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Abstract

Academic software development practices often differ from those of commer-
cial development settings, yet only limited research has been conducted on
assessing software development practises in academia. Here we present a
case study of software development practices in four open-source scientific
codes over a period of nine years, characterizing the evolution of their re-
spective development teams, their scientific productivity, and the adoption
(or discontinuation) of specific software engineering practises as the team size
changes. We show that the transient nature of the development team results
in the adoption of different development strategies. We relate measures of
publication output to accumulated numbers of developers and find that for
the projects considered the time-scale for returns on expended development
effort is approximately three years. We discuss the implications of our find-
ings for evaluating the performance of research software development, and in
general any computationally oriented scientific project.
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1. Introduction

Computational simulation and analysis have become integral parts of sci-
entific research in many disciplines. Research using large scale simulations is
often a collaborative effort among scientists and engineers, and tends to re-
quire the combined use of multiple software packages developed by different
groups. These efforts often involve a range of algorithmic fields such as dis-
cretization, mesh generation/pre-processing, domain decomposition, scalable
algebraic solvers, statistical analysis, and visualisation. Given this reliance
on software from multiple groups and specialities, it is important that the
user of the software has confidence that the outcome of the computation
is an accurate proxy for the system being modelled and that it delivers re-
producible results. A rigorous quality assurance system, which helps deliver
accuracy and reproducibility, is a common requirement for software deploy-
ment in industry, and it is increasingly recognised as an essential practice
for scientific software development. Software engineering approaches form
part of a quality assurance system, and may include methods such as water-
fall, prototyping, iterative and incremental development, spiral development,
rapid application development, and extreme programming [7, 27, 37, 28].

Software development practices in academia differ from those in the com-
mercial sector. In the authors’ experience, this is in part due to the rela-
tively small and transient development teams found in academic settings, to
project-focused development, and to the fact that academics are incentivized
to attract funding and create publications, and usually care less about fi-
nancial profit than commercial development. In addition, academic software
development is rarely performed by full time code developers, and if so, these
members are typically hired on short-term contracts with a focus on a spe-
cific subset of the code. Most scientific software is developed by researchers
such as PhD students and PDRAs (post-docs) who split their time between
code development and research activity. This dichotomy has led to a some-
what reluctant and heterogeneous adoption of rigorous software engineering
practices in academic contexts. A survey conducted by Hannay et al. [18]
reveals that developers of scientific software rely mostly on education from
peers and self-study, and they have relatively little formal training in software
engineering. Moreover, Hannay et al. found that scientists tend to rank stan-
dard software engineering practices higher when they work on larger software
projects. Heroux et al. [19] list a number of software practices which they
believe would be easy to adapt and would benefit most scientific software
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development teams. They also note that in the project under consideration,
some practices were only applied to particularly challenging sections of code
and relied on check-lists to make repetitive development and release opera-
tions less error-prone. Jalali and Wohlin [22] investigate the adoption of agile
practices in distributed software engineering and find that similar problems
in distributed development have been reported in multiple articles, possibly
pointing to a need to better interpret the context of different experiences in
software development. Recently, Naguib et al. [30] note fundamental differ-
ences between software in academia and in industry, i.e., academic software is
more engineered to achieve high accuracy and stability, and less so to achieve
comprehensibility, maintainability, and extensibility. Joppa et al. [23] have
surveyed the attitude towards scientific software among species distribution
modelers, and they find the “troubling trend” that scientists tend to make
choices based on scientifically misplaced factors (e.g., the popularity of the
software-based journal publication, while the software itself has not been
formally been peer-reviewed). They concluded that learning from and act-
ing on efforts in scientific software development will form an integral part of
delivering models and software that meets high scientific standards.

In this work, we investigate development practices for four open-source
scientific codes; Chaste2 [36, 29], HemeLB3 [26, 16, 15, 31] , Fluidity4 [33,
13, 6], and ESPResSo5 [25, 2]. These are codes with which the authors
have had development roles, allowing us to analyse certain aspects of the
development process which would not be accessible otherwise. In our inves-
tigation we review the evolution of the applied practices over the life-time
of the codes and relate them to changes in the development team. We also
discuss typical practices, such as agile methods with test driven develop-
ment and code review, to what extent they have proven effective and have
required modifications over time. Furthermore, we analyse the output in
terms of publications generated using respective software packages in rela-
tion to other factors. In particular, we explore how invested effort in software
development, and adopted practises, translate to scientific outputs. To the
best of our knowledge, the impact of software development practices on sci-
entific publication output has not been investigated systematically before,

2Chaste: http://www.cs.ox.ac.uk/chaste/
3HemeLB: https://github.com/UCL/hemelb
4Fluidity: http://fluidityproject.github.io/
5ESPResSo: http://espressomd.org/
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and our analysis based on the four study cases is the first account in this
direction. Our findings indicate a need to take software development efforts
specifically into account when evaluating the output of science projects that
rely on dedicated software development.

The remainder of this paper is organised as follows; in Section 2 we intro-
duce the four case studies, along with their specific development practises.
In Section 3, we present the methods used to collect the data on development
practices, development team and code size and publications, and in Section
4 we discuss the changes in development practices over time. Finally, in
Section 5 we investigate the relationship between code output and expended
development effort.

2. Case Studies

2.1. Development, test, and profiling practices

We briefly summarise the development practices encountered in the four
scientific software projects considered in this work. The purpose here is not
to give a comprehensive overview of software engineering techniques, but to
describe the specific practices that are applied in the case studies investigated
below. The encountered practices also mirror the prevalent tension between
the organizational culture in academia and the needs of sustainable software
development and maintenance. In the authors’ experience, long-term de-
velopment efforts are sometimes hampered by short-term funding decisions
which typically do not adequately reflect the potential impact of sustainable
scientific software. The development and testing practices applied in the
studied scientific software projects thus reflect specific ways chosen by the
respective teams to overcome the aforementioned obstacles.

Development tools

The first step towards sustainable software development typically is the
adoption of tools for version control and release management, automated
build systems, and continuous integration tests. While this is arguably a
rudimentary approach to software engineering, it can nevertheless lead to
considerable improvements in the maintenance of scientific software.

Version control, or revision control, is used to keep track of all the modifi-
cations made to components of the software project over time. Revisions can
be reviewed, compared, merged and restored whenever it becomes necessary
at a later stage of the project. Version control systems allow members of
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the development team to work on the same files simultaneously, and provide
mechanisms to resolve conflicts that arise from concurrent changes. A va-
riety of modern revision control systems are available as free software, for
example, Mercurial6, SVN7, and Git8.

Due to the heterogeneity of modern computing systems and software en-
vironments, compiling source code and linking to the necessary libraries has
become an increasingly involved and time-consuming task. Build manage-
ment tools such as the GNU Autotools9 or CMake10 provide a remedy by
offering automated generation of the necessary steps of the build process,
thus enabling developers to provision their software package on a variety of
different hard- and software platforms.

Continuous integration [10] involves automated and periodic execution of
unit tests and functional tests, ideally on a variety of platforms to ensure
ease of deployment and correctness of the software on different platforms.

Scientific software often aims for HPC applications where parallel perfor-
mance is of critical importance. Hence performance tuning and analysis are
essential elements of the software development process. Whereas such aspects
are typically not addressed by conventional software engineering strategies, it
becomes increasingly obvious that scientific codes require performance pro-
filing to be an integral part of the development and testing process. The
Tuning and Analysis Utilities (TAU) [38] are an example of instrumentation
and measurement techniques that are useful for regular and automated per-
formance regression tests, which can be referred to as “continuous profiling”.

Agile methods

Agile software engineering provides a set of lightweight software develop-
ment techniques which are well suited for scientific software projects due to
the flexibility offered and a close connection between development and usage
aspects.

One specific agile methodology referred to in this work is derived from
’eXtreme programming’ [3] comprising test-driven development and pair pro-
gramming. Test-driven development involves writing a failing test for a de-

6https://mercurial.selenic.com
7http://subversion.apache.org/
8https://git-scm.com/
9http://www.gnu.org/software/autoconf/

10http://www.cmake.org/
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sired functionality, prior to implementing any source code. Functionality is
then added to the source code until the test passes. This ensures a good
degree of test coverage for the code. In this work we distinguish between
unit tests and functional tests. Unit tests cover small units of the code,
for example individual classes and methods, while functional tests are more
involved scripts that use the code as a black box to verify correctness of a
certain functionality. The latter can also be useful to identify sudden regres-
sions in overall accuracy. Pair programming [5, 40] is a form of code review
in which two developers simultaneously work on the same code, and work-
station. One developer writes code and the other reviews it. This helps to
capture errors efficiently and also helps less experienced developers learn the
code and development practices.

Another agile methodology that is adopted partially in one of the case
studies is Scrum [37]. A key element of scrum are the basic development
units called sprints. Sprints involve a planned program of work that is then
implemented by the developers during a period of a week up to a month,
followed by a review process. The main objective of a sprint is completion of
the work into a deployable state, including tests and documentation of the
implemented features.

2.2. Scientific software projects

Chaste

Chaste (Cancer Heart and Soft Tissue Environment) is a suite of object-
oriented C++ libraries for simulating multiscale processes in biology. Chaste
has been in development, primarily at the University of Oxford, since 2005.
There are two main applications for Chaste: the first comprises a cardiac
simulation package which provides a way to use electrophysiology models in
tissue simulations using high performance computing. This package has for
example been used to predict a 2-lead human body surface electrocardiogram
(ECG) and its changes following drug administration [41]. The second appli-
cation is a multiscale cell based modeling framework which allows the user
to develop simulations of multiple interacting cells using a variety of agent-
based methods including: cellular automata, cell-centre-based (on and off
mesh), cell vertex and cellular Potts models. This framework has primarily
been used for studying cancer in the intestinal crypt, including a representa-
tion of cell mechanics (see e.g., [39, 32, 9]). For further applications see the
overview paper by Mirams et al. [29].
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At present, Chaste contains approximately 500,000 lines of C++ code,
with seven regularly (defined in the Methods section) committing developers.
The development team primarily consists of academic researchers (PhD stu-
dents, post-docs and research fellows), with dedicated developers occasionally
hired on a per-project basis. The development team primarily aim to apply
elements of Agile methods and eXtreme programming. The rationale for the
application of these methods in Chaste is described in Pitt-Francis et al. [35],
along with a detailed description of each method.

HemeLB

HemeLB is an open source lattice-Boltzmann simulation environment
which has been largely developed by PhD students and post-doctoral re-
searchers at University College London. It has been used to model flow in
both cerebral arteries [21] and in retinal vasculature [4], and it has six regu-
larly committing developers as of 2015. The code was first developed in 2005.
From 2010 onward, it was extended with a host of new features and refactored
into a more systematic structure thereby improving its clarity, accuracy and
performance. This effort included the analysis of performance characteristics
in great detail [16, 15] and the comparison of the accuracy of several bound-
ary conditions and collision kernels [31]. Current efforts on HemeLB focus on
improving the load balancing of the code, embedding support for deformable
particles, and enhancing the inflow and outflow conditions [21]. The soft-
ware is currently in use across about half a dozen institutions, primarily in
the United Kingdom.

At present, HemeLB contains approximately 180,000 lines of code, written
largely in heavily object-oriented and sophisticated C++, though some of
the auxiliary tools have been written in Python. The development team
uses Scrum and employs test-driven development including unit testing and
functional testing within continuous integration.

Fluidity

Fluidity [33, 13, 34, 6] is a general purpose, multiphase computational
fluid dynamics code capable of numerically solving the Navier-Stokes equa-
tion and accompanying field equations on arbitrary unstructured finite el-
ement meshes in one, two and three dimensions. It is primarily developed
at Imperial College London and has been in development since 1999. Flu-
idity is used in a number of different scientific areas including geophysical
fluid dynamics [6], computational fluid dynamics, ocean modeling and man-
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tle convection (e.g., [33, 20]). Fluidity’s partial differential equation simula-
tor employs various finite element and finite volume discretization methods
on unstructured anisotropic adaptive meshes. The software is parallelized
using MPI/OpenMP and is capable of scaling to tens of thousands of pro-
cessors [17, 24]. Other useful features are a user-friendly GUI and a Python
interface which can be used to validate the user input, calculate diagnostic
fields, set prescribed fields or user-defined initial and boundary conditions.

At present, Fluidity consists of approximately 500,000 lines of code, with
12 regularly committing developers. The developers employ test-driven de-
velopment [12], and the developement team is currently integrating TAU [38]
in the agile development process. This serves to obtain performance feedback
for each revision of the code.

ESPResSo

ESPResSo (Extensible Simulation Package for Research on Soft Mat-
ter [25, 2]) is a highly versatile software package for performing many-particle
molecular dynamics simulations, with special emphasis on coarse-grained
models as they are used in soft matter research [14, 8]. Its development
started in 2001 at the Max Planck Institute for Polymer Research, Mainz,
Germany. Since 2010 the ESPResSo project is maintained at the Institute
of Computational Physics, University of Stuttgart, Germany. ESPResSo is
commonly used to simulate systems such as polymers, colloids, ferro-fluids
and biological systems, for example DNA or lipid membranes. ESPResSo
also contains a unique selection of efficient algorithms for treating Coulomb
interactions [1, 11]. More recently, several grid based algorithms such as
lattice Boltzmann and an electro-kinetic solver have been implemented as
well. ESPResSo is free, open-source software published under the GNU Gen-
eral Public License (GPL). It is parallelized using MPI and CUDA and can
be employed on desktop machines, convenience clusters as well as on super-
computers with hundreds of CPUs/GPUs. The flexibility of the software
is enhanced through a Tcl and Python interface, which allows the user to
specify bespoke simulation protocols.

At the time of writing, ESPResSo consists of approximately 220,000 lines
of code with 24 regularly committing developers. The contributors are dis-
tributed all over the world and the adoption of software engineering practices
depends largely on individual commitment. The successful maintenance of
ESPResSo relies on the use of software development tools, e.g., version con-
trol, an automated build system, and continuous integration.
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3. Methods

We collected data for the number of developers and lines of code using
the version control systems of each software. We retrieved this data from
http://www.openhub.net for Chaste, HemeLB and ESPResSo (the project
names there are respectively Chaste, HemeLB and ESPResSo MD) and from
legacy version control databases in the case of Fluidity (and partially for
ESPResSo). We distinguish between three types of developers for each
project. “Full Time Developers” are people hired specifically to develop the
software full-time, “Frequet Research Developers” are researchers who have
made more than one commit per month, and “Occasional Research Devel-
opers” are researchers who have made less than one commit per month, but
have made more than one commit in a given year. This data was collected
from 2005 onwards for Chaste and HemeLB, from 2006 onwards for Fluidity,
and from 2001 onwards for ESPResSo.

We assessed the development practices based on our experience working
with the respective codes (JMO and JG with Chaste, DG with HemeLB, XG
with Fluidity and US with ESPResSo) and in consultation with the other
members of the respective development teams. We categorised practices as
being: i) regularly or strictly applied, ii) occasionally or partially applied or
iii) rarely or not applied. We opted for generic descriptions that allow general
changes in development practices to be identified over time and with changes
in the size of the development team, without being overly prescriptive.

The number of publications are based on the number of publications that
could be identified to be directly using the code within a calender year, with
the aim of reflecting a publication list that a code’s website may display. For
Chaste and Fluidity a publication list was available on the code’s website.
For HemeLB and ESPResSo, the publications were identified through liter-
ature searches on Google Scholar and Web of Science, followed by manual
inspection to filter out irrelevant results. For ESPResSo, the filtering resulted
in between 50%-75% of the Google search results actually being included in
the publication count. The number of publications was collected from 2005
onwards for Chaste and HemeLB (only data from 2006 onwards is shown
below), from 2006 onwards for ESPResSo and Fluidity.
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4. Results

4.1. Development Practices

The adopted development practices in relation to the size of the devel-
opment teams are shown for the four case studies in Figure 1. Green glyphs
correspond to regularly or strictly applied practices, amber to occasionally
or partially applied and red to rarely or not applied practices.

Figure 1(a) shows the change in practices for Chaste. The development
team of Chaste strongly emphasises software engineering practices [35], and
aims to apply a consistent set of engineering practices at all times. The only
practice that sometimes is not applied in full is pair programming. In smaller
development teams, pair programming can become challenging as there are
fewer experts at hand and it can be difficult to find suitable programmers
for a specific pair programming task. However, code written by a single
developer is often reviewed by another developer before being added to the
repository.

Figure 1(b) shows the change in practices for HemeLB. The development
team of HemeLB is considerably smaller than those of the other applications
and comprises many contributors with a relatively short stay in the team.
When several new members joined in 2010 and 2011, the development team
was able to adopt a range of well-known engineering practices. Nevertheless,
the presence of a large legacy code-base has resulted in various parts not
being fully test-covered to this day. In 2014, the development team shrank
considerably which resulted in a more loose application of the Scrum system,
while many of the testing and development practices are maintained to ensure
continued code stability.

Figure 1(c) shows the change in practices for Fluidity. Fluidity is devel-
oped and maintained by a large and distributed development team. Besides
one constantly hired full time developer since 2006, the Fluidity development
team has constantly more than dozens ”Frequent Research Developers” until
2011. From 2011 on wards, the ”Frequent Research Developers” start turn to
”Occasional Research Developers” as the result of Fluidity getting mature.
Since 2006, the Fluidity developers start to adapt the automated test-driven
development approach, this including systematic unit and functional testing,
and continuous integration.

Figure 1(d) shows the change in practices for ESPResSo. ESPResSo has
a relatively large development team. Besides a core team of three research

10



(a) Chaste. (b) HemeLB.

(c) Fluidity. (d) ESPResSo.

Figure 1: Changes in development practices with the size and composition of the develop-
ment teams over the last nine years of development. Key: TDD-Test Driven Development;
PP-Pair Programming; UT-Unit Testing; FT- Functional Testing; CI-Continuous Integra-
tion; PT-Profiling Testing; SS-Scrum Sessions; and CR-Code Review. Green corresponds
to ’always applied’, amber is ’partially applied’ and red is ’rarely or never applied’.
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developers, there is a considerable number of regular contributors and “re-
mote” developers. In addition, the research group that maintains ESPResSo
relocated twice since the first release. Therefore, it has proven difficult to
install consistent software engineering practices, and the extent to which en-
gineering principles are applied depends strongly on personal commitment
of the individual developers. Generally, the ESPResSo developers aim to
cover every feature by at least one functional test, and since 2010 continuous
integration is employed.

4.2. Developer Input and Output

It is interesting to investigate the publication output of research software
packages in relation to development effort. Figure 2 shows the number of
published papers, code size and the number of active developers (“Frequent
Research Developers” and “Full Time Developers”) for each year from 2006
to 2014. Where applicable, we also provide information on the number of
help tickets raised as a reflection of code development and use.

For the case of Chaste (Fig. 2(a)) the number of active developers has
been reasonably constant. The number of publications per active developer
largely increased over the first four years, decreasing thereafter. The number
of tickets raised shows a behaviour similar to the number of publications.

For the case of HemeLB (Fig. 2(b)) the code base size has been closely
linked to the size of the development team. In addition, increases in the size
of the development team and the introduction of a ticketing system in 2011
are followed by a delayed increase in the number of publications.

For Fluidity in (Fig. 2(c)) the code size has been closely related to the
active developers and the publications, the code size become more stable
when the actively developers and publications goes down.

For ESPResSo (Fig. 2(d)) the number of active developers has increased
considerably between 2009 and 2011, while the number of publications has
remained roughly constant. This is in part a consequence of a considerable
number of PhD theses and Faraday discussions that were written in 2009 and
2010, prior to the increase in developers. Therefore, the data points in these
years lie higher and subsequently screen the increase expected based on the
number of active developers.

4.2.1. Development Effort and Publications

In order to investigate the impact of software development efforts, we
analyze the publication output in relation to the accumulated development

12



(a) Chaste. (b) HemeLB.

(c) Fluidity. (d) ESPResSo.

Figure 2: Changes in the size of the development team, code base, number of submitted
tickets, and publications over the last nine years of development.

13



effort. In Fig. 3, we present the number of publications in a given year as a
function of the cumulative number of developers over the last last five years
(a) and three years (b), respectively, for the four case studies. The scatter
plots show that an increased commitment to software development efforts,
as measured by number of developers, results in more publications based on
these software packages. We performed a linear regression resulting in a slope
of y = 0.71×x for the five year data and y = 0.49×x for the three year data.
Both regressions have P < 0.0001, although the regression on the three year
data resulted in a higher R-value (R = 0.86) than the one on the five year
data (R = 0.78). Note that in Fig. 3 we included the maximum number of
data points available in each case study, which varies between the software
packages due to the different time span for which developer and publication
data was collected (see Sec. 3 for details).

We have also related the number of publications in a given year to the
number of developers in each of the five preceding years, respectively, and
performed a similar regression analysis for all five relations with results as
shown in Tab. 1. We find that there is a strong effect of the number of
developers on the number of publications which only levels off after three
years. In other words, the software development efforts of our case studies
reveal a lasting impact which can not be appropriately reflected by measuring
publication output on a short term basis. The full merit of a software project
may thus not be accessible until at least three years after the conclusion of
development.

A number of factors have not been taken into account here, such as the
impact of the venues of each publication (e.g., Chaste publications tend to
be less numerous, but quite highly cited) and the exact effort invested by
individual developers (i.e., all contributors are treated at equal value in this
assessment). In order to address the latter, we have also performed the
analysis using a weighting system for development effort (1.0 for full-time
developers, 0.5 for researcher-developer, and 0.25 for occasional developers)
which resulted in an outcome very similar to the un-weighted assessment
shown here.

5. Discussion

We conducted and compared four case studies of software development
practices in academia, and analysed the adoption of software engineering
practices, the development effort invested, and the publication output over

14



Figure 3: Scatter plot of the number of publications in a given year as a function of
the cumulative number of developers in the preceding five years (left) and three years
(right). Data points are plotted for Chaste (red), HemeLB (in white), Fluidity (green)
and Espresso (blue). The black lines are the result of a linear regression on the data sets.

Table 1: Relation of historical development effort to publication output shown for individ-
ual years, ranging from the first year prior to publication (first data row) to the fifth year
prior to publication. For each year we report the slope of the correlation found (in publi-
cations per active developer that year) in the second column, and the obtained P-values,
R-values and standard errors respectively in the third, fourth and fifth column.

Years ago slope P-value R-value stderr
1 1.11 1.7e-11 0.879 0.11
2 1.07 4.2e-10 0.884 0.10
3 0.99 3.8e-8 0.824 0.13
4 0.71 3.0e-4 0.652 0.17
5 0.73 2.1e-3 0.607 0.21

a period of at least nine years. We find that the publication output of the
four scientific codes correlates strongest with the development effort invested
in the three years prior to publication, and that each of these years of effort
appear to contribute equally to the publication output. The correlations
become noticeably weaker when we compare the publication rate with the
development effort invested four or five years earlier.

Based on our results, we conclude that the four considered software
projects should ideally have been reviewed three years after development
efforts have been concluded. This conclusion may be inconvenient given
that performing a final scientific review three years after the conclusion of
a research project can be impractical, in particular since a large number of
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academic software development grants are less than three years in duration.
In fact even the initial efforts of shorter projects cannot be fully assessed by
the final review if the evaluation takes place directly upon the conclusion of
such a project. There are several ways to mitigate this problem. Firstly,
by funding software projects for at least 3 years reviewers can accurately
assess the scientific publication impact of the initial efforts at the time when
the project finishes. Secondly, review panels could choose to base their re-
view not directly on peer-reviewed publications, but take into consideration
important preliminary components, such as new documented code features,
simulation data sets and preprints or paper drafts. Thirdly, for long-running
development on academic software, reviewers could choose to limit their re-
view of the project at hand to the technical aspects, and judge the academic
software on its scientific potential in a wider context, taking into account the
publication impact of preceding comparable projects.

Although development effort invested in these projects have resulted in a
publication boost, many of the resultant publications do not feature the orig-
inal developers as (prominent) authors. For example, two major contributors
to HemeLB only featured on a single first-author paper each, after invest-
ing three years of development effort. Similarly, a developer contributed the
lattice Boltzmann implementation to ESPResSo which has enabled a host
of subsequent publications of other authors directly using this code. There-
fore, the correlations we presented can not (and must not) be used to assess
individual contributions to the publication output, or to the software more
generally.

Indeed, publication numbers only partially describe the impact of an indi-
vidual developer or even a short-term project effort, as they indirectly reflect
more fundamental impact, such as technical quality, ease-of-reuse and the
presence of valuable new features (these metrics are arguably more difficult
to quantify, measure and compare). In addition, although we find these cor-
relations for our four case studies, a much larger investigation is required
to assess the relationship between invested development effort and scientific
impact for academic software in general.

In terms of adopted software development practices we find that, in par-
ticular for HemeLB and ESPResSo, new practices are typically adopted when
a development team has recently increased in size. In the case of HemeLB
and Chaste, the application of individual practices was slightly reduced when
the respective development teams became smaller, but this effect seems to
be more limited. More generally, software development practices, once first
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applied, appear unlikely to be abandoned later on. This could indicate a
high level of satisfaction from the development team regarding the adoption
of these practices. While a larger study will be required to assess the effi-
cacy of software engineering practices in computationally oriented research
communities in general, our study indicates that the use of software engi-
neering principles improves the quality of the research software and leads to
a concomitant increase of the publication output.
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D. Groen, S. Schmieschek, J. Hetherington, H. Gerhardt, C. A Franco,
and P. V. Coveney. Computer simulations reveal complex distribution of
haemodynamic forces in a mouse retina model of angiogenesis. Journal
of The Royal Society Interface, 11(99):20140543, 2014.

[5] Alistair Cockburn and Laurie Williams. The costs and benefits of pair
programming. Extreme programming examined, pages 223–247, 2000.

[6] D. R. Davies, C. R. Wilson, and S. C. Kramer. Fluidity: A fully unstruc-
tured anisotropic adaptive mesh computational modeling framework for
geodynamics. Geochemistry, Geophysics, Geosystems, 12(6), 2011.

[7] P. DeGrace and L. H. Stahl. Wicked Problems, Righteous Solutions: A
Catolog of Modern Engineering Paradigms. Prentice Hall, 1 edition, 5
1990.

[8] M. Deserno. Mesoscopic membrane physics: Concepts, simulations, and
selected applications. Macromolecular Rapid Communications, 30(9-
10):752–771, 2009.

[9] S.-J. Dunn, P. L. Appleton, S. A. Nelson, I. S. Naethke, D. J. Gav-
aghan, and J. M. Osborne. A two-dimensional model of the colonic
crypt accounting for the role of the basement membrane and pericryptal
fibroblast sheath. PLoS Comput Biol, 8(5):e1002515, 05 2012.

[10] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: im-
proving software quality and reducing risk. Pearson Education, 2007.

[11] F. Fahrenberger and C. Holm. Computing the coulomb interaction in in-
homogeneous dielectric media via a local electrostatics lattice algorithm.
Phys. Rev. E, 90:063304, Dec 2014.

[12] P. E. Farrell, M. D. Piggott, G. J. Gorman, D. A. Ham, C. R. Wil-
son, and T. M. Bond. Automated continuous verification for numerical
simulation. Geoscientific Model Development, 4(2):435–449, 2011.

18



[13] G. J. Gorman, M. D. Piggott, C. C. Pain, C. R. E. de Oliveira, A. P.
Umpleby, and A. J. H. Goddard. Optimisation based bathymetry ap-
proximation through constrained unstructured mesh adaptivity. Ocean
Modelling, 12(3-4):436–452, 2006.
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