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Abstract: Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have
been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various
consumer products has been involved in the dysregulation of numerous signalling pathways. In
this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated
in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of
biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-
associated exposure. In silico analyses took place using gene expression data extracted from The
Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential
expression was further validated at protein level using immunohistochemistry on an ovarian cancer
tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA,
while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern
as a consequence of the disease. We also found that seven genes have prognostic power for the
overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4
(KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding
Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier
Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that
can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of
disease and exposure that could potentially inform regulation and policy making.
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1. Introduction

Endocrine-disrupting chemicals (EDCs) are exogenous substances that can disturb/
compromise the normal functions of the endocrine system in both humans and animals and,
subsequently, increase the risk of adverse health effects [1]. EDCs are widespread in the
environment and can accumulate across the entire food chain, primarily due to their long
half-life and the inability of the body to metabolize them [2]. Depending on their origin,
EDCs can be subclassified as industrial, agricultural, residential and pharmaceutical [2].

Bisphenol A (BPA) is an EDC that is commonly used as a monomer to manufac-
ture polycarbonate plastics [3]. The world production of BPA is estimated to reach over
7000 thousand tons annually by the end of 2023 [4], making it one of the highest volume
chemicals. Its prevalence in numerous commercial products, ranging from food packaging
and food contact materials to thermal paper, and medical materials and devices means
that humans are exposed to BPA on a daily basis [5]. Previous studies have shown that
ingestion of contaminated foods and beverages, as well as inhalation and skin absorption,
are common routes of human exposure to this chemical [6]. Environmental factors such
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as heat or pH can cause leaching of BPA into its surroundings, leading to potential envi-
ronmental and human exposure, as well as risks to health. Infants aged 0–6 exclusively
fed with canned liquid formula and using polycarbonate bottles have been estimated to
have highest BPA exposures [7]. As a result, BPA has been found to accumulate in the body
with various levels being detected in the adipose tissue [8], serum [9], maternal and fetal
plasma [10], breast milk [11], placenta [12] and umbilical cord [9].

At the molecular level, BPA is a xenoestrogen (i.e., it has estrogen-like activity) and
therefore can interfere with the estrogen signalling pathways [5,13,14]. The estrogen
signalling pathway is regulated at genomic level by estrogen receptors (ERα and ERβ)
that can bind to estrogen response elements in the nucleus upon activation and modulate
transcriptional responses. In addition, the G protein-coupled receptor 30 (GPR30) mediates
the non-genomic signalling of estrogen [15]. GPR30 plays a key role in the physiology of
the reproductive system [16,17] and metabolism [18]. In the case of BPA, it has been shown
to bind to multiple ERs including ERα, ERβ (cytoplasmic and membrane-bound), GPR30
and human nuclear receptor estrogen-related receptor gamma (ERRγ) [19–26].

There is growing evidence that BPA can affect both male and female reproductive
systems resulting in infertility, precocious puberty, endometriosis [27] and even many
hormone-dependent malignancies such as breast and prostate cancers [14,28]. Moreover,
studies [29,30] have raised the possibility of a direct link between BPA and ovarian cancer,
prompting precautionary actions against excess exposure to this EDC [31].

Ovarian cancer (OC) is the sixth most common cancer among females in the UK, ac-
counting for 4% of all new cases of cancer [32]. Every year over 7300 women are diagnosed
with ovarian cancer, and it is projected that 10,501 new cases will be diagnosed in the UK
in 2035 [32,33]. The rise in cases, as well as the staggering costs of treatment, highlight
the need for investigating all the potentially preventable causes for this disease. Earlier
studies of the effects of BPA on ovaries have indicated a time-dependent relationship. In
particular, the study by Susiarjo et al. [34] on pregnant mice exposed to BPA showed synap-
tic abnormalities, e.g., partial or complete synaptic failure of a single chromosome pair,
end-to-end associations between non-homologous chromosomes and an increased risk of
aneuploidy. Treatment of an ERα- and ERβ-positive ovarian cell line with estrogen or BPA
altered expression of genes involved in apoptosis, cancer and cell cycle [35]. Further studies
have also implicated BPA in ovarian cancer in vitro. Using OVCAR-3, an ovarian cancer
cell line, BPA exerted an estrogenic effect stimulating cell migration and up-regulation of
certain metalloproteinases and N-cadherin [36]. In the same cell line, BPA increased cell
proliferation and decreased activity of the caspase-3 pathway [37].

In this paper, we present the analysis of a set of 94 genes that have been shown to be
dysregulated in presence of BPA in OC cell lines [30]. We looked at comparing the expres-
sion landscape in ovarian normal tissue and OC under the influence of BPA. We found
that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining
80 genes are already dysregulated (p-value < 0.05) in their expression pattern, presumably
as a consequence of the disease. This study sought to identify biomarkers of disease and
associated exposure that could potentially inform regulation and policy making.

2. Materials and Methods
2.1. Bioinformatics Analysis
2.1.1. Data Availability

The group of 94 genes shown to be dysregulated in the SKOV3 cell line in the presence
of BPA was extracted from the published paper by Hui et al., 2018 [30]. SKOV3 cell line
is a commonly used cellular model of high-grade serous ovarian cancer (HGSOC). The
94 genes were annotated using information regarding their genomic location, gene name,
biotype and Ensembl ID from GeneCards/Ensembl v96.

Gene expression data and sample phenotype information (Table 1) were extracted
from the data generated by The Cancer Genome Atlas (TCGA) research network (https:
//www.cancer.gov/tcga, last accessed on 20 November 2020) and the Genotype-Tissue
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Expression (GTEx) project (https://www.gtexportal.org, last accessed on 20 November
2020) as published in the Xena repository hosted at the University of California Santa Cruz
(UCSC) [38]. Specifically, we analysed data from the TCGA-TARGET-GTEX pan-dataset
normalised cohort. The raw RNAseq data from TCGA and GTEx were processed and
normalised by the UCSC using the TOIL pipeline, a computation framework that facilitates
the quantification of gene expression as well as cross-dataset comparison without any
computational batch effects [39]. The gene expression values are presented in units of
log2(norm_count+ 1). In terms of histological grades, the National Cancer Institute grading
system (National Institute of Health, Bethesda, Maryland, USA) was used (i.e., G1–G4) [40].

Table 1. Data summary for the normal ovarian tissue and ovarian cancer samples from TCGA and
GTEx datasets. NOS: not otherwise specified; NA: not applicable; FNA: fine-needle aspiration; GB:
grade borderline; GX: grade cannot be assessed.

Phenotype TCGA GTEx

Total Samples 427 88

Normal tissue - 88 (100%)
Primary tumour 419 (98.13%) -
Recurrent tumour 8 (1.87%) -

Category
Normal ovary -
Ovarian serous 427 (100%) 88 (100%)
Cystadenocarcinoma NA

Primary diagnosis NA
Serous cystadenocarcinoma, NOS 422 (98.83%)
Papillary serous

cystadenocarcinoma 4 (0.94%)

Cystadenocarcinoma, NOS 1 (0.23%)

Clinical stage

NA
Stage I 1 (0.23%)
Stage II 26 (6.09%)
Stage III 334 (78.22%)
Stage IV 63 (14.75%)

Overall survival (days) Min 8
Max 5481 NA

Age range (years) 30–87 20–69
Age < 50 103 (24.12%) 39 (44.31%)
Age > 50 324 (75.88%) 49(55.68%)

Mortality NA
Living 162 (37.94%)
Deceased 265 (62.06%)

Initial Diagnosis Methods NA
Cytology (e.g., pleural fluid) 54 (12.65%)
Excisional biopsy 5 (1.17%)
FNA biopsy 9 (2.11%)
Incisional biopsy 6 (1.41%)
Tumour resection 347 (81.26%)
Unspecified method 6 (1.41%)

Neoplasm Histologic Grade NA
G1 1 (0.23%)
G2 52 (12.18%)
G3 363 (85.01%)
G4 1 (0.23%)
GB 2 (0.47%)
GX 6 (1.41%)
Unspecified grade 2 (0.47%)

https://www.gtexportal.org
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2.1.2. Functional Analysis

The genes were functionally characterised using Gene Ontology (GO) database [41] as
recorded in FunRich (version 3.1.3) software [42]. Seventy-seven (protein-coding genes)
of the ninety-four analysed genes were matched in the FunRich, with the remainder
17 having no associated data. The enrichment of the GO terms related to biological
processes, biological pathways, molecular functions and expression sites was computed. A
threshold p-value of 0.05 was used to ascertain the statistical significance of the results.

2.1.3. Immunohistochemistry (IHC)

Immunohistochemistry was used to measure the gene expression at the protein level
in tissue samples from ovarian cancer patients (all patient information is given in the
Supplementary Table S1). Commercially available ovarian carcinoma tissue arrays, con-
taining 90 cases of ovarian tumour with 10 adjacent normal ovary tissues, single core per
case (Biomax, Derwood, MD, USA), were used to examine the expression of SLC4A11 and
RARRES3. All tissues were collected under the highest ethical standards with the donor
being informed completely and with their consent. Moreover, all human tissues were
collected under Health Insurance Portability and Accountability Act (HIPAA) approved
protocols. The slides were deparaffinized following a series of washes in Histo-Clear
(National Diagnostics) and decreasing concentrations of ethanol. Slides were subsequently
boiled in sodium citrate (Merck Life Science UK Ltd, Gillingham, UK) for 20 min using a
microwave and cooled down using running tap water for 10 min. The slides were washed
twice in phosphate-buffered saline (PBS) with 0.025% v/v Triton-X 100 (PBS-T) for 5 min
each and further incubated with 3% v/v hydrogen peroxide in PBS for 15 min before 3 more
washes in PBS-T. The slides were blocked using 5% BSA in PBS for 1 h within a humidity
chamber (HC) at room temperature before the addition of primary antibodies to each
slide: SLC4A11 (HPA018120—Merck Life Science UK Ltd, Gillingham, UK) and RARRES3
(HPA011219— Merck Life Science UK Ltd, Gillingham, UK) (1:100 dilution in 5% BSA
in PBS)—and incubated overnight at 4 ◦C in the HC. After incubation, the slides were
washed 3 times for 5 min each with PBS-T before the addition of anti-rabbit secondary
(Zytochem Plus kit), 2BSCIENTIFIC Ltd, Upper Heyford, UK and left to incubate for 1
h at room temperature in the HC. The washes were repeated, and the slides were fur-
ther incubated with streptavidin–HRP conjugate (Zytochem Plus kit) for 30 min in HC at
room temperature. DAB (3,3′-diaminobenzidine) substrate solution (Vector Laboratories,
Burlingame, CA, USA) containing hydrogen peroxide was loaded on the slides for 10 min
after 3 washes with PBS-T. Slides were washed in H2O for 5 min and then incubated with
Harris’ haematoxylin for 30 s followed by 0.1% w/v sodium bicarbonate for 60 s before
dehydration in increasing ethanol concentrations and Histo-Clear. Images of the stained
cores were captured using an EOS 1200D camera attached to a light microscope. The
images were then analysed under a light microscope giving a score based on how well the
cores on the slide were stained (0 = <10% stained, 1 = 10–25% stained, 2 = 25–50% stained,
3 = 50–75% stained and 4 = >75% stained). This was repeated 3 times, and an average was
calculated based on the scores for each core.

2.1.4. Statistical Analysis

All data processing and statistical analyses were conducted using R (v. 3.5.2, The R
Foundation for Statistical Computing, Vienna, Austria) under R Studio desktop application
(version 1.1.463, RStudio, Boston, Massachusetts, USA). Student t-test was used to test the
statistical significance in the change in expression between two given states (e.g., normal vs.
tumour) with a significance threshold set at a p-value lower than 0.05. t-test was selected as
the primary statistics test for normally distributed data. The Kaplan–Meier estimator was
used to calculate and analyse the survival of ovarian cancer patients over time in regard
to the stage of cancer or expression of genes. Survival analysis was conducted using R
library “survminer”. The Pearson correlation coefficient was calculated to estimate the
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correlation between genes based on their expression pattern in both normal and cancerous
ovary tissue.

3. Results
3.1. Transcriptional and Functional Characterisation

In order to gain a better understanding of the importance and magnitude of the
differential expression pattern previously observed for 94 genes in the ovarian cancer cell
line SKOV3 under exposure to BPA [30], we set out to analyse the transcriptional landscape
of these genes in normal and cancerous ovarian tissues leveraging expression data from
unmatched samples from TCGA and GTEx. We computed the p-value as a measure of
statistical significance for the difference in gene expression levels in three cases: normal
vs. primary tumour, normal vs. recurrent tumour and primary vs. recurrent tumour. We
selected two thresholds, p-value < 0.05 and p-value < 0.00005 indicating significant and,
respectively, highly significant change in expression, and further differentiated the genes
based on whether they were up- or down-regulated. Using these criteria, we were able to
distinguish seven gene groups (Figure 1).
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Overall, we found 14 genes that show no significant change in expression in tumour
samples as compared to controls, hinting that the earlier reported effect of the BPA in ovar-
ian cancer cell line can potentially be regarded as a key driver for some of the associated
phenotypical changes (see Figure 1 navy block). At the other end of the spectrum, we
identified four genes (yellow block), namely: RNA Component Of 7SK Nuclear Ribonucle-
oprotein (RN7SK), tumour necrosis factor receptor superfamily member 11B (TNFRSF11B),
NADH dehydrogenase 1 beta subcomplex 5 (NDUFB5) and the retinoic acid receptor re-
sponder protein 3 (RARRES3). Unsurprisingly, these genes have been previously associated
with various malignancies [43–47] including breast and ovarian cancers. The remainder
76 genes were stratified into five groups based on the level of significance in the change of
their expression patterns. Thirteen genes (light blue block) were significantly (p < 0.05) up-
regulated in tumour compared to healthy ovarian tissue. Twenty-two genes (yellow-brown
block) were found up-regulated with moderate significant difference (p < 0.05) compared
to controls. Thirteen genes (grey and purple blocks) were down-regulated in cancer with
moderate significant difference. While in the remaining 28 genes in the red block no overall
trend was observed, they have statistically high significant difference in primary tumour
vs. healthy tissue.

Next, we looked at functional terms enrichment in the groups of genes that show no
change in their transcriptional landscape in cancer (14 genes) as compared to those that do
(80 genes). The results are shown in Figure 2.

Gene Ontology analysis results show that majority of genes dysregulated in cancer are
enriched in expression sites associated with the female reproductive system. Specifically,
the majority of these genes are expressed in ovarian cancer, cervical cancer and normal
ovarian tissue, while a small number of genes, namely high-temperature requirement
factor A1 (HTRA1) and carbonic anhydrase 12 (CA12), are highly enriched in the germ cell
layer and uterine epithelium. Earlier studies have shown a down-regulation of HTRA1 in
ovarian carcinoma [48] and an up-regulation of the CA12 gene in breast carcinoma [49].
Cellular components ontology terms enrichment analysis showed that the majority of genes
are associated with the cytoplasm and nucleus. Two genes Collagen type III alpha 1 chain
(COL3A1) and metallothionein 2A (MT2A) show a significant fold enrichment in collagen
type III and nuclei, respectively. COL3A1 has been associated with gastric cancer diagnosis,
prognosis and therapy [50]. At biological processes level, we see that the majority of genes
are involved in signal transduction and cell communication. Significant fold enrichment
was observed for transgelin (TAGLN) and myelin protein zero-like 2 (MPZL2) in relation
to organogenesis and muscle development. MPZL2 has been observed in cell growth,
invasion and adhesion of breast cancer cells [51]. Finally, 18 genes, namely MMP7, SPP1,
SERPINB5, FOSL1, GDF15, EDN1, BAMBI, DDIT4, SNAI2, LIMA1, KRT14, CTGF, MT2A,
NRIP1, THBD, IRS2, SERPINE1 and TAGLN are associated with the mTOR signalling and
plasma membrane estrogen receptor signalling pathways.

Functional enrichment analysis of the 14 remaining genes revealed that expression
sites are enriched for female reproductive systems. Specifically, the majority of these genes
(60%) are expressed in the vagina and ovarian cancer, while a small fraction (10–20%)
is enriched in terms related to umbilical cord and ovarian follicles. Biological processes
terms enrichment analysis showed a third of the genes, namely COL1A2, KRT4, NES, MYC,
TRMT61A and ANKRD1, is enriched in cell growth and regulation of nucleobase. From
the biological pathway terms enrichment analysis, we observed that the majority of the
genes (66.67%), namely MYC, COL1A2, CYR61 and BDNF are associated with the mTOR
pathway and plasma membrane estrogen receptor signalling.
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associated with all the shown phenotypes are given in Table S2.

As the GO terms enrichment analysis suggested a couple of major trends, we inves-
tigated whether the similarities between genes are preserved at expression level. To this
end, we computed the Pearson correlation coefficient for all possible gene pairs using their
expression profiles in normal and tumour samples (Figure S3). Overall, we observed a
weaker correlation in healthy tissue compared to cancer, suggesting a pervasive expression
pattern in tumour mainly driven by the disease state.

We expanded further the functional analysis by leveraging data on biological pathways
from the Kyoto Encyclopedia of Genes and Genome (KEGG), Comparative Toxicogenomics
Database (CTD), and Reactome biological data repositories (Figure 3). We found that the
94 genes are mainly involved in pathways associated with human diseases, in particular
cancer (Figure 3a) and various infectious diseases (viral, bacterial and parasitic), and
environmental information processing (Figure 3b). Furthermore, 388 pathways have been
previously described in literature as being impacted by BPA exposure (see Figure 3c).
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3.2. Evaluation of Prognosis and Diagnosis Potential

We evaluated the biomarker potential of the 94 genes by studying the overall sur-
vival rate in ovarian cancer patients using the TCGA data in Kaplan-Meyer analysis. We
started by examining the baseline survival rate for patients with ovarian cancer by age,
stage and disease recurrence observations (Figure S4). As expected, these phenotypes
indicated that patients diagnosed at an earlier stage or younger age had a better overall
prognosis. However, they provided no indication with respect to the effect of individual
gene activity on the survival potential. To this end, we stratified the transcriptional profile
of each gene into high and low expression levels using the mean expression value as a
discriminant. Overall, we found five up-regulated genes, namely solute carrier family
4 member 11 (SLC4A11), guanylate binding protein 5 (GBP5), long intergenic non-protein
coding RNA 707 (LINC00707), mitochondrial ribosomal protein L55 (MRPL55) and ribo-
some biogenesis regulator 1 homolog (RRS1), and two down-regulated genes in ovarian
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cancer, insulin receptor substrate 2 (IRS2) and keratin 4 (KRT4) that show a statistically
significant predictive power for the patient outcome (Figure 4). The seven genes, with the
exception of KRT4, also show a statistically significant change in expression between the
normal and primary tumour samples.

In summary, Kaplan-Meyer analysis showed that four genes (GBP5, LINC00707,
MRPL55, RRS1) are associated with a positive patient outcome when over-expressed,
while for the other three (SLC4A11, KRT4 and IRS2), their up-regulation is related with
a poorer prognosis. It should be noted that the above-mentioned genes are also dysreg-
ulated in other cancers, and therefore their prognostic potential might not be limited to
ovarian cancer. Similar, the association of high-expression with positive patient outcome
has been previously reported for GBP5 in other cancer types such as skin [52], breast and
colorectal cancer [53,54]. Pathway analysis of the five protein-coding genes from this group
(Figure 5a) suggests a wide repertoire of roles. For example, GBP5 might play a role in
immune responses, MRPL55 in energy production and SLC4A11 in signal transduction
mechanisms. The most diverse effects on a variety of signalling pathways implicated in
carcinogenesis were exhibited by IRS2. Finally, we looked at the association between the
seven prognostic genes and BPA-affected pathways (Figure 5b). We found that earlier
studies link four genes (IRS2, KRT4, GBP5 and MRPL55) with BPA suggesting that exposure
to this EDC agent can potentially affect their prognostic power.

Building on the differential expression analysis, we tested the ovarian cancer diag-
nostic power for the 94 gene set. To this end, we used t-distributed stochastic neighbour
embedding (t-SNE) dimensionality reduction method to discriminate between the normal
and tumour samples using the gene expression profiles (Figure 6).

We found that, overall, the 94 genes are an excellent collective ovarian cancer diagnosis
biomarker. Given that the data are curated from the ovarian cancer genome sets from GTEx
and TGCA, this diagnostic feature might be likely to be for all ovarian cancers, but further
research is needed to include a wider repertoire of OC subgroups. Moreover, the seven
genes with prognostic power seem to perform also very well in discriminating the healthy
and cancerous samples.

Next, we investigated whether the 94 genes are able to distinguish potential risk
groups in the human population. For this, we analysed the t-SNE stratification on a number
of factors such as age, race and ethnicity (Figure S5). No statistically significant correlation
between the gene expression pattern and the selected phenotypes was observed. Further-
more, the gene transcriptional landscape was also not correlated with the cancer stage.

We further performed a gene set enrichment analysis to evaluate the relative impor-
tance of the genes in the seven groups with respect to the differential expression pattern in
tumour (primary and recurrent) compared to normal. We found that the set of 94 genes had
a statically significant negative enrichment score, with the bulk of the genes (51) forming
the core set of genes that account for the enrichment signal [55] (see Figure 7, Table S3).
Furthermore, from the seven genes with biomarker potential, LINC00707, GBP5 and IRS2
were shown to be key contributors to the enrichment score suggesting a strong association
with differential expression in ovarian cancer versus normal.
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represent a group these genes belong to according to Figure 1.
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Figure 5. (a) represents all possible pathways affected by 5 potential predictive power genes in humans. (b) Venn diagram
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Figure 6. Tumour and normal tissue classification potential revealed by t-distributed stochastic neighbour embedding
(t-SNE). Green points represent ovarian tumour samples (n = 427), and black points represent ovarian normal tissue samples
(n = 88). The V1 and V2 are the t-SNE projection axis and do not have a biological meaning. (a) represents 94 genes’
expression matrix in TCGA and GTEx embedded using t-SNE. (b) represents seven prognostic power gene expression
matrix in TCGA and GTEx embedded using t-SNE.
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3.3. BPA Effect on Gene Function and Activity

The analysis of Hui et al. [30] showed that the environmental dose of BPA can signifi-
cantly alter the expression of 94 genes in ovarian cancer cell lines. As some of these genes
have diagnostic and prognostic power and can be potentially used as clinical biomarkers,
it is important to evaluate the effect of low-level (10 nM) BPA exposure of the predictive
characteristics. For this, we compared the observed fold change in gene expression between
two states in the following two experiments: (1) normal ovarian tissue vs. ovarian cancer
(data extracted from TCGA and GTEx) and (2) SKOV3 ovarian cancer cell line in presence
and absence of BPA (data extracted from [29]) as shown in Figure 8.
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Overall, we found that for three genes, GBP5, LINC00707 and SLC4A11, the BPA effect
on the expression is substantially smaller compared to the effect observed as a consequence
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of cancer. Moreover, their collective pattern of expression is a good discriminant between
tumour and normal samples (see Figure S6). For IRS2, RRS1 and MRPL5, we observed that
the fold change in expression is comparable in cancer and under BPA treatment, suggesting
that BPA presence can bias the predictive power of these genes. By contrast, we found
that BPA exposure is the main driving force for the change in expression in KRT4, making
it a potential exposure biomarker for BPA. This feature is unique to the keratin 4 among
all 94 genes investigated in both its magnitude level and its statistical significance (see
Figure S7).

One potential confounding factor is the lack of information regarding the BPA ex-
posure in TCGA and GTEx samples. To address this, we investigated the potential BPA
contamination in these datasets by looking at the gene expression rank, where top rank is
given to the gene with the highest expression level and the lowest rank to the gene with
the lowest expression level (Table S4). We worked under the premise that if a significant
number of patients were exposed to BPA under similar levels as those described by Hui
et al., when sorting the genes by their expression values, we would observe a similar order
to that seen under the BPA influence. We found no significant correlation between the gene
expression rank in presence of BPA and the tumour and normal ovarian samples from
TCGA and GTEx, respectively. This result suggests that although we cannot establish with
confidence whether some samples have been exposed to BPA, overall, the effects can be
attributed to the specific genome biology in each case.

3.4. Ovarian Cancer Immunohistochemistry Analysis

In order to validate our in silico data and identify any changes in protein expression
with respect to type or stage of the disease, we used an ovarian cancer tissue array to
perform immunohistochemistry in a number of clinical samples (90 ovarian cancer pa-
tients’ data and 10 normal adjacent controls). We validated the expression of RARRES3
(in Figure 9) and SLC4A11 (in Figure 10). These genes were selected as representatives
of the highly significant up-regulated genes in the ovarian cancer and the biomarker
groups, respectively.

RARRES3 was expressed in high-grade serous carcinoma, mucinous adenocarci-
noma and metastatic serous carcinoma (Figure 9a–c). Statistical analysis on RARRES3
revealed that despite the interpatient variation, OC patients expressed more RARRES3
(p-value < 0.05) at protein level when compared to normal adjacent control tissue (NAT)
as shown in (Figure 9e). We observed from Figure 9f that change in the expression of
RARRES3 is significantly up-regulated (** p-value < 0.001) in high-grade serous carcinoma
compared to NAT and metastatic serous carcinoma (* p-value < 0.05). When OC patients
were grouped in early stages (I and II) and late (III and IV), no apparent differences in the
expression of RARRES3 protein were evident. However, RARRES3 was over-expressed in
both groups compared to NAT (* p-value < 0.05) as shown in Figure 9g.

SLC4A11 was expressed in high-grade serous carcinoma, low-grade serous carcinoma,
mucinous adenocarcinoma and metastatic serous carcinoma (as shown in Figure 10a–d).
Here we may infer that high SLC4A11 expression can be a potential predictor for poor
overall survival in low-grade serous ovarian carcinoma. Scoring of immunostaining
revealed an apparent difference in the SLC4A11 expression compared to the normal control
(Figure 10f–g), thus corroborating the gene expression reported through data analysis. We
then measured SLC4A11 expression in clinical samples of different stages: I, II, III and IV
(Figure 10h). It is also evident that despite the interpatient variation, expression of SLC4A11
is highly significant (** p-value = 0.0074) in OC patients at protein level when compared
to NAT (see Figure 10f). However, no significant change was observed between different
types and stages of ovarian cancer.
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0.05, ** p-value < 0.001. 

 
Figure 10. Immunohistochemistry for SLC4A11 expression in different pathologies of ovarian tissue array clinical samples: 
high-grade serous carcinoma (a), low-grade serous carcinoma (b), mucinous adenocarcinoma (c), metastatic serous carci-
noma (d), normal adjacent tissue (e), expression of SLC4A11 compared to the normal control (f), SLC4A11 expression in 
different pathologies of ovarian cancer (g) and RARRES3 expression in clinical samples of different stages (h). OC: ovarian 

Figure 9. Immunohistochemistry for RARRES3 expression in different pathologies of ovarian tissue array clinical samples:
high-grade serous carcinoma (a), mucinous adenocarcinoma (b), metastatic carcinoma (c), normal adjacent tissue (d),
expression of RARRES3 in ovarian cancer (OC; including high- and low-grade serous carcinoma, mucinous adenocarcinoma,
metastatic serous carcinoma) compared to the normal control (e), RARRES3 expression in different pathologies of ovarian
cancer (f) and RARRES3 expression in clinical samples of different stages (g). NAT: normal adjacent tissue, * p-value < 0.05,
** p-value < 0.001.
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Figure 10. Immunohistochemistry for SLC4A11 expression in different pathologies of ovarian tissue array clinical samples:
high-grade serous carcinoma (a), low-grade serous carcinoma (b), mucinous adenocarcinoma (c), metastatic serous carci-
noma (d), normal adjacent tissue (e), expression of SLC4A11 compared to the normal control (f), SLC4A11 expression in
different pathologies of ovarian cancer (g) and RARRES3 expression in clinical samples of different stages (h). OC: ovarian
cancer (including high- and low-grade serous carcinoma, mucinous adenocarcinoma, metastatic serous carcinoma); NAT:
normal adjacent tissue, ** p-value < 0.001.
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4. Discussion

Here we provide a detailed analysis of the functional and activity landscape in ovarian
cancer for a set of 94 genes that have been previously shown to be dysregulated under
exposure to environmental levels of BPA in ovarian cancer cell lines. Apart from genetic
influences on the development of malignancies, other environmental factors such as EDCs
may also be an important determinant [56]. However, to date, availability of biomarkers of
exposure specific to ovarian cancer is very limited.

We showed that 14 genes do not exhibit any significant changes in tumour compared
to normal tissue, and thus the effects observed under BPA treatment can be regarded as
the key driving forces for the associated phenotypes. The majority of the genes, however,
showed a statistically significant differential expression pattern in cancer, hinting that a
combined BPA tumour effect can play a key role in the future development of the disease.
Specifically, four genes (RN7SK, TNFRSF11B, NDUFB5 and RARRES3) were shown to be
progressively up-regulated in primary and recurrent tumours compared to normal. These
results are in accord with previous reports indicating these genes are highly dysregulated
in a variety of diseases [43–45]. For example, TNFRSF11B exhibited a cancer-specific
behaviour in ovarian cancer by contrast to breast, where it was found to be down-regulated
and was proposed as a potential prognostic biomarker [57]. Our data suggest that while
TNFRSF11B can potentially exhibit diagnostic potential, even differentiating between
primary and recurrent tumours, it does not have any predictive power for the overall
patient outcome.

Gene Ontology analysis of the 80 genes revealed interesting targets in relation to site
of expression (e.g., ovarian cancer, cervical cancer and normal ovarian tissue), cellular
components (primarily cytoplasm and nucleus), biological processes (e.g., signal transduc-
tion) and biological pathways (mainly mTOR and plasma membrane estrogen receptor
signalling pathways). Both of these signalling pathways have been implicated in ovarian
cancer. The mTOR pathway is a central regulator of cellular events such as proliferation,
apoptosis and angiogenesis gauging external energy, growth factor and stress signals
with the PI3K/AKT/mTOR pathway being a highly activated cellular signalling pathway
in advanced ovarian cancer [58–60]. Similarly, there is evidence of involvement of the
membrane-bound estrogen receptor GPR30 in cancer [61]. As mentioned, GPR30 can drive
genomic and non-genomic events upon activation with estrogen or other estrogen-like
compounds such as BPA [62,63].

On the other hand, functional enrichment analysis of the 14 genes revealed that
expression sites are enriched for ovarian cancer, vagina and umbilical cord. Similarly,
to the 80 genes in question, the genes including MYC, COL1A2, CYR61 and BDNF are
associated with the mTOR pathway and plasma membrane estrogen receptor signalling.
Of note, extensive copy number alterations of MYC proto-oncogene BHLH transcription
factor (MYC) have been observed in high-grade serous ovarian cancer [64], whereas BDNF
appears to play a role in ovarian cancer, cell migration and angiogenesis [65] and cysteine-
rich angiogenic inducer 61 (CYR61) is a potential biomarker for prognostic insinuations
of ovarian carcinoma [66]. Kaplan–Meyer analysis enabled us to identify seven genes
(GBP5, LINC00707, MRPL55, RRS1, SLC4A11, KRT4 and IRS2) with overall prognostic
biomarker potential. The majority of genes displayed a varied phenotype schema: up-
regulated in cancer, with positive outcome on up-regulation; up-regulated in cancer, with
negative outcome on up-regulation; and down-regulated in cancer, with negative outcome
on up-regulation. Next, using the t-SNE dimensionality reduction analysis method, we
showed that the combined predictive power of the seven genes results in a strong collective
diagnostic marker, suggesting that the seven genes can be used clinically as a cancer panel
for both diagnosis and prognosis. However, the selected seven genes could not provide
any information regarding population at risk.

Given the fact that all these genes were previously highlighted as having a differential
expression pattern under BPA treatment, we investigated further which genes can be
suitable candidates for biomarkers of exposure and biomarkers of disease. By evaluating
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the fold change in expression between normal and primary tumours and comparing it to
the fold change between expression in SKOV3 cell line in presence and absence of low-dose
BPA, we were able to further stratify the seven genes into three groups. We found that for
GBP5, LINC00707 and SLC4A11, the effect of BPA exposure is minimal with a potential
positive bias in GBP5 and negative bias in LINC00707 and SLC4A11. By contrast, KRT4
was shown to be strongly and negatively impacted by BPA exposure, suggesting that BPA
can alter the predictive outcome of KRT4. Of note, KRT4 shows a particular behaviour
exhibiting no significant change in expression between normal and primary tumours but
showing a strong positive patient outlook upon down-regulation. Finally, for IRS2, RRS2
and MRPL5, we found comparable effects on gene expression under tumour conditions or
exposure to BPA. Collectively, these results suggest that a conservative functional cancer
panel formed by GBP5, LINC00707 and SLC4A11 can provide useful insights regarding
the diagnosis and overall survival prognosis regardless of the status of BPA exposure
of the patient (i.e., biomarkers of disease), while KRT4 can act as a marker for exposure-
associated disease.

The finding that KRT4 can be a potential biomarker of BPA exposure-associated
ovarian cancer is of increasing importance given that this gene appears to be under the
influence of estrogenic responses. Indeed, estrogens play an important role in the develop-
ment and growth of ovarian cancer as well as in its subsequent metastatic events. When
ER-positive ovarian cancer cells were treated with E2, KRT4 expression was dramatically
down-regulated [67,68]. Moreover, when estrogen receptor β (ERβ) was silenced in breast
cancer MDA-MB-231 cells, KRT4 expression was significantly increased [69]. When p53
null mammary epithelial cells were treated with the selective estrogen receptor modulator
Tamoxifen, it led to a significant up-regulation of KRT4 [70]. Nguyen et al. suggested a
functional interplay between Zinc-finger protein 217 (ZNF217) and ERα exists in breast
cancer [71]. Interestingly, when ZNF217 is silenced in ovarian cancer in vitro, the KRT4
gene was also significantly down-regulated [72]. A direct link between BPA and KRT4
comes from an in vivo study, where KRT4 promoter was hypomethylated in two-week
mice following BPA treatment in utero [73].

In summary, leveraging the available RNAseq data from TCGA and GTEx, we were
able to identify a number of new potential biomarkers of exposure-associated disease
and biomarkers of diagnostic/prognostic potential for ovarian cancer. Future studies
should concentrate on elucidating the impact of BPA on normal ovarian function and
correlating the biomarker potential of the above-mentioned genes with clinical data. It
would be of interest to measure circulating BPA levels in patients and correlate these
concentrations with expression of certain genes, especially KRT4 in both tissue and liquid
biopsies. Ultimately, these data can be used to put in place preventative measures to reduce
exposure to BPA that consequently might impact disease progression.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10091979/s1, Figure S1. The functional enrichment in gene ontology terms in 14 genes in
relation to site of expression (a,b), cellular components (c,d), biological processes (e,f) and biological
pathways (g,h). *p-val < 0.05. Figure S2. The functional enrichment in gene ontology terms in
80 genes in relation to site of expression (a,b), cellular components (c,d), biological processes (e,f)
and biological pathways (g,h). *p-val < 0.05. Figure S3. Heatmap of 94 genes in (a) normal ovarian
tissue and (b) tumorous ovarian tissue showing correlation between these genes. Deep dark blue
colour shows a strong correlation, while deep red colour shows no correlation. Figure S4. KM-plots
for stratifying by (a) stage (late – III& IV vs early – I&II), (b) age (late – >60 vs early – <60), and (c)
recurrent disease (yes vs no). Figure S5. tSNE discrimination between various phenotypes using the
information from the 94 gene expression profiles. Figure S6. tSNE discrimination between tumour
and normal samples using the information from the GBP5, SCL4A11 and LINC0070 gene expression
profiles. Figure S7. Scatter plot of the expression changes upon BPA exposure as compared to the
changes in expression driven by ovarian cancer alone. The labels indicate the pairing in the change
in expression in cancer as in SKOV3 cell lines under BPA treatment as compared to their respective
controls. The colours are indicative of the statistical significance of the change in expression in
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ovarian tumor samples vs normal healthy tissue. Table S1. Details of the clinicopathological features
of the tissues used for the microarray. Table S2. List of genes associated with the phenotypes in
Figure 2. Table S3. Gene set enrichment analysis results for 94 BPA dysregulated genes. Table S4.
Gene expression rank in Hui et al, TCGA, and GTEx datasets.
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