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Abstract—With more uncertainty and variability existing in 
smart grid, deterministic load flow, which is used to analyze the 
operation conditions on a daily routine and planning the power 
systems for future investment, could not solve the problems with 
consideration of renewable generation intermittence and load 
variation. Nowadays, with more attentions are paid to the 
environment, carbon emission problem is one of the main 
concerns in smart grid strategies and planning. It is a great 
opportunity and challenge for planners to take good care of all 
stakeholders’ interests. Multi-objectives need to be considered 
when making a critical decision. This paper presents result 
comparisons between probabilistic optimal load flow and 
probabilistic load flow by considering both carbon emission and 
minimization of power loss of the entire grid. The framework is 
applied to the modified IEEE 14-bus system, which is modeled 
in PowerFactory DIgSILENT, with intermittent wind energy 
source and load variation consideration. 

Index Terms—Probabilistic power flow, optimal power flow, 
power losses optimization, carbon emission 

I. INTRODUCTION 

Smart grid has been advocated in both developed and 
developing countries for decades to deal with energy deficit 
and air pollutions. In traditional power systems, loads 
variation, outages of power lines and generation availability 
have variability and uncertainty to some degrees [1]. With 
large amount of renewable energy sources integrated at 
generation side and new devices distributed in demand side 
like electric vehicles and distributed generations, smart grid 
faces more uncertainty and variability than before [2]. 
Probabilistic load flow is one of the efficient tools for 
analyzing and estimating the entire power network operating 
conditions and planning investment on power system facilities 
with uncertainty and variability considerations [3]. 

Probabilistic power flow (PPF) was firstly proposed to 
solve the load uncertainty by Barbara Borkowska in 1974 [4]. 
Inputs (such as loads and intermittent wind and solar 
generations) with appropriate features (like probability density 
functions (PDF) or cumulative distribution functions (CDF)) 

are necessary for calculating the system state variables with 
uncertainty features. By knowing the probability result of 
these variables, system operational boundary can be obtained 
for further system operating and planning. Generally, there are 
two methods to solve the PPF problems, namely numerical 
methods and analytical methods [5]. The typical method of 
numerical one is Monte-Carlo, while the analytical methods 
including convolution method, point estimate method, and its 
combinations [6-9].  

Probabilistic power flow has been proposed in many 
literatures to solve problems about wind and solar source 
integrating with power system [10-15]. Reference [10] 
proposed a method combined cumulates and Gram-Charlier 
expansions to solve the PLF problems with wind sources 
integrated. An Unscented Transformation method was 
proposed in [11] to solve the PLF problems in a distribution 
system with distributed generations. Reference [12] 
introduced so call “probabilistic distribution load flow” to 
modelling different wind turbines. A discrete point estimate 
method was suggested in [13] based on the measured data of 
wind power.  

There are many literatures about probabilistic optimal load 
flow so far. Reference [16] determined the probabilistic 
distributions of solution based on a first-order second-moment 
method, and the Karush-Kuhn-Tucker (KKT) conditions of 
the probabilistic optimal load flow are transformed into a set 
of non-smooth nonlinear equations, which can be solved by an 
inexact Levenberg-Marquardt algorithm. Reference [17] uses 
probabilistic optimal power flow based on a two-point 
estimate method for locational marginal price calculation. 
Probabilistic optimal power flow by percentiles estimation 
with Weibull probability distribution function of system 
loading is proposed in [18]. The random nature of lower heat 
value of biomass and load were taken into account in 
probabilistic power flow and shuffled frog-leaping algorithm 
is applied in [19] for optimizing allocation of biomass fueled 
gas engine in unbalanced radial systems. 

There are two main methods for lowering carbon emission 
from both the generation side and demand side, namely 



economic dispatch and demand side management [21]. 
Electric loads are regarding as the main reason for carbon 
emission. Increasing demand can lead to heavier loading on 
the generation side. Consequently, more carbon emission is 
produced. Demand side management is one of the effective 
ways to reduce carbon emission. In generation side, because 
different generators have different carbon emission levels, 
economic dispatch can reorganize the generators to achieve 
the optimal result for carbon emission. 

This paper presents result comparisons between 
probabilistic optimal load flow and  probabilistic  load flow 
for minimizing the total power loss with carbon emission 
consideration of the whole power network. The approach 
combines optimal power flow with interior-point algorithm 
and Monte-Carlo sampling method to find out the optimal 
operation points with system uncertainty considerations. The 
paper is organized as follows. Section II introduces the 
mathematical background of the algorithm. In Section III, the 
combination framework to solve the POPF is given in details. 
Section IV gives an illustrative example for the framework. 
Finally, Section V concludes the whole paper and future work 
related on the probabilistic optimal power flow will be stated. 

II. MATHEMATICAL BACKGROUND

Deterministic power flow (DPF), which is used to analyze 
the operation conditions on a daily routine and planning the 
power systems for future investment, can provide system 
states and power flow of a power network with known 
topology and operating parameters. However, DPF can only 
calculate the power flow with specific value of the generators 
and loads. Variability and uncertainty, which are the inherent 
characteristics of the power system, are ignored. Probabilistic 
power flow was proposed to deal with these uncertainty and 
variability in power system by inputs within appropriate 
range, for instance, inputs of intermittence energy sources 
such as wind and solar, and load variations in a reasonable 
range. 

A. Monte-Carlo simulation for PPF
Monte-Carlo simulation is the classical numerical method

to deal with the probability problems. Monte-Carlo method 
can generate random number and random sampling with 
cumulative density function, and iterate the power flow one by 
one. In this paper, two uncertainties, wind generations and 
loads are considered to simulate the probabilistic power flow.  

Load variation probability can be modeled by normal 
distribution function with appropriate standard deviation 
settings. So the sampling function can be obtained by the 
transformation method. Equation (1) gives the sampling 
function of normal distribution function. 
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Where Pi and Qi are the active and reactive power of the 
ith load sample, P, Q and sd are the mean value of the active 
power and reactive power of loads and standard deviation of 
loads respectively.  r1 and r2 are the uniformly distributed 

random number between 0 and 1. In this paper, the standard 
deviation of load sampling sets to 15% as an example. 

Probability of wind speed at wind generation site can be 
modelled by Weibull distribution. Equation (2) illustrates the 
general function of Weibull distribution. 
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Where � is the shape parameter, � is the scale parameter, x 
is the random variables. Therefore, the sampling equation for 
Weibull distribution can be obtained by inverse of Equation 
(2), which is shown in Equation (3). 
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Where Wsi is the wind speed of the ith sample. r3 is the 
uniformly distributed random number within the range of (0, 
1). In this paper, wind speed is modelled with �=2.3, �=8. 
Figure 1 illustrates the shape of the Weibull distribution curve.  
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Fig. 1. Shape of the Weibull distribution curve for wind speed 
application 

By knowing the wind speed of a wind generation site, the 
output power from the wind turbine can be determined. To 
simplify the model, the output power of a wind generator can 
be recognized as linear related to its cut-in and rated speed. 
Figure 2 demonstrates an output power curve of a single wind 
turbine with rated power 2MW. To model the wind generators 
in this study, fixed power factor 0.8 is selected. The output 
power can be modelled with Equation (4). 
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Fig. 2. Single wind turbine output power vs. wind speed 
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Where Pwind is the output wind power, Pr is the rated wind 
power, Ws is the wind speed, Vi, Vr and Vo are the cut-in, rated 
and cut-out wind speed respectively.  

Because the detailed wind turbine is not required, the 
output wind power can be recognized as negative loads. The 
output of a wind farm is modelled aggregately by summing 
the single wind turbines, which is shown in Equation (5). 
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B. Interior-point method for optimal power flow
Optimal power flow with interior-point method is used to

optimize the operation of a power system by minimizing an 
objective function with considering a set of constraints. 
Carbon emission from generators in the whole network can be 
illustrated in Equation (6).  
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Where PGi is the power output from the generator i, NG is 
the total traditional power generators in the network.  

Four constraints are considered in this study, which are 
power flow balancing, generation output limits, operational 
bus voltage limits and branch flow limits. Equality and 
inequality constraints are described as  in Equations (7)-(10). 

1. Power flow balancing
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2. Generation output constraints

min maxiP P P≤ ≤    (8) 

3. Operational bus voltage limits

min maxi i iV V V≤ ≤   (9) 

4. Branch flow limits

line maxi iPF PF≤   (10) 

Where PGen, QGen are the total generated active power and 
reactive power respectively; PLoad and QLoad  are the active 
power and reactive power of the total load respectively; PLoss 
and QLoss are the total power loss of the grid; Pmin, Pmax, Qmin 
and Qmax are the minimum and maximum value of the active 

and reactive power respectively. Pi and Qi are the active and 
reactive power of the generator i; Vmini and Vmaxi are the 
minimum and maximum operational voltage. Generally, the 
voltage boundary is from 0.95 p.u. to 1.05 p.u, Vi is the 
voltage magnitude of the bus i; PFlinei is the power flow of the 
branch i, and PFmaxi is the capacity of line i.  

To solve non-linear optimization problem, an iterative 
interior-point algorithm based on the Newton-Lagrange 
method is used [22]. A slack variable for each inequality 
constraint is introduced to reformulate the constraint equation, 
which is shown in Equation (11). 
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Where H is the set of the inequality constraints. Therefore, 
the logarithmic penalties can be incorporated to the objective 
function. So Equation (6) can be reformulated in Equation 
(12). 
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Where � is the penalty weighting factor, which will be 
decreased from an initial value to a target value to minimize 
the objective function. 

III. THE PROPOSED FRAMEWORK

With random variables values, mean value and standard 
deviation of the load specified, the optimal power flow is 
ready to run. The main procedures can be divided in several 
steps, which are demonstrated below: 

Step 1. The maximum number of sampling is determined and 
initializes all input variables for iteration procedure.  

Step 2. Update the sampling counter and generate samples. 

Step 3. Start the interior-point method to evaluate the 
objective function. 

Step 4. Compute the expected value of the outputs with all 
counted sampling, line loading, generation loadings and 
voltage magnitude, which are concerned in this study. 

Step 5. Save the result and check the sampling criterion, if the 
sampling times reach the maximum number which was set in 
Step 1, the algorithm will be terminated. Otherwise, the 
algorithm will repeat the procedure from Step 2.  

For the interior-point estimation in Step 3 of the Monte-
Carlo procedure, the algorithms can be illustrated in the 
following steps: 

Step 1. Set the initial values and target values, reduction factor 
of the penalty weighting factor and initialize the system data 
by running traditional power flow. 

Step 2. Update the penalty weighting factor by deduction 
factor.  

Step 3. Update the solution and check whether the 
convergence criterion has been achieved. If so, terminate the 
OPF procedure. If not, go back to step 2.  

The complete procedure of the POPF is presented in Figure 3. 
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Fig. 3.  Proposed POPF procedures 

IV. CASE STUDY

Based on the proposed procedure for probabilistic optimal 
load flow, a modified IEEE-14 busbar system model, whose 
topology is shown in Figure 4, is investigated with 
PowerFactory DIgSILENT software package. Revised codes 
with DIgSILENT Programming Language (DPL) for 
probabilistic load flow [20] is used in this study. DPL is an 
interface for automating tasks like decision and flow 
commands, accessing objects, mathematical expressions etc. 
by scripting with C language syntax. In this study, Monte-
Carlo method is adopted and sampling equations in Section II 
is applied to calculate the total power loss of the entire 
network and power injection from the reference machine when 
wind generators output power and loads are changing. 10 wind 
generators with 2MW capacity are aggregated in Bus 8. Three 
transformers with 5 tapping from 0 to ±5% are connected 
between 69kV busbars and 13.8kV busbars. Operational 
limitations of each generator is shown in Table I. Carbon 
intensity ([21], Table I) of each generator is presented in the 
table as well. 

A. PPF for Carbon Emission consideration
To perform a PPF with inclusion of carbon emission,

generators with lower carbon intensity are set as full loading 
condition, and the one with the highest intensity as the 
reference machine, which is connected to the slack bus. Tap 
changer of all transformers are set to 0%.  

Fig. 4. Modified IEEE 14-bus test system 

B. POPF for power loss minimization
Based on the carbon emission consideration, active power

and reactive power dispatch will not participate in the optimal 
power flow. To minimize the power losses of the whole 
network, tap changers of all transformers are 0, ±2.5% and 
±5% of the rated power. To compare the two algorithms, 
reference generator output power of the two cases and the total 
power loss of the two cases are studied. The real value from 
each iteration and expected value of the power injected from 
the slack bus and total power losses are compared. 

Figures 5 and 6 depict the total power loss of the entire 
grid with both algorithms. It can be obviously seen that the 
boundary of the power loss with PPF is larger. In Figure 7, 
slack bus power injection is compared between the two cases. 
Power injection boundary of the POPF case, especially the 
upper limit boundary, is much smaller than that of PPF, which 
indicates the reference generator can produce less power to the 
external grid. When the voltage level of the network is getting 

high, adjusting tapping changer of the transformers will keep 
the iron core loss of the transformer nearly constant. While the 
line loss and the loss of the transformer winding is getting 
smaller. Consequently, the total power loss of the entire grid is 
minimized. The total power from the external grid is getting 
smaller, which implies that the total network power has been 
reduced. Figures 6 and 8 illustrate the expected value of the 
output power from the slack bus changes and total power loss 
with increased number of sampling respectively. Equation (13) 
computes the expected value of selected variables.  

TABLE I 
GENERATION OPERATION PARAMETERS WITH CARBON INTENSITY 

Generation Bus No. PG max Carbon 
Intensity(T/MWh) 

SG Bus 1 100 1.186
G2 Bus 2 70 0.78

SG1 Bus 3 65 0.78
SG2 Bus 6 80 0.434
SG3 Bus 8 65 0.434
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Where m is sampling number, k is the maximum sampling 
number, and xi is the ith value of the sampling. 

It can be seen from Figure 8 that the expected value of the 
output power from the slack bus by POPF is negative. 
Consequently, with the load and wind power variation, the 
probability of grid exporting power to the external grid is 
much higher. 
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Fig. 5.  Total power loss of the entire network during sampling 
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 Fig. 6. The expected power loss of the entire network during 
sampling 
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Fig. 7. Power injection from the reference machine during 
sampling 
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Fig. 8. Power injection from the reference machine during 
sampling 

V. CONCLUSIONS 

Uncertainty and variability are the inherent features in 
power grid. With large renewable energy participation and 
more flexible load integration in smart grid, these features are 
becoming much more apparent. Considering both entire 
network, carbon emission and optimizing the power loss, the 
results show that probabilistic optimal load flow should 
produce a more accurate solution. The results of the 
simulation show that with keeping the carbon emission in the 
lowest level, the power grid can achieve more efficient power 
delivery and keep the power loss in the lowest level. Wind 
energy intermittence and load variations are considered with 
probabilistic variations. 

In future, further modeling details need to be included, 
such as more complicated wind turbine, solar system and 
electric vehicles models. More features such as load shedding 
minimization, transient optimal power flow should also be 
considered. 
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