0.002.

Upon inspection of Figure (3.5), we see the most significant level of success when the

peak disturbance at the nearest node is 50%. In this case, ε = 5.77× 10−6, and so this is

the value we take for ε in our forcing function.

Figure (3.6) shows the success rate of our 1D model problem for 3 different levels of

relative tolerance, with a differing number of sensors present. Figure (3.6)(a) corresponds

to sensor traces from a coarse mesh, whereas Figure (3.6)(b) represents sensor traces from

a fine mesh.
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Figure 3.5: The success rate of our 1D model problem for an array of epsilon values in

our forcing function, f , a single sensor present at y := 0.2, a mesh dimension of N = 50

and L = 3000, and random disturbance locations.

(a) Mesh dimension of N = 50 nodes and

L = 3000 discrete-time steps.

(b) Mesh dimension of N = 250 nodes and

L = 15000 discrete-time steps.

Figure 3.6: The success rate of our 1D model problem given an absolute x-error with

different relative tolerances for a varying number of sensors present. The probabilistic

success rates displayed were obtained using 50 random disturbance locations in our 1D

domain.
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As mentioned previously, we do not want too many sensors present due to the

associated increase in matrix dimensions in the KF. Additionally, in a real-life scenario

- a trained professional would not place 50 sensors onto a human thorax. As a result,

upon inspecting Figure (3.6), it makes sense to run our 1D model problems for an array

of sensors starting with 1 and going up to 6, where we observe good success rates.

Furthermore, it is worth noting that the success rates obtained using sensor traces from

a coarse mesh look promising in Figure (3.6)(a), and so, we will be investigating this

further.

3.2.1 FDM approximation of u from a fine mesh

In this section, we look at results corresponding to sensor traces obtained from an

explicit FDM approximation of u on a fine mesh with N = 250 nodes and L = 15000

discrete-time steps.

(a) Disturbance location at x0 = 0.116. (b) Disturbance location at x0 = 0.076608.

Figure 3.7: The likelihood estimates across our 1D domain using a minimisation

algorithm with a mesh dimension of N = 250 nodes and L = 15000 discrete-time steps to

generate our explicit FDM approximations of u which are recorded at two sensors, shown

as solid black dots. The actual disturbance location is shown as a hollow black circle,

with the models prediction of this location denoted by a grey cross.

Figure (3.7) shows the likelihood function in (2.107) plotted against the corresponding

location of x0 which was obtained using the minimisation algorithm. This algorithm

uses 50 equidistant initial guesses for x0 across our 1D domain. We do this to reduce the

possibility of obtaining bad results from using only a single initial guess for x0. Figure
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(3.7)(a) has an actual disturbance location of x0 = 0.116, whereas in Figure (3.7)(b) it

is at x0 = 0.076608. The examples shown used 2 sensors, denoted by black dots, and in

both cases, in Figure (3.7), our model has accurately predicted the disturbance location.

Having seen two examples where our 1D model has successfully predicted the actual

disturbance location, we now look at probabilistic results from 50 different disturbance

locations. The full set of results can be found in Appendix A.1, where the results are

presented both graphically and in tabular form.
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Figure 3.8: The probabilistic success rates for our 1D model problem using a

minimisation algorithm with a varying number of sensors, a mesh dimension of N = 250

nodes and L = 15000 discrete-time steps. The results on the left-hand side (LHS) come

from 50 disturbance locations where the likelihood function is evaluated, and on the

right-hand side (RHS) from 50 random disturbance locations.

Figure (3.8) has been constructed to show the probabilistic success rates for both 50

random disturbance locations and 50 disturbance locations positioned where the likelihood
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in (2.107) is evaluated. The number of sensors on our 1D domain when generating

the success rates are shown on the left of each figure, in this case one or two, with

the probabilistic success rate denoted by the position of the black dot aligned with the

number of sensors present on the left of each figure. The figures show that we get a 100%

success rate, irrespective of the number of sensors on our domain and different initial

guesses made for the minimisation algorithm. This is what we would expect, since we are

using a minimisation algorithm where a more optimal location for our disturbance can be

predicted as it can move away from the initial guess.

Moreover, we only have results for when there are 1 and 2 sensors present. The reason

for this is due to the significant run-time required to run our 1D model problem for 50

different disturbance locations. In each case, it is run through a minimisation algorithm

running the KF many times until a preset tolerance is met. In addition to this, we have

large matrix dimensions in the KF due to the sensor traces originating from a fine mesh,

which slows down our 1D model problem. Despite this, as seen in Figure (3.8), for 1 and

2 sensors, we get a 100% success rate, even at a small 1% relative tolerance. As a result,

we do not need to run our 1D model problem for more than 2 sensors.

3.2.2 FDM approximation of u from a coarse mesh

In this section, we look at results corresponding to sensor traces obtained from our

explicit FDM approximations of u on a coarse mesh with N = 50 nodes and L = 3000

discrete-time steps.

Figure (3.9) shows the likelihood function in (2.107) plotted against the corresponding

location of x0 which was obtained using the minimisation algorithm. This algorithm uses

50 equidistant initial guesses for x0 across our 1D domain. We do this to eliminate the

possibility of obtaining bad results from using only a single initial guess for x0. Figure

(3.9)(a) has an actual disturbance location of x0 = 0.116, whereas in Figure (3.9)(b) it is

at x0 = 0.076608. The examples shown used 6 sensors, shown as black dots, and in both

cases, in Figure (3.9), our model has accurately predicted the disturbance location.

Having seen two examples where our 1D model has successfully predicted the actual

disturbance location, we now look at probabilistic results from 50 different disturbance

locations. The full set of results can be found in Appendix A.2, where the results are

shown both graphically and in tabular form.
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Figure (3.10) has been constructed to show the probabilistic success rates for 50

random disturbance locations and 50 disturbances positioned where the likelihood

function in (2.107) is evaluated. The number of sensors on our 1D domain when generating

the success rates are shown on the left of each figure, in this case one through to six, with

the probabilistic success rate denoted by the position of the black dot aligned with the

number of sensors present on the left of each figure. Since we are using a minimisation

algorithm, an optimal location for our disturbance can be more accurately predicted as it

can move away from the initial guess. As a result, we would not expect any substantial

difference between the success rate in Figure (3.10) on the left when compared to the

success rate on the right, and this is what is observed.

Moreover, in every case across all error tolerances, we see a lower success rate when

only a single sensor is present. The success rate when 2 or more sensors are present is

100%, the same as what was observed when we had sensor traces from a fine mesh.

(a) Disturbance location at x0 = 0.116. (b) Disturbance location at x0 = 0.076608.

Figure 3.9: The likelihood estimates across our 1D domain using a minimisation

algorithm with a mesh dimension of N = 50 nodes and L = 3000 discrete-time steps

to generate our explicit FDM approximations of u which are recorded at six sensors,

shown as solid black dots. The actual disturbance location is shown as a hollow black

circle, with the models prediction of this location denoted by a grey cross.
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Figure 3.10: The probabilistic success rates for our 1D model problem using a

minimisation algorithm with a varying number of sensors, a mesh dimension of N = 50

nodes and L = 3000 discrete-time steps. The results on the LHS come from 50 disturbance

locations where the likelihood function is evaluated, and on the RHS from 50 random

disturbance locations.
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3.2.3 Summary

Now we have presented the results for our 1D model problems where the sensor traces

have come from fine and coarse meshes, we can compare the two approaches.

We first saw results corresponding to sensor traces from a fine mesh, that is one with

N = 250 nodes and L = 15000 discrete-time steps. Of course, this yielded better results

which we would expect since the sensor traces are more accurately approximating u in

(1.1). However, it was observed that the results were only better when a single sensor

was present. For our results corresponding to our coarse mesh with N = 50 nodes and

L = 3000 discrete-time steps, with 2 or more sensors present, the probabilistic success

rate was equivalent to our 1D model problem using sensor traces from a fine mesh.

This result is very significant. Not only does it show that the KF in (2.93)-(2.98) can

reasonably account for the larger error in the sensor traces from the coarse mesh caused by

less accurate approximations of u in (2.16), but it also means that we can use approximate

solutions of u from a coarse mesh in (1.1) from (2.16), which has a very significant impact

on the matrix dimensions in the KF.

Although this is not a huge problem when only considering 1D model problems,

with a disturbance whose frequency is F = 25Hz, it is significant when we have

higher-dimensional problems or higher frequencies for our disturbance in (1.6). We will

return to this point with an explanation later in chapters 4, 5 and 6 where we consider

such model problems.

3.3 Alternative approaches

In this section, we consider two different methods to locate our disturbance in (1.6).

In the first approach, we do not use a minimisation algorithm as we have done so

already. Instead, we evaluate the likelihood in (2.107) at 50 equidistant locations, given by

x0 := {0.004, 0.008, ..., 0.2}, creating the unavoidable possibility of a bad result since the

largest distance possible between the location of our disturbance and where we evaluate

the likelihood in (2.107) has a relative error of 1%. The reason we explore this method

in 1D is due to the run-time required to use the minimisation algorithm, which for

higher-dimensional problems and problems with a higher frequency in the forcing function,

would not be feasible.
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We also look at using an SVD to reduce the matrix dimensions in the KF, see the

modified KF in (2.127)-(2.132) due to the SVD. These results have been obtained without

the use of the minimisation algorithm. Additionally, in 1D, it is possible to run our

model problems with sensor traces originating from fine and coarse meshes so that we can

compare the results between the two.

3.3.1 Without using a minimisation algorithm

In Figure (3.11) we have four examples, that is two different disturbance locations

using two different mesh densities to generate the sensor traces, showing the likelihood

function in (2.107) plotted against the corresponding x0 in our 1D domain. Where this

approach differs from what we have already done is that we do not use a minimisation

algorithm. Meaning what was our initial guesses for x0 in our minimisation algorithm

before, are now our only guesses for the location of our disturbance.

What is of significance in Figure (3.11) is that the disturbance location in Figure

(3.11)(b) and Figure (3.11)(d) is not at a position where we evaluate the likelihood

function using this approach, and so it is impossible for our model to predict the exact

location of our disturbance. However, as can be seen by inspecting both Figure (3.11)(b)

and Figure (3.11)(d), our model has determined the location of our disturbance to be at

a position we evaluate the likelihood function, which is very close to the actual location,

giving us optimism for this approach.

Having seen four examples where our model has successfully predicted the disturbance

location, we now look at probabilistic results from 50 different disturbance locations.

The full set of results can be found in Appendix A.3, where the results are shown both

graphically and in tabular form.

In Figure (3.12) and Figure (3.13), we have the success rate based on three different

relative tolerances for a varying number of sensors present, using sensor traces from a fine

and coarse mesh, respectively.

In both cases, when the disturbance location is at a position where we evaluate the

likelihood function, and we have more than only 1 sensor present, we have a success rate

of 100% which is very promising.

Again, in both cases, when the disturbance locations are random, the model struggles

to get a reasonable success rate when there are fewer sensors present. We can attribute
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this to the lack of information known to the KF due to the sensor count, and the fact

that if the disturbance is not where we evaluate the likelihood function, we can see that

this will have an impact on the success rate by comparing Figure (3.8) with Figure (3.12),

and Figure (3.10) with Figure (3.13).

(a) Disturbance location at x0 = 0.116 with

a mesh dimension of N = 250 nodes and L =

15000 discrete-time steps.

(b) Disturbance location at x0 = 0.076608

with a mesh dimension of N = 250 nodes and

L = 15000 discrete-time steps.

(c) Disturbance location at x0 = 0.116 with

a mesh dimension of N = 50 nodes and L =

3000 discrete-time steps.

(d) Disturbance location at x0 = 0.076608

with a mesh dimension of N = 50 nodes and

L = 3000 discrete-time steps.

Figure 3.11: The likelihood estimates across our 1D domain without using a

minimisation algorithm for two different mesh dimensions to generate our explicit FDM

approximations of u which are recorded at six sensors, shown as solid black dots. The

actual disturbance location is shown as a hollow black circle, with the models prediction

of this location denoted by a grey cross.
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When we have 6 sensors present; however, the success rate for both cases do very well.

By comparing Figure (3.12) to Figure (3.13), we can see that the success rate is better

for the example where the sensor traces were generated from a fine mesh. This means

that using sensor traces from a coarse mesh, when the disturbance location is random,

has a small impact on the probabilistic success rate, as opposed to using sensor traces

generated from a fine mesh. However, the margin is tiny, and for the run-time reduction

that we will require in higher-dimensional problems - this approach seems to be a viable

option.
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Figure 3.12: The probabilistic success rates for our 1D model problem without using

a minimisation algorithm with a varying number of sensors, a mesh dimension of N =

250 nodes and L = 15000 discrete-time steps. The results on the LHS come from 50

disturbance locations where the likelihood function is evaluated, and on the RHS from 50

random disturbance locations.
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Figure 3.13: The probabilistic success rates for our 1D model problem without using a

minimisation algorithm with a varying number of sensors, a mesh dimension of N = 50

nodes and L = 3000 discrete-time steps. The results on the LHS come from 50 disturbance

locations where the likelihood function is evaluated, and on the RHS from 50 random

disturbance locations.
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3.3.2 Use of an SVD to reduce matrix dimensions in the KF

In this section, we use an SVD to reduce the matrix dimensions in the KF. The

largest matrix in the standard KF, see (2.93)-(2.98), is Pn+1|n in (2.98) with dimensions

of
(
2(N+1)

)2
, where N represents the number of nodes in our mesh used to approximate u

in (1.1). In the modified KF, using a subset of the data formed by an SVD, the equivalent

matrix in (2.132) has a dimension of (2d)2 where d represents the first d columns in the

matrix containing the left singular vectors in (2.108), which have the largest singular

values. As a result, the matrix dimensions are significantly reduced, meaning faster

run-times and a significant decrease in the amount of system RAM required, see Figure

(3.15) for an illustration of this.

The benefits of changing the dynamics of our system using an SVD, rather than using

the dynamics of our explicit FDM approximations of u in the KF are evident. We now

look at how we form an SVD, using data from the explicit FDM approximations of u in

(2.16). Previously, our total simulation duration was T = 1 second. We did attempt to

keep the simulation length the same, however, it was apparent when looking at sensor

traces with a total simulation length of T = 1 second, see Figure (3.2), that using data

from (2.16) over the first 40% of the simulation to form the SVD would not have produced

an SVD that reflects the actual sensor traces produced in (2.16). As a result, we decided

to extend the total simulation time to T = 3 seconds.

Figure (3.14) shows a schematic of the new simulation duration of T = 3 seconds.

We chose to disregard the first second of data from (2.16), ensuring any transients had

died out. We then select Ts := {1, 0.5, 0.25, 0.125}, which represents the segment of time

we use the explicit FDM approximations of u to form our SVD. As illustrated in Figure

(3.14), Ts is taken from T = 2 to T = 1 second. Doing this ensures the modified KF

in (2.127)-(2.132) always runs over the third second of our simulation irrespective of the

choice of Ts. Once we have formed an SVD for our explicit FDM approximations of u in

(2.16), we take the first d columns from the matrix containing the left singular vectors to

form (2.110) - these are the principal components of our SVD with the largest singular

values.

Using the principal components in (2.110), we can run the modified KF in

(2.127)-(2.132) over the last second of our simulation, using estimated sensor traces

generated using our d principal components over the final second of our simulation.
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Figure 3.14: An illustration showing the breakdown of our simulation time for the

model problems using an SVD, where Ts represents the duration, in time, of data used

from the FDM approximations of u to form the SVD, tn denotes a discrete-time step

where n ∈ {0, 1, 2, ..., L} and T is the duration of our simulation.

Recall from chapter 1 the schematic in Figure (1.5) which gives a broad approach

to the steps involved to obtain a prediction for the disturbance location, denoted by x0.

Since our simulation duration and the way we obtain our sensor traces has changed, the

schematic outlined in Figure (3.4) does not apply to our 1D model problem using an SVD,

and so, we construct a new schematic in Figure (3.16).

In Figure (3.16), step 1 is the same as before. In step 2, we generate and store our

explicit FDM approximations of u at every node in our mesh across a simulation from

T = 0 to T = 2 seconds.

In step 3, we disregard the first (2− Ts) seconds of our explicit FDM approximations

of u stored in step 2, and use the remaining approximations of u at every node in our

mesh, stored in (2.109) to form our SVD. We then take the first d columns in the matrix

containing the left singular vectors in (2.108) to establish our principal components, see

(2.110). These principal components correspond to the largest singular values, which

account for the most significant amount of variance in our data.

In step 4, we use these principal components stored in (2.110) to dynamically reduce

our numerical scheme. Having achieved this, we run our reduced wave equation over the

third second of our simulation to produce sensor traces on the reduced system. Lastly, we

approximate the sensor traces for our original numerical scheme using the sensor traces

from our reduced system. Random noise is then added to these approximated sensor
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traces.

Moving onto Step 5, we use the approximated sensor traces in our modified KF over the

third second of our simulation. We run the KF 50 times for different disturbance location

guesses, denoted by x0 := {0.004, 0.008, ..., 0.2}, each resulting in a likelihood function

using (2.107). From the 50 likelihood estimates computed, we compute the smallest and

conclude that the corresponding disturbance location is the models prediction of the true

disturbance location used to generate our sensor traces.

Finally, in step 6, we compute probabilistic success rates given a relative percentage

of tolerance given an absolute x-error. We are able to do this by following steps 2-5 for

each disturbance location in step 1. Using these results, we conclude how well our 1D

model problem is at predicting the disturbance location.

We have already discussed the advantages of using an SVD, as opposed to not using one

in our 1D model problems. In Figure (3.15) we can see the system RAM requirements in

gigabytes (GB) for the KF, with six sensors and 12 principal components, against different

mesh refinements used to get our explicit FDM approximations of u in (2.16). We can see,

upon inspection of Figure (3.15), that the system RAM requirements for the KF in our

1D model problem using an SVD are significantly less when compared to our 1D model

problem without an SVD, as was expected.

Figure 3.15: The system RAM requirements for the KF used in our 1D model problems

with six sensors present and d = 12, when an SVD is used in our 1D model problem.
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Step 1: Generate 50 random

disturbance locations, each denoted

by x0.

Step 1: Generate 50 disturbance

locations, each denoted by x0, at the

same positions the likelihood function

in (2.107) is evaluated.

Step 2: Solve the acoustic wave equation in (1.1) using our explicit FDM

approximation of u in (2.16) for a simulation duration of T = 2. We store the

approximations of u at every node in our mesh across all discrete-time steps.

Step 3: Using the FDM approximations of u from our mesh over a time duration

denoted by Ts, see Figure (3.14), we form an SVD of this matrix, created from the

FDM approximations of u. We keep the first d columns in the matrix containing

the left singular vectors in (2.108), which become our d principal components.

Step 4: Using these d principal components, we solve the wave equation for the

final second in our simulation to produce approximations of u for the reduced

system. We then approximate the sensor traces using data from the reduced

system, which we will use in the KF after random noise has been added.

Step 5: We use the KF in (2.127)-(2.132) and subsequently compute the

likelihood function in (2.107) for 50 uniformly spaced guesses of x0, denoted

by x0 := {0.004, 0.008, ..., 0.2}. From the 50 likelihood estimates computed,

we deduce the smallest and determine the corresponding x0 to be the models

prediction of the actual disturbance location.

Step 6: Having completed steps 2-5 for each disturbance location outlined in

step 1, we compute a probabilistic success rate for an absolute x-error given a

percentage of tolerance.

Figure 3.16: A schematic for our 1D model problem which uses an SVD.

Since our simulation duration has changed, we need to redo the convergence testing

of our explicit FDM approximations of u. Again, we look for the maximum absolute

approximation of u in (2.16) at every node in our mesh and across all discrete-time steps

for the new simulation duration of T = 3 seconds. Using the same initial conditions in
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(2.16) as before, Table (3.2) contains the convergence of our explicit FDM approximation

of u computed at different mesh densities. Therefore, we decide to use a mesh with N = 50

nodes and L = 9000 discrete-time steps for our coarse mesh, whereas for our fine mesh we

will use a mesh with N = 250 nodes and L = 45000 discrete-time steps. The percentage

error from a converged solution for these explicit FDM approximations of u is 22% and

1%, respectively.

N ∆t Maximum absolute solution over

all nodes and time steps

% from N = 1300

50 9000−1 59.753396 22.11650406

100 18000−1 80.652083 5.122211805

150 27000−1 78.490472 2.304757441

200 36000−1 77.798606 1.402975908

250 45000−1 77.420574 0.9102471477

300 54000−1 77.204065 0.6280482567

350 63000−1 77.071149 0.4548048914

400 72000−1 76.984083 0.3413226405

450 81000−1 76.923656 0.2625617928

500 90000−1 76.880536 0.2063589736

550 99000−1 76.848262 0.1642928839

600 108000−1 76.823909 0.1325510645

650 117000−1 76.804888 0.1077589999

1300 234000−1 76.722213 0

Table 3.2: The convergence of our explicit FDM approximation of u in (1.1) for a

simulation duration of T = 3 seconds, a disturbance frequency of F = 25Hz and a

disturbance location at x0 = 0.05.

Due to our simulation duration changing, we cannot compare the results in this section

to those earlier on in this chapter. As a result, Table (3.3) and Table (3.4) contain

probabilistic success rates for an array of sensors, where the KF is run over the final,

third second in our simulation. In Table (3.3), the probabilistic results correspond to 50

disturbance locations positioned where we evaluate the likelihood function, whereas the

results in Table (3.4) come from 50 random disturbance locations.
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Success Rate

Number of sensors 1% 5% 10%

1 64 64 66

2 98 98 98

3 100 100 100

4 100 100 100

5 100 100 100

6 100 100 100

Table 3.3: The probabilistic success rates for our 1D model problem without using

a minimisation algorithm with a mesh dimension of N = 50 nodes and L = 9000

discrete-time steps over a simulation duration of T = 3 seconds using 50 disturbance

locations where the likelihood function is evaluated. The KF is run over the final second

only in an attempt to mimic the scenario considered when using an SVD.

Success Rate

Number of sensors 1% 5% 10%

1 44 44 48

2 70 72 76

3 74 76 78

4 82 84 88

5 86 92 94

6 94 96 98

Table 3.4: The probabilistic success rates for our 1D model problem without using

a minimisation algorithm with a mesh dimension of N = 50 nodes and L = 9000

discrete-time steps over a simulation duration of T = 3 seconds using 50 random

disturbance locations. The KF is run over the final second only in an attempt to mimic

the scenario considered when using an SVD.
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(a) Disturbance location at x0 = 0.116, and

a mesh dimension of N = 250 nodes and L =

15000 discrete-time steps.

(b) Disturbance location at x0 = 0.076608,

and a mesh dimension of N = 250 nodes and

L = 15000 discrete-time steps.

(c) Disturbance location at x0 = 0.116, and

a mesh dimension of N = 250 nodes and L =

15000 discrete-time steps.

(d) Disturbance location at x0 = 0.076608,

and a mesh dimension of N = 250 nodes and

L = 15000 discrete-time steps.

Figure 3.17: The likelihood estimates across our 1D domain using an SVD with

Ts = 0.5 and d = 12 for two different mesh dimensions to generate our explicit FDM

approximations of u which are recorded at six sensors, shown as solid black dots. The

actual disturbance location is shown as a hollow black circle, with the models prediction

of this location denoted by a grey cross.

Having now defined everything for our 1D model problems using an SVD, we discuss

the results obtained. In Figure (3.17) we have four examples, that is two different

disturbance locations using two different mesh densities to generate the explicit FDM

approximations of u, showing the likelihood function in (2.107) plotted against the



CHAPTER 3. 1D MODEL PROBLEM 80

corresponding location in our domain that (2.107) was evaluated.

What is of significance in Figure (3.17) is that the disturbance location in Figure

(3.17)(b) and Figure (3.17)(d) are not at a position where we evaluate the likelihood

function, and so our model is not able to predict the exact location of our disturbance.

However, as can be seen by inspecting both Figure (3.17)(b) and Figure (3.17)(d), our

model has determined the location of x0 to be at a position we evaluate the likelihood

function which is the closest to the actual disturbance location. We observed the same in

Figure (3.7), Figure (3.9), and Figure (3.11) where an SVD was not used.

Having seen four examples where our model has successfully predicted the disturbance

location, we now look at probabilistic results from 50 different disturbance locations.

The full set of results can be found in Appendix A.4, where the results are shown both

graphically and in tabular form. Amongst these results, we have one through to six sensors

on our domain for both a fine and coarse mesh with two different types of disturbance

locations used to generate the success rates.

In Figures (3.18), (3.19), (3.20) and (3.21), we have the success rate, given a 10%

relative tolerance, of our 1D model problem using an SVD with different values for Ts

and d. That is, the length of time the explicit FDM approximations of u in (2.16) are

used to construct the SVD, and the number of principal components taken from the SVD

formed, respectively.

We start by comparing Figure (3.18) to Figure (3.19), where the disturbance locations

used to deduce the probabilistic results are positioned where the likelihood function is

evaluated. In both figures, the values chosen for Ts and d have little impact on our success

rate. The only difference between the results in both figures is the accuracy of the explicit

FDM approximations of u used to form our SVD. Figure (3.18) uses approximations of u

from a fine mesh, whereas Figure (3.19) uses them from a coarse mesh. We observe that

when there is only a single sensor present in our domain, at x := 0.2, the results from the

use of a fine mesh are substantially better, see Figures (3.18)(a) and (3.19)(a). However,

we also observe that when we have six sensors present in our domain, the results between

the two mesh densities used are indistinguishable, see Figures (3.18)(b) and (3.19)(b).

This result is significant, as it means using a coarse mesh to obtain our explicit FDM

approximations of u has the potential to yield good results while having smaller matrix

dimensions in the KF.
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Having compared results for two different problems using an SVD, we are interested

in comparing these results to model problems that did not use an SVD. We achieve this

by comparing the results in Figure (3.19) with the results in Table (3.3). The results

between the two are indistinguishable which means that using an SVD to reduce the

matrix dimensions in the KF has little impact on the success rate. This was expected

since the singular values in our SVD converge to zero quickly, and so, even when we take

d to be small the resultant principle components contain a lot of the original information

despite the reduced matrix sizes.

We now compare Figure (3.20) to Figure (3.21), where the disturbance locations used

to deduce the probabilistic results are random. In both figures, the values chosen for Ts

have little impact on our success rate. However, when we have six sensors present, the

larger the value of d, the better the success rate, which makes sense as more principal

components taken from the SVD correlates to more variance being captured in the data.

(a) One sensor present. (b) Six sensors present.

Figure 3.18: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 250 nodes and L = 45000 discrete-time steps. These probabilistic results were

produced using 50 disturbance locations where the likelihood function is evaluated.

Again, the only difference between the results in both figures is the accuracy of

the explicit FDM approximations of u used to form our SVD. Figure (3.20) uses

approximations of u from a fine mesh, whereas Figure (3.21) uses them from a coarse

mesh. We observe that in both cases, when a single sensor is present, neither have good

success rates. However, when we have six sensors present, both have excellent success
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rates.

(a) One sensor present. (b) Six sensors present.

Figure 3.19: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 50 nodes and L = 9000 discrete-time steps. These probabilistic results were

produced using 50 disturbance locations where the likelihood function is evaluated.

(a) One sensor present. (b) Six sensors present.

Figure 3.20: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 250 nodes and L = 45000 discrete-time steps. These probabilistic results were

produced using 50 random disturbance locations.
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(a) One sensor present. (b) Six sensors present.

Figure 3.21: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 50 nodes and L = 9000 discrete-time steps. These probabilistic results were

produced using 50 random disturbance locations.

Unlike what we observed in Figures (3.18) and (3.19) with only a single sensor present,

having an SVD formed from explicit FDM approximations of u from a fine mesh does

not have a significant effect on the success rate when compared to an SVD created from

data originating from a coarse mesh. Meaning, we can use explicit FDM approximations

of u from a coarse mesh in (2.16) to construct an SVD and the results when the

disturbance location is random are indistinguishable from those obtained using explicit

FDM approximations of u from a fine mesh.

We are now interested in comparing results obtained using an SVD, to problems that

did not use an SVD. We achieve this by comparing the results in Figure (3.21) with the

results in Table (3.4). The results between the two are indistinguishable when d ≥ 6,

meaning that by using an SVD to reduce matrix dimensions in the KF, the success rate

has not been significantly affected. As stated previously, this was expected since the

singular values in our SVD converge to zero quickly, and so, even when we take d to be

small the resultant principle components contain a lot of the original information despite

the reduced matrix sizes.
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3.4 Run-time optimisations

In this section, we look at how the run-time of our model problem changes when we

use the different approaches outlined in this chapter. We are interested in the impact

these different approaches have on run-time, as this would be magnified when we consider

higher dimensional model problems and higher disturbance frequencies in chapter 4, 5

and 6 of this thesis.

In this chapter, we have used the following three different approaches in our model

problems in an attempt to find the location of our disturbance:

1. A minimisation algorithm with an array of initial guesses for the location of our

disturbance,

2. An array of initial guesses for the location of our disturbance,

3. An SVD used with an array of initial guesses for the location of our disturbance.

Before we can compare the run-time between these different approaches, we need to

consider what effects the run-time of our model problem. After some exploratory

investigations, it was apparent that the time consuming part of our model problem

is the KF. Therefore we will need to compare the run-time with the same number of

sensors present, since this has an impact on the matrix dimensions in the KF. The results

presented in Table (3.5) all correspond to our 1D model problem, with 2 sensors present.

We chose 2 sensors because we only have results for 1 and 2 sensors for the approach

using a minimisation algorithm with a fine mesh to approximate u in our PDE, due to

run-time limitations. In addition to this, the mesh density used to approximate u in our

PDE will have an impact on the matrix dimensions in the KF, and so, we will consider

the run-time for both a fine and coarse mesh for the three different approaches above.

Since our guess for the disturbance location has an insignificant impact on the run-time

of our model problem, we will compile an average run-time for each approach.

Table (3.5) contains the average run-time for our different approaches. These run-times

were computed on the same computer, removing any variance in the run-times between

different hardware. For the SVD approach, the run-time average is based over all values

of d and Ts since these effect the matrix dimensions in the KF.

Upon inspection of Table (3.5), we can see that using a fine mesh to get the
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approximations of u in our PDE results in significantly longer run-times for our model

problem. This is expected since a finer mesh results in larger matrices in the KF, and

more discrete-time steps for the KF to run through. In addition to this, we observe that

using an SVD to reduce the matrix dimensions in the KF has a significant impact on

the run-time, irrespective of the mesh density used to approximate u in our PDE. Again,

this is expected since we know that the size of the matrices in the KF are the largest

contributor to the run-time of our model problem.

Average run-time (hours)

Minimisation algorithm Array of initial guesses SVD

Fine Mesh 147.654 0.692 0.001

Coarse Mesh 2.588 0.025 1.74× 10−5

Table 3.5: The average run-time, in hours, for our different 1D model problem

approaches. In each case, the time presented is an average based on several runs. In

all cases, the run-time presented originated from a model problem with two sensors.

In chapters 4, 5 and 6 where we consider higher dimensional model problems, and

disturbances with higher frequencies, these run-times will increase because finer meshes

will be required. As a result of this, the SVD approach outlined in this chapter will be used

due to is effectiveness at predicting the location of the disturbance, and the significantly

reduced run-time requirement.

3.5 Summary

In this chapter, we have discovered a lot. We know that we do not need to have sensor

traces generated from an explicit FDM approximation of u using a fine mesh. Instead,

we can use a coarse mesh which significantly reduces the matrix dimensions in the KF

and shortens the run-time of our 1D model problems. In addition to this, when we are

using a minimisation algorithm, the number of sensors used is not essential to obtain good

success rates.

However, when we do not use a minimisation algorithm, the success rates increase with

the number of sensors present for our 1D model problems irrespective of the coarseness of

mesh used, when the actual disturbance location is random. That is when we have only
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a single sensor, the success rate is poor, whereas when we have six sensors present, the

success rate is excellent.

When we use an SVD to further reduce the matrix dimensions in the KF, and

subsequently the system RAM and run-time requirements, we get reasonable success

rates when a larger quantity of sensors are present. This result is exceptionally significant

because when we consider higher-dimensional problems in chapters 5 and 6, and problems

with disturbances that have higher frequencies in chapters 4 and 6, this will be a necessity.

In the next chapter, we extend the 1D model problem considered in this chapter to

investigate a disturbance with higher frequencies in (1.6). As a result, we use an SVD to

reduce the matrix dimensions in the KF.



Chapter 4

1D Model Problem: Higher

Frequencies

In this chapter, we look at extending our 1D model problem considered in chapter 3

to consider frequencies of F = 150Hz and F = 300Hz in (1.6). We outline our model

problem, the convergence of the explicit FDM approximations of u in (2.16) for our

different forcing functions in (1.6), we detail the noise added to these approximations and

outline a schematic for our 1D model problem.

Once everything is outlined, we discuss the results for both frequencies considered

which we obtain using the SVD approach explored in the previous chapter.

4.1 Model problem outline

In chapter 1, we outlined the forcing function in (1.6), which attempts to mimic a

disturbance caused by CAD. In the same chapter, we noted from research that the real

frequency of this disturbance is in the range of 300 − 800Hz. Previously, we chose a

frequency of F = 25Hz for simplicity, with the knowledge of a denser mesh requirement

to approximate u in (1.1) for higher frequencies.

In the previous chapter, we explored an approach which resulted in significantly smaller

matrix dimensions in the KF, and so the run-time for our computations was reduced. We

deploy the same approach in this chapter by taking explicit FDM approximations of u in

(2.16) from a coarse mesh to form an SVD, whose principal components are used in our

modified KF, see (2.127)-(2.132).

87
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4.1.1 Forcing function

In this chapter, we investigate disturbance frequencies of F = 150Hz and F = 300Hz

in (1.6). By changing the disturbance frequency in our forcing function, we had to increase

the force of our forcing function. We tried achieving this by increasing the amplitude,

A, however, this did not result in good enough results. Instead, we altered the Gaussian

spread of our disturbance by altering ε in (1.6).

Figure (4.1) shows a snapshot of the Gaussian spread caused by our chosen value of

ε = 2.46 × 10−5 in (1.6) when F = 150Hz. The black cross represents the location of

our disturbance, denoted by x0, and the grey dots illustrate the 50 equidistant positions

we evaluate the likelihood function in (2.107). In Figure (4.1) we consider the worst-case

scenario, that is when the distance between the actual disturbance location and a position

we evaluate the likelihood function in (2.107) is as larger as possible, which in our case

is a distance of 0.002. Upon further inspection of (4.1), we observe 85% of the Gaussian

spreads peak remains in the worst-case scenario at the nearest position we evaluate the

likelihood function in (2.107). The Gaussian spread decays to zero at a distance of 0.01

away from the disturbance location, accounting for 5% of our domain.

x = 0.2x = 0 0.004 0.002

Figure 4.1: A snapshot of the Gaussian spread, given our value of ε, around the location

of the disturbance denoted by a cross. The disturbance here has a frequency of F = 150Hz.

The grey dots represent positions at which we evaluate the likelihood function in (2.107).

Figure (4.2) shows a snapshot of the Gaussian spread caused by our chosen value of

ε = 3.98 × 10−4 in (1.6) when F = 300Hz. The black cross represents the location of

our disturbance, denoted by x0, and the grey dots illustrate the 50 equidistant positions

we evaluate the likelihood function in (2.107). In Figure (4.2) we consider the worst-case

scenario when the distance between the actual disturbance location and a position we

evaluate the likelihood function in (2.107) is as larger as possible, which in our case is a
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distance of 0.002. Upon further inspection of Figure (4.2), we observe 99% of the Gaussian

spreads peak remains in the worst-case scenario at the nearest position we evaluate the

likelihood function in (2.107). The Gaussian spread decays to zero at a distance of 0.014

away from the disturbance location, accounting for 7% of our domain.

x = 0.2x = 0 0.004 0.002

Figure 4.2: A snapshot of the Gaussian spread, given our value of ε, around the location

of the disturbance denoted by a cross. The disturbance here has a frequency of F = 300Hz.

The grey dots represent positions at which we evaluate the likelihood function in (2.107).

Since our forcing function in (1.1) has changed, our explicit FDM approximations

of u in (2.16) are different. As a result, we re-examine the convergence of the absolute

maximum approximation of u across all nodes and discrete-time steps in (2.16) for both

disturbance frequencies. To solve (2.16), we need V0 and V1, both of which remain the

same as in chapter 3.

Table (4.1) illustrates the convergence of the maximum absolute approximation of u

across all nodes and discrete-time steps in (2.16) for a disturbance frequency of F = 150Hz.

The simulation duration is T = 3 seconds since we will be using an SVD, see Figure (3.14)

for more detail, and the disturbance location is chosen to be x0 = 0.05. Upon inspection of

Table (4.1), we select our coarse mesh to have N = 150 nodes and L = 18000 discrete-time

steps which yield a percentage error of 3% from a converged solution. In the previous

chapter, when F = 25Hz, a percentage error of 22% produced good results. However,

when F = 150Hz, we did not observe the same rate of success, and so, required a mesh

density with a smaller percentage error.

Table (4.2) illustrates the convergence of the maximum absolute approximation of u

across all nodes and discrete-time steps in (2.16) for a disturbance frequency of F = 300Hz.

The simulation duration is T = 3 seconds, and the disturbance location is taken to be

x0 = 0.05. Upon inspection of Table (4.2), we choose our coarse mesh to have N = 400
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nodes and L = 36000 discrete-time steps which yields a percentage error of 0.28% from

a converged solution. Again, when F = 25Hz, a percentage error of 22% produced good

results. However, when F = 300Hz, we did not observe the same rate of success, and so,

required a mesh density with a smaller percentage error.

N ∆t Maximum absolute solution over

all nodes and time steps

% from N =

2000

50 9000−1 1.021670 20.7467109

100 13500−1 1.258501 2.37518617

150 18000−1 1.244897 3.43047971

200 22500−1 1.282996 0.47505275

250 27000−1 1.264364 1.92037979

300 31500−1 1.261235 2.16310351

350 36000−1 1.272980 1.25201688

400 40500−1 1.301058 0.92605809

450 45000−1 1.274986 1.09640685

500 49500−1 1.278137 0.85197654

550 54000−1 1.279175 0.77145650

600 58500−1 1.285137 0.30897046

650 63000−1 1.286002 0.24187042

700 67500−1 1.291759 0.20471329

750 72000−1 1.294764 0.43781805

800 76500−1 1.293106 0.30920318

850 81000−1 1.288892 0.01768648

900 85500−1 1.285045 0.31610711

950 90000−1 1.283313 0.45046233

1000 94500−1 1.283798 0.41283976

2000 184500−1 1.289120 0

Table 4.1: The convergence of our explicit FDM approximation of u in (1.1) for a

simulation duration of T = 3 seconds, a disturbance frequency of F = 150Hz and a

disturbance location at x0 = 0.05.
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N ∆t Maximum absolute solution over

all nodes and time steps

% from N =

4000

100 9000−1 0.277091 1.851110631

200 18000−1 0.284714 0.849045576

300 27000−1 0.281466 0.301434203

400 36000−1 0.283130 0.287974157

500 45000−1 0.282567 0.088552939

600 54000−1 0.282863 0.193399618

700 63000−1 0.282383 0.023377976

800 72000−1 0.282359 0.014876894

900 81000−1 0.281999 0.112639338

1000 90000−1 0.281899 0.148060514

1100 99000−1 0.283622 0.462246340

1200 108000−1 0.282090 0.080406068

1300 117000−1 0.282957 0.226695523

1400 126000−1 0.282264 0.018773223

1500 135000−1 0.281588 0.258220369

1600 144000−1 0.281850 0.165416890

1700 153000−1 0.282105 0.075092892

1800 162000−1 0.282230 0.030816423

1900 171000−1 0.282340 0.008146870

2000 180000−1 0.282711 0.139559431

4000 360000−1 0.282317 0

Table 4.2: The convergence of our explicit FDM approximation of u in (1.1) for a

simulation duration of T = 3 seconds, a disturbance frequency of F = 300Hz and a

disturbance location at x0 = 0.05.

4.1.2 Added noise

Recall from chapter 1 that we add two different forms of random Gaussian noise to our

explicit FDM approximations of u in (2.16), denoted by w̃n and z̃n in the KF. We scale

the first by the error associated with the explicit FDM approximations of u in (2.16).
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(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 4.3: Illustration of the noise added to our explicit FDM approximations of u in

(2.16) using a single sensor trace at y := 0.2, a mesh dimension of N = 150 nodes and

L = 18000 discrete-time steps, a simulation duration of T = 3 seconds, a disturbance

frequency of F = 150Hz and a disturbance location at x0 = 0.004. All figures show only

the first second of the sensor traces.

For our 1D model problem considered in this chapter, this error is measured by the

combination of the higher-order terms neglected at the interior nodes and the Neumann

boundary in (2.7) and (2.14), respectively. The second random Gaussian noise added

attempts to mimic inaccuracies recorded by sensors in a real-life scenario, be that ambient

noise in the background or errors due to manufacturing defects. Without experimental

data, we cannot accurately predict the magnitude of this noise. As a result, we model it

by the error associated with the explicit FDM approximation of u in (2.16) but scale it
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ensuring it is the larger of the two random Gaussian noises added since we would expect

this noise to be the dominant of the two. We scale the noise added such that the original

explicit FDM approximations of u are still recognisable but significantly obscured.

(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 4.4: Illustration of the noise added to our explicit FDM approximations of u in

(2.16) using a single sensor trace at y := 0.2, a mesh dimension of N = 400 nodes and

L = 36000 discrete-time steps, a simulation duration of T = 3 seconds, a disturbance

frequency of F = 300Hz and a disturbance location at x0 = 0.004. All figures show only

the first second of the sensor traces.

Figure (4.3) illustrates the effect the added noise has on our explicit FDM

approximations of u in (2.16) for our 1D model problem with F = 150Hz. These figures

show a sensor trace at x = 0.2 formed using a mesh density of N = 150 nodes with

L = 18000 discrete-time steps over a simulation duration of T = 3 seconds, and a
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disturbance location at x0 = 0.004. We scale the random Gaussian noise added to our

explicit FDM approximations of u by 6 × 103, see Figure (4.3)(b), and by 2 × 106 in

Figure (4.3)(c). In total, the noise added is significant, see Figure (4.3)(d), but does not

overwhelm the explicit FDM approximations of u, see Figure (4.3)(a).

Figure (4.4) illustrates the effect the added noise has on our explicit FDM

approximations of u in (2.16) for our 1D model problem with F = 300Hz. These figures

show a sensor trace at x = 0.2 formed using a mesh density of N = 400 nodes with

L = 36000 discrete-time steps over a simulation duration of T = 3 seconds, and a

disturbance location at x0 = 0.004. We scale the random Gaussian noise added to our

explicit FDM approximations of u by 1 × 104, see Figure (4.4)(b), and by 4 × 106 in

Figure (4.4)(c). In total, the noise added is significant, see Figure (4.4)(d), but does not

overwhelm the explicit FDM approximations of u, see Figure (4.4)(a).

4.1.3 Model problem schematic

As discussed previously, we will use the SVD approach seen in chapter 3 to solve our 1D

model problems with disturbance frequencies of F = 150Hz and F = 300Hz in our forcing

function to reduce the run-time of our computations. As a result, the sensor locations are

the same as seen in Figure (3.3), and the schematic for our 1D model problems considered

in this chapter follow the same steps outlined in Figure (3.16).

4.2 Results

4.2.1 Disturbance frequency F = 150Hz

In this section, we look at the results obtained for our 1D model problem using a

disturbance frequency of F = 150Hz in (1.6). The full set of results can be found in

Appendix B.1, where the results are shown both graphically and in tabular form. Amongst

these results, we have one through to six sensors on our domain, with two different types

of disturbance locations used to generate the success rates.

Figure (4.5) shows the success rate of our 1D model, given a 10% relative tolerance

error, when the disturbance frequency is F = 150Hz. The probabilistic results have been

deduced by allocating 50 disturbance locations at the same positions we evaluate the
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likelihood function in (2.107). By inspecting Figure (4.5), we can see that the values for

Ts and d have insufficient positive impact on the success rate. This was also observed in

chapter 3, see Figures (3.18) and (3.19), when the disturbance locations are at the same

positions, that is where we evaluate the likelihood function. In addition to this, when

we compare Figure (4.5)(a) to Figure (4.5)(b), we discover that having six sensors rather

than a single sensor result in significantly better success rates.

(a) One sensor present. (b) Six sensors present.

Figure 4.5: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 150 nodes and L = 18000 discrete-time steps for a disturbance frequency of

F = 150Hz. These probabilistic results were produced using 50 disturbance locations

where the likelihood function is evaluated.

Figure (4.6) shows the success rate for our model in a similar manner to Figure (4.5),

however, the 50 disturbance locations used to generate our probabilistic results are now

random. Comparing Figure (4.5) to Figure (4.6), we can see that the latter achieves a

lower success rate, which is expected. The reason for this is due to the likelihood function

in (2.107) only being evaluated at certain positions due to the run-time constraints of

using a minimisation algorithm, meaning our model cannot access the likelihood our

actual disturbance location has of being the disturbance location, which as a result yields

some negative results.

Comparing Figure (4.6)(a) to Figure (4.6)(b) we can see that the success rate for a

lower value of Ts and d result in better success rates, irrespective of how many sensors are

present. A lower value of Ts, resulting in better success rates makes sense because we take
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such small values for d. If Ts is large, we have more time steps which if approximating

with a small value for d, could result in less variance in the data being maintained. What

is harder to explain is the drop in success rate when d is larger. In Figure (4.6)(b), when

d > 12, a significant reduction in the success rate is observed. A potential reason for

this could be due to the columns in Û from our SVD, which correspond to our principal

components, become linearly dependent.

Despite not knowing precisely why the success rate drops off when using more principal

components, the run-time of our computations is shorter when d is lower, meaning the

optimal choice when F = 150Hz is to take a small number of principal components in

our SVD. Again by comparing Figure (4.6)(a) to Figure (4.6)(b), we observe that having

more sensors present results in significantly better results as would be expected.

(a) One sensor present. (b) Six sensors present.

Figure 4.6: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 150 nodes and L = 18000 discrete-time steps for a disturbance frequency of

F = 150Hz. These probabilistic results were produced using 50 random disturbance

locations.

4.2.2 Disturbance frequency F = 300Hz

In this section, we look at the results obtained for our 1D model problem using a

disturbance frequency of F = 300Hz in (1.6). The full set of results can be found in

Appendix B.2, where the results are shown both graphically and in tabular form. Amongst

these results, we have one through to six sensors on our domain, with two different types

of disturbance locations used to generate the success rates.
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Figure (4.7) shows the success rate of our 1D model, given a 10% relative tolerance

error, when the disturbance frequency is F = 300Hz.

(a) One sensor present. (b) Six sensors present.

Figure 4.7: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 400 nodes and L = 36000 discrete-time steps for a disturbance frequency of

F = 300Hz. These probabilistic results were produced using 50 disturbance locations

where the likelihood function is evaluated.

The probabilistic results have been deduced by allocating 50 disturbance locations at the

same positions we evaluate the likelihood function in (2.107). By inspecting Figure (4.7),

we can see that the values for Ts and d have little effect on the success rate. We also

observed this when F = 50Hz and F = 150Hz. Moreover, when we compare Figure

(4.7)(a) to Figure (4.7)(b), as is expected, having more sensors results in significantly

better success rates.

Figure (4.8) shows the success rate of our 1D model, given a 10% relative tolerance

error, when the disturbance frequency is F = 300Hz. The probabilistic results have been

deduced by allocating 50 random disturbance locations.

Comparing Figure (4.8)(a) to Figure (4.8)(b) we can see that the success rate for

differing values of Ts and d are insignificant. Again by comparing Figure (4.8)(a) to

Figure (4.8)(b), we observe that having more sensors present results in better results as

would be expected.
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(a) One sensor present. (b) Six sensors present.

Figure 4.8: The 1D model success rate for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with a dimension

of N = 400 nodes and L = 36000 discrete-time steps for a disturbance frequency of

F = 300Hz. These probabilistic results were produced using 50 random disturbance

locations.

4.3 Summary

In this chapter, we investigated the feasibility of increasing the frequency of our

disturbance in the forcing function, see (1.6), to more closely align with the application

of this work where the frequency would be in the range of 300− 800Hz.

Initially, we had to increase the Gaussian spread of our forcing function in our

1D domain, which was achieved by changing the value of ε for both F = 150Hz and

F = 300Hz in (1.6). Having done this, we were able to get reasonable results at these

higher frequencies.

Interestingly, we observed that for F = 150Hz, the results were better when both

Ts and d were smaller. From a run-time perspective, this is great. However, we are not

entirely sure why we get worse results here when we have more principal components from

our SVD. When we have more sensors present, the success rate of our 1D model with a

disturbance frequency of F = 150Hz are excellent.

Moving onto the results where we have a disturbance frequency of F = 300Hz, the

success rate drop off for larger d values was not as prominent. Again, when more sensors

were present, the success rate of our 1D model was good.
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In the future, it would be a feasible idea to rerun these model problems using a

minimisation algorithm to investigate whether the success rate improves when using more

principal components from our SVD.

In the next chapter, we look at extending our 1D model problem with a disturbance

frequency of F = 25Hz to a 2D domain, see Figure (1.3). Different boundary conditions

will be considered, the run-time and system RAM limitations will be illustrated and how

we attempt to mitigate these drawbacks.



Chapter 5

2D Model Problem

In this chapter, we extend the work in chapter 3 to a 2D domain as illustrated in

Figure (1.3). We consider two model problems with different boundary conditions. The

first hereby referred to as the model problem with one Neumann boundary condition

(1NBC), has the following boundary conditions on the domain defined by ∂Ω2D1

1. ∂u
∂y

:= 0 on ΓN2 :=
{

(x, y) ∈ Ω2D : 0 < x < 0.2, y = 0.02
}
,

2. u := 0 on ΓD2 := ∂Ω2D1 \ ΓN1 .

The second problem hereby referred to as the model problem with three Neumann

boundary conditions (3NBCs), has the following boundary conditions on the domain

defined by ∂Ω2D2

1. ∂u
∂y

:= 0 on ΓN2 :=
{

(x, y) ∈ Ω2D : 0 < x < 0.2, y = 0.02
}
,

2. ∂u
∂x

:= 0 on ΓN3 :=
{

(x, y) ∈ Ω2D : x = 0, 0 < y < 0.02
}
,

3. ∂u
∂x

:= 0 on ΓN4 :=
{

(x, y) ∈ Ω2D : x = 0.2, 0 < y < 0.02
}
,

4. u := 0 on ΓD3 := ∂Ω2D2 \
{

ΓN2 ∪ ΓN3 ∪ ΓN4

}
.

For both model problems considered, we outline the forcing function and detail how

it differs to what we defined in chapter 3, see (1.6). We determine the initial conditions

used to produce our explicit FDM approximations of u in (2.65) for both model problems

and demonstrate the convergence of the absolute maximum approximation of u across all

nodes and discrete-time steps for both model problems.

We then identify the noise added to these explicit FDM approximations of u and

100
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outline at which nodes in our mesh they will be stored to represent our sensor traces. We

outline a schematic for the 2D model problems considered in this chapter, which illustrate

the step-by-step process required to obtain a prediction of the disturbance location.

We first considered the approach used in chapter 3 where we use a minimisation

algorithm to obtain a more optimal value for x0 which minimises (2.107), however, due to

the system RAM requirements and run-time limitations caused by the matrix dimensions

in the KF and the number of discrete-time steps, we devised an alternative approach which

we detail more in the results section of this chapter. We discuss the results obtained for

both 2D model problems, using our standard KF equations in (2.93)-(2.98) without the

use of a minimisation algorithm to find x0 which minimises (2.107). Additionally, we

discuss the results produced from the use of an SVD in both 2D model problems, making

use of the modified KF in (2.127)-(2.132).

Lastly, we consider further optimisations to our 2D model problems. As was fairly well

documented in the previous two chapters, the run-time and system RAM requirements

for our model problems are considerable. Now we are operating in a 2D domain

these constraints are significantly more troublesome. As a result, we explore different

approaches which could further optimise our 2D model problems by reducing run-times

or producing better probabilistic success rates.

5.1 Model outline

5.1.1 Forcing function

We start this section by recalling the forcing function outlined in (1.6), which we will

use in (1.1) as our forcing function. The only differences made to this forcing function is

that both x and x0 now contain 2D Cartesian coordinates, and so, we will reference them

as x and x0, respectively.

The amplitude, denoted by A in (1.6) remains the same to ensure (2.94) in the KF

is invertible. The frequency of our disturbance for the 2D model problems considered in

this chapter will be F = 25Hz, which, like in chapter 3, was chosen for simplicity.

We choose a different value for ε in our forcing function since the distance in our

worst-case scenario has changed. Recall that the worst-case scenario is when the distance

between the actual disturbance location and a position we evaluate the likelihood function
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in (2.107) is as larger as possible. In 1D, this distance was 0.002, whereas in 2D this

distance is 0.0028284.

x = 0.2x = 0

y = 0

y = 0.02

Figure 5.1: A snapshot of the Gaussian spread, given our value of ε, around the location

of the disturbance in our 2D model problems, denoted by a cross. The disturbance here

has a frequency of F = 25Hz, the grey dots represent where we evaluate the likelihood

function in (2.107) for which there are 245 or 255 in total for our 1NBC and 3NBCs model

problems, respectively.
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In chapter 3, we chose our value for ε in (1.6) by experimenting with its value to get a

range of different Gaussian spreads, resulting in a percentage of the peak remaining in the

worst-case scenario of between 1% to 98%, see Figure (3.5). However, in 2D, this would

have been time consuming due to the run-time limitations of our 2D model problem, and

so instead, we investigate the probabilistic success rates for three different values of ε for

both 2D model problems. In the results section of this chapter, we take ε = 4.62× 10−5.

Having chosen our value for ε in (1.6), we look at the Gaussian spread around a

disturbance location in the worst-case scenario. Figure (5.1) shows a snapshot of the

Gaussian spread caused by our chosen value of ε in (1.6) in the worst-case scenario.

The black cross represents the location of our disturbance, denoted by x0, and the grey

dots illustrate the positions where we evaluate the likelihood function in (2.107). At the

nearest grey dot to the disturbance location in the worst-case scenario, only 84% of the

peak is remaining. At the next node along, a distance of 0.0084852 from the disturbance

location, there is only 21% of the peak disturbance remaining. This is good as we want

the disturbance to be localised in our 2D domain, enabling our 2D model problems to

predict the location of our disturbance.

Having defined our forcing function in (1.6), to be used in (1.1), we want to investigate

the convergence of our explicit FDM approximations of u in (2.65) for both 2D model

problems considered. To do this, we need to know both V0 and V1 in (2.65). The initial

conditions of u for (1.1) are u(xi, yj, t0) := 0 and ut(xi, yj, t0) := 0 for all i ∈ {1, 2, ..., N+1}

and j ∈ {1, 2, ...,M + 1}. As a result, we know V0 = 0. However, we do not know V1.

Using both initial conditions of u, and Taylor series, we can approximate V1 to get

u(xi, yj, tn+1) = u(xi, yj, tn) + ∆tut(xi, yj, tn) +O(∆t2)

and subsequently, when n = 0, we substitute in both initial conditions of u to get

u(xi, yj, t1) = O(∆t2).

Neglecting the higher-order terms, and recalling that Vn ≈ u(xi, yj, tn) for all i ∈

{1, 2, ..., N + 1} and j ∈ {1, 2, ...,M + 1}, we get the second initial condition required

in (2.65) to be V1 ≈ 0.

Using these initial conditions in (2.65), we can look at the convergence of the maximum

absolute explicit FDM approximations of u across all nodes and discrete-time steps for

different mesh densities in both space and time. Tables (5.1) and (5.2) illustrate the results
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obtained at different mesh densities for our 2D model problems with 1NBC and 3NBCs,

respectively. Upon inspection of both tables, we decide to use a mesh with N = 50 by

M = 5 nodes and L = 3000 discrete-time steps to generate our sensor traces. In this

chapter, we do not consider a fine mesh as we did in chapter 3. The reason for this is due

to the large matrix dimensions in the KF, caused by a fine mesh, and we have obtained

results in chapter 3 that show the use of a fine mesh to generate our sensor traces is not

a requirement for reasonable success rates.

N M ∆t Maximum absolute solution over

all nodes and time steps

% from N = 800

50 5 3000−1 92.147693392515436 7.067449891

100 10 6000−1 87.419443007890507 1.573642152

150 15 9000−1 86.470243914577964 0.470756961

200 20 12000−1 86.265155880852731 0.232462849

250 25 15000−1 86.204612373469388 0.162116662

300 30 18000−1 86.172658600827077 0.124989211

350 35 21000−1 86.148657407330290 0.097101952

400 40 24000−1 86.124993465234951 0.069608549

800 80 48000−1 86.065086528491435 0

Table 5.1: 2D model problem with 1NBC: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 1 second, a disturbance

frequency of F = 25Hz and a disturbance location at x0 ≡ (x, y) = (0.144, 0.008).
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N M ∆t Maximum absolute solution over

all nodes and time steps

% from N = 800

50 5 3000−1 51.770847386036735 6.622289335

100 10 6000−1 54.450557430399805 1.788967073

150 15 9000−1 54.954846754390246 0.879393732

200 20 12000−1 55.156295657551482 0.516045664

250 25 15000−1 55.287654922143666 0.279116426

300 30 18000−1 55.349491365873995 0.167583665

350 35 21000−1 55.381101306400623 0.110569650

400 40 24000−1 55.397960194404696 0.080161719

800 80 48000−1 55.442403778236844 0

Table 5.2: 2D model problem with 3NBCs: The convergence of our explicit FDM

approximation of u in (2.65), for a simulation duration of T = 1 second, a disturbance

frequency of F = 25Hz and a disturbance location at x0 ≡ (x, y) = (0.144, 0.008).

5.1.2 Added noise

Recall from chapter 1 that we add two different forms of random Gaussian noise to

our explicit FDM approximations of u in (2.65), denoted by w̃n and z̃n in the KF. We

scale the first by the error associated with the explicit FDM approximations of u in

(2.65). For our 2D model problem with 1NBC considered in this chapter, this error is

measured by the combination of the higher-order terms neglected at the interior nodes

and the single Neumann boundary in (2.28) and (2.33), respectively. For our 2D model

problem with 3NBCs, this error is measured by the combination of the higher-order terms

neglected at the interior nodes in (2.28), and the three Neumann boundaries in (2.33),

(2.39), (2.47), (2.53) and (2.62). The second random Gaussian noise added attempts to

mimic inaccuracies recorded by sensors in a real-life scenario, be that ambient noise in

the background or errors due to manufacturing defects. Without experimental data, we

cannot accurately predict the magnitude of this noise. As a result, we model it after the

error associated with the explicit FDM approximation of u in (2.65) but scale it ensuring

it is the larger of the two random Gaussian noises added since we would expect this noise

to be the dominant of the two. We scale the noise added to mimic a scenario where the
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original explicit FDM approximations of u are still recognisable but significantly obscured.

(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 5.2: 2D model problem with 1NBC: Illustration of the noise added to our explicit

FDM approximations of u in (2.65) using a single sensor trace at (x, y) = (0.1, 0.02), a

mesh dimension of N = 50 by M = 5 nodes and L = 3000 discrete-time steps, a simulation

duration of T = 1 second, a disturbance frequency of F = 25Hz and a disturbance location

at x0 ≡ (x, y) = (0.144, 0.008).

Figure (5.2) illustrates the effect the added noise has on our explicit FDM

approximations of u in (2.65) for our 2D model problem with 1NBC. These figures

show a sensor trace at (x, y) = (0.1, 0.02) formed using a mesh density of N = 50

by M = 5 nodes with L = 3000 discrete-time steps over a simulation duration of

T = 1 second, a disturbance frequency of F = 25Hz, and a disturbance location at

x0 ≡ (x, y) = (0.144, 0.008). We scale the random Gaussian noise added to our explicit
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FDM approximations of u, see Figure (5.2)(b) by 8×102, and by 3×105 in Figure (5.2)(c).

In total, the noise added is significant, see Figure (5.2)(d), but does not overwhelm the

explicit FDM approximations of u, see Figure (5.2)(a).

(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 5.3: 2D model problem with 3NBCs: Illustration of the noise added to our explicit

FDM approximations of u in (2.65) using a single sensor trace at (x, y) = (0.1, 0.02), a

mesh dimension of N = 50 by M = 5 nodes and L = 3000 discrete-time steps, a simulation

duration of T = 1 second, a disturbance frequency of F = 25Hz and a disturbance location

at x0 ≡ (x, y) = (0.144, 0.008).

Figure (5.3) illustrates the effect the added noise has on our explicit FDM

approximations of u in (2.65) for our 2D model problem with 3NBCs. These figures

show a sensor trace at (x, y) = (0.1, 0.02) formed using a mesh density of N = 50
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by M = 5 nodes with L = 3000 discrete-time steps over a simulation duration of

T = 1 second, a disturbance frequency of F = 25Hz, and a disturbance location at

x0 ≡ (x, y) = (0.144, 0.008). We scale the random Gaussian noise added to our explicit

FDM approximations of u, see Figure (5.3)(b) by 3×102, and by 5×104 in Figure (5.3)(c).

In total, the noise added is significant, see Figure (5.3)(d), but does not overwhelm the

explicit FDM approximations of u, see Figure (5.3)(a).

5.1.3 Model schematic

In this section, we outline the location of the sensors on our 2D domain and construct

a schematic which shows the stages required to predict the location of the disturbance

for our 2D model problems without using a minimisation algorithm to find x0 which

minimises (2.107), and without using an SVD to reduce the matrix dimensions in the KF.

Figure (5.4) shows the position of the sensors in our 2D domain depending on the

quantity present. This figure attempts to illustrate that the sensors are always along the

top of our 2D domain, that is when y := 0.02, because the solution of our PDE, denoted

by u, for our 2D model problem with 1NBC is zero along the remaining three boundaries.

Therefore, we never place a sensor at y := 0 or y := 0.2 when y := 0.02. The sensors are

always equidistant from one another, and as observed in Figure (5.6), we do not consider

more than 6 sensors due to the small improvement in success rate at the cost of longer

run-times and larger system RAM requirements.

In chapter 1, we outlined a schematic in Figure (1.5) which gives a broad approach to

the steps involved to obtain a prediction for the disturbance location, denoted by x0. In

this section we construct another schematic which goes into more detail for our 2D model

problems without using a minimisation algorithm to find x0 which minimises (2.107) or

an SVD which reduces the matrix dimensions in the KF.

Figure (5.5) shows a schematic portraying the steps involved to obtain a prediction

for the disturbance location, denoted by x0, for our 2D model problems. The first step

has two different routes. One route involves creating 100 random disturbance locations

in our 2D domain. When we initially created these disturbance locations, if the same

location was produced twice, we would remove the duplicate and replace with another

random disturbance location until we had 100 unique disturbance locations. These

random disturbance locations are generated once for all 2D model problems to ensure
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the success rates based on probabilistic results are comparable. The second route in our

first step involves taking a random subset of 100 positions where the likelihood function

in (2.107) is evaluated. For our 2D model problem with 1NBC, there are 245 locations

to choose from, whereas for our 2D model problem with 3NBCs, there are 255 locations

in total. Again, these disturbance locations are chosen once for each 2D model problem

considered, and so the same 100 disturbance locations are used, ensuring the success rates

based on probabilistic results are comparable.

x = 0.2x = 0
0.2m

1 sensor

2 sensors

3 sensors

4 sensors

5 sensors

6 sensors

y = 0.02

y = 0.02

y = 0.02

y = 0.02

y = 0.02

y = 0.02

Figure 5.4: Distribution of 1-6 sensors, denoted by black squares, present on our 2D

domain.

In step 2, we generate an explicit FDM approximation of u for our acoustic wave

equation in (1.1) over a simulation duration of T = 1 second. We add two different

forms of noise to our approximations of u, which we illustrated in Figure (1.5), and in

the previous section of this chapter. Having added noise to our approximations of u, we

store these across all discrete-time steps at the nodes in our mesh which correspond to

sensor locations, see Figure (5.4).

Moving onto step 3, we run the standard KF in (2.93)-(2.98) over a series of uniformly

spaced guesses for x0 and subsequently calculate the likelihood function in (2.107) for

each guess. We consider 245 or 255 guesses for x0 in our 2D model problems with 1NBC
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and 3NBCs, respectively. Now we have 244 or 255 likelihood estimates, one for each

guess of x0, we determine the smallest and deduce the corresponding x0 to be the models

prediction of the actual disturbance location used to generate the sensor traces.

In step 4, having completed steps 2-3 in Figure (5.5) for each disturbance location

in step 1, we compute probabilistic success rates for an absolute x-error, y-error and

Euclidean-error given a percentage of tolerance in each case.

Step 1: We generate 100 random

disturbance locations, each denoted

by x0.

Step 1: We generate 100 disturbance

locations, each denoted by x0, at a

random subset of the same positions

the likelihood function in (2.107) is

evaluated.

Step 2: Solve the acoustic wave equation in (1.1) using our explicit FDM

approximation of u in (2.65) over a simulation duration of T = 1 second. We store

the approximations of u across all discrete-time steps at nodes in our mesh which

correspond to our sensor locations, after the noise has been added.

Step 3: We use the KF in (2.93)-(2.98) and subsequently compute the likelihood

function in (2.107) at 245 uniformly spaced guesses of x0 for our 1NBC model

problem (255 for our 3NBCs model problem). From the 244 or 255 likelihood

estimates computed, we deduce the smallest and determine the corresponding x0

to be the models prediction of the actual disturbance location.

Step 4: Having completed steps 2-3 for each disturbance location outlined in

step 1, we compute probabilistic success rates for an absolute x-error, y-error and

Euclidean-error given a percentage of tolerance.

Figure 5.5: A schematic for our 2D model problems which do not use a minimisation

algorithm or an SVD.
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5.2 Results

In this section we explain our choice for our value of ε in (1.6) and how many sensors

are enough. We then take a look at the results obtained for our two 2D model problems

and discuss why we have not used a minimisation algorithm to find x0 which minimises

(2.107) for our 2D model problems. We then delve into the results themselves, with the

first set corresponding to the use of our standard KF in (2.93)-(2.98), without using a

minimisation algorithm. We then look at results produced from the use of an SVD to

reduce matrix dimensions in our KF, see the modified KF in (2.127)-(2.132). Finally, we

investigate different approaches to further optimise our 2D model problems in an attempt

to improve the success rates and decrease the run-time and system RAM requirements.

Percentage of peak Gaussian

spread remaining at a distance

illustrated in the worst-case

Model variations 27% 50% 84%

1NBC, disturbance locations where 57 54 55

the likelihood function is evaluated

1NBC, random disturbance locations 20 19 21

3NBCs, disturbance locations where 38 53 52

the likelihood function is evaluated

3NBCs, random disturbance locations 13 15 17

Table 5.3: The success rate for an absolute Euclidean-error with a relative tolerance of

10% for our 2D model problems with a sensor placed at (x, y) = (0.1, 0.02). The table

shows results for different values of ε in our forcing function, resulting in different positive

peak percentages remaining at the worst-case scenario distance of 0.0028284. That is

where the actual disturbance location is the furthest as is possible from a position we

evaluate the likelihood function in (2.107).

Firstly, we investigate our choice for ε in our forcing function. Table (5.3) contains

the probabilistic success rates given an absolute Euclidean-error with a relative tolerance

of 10% with a single sensor present at (x, y) = (0.1, 0.02) for both 2D model problems. In

both cases, we consider 100 disturbance locations, either at positions where the likelihood
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function is evaluated or at random locations, to obtain probabilistic results.

Upon inspection of Table (5.3), we can see that 84% of the peak Gaussian spread

remaining at a distance of 0.0028284 from the actual disturbance location, representing

the worst-case, results in the best success rates. Therefore, we take the corresponding

value of ε = 4.62 × 10−5 and use this in both 2D model problems considered in this

chapter.

Figure 5.6: The success rates of our 2D model problem with 1NBC for a varying number

of sensors on our 2D domain. These probabilistic results were obtained using 100 random

disturbance locations.

Figure (5.6) contains the probabilistic success rates of our 2D model problem with

1NBC for an array of absolute errors given different acceptable relative tolerance

percentages. Upon inspection of Figure (5.6), we can see that a larger quantity of sensors

on our 2D domain results in higher success rates. However, as mentioned previously, more

sensors correlate to longer run-times and more system RAM being required. In addition

to this, in a real-life scenario, a trained professional would not place 49 sensors onto a

human thorax. Therefore, like in chapter 3, we will run our 2D model problems for an

array of sensors starting with 1 and going up to 6, where we observe good success rates
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in Figure (5.6).

The success rates in this chapter, like in the previous chapters, are produced using an

array of disturbance locations and are defined as being successful based on absolute errors

given different relative tolerances. Now we are working spatially in 2D we have an absolute

y-error and Euclidean-error. As previously mentioned, the results in this chapter have

been obtained without the use of a minimisation algorithm to find x0 which minimises

(2.107). We did attempt to use a minimisation algorithm. However, the run-time

requirements were too large to have 245 or 255 initial guesses at our disturbance location

for the two different 2D model problems considered in this chapter. Upon inspection of

Figures (5.7)(c) and (5.8)(c), we can see that the likelihood function surface from the

y-perspective is relatively flat, illustrating why taking only a single initial guess for our

disturbance location could result in bad success rates.

Therefore, none of the results in this chapter were obtained using a minimisation

algorithm. Instead, we evaluate the likelihood function in (2.107) at 245 or 255

uniformly spaced positions for our 2D model problems with 1NBC or 3NBCs, respectively.

Therefore, in the worst-case scenario, the best outcome our 2D model problems could

deduce would be to predict the actual disturbance location to be at the closest position

where the likelihood function is evaluated. However, even in this case, we would attain

an unavoidable x-error of 1.41% and a y-error and Euclidean-error of 14.1%. As a

result, we have used higher acceptable relative tolerance percentages for both our y and

Euclidean-errors.

5.2.1 Without using a minimisation algorithm

In this section, we look at the results obtained for both 2D model problems without

using a minimisation algorithm to find x0 which minimises (2.107) or an SVD to reduce

the matrix dimensions in the KF.

Figures (5.7) and (5.8) show the likelihood function evaluated using (2.107) plotted

against the corresponding disturbance location in our 2D domain, which produced this

estimate. Both figures show three viewing angles of the same surface plot enabling the

distinction between the models prediction for the x and y coordinates in the disturbance

location, x0. Both figures have been produced using our 2D model problem with 3NBCs.

Figure (5.7) has a disturbance location at x0 ≡ (x, y) = (0.124, 0.008), which is at a



CHAPTER 5. 2D MODEL PROBLEM 114

position the likelihood function in (2.107) is evaluated, whereas Figure (5.8) has a random

disturbance location at x0 ≡ (x, y) = (0.106811, 0.007611).

(a) General view of the likelihood surface.

(b) x-direction perspective of the likelihood

surface.

(c) y-direction perspective of the likelihood

surface.

Figure 5.7: The likelihood estimates across our 2D domain for a disturbance location

at x0 ≡ (x, y) = (0.124, 0.008) with a frequency of F = 25Hz. Data from our explicit

FDM approximations of u were collected at five sensors, shown as solid black dots along

y := 0.02. The actual disturbance location is shown as a hollow black circle, with the

models prediction of this location denoted by a grey cross.
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(a) General view of the likelihood surface.

(b) x-direction perspective of the likelihood

surface.

(c) y-direction perspective of the likelihood

surface.

Figure 5.8: The likelihood estimates across our 2D domain for a disturbance location at

x0 ≡ (x, y) = (0.106811, 0.007611) with a frequency of F = 25Hz. Data from our explicit

FDM approximations of u were collected at five sensors, shown as solid black dots along

y = 0.02. The actual disturbance location is shown as a hollow black circle, with the

models prediction of this location denoted by a grey cross.

In both cases, the models prediction of the actual disturbance location is excellent. In

the latter case, in Figure (5.8), the prediction is not perfect. However, unless the random

disturbance location is at a position the likelihood function in (2.107) is evaluated at then

it is impossible to obtain a perfect prediction.

Having seen two examples where our model has successfully predicted the disturbance

location, we now look at an array of probabilistic results from 100 different disturbance

locations. The full set of results in both graphical and tabular form can be found in
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Appendix C.1 and C.2 for our 2D model problems with 1NBC and 3NBCs, respectively.

Amongst these results, we have one through to five sensors on the surface of our domain,

with two different types of disturbance locations used to generate the success rates.

Additionally, we have results for three different absolute errors with a range of acceptable

relative tolerances.

Figures (5.9) and (5.10) display the success rate based on three different absolute

errors for a varying quantity of sensors present for our 2D model problems with 1NBC

and 3NBCs, respectively.

In both cases, when the disturbance location is positioned where we evaluate the

likelihood function in (2.107), and when we have more than a single sensor present, we

attain near to a 100% success rate. We observed this in chapter 3 for our 1D model

problems as well.

When the disturbance location is randomly set to any location in our 2D domain, both

model problems struggle to obtain reasonable success rates when there are fewer sensors

present. However, in both cases, when there are more sensors present the success rate

given an absolute x-error is very good. This was also observed in chapter 3 for our 1D

model problems.

However, upon further inspection of Figures (5.9) and (5.10), we can see that when we

have random disturbance locations, even with a high quantity of sensors, the success

rate given either an absolute y-error or Euclidean-error is not excellent. Since the

Euclidean-error is dependent on both the x and y errors, we can deduce that the y-error

negatively affects the Euclidean-error.

There could be many reasons why we exhibit a lower success rate for our absolute

y-error. The first being that in the worst-case scenario, as discussed previously, induces

an unavoidable error of 14.1% when the disturbance locations are random. In addition to

this, upon inspecting both Figures (5.7)(c) and (5.8)(c) as previously discussed, we observe

that the likelihood surface from the y-perspective is very flat. This makes the ability

to accurately predict a random disturbance location without evaluating the likelihood

function at the same location is a significant challenge.
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Figure 5.9: 2D model problem with 1NBC: The success rate given |x-error|, |y-error| and

|Euclidean-error| for a varying quantity of sensors present and a disturbance frequency of

F = 25Hz. Results on the LHS correspond to 100 random disturbance locations where

(2.107) is evaluated, and the RHS come from 100 random disturbance locations.
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Figure 5.10: 2D model problem with 3NBCs: The success rate given |x-error|, |y-error|

and |Euclidean-error| for a varying quantity of sensors present and a disturbance frequency

of F = 25Hz. Results on the LHS correspond to 100 random disturbance locations where

(2.107) is evaluated, and the RHS come from 100 random disturbance locations.
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5.2.2 Use of an SVD to reduce matrix dimensions in the KF

In this section, we discuss the results attained using d principal components from

an SVD formed using our explicit FDM approximations of u in (2.65). As discussed

previously, we use an SVD to reduce the size of the matrices in the standard KF, see

(2.93)-(2.98), to form our modified KF, see (2.127)-(2.132). The largest matrix in the

standard KF is (2.98), with dimensions of
(

2(N + 1)(M + 1)
)2

. The same matrix in the

modified KF has dimensions of (2d)2.

We can further illustrate the matrix sizes in both methods by inspecting Figure (5.11).

In MATLAB, eight bytes are required for each numerical entry. Figure (5.11) illustrates

the total system RAM requirements of the KF for our 2D model problems with, and

without an SVD, across an array of different mesh densities.

Upon inspection of Figure (5.11), we can see that the system RAM requirements for

the standard KF in 2D are significantly higher than our modified KF, even when the

explicit FDM approximations of u originate from a coarse mesh. A smaller requirement

of system RAM means we get faster run-times. Therefore, even in this chapter where a

coarser mesh is used to form our explicit FDM approximations of u, considerable amounts

of time will be saved by using an SVD to reduce the matrix dimensions in the KF.

(a) Full picture for finer mesh refinements. (b) A subset of mesh refinements.

Figure 5.11: The system RAM requirements for the KF used in our 2D model problems

with six sensors present, and d = 12 when an SVD is used in our 2D model problems.

Recall from chapter 1 the schematic in Figure (1.5) which gives a broad approach to

the steps involved to obtain a prediction for the disturbance location, denoted by x0. We

construct another schematic in this chapter, see Figure (5.12), for our 2D model problems
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which use an SVD to reduce the matrix dimensions in the KF. In this schematic, we

outline a step-by-step process required to predict the location of our disturbance.

In step 1, we have two routes. The first route involves generating 100 random

disturbance locations. The second route includes creating 100 disturbance locations from

a random subset of the positions we evaluate the likelihood function in (2.107). In both

cases, if a duplicate arises, it is replaced until we have 100 unique disturbance locations.

We create these 100 disturbance locations once, which get reused every time we want to

produce probabilistic success rates for our 2D model problems.

In step 2 we solve the acoustic wave equation in (1.1) using our explicit FDM

approximations of u in (2.65) for our 2D model problems with 1NBC and 3NBCs,

separately, over a simulation duration of T = 2 seconds. Recall from chapter 3, that

when we try to form an SVD from explicit FDM approximations of u, we extend the total

simulation duration to T = 3 seconds, see Figure (3.14) for more detail on the simulation

duration used. We store the approximations of u at every node in our mesh across all

discrete-time steps for our simulation between T = 0 and T = 2 seconds.

Step 3 involves using the explicit FDM approximations of u over our entire mesh for

a duration of time denoted by Ts, see Figure (3.14), to form our SVD. To reduce the

matrix dimensions in the KF, we take the first d columns from the matrix containing the

left singular vectors in (2.108). These first d columns represent our principal components,

corresponding to the d largest singular values in our SVD.

In step 4, we use these d principal components to run the wave equation for the third

second in our simulation to produce approximations of u from the reduced system. We

then use these approximations of u from the reduced system to approximate the sensor

traces over the third second of our simulation for the original model. Random noise is

then added to the approximate sensor traces.

These approximated sensor traces are then used in the KF in step 5. We run the KF in

(2.127)-(2.132) for 245 or 255 equally spaced guesses for x0 in our 2D model problems with

1NBC and 3NBCs, respectively. Using time series data generated by the KF, we compute

a likelihood function using (2.107) for each guess of x0. Having calculated an array of

likelihood estimates for each guess of x0, we compute the smallest and conclude that

the corresponding disturbance location is the models prediction of the true disturbance

location used to generate our sensor traces.
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Step 1: Generate 100 random

disturbance locations, each denoted

by x0.

Step 1: Generate 100 disturbance

locations, each denoted by x0, at a

random subset of the same positions

the likelihood function in (2.107) is

evaluated.

Step 2: Solve the acoustic wave equation in (1.1) using our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 2. Store the

approximations of u at every node in our mesh across all discrete-time steps.

Step 3: Using the FDM approximations of u from our mesh over a time duration

denoted by Ts, see Figure (3.14), we form an SVD of this matrix, created from the

FDM approximations of u, and keep the first d columns in the matrix containing

the left singular vectors in (2.108). These are our d principal components.

Step 4: Using these d principal components, we run the wave equation for the

final second in our simulation to produce approximations of u for the reduced

system. After adding random noise to these approximate sensor traces, we use

them in the KF.

Step 5: We use the KF in (2.127)-(2.132) and subsequently compute the

likelihood function in (2.107) for 245 uniformly spaced guesses of x0 for our

2D model problem with 1NBC (255 guesses for our 2D model problem with

3NBCs). From the 100 likelihood estimates computed, we deduce the smallest

and determine the corresponding x0 to be the models prediction of the actual

disturbance location.

Step 6: Having completed steps 2-5 for each disturbance location outlined in

step 1, we compute probabilistic success rates for an absolute x-error, y-error and

Euclidean-error given different acceptable percentages of tolerance.

Figure 5.12: A schematic for our 2D model problems that use an SVD.

Finally, in step 6, we compute probabilistic success rates given different acceptable

relative percentages of tolerance for an absolute x-error, y-error and Euclidean-error. We
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are able to do this by following steps 2-5 for each disturbance location defined in step 1.

Since our simulation duration has changed, we need to redo the convergence of the

maximum absolute approximation of u in (2.65) at every node in our mesh across all

discrete-time steps for the simulation duration of T = 3 seconds. Using the same initial

conditions in (2.65) outlined previously in this chapter, we can obtain the convergence of

the maximum absolute approximation of u for an array of different mesh refinements for

both 2D model problems.

Tables (5.4) and (5.5) contain the convergence of the maximum absolute approximation

of u in (2.65) for our 2D model problems with 1NBC and 3NBCs, respectively.

N M ∆t Maximum absolute solution over

all nodes and time steps

% from N =

1600

50 5 9000−1 92.754787850588556 7.93832

100 10 18000−1 87.584011743121181 13.0705

150 15 27000−1 90.233329351909475 10.4409

200 20 36000−1 95.137110665665844 5.57380

250 25 45000−1 97.262336991851129 3.46446

300 30 54000−1 98.359187469466534 2.37580

350 35 63000−1 98.992292324084474 1.74743

400 40 72000−1 99.416643183206560 1.32625

450 45 81000−1 99.742651418312064 1.00268

500 50 90000−1 99.960968671509008 0.78599

550 55 99000−1 100.11152606117142 0.63656

600 60 108000−1 100.21769112026581 0.53119

650 65 117000−1 100.30099191998644 0.44851

700 70 126000−1 100.38683413291274 0.36331

750 75 135000−1 100.44992712496935 0.30068

800 80 144000−1 100.49650211403481 0.25446

1600 160 288000−1 100.75287585092920 0

Table 5.4: 2D model problem with 1NBC: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 3 seconds, a disturbance

frequency of F = 25Hz, and a disturbance location of x0 ≡ (x, y) = (0.144, 0.008).
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Upon inspection of both tables, we decide to use a mesh with N = 50 by M = 5 nodes

and L = 9000 discrete-time steps for both 2D model problems to produce the explicit

FDM approximations of u in (2.65). Choosing this mesh density results in an error of 8%

and 11% for our 2D model problems with 1NBC and 3NBCs, respectively, between our

explicit FDM approximations of u we plan to use in the KF as our sensor traces and a

converged solution for our PDE.

N M ∆t Maximum absolute solution over

all nodes and time steps

% from N =

1600

50 5 9000−1 52.295100527921761 10.9319707

100 10 18000−1 54.564567053802584 7.06665811

150 15 27000−1 56.329012926793702 4.06148717

200 20 36000−1 57.330043021226821 2.35655158

250 25 45000−1 57.820186223291351 1.52174892

300 30 54000−1 58.115807361629464 1.01825257

350 35 63000−1 58.267875384384830 0.75925318

400 40 72000−1 58.378017773577476 0.57166074

450 45 81000−1 58.459107819442998 0.43354970

500 50 90000−1 58.504803079766944 0.35572240

550 55 99000−1 58.547014807255323 0.28382818

600 60 108000−1 58.579864831816472 0.22787864

650 65 117000−1 58.598319246850032 0.19644742

700 70 126000−1 58.619409179463496 0.16052745

750 75 135000−1 58.635756667199715 0.13268472

800 80 144000−1 58.644546150466326 0.11771463

1600 160 288000−1 58.713660721093262 0

Table 5.5: 2D model problem with 3NBCs: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 3 seconds, a disturbance

frequency of F = 25Hz, and a disturbance location of x0 ≡ (x, y) = (0.144, 0.008).

Due to the simulation duration change, we cannot compare the results in this section

to those already discussed in this chapter. Instead, we rerun our 2D model problems

for a simulation duration of T = 3 seconds and run the standard KF in (2.93)-(2.98)
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over the third and final second in our simulation. Tables (5.6) and (5.8) contain success

rates corresponding to 100 random disturbance locations positioned where the likelihood

function in (2.107) is evaluated for our 2D model problems with 1NBC and 3NBCs,

respectively.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 99 99 99 99 99 100 100 98 98 99 100

2 100 100 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100 100 100

Table 5.6: The success rate of our 2D model problem with 1NBC for a mesh dimension

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps over a simulation duration

of T = 3 seconds. These probabilistic results use 100 random disturbance locations where

the likelihood function in (2.107) is evaluated. The KF is run over the final second in an

attempt to mimic the scenario considered when using an SVD.
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Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 50 67 71 42 51 61 68 29 37 45 60

2 63 87 91 43 53 61 70 39 50 57 67

3 73 96 100 56 62 70 75 55 62 70 75

4 76 95 98 62 68 74 79 60 67 73 79

5 81 96 99 76 80 85 88 74 79 84 88

6 76 95 97 77 85 88 92 75 83 85 91

Table 5.7: The success rate of our 2D model problem with 1NBC for a mesh dimension

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps over a simulation duration of

T = 3 seconds. These probabilistic results were produced using 100 random disturbance

locations, and the KF is run over the final second in an attempt to mimic the scenario

considered when using an SVD.

Tables (5.7) and (5.9) contain probabilistic success rates corresponding to 100 random

disturbance locations for our 2D model problems with 1NBC and 3NBCs, respectively.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 87 91 91 84 84 95 95 80 80 87 91

2 99 100 100 96 96 99 99 96 96 99 99

3 100 100 100 99 99 100 100 99 99 100 100

4 100 100 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100 100 100

Table 5.8: The success rate of our 2D model problem with 3NBCs for a mesh dimension

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps over a simulation duration

of T = 3 seconds. These probabilistic results use 100 random disturbance locations where

the likelihood function in (2.107) is evaluated. The KF is run over the final second in an

attempt to mimic the scenario considered when using an SVD.
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Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 55 77 77 38 45 50 55 33 38 43 51

2 67 88 88 40 51 57 62 37 48 54 61

3 78 96 96 58 71 76 79 55 68 73 78

4 74 98 98 57 69 73 79 57 68 72 77

5 76 97 97 55 68 73 77 54 67 72 77

6 82 99 99 65 79 85 87 65 79 85 87

Table 5.9: The success rate of our 2D model problem with 3NBCs for a mesh dimension

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps over a simulation duration of

T = 3 seconds. These probabilistic results were produced using 100 random disturbance

locations, and the KF is run over the final second in an attempt to mimic the scenario

considered when using an SVD.

Having computed probabilistic success rates without using an SVD for a simulation

duration of T = 3 seconds, with the KF running over the third second, we can discuss

the results obtained using an SVD and compare to those outlined in Tables (5.6), (5.7),

(5.8) and (5.9). The full set of results in both graphical and tabular form can be found in

Appendix C.3 and C.4 for our 2D model problems with 1NBC and 3NBCs, respectively.

Amongst these results, we have one through to six sensors on the surface of our domain,

with two different types of disturbance locations used to generate the success rates.

Additionally, we have results for three different absolute errors with a range of acceptable

relative tolerances. Since the results in this section involve the SVD, the results correspond

to a range of values chosen for d and Ts.

In Figure (5.13), we have the success rate for an absolute x-error, given a relative

tolerance of 10%, for our 2D model problem with 1NBC.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 5.13: The success rate for our 2D model problem with 1NBC given an absolute

x-error with a relative tolerance of 10% for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with dimensions

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps.

Inspecting this figure, we observe that irrespective of the disturbance locations used to

produce the probabilistic results and the number of sensors present, both d and Ts have

little impact on the success rate.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 5.14: The success rate for our 2D model problem with 3NBCs given an absolute

x-error with a relative tolerance of 10% for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with dimensions

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps.

Further inspection of Figure (5.13) yields what we would expect, that is better success

rates when more sensors are present, which we also observed for our 1D model problems

in chapter 3. Comparing the results in Figure (5.13) obtained using an SVD to the results

in both Tables (5.6) and (5.7), deduced without using an SVD, we can see that with fewer

sensors present, the success rates when using an SVD are worse. However, with six sensors

present the success rates given an absolute x-error with a relative tolerance of 10% are

indistinguishable. This was expected since the singular values in our SVD converge to

zero quickly, and so, even when we take d to be small the resultant principle components
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contain a lot of the original information despite the reduced matrix sizes.

In Figure (5.14), we have the success rate for an absolute x-error, given a relative

tolerance of 10%, for our 2D model problem with 3NBCs. Again, irrespective of the

number of sensors present, and the type of disturbance locations used, the values we

choose for d and Ts do not affect the success rate. Comparing Figure (5.14) to Figure

(5.13), we observe that the success rate is not as good when fewer sensors are present.

However, with six sensors present, the success rates are indistinguishable.

Comparing the results in Figure (5.14) to those in Tables (5.8) and (5.9), that is we

compare the results deduced using an SVD to those without, we observe a lower success

rate again with fewer sensors present when using an SVD. However, having six sensors

present in our 2D model problems with and without an SVD result in similar success rates

given an absolute x-error with a 10% relative tolerance.

In Figure (5.15), we have the success rate for an absolute y-error, given a relative

tolerance of 25%, for our 2D model problem with 1NBC. As discussed previously, we

consider higher relative tolerance percentages for our y-error than we did for our x-error.

We did this due to an unavoidable y-error of 14.1% in the worst-case scenario when the

distance between the actual disturbance location and a position we evaluate the likelihood

function in (2.107) is as larger as possible.

Upon inspection of Figure (5.15), as observed previously, the values used for d and Ts

have little impact on the probabilistic success rates. Again, we observe better success rates

with more sensors present which we would expect. Comparing Figure (5.15) to Tables

(5.6) and (5.7), we observe the same as we did with our absolute x-error for our 2D model

problems with and without using an SVD. That is, there is no significant observable

difference.

In Figure (5.16), we have the success rate for an absolute y-error, given a relative

tolerance of 25%, for our 2D model problem with 3NBCs. Comparing Figure (5.15) to

Figure (5.16), we observe similar results to what we observed with an absolute x-error.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 5.15: The success rate for our 2D model problem with 1NBC given an absolute

y-error with a relative tolerance of 25% for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with dimensions

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 5.16: The success rate for our 2D model problem with 3NBCs given an absolute

y-error with a relative tolerance of 25% for an array of Ts and principal components, d,

used to form an SVD from explicit FDM approximations of u on a mesh with dimensions

of N = 50 by M = 5 nodes and L = 9000 discrete-time steps.

Figures (5.17) and (5.18) show probabilistic success rates for an absolute

Euclidean-error, given a relative tolerance of 25%, for our 2D model problem with 1NBC

and 3NBCs, respectively. The Euclidean-error accounts for both the x and y-errors already

discussed. As a result, we would expect the same patterns already discovered between

the values of d and Ts, the success rate fluctuations with less and more sensors present,

see Figures (5.17) and (5.18).

Upon inspection of Figures (5.17) and (5.18), we can confirm that all observations

discussed in Figures (5.13), (5.14), (5.15) and (5.16) are observed when we are dealing
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with a Euclidean-error.

To conclude these results, we observe very good success rates for our 2D model

problems with 1NBC and 3NBCs using an SVD when we have six sensors present,

irrespective of the values chosen for d and Ts. This is a very significant set of results, as

it shows we can reduce the matrix size in our KF and still obtain good results.

(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 5.17: The success rate for our 2D model problem with 1NBC given an

absolute Euclidean-error with a relative tolerance of 25% for an array of Ts and principal

components, d, used to form an SVD from explicit FDM approximations of u on a mesh

with dimensions of N = 50 by M = 5 nodes and L = 9000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 5.18: The success rate for our 2D model problem with 3NBCs given an

absolute Euclidean-error with a relative tolerance of 25% for an array of Ts and principal

components, d, used to form an SVD from explicit FDM approximations of u on a mesh

with dimensions of N = 50 by M = 5 nodes and L = 9000 discrete-time steps.

5.2.3 Further optimisations

In this section, we look at alternative approaches not yet explored to investigate the

possibility of further reducing the run-time of our 2D model problems and improving the

probabilistic success rates.

Tables (5.10) and (5.11) show the success rate of our 2D model problem with 3NBCs

without using an SVD, with sensors placed along all three Neumann boundaries. By

comparing the results in both tables to those in Tables (5.12) and (5.13), we can deduce
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whether having sensors along the side of our 2D domain makes any noticeable impact on

our success rate when compared to having sensors placed along y := 0.02 only.

Success Rate

|x-error| |y-error|

Model variations 1% 5% 10% 10% 15% 20% 25%

3NBCs, disturbance locations where 100 100 100 100 100 100 100

we evaluate the likelihood function

3NBCs, random disturbance 93 97 97 63 72 75 78

locations

Table 5.10: The success rate for our 2D model problem with 3NBCs without using an

SVD for absolute x and y-errors given a range of relative tolerances. These probabilistic

results used a mesh with a dimension of N = 50 by M = 5 nodes and L = 3000

discrete-time steps to produce explicit FDM approximations of u collected at five sensor

locations (three along y := 0.02, one along y := 0, and one along y := 0.2) in our 2D

domain.

Success Rate

|Euclidean-error|

Model variations 10% 15% 20% 25%

3NBCs, disturbance locations where 100 100 100 100

we evaluate the likelihood function

3NBCs, random disturbance 61 70 73 78

locations

Table 5.11: The success rate for our 2D model problem with 3NBCs without using

an SVD given an absolute Euclidean-error for a range of relative tolerance. These

probabilistic results used a mesh with a dimension of N = 50 by M = 5 nodes and

L = 3000 discrete-time steps to produce explicit FDM approximations of u collected at

five sensor locations (three along y := 0.02, one along y := 0, and one along y := 0.2) in

our 2D domain.
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Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 52 53 54 95 95 99 99 52 53 59 62

2 98 100 100 96 96 99 99 96 96 98 99

3 99 100 100 99 99 100 100 99 99 99 100

4 100 100 100 99 99 100 100 99 99 100 100

5 100 100 100 100 100 100 100 100 100 100 100

Table 5.12: 2D model problem with 3NBCs: The success rate without the use of a

minimisation algorithm for a varying number of sensors, mesh dimensions of N = 50,

M = 5 and L = 3000, F = 25Hz, and 100 disturbance locations positioned where the

likelihood function is evaluated.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 31 48 52 33 41 47 52 17 24 31 37

2 67 93 93 41 49 56 62 39 47 54 60

3 80 98 98 55 70 75 80 53 68 73 80

4 74 97 97 58 72 77 80 57 71 77 80

5 80 99 99 62 75 80 83 62 75 80 83

Table 5.13: 2D model problem with 3NBCs: The success rate without the use of a

minimisation algorithm for a varying number of sensors, mesh dimensions of N = 50,

M = 5 and L = 3000, F = 25Hz, and 100 random disturbance locations.

Upon inspection of both Tables (5.12) and (5.13), we can conclude that when we

have only three sensors present along the top of our domain, that is along y := 0.02,

the probabilistic success rates are indistinguishable from the those presented in Tables

(5.10) and (5.11). Therefore, we note there is no improvement in success rate by placing

additional sensors along x := 0 and x := 0.2 on our 2D domain.

In addition to this, Tables (5.10) and (5.11) have in total five sensors present, meaning
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the run-time and system RAM requirements are equivalent to having five sensors along

y := 0.02 only. From Tables (5.12) and (5.13), we can conclude that placing all five sensors

along y := 0.02 on our 2D domain yields slightly better results than placing sensors along

three sides of our 2D domain.

Moving onto another alternative approach, we have already looked at using an SVD to

reduce the dimension of matrices in the KF. However, something that has not changed is

the amount of discrete-time steps the KF is run over to compute the likelihood function in

(2.107). We do this 244 or 255 times, 2D model problem-dependent, for each 100 different

disturbance locations.

Tables (5.14) and (5.15) show probabilistic success rates for our 2D model problem

with 1NBC using an SVD and having six sensors present for 100 disturbance locations

positioned where we evaluate the likelihood function, and 100 random disturbance

locations, respectively. The choice of d and Ts here is arbitrary since the values chosen

have little impact on the success rate for our 2D model problems with a disturbance

frequency of F = 25Hz.

Upon inspection of both Tables (5.14) and (5.15), we can see that terminating the KF

after 20% of the total discrete-time steps gives similar results to when the KF is run for

100% of the total discrete-time steps. This result is very significant since this approach

could save up to 80% of the total run-time for our 2D model problem with 1NBC using

an SVD.

Moreover, Tables (5.16) and (5.17) show probabilistic success rates for our 2D model

problem with 3NBCs using an SVD and having six sensors present for 100 disturbance

locations positioned where we evaluate the likelihood function in (2.107), and 100 random

disturbance locations, respectively. In a similar manner to our 2D model problem

with 1NBC, we observe in both tables that terminating the KF after 40% of the total

discrete-time steps gives similar results to when the KF is run for 100% of the total

discrete-time steps. Again, another extremely significant result with the potential of

saving up to 60% of the total run-time for our 2D model problem with 3NBCs using an

SVD.
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Success Rate

|x-error| |y-error| |Euclidean-error|

KF Length† (%) 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

10 27 68 74 40 40 83 83 37 37 49 72

20 97 100 100 89 89 97 97 89 89 97 97

30 99 100 100 99 99 100 100 99 99 100 100

40 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100

† Simulation duration is T = 1 second. If KF length = 10%, we would terminate the KF after 0.1

seconds.

Table 5.14: 2D model problem with 1NBC: The success rate using a random subset of

100 disturbance locations where the likelihood estimates are evaluated while terminating

the KF early. These results correspond to using an SVD formed with d = 6 and Ts = 0.5

and having 6 sensors present.

Success Rate

|x-error| |y-error| |Euclidean-error|

KF Length† (%) 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

10 20 57 68 40 48 61 69 29 36 47 58

20 80 99 100 81 89 93 97 81 89 93 97

30 87 100 100 88 93 95 97 88 93 95 97

40 87 100 100 88 91 92 95 88 91 92 95

100 87 100 100 90 93 95 98 90 93 95 98

† Simulation duration is T = 1 second. If KF length = 10%, we would terminate the KF after 0.1

seconds.

Table 5.15: 2D model problem with 1NBC: The success rate using 100 random

disturbance locations, while terminating the KF early. These results correspond to using

an SVD formed with d = 6 and Ts = 0.5 and having 6 sensors present.
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Success Rate

|x-error| |y-error| |Euclidean-error|

KF Length† (%) 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

10 4 26 38 28 28 51 51 13 16 22 36

20 33 60 63 39 39 75 75 31 33 45 59

30 65 91 91 67 67 94 94 66 66 79 89

40 86 96 96 85 85 94 94 84 84 90 93

50 93 98 98 93 93 100 100 92 92 97 99

60 93 99 99 97 97 99 99 97 97 98 99

100 98 99 99 97 97 100 100 97 97 99 99

† Simulation duration is T = 1 second. If KF length = 10%, we would terminate the KF after 0.1

seconds.

Table 5.16: 2D model problem with 3NBCs: The success rate using a random subset of

100 disturbance locations where the likelihood estimates are evaluated while terminating

the KF early. These results correspond to using an SVD formed with d = 6 and Ts = 0.5

and having 6 sensors present.

Success Rate

|x-error| |y-error| |Euclidean-error|

KF Length† (%) 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

10 9 26 41 29 40 51 53 11 16 31 35

20 31 67 73 52 66 74 79 42 50 62 70

30 52 87 89 58 76 85 88 56 72 81 86

40 63 94 95 68 85 90 91 67 83 89 91

50 74 99 100 71 89 91 93 71 89 91 93

60 77 98 99 77 92 94 94 77 92 94 94

100 83 98 98 80 93 97 97 80 93 96 96

† Simulation duration is T = 1 second. If KF length = 10%, we would terminate the KF after 0.1

seconds.

Table 5.17: 2D model problem with 3NBCs: The success rate using 100 random

disturbance locations, while terminating the KF early. These results correspond to using

an SVD formed with d = 6 and Ts = 0.5 and having 6 sensors present.
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5.3 Summary

In this chapter, we have investigated several approaches which have produced some

good results for our 2D model problems. Initially, we made the decision not to use a

minimisation algorithm to find x0 which minimises (2.107). This decision was made due

to the run-time requirement of the minimisation algorithm with 245 or 255 initial guesses

of x0 for our 2D model problem with 1NBC and 3NBCs, respectively. As a result of

this, we apply the alternative approach discussed in chapter 3, where the initial guesses

of x0 used in the minimisation algorithm are our only guesses for x0. Using time series

data produced in the KF, we calculate the likelihood function for each guess of x0 and

determine the value of x0 which minimises (2.107) to be our prediction of the disturbance

location used to generate the sensor traces.

The results obtained using the standard KF in (2.93)-(2.98) yielded good probabilistic

success rates when more than a single sensor was present for disturbance locations

positioned where we evaluate the likelihood function in (2.107). However, the

probabilistic success rate for random disturbance locations given y and Euclidean-errors

are significantly worse, although with more sensors present the results are reasonable.

We can associate this drop in success rate to the unavoidable y-error of 14.1% when the

distance between a random disturbance location and where we evaluate the likelihood

function is as larger as possible. In our 2D model problems, this distance is 0.0028284.

In addition to these results, we have compiled an array of outputs for both 2D model

problems using an SVD to reduce the size of the matrices in the KF. We discovered

the same patterns in the results obtained as we did without using an SVD. That is,

we observed lower success rates given y and Euclidean-errors for random disturbance

locations. Despite this, the fact we were able to obtain similar results using an SVD

which significantly reduces the matrix dimensions in the KF, makes this approach an

extremely viable option. This was expected since the singular values in our SVD converge

to zero quickly, and so, even when we take d to be small the resultant principle components

contain a lot of the original information despite the reduced matrix sizes.

At the end of this chapter, we looked at alternative approaches in a bid to further

optimise our 2D model problems. We discovered that placing sensors along x := 0 and

x := 0.2 in our 2D domain had little impact on our success rates when compared to only

placing sensors along y := 0.02. What was more insightful is the ability to terminate the
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KF after running for 20% or 40% of the total discrete-time steps in our 2D model problems

with 1NBC or 3NBCs, respectively. This means that, over the approach implemented

using an SVD, we could reduce the total run-time by up to 80%.



Chapter 6

2D Model Problem: Higher

Frequencies

In this chapter we extend the work in chapter 5 where we considered two different

2D model problems, each with a disturbance frequency of F = 25Hz in (1.6). We now

investigate higher frequencies of F = 150Hz and F = 300Hz. This was first explored in

chapter 4 for our 1D model problem, where we obtained good probabilistic success rates.

We first outline the model problem and test the convergence of our explicit FDM

approximations of u in (2.65) for different forcing functions in (1.6). We then illustrate

and explain the noise added to these approximations of u, and show a schematic for our

model problems.

Once we have outlined the 2D model problems we consider in this chapter, we

discuss the results obtained from both 2D model problems for each disturbance frequency

considered. Since we require more accurate explicit FDM approximations of u for our

sensor traces when compared to our 2D model problems in chapter 5 with F = 25Hz, the

matrix dimensions in the KF will be larger. Therefore, the results in this chapter were

obtained using an SVD to minimise the run-time and system RAM requirements.

6.1 Model problem outline

In chapter 1, we outlined the forcing function in (1.6), which attempts to mimic a

disturbance caused by CAD. Recall that from research, see [26], [27], [28], [29], [30] and

[31], the real frequency range of this disturbance is 300 − 800Hz. In chapter 5 we chose

141
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the frequency of this disturbance to be F = 25Hz for simplicity, with the knowledge that

a finer mesh would be required to approximate u in (2.65) for higher frequencies in f , see

(1.6).

In chapters 3, 4 and 5, we explored an approach which results in significantly smaller

matrix dimensions in the KF, which in turn reduced the run-time and system RAM

requirements for our model problems. Now we are working spatially in 2D, and require

finer meshes to approximate u in (2.65) for higher frequencies, this approach is a necessity

for these 2D model problems. This alternative approach involves taking the explicit FDM

approximations of u in (2.65) from a subset of our simulation duration, denoted by Ts,

to form an SVD. From the SVD created, we take the first d principal components which

correspond to the largest singular values and modify our KF, see (2.127)-(2.132), which

subsequently reduces the size of the matrices in the KF.

6.1.1 Forcing function

In this chapter we investigate disturbance frequencies of F = 150Hz and F = 300Hz

in (1.6). The amplitude, denoted by A, in our forcing function remains the same, ensuring

the matrix in (2.128), forming part of the KF, is invertible. As discussed previously in

chapter 4, by increasing the disturbance frequency in our forcing function, we increased

the Gaussian spread of our forcing function by altering ε in (1.6) to get better results.

Figure (5.1) shows the Gaussian spread in our 2D domain for our forcing function

in (1.6). We define the value chosen for ε by obtaining the percentage of the positive

peak remaining where we evaluate the likelihood function in (2.107) for the worst-case

scenario. Recall that the worst-case scenario is when the distance between the actual

disturbance location and a position we evaluate the likelihood function in (2.107) is as

larger as possible. For our 2D model problems, this distance is 0.0028284. Using this

distance, we choose ε = 1.23× 10−5 and ε = 1.99× 10−4 for our 2D model problems with

disturbance frequencies of F = 150Hz and F = 300Hz, respectively.

In our 2D model problem with a disturbance frequency of F = 150Hz, the Gaussian

spreads peak remaining in the worst-case scenario is 52% at the nearest position (2.107)

is evaluated. Our Gaussian spread decays to approximately zero at a distance of 0.012

away from the actual disturbance location, that is 6% and 60% of our domain in the x

and y-directions, respectively. For our 2D model problem with a disturbance frequency
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of F = 300Hz, the Gaussian spreads peak remaining in the worst-case scenario is 96% at

the nearest position (2.107) is evaluated. Our Gaussian spread decays to approximately

zero at a distance of 0.048 away from the actual disturbance location, that is 24% and

240% of our domain in the x and y-directions, respectively.

N M ∆t Maximum absolute solution over

all nodes and time steps

% from N =

2000

50 5 9000−1 1.476307850713303 37.9302273

100 10 13500−1 2.362060668466852 0.68970458

150 15 18000−1 1.901351068458216 20.0597433

200 20 22500−1 1.664278368474221 30.0272094

250 25 27000−1 2.106417873434576 11.4379304

300 30 31500−1 2.640073671596904 10.9990520

350 35 36000−1 2.146214630779191 9.76471864

400 40 40500−1 2.595812293482607 9.13813060

450 45 45000−1 2.698998970912966 13.4765033

500 50 49500−1 2.752907678275824 15.7430368

600 60 58500−1 1.907032806113935 19.8208607

700 70 67500−1 2.021893312134235 14.9916745

800 80 76500−1 2.299334076959987 3.32697653

900 90 85500−1 2.436987096704126 2.46049635

1000 100 94500−1 2.528047967955005 6.28905256

1100 110 103500−1 2.565648928902063 7.86994444

1200 120 112500−1 2.560724325751560 7.66289481

1300 130 121500−1 2.537677657433419 6.69392247

1400 140 130500−1 2.508789805595369 5.47936387

1500 150 139500−1 2.476758088380485 4.13262484

2000 200 184500−1 2.378465050853140 0

Table 6.1: 2D model problem with 1NBC: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 3 seconds, a disturbance

frequency of F = 150Hz and a disturbance location at x0 ≡ (x, y) = (0.144, 0.008).

Since the forcing function in (1.6) has changed for our 2D model problems in this
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chapter, our explicit FDM approximations of u in (2.65) change. Therefore, we need to

redo the convergence of the absolute maximum approximations of u across all nodes and

discrete-time steps in (2.65) for both disturbance frequencies. To be able to solve (2.65),

we need to know both V0 and V1, which we outlined in chapter 5.

N M ∆t Maximum absolute solution over

all nodes and time steps

% from N =

2000

50 5 9000−1 1.476285738616596 31.87156983

100 10 13500−1 2.362072353843534 9.006188435

150 15 18000−1 1.924220296222152 11.20004438

200 20 22500−1 1.790811537284375 17.35666371

250 25 27000−1 1.702925734694870 21.41246511

300 30 31500−1 1.645754953664509 24.05081313

350 35 36000−1 2.236976411982961 3.233179985

400 40 40500−1 2.438993062109521 12.55596675

450 45 45000−1 2.741505784602714 26.51648696

500 50 49500−1 2.939024445632943 35.63168462

600 60 58500−1 2.182944028638430 0.739705600

700 70 67500−1 1.848640824717378 14.68792657

800 80 76500−1 2.034733425484549 6.100024907

900 90 85500−1 2.107002091310943 2.764931555

1000 100 94500−1 2.202162063803347 1.626562159

1100 110 103500−1 2.239722873026367 3.359938633

1200 120 112500−1 2.240631983861499 3.401892770

1300 130 121500−1 2.227541463494679 2.797784378

1400 140 130500−1 2.210038900153278 1.990066649

1500 150 139500−1 2.195485956845127 1.318469575

2000 200 184500−1 2.166915830888715 0

Table 6.2: 2D model problem with 3NBCs: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 3 seconds, a disturbance

frequency of F = 150Hz and a disturbance location at x0 ≡ (x, y) = (0.144, 0.008).

Upon inspection of Table (6.1), we take our mesh to have N = 150 by M = 15 nodes



CHAPTER 6. 2D MODEL PROBLEM: HIGHER FREQUENCIES 145

with L = 18000 discrete-time steps, yielding an error of 20%. We chose this discretised

mesh spacing because the coarser mesh spacing did not obtain sufficiently good enough

results.

Table (6.2) contains the maximum absolute approximation of u across all nodes and

discrete-time steps in (2.65) for our 2D model problem with 3NBCs, with a disturbance

frequency of F = 150Hz. We take our mesh to have N = 150 by M = 15 nodes with

L = 18000 discrete-time steps, resulting in an error of 11%. Again, we chose this because

it resulted in better results than when we used coarser meshes.

In Tables (6.3) and (6.4), we observe the same as we did in Tables (6.1) and (6.2),

but for a disturbance frequency of F = 300Hz. In both cases, we take our mesh to have

N = 500 by M = 50 nodes with L = 45000 discrete-time steps, resulting in an error of

18.23% and 18.33%, respectively. As mentioned previously for other model problems, we

chose this mesh density because it resulted in better results than when we used coarser

meshes.

N M ∆t Maximum absolute solution over

all nodes and time steps

% from N =

2000

100 10 9000−1 0.278277766906823 43.09738373

200 20 18000−1 2.542590528603840 419.9123695

300 30 27000−1 0.480724136359279 1.700874756

400 40 36000−1 2.675249752050029 447.0387080

500 50 45000−1 0.578180301046536 18.22709435

600 60 54000−1 0.513371582979070 4.974919533

700 70 63000−1 0.495968763310072 1.416367297

800 80 72000−1 0.492032642807167 0.611504023

900 90 81000−1 0.490443578099907 0.286569911

1000 100 90000−1 0.490060014756417 0.208138356

2000 200 180000−1 0.489042130504032 0

Table 6.3: 2D model problem with 1NBC: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 3 seconds, a disturbance

frequency of F = 300Hz and a disturbance location at x0 ≡ (x, y) = (0.144, 0.008).
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N M ∆t Maximum absolute solution over

all nodes and time steps

% from N =

2000

100 10 9000−1 0.278273424374160 43.09752665

200 20 18000−1 2.691860222890391 450.4424469

300 30 27000−1 0.480613379726861 1.722235621

400 40 36000−1 2.675036862826007 447.0023383

500 50 45000−1 0.578657321528331 18.32618545

600 60 54000−1 0.513546164323530 5.011993140

700 70 63000−1 0.495839682343571 1.391300215

800 80 72000−1 0.492031202253952 0.612526829

900 90 81000−1 0.490443487311206 0.287864467

1000 100 90000−1 0.490067564895042 0.210994334

2000 200 180000−1 0.489035727220794 0

Table 6.4: 2D model problem with 3NBCs: The convergence of our explicit FDM

approximation of u in (2.65) for a simulation duration of T = 3 seconds, a disturbance

frequency of F = 300Hz and a disturbance location at x0 ≡ (x, y) = (0.144, 0.008).

6.1.2 Added noise

As mentioned already for other model problems considered in this thesis, we add two

different forms of random Gaussian noise to our explicit FDM approximations of u in

(2.65), denoted by w̃n and z̃n in the KF. We scale the first by the error associated with

the explicit FDM approximations of u in (2.65). For our 2D model problem with 1NBC,

this error is measured by the combination of the higher-order terms neglected in (2.28) and

(2.33). Additionally, for our 2D model problem with 3NBCs this error is measured by the

combination of the higher-order terms neglected in (2.28), (2.33), (2.39), (2.47), (2.53)

and (2.62). The second random Gaussian noise added attempts to mimic inaccuracies

recorded by sensors in a real-life scenario, be that ambient noise in the background or

errors due to manufacturing defects. Without experimental data, we cannot accurately

predict the magnitude of this noise. As a result, we model it after the error associated

with the explicit FDM approximation of u in (2.65) but scale it ensuring it is the larger

of the two random Gaussian noises added since we would expect this noise to be the
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dominant of the two.

For each 2D model problem considered in this chapter, we scale the noise added to

mimic a scenario where the original explicit FDM approximations of u are still recognisable

but significantly obscured.

(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 6.1: 2D model problem with 1NBC: Illustration of the noise added to our explicit

FDM approximations of u in (2.65) using a single sensor trace at (x, y) = (0.1, 0.02), a

mesh dimension of N = 150 by M = 15 nodes and L = 18000 discrete-time steps, a

simulation duration of T = 3 seconds, a disturbance frequency of F = 150Hz and a

disturbance location at x0 ≡ (x, y) = (0.144, 0.008). All figures show only the first second

of our sensor traces.
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(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 6.2: 2D model problem with 3NBCs: Illustration of the noise added to our explicit

FDM approximations of u in (2.65) using a single sensor trace at (x, y) = (0.1, 0.02), a

mesh dimension of N = 150 by M = 15 nodes and L = 18000 discrete-time steps, a

simulation duration of T = 3 seconds, a disturbance frequency of F = 150Hz and a

disturbance location at x0 ≡ (x, y) = (0.144, 0.008). All figures show only the first second

of our sensor traces.

Figure (6.1) illustrates the effect the added noise has on our explicit FDM

approximations of u in (2.65) for our 2D model problem with 1NBC. These figures only

show the first second of our T = 3 second simulation and are formed using a mesh

density of N = 150 by M = 15 nodes with L = 18000 discrete-time steps, a disturbance

frequency of F = 150Hz, and a single sensor trace located at (x, y) = (0.1, 0.02). We

scale the random Gaussian noise added to our explicit FDM approximations of u, see
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Figure (6.1)(b) by 3× 102, and by 3× 104 in Figure (6.1)(c). In total, the noise added is

significant, see Figure (6.1)(d), but does not overwhelm the explicit FDM approximations

of u, see Figure (6.1)(a).

In Figure (6.2), the effect of the noise added to our explicit FDM approximations of

u in (2.65) for our 2D model problem with 3NBCs is shown. These figures only show

the first second of our T = 3 second simulation and are formed using a mesh density of

N = 150 by M = 15 nodes with L = 18000 discrete-time steps, a disturbance frequency of

F = 150Hz, and a single sensor trace located at (x, y) = (0.1, 0.02). We scale the random

Gaussian noise added to our explicit FDM approximations of u, see Figure (6.2)(b) by

2× 102, and by 1× 104 in Figure (6.2)(c). Again in total, the noise added is significant,

see Figure (6.2)(d), but does not overwhelm the explicit FDM approximations of u, see

Figure (6.2)(a).

Figure (6.3) contains an illustration of the added noise to our explicit FDM

approximations of u in (2.65) for our 2D model problem with 1NBC. These figures only

show the first second of our T = 3 second simulation and are formed using a mesh

density of N = 500 by M = 50 nodes with L = 45000 discrete-time steps, a disturbance

frequency of F = 300Hz, and a single sensor trace located at (x, y) = (0.1, 0.02). We scale

the random Gaussian noise added to our explicit FDM approximations of u, see Figure

(6.3)(b) by 5, and by 3 × 102 in Figure (6.3)(c). Again, the noise added is significant,

see Figure (6.3)(d), but does not overwhelm the explicit FDM approximations of u, see

Figure (6.3)(a).

Lastly, Figure (6.4) shows the effect from the added noise on our explicit FDM

approximations of u in (2.65) for our 2D model problem with 3NBCs. These figures

only show the first second of our T = 3 second simulation and are formed using a mesh

density of N = 500 by M = 50 nodes with L = 45000 discrete-time steps, a disturbance

frequency of F = 300Hz, and a single sensor trace located at (x, y) = (0.1, 0.02). We scale

the random Gaussian noise added to our explicit FDM approximations of u, see Figure

(6.4)(b) by 3, and by 2 × 102 in Figure (6.4)(c). In total, the noise added is significant,

see Figure (6.4)(d), but does not overwhelm the explicit FDM approximations of u, see

Figure (6.4)(a).
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(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 6.3: 2D model problem with 1NBC: Illustration of the noise added to our explicit

FDM approximations of u in (2.65) using a single sensor trace at (x, y) = (0.1, 0.02), a

mesh dimension of N = 500 by M = 50 nodes and L = 45000 discrete-time steps, a

simulation duration of T = 3 seconds, a disturbance frequency of F = 300Hz and a

disturbance location at x0 ≡ (x, y) = (0.144, 0.008). All figures show only the first second

of our sensor traces.
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(a) No added noise. (b) Noise added to mimic the error associated

with the FDM approximation of u in (1.1).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 6.4: 2D model problem with 3NBCs: Illustration of the noise added to our explicit

FDM approximations of u in (2.65) using a single sensor trace at (x, y) = (0.1, 0.02), a

mesh dimension of N = 500 by M = 50 nodes and L = 45000 discrete-time steps, a

simulation duration of T = 3 seconds, a disturbance frequency of F = 300Hz and a

disturbance location at x0 ≡ (x, y) = (0.144, 0.008). All figures show only the first second

of our sensor traces.

6.1.3 Model problem schematic

As discussed previously in this chapter, we will use an SVD to solve the 2D model

problems with higher disturbance frequencies in f , see (1.6) As a result, the sensor

locations are the same as is illustrated in Figure (5.4), and the schematic for our 2D model
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problems considered in this chapter follow the same steps outlined in Figure (5.12).

6.2 Results

In this section, we discuss the results obtained for our 2D model problems with 1NBC

and 3NBCs for disturbance frequencies of F = 150Hz and F = 300Hz. We produce

probabilistic success rates for three different types of error: an absolute x-error, y-error and

Euclidean-error. In each case, we classify the success rates based on a relative tolerance

percentage. The probabilistic results are obtained using 100 random disturbance locations

and a random subset of 100 disturbances positioned where the likelihood in (2.107) is

evaluated.

6.2.1 Disturbance frequency of F = 150Hz

We start by looking at the results obtained for our 2D model problems with 1NBC

and 3NBCs for a disturbance frequency of F = 150Hz. For the full set of results, see

Appendix D.1 and D.2 for our 2D model problems with 1NBC and 3NBCs, respectively.

The results in this section originate from our 2D model problems using an SVD, which

is constructed using data from our explicit FDM approximations of u over a duration of

Ts seconds, from which we take the first d principle components with the largest singular

values. In both figures we use a range of values for Ts and d, and display the corresponding

success rate. This success rate is calculated by running our 2D model problem 100 times,

with a different disturbance location each time. To be classed as a success, they must be

able to predict the disturbance location within an absolute error with a relative tolerance

percentage. The results presented in Figure (6.5) and Figure (6.6) have one and six

sensors present, whose success rate is determined from an absolute x-error with a relative

tolerance percentage of 10%. Additional results corresponding to two, three, four and five

sensors present with different absolute errors with a range of tolerance percentages can

be found in Appendix D.1 and D.2.

Moving on to inspecting the results in Figure (6.5) and Figure (6.6), we observe that

when there is one sensor present, the success rate for higher values of d are poor when

Ts > 0.125. This was observed in chapter 4 for our 1D model problem with a disturbance

frequency of F = 150Hz. We are not sure why the success rate drops when we take more
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principal components in our SVD. However, it is worth noting that when we take only

d = 3 principal components, we get a reasonable success rate irrespective of the value

taken for Ts, see Figures (6.5)(a) and (6.5)(c).

In addition to these observations, we conclude that when we have six sensors present

as opposed to only one, we get significantly better results. We would expect this since

there is more data input into the KF, and we have also observed this in chapters 3, 4

and 5. Lastly, upon inspection of Figures (6.5) and (6.6), we can see that forming our

SVD using less data from our explicit FDM approximations of u in (2.65), that is having

a smaller value for Ts which represents how much of the simulation our explicit FDM

approximations of u are used to form the SVD, yields better results irrespective of the

number of sensors present.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.5: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 150Hz given an absolute x-error with a relative tolerance of 10%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 150 by

M = 15 nodes and L = 18000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.6: The success rate for our 2D model problem with 3NBCs with a disturbance

frequency of F = 150Hz given an absolute x-error with a relative tolerance of 10%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 150 by

M = 15 nodes and L = 18000 discrete-time steps.

Next, we inspect Figures (6.7) and (6.8) which contain probabilistic success rates for an

absolute y-error, given a relative tolerance percentage of 25% for our 2D model problems

with 1NBC and 3NBCs, respectively. As discussed in chapter 5, we take a higher relative

tolerance percentage for our y-error due to the unavoidable error of 14.1% caused in

the worst-case scenario when the distance between the actual disturbance location and a

position we evaluate the likelihood function in (2.107) is as larger as possible.

Upon inspection of both Figures (6.7) and (6.8), when we have only one sensor present,
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the success rate for higher values of d is weak except for when Ts = 0.125. This was also

observed when we had an absolute x-error, see Figures (6.5) and (6.6). We are not

sure why the success rate drops when we take more principal components in our SVD.

Nevertheless, with only a single sensor present, as was observed in chapters 3, 4 and 5,

we would not expect reasonable success rates due to the lack of information known to the

KF. Therefore, the fact that we get reasonable success rates with only one sensor when

Ts = 0.125 is remarkable.

(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.7: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 150Hz given an absolute y-error with a relative tolerance of 25%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 150 by

M = 15 nodes and L = 18000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.8: The success rate for our 2D model problem with 3NBCs with a disturbance

frequency of F = 150Hz given an absolute y-error with a relative tolerance of 25%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 150 by

M = 15 nodes and L = 18000 discrete-time steps.

Additionally, inspecting Figures (6.7) and (6.8) further, we observe that when we have

six sensors present as opposed to only one, we get significantly better results irrespective

of the values chosen for d or Ts. Furthermore, when the 100 disturbance locations used

to generate our probabilistic results are random, the success rates are not as good as

those observed when the disturbance locations are a random subset of the positions we

evaluate the likelihood function in (2.107). We would expect this, and we have seen this

before in chapters 3, 4 and 5. Since we are only evaluating the likelihood function in
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(2.107) at specific locations, if the disturbance location is random, we cannot predict the

exact location of our disturbance which induces an unavoidable error using this approach

without a minimisation algorithm.

(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.9: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 150Hz given an absolute Euclidean-error with a relative tolerance of 25%.

The probabilistic results were produced using an array of Ts and principal components, d,

to form an SVD from explicit FDM approximations of u with a mesh density of N = 150

by M = 15 nodes and L = 18000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.10: The success rate for our 2D model problem with 3NBCs with a disturbance

frequency of F = 150Hz given an absolute Euclidean-error with a relative tolerance of 25%.

The probabilistic results were produced using an array of Ts and principal components, d,

to form an SVD from explicit FDM approximations of u with a mesh density of N = 150

by M = 15 nodes and L = 18000 discrete-time steps.

Lastly, we inspect Figures (6.9) and (6.10) which portray probabilistic success rates

for an absolute Euclidean-error for our 2D model problems with 1NBC and 3NBCs,

respectively. The Euclidean-error is dependent on both the x-error and y-error discussed

already and as a result, we take a relative tolerance percentage of 25%. Additionally, we

would expect the same patterns already observed in Figures (6.5), (6.6), (6.7) and (6.8)

to be present in Figures (6.9) and (6.10).

We observe that having more sensors present results in better success rates, when
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Ts = 0.125 with a single sensor present we obtain reasonable results. Furthermore, when

the 100 disturbance locations are random, we get slightly lower success rates, as observed

previously.

6.2.2 Disturbance frequency of F = 300Hz

In this section, we look at the results obtained from our 2D model problems with 1NBC

and 3NBCs for a disturbance frequency of F = 300Hz. For the full set of results, see

Appendix D.3 and D.4 for our 2D model problems with 1NBC and 3NBCs, respectively.

The following set of figures display results which originate from our 2D model problems

using an SVD, which is constructed using data from our explicit FDM approximations of

u over a duration of Ts seconds, from which we take the first d principle components with

the largest singular values. In the previous section, that is when our 2D model problems

had a disturbance frequency of F = 150Hz, we produced results for d := {3, 6, 12, 24}

and Ts := {1, 0.5, 0.25, 0.125}. However, due to the amount of discrete-time steps involved

when working with a disturbance frequency of F = 300Hz in 2D, the run-time requirement

meant running for 16 combinations of d and Ts was not feasible. Therefore, having gained

insight from the results corresponding to a disturbance frequency of F = 150Hz in the

previous section, we decide to choose d := {3, 6} and Ts = 0.125. This means we only have

2 combinations in total, and by choosing the smaller values for d and Ts, we are running

our 2D model problems with the shortest run-time. To put the run-time requirements for

all 16 combinations into perspective, it took six weeks using high-performance computers

to obtain the results in this section which correspond to the two fastest cases.

The figures in this section display the success rate of our 2D model problems. This

success rate is calculated by running our 2D model problem 100 times, with a different

disturbance location each time. To be classed as a success, they must be able to predict

the disturbance location within an absolute error with a relative tolerance percentage.

The cases presented in Figure (6.11) and (6.12) have one and six sensors present, whose

success rate is determined from an absolute x-error with a relative tolerance percentage

of 10%. Additional results corresponding to two, three, four and five sensors present with

different absolute errors with a range of tolerance percentages can be found in Appendix

D.3 and D.4.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.11: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 300Hz given an absolute x-error with a relative tolerance of 10%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 500 by

M = 50 nodes and L = 45000 discrete-time steps.

Moving onto a discussion about the results in Figure (6.11) and Figure (6.12), we

observe reasonable success rates when only one sensor is present for Ts = 0.125 and

d := {3, 6}. We observed similar results in the previous section with a disturbance

frequency of F = 150Hz. When we have six sensors present along the surface of our 2D

domain, we achieve a success rate of 100%, irrespective of the value we chose for d and the

type of disturbance locations used to generate our success rates. This is a very significant

result, since choosing Ts = 0.125 means our SVD is based on a small subset of our explicit
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FDM approximations of u in (2.65). Again, similar results were observed in the previous

section when F = 150Hz in Figure (6.5) and Figure (6.6) for the values of Ts and d used

in this section.

(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.12: The success rate for our 2D model problem with 3NBCs with a disturbance

frequency of F = 300Hz given an absolute x-error with a relative tolerance of 10%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 500 by

M = 50 nodes and L = 45000 discrete-time steps.

Figures (6.13) and (6.14) contain the probabilistic success rates for an absolute y-error,

given a relative tolerance percentage of 25% for our 2D model problems with 1NBC and

3NBCs, respectively. Upon inspection of both figures, we observe better results when we

have more sensors present and d = 6 principal components. Moreover, we find better
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success rates for our 2D model problem with 1NBC, see Figure (6.13), when compared to

our 2D model problem with 3NBCs, see Figure (6.14). Lastly, the results obtained using

100 random disturbance locations are not as good when we have only one sensor present

or when d = 3 with six sensors present, when compared to the probabilistic success rates

computed using 100 disturbances at a random subset of the positions we evaluate the

likelihood function in (2.107).

(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.13: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 300Hz given an absolute y-error with a relative tolerance of 25%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 500 by

M = 50 nodes and L = 45000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.14: The success rate for our 2D model problem with 3NBCs with a disturbance

frequency of F = 300Hz given an absolute y-error with a relative tolerance of 25%. The

probabilistic results were produced using an array of Ts and principal components, d, to

form an SVD from explicit FDM approximations of u with a mesh density of N = 500 by

M = 50 nodes and L = 45000 discrete-time steps.

Figures (6.15) and (6.16) contain the probabilistic success rates for an absolute

Euclidean-error, given a relative tolerance percentage of 25% for our 2D model problems

with 1NBC and 3NBCs, respectively. Since the Euclidean-error is a combination of both

the x-error and y-error, we would expect to observe the same in Figures (6.15) and (6.16)

as we have already seen in Figures (6.11), (6.12), (6.13) and (6.14).

Upon inspection of Figures (6.15) and (6.16), we see that having a greater number of

sensors present results in better probabilistic success rates. Moreover, we observe better
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results when our 100 disturbances used to produce the probabilistic success rates are

a random subset of the positions we evaluate the likelihood function in (2.107) when

compared to having 100 random disturbance locations. And lastly, the probabilistic

success rates obtained from our 2D model problem with 1NBC are better than those

observed from our 2D model problem with 3NBCs.

(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.15: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 300Hz given an absolute Euclidean-error with a relative tolerance of 25%.

The probabilistic results were produced using an array of Ts and principal components, d,

to form an SVD from explicit FDM approximations of u with a mesh density of N = 500

by M = 50 nodes and L = 45000 discrete-time steps.
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(a) One sensor present with disturbance

locations where (2.107) is evaluated.

(b) Six sensors present with disturbance

locations where (2.107) is evaluated.

(c) One sensor present with random

disturbance locations.

(d) Six sensors present with random

disturbance locations.

Figure 6.16: The success rate for our 2D model problem with 1NBC with a disturbance

frequency of F = 300Hz given an absolute Euclidean-error with a relative tolerance of 25%.

The probabilistic results were produced using an array of Ts and principal components, d,

to form an SVD from explicit FDM approximations of u with a mesh density of N = 500

by M = 50 nodes and L = 45000 discrete-time steps.

6.3 Summary

In this chapter, we investigated the feasibility of increasing the frequency of our

disturbance in the forcing function, see (1.6), to F = 150Hz and F = 300Hz. As discussed

in the introduction, a partially blocked coronary artery emits a signal with a frequency

in the range of 300− 800Hz.
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Initially, we had to increase the Gaussian spread of our forcing function in our 2D

domain to obtain better success rates, which was achieved by increasing the size of ε in

(1.6) for both disturbance frequencies considered in this chapter.

Having done this, we observed good probabilistic success rates with only one sensor

present when Ts = 0.125, irrespective of d, when we have a disturbance frequency of

F = 150Hz. We expected that the value taken for d would have little impact on the

success rate since the singular values in our SVD converge to zero quickly, and so, even

when we take d to be small the resultant principle components contain a lot of the original

information despite the reduced matrix sizes.

For both disturbance frequencies considered in this chapter, we observed better success

rates when we had six sensors present as opposed to having only one sensor present,

which we expected. In addition to this, we observed better results when we used 100

disturbance locations from a random subset of the positions we evaluate the likelihood

function in (2.107), as opposed to having 100 random disturbance locations. This result is

expected since we are not using a minimisation algorithm, and so in the worst-case scenario

discussed previously, an unavoidable y-error of 14.1% arises. Lastly, the probabilistic

success rates for our 2D model problem with 1NBC are better than the results obtained

for our 2D model problem with 3NBCs. Again, this is expected since the latter 2D model

problem is more complex.

The probabilistic success rates produced for our 2D model problems with a disturbance

frequency of F = 300Hz used d := {3, 6} and Ts = 0.125 rather than d := {3, 6, 12, 24}

and Ts := {1, 0.5, 0.25, 0.125}. The reason for this was due to the run-time requirement for

our 2D model problems with a disturbance frequency of F = 300Hz, which even though

we were using an SVD to reduce the matrix dimensions in our KF, there were still a

significant amount of discrete-time steps.

A recommendation for this work in the future would be to terminate the KF early,

reducing the run-time requirements, and computing the likelihood function in (2.107)

using information from the KF over a subset of the total discrete-time steps. We explored

this approach in chapter 5, and with a disturbance frequency of F = 25Hz, it is a feasible

approach which can reduce the run-time requirement with little impact on the models

success rate.

In the next chapter, we return to our 1D model problem and consider approximations of
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∂u/∂t as our sensor traces in addition to, and instead of the explicit FDM approximations

of u.



Chapter 7

1D Model Problem: Different Sensor

Traces

In this chapter, we revisit our 1D model problem in chapter 3, with a disturbance

frequency of F = 25Hz in our forcing function, see (1.6). Previously, we used explicit

FDM approximations of u in (1.1) for our sensor traces. In this chapter, we investigate

the feasibility of using approximations of ∂u/∂t in addition to, and instead of, using

explicit FDM approximations of u as our sensor traces.

As a result, we first outline the numerical approximations for ∂u/∂t and check the

convergence rate using an exact solution for u. We then detail the required changes to

the KF, and how we extract ∂u/∂t in (2.93).

Having derived an approximation of ∂u/∂t for every node in our mesh and

discrete-time step, we outline our model problem and look at the random Gaussian noise

we add to the approximations of ∂u/∂t. Before discussing the results, we show a schematic

which illustrates a step-by-step process used to generate our probabilistic success rates in

this chapter.

Finally, we discuss the results obtained for our 1D model problem with a disturbance

frequency of F = 25Hz using sensor traces corresponding to approximations of ∂u/∂t,

and sensor traces from approximations of both u and ∂u/∂t. It was initially observed in

chapter 3 that using an SVD to reduce the matrix dimensions in the KF still yields good

results. Therefore, we deploy the same approach in this chapter to reduce the run-time

requirements.

169
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7.1 Approximating ∂u/∂t

Recall that our 1D model problem has a domain defined by Ω1D := (0, 0.2), see Figure

(1.2), and we are interested in approximating the solution, denoted by ∂u/∂t, for this

problem.

We achieve this by discretising our domain, see Figures (2.1) and (2.2), into a mesh

with N + 1 nodes, and L+ 1 discrete-time steps. Recall from chapter 2 that the interval

between nodes in space and time are denoted by Hx := 0.2/N and tn := n∆t respectively,

where n ∈ {0, 1, ..., L},∆t := T/L and T is the duration of our simulation.

We recall from chapter 2 that u(xi, tn) denotes the solution of our PDE at node xi

and discrete-time step tn, where i ∈ {1, 2, ..., N + 1} and n ∈ {0, 1, ..., L}. Extending this,

let ∂u(xi, tn)/∂t denote an approximation of ∂u/∂t at node xi and discrete-time step tn.

Having now defined all relevant notation, we start by obtaining approximations of

∂u/∂t at every node in our mesh, across the discrete-time steps defined by tn for n ∈

{1, 2, ..., L − 1}. Using Taylor series, we expand u at nodes denoted by u(xi, tn+1) ∈

Ω1D × [0, T ] and u(xi, tn−1) ∈ Ω1D × [0, T ], to get

u(xi, tn+1) = u(xi, tn) + ∆tut(xi, tn) +
∆t2

2
utt(xi, tn) +O(∆t3), (7.1)

u(xi, tn−1) = u(xi, tn)−∆tut(xi, tn) +
∆t2

2
utt(xi, tn) +O(∆t3) (7.2)

respectively, where ut ≡ ∂u/∂t. We now subtract (7.2) from (7.1) to simplify further and

get

ut(xi, tn) =
u(xi, tn+1)− u(xi, tn−1)

2∆t
+O(∆t2). (7.3)

To obtain an approximation of ∂u/∂t across all nodes in our mesh at discrete-time

steps, defined by tn for n ∈ {1, 2, ..., L− 1}, we need to neglect the higher-order terms in

(7.3). Therefore, by denoting Ṽ n
i ≈ ∂u(xi, tn)/∂t, we get

Ṽ n
i ≈

u(xi, tn+1)− u(xi, tn−1)

2∆t
. (7.4)

We still need to obtain an approximation of ∂u/∂t across every node in our mesh at

discrete-time steps denoted by tn for n ∈ {0, L}. We know from our initial conditions

ut(xi, t0) for i ∈ {1, 2, ..., N + 1}. Using this, we only need to approximate ∂u(xi, tL)/∂t

for i ∈ {1, 2, ..., N + 1}. Using Taylor series again, we can expand u at nodes denoted by

u(xi, tL−1) ∈ Ω1D × [0, T ] and u(xi, tL−2) ∈ Ω1D × [0, T ], to get

u(xi, tL−1) = u(xi, tL)−∆tut(xi, tL) +
∆t2

2
utt(xi, tL) +O(∆t3), (7.5)
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u(xi, tL−2) = u(xi, tL)− 2∆tut(xi, tL) +
4∆t2

2
utt(xi, tL) +O(∆t3). (7.6)

We now multiply (7.5) by four, and subtract (7.6) from the resultant equation. After

some rearranging, we get

ut(xi, tL) =
u(xi, tL−2)− 4u(xi, tL−1) + 3u(xi, tL)

2∆t
+O(∆t2). (7.7)

Recall that we are trying to obtain an approximation for ∂u(xi, tL)/∂t across every

node in our mesh. By neglecting the higher-order terms in (7.7), we achieve this. By

denoting Ṽ n
i ≈ ∂u(xi, tn)/∂t, we get

Ṽ L
i ≈

u(xi, tL−2)− 4u(xi, tL−1) + 3u(xi, tL)

2∆t
. (7.8)

Recall, from chapter 2, our explicit FDM approximations of u in (2.16) for our 1D

model problem, denoted by Vn, across all nodes in our mesh at the discrete-time step tn.

Using an initial condition and our explicit FDM approximations of u in both (7.4) and

(7.8), we are able to obtain approximations for ∂u(xi, tn)/∂t at every node in our mesh

across all discrete-time steps.

Therefore, we are now able to construct a matrix system using an initial condition and

the approximations of ∂u(xi, tn)/∂t for i ∈ {1, 2, ..., N + 1} and n ∈ {0, 1, ..., L}. Recall

that our 1D domain, denoted by Ω1D, has N + 1 nodes and so we can define Ṽ
n

as

Ṽ
n

=


Ṽ n
1

Ṽ n
2

...

Ṽ n
N+1

 .

Applying this to our initial condition, denoted by ut(xi, t0) for i ∈ {1, 2, ..., N + 1}, (7.4)

and (7.8), we are able to construct three matrix systems to approximate ∂u/∂t at every

node in our mesh, across all discrete-time steps. Therefore, we have

Ṽ
0

=


ut(x1, t0)

ut(x2, t0)
...

ut(xN+1, t0)

 , (7.9)

Ṽ
n ≈ Vn+1 −Vn−1

2∆t
, (7.10)

Ṽ
L ≈ VL−2 − 4VL−1 + 3VL

2∆t
(7.11)

for n ∈ {1, 2, ..., L− 1}.
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7.1.1 MATLAB Implementation

In this section, we look at verifying whether our MATLAB code used to evaluate

∂u/∂t using (7.9), (7.10) and (7.11) works as intended. We achieve this by computing the

maximum absolute error between an exact solution of ∂u/∂t, from an exact solution of

our PDE, and our approximation of ∂u/∂t in (7.9), (7.10) and (7.11) across every node

in our mesh and all discrete-time steps.

As discussed previously, to approximate ∂u/∂t using (7.10) and (7.11), we require

our explicit FDM approximations of u in (2.16). As a result, we must first construct an

exact solution for u that satisfies all boundary conditions in our 1D model problem and

subsequently obtain an exact solution for ∂u/∂t. We then need to obtain V0 and V1 from

our initial conditions to compute our explicit FDM approximations of u in (2.16).

Manufactured space and time-dependent solution

We want to choose an exact solution for u that satisfies all boundary conditions in our

1D model problem, denoted by ∂Ω1D. Therefore, we reuse the exact solution of our PDE,

denoted by u, outlined in chapter 2 for our 1D model problem in (2.17), and subsequently

use (2.18) as our forcing function, f , in (1.1) for this convergence test. Using (2.17), we

deduce our exact solution of ∂u/∂t, to be

∂u(xi, tn)

∂t
= sin

(
2πxi
0.8

)
cos(tn) (7.12)

where i ∈ {1, 2, ..., N + 1} and n ∈ {0, 1, ..., L}.

Recall the matrix system in (2.16) which approximates u in (1.1) at every node in

our mesh across all discrete-time steps. This matrix system is recursive and so initially

requires both V0 and V1 to be known. That is we need a solution of our PDE, denoted by

u, at t0 := 0 and t1 := ∆t, respectively. We have two initial conditions given by u(xi, t0)

and ut(xi, t0) for i ∈ {1, 2, ..., N + 1}. Therefore, V0 is known. However, to get V1, we

need to use Taylor series and both initial conditions.

In this convergence test, we know the exact solution to u and ∂u/∂t, and so by using

these we know that both initial conditions across all nodes in our mesh, defined for all

i ∈ {1, 2, · · · , N + 1}, are both

u(xi, t0) = ut(xi, t0) = sin

(
2πxi
0.8

)
. (7.13)
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Therefore, directly from (7.13), V0 = sin
(
2πxi
0.8

)
for all i ∈ {1, 2, ..., N + 1}. Using Taylor

series in conjunction with (7.13), we get

u(xi, t1) = u(xi, t0) + ∆tut(xi, t0) +O(∆t2),

= sin

(
2πxi
0.8

)
(1 + ∆t) +O(∆t2).

By neglecting the higher-order terms, we get V1 ≈ sin
(
2πxi
0.8

)
(1 + ∆t) for all i ∈

{1, 2, ..., N + 1}.

Error convergence

Recall that we can evaluate ∂u/∂t using the three matrix systems in (7.9), (7.10)

and (7.11). Since the latter two are approximations, we have an error linked to the

higher-order terms disregarded when approximating u in (2.16) and when approximating

∂u/∂t in (7.10) and (7.11). These higher-order terms can be seen in (2.7), (2.14), (7.3)

and (7.7). Therefore, the combined error is O(H3
x + ∆t2).

N ∆t Maximum

|Error|

Error

Percentage†

Error

Convergence

Computation

Time†† (s)

8 1500−1 0.028672 14.63374 N/A 0.003117

16 3000−1 0.007162 0.748061 4.003351019 0.006903

32 6000−1 0.001790 1.219832 4.001117318 0.021056

64 12000−1 0.000447 0.099515 4.004474273 0.072011

128 24000−1 0.000112 0.019094 3.991071429 0.276281

256 48000−1 0.000028 0.004281 4.0 1.059496

† Error Percentage = [maximum error at node (i, j)]/[approximation at node (i, j)]× 100.

†† Computed using an i5− 4590 @ 3.30GHz, 16GB RAM @ 1333 MHz and Intel HD Graphics 4600.

Table 7.1: The error convergence of our FDM approximations of ∂u/∂t using (7.9),

(7.10) and (7.11) for our 1D acoustic wave equation.

Therefore, we would expect the maximum absolute error to decrease by a factor of four

as both Hx and ∆t half. Table (7.1) displays the maximum absolute error across all nodes

in our mesh and discrete-time steps between an exact solution of ∂u/∂t in (7.12), derived

using an exact solution of our PDE, and our approximations of ∂u/∂t for increasing values

of N , which subsequently decrease Hx, and decreasing values for ∆t. We can deduce that
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as N doubles, and ∆t halves the error convergence approaches four which is what we

expected. Therefore, we can conclude that the mathematics set-out in this section and

the code are correct and working.

7.1.2 Using ∂u/∂t in the Kalman filter

The KF in (2.93)-(2.98) uses sensor traces, denoted by ỹn, to predict the latent state,

denoted by x̃n|n−1, which is modelled after our explicit FDM approximations of u in (2.16)

for a specific disturbance location, denoted by x0, in our forcing function. In (2.93), the

error between our sensor traces and the KFs prediction of the latent state is calculated

at each discrete-time step.

In this chapter, we are looking at the possibility of using our approximations of ∂u/∂t

for our sensor traces. As a result, we must be able to approximate ∂u/∂t in (2.93) using

only the KFs prediction of the latent state, denoted by x̂n|n−1. We achieve this by altering

the matrices used to set up the KF in (2.91)-(2.92).

Keeping the notation the same in both (2.91) and (2.92) for simplicity, we redefine the

matrices as follows

A :=


B −I 0

I 0 0

0 I 0

 , x̃n :=


Vn

Vn−1

Vn−2

 , F̃n
:=


Fn

0

0

 , w̃n :=


wn

0

0

 ,

ỹn :=


yn

yn−1

yn−2

 , z̃n :=


zn

zn−1

zn−2


and C̃ which is a sparse matrix with dimensions of

(
3× number of sensors

)
by 3(N + 1).

To be able to compute the error in (2.93) between our sensor traces originating from

our approximations of ∂u/∂t, and the KFs prediction of these stored in x̂n|n−1, we need

to find a way of approximating ∂u(xi, tn)/∂t, ∂u(xi, tn−1)/∂t and ∂u(xi, tn−2)/∂t for i ∈

{1, 2, ..., N + 1} using only Vn, Vn−1 and Vn−2 where n ∈ {2, 3..., L}. This involves

deriving a different numerical scheme for each approximation of ∂u/∂t.

We start by considering ∂u(xi, tn)/∂t for i ∈ {1, 2, ..., N+1} and n ∈ {2, 3..., L}. Using

Taylor series we can manipulate the solution of our PDE, denoted by u, at nodes denoted
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by (xi, tn−1) ∈ Ω1D × [0, T ] and (xi, tn−2) ∈ Ω1D × [0, T ] to approximate ∂u(xi, tn)/∂t.

Therefore, initially we get

u(xi, tn−1) = u(xi, tn)−∆tut(xi, tn) +
∆t2

2
utt(xi, tn) +O(∆t3), (7.14)

u(xi, tn−2) = u(xi, tn)− 2∆tut(xi, tn) +
4∆t2

2
utt(xi, tn) +O(∆t3). (7.15)

We now multiply (7.14) by four and subtract (7.15) from the resultant equation. After

some simplifying, we get

ut(xi, tn) =
u(xi, tn−2)− 4u(xi, tn−1) + 3u(xi, tn)

2∆t
+O(∆t2) (7.16)

where ∂u(xi, tn)/∂t ≡ ut(xi, tn). By neglecting the higher-order terms in (7.16), and

recalling that both Ṽ
n ≈ ut(xi, tn) and Vn ≈ u(xi, tn) for i ∈ {1, 2, ..., N + 1}, we get

Ṽ
n ≈ Vn−2 − 4Vn−1 + 3Vn

2∆t
(7.17)

for n ∈ {2, 3, ..., L}.

Next, we look at approximating ∂u(xi, tn−1)/∂t as outlined above. Using Taylor series,

we can use the value of u at nodes denoted by u(xi, tn) ∈ Ω1D × [0, T ] and u(xi, tn−2) ∈

Ω1D × [0, T ] to approximate ∂u(xi, tn−1)/∂t. Therefore, we get

u(xi, tn) = u(xi, tn−1) + ∆tut(xi, tn−1) +
∆t2

2
utt(xi, tn−1) +O(∆t3), (7.18)

u(xi, tn−2) = u(xi, tn−1)−∆tut(xi, tn−1) +
∆t2

2
utt(xi, tn−1) +O(∆t3) (7.19)

for n ∈ {2, 3, ..., L}. Subtracting (7.19) from (7.18) and simplifying further, we get

ut(xi, tn−1) =
u(xi, tn)− u(xi, tn−2)

2∆t
+O(∆t2). (7.20)

By neglecting the higher-order terms in (7.20), and recalling that Ṽ
n−1 ≈ ut(xi, tn−1) and

Vn ≈ u(xi, tn) for i ∈ {1, 2, ..., N + 1}, we get

Ṽ
n−1 ≈ Vn −Vn−2

2∆t
(7.21)

for n ∈ {2, 3, ..., L}.

Lastly, we look at approximating ∂u(xi, tn−2)/∂t. Using Taylor series again, we can

use the value of u at nodes denoted by u(xi, tn−1) ∈ Ω1D×[0, T ] and u(xi, tn) ∈ Ω1D×[0, T ]

to approximate ∂u(xi, tn−2)/∂t. Therefore, initially, we get

u(xi, tn−1) = u(xi, tn−2) + ∆tut(xi, tn−2) +
∆t2

2
utt(xi, tn−2) +O(∆t3), (7.22)
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u(xi, tn) = u(xi, tn−2) + 2∆tut(xi, tn−2) +
4∆t2

2
utt(xi, tn−2) +O(∆t3) (7.23)

for i ∈ {1, 2, ..., N +1} and n ∈ {2, 3, ..., L}. We now multiply (7.22) by four and subtract

(7.23) from the resultant equation. After some simplifying, we get

ut(xi, tn−2) =
−3u(xi, tn−2) + 4u(xi, tn−1)− u(xi, tn)

2∆t
+O(∆t3). (7.24)

By neglecting the higher-order terms in (7.24), and recalling that Ṽ
n−2 ≈ ut(xi, tn−2) and

Vn ≈ u(xi, tn) for i ∈ {1, 2, ..., N + 1}, we get

Ṽ
n−2 ≈ −3Vn−2 + 4Vn−1 −Vn

2∆t
(7.25)

for n ∈ {2, 3, ..., L}.

Having derived numerical schemes to approximate ∂u(xi, tn)/∂t, ∂u(xi, tn−1)/∂t and

∂u(xi, tn−2)/∂t in (7.17), (7.21) and (7.25), respectively, we are able to compute (2.93) in

the KF for sensor traces, denoted by ỹn, originating from our approximations of ∂u/∂t in

(7.9), (7.10) and (7.11).

As outlined previously in this chapter, we plan to use an SVD to reduce the matrix

dimensions in the KF. The modified KF in (2.127)-(2.132) is derived from the larger

matrices outlined in this section within the standard KF (2.93)-(2.98). This derivation

follows the same steps outlined in chapter 2, and so, we will not repeat it here.

7.2 Model problem outline

7.2.1 Forcing function

In chapter 1, we outlined a forcing function in (1.6) which attempts to mimic a

disturbance caused by CAD. In this chapter, we use this forcing function in (1.1) with the

amplitude, given by A = 106, ensuring that (2.128) is an invertible matrix. In previous

chapters, we altered the Gaussian spread of our forcing function by changing ε in (1.6) to

improve our success rates. We do the same for our 1D model problem considered in this

chapter.

Figure (3.1) shows the Gaussian spread of our forcing function in (1.6) used in this

chapter when ε = 5.77 × 10−6. In the worst-case scenario, that is when the distance

between the actual disturbance location and a position we evaluate the likelihood function
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in (2.107) is as larger as possible, 50% of the Gaussian spreads peak remains at the

nearest position (2.107) is evaluated. At a distance of 0.00815 away from the disturbance

location, that is 4% of our domain, the Gaussian spread of our forcing function decays to

approximately zero.

We now want to investigate the convergence of the maximum absolute approximation

of ∂u/∂t. To do this, we have to solve (2.16), which requires both V0 and V1 to be known.

Both were defined in chapter 3 and remain the same for our convergence testing in this

chapter.

Table (7.2) shows the convergence of the maximum absolute approximation of ∂u/∂t

for every node in our mesh across all discrete-time steps using (7.9), (7.10) and (7.11)

for a disturbance frequency of F = 25Hz, simulation duration of T = 3 seconds and

a disturbance location at x0 = 0.05. Upon inspection of Table (7.2), we decide to use

the approximation of ∂u/∂t from a coarse mesh with N = 50 nodes and L = 9000

discrete-time steps, resulting in an error of 20% when compared to a converged solution.

N ∆t Maximum |∂u/∂t| over all nodes

and discrete-time steps

% from N =

1000

50 9000−1 9590.2054890 20.1729975

100 18000−1 12950.243204 7.79530203

150 27000−1 12464.592259 3.75283815

200 36000−1 12272.933639 2.15750913

250 45000−1 12177.195243 1.36060137

300 54000−1 12124.196074 0.91944661

350 63000−1 12092.045100 0.65182816

400 72000−1 12071.124817 0.47769180

450 81000−1 12056.765306 0.35816603

500 90000−1 12046.523110 0.27291199

1000 180000−1 12013.736184 0

Table 7.2: The convergence for our approximations of ∂u/∂t in (7.9), (7.10) and (7.11)

over a simulation duration of T = 3 seconds, a disturbance frequency of F = 25Hz and a

disturbance location at x0 = 0.05.

In this chapter, we use sensor traces in the KF originating from our approximations
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of ∂u/∂t. In addition to these, we investigate the scenario where we have sensor traces

from the approximations of both u and ∂u/∂t. The convergence testing for our explicit

FDM approximations of u can be found in Table (3.2).

7.2.2 Noise added

As mentioned already for other model problems considered in this thesis, we add two

different forms of random Gaussian noise to our approximations of ∂u/∂t in (7.9), (7.10)

and (7.11), denoted by w̃n and z̃n in the KF. The first represents the error associated

with the approximations of ∂u/∂t in (7.9), (7.10) and (7.11).

For our 1D model problem considered in this chapter, this error is measured by the

combination of the higher-order terms neglected in (2.7), (2.14), (7.3) and (7.7).

The other random Gaussian noise added represents inaccuracies recorded by sensors in

a real-life scenario, be that ambient noise in the background or errors due to manufacturing

defects. Without experimental data, we cannot accurately predict the magnitude of this

noise. As a result, we model it after the noise corresponding to the error associated with

the approximations of ∂u/∂t in (7.9), (7.10) and (7.11), but scale it ensuring it is the

larger of the two random Gaussian noises added since we would expect this noise to be

the dominant of the two.

Figure (7.1) illustrates the effect the added noise has on our approximations of ∂u/∂t

in (7.9), (7.10) and (7.11). These figures show only the first second of our T = 3

second simulation and are formed using a mesh density of N = 50 nodes with L = 9000

discrete-time steps, a disturbance frequency of F = 25Hz, and a single sensor trace located

at x = 0.2. We scale the random Gaussian noise added to our approximations of ∂u/∂t,

see Figure (7.1)(b) by 5× 104, and by 6× 105 in Figure (7.1)(c). In total, the noise added

is significant, see Figure (7.1)(d), but does not overwhelm our approximations of ∂u/∂t,

see Figure (7.1)(a).

As mentioned in the previous chapter, we consider in addition to sensor traces

originating from only ∂u/∂t, sensor traces from our approximations of both u and ∂u/∂t.

The noise added to the sensor traces from our explicit FDM approximations of u used in

this chapter can be observed in Figure (3.2).
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(a) No added noise. (b) Noise added to mimic the error associated

with the approximations of ∂u/∂t in (7.9),

(7.10) and (7.11).

(c) Noise added to mimic errors recorded in

real-world scenarios.

(d) All added noise present.

Figure 7.1: Illustration of the noise added to our approximations of ∂u/∂t in (7.9), (7.10)

and (7.11) using a single sensor trace at y := 0.2, a mesh dimension of N = 50 nodes

and L = 9000 discrete-time steps, a simulation duration of T = 3 seconds, a disturbance

frequency of F = 25Hz and a disturbance location at x0 = 0.004. All figures show only

the first second of the sensor traces.

7.2.3 Model problem schematic

In this section, we outline the steps taken by our 1D model problem in this chapter to

obtain the probabilistic success rates displayed in the next section. We start by defining

the locations our sensors will be placed, that is the nodes in our mesh where the explicit
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FDM approximations of u and our approximations of ∂u/∂t are recorded. We will then

show a schematic, outlining the steps from start to finish, enabling our model to predict

the disturbance location.

In Figure (3.3) we outline the sensor positions on our 1D domain, dependent on the

quantity present. We always place a sensor at x = 0.2, on the Neumann boundary.

When we have more than a single sensor, the rest are equidistant from one another.

There was no point in placing a sensor at x = 0 as the boundary condition here is

equal to zero. As illustrated in previous chapters, having more than six sensors present

yields little improvement in our probabilistic success rates given the addition run-time

requirements. Therefore, all the results presented in this chapter correspond to having

1-6 sensors present.

Figure (7.2) shows a schematic illustrating the steps from start to finish for our 1D

model problem considered in this chapter using an SVD, for sensor traces originating

from the approximations of ∂u/∂t only. The first step has two different routes. One

route involves creating 50 random disturbance locations in our 1D domain defined

on Ω1D := (0, 0.2). When these disturbance locations were created, duplicates were

removed and replaced by another random disturbance location until all 50 disturbance

locations were different. The second route in our first step involves taking 50 disturbance

locations at the same positions we evaluate the likelihood function in (2.107), that is

x0 := {0.004, 0.008, ..., 0.2}. In both cases, the disturbance locations are generated once

and are reused to ensure consistency between our probabilistic results.

In step 2 we solve our acoustic wave equation in (1.1) using the explicit FDM

approximations of u in (2.16) over a simulation duration of T = 2 seconds. For more

information on the simulation duration used in this chapter, see Figure (3.14). We store

the approximations of u at every node in our mesh across all discrete-time steps.

In step 3, we use the explicit FDM approximations of u at every node in our mesh over

a time duration, denoted by Ts := {1, 0.5, 0.25, 0.125} seconds, to form a matrix which

we decompose using the SVD procedure outlined in chapter 2. Having decomposed our

matrix, we take the first d columns from the matrix containing the left singular vectors in

(2.108). These d columns correspond to the d largest singular values, and represent our

principal components which are used to reduce the size of our matrix system in the KF.
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Step 1: Generate 50 random

disturbance locations, each denoted

by x0.

Step 1: Generate 50 disturbance

locations, each denoted by x0, at the

same positions the likelihood function

in (2.107) is evaluated.

Step 2: Solve the acoustic wave equation in (1.1) using our explicit FDM

approximation of u in (2.16) over a simulation duration of T = 2 seconds. We

store the approximations of u at every node in our mesh across all discrete-time

steps.

Step 3: Using the FDM approximations of u from our mesh over a time duration

denoted by Ts, see Figure (3.14), we form an SVD of this matrix, created from the

FDM approximations of u. We keep the first d columns in the matrix containing

the left singular vectors in (2.108), which become our d principal components.

Step 4: Using these d principal components, we solve the wave equation for the

final second in our simulation to produce approximations of u for the reduced

system. Using these, we approximate ∂u/∂t with (7.9), (7.10) and (7.11) which,

after adding random noise, are used as our sensor traces in the KF.

Step 5: We use the KF in (2.127)-(2.132) and subsequently compute the

likelihood function in (2.107) for 50 uniformly spaced guesses of x0, denoted

by x0 := {0.004, 0.008, ..., 0.2}. From the 50 likelihood estimates computed,

we deduce the smallest and determine the corresponding x0 to be the models

prediction of the actual disturbance location.

Step 6: Having completed steps 2-5 for each disturbance location outlined in

step 1, we compute a probabilistic success rate for an absolute x-error given a

percentage of tolerance.

Figure 7.2: A schematic for our 1D model problem using an SVD and approximations

of ∂u/∂t for sensor traces only.
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For step 4, we use the d principal components to solve the acoustic wave equation over

the final second of our simulation to produce approximations of u for our reduced system.

Using these, we are able to obtain approximations of u for our original system. Using

these approximations of u deduced for our original system we can approximate ∂u/∂t

with (7.9), (7.10) and (7.11), which once adding random noise, are used in the KF as our

sensor traces.

In step 5, we run the KF using approximations of ∂u/∂t for our sensor traces. In the

case where we use approximations of both u and ∂u/∂t as our sensor traces, both are

input here. We run the KF 50 times for different disturbance location guesses, denoted

by x0 := {0.004, 0.008, ..., 0.2}, each resulting in a likelihood function using (2.107).

From the 50 likelihood estimates computed, we compute the smallest and conclude that

the corresponding disturbance location is the models prediction of the true disturbance

location used to generate our sensor traces.

Lastly, in step 6, we compute probabilistic success rates within a range of relative

tolerances given an absolute x-error. We are able to do this by following steps 2-5 for

each disturbance location in step 1. Using these results, we conclude how well our 1D

model problem is at predicting the disturbance location.

7.3 Results

In this section, we look at the results obtained for our 1D model problem using

an SVD for a disturbance frequency of F = 25Hz in (1.6). We consider two different

scenarios. In the first approach, we take sensor traces originating from the approximations

of ∂u/∂t only. In contrast, in our second scenario, we consider sensor traces from the

approximations of both u and ∂u/∂t. The full set of results in both graphical and tabular

form can be found in Appendix E.1 and E.2. Amongst these results, we have one through

to six sensors on our 1D domain, with two different types of disturbance locations used to

generate the success rates. Since the results in this section involve the SVD, the results

correspond to a range of values chosen for d and Ts.
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7.3.1 Using approximations of ∂u/∂t for sensor traces

In this section, we discuss results obtained using only approximations of ∂u/∂t as

our sensor traces. Figures (7.3) and (7.4) show the probabilistic success rates for an

array of Ts and d values used to form our SVD given an absolute x-error with a 10%

relative tolerance for 50 disturbance locations where we evaluate the likelihood function

in (2.107) and 50 random disturbance locations, respectively.

Upon inspection of both Figures (7.3) and (7.4), we conclude that having more

sensors present results in better success rates irrespective of the disturbance locations

used to produce these results. The value taken for Ts has no noticeable effect on our

success rates, whereas the amount of principal components taken from our SVD, denoted

by d, affects the success rates when we have six sensors present. That is, when d > 3,

we get better results, especially when we have random disturbance locations. This was

expected since the singular values in our SVD did not converge to zero as quickly as has

been observed in other cases, and so, when we take a larger value for d the resultant

principle components contain more of the original information.

(a) One sensor present. (b) Six sensors present.

Figure 7.3: The success rate for our 1D model problem with a disturbance frequency of

F = 25Hz given an absolute x-error with a 10% relative tolerance. The sensor traces are

our approximations of ∂u/∂t from a mesh with dimensions of N = 50 nodes and L = 9000

discrete-time steps. These probabilistic results come from 50 disturbance locations where

the likelihood function in (2.107) is evaluated.
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(a) One sensor present. (b) Six sensors present.

Figure 7.4: The success rate for our 1D model problem with a disturbance frequency

of F = 25Hz given an absolute x-error with a 10% relative tolerance. The sensor traces

are our approximations of ∂u/∂t from a mesh with dimensions of N = 50 nodes and L =

9000 discrete-time steps. These probabilistic results come from 50 random disturbance

locations.

Comparing these results to those corresponding to sensor traces originating from

explicit FDM approximations of u only in Figures (3.19) and (3.21), we can conclude

that when the mesh dimensions are the same, the results follow the same pattern despite

using different sensor traces. A significant difference worth noting is when there are

six sensors present, and the disturbance locations are random, see Figures (7.4)(b) and

(3.21)(b). When our sensor traces come from approximations of ∂u/∂t, we exhibit better

results for a lower value of d, when compared to when our sensor traces come from the

explicit FDM approximations of u.

7.3.2 Using approximations of u and ∂u/∂t for sensor traces

In this section, we investigate the results obtained using approximations of both u and

∂u/∂t as our sensor traces. Figures (7.5) and (7.6) show the probabilistic success rates for

an array of Ts and d values used to form our SVD given an absolute x-error with a 10%

relative tolerance for 50 disturbance locations where we evaluate the likelihood function

in (2.107) and 50 random disturbance locations, respectively.
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(a) One sensor present. (b) Six sensors present.

Figure 7.5: The success rate for our 1D model problem with a disturbance frequency

of F = 25Hz given an absolute x-error with a 10% relative tolerance. The sensor traces

correspond to our explicit FDM approximations of u and our approximations of ∂u/∂t

from a mesh with dimensions of N = 50 nodes and L = 9000 discrete-time steps. These

probabilistic results come from 50 disturbance locations where the likelihood function in

(2.107) is evaluated.

Upon inspection of both Figures (7.5) and (7.6), we see that having a larger quantity

of sensors present results in better success rates irrespective of the disturbance locations

used to produce these results. The value taken for Ts has no impact on our success

rates, whereas the amount of principal components taken from our SVD, denoted by d,

positively affects the success rates when we have six sensors present and our disturbance

locations are random. This was expected since the singular values in our SVD did not

converge to zero as quickly as has been observed previously, and so, when we take a larger

value for d the resultant principle components contain more of the original information.

Comparing these results to those corresponding to sensor traces originating from

explicit FDM approximations of u only in Figures (3.19) and (3.21), and the results

obtained using sensor traces from the approximations of ∂u/∂t only in Figures (7.3) and

(7.4), we observe that overall the probabilistic success rates are indistinguishable.
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(a) One sensor present. (b) Six sensors present.

Figure 7.6: The success rate for our 1D model problem with a disturbance frequency

of F = 25Hz given an absolute x-error with a 10% relative tolerance. The sensor traces

correspond to our explicit FDM approximations of u and our approximations of ∂u/∂t

from a mesh with dimensions of N = 50 nodes and L = 9000 discrete-time steps. These

probabilistic results come from 50 random disturbance locations.

7.4 Summary

In this chapter, we have investigated whether using different sensors will impact our

probabilistic success rates. We considered two different scenarios. The first involved

sensor traces from approximations of ∂u/∂t only, and the second had sensor traces from

both our explicit FDM approximations of u and from approximations of ∂u/∂t.

In both cases, we opted to use a coarse mesh to approximate u and ∂u/∂t. We did

this due to what we observed in chapter 3, that is when using the SVD on our 1D model

problem with a disturbance frequency of F = 25Hz, a coarse approximation still yields

good results and reduces the run-time requirement.

Having already discussed the results obtained for both different approaches, we found

that using different sensor traces had little impact on our probabilistic success rates. This

is a good observation, as it means there is room for optimism that in a real-life scenario,

different sensors could be used to collect data, and still yield good results.



Chapter 8

Conclusion and Recommendations

8.1 Conclusion

In this thesis, we attempt to locate the source of an acoustic wave equation using

likelihood estimates and the Kalman filter. We set up a forcing function in (1.6) in

an attempt to mimic a beating heart signal, combined with a disturbance caused by

a partially blocked coronary artery. We use this forcing function in a 1D and 2D

acoustic wave equation, and approximate the solution of our PDE using an explicit FDM

approximation, which at specific nodes in our mesh having had an appropriate amount

of noise added, becomes our sensor traces. Using these sensor traces, we use the KF in

conjunction with a likelihood function in (2.107) to determine how likely a disturbance

location, denoted by x0 in 1D and x0 in 2D, is at being the true disturbance location that

generated the sensor traces.

The work presented in this thesis considers an array of different model problems. In

chapter 3, we consider a 1D model problem with a disturbance frequency of F = 25Hz.

In this chapter, we experiment with using explicit FDM approximations of u from a

coarse mesh as opposed to a fine mesh, which works very well as observed by comparing

Figure (3.8) to Figure (3.10) and Figure (3.12) to Figure (3.13). In addition to observing

good success rates, using a coarse mesh to form our explicit FDM approximations of

u significantly reduces the run-time and system RAM requirements. Initially, we used

a minimisation algorithm to find x0 which minimised (2.107) and realised that taking

only a single initial guess for x0 did not yield good results. Therefore, we decided to

run our 1D model problem for 50 equidistant initial guesses of x0 in our domain, and

187
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so, the minimisation algorithm produces an optimal disturbance location for each initial

guess of x0. From these 50 optimal disturbance locations, we choose our prediction of x0

depending on which minimises our likelihood function in (2.107) the most. This approach

worked extremely well, see Figures (3.8) and (3.10). However, due to the tolerances set in

the minimisation algorithm, our 1D model problem would run over 3500 times, making

this approach infeasible for model problems requiring finer meshes and more discrete time

steps

Therefore, we investigated the possibility of only evaluating the likelihood function in

(2.107) at these 50 equidistant initial guesses of x0. As was expected, the results were not

as good because, in the scenario where the disturbance was not located at one of these

50 guesses, our 1D model problem could not identify the actual disturbance location.

Despite this, the results observed in Figures (3.12) and (3.13) are still good, making this

approach a feasible option for model problems requiring finer meshes.

In an attempt to further optimise our 1D model problem, we used an SVD to

decompose a matrix containing our explicit FDM approximations to u at every node

in our mesh across a subset, denoted by Ts, of the total discrete-time steps. From this

decomposition, we extracted the first d columns corresponding to the largest singular

values. Using these d columns, otherwise known as our principal components, we were

able to reduce the matrix dimensions in the KF. Combining this with explicit FDM

approximations of u from a coarse mesh, only evaluating the likelihood function at 50

positions, and choosing d and Ts to be small yielded good probabilistic success rates.

In chapter 4, we extended the work in chapter 3 to consider higher frequencies for our

disturbance in (1.6) since the real-life frequency emitted from a partially blocked coronary

artery is in the range of 300 − 800Hz. Due to the finer mesh requirements for our 1D

model problems with frequency disturbances of F = 150Hz and F = 300Hz, we used the

insights obtained in chapter 3 and only considered the approach where we use an SVD to

reduce the matrix dimensions in the KF.

The results observed in Figures (4.5), (4.6), (4.7) and (4.8) for both frequency

disturbances are good when six sensors are presents, even for small values taken for both

d and Ts when forming and using our SVD. However, when our disturbance frequency was

F = 150Hz, we observed lower probabilistic success rates for larger values of d. We are

not sure what the root cause of this is, however, it could be linear dependence between
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the principal components used from our SVD. The same negative effect was not observed

when F = 300Hz.

For chapter 5, we introduced our two 2D model problems with a disturbance frequency

of F = 25Hz. The first had 1NBC and three Dirichlet boundary conditions, whereas the

second had 3NBCs and a single Dirichlet boundary condition. We attempted to use a

minimisation algorithm to find x0 which minimises (2.107) using 245 initial guesses of

x0 in our 2D model problem with 1NBC (255 for our 2D model problem with 3NBCs).

However, the run-time requirement made this infeasible.

Therefore, we deployed the approach investigated in chapter 3 where we only evaluate

the likelihood function in (2.107) at specific locations in our domain using sensor traces

from a coarse mesh. Doing this meant we could actually obtain results for our 2D model

problems, although it did induce an unavoidable x-error of 1% and a y-error of 14.1% in

the worst-case scenario. As a result of this, we increased the acceptable tolerance for our

y-error and Euclidean-error. Having done this, we observed good probabilistic success

rates for our 2D model problems with a disturbance frequency of F = 25Hz in Figures

(5.9) and (5.10).

In addition to this approach, we also used an SVD to reduce the matrix dimensions

in the KF for our 2D model problems, making a significant impact on the run-time

requirements. The results observed in Figures (5.13), (5.14), (5.15), (5.16), (5.17) and

(5.18) are respectable, making this approach a feasible option for our 2D model problems.

To finish chapter 5, we investigated an array of different approaches which would

further optimise our 2D model problems. Using the SVD approach with sensor traces

from a coarse mesh, we were able to terminate the KF up to 80% early without ruining

the probabilistic success rates obtained. This is a hugely significant result which could

make running our 2D model problems with a minimisation algorithm feasible. We have

not attempted this, but it is a recommendation for future work.

In chapter 6, we extended the work in chapter 5 to consider higher frequencies for our

disturbance in (1.6) since the real-life frequency emitted from a partially blocked coronary

artery is in the range of 300−800Hz. Due to the significantly finer mesh requirements for

our 2D model problems with frequency disturbances of F = 150Hz and F = 300Hz, we

had no choice other than to use the approach which uses the SVD to reduce the dimension

of the matrices in the KF. The results observed in this chapter were good, even when we
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chose relatively small values for d and Ts.

Lastly, we have chapter 7, where we extend the work in chapter 3 to consider sensor

traces from approximations of ∂u/∂t. We considered two cases: the first case has sensor

traces originating from approximations of ∂u/∂t only, whereas the second case has sensor

traces from both our explicit FDM approximation of u and the approximations of ∂u/∂t.

Since up to this point using the SVD approach to reduce the size of the matrices in the KF

has been very successful, we implement this approach to lower the run-time requirements.

Having observed the results for each case in Figures (7.3), (7.4), (7.5) and (7.6), we can

conclude that using sensor traces from either our approximations of u or ∂u/∂t makes

little difference to the probabilistic success rates. Moreover, when both are present in

our sensor traces, this does not particularly improve the success rates for this 1D model

problem.

8.2 Recommendations for future work

In this section, we discuss six recommendations for future work based on the content

presented in this thesis:

1. Extending the model problems in this thesis to a viscoelastic PDE, rather than

an acoustic PDE. This will enable these model problems to become closer to the

application of this work.

2. In chapter 5 we considered 2D model problems with a disturbance frequency of

F = 25Hz. We discovered in that chapter issues dealing with larger dimensional

problems and the associated run-time requirements due to the number of nodes in

our mesh and quantity of discrete-time steps. We have already shown that using an

SVD enables the reduction of matrix dimensions in the KF. However, the KF is still

run over all discrete-time steps. We investigated the possibility of terminating the

KF early at the end of chapter 5, which turned out to be a feasible approach. As a

result, this recommendation is to consider the use of a minimisation algorithm, as we

did in chapter 3, but terminating the KF early. Due to the early termination of the

KF, using a minimisation algorithm for our 2D model problems with a disturbance

frequency of F = 25Hz could be feasible, and we would expect the probabilistic
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success rates for our relative absolute y-error to be better as the unavoidable error

of 14.1% in the worst-case scenario would no longer be present.

3. This recommendation is again aimed at our 2D model problems. Previously, the

results in chapters 5 and 6 did not use a minimisation algorithm. Instead, the

likelihood function in (2.107) was evaluated at specific locations in our 2D domain

which induced a relative absolute x-error of 1% and a relative absolute y-error of

14.1% in the worst-case scenario. Therefore, we recommend that the likelihood

function is evaluated at a higher quantity of places in the y-direction, to reduce

the scale of the unavoidable y-error. This will lengthen the run-time, but we

would expect an improvement in the models ability to predict the location of the

disturbance successfully.

4. In a real-life scenario, first discussed in chapter 1, sensors would be placed on a

human thorax causing inaccuracies in their placement. As a result, a reasonable

consideration would be to generate sensor traces at specific nodes in our mesh, as

we have done before, but trick the KF into believing they are within a user-defined

tolerance from their true positions. This would almost certainly yield worse results.

However, it would be interesting to see how large a tolerance could be achieved

before the model struggles to predict the true disturbance location.

5. When someone has CAD, it is extremely likely they have more than a single blockage

in their coronary arteries. As a result, it would be interesting to investigate the

possibility of setting up the forcing function in (1.6) to have two different disturbance

locations and see if our models can locate both.

6. Like the previous recommendation, a good experiment would be to construct a

forcing function, similar to that in (1.6), to have two different disturbances with

different amplitudes. One would have the same amplitude used to obtain the results

in this thesis, whereas the other would have a significantly smaller amplitude. In

the KF, we would assume there was only a single disturbance and try to deduce the

disturbance location with the larger amplitude. This would look at the feasibility

of having sensor traces with conflicting disturbances, and locating the most serious

blockage.
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Appendices

Appendix A: Results for chapter 3

A.1 FDM approximation of u from a fine mesh

Success Rate

Number of Sensors 1% 5% 10%

1 100 100 100

2 100 100 100

Table 9.1: The 1D model success rate using a minimisation algorithm with a varying

number of sensors, a mesh with dimensions of N = 250 nodes and L = 15000 discrete-time

steps and a disturbance frequency of F = 25Hz. These probabilistic results were produced

using 50 disturbance locations where the likelihood function in (2.107) is evaluated.

Success Rate

Number of Sensors 1% 5% 10%

1 100 100 100

2 100 100 100

Table 9.2: The 1D model success rate using a minimisation algorithm with a varying

number of sensors, a mesh with dimensions of N = 250 nodes and L = 15000 discrete-time

steps and a disturbance frequency of F = 25Hz. These probabilistic results were produced

using 50 random disturbance locations.
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Figure 9.1: The 1D model success rate using a minimisation algorithm with a varying

number of sensors, a mesh with dimensions of N = 250 nodes and L = 15000 discrete-time

steps and a disturbance frequency of F = 25Hz. The probabilistic results on the LHS

come from 50 disturbance locations where the likelihood function in (2.107) is evaluated,

and the results on RHS used 50 random disturbance locations.
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A.2 FDM approximation of u from a coarse mesh

Success Rate

Number of Sensors 1% 5% 10%

1 84 84 84

2 100 100 100

3 100 100 100

4 100 100 100

5 100 100 100

6 100 100 100

Table 9.3: The 1D model success rate using a minimisation algorithm with a varying

number of sensors, a mesh with dimensions of N = 50 nodes and L = 3000 discrete-time

steps and a disturbance frequency of F = 25Hz. These probabilistic results were produced

using 50 disturbance locations where the likelihood function in (2.107) is evaluated.

Success Rate

Number of Sensors 1% 5% 10%

1 86 86 86

2 100 100 100

3 100 100 100

4 100 100 100

5 100 100 100

6 100 100 100

Table 9.4: The 1D model success rate using a minimisation algorithm with a varying

number of sensors, a mesh with dimensions of N = 50 nodes and L = 3000 discrete-time

steps and a disturbance frequency of F = 25Hz. These probabilistic results were produced

using 50 random disturbance locations.
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Figure 9.2: The 1D model success rate using a minimisation algorithm with a varying

number of sensors, a mesh with dimensions of N = 50 nodes and L = 3000 discrete-time

steps and a disturbance frequency of F = 25Hz. The probabilistic results on the LHS

come from 50 disturbance locations where the likelihood function in (2.107) is evaluated,

and the results on RHS used 50 random disturbance locations.
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A.3 Without using a minimisation algorithm

Success Rate

Number of Sensors 1% 5% 10%

1 92 94 94

2 100 100 100

3 100 100 100

4 100 100 100

5 100 100 100

6 100 100 100

Table 9.5: The 1D model success rate without using a minimisation algorithm with a

varying number of sensors, a mesh with dimensions of N = 250 nodes and L = 15000

discrete-time steps and a disturbance frequency of F = 25Hz. These probabilistic results

were produced using 50 disturbance locations where the likelihood function in (2.107) is

evaluated.

Success Rate

Number of Sensors 1% 5% 10%

1 44 44 48

2 74 76 76

3 80 84 84

4 96 98 98

5 96 100 100

6 100 100 100

Table 9.6: The 1D model success rate without using a minimisation algorithm with a

varying number of sensors, a mesh with dimensions of N = 250 nodes and L = 15000

discrete-time steps and a disturbance frequency of F = 25Hz. These probabilistic results

were produced using 50 random disturbance locations.
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Figure 9.3: The 1D model success rate without using a minimisation algorithm with a

varying number of sensors, a mesh with dimensions of N = 250 nodes and L = 15000

discrete-time steps and a disturbance frequency of F = 25Hz. The probabilistic results

on the LHS come from 50 disturbance locations where the likelihood function in (2.107)

is evaluated, and the results on RHS used 50 random disturbance locations.
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Success Rate

Number of Sensors 1% 5% 10%

1 92 94 94

2 100 100 100

3 100 100 100

4 100 100 100

5 100 100 100

6 100 100 100

Table 9.7: The 1D model success rate without using a minimisation algorithm with

a varying number of sensors, a mesh with dimensions of N = 50 nodes and L = 3000

discrete-time steps and a disturbance frequency of F = 25Hz. These probabilistic results

were produced using 50 disturbance locations where the likelihood function in (2.107) is

evaluated.

Success Rate

Number of Sensors 1% 5% 10%

1 52 56 62

2 70 72 76

3 70 72 76

4 82 84 88

5 88 92 94

6 92 94 98

Table 9.8: The 1D model success rate without using a minimisation algorithm with

a varying number of sensors, a mesh with dimensions of N = 50 nodes and L = 3000

discrete-time steps and a disturbance frequency of F = 25Hz. These probabilistic results

were produced using 50 random disturbance locations.
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Figure 9.4: The 1D model success rate without using a minimisation algorithm with

a varying number of sensors, a mesh with dimensions of N = 50 nodes and L = 3000

discrete-time steps and a disturbance frequency of F = 25Hz. The probabilistic results

on the LHS come from 50 disturbance locations where the likelihood function in (2.107)

is evaluated, and the results on RHS used 50 random disturbance locations.
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A.4 Use of an SVD to reduce matrix dimensions in the KF

Success Rate

Ts d 1% 5% 10%

1.000 3 84 84 84

1.000 6 84 84 84

1.000 12 92 94 94

1.000 24 88 90 90

0.500 3 82 82 82

0.500 6 86 90 90

0.500 12 90 92 92

0.500 24 80 84 84

0.250 3 82 82 82

0.250 6 86 88 90

0.250 12 88 92 92

0.250 24 84 84 84

0.125 3 92 92 92

0.125 6 92 94 94

0.125 12 94 94 94

0.125 24 98 98 98

Table 9.9: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

1 sensor present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 98 98 98

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 98 98 98

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.10: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

2 sensor present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.11: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

3 sensor present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.12: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

4 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.13: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

5 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.14: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

6 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 52 58 60

1.000 6 50 56 60

1.000 12 36 44 44

1.000 24 40 44 46

0.500 3 56 64 64

0.500 6 44 52 56

0.500 12 48 54 60

0.500 24 42 46 46

0.250 3 62 68 68

0.250 6 50 54 58

0.250 12 50 60 60

0.250 24 42 48 54

0.125 3 60 70 70

0.125 6 52 60 64

0.125 12 44 54 58

0.125 24 50 62 62

Table 9.15: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

250 and L = 45000, and F =

25Hz. These probabilistic results come

from 50 randomly generated disturbance

locations, and 1 sensor present to record

data from the FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 68 78 80

1.000 6 82 88 90

1.000 12 62 66 72

1.000 24 56 58 60

0.500 3 68 80 82

0.500 6 86 94 94

0.500 12 76 82 82

0.500 24 64 68 72

0.250 3 68 80 80

0.250 6 72 78 78

0.250 12 64 76 80

0.250 24 56 62 66

0.125 3 70 76 76

0.125 6 76 88 92

0.125 12 72 84 86

0.125 24 80 86 88

Table 9.16: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

250 and L = 45000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 2 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 58 68 80

1.000 6 92 92 92

1.000 12 76 78 80

1.000 24 84 88 94

0.500 3 56 64 76

0.500 6 78 86 88

0.500 12 84 86 86

0.500 24 76 80 86

0.250 3 62 70 76

0.250 6 72 80 82

0.250 12 80 84 88

0.250 24 86 88 92

0.125 3 64 72 76

0.125 6 74 82 86

0.125 12 82 90 90

0.125 24 78 86 90

Table 9.17: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

250 and L = 45000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 3 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 58 68 78

1.000 6 92 98 100

1.000 12 88 92 92

1.000 24 80 84 86

0.500 3 60 70 76

0.500 6 96 96 96

0.500 12 92 94 94

0.500 24 84 86 90

0.250 3 68 76 80

0.250 6 88 92 94

0.250 12 98 100 100

0.250 24 88 92 94

0.125 3 64 70 70

0.125 6 88 92 92

0.125 12 86 94 96

0.125 24 94 98 98

Table 9.18: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

250 and L = 45000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 4 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 62 72 82

1.000 6 92 100 100

1.000 12 92 98 100

1.000 24 86 90 94

0.500 3 62 72 82

0.500 6 88 96 98

0.500 12 96 100 100

0.500 24 90 96 98

0.250 3 62 76 78

0.250 6 90 94 96

0.250 12 96 100 100

0.250 24 96 100 100

0.125 3 62 70 70

0.125 6 86 94 94

0.125 12 96 100 100

0.125 24 96 100 100

Table 9.19: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

250 and L = 45000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 5 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 60 70 78

1.000 6 96 98 98

1.000 12 96 100 100

1.000 24 92 96 100

0.500 3 62 72 76

0.500 6 96 98 98

0.500 12 96 100 100

0.500 24 96 100 100

0.250 3 68 76 80

0.250 6 86 92 92

0.250 12 98 100 100

0.250 24 94 98 100

0.125 3 60 64 64

0.125 6 90 98 98

0.125 12 94 98 98

0.125 24 92 98 98

Table 9.20: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

250 and L = 45000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 6 sensors

present to record data from the FDM

approximation of u.
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Figure 9.5: The 1D model success rate for different Ts and d values, used to form our SVD

from the explicit FDM approximation of u on a mesh with dimensions of N = 250 and

L = 45000, and F = 25Hz. These probabilistic results come from 50 disturbance locations

positioned where the likelihood function is evaluated. The results on the left-hand side

have 1 sensor present, whereas on the right-hand side there are 2 sensors present.
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Figure 9.6: The 1D model success rate for different Ts and d values, used to form our SVD

from the explicit FDM approximation of u on a mesh with dimensions of N = 250 and

L = 45000, and F = 25Hz. These probabilistic results come from 50 disturbance locations

positioned where the likelihood function is evaluated. The results on the left-hand side

have 3 sensors present, whereas on the right-hand side there are 4 sensors present.
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Figure 9.7: The 1D model success rate for different Ts and d values, used to form our SVD

from the explicit FDM approximation of u on a mesh with dimensions of N = 250 and

L = 45000, and F = 25Hz. These probabilistic results come from 50 disturbance locations

positioned where the likelihood function is evaluated. The results on the left-hand side

have 5 sensors present, whereas on the right-hand side there are 6 sensors present.
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Figure 9.8: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 1 sensor present,

whereas on the right-hand side there are 2 sensors present.
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Figure 9.9: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 3 sensors present,

whereas on the right-hand side there are 4 sensors present.
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Figure 9.10: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 250

and L = 45000, and F = 25Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 5 sensors present,

whereas on the right-hand side there are 6 sensors present.
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Success Rate

Ts d 1% 5% 10%

1.000 3 50 52 54

1.000 6 38 42 42

1.000 12 28 38 40

1.000 24 34 40 44

0.500 3 38 52 52

0.500 6 42 52 52

0.500 12 36 42 44

0.500 24 32 40 44

0.250 3 44 52 54

0.250 6 38 50 50

0.250 12 34 46 46

0.250 24 32 42 44

0.125 3 36 52 54

0.125 6 34 42 42

0.125 12 44 52 54

0.125 24 42 50 50

Table 9.21: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 50

and L = 9000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

1 sensor present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 76 80 84

1.000 6 92 92 92

1.000 12 84 88 88

1.000 24 76 84 86

0.500 3 74 78 82

0.500 6 82 86 88

0.500 12 80 82 82

0.500 24 70 74 74

0.250 3 72 78 78

0.250 6 80 80 80

0.250 12 82 88 88

0.250 24 86 88 88

0.125 3 54 64 66

0.125 6 74 82 82

0.125 12 90 94 94

0.125 24 92 94 94

Table 9.22: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 50

and L = 9000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

2 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 98 98 98

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 98 98 98

0.500 3 94 94 94

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 94 96 96

0.125 6 98 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.23: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 50

and L = 9000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

3 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.24: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 50

and L = 9000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

4 sensors present to record data from the

FDM approximation of u.



APPENDIX A 221

Success Rate

Ts d 1% 5% 10%

1.000 3 84 86 86

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 88 92 92

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 86 88 88

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 56 64 64

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.25: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 50

and L = 9000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

5 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 98 98 98

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.26: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N = 50

and L = 9000, and F = 25Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

6 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 40 54 54

1.000 6 42 54 54

1.000 12 36 58 58

1.000 24 30 44 50

0.500 3 34 52 56

0.500 6 36 52 52

0.500 12 32 46 48

0.500 24 34 44 48

0.250 3 34 52 52

0.250 6 32 56 56

0.250 12 38 52 54

0.250 24 30 40 44

0.125 3 32 44 46

0.125 6 32 44 46

0.125 12 38 52 52

0.125 24 42 54 56

Table 9.27: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, and F =

25Hz. These probabilistic results come

from 50 randomly generated disturbance

locations, and 1 sensor present to record

data from the FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 42 54 56

1.000 6 64 72 72

1.000 12 54 66 70

1.000 24 58 64 66

0.500 3 40 56 60

0.500 6 68 78 78

0.500 12 56 70 72

0.500 24 62 66 68

0.250 3 42 62 68

0.250 6 64 72 72

0.250 12 78 88 90

0.250 24 60 68 72

0.125 3 40 60 64

0.125 6 52 74 74

0.125 12 72 86 86

0.125 24 66 78 80

Table 9.28: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 2 sensors

present to record data from the FDM

approximation of u.



APPENDIX A 223

Success Rate

Ts d 1% 5% 10%

1.000 3 48 54 56

1.000 6 62 72 76

1.000 12 80 86 86

1.000 24 72 72 76

0.500 3 48 54 62

0.500 6 66 74 74

0.500 12 72 82 82

0.500 24 80 82 86

0.250 3 52 56 56

0.250 6 70 80 80

0.250 12 86 92 92

0.250 24 88 88 88

0.125 3 54 72 72

0.125 6 70 72 72

0.125 12 78 88 88

0.125 24 88 88 88

Table 9.29: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 3 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 42 48 52

1.000 6 76 80 80

1.000 12 92 94 94

1.000 24 84 86 86

0.500 3 44 56 62

0.500 6 74 82 82

0.500 12 94 96 96

0.500 24 92 94 94

0.250 3 50 58 60

0.250 6 76 84 84

0.250 12 92 94 94

0.250 24 90 92 92

0.125 3 52 70 72

0.125 6 82 84 84

0.125 12 92 96 96

0.125 24 92 94 94

Table 9.30: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 4 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 34 46 48

1.000 6 82 88 88

1.000 12 92 100 100

1.000 24 94 96 96

0.500 3 40 48 54

0.500 6 74 86 86

0.500 12 90 100 100

0.500 24 90 98 98

0.250 3 44 58 60

0.250 6 82 90 90

0.250 12 92 98 98

0.250 24 98 100 100

0.125 3 46 68 74

0.125 6 78 96 96

0.125 12 96 98 98

0.125 24 88 96 96

Table 9.31: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 5 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 46 52 54

1.000 6 78 86 86

1.000 12 98 100 100

1.000 24 96 98 98

0.500 3 48 58 64

0.500 6 84 92 92

0.500 12 98 100 100

0.500 24 98 100 100

0.250 3 48 54 54

0.250 6 82 92 92

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 54 66 68

0.125 6 80 88 90

0.125 12 94 94 94

0.125 24 92 98 98

Table 9.32: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, and F =

25Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 6 sensors

present to record data from the FDM

approximation of u.
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Figure 9.11: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50 and

L = 9000, and F = 25Hz. These probabilistic results come from 50 disturbance locations

positioned where the likelihood function is evaluated. The results on the left-hand side

have 1 sensor present, whereas on the right-hand side there are 2 sensors present.
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Figure 9.12: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50 and

L = 9000, and F = 25Hz. These probabilistic results come from 50 disturbance locations

positioned where the likelihood function is evaluated. The results on the left-hand side

have 2 sensors present, whereas on the right-hand side there are 3 sensors present.
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Figure 9.13: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50 and

L = 9000, and F = 25Hz. These probabilistic results come from 50 disturbance locations

positioned where the likelihood function is evaluated. The results on the left-hand side

have 4 sensors present, whereas on the right-hand side there are 5 sensors present.
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Figure 9.14: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50 and

L = 9000, and F = 25Hz. These probabilistic results come from 50 randomly generated

disturbance locations. The results on the left-hand side have 1 sensor present, whereas

on the right-hand side there are 2 sensors present.
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Figure 9.15: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50 and

L = 9000, and F = 25Hz. These probabilistic results come from 50 randomly generated

disturbance locations. The results on the left-hand side have 3 sensors present, whereas

on the right-hand side there are 4 sensors present.
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Figure 9.16: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50 and

L = 9000, and F = 25Hz. These probabilistic results come from 50 randomly generated

disturbance locations. The results on the left-hand side have 5 sensors present, whereas

on the right-hand side there are 6 sensors present.



Appendix B: Results for chapter 4

B.1 Disturbance frequency F = 150Hz

Success Rate

Ts d 1% 5% 10%

1.000 3 48 58 60

1.000 6 32 34 44

1.000 12 32 40 50

1.000 24 38 46 46

0.500 3 46 54 60

0.500 6 36 46 50

0.500 12 24 32 44

0.500 24 28 32 40

0.250 3 32 48 56

0.250 6 48 62 64

0.250 12 36 48 54

0.250 24 52 58 64

0.125 3 32 58 62

0.125 6 42 56 60

0.125 12 56 68 72

0.125 24 70 70 76

Table 9.33: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 150 and

L = 18000, and F = 150Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

1 sensor present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 82 94 94

1.000 6 76 78 78

1.000 12 64 66 68

1.000 24 56 64 68

0.500 3 80 90 92

0.500 6 74 80 82

0.500 12 78 82 82

0.500 24 72 74 80

0.250 3 66 94 94

0.250 6 84 86 86

0.250 12 80 82 84

0.250 24 78 82 86

0.125 3 60 76 82

0.125 6 88 94 98

0.125 12 92 92 92

0.125 24 96 96 98

Table 9.34: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 150 and

L = 18000, and F = 150Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

2 sensors present to record data from the

FDM approximation of u.

231
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Success Rate

Ts d 1% 5% 10%

1.000 3 90 96 98

1.000 6 92 98 98

1.000 12 92 92 96

1.000 24 88 90 90

0.500 3 98 98 98

0.500 6 90 98 98

0.500 12 94 96 96

0.500 24 88 88 90

0.250 3 72 96 100

0.250 6 96 98 98

0.250 12 98 98 98

0.250 24 88 90 90

0.125 3 76 98 100

0.125 6 96 98 98

0.125 12 96 96 96

0.125 24 98 98 98

Table 9.35: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 150 and

L = 18000, and F = 150Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

3 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 96 100 100

1.000 6 98 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 96 98 98

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 98 98 98

0.250 3 78 98 98

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 98 98 98

0.125 3 76 92 94

0.125 6 96 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.36: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 150 and

L = 18000, and F = 150Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

4 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 98 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 88 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 82 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.37: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 150 and

L = 18000, and F = 150Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

5 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 98 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 96 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 80 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 84 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.38: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 150 and

L = 18000, and F = 150Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

6 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 50 68 72

1.000 6 18 34 36

1.000 12 12 24 36

1.000 24 12 20 26

0.500 3 42 60 64

0.500 6 20 28 34

0.500 12 16 20 28

0.500 24 22 30 40

0.250 3 26 52 56

0.250 6 36 44 50

0.250 12 16 30 36

0.250 24 18 28 32

0.125 3 24 40 50

0.125 6 30 44 54

0.125 12 32 58 58

0.125 24 44 58 68

Table 9.39: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

150 and L = 18000, and F =

150Hz. These probabilistic results come

from 50 randomly generated disturbance

locations, and 1 sensor present to record

data from the FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 82 92 92

1.000 6 58 70 70

1.000 12 40 48 54

1.000 24 24 40 52

0.500 3 80 92 94

0.500 6 66 80 80

0.500 12 36 44 52

0.500 24 20 32 44

0.250 3 60 94 96

0.250 6 72 88 92

0.250 12 36 50 60

0.250 24 24 36 42

0.125 3 50 86 86

0.125 6 56 68 76

0.125 12 48 60 62

0.125 24 62 80 82

Table 9.40: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

150 and L = 18000, and F =

150Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 2 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 88 100 100

1.000 6 82 96 96

1.000 12 70 80 80

1.000 24 32 44 56

0.500 3 86 98 98

0.500 6 78 96 96

0.500 12 64 76 78

0.500 24 44 54 56

0.250 3 70 96 100

0.250 6 78 98 98

0.250 12 72 84 88

0.250 24 56 62 72

0.125 3 64 88 92

0.125 6 82 96 98

0.125 12 80 86 88

0.125 24 80 94 94

Table 9.41: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

150 and L = 18000, and F =

150Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 3 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 80 96 96

1.000 6 80 96 96

1.000 12 82 90 92

1.000 24 60 72 76

0.500 3 90 100 100

0.500 6 80 98 98

0.500 12 68 82 86

0.500 24 62 70 74

0.250 3 60 98 100

0.250 6 86 98 98

0.250 12 76 88 94

0.250 24 56 66 70

0.125 3 70 88 90

0.125 6 90 96 100

0.125 12 92 100 100

0.125 24 84 94 94

Table 9.42: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

150 and L = 18000, and F =

150Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 4 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 92 100 100

1.000 6 88 98 98

1.000 12 80 94 96

1.000 24 62 68 72

0.500 3 88 100 100

0.500 6 90 100 100

0.500 12 72 88 88

0.500 24 68 74 78

0.250 3 72 100 100

0.250 6 92 100 100

0.250 12 82 94 96

0.250 24 70 74 74

0.125 3 70 94 96

0.125 6 88 100 100

0.125 12 90 100 100

0.125 24 94 98 98

Table 9.43: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

150 and L = 18000, and F =

150Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 5 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 90 100 100

1.000 6 90 100 100

1.000 12 86 98 100

1.000 24 60 72 78

0.500 3 92 100 100

0.500 6 90 100 100

0.500 12 80 98 98

0.500 24 74 86 92

0.250 3 72 100 100

0.250 6 92 100 100

0.250 12 88 98 98

0.250 24 72 86 90

0.125 3 58 92 96

0.125 6 94 100 100

0.125 12 92 100 100

0.125 24 92 100 100

Table 9.44: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

150 and L = 18000, and F =

150Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 6 sensors

present to record data from the FDM

approximation of u.
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Figure 9.17: The 1D model success rate for different Ts and d values, used to form

our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150 and L = 18000, and F = 150Hz. These probabilistic results come from 50

disturbance locations positioned where the likelihood function is evaluated. The results

on the left-hand side have 1 sensor present, whereas on the right-hand side there are 2

sensors present.
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Figure 9.18: The 1D model success rate for different Ts and d values, used to form

our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150 and L = 18000, and F = 150Hz. These probabilistic results come from 50

disturbance locations positioned where the likelihood function is evaluated. The results

on the left-hand side have 3 sensors present, whereas on the right-hand side there are 4

sensors present.
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Figure 9.19: The 1D model success rate for different Ts and d values, used to form

our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150 and L = 18000, and F = 150Hz. These probabilistic results come from 50

disturbance locations positioned where the likelihood function is evaluated. The results

on the left-hand side have 5 sensors present, whereas on the right-hand side there are 6

sensors present.
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Figure 9.20: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 150

and L = 18000, and F = 150Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 1 sensor present,

whereas on the right-hand side there are 2 sensors present.
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Figure 9.21: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 150

and L = 18000, and F = 150Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 3 sensors present,

whereas on the right-hand side there are 4 sensors present.
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Figure 9.22: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 150

and L = 18000, and F = 150Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 5 sensors present,

whereas on the right-hand side there are 6 sensors present.
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B.2 Disturbance frequency F = 300Hz

Success Rate

Ts d 1% 5% 10%

1.000 3 58 70 80

1.000 6 62 72 74

1.000 12 56 60 66

1.000 24 48 64 72

0.500 3 58 76 84

0.500 6 60 68 72

0.500 12 50 56 60

0.500 24 40 48 52

0.250 3 68 76 80

0.250 6 64 70 76

0.250 12 52 56 58

0.250 24 60 64 64

0.125 3 70 82 82

0.125 6 72 76 84

0.125 12 68 74 78

0.125 24 70 80 90

Table 9.45: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 400 and

L = 36000, and F = 300Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

1 sensor present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 94 100 100

1.000 6 90 94 94

1.000 12 92 94 96

1.000 24 78 82 84

0.500 3 90 94 96

0.500 6 100 100 100

0.500 12 92 96 98

0.500 24 80 86 90

0.250 3 92 98 98

0.250 6 96 100 100

0.250 12 96 98 98

0.250 24 82 90 92

0.125 3 84 98 100

0.125 6 98 100 100

0.125 12 98 98 98

0.125 24 98 100 100

Table 9.46: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 400 and

L = 36000, and F = 300Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

2 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 96 98 100

1.000 6 98 100 100

1.000 12 100 100 100

1.000 24 92 96 96

0.500 3 94 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 94 94 96

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 96 100 100

0.125 3 98 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.47: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 400 and

L = 36000, and F = 300Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

3 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 98 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 98 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 98 100 100

0.125 3 94 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.48: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 400 and

L = 36000, and F = 300Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

4 sensors present to record data from the

FDM approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 98 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 98 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 98 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.49: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 400 and

L = 36000, and F = 300Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

5 sensors present to record data from the

FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 98 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 100 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.50: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit

FDM approximation of u on a mesh

with dimensions of N = 400 and

L = 36000, and F = 300Hz.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated, and

6 sensors present to record data from the

FDM approximation of u.



APPENDIX B 246

Success Rate

Ts d 1% 5% 10%

1.000 3 40 50 70

1.000 6 34 40 58

1.000 12 42 56 58

1.000 24 34 44 52

0.500 3 38 58 72

0.500 6 42 54 58

0.500 12 34 40 46

0.500 24 36 46 52

0.250 3 42 64 82

0.250 6 44 58 64

0.250 12 44 50 60

0.250 24 34 52 62

0.125 3 64 76 80

0.125 6 50 62 68

0.125 12 50 62 68

0.125 24 40 48 56

Table 9.51: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

400 and L = 36000, and F =

300Hz. These probabilistic results come

from 50 randomly generated disturbance

locations, and 1 sensor present to record

data from the FDM approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 84 98 100

1.000 6 80 88 88

1.000 12 64 76 84

1.000 24 68 78 78

0.500 3 78 94 96

0.500 6 78 88 90

0.500 12 62 70 78

0.500 24 62 78 82

0.250 3 88 94 96

0.250 6 88 88 94

0.250 12 78 86 88

0.250 24 60 72 78

0.125 3 88 96 98

0.125 6 78 94 94

0.125 12 84 88 90

0.125 24 82 96 98

Table 9.52: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

400 and L = 36000, and F =

300Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 2 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 94 100 100

1.000 6 94 98 98

1.000 12 82 94 94

1.000 24 70 78 84

0.500 3 86 100 100

0.500 6 92 96 100

0.500 12 88 96 96

0.500 24 80 90 94

0.250 3 92 100 100

0.250 6 96 100 100

0.250 12 92 98 98

0.250 24 88 96 96

0.125 3 90 96 96

0.125 6 94 98 98

0.125 12 96 100 100

0.125 24 90 96 98

Table 9.53: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

400 and L = 36000, and F =

300Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 3 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 86 100 100

1.000 6 100 100 100

1.000 12 88 98 98

1.000 24 78 88 98

0.500 3 86 100 100

0.500 6 96 100 100

0.500 12 86 96 98

0.500 24 76 86 96

0.250 3 90 100 100

0.250 6 92 100 100

0.250 12 92 98 98

0.250 24 82 94 100

0.125 3 90 100 100

0.125 6 94 100 100

0.125 12 96 100 100

0.125 24 94 100 100

Table 9.54: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

400 and L = 36000, and F =

300Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 4 sensors

present to record data from the FDM

approximation of u.
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Success Rate

Ts d 1% 5% 10%

1.000 3 94 100 100

1.000 6 98 100 100

1.000 12 96 100 100

1.000 24 98 100 100

0.500 3 92 100 100

0.500 6 96 100 100

0.500 12 100 100 100

0.500 24 98 100 100

0.250 3 96 100 100

0.250 6 100 100 100

0.250 12 98 100 100

0.250 24 98 100 100

0.125 3 100 100 100

0.125 6 96 100 100

0.125 12 96 100 100

0.125 24 100 100 100

Table 9.55: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

400 and L = 36000, and F =

300Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 5 sensors

present to record data from the FDM

approximation of u.

Success Rate

Ts d 1% 5% 10%

1.000 3 96 100 100

1.000 6 96 100 100

1.000 12 96 100 100

1.000 24 96 100 100

0.500 3 92 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 96 100 100

0.250 3 94 100 100

0.250 6 98 100 100

0.250 12 96 100 100

0.250 24 94 100 100

0.125 3 94 100 100

0.125 6 98 100 100

0.125 12 92 100 100

0.125 24 96 100 100

Table 9.56: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

400 and L = 36000, and F =

300Hz. These probabilistic results

come from 50 randomly generated

disturbance locations, and 6 sensors

present to record data from the FDM

approximation of u.
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Figure 9.23: The 1D model success rate for different Ts and d values, used to form

our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 400 and L = 36000, and F = 300Hz. These probabilistic results come from 50

disturbance locations positioned where the likelihood function is evaluated. The results

on the left-hand side have 1 sensor present, whereas on the right-hand side there are 2

sensors present.
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Figure 9.24: The 1D model success rate for different Ts and d values, used to form

our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 400 and L = 36000, and F = 300Hz. These probabilistic results come from 50

disturbance locations positioned where the likelihood function is evaluated. The results

on the left-hand side have 3 sensors present, whereas on the right-hand side there are 4

sensors present.
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Figure 9.25: The 1D model success rate for different Ts and d values, used to form

our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 400 and L = 36000, and F = 300Hz. These probabilistic results come from 50

disturbance locations positioned where the likelihood function is evaluated. The results

on the left-hand side have 5 sensors present, whereas on the right-hand side there are 6

sensors present.
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Figure 9.26: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 400

and L = 36000, and F = 300Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 1 sensor present,

whereas on the right-hand side there are 2 sensors present.



APPENDIX B 253

Figure 9.27: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 400

and L = 36000, and F = 300Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 3 sensors present,

whereas on the right-hand side there are 4 sensors present.



APPENDIX B 254

Figure 9.28: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 400

and L = 36000, and F = 300Hz. These probabilistic results come from 50 randomly

generated disturbance locations. The results on the left-hand side have 5 sensors present,

whereas on the right-hand side there are 6 sensors present.



Appendix C: Results for chapter 5

C.1 Without using a minimisation algorithm, 1NBC model

problem

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 51 54 55 100 100 100 100 55 57 62 64

2 100 100 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100 100 100

Table 9.57: 2D model problem with 1NBC: The success rate without the use of a

minimisation algorithm for a varying number of sensors, mesh dimensions of N = 50,

M = 5 and L = 3000, F = 25Hz, and 100 disturbance locations positioned where the

likelihood function is evaluated.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 26 41 46 41 49 59 67 21 27 32 42

2 65 88 92 53 60 67 75 49 55 62 71

3 73 94 98 56 65 73 77 53 63 71 77

4 76 93 97 62 64 70 75 61 64 70 74

5 77 92 95 71 76 81 86 69 75 79 85

Table 9.58: 2D model problem with 1NBC: The success rate without the use of a

minimisation algorithm for a varying number of sensors, mesh dimensions of N = 50,

M = 5 and L = 3000, F = 25Hz, and 100 random disturbance locations.

255
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Figure 9.29: The 2D model problem with 1NBC: The success rate given |x-error| for

an array of sensors, when F = 25Hz. Results on the LHS correspond to 100 disturbance

locations where (2.107) is evaluated, and the RHS come from 100 random disturbance

locations.
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Figure 9.30: The 2D model problem with 1NBC: The success rate given |y-error| for

an array of sensors, when F = 25Hz. Results on the LHS correspond to 100 disturbance

locations where (2.107) is evaluated, and the RHS come from 100 random disturbance

locations.
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Figure 9.31: The 2D model problem with 1NBC: The success rate given |Euclidean-error|

for an array of sensors, when F = 25Hz. Results on the LHS correspond to 100 disturbance

locations where (2.107) is evaluated, and the RHS come from 100 random disturbance

locations.
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C.2 Without using a minimisation algorithm, 3NBCs model

problem

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 52 53 54 95 95 99 99 52 53 59 62

2 98 100 100 96 96 99 99 96 96 98 99

3 99 100 100 99 99 100 100 99 99 99 100

4 100 100 100 99 99 100 100 99 99 100 100

5 100 100 100 100 100 100 100 100 100 100 100

Table 9.59: 2D model problem with 3NBCs: The success rate without the use of a

minimisation algorithm for a varying number of sensors, mesh dimensions of N = 50,

M = 5 and L = 3000, F = 25Hz, and 100 disturbance locations positioned where the

likelihood function is evaluated.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 31 48 52 33 41 47 52 17 24 31 37

2 67 93 93 41 49 56 62 39 47 54 60

3 80 98 98 55 70 75 80 53 68 73 80

4 74 97 97 58 72 77 80 57 71 77 80

5 80 99 99 62 75 80 83 62 75 80 83

Table 9.60: 2D model problem with 3NBCs: The success rate without the use of a

minimisation algorithm for a varying number of sensors, mesh dimensions of N = 50,

M = 5 and L = 3000, F = 25Hz, and 100 random disturbance locations.
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Figure 9.32: The 2D model problem with 3NBCs: The success rate given |x-error| for

an array of sensors, when F = 25Hz. Results on the LHS correspond to 100 disturbance

locations where (2.107) is evaluated, and the RHS come from 100 random disturbance

locations.
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Figure 9.33: The 2D model problem with 3NBCs: The success rate given |y-error| for

an array of sensors, when F = 25Hz. Results on the LHS correspond to 100 disturbance

locations where (2.107) is evaluated, and the RHS come from 100 random disturbance

locations.
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Figure 9.34: The 2D model problem with 3NBCs: The success rate given

|Euclidean-error| for a varying sensor quantity, when F = 25Hz. Results on the LHS

correspond to 100 disturbance locations where (2.107) is evaluated, and the RHS come

from 100 random disturbance locations.
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C.3 Use of an SVD to reduce matrix dimensions in the KF, 1NBC

model problem

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 99 99 99 99 99 100 100 98 98 99 100

2 100 100 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100 100 100

Table 9.61: The success rate of our 2D model problem with 1NBC. Here we have a

mesh dimension of N = 50, M = 5 and L = 9000 over a simulation duration of T = 3

seconds, using 100 different disturbance locations positioned where the likelihood function

in (2.107) is evaluated. The KF is then run over the final second in an attempt to mimic

the scenarios considered when using an SVD.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 50 67 71 42 51 61 68 29 37 45 60

2 63 87 91 43 53 61 70 39 50 57 67

3 73 96 100 56 62 70 75 55 62 70 75

4 76 95 98 62 68 74 79 60 67 73 79

5 81 96 99 76 80 85 88 74 79 84 88

6 76 95 97 77 85 88 92 75 83 85 91

Table 9.62: The success rate of our 2D model problem with 1NBC. Here we have a mesh

dimension of N = 50, M = 5 and L = 9000 over a simulation duration of T = 3 seconds,

using 100 random disturbance locations. The KF is then run over the final second in an

attempt to mimic the scenarios considered when using an SVD.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 59 72 75 62 62 80 80 56 56 60 70

1.000 6 46 63 63 59 59 75 75 47 47 53 62

1.000 12 44 61 63 56 56 79 79 46 46 50 59

1.000 24 46 61 64 49 49 77 77 40 40 53 60

0.500 3 57 66 68 59 59 81 81 52 52 60 68

0.500 6 43 59 61 49 49 80 80 40 40 49 58

0.500 12 47 66 68 56 56 85 85 47 47 53 65

0.500 24 45 59 64 54 54 82 82 45 45 53 60

0.250 3 52 64 66 53 53 80 80 48 48 57 63

0.250 6 58 73 73 65 65 81 81 55 55 63 71

0.250 12 52 68 71 61 61 84 84 51 51 61 72

0.250 24 54 68 70 57 57 78 78 46 46 56 63

0.125 3 57 69 70 63 63 88 88 54 54 63 69

0.125 6 59 69 70 62 62 79 79 52 52 61 68

0.125 12 58 69 71 62 62 82 82 54 54 62 72

0.125 24 61 68 70 57 57 83 83 54 54 61 68

Table 9.63: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 1 sensor present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 97 99 99 95 95 100 100 94 94 98 100

1.000 6 92 97 97 84 84 95 95 84 84 90 93

1.000 12 89 94 94 82 82 93 93 79 79 87 90

1.000 24 84 92 92 80 80 94 94 76 76 85 91

0.500 3 97 98 98 94 94 100 100 94 94 97 98

0.500 6 87 95 96 83 83 95 95 81 81 87 93

0.500 12 77 90 90 75 75 94 94 71 71 79 89

0.500 24 83 92 93 82 82 95 95 80 80 86 91

0.250 3 100 100 100 99 99 100 100 99 99 100 100

0.250 6 96 98 99 87 87 98 98 87 87 95 97

0.250 12 95 99 99 91 91 97 97 91 91 96 96

0.250 24 94 98 99 84 84 96 96 84 84 92 95

0.125 3 100 100 100 99 99 100 100 99 99 100 100

0.125 6 97 99 99 96 96 100 100 96 96 98 99

0.125 12 99 100 100 96 96 99 99 96 96 99 99

0.125 24 93 95 96 89 89 96 96 89 89 94 94

Table 9.64: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 2 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 99 99 100 100 99 99 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 99 99 100 100 99 99 100 100

1.000 24 98 100 100 98 98 99 99 98 98 98 99

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 99 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 97 97 100 100 97 97 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 99 99 100 100 99 99 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 99 99 99 99 99 100 100 99 99 99 99

0.125 3 99 99 99 99 99 99 99 99 99 99 99

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.65: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 3 sensors present to record data from the

FDM approximation of u.



APPENDIX C 267

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.66: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 4 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.67: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 5 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.68: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 6 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 33 55 59 33 44 50 61 25 34 39 50

1.000 6 42 67 72 44 54 59 68 36 44 49 53

1.000 12 36 57 61 38 47 58 70 25 33 39 51

1.000 24 35 53 58 40 53 61 69 30 38 43 49

0.500 3 27 48 52 38 54 62 73 28 38 44 53

0.500 6 40 60 62 44 51 57 67 34 41 45 48

0.500 12 39 61 63 38 45 55 62 26 33 40 45

0.500 24 39 66 67 36 51 59 65 27 38 44 50

0.250 3 32 57 62 44 56 60 67 33 38 41 50

0.250 6 41 58 61 42 52 61 69 30 39 46 56

0.250 12 42 61 65 41 51 63 71 29 36 46 57

0.250 24 44 64 67 39 52 63 68 28 40 46 55

0.125 3 35 59 61 41 48 53 62 26 33 36 46

0.125 6 43 64 65 41 50 56 64 29 36 40 52

0.125 12 38 62 64 36 53 60 70 25 37 42 52

0.125 24 37 58 61 48 54 59 65 36 41 44 52

Table 9.69: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 1 sensor present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 63 85 86 61 73 78 83 56 68 73 81

1.000 6 62 89 89 67 74 81 86 66 72 77 83

1.000 12 58 87 89 63 69 78 84 63 68 75 80

1.000 24 58 82 82 56 64 71 79 53 61 66 74

0.500 3 64 87 88 69 81 90 95 61 71 79 85

0.500 6 69 92 93 64 71 81 88 61 68 77 86

0.500 12 60 86 88 66 74 83 90 62 68 76 84

0.500 24 52 84 86 61 69 76 84 55 63 68 79

0.250 3 54 78 80 50 67 72 78 44 58 62 71

0.250 6 71 92 95 66 75 81 85 65 74 80 84

0.250 12 69 92 94 61 71 80 83 58 69 78 81

0.250 24 68 89 91 70 80 87 90 64 73 80 85

0.125 3 61 77 83 52 64 72 78 45 52 59 68

0.125 6 57 83 87 59 70 75 81 54 64 68 75

0.125 12 76 91 93 62 72 79 82 57 68 75 80

0.125 24 68 88 92 70 78 85 90 64 73 80 86

Table 9.70: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 2 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 72 93 93 78 86 87 92 75 82 83 92

1.000 6 79 100 100 77 89 91 96 76 89 91 96

1.000 12 72 98 99 75 85 89 96 73 84 88 96

1.000 24 82 98 99 73 83 86 91 71 83 86 90

0.500 3 69 89 90 76 80 83 87 71 75 78 85

0.500 6 77 98 100 82 88 90 95 82 88 90 95

0.500 12 76 99 99 77 88 92 97 75 87 91 96

0.500 24 79 99 99 69 81 85 91 69 81 85 90

0.250 3 73 91 93 65 73 79 83 62 69 75 82

0.250 6 79 95 97 84 91 93 98 83 90 92 96

0.250 12 78 97 100 75 86 89 96 75 86 89 95

0.250 24 76 97 98 72 83 90 93 72 83 90 92

0.125 3 67 88 90 56 65 72 77 52 61 67 72

0.125 6 74 91 91 71 78 83 87 68 72 77 84

0.125 12 80 92 92 73 78 83 89 70 75 79 85

0.125 24 78 95 96 78 85 89 91 76 84 88 91

Table 9.71: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 3 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 70 93 93 73 84 87 90 71 81 84 90

1.000 6 84 98 100 80 88 92 95 80 88 92 95

1.000 12 89 97 98 79 88 93 99 78 87 92 97

1.000 24 84 98 99 72 81 86 91 71 80 85 91

0.500 3 77 94 94 77 84 87 90 73 80 83 89

0.500 6 84 95 98 77 86 90 95 77 86 90 94

0.500 12 82 99 99 78 89 94 97 77 88 93 97

0.500 24 85 98 99 85 93 96 98 84 92 95 97

0.250 3 74 91 95 74 79 82 85 72 77 80 83

0.250 6 82 99 100 85 89 91 95 85 89 91 95

0.250 12 82 99 100 79 90 94 97 79 90 94 97

0.250 24 84 100 100 85 92 94 97 84 92 94 97

0.125 3 67 88 93 69 78 81 84 63 73 76 81

0.125 6 79 98 98 83 93 94 96 81 91 92 95

0.125 12 82 94 96 83 90 93 97 81 89 92 94

0.125 24 89 97 98 81 92 95 95 81 91 94 94

Table 9.72: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 4 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 73 93 93 75 86 88 91 72 82 84 91

1.000 6 83 100 100 89 94 95 98 89 94 95 98

1.000 12 84 100 100 86 93 93 98 86 93 93 98

1.000 24 83 98 98 84 91 93 97 83 90 92 96

0.500 3 79 94 94 78 84 87 90 75 81 84 87

0.500 6 85 100 100 86 90 93 96 86 90 93 96

0.500 12 87 100 100 81 90 93 97 81 90 93 97

0.500 24 77 99 99 83 89 90 95 82 89 90 95

0.250 3 74 89 91 68 77 79 83 64 72 74 80

0.250 6 90 99 100 89 94 97 99 89 94 97 99

0.250 12 89 100 100 87 92 94 96 87 92 94 96

0.250 24 82 100 100 88 92 95 97 88 92 95 97

0.125 3 67 87 92 67 72 77 79 63 69 73 76

0.125 6 87 99 99 88 95 97 98 86 94 96 97

0.125 12 88 100 100 88 93 96 98 88 93 96 98

0.125 24 86 100 100 89 95 97 98 89 95 97 98

Table 9.73: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 5 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 73 93 93 76 87 89 92 72 82 84 92

1.000 6 80 100 100 87 91 93 96 87 91 93 96

1.000 12 85 100 100 90 96 97 98 90 96 97 98

1.000 24 85 100 100 87 92 94 97 87 92 94 97

0.500 3 75 93 94 76 84 87 90 72 80 83 88

0.500 6 87 100 100 90 93 95 98 90 93 95 98

0.500 12 83 100 100 93 97 98 100 93 97 98 100

0.500 24 87 100 100 87 94 96 100 87 94 96 100

0.250 3 76 94 96 73 79 81 85 69 75 77 82

0.250 6 86 99 100 89 94 95 98 89 94 95 98

0.250 12 87 100 100 90 94 95 97 90 94 95 97

0.250 24 91 100 100 87 92 96 99 86 92 96 99

0.125 3 71 88 93 65 73 78 83 61 68 73 78

0.125 6 83 98 99 80 89 92 94 79 88 91 93

0.125 12 89 99 100 91 98 98 99 91 98 98 99

0.125 24 83 100 100 87 94 96 98 86 94 96 98

Table 9.74: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 6 sensors present to record data from the FDM approximation of u.
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Figure 9.35: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u

on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over

a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 1 sensor present, whereas on the RHS there are 2 sensors present.
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Figure 9.36: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 1 sensor present.
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Figure 9.37: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 2 sensors present.
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Figure 9.38: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u

on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over

a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 3 sensors present, whereas on the RHS there are 4 sensors present.
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Figure 9.39: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 3 sensors present.
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Figure 9.40: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 4 sensors present.
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Figure 9.41: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u

on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over

a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 5 sensors present, whereas on the RHS there are 6 sensors present.
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Figure 9.42: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 5 sensors present.
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Figure 9.43: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 6 sensors present.
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Figure 9.44: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on a

mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations. The results on the LHS have 1 sensor present, whereas on the RHS there are

2 sensors present.
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Figure 9.45: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 1

sensor present.
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Figure 9.46: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 2

sensors present.
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Figure 9.47: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on a

mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations. The results on the LHS have 3 sensors present, whereas on the RHS there are

4 sensors present.
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Figure 9.48: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 3

sensors present.
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Figure 9.49: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 4

sensors present.
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Figure 9.50: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on a

mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations. The results on the LHS have 5 sensors present, whereas on the RHS there are

6 sensors present.
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Figure 9.51: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 5

sensors present.
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Figure 9.52: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 6

sensors present.
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C.4 Use of an SVD to reduce matrix dimensions in the KF,

3NBCs model problem

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 87 91 91 84 84 95 95 80 80 87 91

2 99 100 100 96 96 99 99 96 96 99 99

3 100 100 100 99 99 100 100 99 99 100 100

4 100 100 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100 100 100

Table 9.75: The success rate of our 2D model problem with 3NBCs. Here we have a

mesh dimension of N = 50, M = 5 and L = 9000 over a simulation duration of T = 3

seconds, using 100 different disturbance locations positioned where the likelihood function

in (2.107) is evaluated. The KF is then run over the final second in an attempt to mimic

the scenarios considered when using an SVD.

Success Rate

Number |x-error| |y-error| |Euclidean-error|

of Sensors 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1 55 77 77 38 45 50 55 33 38 43 51

2 67 88 88 40 51 57 62 37 48 54 61

3 78 96 96 58 71 76 79 55 68 73 78

4 74 98 98 57 69 73 79 57 68 72 77

5 76 97 97 55 68 73 77 54 67 72 77

6 82 99 99 65 79 85 87 65 79 85 87

Table 9.76: The success rate of our 2D model problem with 3NBCs. Here we have a

mesh dimension of N = 50, M = 5 and L = 9000 over a simulation duration of T = 3

seconds, using 100 random disturbance locations. The KF is then run over the final second

in an attempt to mimic the scenarios considered when using an SVD.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 23 53 61 39 39 66 66 27 27 36 54

1.000 6 36 53 55 46 46 70 70 29 29 39 51

1.000 12 40 53 54 41 41 77 77 27 27 37 50

1.000 24 34 58 61 50 50 76 76 38 38 49 58

0.500 3 40 49 50 46 46 68 68 34 35 46 51

0.500 6 32 47 49 42 42 70 70 28 28 31 44

0.500 12 30 46 46 38 38 72 72 24 24 39 48

0.500 24 35 52 55 47 47 71 71 30 31 41 52

0.250 3 34 52 57 44 44 75 75 34 34 39 50

0.250 6 30 48 52 38 38 73 73 24 24 30 49

0.250 12 34 55 60 36 36 70 70 29 30 41 50

0.250 24 36 55 56 47 47 80 80 32 32 45 57

0.125 3 43 60 62 40 40 73 73 33 34 46 59

0.125 6 39 57 62 37 37 71 71 28 28 39 50

0.125 12 35 55 58 48 48 78 78 36 36 43 59

0.125 24 44 61 64 39 39 74 74 32 32 47 59

Table 9.77: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 1 sensor present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 87 93 94 81 81 93 93 78 78 90 90

1.000 6 83 92 92 78 78 89 89 77 77 85 86

1.000 12 81 86 87 71 71 86 86 67 68 79 84

1.000 24 80 87 88 80 80 93 93 77 77 80 85

0.500 3 82 87 87 77 77 92 92 73 73 84 87

0.500 6 76 88 89 81 81 90 90 76 76 82 86

0.500 12 80 91 93 72 72 91 91 70 71 83 89

0.500 24 85 92 93 82 82 93 93 80 80 86 90

0.250 3 95 97 98 97 97 100 100 96 96 97 99

0.250 6 87 94 94 85 85 93 93 85 85 89 91

0.250 12 82 86 86 80 80 95 95 75 75 86 90

0.250 24 88 92 92 87 87 94 94 85 85 88 91

0.125 3 91 92 92 93 93 97 97 90 90 91 93

0.125 6 87 89 90 89 89 95 95 84 84 87 89

0.125 12 86 91 91 90 90 98 98 85 85 88 95

0.125 24 91 96 97 87 87 95 95 86 86 92 94

Table 9.78: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 2 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 98 98 100 100 98 98 100 100

1.000 6 96 97 97 97 97 98 98 96 96 97 98

1.000 12 94 99 99 90 90 96 96 90 90 94 95

1.000 24 97 100 100 94 94 99 99 94 94 97 99

0.500 3 98 98 98 99 99 100 100 98 98 98 99

0.500 6 96 99 99 99 99 100 100 98 98 99 99

0.500 12 97 100 100 96 96 99 99 96 96 98 99

0.500 24 98 98 98 97 97 100 100 97 97 98 98

0.250 3 92 95 96 91 91 97 97 90 90 92 95

0.250 6 96 98 98 96 96 99 99 96 96 97 98

0.250 12 96 99 99 95 95 98 98 95 95 96 97

0.250 24 99 100 100 98 98 100 100 98 98 100 100

0.125 3 94 96 97 97 97 97 97 95 95 95 95

0.125 6 99 99 99 100 100 100 100 99 99 99 100

0.125 12 96 97 97 97 97 99 99 96 96 97 98

0.125 24 100 100 100 97 97 100 100 97 97 100 100

Table 9.79: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 3 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 99 100 100 99 99 100 100 99 99 99 100

1.000 12 100 100 100 97 97 100 100 97 97 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 99 99 100 100 99 99 100 100

0.500 12 99 100 100 98 98 100 100 98 98 99 100

0.500 24 100 100 100 98 98 100 100 98 98 100 100

0.250 3 99 100 100 99 99 99 99 99 99 99 99

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 99 99 99 100 100 100 100 99 99 100 100

0.125 6 100 100 100 99 99 100 100 99 99 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.80: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 4 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 99 99 99 100 100 100 100 99 99 99 100

0.125 6 99 100 100 99 99 99 99 99 99 99 99

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.81: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 5 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 98 100 100 98 98 99 99 98 98 99 99

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 98 99 99 97 97 100 100 97 97 99 99

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 93 98 98 98 98 99 99 97 97 97 98

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 86 93 93 86 86 93 93 83 83 88 90

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.82: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 disturbance locations positioned

where the likelihood function is evaluated, and 6 sensors present to record data from the

FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 24 58 60 33 40 46 49 21 27 35 44

1.000 6 26 57 59 30 44 51 59 21 30 39 46

1.000 12 28 49 51 33 45 53 58 19 28 36 44

1.000 24 28 54 57 30 43 52 57 21 28 35 45

0.500 3 32 58 61 33 43 52 59 24 31 37 47

0.500 6 29 49 49 39 46 56 62 22 29 38 49

0.500 12 20 43 43 36 44 55 61 17 22 27 41

0.500 24 19 45 48 26 35 45 54 12 17 26 37

0.250 3 23 50 53 38 51 57 60 21 30 35 44

0.250 6 27 44 47 38 50 58 59 20 25 32 41

0.250 12 27 46 50 34 52 62 67 20 26 34 42

0.250 24 25 45 48 31 45 57 62 15 22 31 43

0.125 3 39 60 64 33 49 59 63 20 34 41 51

0.125 6 25 48 51 32 37 48 52 18 22 27 33

0.125 12 25 55 60 31 42 56 60 21 30 41 46

0.125 24 31 52 55 37 50 59 64 24 32 42 50

Table 9.83: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 1 sensor present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 48 78 78 48 62 70 75 43 55 63 68

1.000 6 58 82 82 54 63 68 74 48 55 60 68

1.000 12 58 79 80 53 68 74 79 46 58 63 72

1.000 24 56 82 85 47 63 71 77 41 56 63 71

0.500 3 52 79 79 42 65 74 79 36 55 62 68

0.500 6 54 76 78 38 53 63 69 35 46 56 60

0.500 12 60 83 84 50 66 75 79 46 59 66 72

0.500 24 65 86 87 46 57 67 74 44 52 63 70

0.250 3 49 79 83 44 59 67 68 37 52 59 61

0.250 6 63 84 87 50 62 68 73 46 57 64 72

0.250 12 56 85 86 46 59 72 77 43 55 67 71

0.250 24 71 90 91 55 71 75 82 51 67 71 79

0.125 3 44 68 71 48 60 63 67 37 47 50 56

0.125 6 44 74 75 50 64 71 71 43 51 57 60

0.125 12 53 79 81 43 60 70 73 36 51 61 67

0.125 24 60 82 84 52 69 73 77 43 58 62 67

Table 9.84: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 2 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 67 93 93 68 88 93 93 64 82 87 92

1.000 6 72 92 92 62 83 86 89 60 81 85 89

1.000 12 76 97 97 60 76 84 88 59 74 83 87

1.000 24 78 98 100 59 80 88 93 59 80 88 93

0.500 3 65 93 93 61 82 85 87 59 78 82 85

0.500 6 77 96 97 69 85 87 90 68 84 86 89

0.500 12 67 91 93 61 77 87 89 57 71 81 84

0.500 24 73 95 95 60 75 85 89 60 74 85 88

0.250 3 66 94 95 64 79 82 83 61 75 79 81

0.250 6 71 96 97 67 79 84 86 65 77 82 83

0.250 12 74 98 98 58 75 85 88 58 75 85 87

0.250 24 78 98 98 67 82 86 91 66 81 85 91

0.125 3 69 92 93 61 74 78 80 59 71 75 78

0.125 6 73 91 93 66 80 84 86 63 76 79 82

0.125 12 80 95 96 71 83 90 90 70 79 87 88

0.125 24 76 98 99 67 81 86 89 67 80 86 89

Table 9.85: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 3 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 66 93 93 68 87 93 93 64 81 87 91

1.000 6 79 99 99 77 92 95 95 77 92 95 95

1.000 12 78 100 100 65 84 90 93 65 84 90 93

1.000 24 80 99 99 66 83 91 96 65 82 90 96

0.500 3 62 92 92 59 78 85 86 58 75 82 83

0.500 6 81 98 99 77 91 93 94 77 91 93 94

0.500 12 79 98 98 66 84 90 95 66 82 89 94

0.500 24 77 100 100 73 88 94 97 73 87 94 97

0.250 3 70 93 97 65 78 82 84 65 78 82 83

0.250 6 81 99 99 74 90 93 93 74 89 93 93

0.250 12 79 100 100 74 91 92 93 74 91 92 93

0.250 24 78 100 100 74 89 92 93 74 89 92 93

0.125 3 71 94 94 64 77 82 82 62 75 80 81

0.125 6 82 99 99 75 88 91 92 75 88 91 91

0.125 12 89 99 100 79 91 95 96 79 91 95 96

0.125 24 81 99 99 79 90 92 94 79 90 92 94

Table 9.86: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 4 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 67 92 92 67 87 92 92 63 81 86 91

1.000 6 84 99 99 85 96 98 98 85 96 98 98

1.000 12 86 100 100 76 90 94 94 76 90 94 94

1.000 24 84 99 99 77 91 93 97 77 90 93 97

0.500 3 67 95 95 63 83 86 88 62 81 85 87

0.500 6 82 99 99 79 94 96 96 79 93 96 96

0.500 12 82 100 100 77 89 93 95 77 89 93 95

0.500 24 87 99 99 81 94 97 97 80 93 96 96

0.250 3 74 96 96 77 87 88 88 74 84 85 86

0.250 6 85 98 98 83 94 95 96 82 93 94 96

0.250 12 88 100 100 83 92 95 96 83 92 95 96

0.250 24 87 100 100 84 95 96 98 84 95 96 98

0.125 3 75 93 93 63 75 80 82 63 74 78 79

0.125 6 87 100 100 82 93 96 96 82 93 96 96

0.125 12 87 100 100 84 95 96 96 84 95 96 96

0.125 24 85 100 100 86 94 96 97 86 94 96 97

Table 9.87: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 5 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 68 94 94 69 90 94 94 65 84 89 94

1.000 6 81 99 99 83 95 96 96 83 95 96 96

1.000 12 84 99 99 76 95 97 98 76 95 97 98

1.000 24 92 100 100 80 92 97 98 80 92 97 98

0.500 3 65 94 94 59 82 86 88 58 79 84 85

0.500 6 83 98 98 80 93 97 97 80 93 96 96

0.500 12 85 100 100 82 95 95 96 82 95 95 96

0.500 24 89 100 100 84 95 99 100 84 95 99 100

0.250 3 64 97 98 65 77 80 81 65 77 79 80

0.250 6 84 97 97 81 93 95 95 81 93 95 95

0.250 12 91 100 100 89 99 100 100 89 99 100 100

0.250 24 88 100 100 83 94 98 98 83 94 98 98

0.125 3 69 93 93 67 77 82 84 63 73 77 80

0.125 6 76 98 98 73 89 92 94 73 87 91 93

0.125 12 89 98 99 87 98 100 100 87 97 99 99

0.125 24 86 100 100 86 96 97 97 86 95 97 97

Table 9.88: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of

T = 3 seconds. These probabilistic results come from 100 random disturbance locations,

and 6 sensors present to record data from the FDM approximation of u.
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Figure 9.53: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 1 sensor present, whereas on the RHS there are 2 sensors present.
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Figure 9.54: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 1 sensor present.
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Figure 9.55: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 2 sensors present.
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Figure 9.56: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 3 sensors present, whereas on the RHS there are 4 sensors present.
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Figure 9.57: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 3 sensors present.
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Figure 9.58: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 4 sensors present.
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Figure 9.59: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 5 sensors present, whereas on the RHS there are 6 sensors present.
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Figure 9.60: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 5 sensors present.
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Figure 9.61: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 6 sensors present.
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Figure 9.62: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a

simulation duration of T = 3 seconds. These probabilistic results come from 100 random

disturbance locations. The results on the LHS have 1 sensor present, whereas on the RHS

there are 2 sensors present.
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Figure 9.63: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 1

sensor present.
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Figure 9.64: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 2

sensors present.
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Figure 9.65: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a

simulation duration of T = 3 seconds. These probabilistic results come from 100 random

disturbance locations. The results on the LHS have 3 sensors present, whereas on the

RHS there are 4 sensors present.
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Figure 9.66: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 3

sensors present.
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Figure 9.67: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 4

sensors present.
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Figure 9.68: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 50, M = 5 and L = 9000, and F = 25Hz over a

simulation duration of T = 3 seconds. These probabilistic results come from 100 random

disturbance locations. The results on the LHS have 5 sensors present, whereas on the

RHS there are 6 sensors present.
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Figure 9.69: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 5

sensors present.
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Figure 9.70: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 50, M = 5 and L = 9000, and F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 6

sensors present.



Appendix D: Results for chapter 6

D.1 2D model problem with 1NBC and a disturbance frequency

F = 150Hz

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 89 90 90 90 90 94 94 89 89 90 90

1.000 6 55 57 64 64 64 82 82 56 56 56 58

1.000 12 41 43 49 53 53 75 75 40 41 44 48

1.000 24 30 35 43 44 44 75 75 33 36 39 47

0.500 3 94 95 95 95 95 98 98 93 94 97 97

0.500 6 58 63 69 65 65 85 85 58 58 61 66

0.500 12 43 46 53 51 51 72 72 46 46 47 55

0.500 24 36 37 41 51 51 68 68 38 40 41 44

0.250 3 90 92 93 91 91 99 99 90 90 91 93

0.250 6 83 85 87 83 83 91 91 82 82 85 85

0.250 12 70 71 78 76 76 88 88 71 71 75 76

0.250 24 53 55 58 66 66 78 78 54 55 56 61

0.125 3 71 73 75 75 75 83 83 71 71 71 74

0.125 6 92 96 96 94 94 98 98 92 92 94 96

0.125 12 94 95 95 93 93 98 98 91 91 93 94

0.125 24 93 94 94 95 95 99 99 92 92 95 95

Table 9.89: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 1 sensor present to

record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 97 97 97 97 97 98 98 97 97 97 97

1.000 12 84 87 89 85 85 94 94 84 84 86 87

1.000 24 72 74 83 77 77 87 87 76 76 77 82

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 93 93 94 94 94 99 99 93 93 93 94

0.500 12 93 94 95 97 97 99 99 94 94 94 94

0.500 24 92 92 92 93 93 97 97 92 92 92 92

0.250 3 99 99 99 99 99 100 100 99 99 99 99

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 96 96 96 97 97 99 99 96 96 96 96

0.250 24 96 97 97 94 94 98 98 94 94 96 97

0.125 3 84 84 86 90 90 93 93 85 85 85 86

0.125 6 99 99 99 99 99 99 99 99 99 99 99

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.90: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 2 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 99 99 100 100 99 99 100 100

1.000 24 98 98 99 98 98 99 99 98 98 98 98

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 99 99 99 99 99 100 100 99 99 99 99

0.125 3 97 97 97 97 97 98 98 97 97 97 97

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.91: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 3 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 99 99 99 99 99 100 100 99 99 99 99

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.92: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 4 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.93: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 5 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 100 100 100 100 100 100 100 100 100 100 100

1.000 24 100 100 100 100 100 100 100 100 100 100 100

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 100 100 100 100 100 100 100 100 100 100 100

0.500 12 100 100 100 100 100 100 100 100 100 100 100

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 100 100 100 100 100 100 100 100 100 100 100

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.94: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 6 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 73 92 92 79 92 93 96 77 91 92 94

1.000 6 38 46 58 38 51 63 72 36 41 45 52

1.000 12 21 35 45 38 46 54 59 27 29 33 38

1.000 24 15 19 33 28 36 47 53 17 19 25 30

0.500 3 76 91 91 84 90 90 91 84 90 90 90

0.500 6 44 52 57 49 57 64 69 46 48 52 59

0.500 12 32 40 43 38 48 57 62 32 36 38 42

0.500 24 27 33 43 39 47 55 60 28 34 38 41

0.250 3 79 89 91 83 89 91 91 83 89 90 90

0.250 6 70 83 85 75 80 88 92 73 78 81 83

0.250 12 53 64 67 64 72 81 83 54 59 64 69

0.250 24 39 52 61 53 60 69 72 45 50 53 59

0.125 3 48 56 63 60 68 75 77 51 54 59 63

0.125 6 83 92 93 87 93 95 97 85 92 92 93

0.125 12 81 90 90 83 89 92 94 82 87 88 90

0.125 24 79 87 88 80 84 90 92 78 82 86 88

Table 9.95: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 1 sensor present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 92 99 99 92 99 99 99 92 99 99 99

1.000 6 72 81 84 76 83 86 88 71 78 81 83

1.000 12 50 61 64 54 69 70 77 49 55 56 64

1.000 24 33 40 55 49 55 59 60 38 41 46 49

0.500 3 92 99 99 93 98 99 99 93 98 99 99

0.500 6 78 86 88 81 90 91 92 77 85 85 86

0.500 12 70 81 84 72 79 85 85 71 78 80 82

0.500 24 59 68 75 65 72 78 78 62 68 70 71

0.250 3 89 94 94 90 94 94 95 89 93 93 93

0.250 6 86 97 98 86 95 97 98 86 94 96 97

0.250 12 89 94 94 89 94 97 97 88 93 94 94

0.250 24 73 82 84 78 86 89 89 77 82 82 83

0.125 3 69 77 78 68 74 77 78 65 69 71 71

0.125 6 90 96 97 91 95 96 96 91 95 96 96

0.125 12 85 93 94 88 92 93 94 88 92 93 93

0.125 24 89 95 96 90 95 96 96 90 94 95 95

Table 9.96: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 2 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 95 100 100 95 100 100 100 95 100 100 100

1.000 6 84 92 93 86 96 97 98 84 91 92 92

1.000 12 64 72 76 69 73 77 77 64 66 69 71

1.000 24 56 71 74 68 72 75 76 64 67 69 70

0.500 3 97 100 100 96 100 100 100 96 100 100 100

0.500 6 89 96 96 92 97 97 97 92 96 96 96

0.500 12 83 91 92 82 89 92 92 82 88 89 90

0.500 24 81 84 84 80 86 90 92 79 83 83 84

0.250 3 89 94 94 92 96 96 96 90 94 95 95

0.250 6 94 100 100 95 99 100 100 95 99 100 100

0.250 12 93 97 97 93 98 99 99 93 96 97 97

0.250 24 90 95 95 91 96 97 97 90 95 95 95

0.125 3 71 78 79 68 74 76 78 67 72 74 75

0.125 6 89 98 99 93 97 98 98 93 97 98 98

0.125 12 91 97 98 95 97 97 97 95 97 97 97

0.125 24 93 98 98 93 98 98 98 93 98 98 98

Table 9.97: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 3 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 95 100 100 95 100 100 100 95 100 100 100

1.000 6 91 95 95 90 96 96 96 89 95 95 95

1.000 12 74 83 86 79 82 83 84 78 81 81 83

1.000 24 69 78 81 74 78 78 79 71 76 76 77

0.500 3 98 100 100 96 100 100 100 96 100 100 100

0.500 6 96 98 98 94 99 99 99 93 98 98 98

0.500 12 88 93 94 90 94 94 94 89 93 93 93

0.500 24 83 91 92 85 92 92 92 84 91 91 91

0.250 3 90 94 95 92 96 96 97 90 94 94 94

0.250 6 97 100 100 97 100 100 100 97 100 100 100

0.250 12 94 99 99 93 99 100 100 93 99 99 100

0.250 24 93 94 96 91 98 98 98 91 95 96 96

0.125 3 69 76 77 70 75 76 78 68 72 73 75

0.125 6 95 99 99 95 98 99 99 95 98 99 99

0.125 12 90 98 98 95 98 98 98 95 98 98 98

0.125 24 92 99 99 96 99 99 99 96 99 99 99

Table 9.98: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 4 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 94 100 100 95 100 100 100 95 100 100 100

1.000 6 96 100 100 96 100 100 100 96 100 100 100

1.000 12 78 85 89 82 85 89 91 79 82 82 84

1.000 24 71 77 83 73 78 81 85 69 74 77 80

0.500 3 98 100 100 97 100 100 100 97 100 100 100

0.500 6 98 100 100 97 100 100 100 97 100 100 100

0.500 12 94 99 99 91 98 99 99 91 98 99 99

0.500 24 88 94 95 87 93 96 97 87 92 93 94

0.250 3 90 94 94 92 96 96 96 90 94 94 95

0.250 6 97 100 100 97 100 100 100 97 100 100 100

0.250 12 96 100 100 98 100 100 100 98 100 100 100

0.250 24 94 98 98 93 97 99 99 93 97 98 98

0.125 3 71 82 83 71 76 79 79 70 75 78 78

0.125 6 95 100 100 98 100 100 100 98 100 100 100

0.125 12 93 98 99 95 98 98 98 95 98 98 98

0.125 24 90 99 99 95 99 99 99 95 99 99 99

Table 9.99: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 5 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 94 100 100 95 100 100 100 95 100 100 100

1.000 6 97 100 100 95 100 100 100 95 100 100 100

1.000 12 88 93 95 85 91 93 93 85 91 92 92

1.000 24 75 84 88 76 81 83 84 73 77 79 80

0.500 3 98 100 100 97 100 100 100 97 100 100 100

0.500 6 97 100 100 95 100 100 100 95 100 100 100

0.500 12 94 99 99 95 99 99 99 95 99 99 99

0.500 24 92 97 97 91 95 97 97 91 95 96 96

0.250 3 90 94 95 92 96 96 96 90 94 95 95

0.250 6 98 100 100 98 100 100 100 98 100 100 100

0.250 12 96 100 100 97 100 100 100 97 100 100 100

0.250 24 93 98 98 95 99 99 99 95 98 98 99

0.125 3 72 81 82 71 76 78 81 70 75 77 78

0.125 6 95 100 100 97 99 100 100 97 99 100 100

0.125 12 96 100 100 99 100 100 100 99 100 100 100

0.125 24 95 99 99 93 100 100 100 93 99 99 99

Table 9.100: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 6 sensors present to record data from the FDM approximation of u.
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Figure 9.71: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on

a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over

a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 1 sensor present, whereas on the RHS there are 2 sensors present.
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Figure 9.72: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 1 sensor present.
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Figure 9.73: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 2 sensors present.
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Figure 9.74: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on

a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over

a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 3 sensors present, whereas on the RHS there are 4 sensors present.
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Figure 9.75: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 3 sensors present.
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Figure 9.76: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 4 sensors present.
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Figure 9.77: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on

a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over

a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 5 sensors present, whereas on the RHS there are 6 sensors present.



APPENDIX D 344

Figure 9.78: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 5 sensors present.
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Figure 9.79: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 6 sensors present.
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Figure 9.80: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on

a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a

simulation duration of T = 3 seconds. These probabilistic results come from 100 random

disturbance locations. The results on the LHS have 1 sensor present, whereas on the RHS

there are 2 sensors present.
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Figure 9.81: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 1

sensor present.
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Figure 9.82: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 2

sensors present.
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Figure 9.83: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on

a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a

simulation duration of T = 3 seconds. These probabilistic results come from 100 random

disturbance locations. The results on the LHS have 3 sensors present, whereas on the

RHS there are 4 sensors present.
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Figure 9.84: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 3

sensors present.
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Figure 9.85: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 4

sensors present.
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Figure 9.86: 2D model problem with 1NBC: The success rate given |x-error| for different

Ts and d values, used to form our SVD from the explicit FDM approximation of u on

a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a

simulation duration of T = 3 seconds. These probabilistic results come from 100 random

disturbance locations. The results on the LHS have 5 sensors present, whereas on the

RHS there are 6 sensors present.
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Figure 9.87: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 5

sensors present.
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Figure 9.88: 2D model problem with 1NBC: The success rate given |y-error| on the LHS,

and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used to

form our SVD from the explicit FDM approximation of u on a mesh with dimensions of

N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 6

sensors present.
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D.2 2D model problem with 3NBCs and a disturbance frequency

F = 150Hz

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 55 60 64 62 62 80 80 53 53 55 61

1.000 6 22 32 36 33 33 60 60 22 22 28 37

1.000 12 19 27 32 26 26 52 52 18 19 26 28

1.000 24 22 26 30 28 28 56 56 16 17 24 30

0.500 3 59 68 70 61 61 81 81 55 55 63 66

0.500 6 26 30 35 33 33 65 65 22 22 25 30

0.500 12 12 18 29 30 30 60 60 15 15 17 24

0.500 24 20 23 34 37 37 64 64 20 21 27 32

0.250 3 70 75 76 70 70 89 89 65 65 72 75

0.250 6 51 56 60 53 53 82 82 48 49 57 60

0.250 12 53 60 62 61 61 76 76 56 57 60 63

0.250 24 41 43 49 49 49 70 70 43 43 46 50

0.125 3 42 48 53 53 53 74 74 43 43 45 51

0.125 6 59 67 68 69 69 83 83 60 61 62 67

0.125 12 67 71 74 72 72 88 88 65 65 69 74

0.125 24 64 69 73 74 74 89 89 68 69 72 76

Table 9.101: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 1 sensor present to

record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 93 94 94 93 93 97 97 92 92 93 94

1.000 6 48 57 58 56 56 80 80 48 49 53 59

1.000 12 20 33 36 35 35 60 60 25 30 34 39

1.000 24 24 36 46 38 38 63 63 27 29 33 37

0.500 3 94 96 96 94 94 98 98 93 93 95 96

0.500 6 60 63 63 65 65 84 84 57 57 64 65

0.500 12 45 52 57 50 50 70 70 44 46 49 52

0.500 24 44 47 58 51 51 68 68 45 45 49 52

0.250 3 94 99 100 95 95 99 99 95 95 97 99

0.250 6 83 90 91 86 86 95 95 83 83 88 90

0.250 12 75 77 79 75 75 88 88 74 74 75 77

0.250 24 69 71 75 77 77 88 88 70 71 74 76

0.125 3 74 75 77 75 75 87 87 71 71 75 77

0.125 6 84 86 86 82 82 95 95 77 77 84 85

0.125 12 87 91 92 88 88 96 96 86 87 90 94

0.125 24 95 95 95 97 97 97 97 95 95 96 97

Table 9.102: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 2 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 61 65 68 67 67 80 80 63 63 65 65

1.000 12 41 46 50 47 47 67 67 41 43 44 48

1.000 24 36 39 46 42 42 61 61 39 40 41 44

0.500 3 99 99 99 99 99 100 100 99 99 99 99

0.500 6 86 88 89 89 89 94 94 87 87 88 88

0.500 12 74 77 79 76 76 87 87 75 75 78 79

0.500 24 71 74 79 77 77 90 90 72 72 74 79

0.250 3 99 99 99 98 98 99 99 98 98 99 99

0.250 6 98 99 99 99 99 100 100 99 99 99 99

0.250 12 95 96 96 97 97 99 99 96 96 96 96

0.250 24 90 94 95 91 91 96 96 91 91 93 94

0.125 3 86 86 88 89 89 90 90 86 86 86 86

0.125 6 94 95 95 96 96 97 97 95 96 96 96

0.125 12 98 98 99 99 99 100 100 99 99 99 100

0.125 24 99 99 99 99 99 100 100 99 99 99 99

Table 9.103: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 3 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 86 89 90 90 90 94 94 87 88 89 89

1.000 12 50 54 56 65 65 75 75 54 55 56 57

1.000 24 56 58 62 62 62 79 79 57 57 57 61

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 98 98 98 98 98 100 100 98 98 98 98

0.500 12 88 89 89 88 88 92 92 87 87 88 88

0.500 24 95 96 96 97 97 98 98 96 96 97 97

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 99 99 99 99 99 99 99 99 99 99 99

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 97 98 98 98 98 99 99 98 98 98 98

0.125 3 88 90 92 91 91 95 95 88 88 89 91

0.125 6 95 98 98 96 96 99 99 96 96 97 97

0.125 12 100 100 100 100 100 100 100 100 100 100 100

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.104: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 4 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 99 100 100 100 100 100 100 100 100 100 100

1.000 12 87 90 91 89 89 93 93 87 88 90 90

1.000 24 78 83 86 82 82 88 88 81 82 83 86

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 99 99 99 99 99 99 99 99 99 99 99

0.500 12 99 99 99 99 99 100 100 99 99 99 99

0.500 24 97 99 99 100 100 100 100 99 99 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 97 97 97 96 96 99 99 96 96 97 97

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 93 93 94 94 94 97 97 93 93 94 94

0.125 6 85 90 91 83 83 94 94 83 83 87 89

0.125 12 98 99 99 100 100 100 100 99 99 99 99

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.105: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 5 sensors present

to record data from the FDM approximation of u.



APPENDIX D 360

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 100 100 100 100 100 100 100 100 100 100 100

1.000 6 100 100 100 100 100 100 100 100 100 100 100

1.000 12 97 97 97 98 98 99 99 96 96 97 98

1.000 24 89 91 92 91 91 95 95 90 90 90 91

0.500 3 100 100 100 100 100 100 100 100 100 100 100

0.500 6 98 98 98 97 97 99 99 97 97 98 98

0.500 12 99 99 99 99 99 100 100 99 99 99 99

0.500 24 100 100 100 100 100 100 100 100 100 100 100

0.250 3 100 100 100 100 100 100 100 100 100 100 100

0.250 6 80 81 83 83 83 92 92 79 80 81 84

0.250 12 100 100 100 100 100 100 100 100 100 100 100

0.250 24 100 100 100 100 100 100 100 100 100 100 100

0.125 3 97 97 97 100 100 100 100 97 98 98 98

0.125 6 72 74 78 78 78 86 86 71 72 78 79

0.125 12 99 99 99 99 99 100 100 99 99 99 99

0.125 24 100 100 100 100 100 100 100 100 100 100 100

Table 9.106: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 6 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 61 72 73 58 72 77 79 55 69 71 72

1.000 6 26 36 41 36 44 51 58 26 31 35 37

1.000 12 5 13 19 18 25 34 46 4 7 12 16

1.000 24 9 17 24 25 37 44 52 11 13 21 23

0.500 3 47 66 68 60 72 75 76 52 63 65 67

0.500 6 18 26 34 21 34 45 53 15 21 27 32

0.500 12 22 37 46 28 34 45 52 20 26 31 38

0.500 24 17 27 38 31 42 49 51 12 19 27 34

0.250 3 57 70 71 58 68 75 78 51 58 65 68

0.250 6 48 60 65 58 65 71 77 48 57 60 65

0.250 12 49 56 64 62 70 75 77 49 58 62 64

0.250 24 39 51 52 47 62 69 71 37 44 48 51

0.125 3 18 32 41 34 47 54 59 20 28 32 36

0.125 6 40 59 64 51 64 70 73 42 55 58 62

0.125 12 63 78 79 68 81 85 87 61 73 78 80

0.125 24 61 80 83 68 80 82 83 63 76 78 78

Table 9.107: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 1 sensor present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 91 97 98 87 94 97 97 87 94 97 97

1.000 6 37 51 57 39 53 61 68 30 42 47 50

1.000 12 12 26 36 30 37 38 45 14 21 22 24

1.000 24 15 28 41 27 35 37 43 17 24 29 29

0.500 3 88 98 98 93 99 100 100 93 97 98 98

0.500 6 52 61 61 55 63 66 70 47 53 55 58

0.500 12 32 40 49 40 50 57 60 28 33 38 42

0.500 24 33 43 44 38 47 54 60 29 34 38 39

0.250 3 85 93 93 86 93 94 95 84 89 90 92

0.250 6 79 87 88 73 84 88 90 70 81 85 86

0.250 12 64 72 72 71 83 86 88 62 71 74 76

0.250 24 52 59 61 57 66 71 74 47 56 57 62

0.125 3 38 47 53 45 55 60 65 37 45 47 48

0.125 6 71 82 85 73 85 88 90 67 80 82 83

0.125 12 85 91 91 81 93 94 94 79 90 91 92

0.125 24 86 93 94 80 94 95 95 79 92 93 94

Table 9.108: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 2 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 96 100 100 96 100 100 100 96 100 100 100

1.000 6 52 69 73 55 67 71 71 50 60 64 65

1.000 12 29 45 55 42 44 48 51 31 35 36 37

1.000 24 26 44 50 38 49 56 63 29 34 37 42

0.500 3 97 100 100 96 100 100 100 96 100 100 100

0.500 6 65 73 74 72 78 78 79 65 71 72 74

0.500 12 57 63 67 53 67 71 73 44 57 60 61

0.500 24 59 71 73 65 72 80 81 60 66 71 73

0.250 3 94 98 98 94 99 99 99 94 98 98 98

0.250 6 90 98 98 87 97 98 98 87 97 98 98

0.250 12 82 93 95 83 94 94 95 81 93 93 93

0.250 24 75 85 86 81 89 89 91 77 84 84 84

0.125 3 60 65 66 61 68 69 73 59 65 65 65

0.125 6 86 94 95 81 94 96 96 81 92 94 95

0.125 12 88 95 95 91 95 96 97 90 94 95 95

0.125 24 86 95 96 88 95 95 95 88 95 95 95

Table 9.109: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 3 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 98 100 100 97 100 100 100 97 100 100 100

1.000 6 84 89 89 85 92 93 93 82 88 88 88

1.000 12 52 62 68 59 66 69 72 50 56 60 63

1.000 24 36 46 55 45 53 56 61 36 42 45 48

0.500 3 98 100 100 96 100 100 100 96 100 100 100

0.500 6 88 94 95 85 94 95 95 84 91 91 91

0.500 12 79 85 88 76 87 89 89 74 84 85 85

0.500 24 75 83 85 73 84 87 88 73 81 84 84

0.250 3 93 97 97 91 99 99 99 91 97 97 97

0.250 6 97 100 100 95 99 99 99 95 99 99 99

0.250 12 93 100 100 94 99 99 99 94 99 99 99

0.250 24 87 96 96 91 100 100 100 88 96 97 97

0.125 3 62 68 70 62 69 71 73 60 65 66 66

0.125 6 93 97 97 87 96 97 97 86 95 96 96

0.125 12 93 99 99 93 100 100 100 93 99 99 99

0.125 24 91 96 97 90 98 98 99 90 96 96 96

Table 9.110: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 4 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 98 100 100 97 100 100 100 97 100 100 100

1.000 6 94 99 99 88 96 98 98 88 96 98 98

1.000 12 66 73 77 68 77 78 80 61 70 72 72

1.000 24 48 59 67 53 59 65 70 46 53 57 60

0.500 3 98 100 100 95 100 100 100 95 100 100 100

0.500 6 96 99 99 92 99 99 99 92 99 99 99

0.500 12 92 98 98 90 100 100 100 88 98 98 98

0.500 24 86 92 94 86 95 96 96 85 90 91 92

0.250 3 93 97 97 92 99 99 99 92 97 97 97

0.250 6 91 99 99 89 99 99 99 89 99 99 99

0.250 12 91 100 100 93 100 100 100 93 100 100 100

0.250 24 93 99 99 87 99 99 99 87 99 99 99

0.125 3 61 65 66 63 69 70 73 59 63 65 65

0.125 6 80 94 94 82 93 94 94 81 92 93 93

0.125 12 89 98 98 89 97 98 98 89 97 98 98

0.125 24 93 98 98 87 99 99 100 86 98 98 98

Table 9.111: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 5 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

1.000 3 98 100 100 97 100 100 100 97 100 100 100

1.000 6 98 100 100 96 99 100 100 96 99 100 100

1.000 12 85 90 92 85 94 94 94 81 89 89 90

1.000 24 73 80 84 74 80 83 86 71 76 79 81

0.500 3 98 100 100 96 100 100 100 96 100 100 100

0.500 6 93 96 96 90 96 96 96 88 94 94 95

0.500 12 91 98 98 90 98 99 99 90 97 98 98

0.500 24 92 96 97 91 98 99 99 90 96 97 97

0.250 3 94 98 98 93 99 99 99 93 98 98 98

0.250 6 77 87 88 78 91 94 94 76 86 89 90

0.250 12 97 100 100 90 100 100 100 90 100 100 100

0.250 24 86 96 96 90 99 100 100 87 95 96 96

0.125 3 66 69 71 67 75 77 79 61 68 71 72

0.125 6 54 71 75 66 78 81 84 58 68 71 74

0.125 12 82 98 98 83 96 98 98 83 96 98 98

0.125 24 93 99 99 86 99 99 99 86 99 99 99

Table 9.112: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 6 sensors present to record data from the FDM approximation of u.
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Figure 9.89: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 1 sensor present, whereas on the RHS there are 2 sensors present.
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Figure 9.90: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 1 sensor present.
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Figure 9.91: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 2 sensors present.
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Figure 9.92: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 3 sensors present, whereas on the RHS there are 4 sensors present.
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Figure 9.93: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 3 sensors present.



APPENDIX D 372

Figure 9.94: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 4 sensors present.
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Figure 9.95: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 5 sensors present, whereas on the RHS there are 6 sensors present.
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Figure 9.96: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 5 sensors present.
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Figure 9.97: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 6 sensors present.
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Figure 9.98: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 1 sensor present, whereas on

the RHS there are 2 sensors present.



APPENDIX D 377

Figure 9.99: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 1

sensor present.
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Figure 9.100: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 2

sensors present.



APPENDIX D 379

Figure 9.101: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 3 sensors present, whereas

on the RHS there are 4 sensors present.
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Figure 9.102: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 3

sensors present.
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Figure 9.103: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 4

sensors present.
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Figure 9.104: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 150, M = 15 and L = 18000, and F = 150Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 5 sensors present, whereas

on the RHS there are 6 sensors present.
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Figure 9.105: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 5

sensors present.
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Figure 9.106: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 150, M = 15 and L = 18000, and F = 150Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 6

sensors present.
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D.3 2D model problem with 1NBC and a disturbance frequency

F = 300Hz

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 89 98 99 82 82 91 91 81 82 90 91

0.125 6 86 94 95 91 91 95 95 88 88 88 91

Table 9.113: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 1 sensor present to

record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 99 99 100 98 98 99 99 98 98 99 99

0.125 6 97 100 100 92 92 97 97 92 92 96 97

Table 9.114: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 2 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

Table 9.115: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 3 sensors present

to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

Table 9.116: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 4 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

Table 9.117: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 5 sensors present

to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 100 100 100 100 100 100 100 100 100 100 100

0.125 6 100 100 100 100 100 100 100 100 100 100 100

Table 9.118: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 6 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 37 81 89 46 58 72 78 40 54 63 72

0.125 6 28 74 82 43 55 65 73 38 52 60 70

Table 9.119: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 1 sensor present to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 57 93 99 64 71 74 80 62 71 74 79

0.125 6 59 85 90 63 74 79 82 60 72 78 81

Table 9.120: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 2 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 53 91 100 59 73 80 84 56 73 80 84

0.125 6 76 96 97 77 88 92 95 76 87 92 94

Table 9.121: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 3 sensors present to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 63 96 100 66 76 79 86 65 76 79 86

0.125 6 76 98 98 83 92 92 94 83 92 92 93

Table 9.122: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 4 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 69 94 100 75 83 84 89 73 83 84 89

0.125 6 85 100 100 87 93 95 97 86 93 95 97

Table 9.123: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 5 sensors present to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 71 95 99 68 77 82 86 67 77 82 86

0.125 6 82 98 100 87 96 98 99 87 95 98 99

Table 9.124: 2D model problem with 1NBC: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 6 sensors present to record data from the FDM approximation of u.
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Figure 9.107: 2D model problem with 1NBC: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 1 sensor present, whereas on the RHS there are 2 sensors present.
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Figure 9.108: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 1 sensor present.
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Figure 9.109: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 2 sensors present.
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Figure 9.110: 2D model problem with 1NBC: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 3 sensors present, whereas on the RHS there are 4 sensors present.
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Figure 9.111: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 3 sensors present.
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Figure 9.112: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 4 sensors present.
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Figure 9.113: 2D model problem with 1NBC: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 5 sensors present, whereas on the RHS there are 6 sensors present.
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Figure 9.114: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 5 sensors present.
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Figure 9.115: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 6 sensors present.
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Figure 9.116: 2D model problem with 1NBC: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 1 sensor present, whereas on

the RHS there are 2 sensors present.
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Figure 9.117: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 1

sensor present.
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Figure 9.118: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 2

sensors present.
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Figure 9.119: 2D model problem with 1NBC: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 3 sensors present, whereas

on the RHS there are 4 sensors present.
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Figure 9.120: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 3

sensors present.



APPENDIX D 405

Figure 9.121: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 4

sensors present.
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Figure 9.122: 2D model problem with 1NBC: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 5 sensors present, whereas

on the RHS there are 6 sensors present.



APPENDIX D 407

Figure 9.123: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 5

sensors present.
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Figure 9.124: 2D model problem with 1NBC: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 6

sensors present.
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D.4 2D model problem with 3NBCs and a disturbance frequency

F = 300Hz

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 68 87 90 70 70 89 89 69 69 74 86

0.125 6 72 80 84 78 78 90 90 76 76 78 83

Table 9.125: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 1 sensor present to

record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 85 97 99 85 85 91 91 85 85 88 91

0.125 6 93 97 97 95 95 95 95 95 95 95 95

Table 9.126: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 2 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 75 99 99 66 66 93 93 66 66 78 93

0.125 6 100 100 100 99 99 100 100 99 99 100 100

Table 9.127: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 3 sensors present

to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 89 100 100 75 75 92 92 75 75 88 92

0.125 6 99 100 100 99 99 100 100 99 99 100 100

Table 9.128: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 4 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 85 100 100 82 82 98 98 82 82 90 98

0.125 6 97 99 100 97 97 100 100 97 97 99 100

Table 9.129: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 5 sensors present

to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 96 100 100 92 92 97 97 92 92 94 97

0.125 6 82 98 100 76 76 92 92 76 76 87 92

Table 9.130: 2D model problem with 3NBCs: The success rate for different Ts and d

values, used to form our SVD from the explicit FDM approximation of u on a mesh with

dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 disturbance

locations positioned where the likelihood function is evaluated, and 6 sensors present

to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 32 73 81 32 46 54 61 29 39 51 54

0.125 6 23 60 67 31 48 62 68 26 39 53 58

Table 9.131: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 1 sensor present to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 41 79 85 47 60 66 70 44 56 62 65

0.125 6 49 73 81 48 65 71 74 43 59 66 70

Table 9.132: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 2 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 60 97 98 57 71 77 82 56 70 75 81

0.125 6 57 79 82 48 58 66 71 46 55 61 69

Table 9.133: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 3 sensors present to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 69 100 100 46 56 62 64 46 56 62 64

0.125 6 73 96 98 62 74 79 84 62 73 78 83

Table 9.134: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 4 sensors present to record data from the FDM approximation of u.
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Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 62 99 100 46 55 62 67 45 55 62 66

0.125 6 82 97 98 68 84 87 90 68 84 87 90

Table 9.135: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 5 sensors present to record data from the FDM approximation of u.

Success Rate

|x-error| |y-error| |Euclidean-error|

Ts d 1% 5% 10% 10% 15% 20% 25% 10% 15% 20% 25%

0.125 3 65 99 100 50 63 68 70 49 63 68 70

0.125 6 69 98 99 68 81 86 87 68 80 86 87

Table 9.136: 2D model problem with 3NBCs: The success rate for different Ts and

d values, used to form our SVD from the explicit FDM approximation of u on a mesh

with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation

duration of T = 3 seconds. These probabilistic results come from 100 random disturbance

locations, and 6 sensors present to record data from the FDM approximation of u.
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Figure 9.125: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 1 sensor present, whereas on the RHS there are 2 sensors present.
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Figure 9.126: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 1 sensor present.
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Figure 9.127: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 2 sensors present.



APPENDIX D 418

Figure 9.128: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 3 sensors present, whereas on the RHS there are 4 sensors present.
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Figure 9.129: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 3 sensors present.
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Figure 9.130: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 4 sensors present.
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Figure 9.131: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

disturbance locations positioned where the likelihood function is evaluated. The results

on the LHS have 5 sensors present, whereas on the RHS there are 6 sensors present.
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Figure 9.132: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 5 sensors present.
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Figure 9.133: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 disturbance locations positioned where

the likelihood function is evaluated, with 6 sensors present.
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Figure 9.134: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 1 sensor present, whereas on

the RHS there are 2 sensors present.
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Figure 9.135: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 1

sensor present.
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Figure 9.136: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 2

sensors present.
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Figure 9.137: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 3 sensors present, whereas

on the RHS there are 4 sensors present.
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Figure 9.138: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 3

sensors present.
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Figure 9.139: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 4

sensors present.
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Figure 9.140: 2D model problem with 3NBCs: The success rate given |x-error| for

different Ts and d values, used to form our SVD from the explicit FDM approximation

of u on a mesh with dimensions of N = 500, M = 50 and L = 45000, and F = 300Hz

over a simulation duration of T = 3 seconds. These probabilistic results come from 100

random disturbance locations. The results on the LHS have 5 sensors present, whereas

on the RHS there are 6 sensors present.
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Figure 9.141: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 5

sensors present.
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Figure 9.142: 2D model problem with 3NBCs: The success rate given |y-error| on the

LHS, and |Euclidean-error| on the RHS. We use an array of different Ts and d values, used

to form our SVD from the explicit FDM approximation of u on a mesh with dimensions

of N = 500, M = 50 and L = 45000, and F = 300Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 100 random disturbance locations, with 6

sensors present.



Appendix E: Results for chapter 7

E.1 Using approximations of ∂u/∂t for sensor traces

Success Rate

Ts d 1% 5% 10%

1.000 3 28 44 48

1.000 6 32 42 42

1.000 12 44 48 48

1.000 24 42 46 46

0.500 3 36 42 46

0.500 6 38 46 46

0.500 12 48 52 52

0.500 24 46 52 52

0.250 3 38 50 50

0.250 6 30 44 46

0.250 12 46 58 58

0.250 24 42 50 52

0.125 3 38 48 52

0.125 6 34 44 46

0.125 12 50 60 64

0.125 24 46 58 58

Table 9.137: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 1 sensor present to record the

approximations of ∂u/∂t only.

Success Rate

Ts d 1% 5% 10%

1.000 3 60 72 78

1.000 6 66 68 70

1.000 12 48 56 56

1.000 24 62 70 74

0.500 3 70 78 80

0.500 6 52 60 68

0.500 12 44 54 56

0.500 24 50 60 62

0.250 3 60 68 70

0.250 6 66 72 74

0.250 12 50 66 70

0.250 24 56 66 70

0.125 3 56 66 66

0.125 6 58 74 76

0.125 12 54 68 68

0.125 24 62 66 74

Table 9.138: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 2 sensors present to record the

approximations of ∂u/∂t only.
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Success Rate

Ts d 1% 5% 10%

1.000 3 92 94 94

1.000 6 98 98 98

1.000 12 98 98 98

1.000 24 98 98 98

0.500 3 96 96 96

0.500 6 100 100 100

0.500 12 98 98 98

0.500 24 98 98 98

0.250 3 92 92 92

0.250 6 98 98 98

0.250 12 92 98 98

0.250 24 98 98 98

0.125 3 86 88 90

0.125 6 96 96 96

0.125 12 96 98 98

0.125 24 96 100 100

Table 9.139: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 3 sensors present to record the

approximations of ∂u/∂t only.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 98 98 98

0.500 6 98 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 98 100 100

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 94 98 98

0.125 6 98 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.140: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 4 sensors present to record the

approximations of ∂u/∂t only.
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Success Rate

Ts d 1% 5% 10%

1.000 3 54 58 60

1.000 6 98 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 64 74 76

0.500 6 98 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 70 74 76

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 70 82 82

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.141: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 5 sensors present to record the

approximations of ∂u/∂t only.

Success Rate

Ts d 1% 5% 10%

1.000 3 100 100 100

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 98 98 98

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 94 94 94

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.142: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 6 sensors present to record the

approximations of ∂u/∂t only.
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Success Rate

Ts d 1% 5% 10%

1.000 3 30 46 48

1.000 6 32 46 46

1.000 12 54 62 62

1.000 24 44 60 60

0.500 3 20 38 48

0.500 6 38 52 52

0.500 12 42 64 66

0.500 24 34 50 50

0.250 3 26 46 50

0.250 6 36 56 58

0.250 12 40 58 58

0.250 24 40 46 48

0.125 3 28 36 38

0.125 6 26 38 40

0.125 12 32 48 50

0.125 24 52 54 56

Table 9.143: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 1 sensor present to record

the approximations of ∂u/∂t only.

Success Rate

Ts d 1% 5% 10%

1.000 3 38 50 52

1.000 6 54 64 64

1.000 12 36 62 64

1.000 24 38 58 60

0.500 3 38 46 54

0.500 6 50 58 58

0.500 12 42 56 62

0.500 24 40 60 64

0.250 3 38 58 58

0.250 6 42 48 56

0.250 12 28 42 46

0.250 24 52 64 66

0.125 3 34 50 52

0.125 6 30 52 54

0.125 12 36 56 56

0.125 24 34 54 58

Table 9.144: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 2 sensors present to

record the approximations of ∂u/∂t only.
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Success Rate

Ts d 1% 5% 10%

1.000 3 70 74 74

1.000 6 74 84 84

1.000 12 82 88 90

1.000 24 86 90 90

0.500 3 58 70 72

0.500 6 80 84 86

0.500 12 76 84 86

0.500 24 86 94 94

0.250 3 50 54 54

0.250 6 78 84 84

0.250 12 82 92 92

0.250 24 82 86 86

0.125 3 66 76 76

0.125 6 78 88 88

0.125 12 82 84 88

0.125 24 78 84 84

Table 9.145: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 3 sensors present to

record the approximations of ∂u/∂t only.

Success Rate

Ts d 1% 5% 10%

1.000 3 70 78 78

1.000 6 82 84 84

1.000 12 98 98 98

1.000 24 94 96 96

0.500 3 70 76 80

0.500 6 96 96 96

0.500 12 98 98 98

0.500 24 90 94 94

0.250 3 66 66 68

0.250 6 90 96 96

0.250 12 94 98 98

0.250 24 98 100 100

0.125 3 68 76 80

0.125 6 84 94 94

0.125 12 90 92 92

0.125 24 90 90 90

Table 9.146: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 4 sensors present to

record the approximations of ∂u/∂t only.
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Success Rate

Ts d 1% 5% 10%

1.000 3 38 46 50

1.000 6 98 98 98

1.000 12 96 100 100

1.000 24 96 100 100

0.500 3 42 54 58

0.500 6 92 100 100

0.500 12 96 100 100

0.500 24 92 98 98

0.250 3 48 56 58

0.250 6 84 96 96

0.250 12 100 100 100

0.250 24 96 100 100

0.125 3 54 56 60

0.125 6 88 98 98

0.125 12 96 98 98

0.125 24 98 100 100

Table 9.147: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 5 sensors present to

record the approximations of ∂u/∂t only.

Success Rate

Ts d 1% 5% 10%

1.000 3 66 74 76

1.000 6 98 100 100

1.000 12 96 100 100

1.000 24 98 100 100

0.500 3 72 76 84

0.500 6 88 96 96

0.500 12 98 100 100

0.500 24 100 100 100

0.250 3 64 66 68

0.250 6 96 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 72 74 76

0.125 6 90 98 98

0.125 12 98 98 98

0.125 24 96 98 98

Table 9.148: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 6 sensors present to

record the approximations of ∂u/∂t only.



APPENDIX E 439

Figure 9.143: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 disturbance locations positioned where

the likelihood function is evaluated. The results on the left-hand side have 1 sensor

present, and on the right-hand side 2 sensors were present with approximations of ∂u/∂t

only.



APPENDIX E 440

Figure 9.144: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 disturbance locations positioned where

the likelihood function is evaluated. The results on the left-hand side have 3 sensors

present, and on the right-hand side 4 sensors were present with approximations of ∂u/∂t

only.
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Figure 9.145: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 disturbance locations positioned where

the likelihood function is evaluated. The results on the left-hand side have 5 sensors

present, and on the right-hand side 6 sensors were present with approximations of ∂u/∂t

only.
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Figure 9.146: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 random disturbance locations. The

results on the left-hand side have 1 sensor present, and on the right-hand side 2 sensors

were present with approximations of ∂u/∂t only.



APPENDIX E 443

Figure 9.147: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 random disturbance locations. The

results on the left-hand side have 3 sensors present, and on the right-hand side 4 sensors

were present with approximations of ∂u/∂t only.
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Figure 9.148: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 random disturbance locations. The

results on the left-hand side have 5 sensors present, and on the right-hand side 6 sensors

were present with approximations of ∂u/∂t only.
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E.2 Using approximations of u and ∂u/∂t for sensor traces

Success Rate

Ts d 1% 5% 10%

1.000 3 44 56 60

1.000 6 32 36 38

1.000 12 36 42 44

1.000 24 50 56 58

0.500 3 22 36 40

0.500 6 38 48 48

0.500 12 50 60 60

0.500 24 52 58 60

0.250 3 42 50 50

0.250 6 36 52 52

0.250 12 56 66 66

0.250 24 52 66 66

0.125 3 30 54 54

0.125 6 42 58 58

0.125 12 38 52 54

0.125 24 44 52 56

Table 9.149: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 1 sensor present to record the

approximations of u and ∂u/∂t.

Success Rate

Ts d 1% 5% 10%

1.000 3 74 76 78

1.000 6 50 60 64

1.000 12 58 68 70

1.000 24 62 68 70

0.500 3 76 80 80

0.500 6 60 66 66

0.500 12 54 60 62

0.500 24 52 62 64

0.250 3 58 68 68

0.250 6 48 54 58

0.250 12 46 62 62

0.250 24 56 66 70

0.125 3 44 64 64

0.125 6 60 70 72

0.125 12 48 60 62

0.125 24 62 68 74

Table 9.150: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 2 sensors present to record the

approximations of u and ∂u/∂t.
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Success Rate

Ts d 1% 5% 10%

1.000 3 94 96 96

1.000 6 98 98 98

1.000 12 98 100 100

1.000 24 96 100 100

0.500 3 96 96 96

0.500 6 98 98 98

0.500 12 94 94 94

0.500 24 94 96 96

0.250 3 94 94 94

0.250 6 96 96 96

0.250 12 98 98 100

0.250 24 98 98 98

0.125 3 96 98 100

0.125 6 96 98 98

0.125 12 98 100 100

0.125 24 98 98 98

Table 9.151: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 3 sensors present to record the

approximations of u and ∂u/∂t.

Success Rate

Ts d 1% 5% 10%

1.000 3 96 96 96

1.000 6 100 100 100

1.000 12 98 100 100

1.000 24 96 98 98

0.500 3 96 100 100

0.500 6 100 100 100

0.500 12 100 100 100

0.500 24 98 100 100

0.250 3 94 94 94

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 100 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.152: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 4 sensors present to record the

approximations of u and ∂u/∂t.
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Success Rate

Ts d 1% 5% 10%

1.000 3 58 64 68

1.000 6 98 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 52 64 68

0.500 6 96 98 98

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 70 74 74

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 64 70 70

0.125 6 98 98 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.153: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 5 sensors present to record the

approximations of u and ∂u/∂t.

Success Rate

Ts d 1% 5% 10%

1.000 3 98 98 98

1.000 6 100 100 100

1.000 12 100 100 100

1.000 24 100 100 100

0.500 3 100 100 100

0.500 6 98 100 100

0.500 12 100 100 100

0.500 24 100 100 100

0.250 3 98 98 98

0.250 6 100 100 100

0.250 12 100 100 100

0.250 24 100 100 100

0.125 3 100 100 100

0.125 6 98 100 100

0.125 12 100 100 100

0.125 24 100 100 100

Table 9.154: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000, a

disturbance frequency of F = 25Hz over

a simulation duration of T = 3 seconds.

These probabilistic results come from 50

disturbance locations positioned where

the likelihood function is evaluated,

and 6 sensors present to record the

approximations of u and ∂u/∂t.
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Success Rate

Ts d 1% 5% 10%

1.000 3 24 38 38

1.000 6 36 42 42

1.000 12 38 46 48

1.000 24 42 60 62

0.500 3 20 44 54

0.500 6 32 52 52

0.500 12 32 42 44

0.500 24 46 58 58

0.250 3 30 42 46

0.250 6 36 58 58

0.250 12 38 54 58

0.250 24 38 54 54

0.125 3 28 46 50

0.125 6 36 54 60

0.125 12 28 40 42

0.125 24 44 58 60

Table 9.155: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, a disturbance

frequency of F = 25Hz over a

simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 1 sensor present to

record the approximations of u and

∂u/∂t.

Success Rate

Ts d 1% 5% 10%

1.000 3 36 46 52

1.000 6 36 52 54

1.000 12 38 58 58

1.000 24 40 62 64

0.500 3 44 48 56

0.500 6 36 52 58

0.500 12 42 54 56

0.500 24 42 60 62

0.250 3 42 54 54

0.250 6 48 62 62

0.250 12 44 56 56

0.250 24 40 58 60

0.125 3 46 60 62

0.125 6 38 60 62

0.125 12 36 52 54

0.125 24 48 68 68

Table 9.156: The 1D model success

rate for different Ts and d values,

used to form our SVD from the

explicit FDM approximation of u on

a mesh with dimensions of N =

50 and L = 9000, a disturbance

frequency of F = 25Hz over a

simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 2 sensors present to

record the approximations of u and

∂u/∂t.
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Success Rate

Ts d 1% 5% 10%

1.000 3 62 66 66

1.000 6 70 78 78

1.000 12 74 86 88

1.000 24 70 78 80

0.500 3 64 76 78

0.500 6 74 78 78

0.500 12 76 90 90

0.500 24 84 88 90

0.250 3 66 68 70

0.250 6 78 84 84

0.250 12 82 94 94

0.250 24 80 96 96

0.125 3 52 64 64

0.125 6 72 76 80

0.125 12 78 84 84

0.125 24 74 78 78

Table 9.157: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 3 sensors present to

record the approximations of u and

∂u/∂t.

Success Rate

Ts d 1% 5% 10%

1.000 3 68 74 76

1.000 6 90 90 90

1.000 12 96 100 100

1.000 24 98 98 100

0.500 3 78 84 84

0.500 6 88 92 92

0.500 12 94 98 98

0.500 24 88 96 96

0.250 3 58 66 66

0.250 6 90 98 98

0.250 12 88 96 98

0.250 24 92 96 98

0.125 3 60 70 72

0.125 6 92 94 94

0.125 12 96 100 100

0.125 24 92 96 96

Table 9.158: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 4 sensors present to

record the approximations of u and

∂u/∂t.
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Success Rate

Ts d 1% 5% 10%

1.000 3 40 48 52

1.000 6 90 100 100

1.000 12 94 100 100

1.000 24 96 98 98

0.500 3 48 54 58

0.500 6 92 100 100

0.500 12 94 100 100

0.500 24 98 100 100

0.250 3 36 44 52

0.250 6 84 92 92

0.250 12 100 100 100

0.250 24 96 100 100

0.125 3 50 62 64

0.125 6 86 92 92

0.125 12 92 100 100

0.125 24 92 96 96

Table 9.159: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 5 sensors present to

record the approximations of u and

∂u/∂t.

Success Rate

Ts d 1% 5% 10%

1.000 3 76 80 80

1.000 6 92 98 98

1.000 12 98 100 100

1.000 24 98 98 98

0.500 3 70 76 80

0.500 6 94 98 98

0.500 12 96 100 100

0.500 24 96 98 98

0.250 3 60 60 62

0.250 6 94 100 100

0.250 12 98 100 100

0.250 24 98 100 100

0.125 3 70 76 78

0.125 6 90 96 98

0.125 12 94 98 98

0.125 24 98 100 100

Table 9.160: The 1D model success

rate for different Ts and d values, used

to form our SVD from the explicit FDM

approximation of u on a mesh with

dimensions of N = 50 and L = 9000,

a disturbance frequency of F = 25Hz

over a simulation duration of T = 3

seconds. These probabilistic results

come from 50 random disturbance

locations, and 6 sensors present to

record the approximations of u and

∂u/∂t.
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Figure 9.149: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 disturbance locations positioned where

the likelihood function is evaluated. The results on the left-hand side have 1 sensor

present, and on the right-hand side 2 sensors were present with approximations of u and

∂u/∂t.



APPENDIX E 452

Figure 9.150: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 disturbance locations positioned where

the likelihood function is evaluated. The results on the left-hand side have 3 sensors

present, and on the right-hand side 4 sensors were present with approximations of u and

∂u/∂t.
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Figure 9.151: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 disturbance locations positioned where

the likelihood function is evaluated. The results on the left-hand side have 5 sensors

present, and on the right-hand side 6 sensors were present with approximations of u and

∂u/∂t.



APPENDIX E 454

Figure 9.152: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 random disturbance locations. The

results on the left-hand side have 1 sensor present, and on the right-hand side 2 sensors

were present with approximations of u and ∂u/∂t.
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Figure 9.153: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 random disturbance locations. The

results on the left-hand side have 3 sensors present, and on the right-hand side 4 sensors

were present with approximations of u and ∂u/∂t.
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Figure 9.154: The 1D model success rate for different Ts and d values, used to form our

SVD from the explicit FDM approximation of u on a mesh with dimensions of N = 50

and L = 9000, a disturbance frequency of F = 25Hz over a simulation duration of T = 3

seconds. These probabilistic results come from 50 random disturbance locations. The

results on the left-hand side have 5 sensors present, and on the right-hand side 6 sensors

were present with approximations of u and ∂u/∂t.
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