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Abstract. Healthcare data holds huge societal and monetary value. It
contains information about how disease manifests within populations
over time, and therefore could be used to improve public health dramat-
ically. To the growing AI in health industry, this data offers huge poten-
tial in generating markets for new technologies in healthcare. However,
primary care data is extremely sensitive. It contains data on individu-
als that is of a highly personal nature. As a result, many countries are
reluctant to release this resource. This paper explores some key issues
in the use of synthetic data as a substitute for real primary care data:
Handling the complexities of real world data to transparently capture
realistic distributions and relationships, modelling time, and minimising
the matching of real patients to synthetic datapoints. We show that if
the correct modelling approaches are used, then transparency and trust
can be ensured in the underlying distributions and relationships of the
resulting synthetic datasets. What is more, these datasets offer a strong
level of privacy through lower risks of identifying real patients.
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1 Introduction

Health care data encodes vast amounts of individual patients’ visits over years
of their life. It represents a detailed if noisy and uneven record of an entire pop-
ulation including cases of many different types of disease. If this data were to
be freely available it would clearly enrich society with respect to our knowledge
of disease and population health. However, there are convincing reasons to pro-
tect this data. People are generally very wary of enabling their personal data,
including their primary care information, from being made available without
any protection. The General Data Protection Regulations, implemented in 2018
[4], aims to protect individuals from their personal data being made public (or
being unknowingly released to companies or institutions). As a result, there is
a demand for the generation of synthetic data: data that mirrors many of the
characteristics of real Ground Truth (GT) data with similar distributions and



relationships but made up of purely simulated patients. These datasets would
offer the ability to train and validate many of the state-of-the-art machine learn-
ing models that are emerging, which in turn should lead to better detection and
managing of many different diseases.

Previously, there have been a number of key approaches to working with syn-
thetic data. The concept of k-anonymisation [10] works with the idea of measur-
ing how likely it is to identify an individual from a small population, e-differential
privacy [9] explores how aggregates of data can be released without identifying
individuals from multiple requests of samples, generative adversarial networks
have been used to build highly parameterised models from large datasets [11],
[14] whilst PrivBayes highlighted the importance of transparency of the under-
lying model as well as the concept of adding noise to ensure no individual can be
re-identified [7]. We agree that underlying models must be transparent so that
there is confidence and trust in the generated data and as a result, we focus on
the use of graphical model approaches based on our earlier work [1]. If a GAN is
used to generate data where knowledge of the underlying dependencies are not
clear, then there are risks that biases, incorrect dependencies or even prejudices
can be introduced [15].

In this paper we explore three fundamental questions: Firstly, can probabilis-
tic graphical models be used to capture key distributions and relationships to
generate realistic synthetic data? Secondly, can they be extended to longitudinal
data such as is common in primary care settings? Finally, does the generated
synthetic data protect against the identification of real patients and their sensi-
tive features? In the next section we explore the methods, datasets and results
of our experiments that explore these questions, before concluding.

2 Methods and Results

2.1 Datasets

MIMIC : For the first part of this paper we will explore the potential of Bayesian
Networks (BNs) for modelling and generating synthetic data on the MIMIC III
dataset [2]. MIMIC III is a publicly available dataset that records details of the
stay of a patient. It contains general information about the subjects such as
the age, religion, ethnicity, type of healthcare insurance. It also contains clinical
information, such as the diagnoses which are represented by ICD-9 codes among
the stay in the hospital. The dataset has a total number of 47,764 observations
with 36,243 different subjects. All numerical data was discretised into 5 states
using a frequency based approach ensuring a similar number of each state for all
features.

CPRD : In order to demonstrate the ability of probabilistic graphical mod-
els to deal with temporal patient data we use the Clinical Practice Research
Datalink (CPRD Aurum Database) [3]. CPRD primary care data cover 21%
of the UK population and include over over 17,400 clinical event types across
patients with 25% of the patient data tracing back at least 20 years. We will fo-
cus on two key temporal features related to blood pressure, namely the Systolic



Blood Pressure (SBP) and Diastolic Blood Pressure (DBP). This will be used to
see if the BN modelling methods used on the MIMIC dataset can be extended
to generate high-fidelity synthetic data reflecting the temporal characteristics.

2.2 Modelling MIMIC data with Bayesian Networks

A Bayesian Network (BN) encodes the joint distribution of a dataset using a
combination of a graphical structure that represents conditional independence
between features and local conditional probability distributions [5] (see Figure
1a for an example). They facilitate the integration of expert knowledge and data,
and can handle missing data naturally. Inference can be used to extract posterior
probabilities over sets of features given some observations. This means that they
can be used for classification (Figure 1b) and prediction. They are also generative
models and can be used to generate samples of data based on the underlying
distributions and independencies. What is more, they can be inferred from data
using a number of different approaches including score-and-search methods [12]
or contraint based methods [5]. An extension of the BN is the Dynamic Bayesian
Network (DBN) which models time-series (Figure 1c) and the Hidden Markov
Model which encodes an unmeasured latent process [6] (Figure 1d).

Fig. 1. Example A-Bayesian Network, B- Naive Bayes Classifier, C - Dynamic Bayesian
Network and D- Hidden Markov Model

In order to test the BN framework on the MIMIC data, we used a well known
BN learning algorithm that can deal with missing data known as Structural Ex-
pectation Maximization (SEM) to infer the structure and parameters of the
model [13]. A key advantage of the BN is that it models the data in a transpar-
ent way where relationships between variables can be hard-coded or removed to



influence learning.

Figure 2a shows the resulting structure. Two relationships that were known
to exist (between blood disease and infections, and between age and circulatory
conditions) were manually added. We then used this parameterised model to
generate data synthetic data and compare the correlations (Figure 2b and c) and
distributions (Figure 3) to the GT data. It can be seen that both the correlations
and distributions are extremely similar to the GT data. We applied Kullbaeck
Liebler tests and found no significant difference between all distributions. We
wanted to see how this modelling technique could be extended to temporal data
that is common in many health datasets by using the CPRD data.

2.3 Modelling Time

We exploited a natural extension of the BN known as the Dynamic Bayesian
Network (DBN) which allows model structures over discrete time slices. See Fig-
ure 4a for an example DBN that includes a hidden variable. In fact, the Hidden
Markov Model (HMM) can be seen as a special case of DBN with fixed structure
and a single hidden variable that models an underlying and unobserved process.

We used a hidden variable with 4 hidden states to capture the dynamics
of the relationship between SBP and DBP. Figure 4b shows the resulting state
transition diagram that has been inferred from the data (again using the SEM
algorithm). The plots in Figure 4c show a number of different characteristic com-
parisons between the original time-series ground-truth (GT) and the generated
synthetic time-series. Firstly, in the top row can be seen a simple comparison of
values for each patient for DBP, for SBP, and for the difference between DBP
and SBP. All of these have a tight correlation. On the bottom row can be seen
comparisons of temporal characteristics, namely the Auto-Correlation (ACF) per
patient for DBP and SBP and also the Cross Correlation (CCF) between the
two variables per patient. The ACFs show slightly skewed predictions where the
synthetic data is often slightly lower than the ground truth, whereas the CCFs
show very tight prediction values. These results imply that a realistic time-series
of synthetic patient data can be generated using DBNs.

2.4 Risks of Matching Real Patients to Synthetic Data

Synthetic data offers an ideal way to allow the sharing of data that captures
many of the characteristics of real patient data but without any of the privacy
concerns. However, there is still a risk that synthetic data can be used to match
individuals to simlar synthetic data and infer personal information about them.
For example, if someone has access to some limited ground truth data about
an individual and that information results in the individual being matched to
similar outlying synthetic datapoints, then other more personal information may
be inferred.
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Fig. 2. a) the MIMIC BN and b/c) correlation matrices for ground truth (left) com-
pared to synthetic data (right)



Fig. 3. Synthetic Data Distributions comparing frequencies for GT in red and synthetic
in green



Fig. 4. DBN structure / state transitions and Resulting Data Characteristics



We explored this by looking at outliers in the Ground Truth (GT) data -
those GT patients who have a small number of ”nearest neighbours” which are
significantly separate from the rest of the population of data. We did this by
repeatedly sampling data from a mix of GT data (red in top of Figure 5) and
synthetic data (blue). Synthetic data is generated using the BN methodology
described earlier on CPRD data. Outlying ground truth datapoints (see A and
B in top of Figure 5) are then identified and these are used to explore the nearest
neighbours that are from the synthetic data.

First we calculated the number of outlying ground truth datapoints that
contain a single significant nearest neighbour from the synthetic dataset. This
would mean that many of the characteristics of the synthetic datapoint could
also be characteristics of the ground truth and risks the inferring of personal
information. For example, in Figure 5 (bottom) we can see how 6 attributes
that are known about a real individual can be used to match them to a synthetic
datapoint, and therefore infer more attributes that are mostly the same.

By running 100 repeated samples to calculate these risks we found the re-
sults in Table 1 for 4 different combinations of starting ground truth features.
1. Firstly, notice how the number of GT outliers (first column) only slowly de-
creases as more GT features are made available. This implies that adding more
knowledge of an individual to the attacker does not increase risk greatly. Sec-
ondly, notice that as the number of these available GT features increase, the
number of single synthetic nearest neighbours decrease (column 3 representing
the number of GT outliers with exactly one synthetic nearest neighbour and col-
umn 4 represents this as a proportion of all GT datapoints). Remember a very
low number here may enable one to infer new personal information about the
GT patient by exploring other features in the synthetic datapoint. The observed
fall in number is expected as an attacker can identify more precisely which syn-
thetic data points match our ground truth patients. In our worst case, When we
have 12 features known about a GT patient (in the bottom row) then we can
identify a single nearest synthetic neighbour in only 43.5 out of 6180 cases on
average, which is a real but small risk (0.7%). What is more, in many of these
cases, the synthetic datapoint is not identical to the GT patient in semantically
substantial ways (such as the example in Figure 5 where the nearest synthetic
datapoint is not a stroke sufferer unlike the GT patient).

3 Conclusions

This paper has explored some key issues when attempting to use synthetic data
by learning models from sensitive healthcare data. It has carried out an empirical
analysis on two real datasets using a probabilistic graphical modelling approach
in the form of Bayesian networks for transparently capturing the key charac-
teristics of data and emulating them in generated samples with very positive
results. It has also extended this approach using dynamic Bayesian networks to
model longitudinal data and has been successful in capturing the key temporal
characteristics of blood pressure data. Finally, a set of simulations have been



Fig. 5. Simulating attacking Synthetic Data with limited Ground Truth Info



Table 1. Statistics for matching similar individuals from synthetic data

GT Attributes Num Of GT Num Of GT Num of Proportion of GT
Outliers Patients in Single Synth Outliers with Single

10000 Sample NN Synth NN

age, smoking, region,
gender, ethnicity, ckidney 396.3 6248 113.8 1.82%

age, smoking, region,
gender, ethnicity, bmi,
sbps, ckidney 377 6250 77.7 1.24%

age, smoking, region,
gender, ethnicity, bmi,
choleratio, sbp, sbps,
ckidney 363.1 6289 48.22 0.76%

age, smoking, region,
gender, ethnicity, bmi,
sbps, ckidney, sle,
atyantip, type1, streroid 363.4 6180 43.5 0.70%

carried out to extract risks of matching ground truth data to similar synthetic
data using nearest neighbour analysis and this has shown that whilst the risk
is real, it is remote and the ability to infer information on sensitive features is
extremely difficult.

Whilst this paper has made some very positive findings there are still a
number of issues that need to be explored. For example, the data that is used
to train any model may be biased and it is important that transparent models
are inspected carefully to check for this. This may be easy on relatively small
models such as explored here but for those with many 100s of features this will
become far more tricky. We have looked at only two datasets and considerably
more experimentation is needed to ascertain proper statistics with confidence
bounds for the risks involved in matching real patients to synthetic data.
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