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Abstract

In recent years, data analytics and machine learning have become important for gener-
ating insights and creating competitive advantages across many industries. However,
despite recent developments in analytics and machine learning technologies, as well as
accessible tools to perform the implementation of such technologies, built environment
is still a largely unexplored field, where many engineering operations remain manual.
Recent advances in building management systems and data engineering have provided
vast amount of data streams of all types of sensors around the built environment: com-
fort variables, assets, security installations, meteorological measurements, electricity de-
mand, etc. This creates a wide range of opportunities to explore data and extract real
value for various operational purposes. The aim of this Thesis is to develop a series of
tools related for control and optimisation of built environment, from demand side re-
sponse events prediction to building operations management. Equipped with the results
of this work, building managers will be more prepared to respond to energy demand
events, organise energy resources more efficiently and to acquire a proactive approach
to system failures and system errors tractability. The pilot results of the thesis have been
successfully implemented in industrial applications.
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Chapter 1

Introduction

With the rise of the Internet of Things (IoT) technologies and the recent applications to
managing all aspects of buildings, there is a huge potential in computational solutions.
Machine learning solutions in the built environment, demand side response or electricity
purchase through power purchase agreements, are still a largely unexplored field. Due to
the amount of data generated from sensors or available information on energy systems,
the requirements for analytics and automation become increasingly complex and, there-
fore, requiring complex solutions. The aim of this thesis is to develop a series of solutions
that encompass the automation of the built environment: Demand Side Response (DSR),
Power Purchase Agreements (PPA) and Building Management Systems (BMS) optimisa-
tion. These three areas are the main building blocks of this thesis. The aim is to enhance
smart building capabilities by creating an unique framework for built environment op-
timisation utilising machine learning. As the built environment comprises the different
areas mentioned earlier, the work has been subdivided into several tasks that compose
this framework. The main tasks comprising these areas are outlined as follows:

• To correctly detect the peaks of highest demand of the year at a national level, so
further action is being taken in response to DSR programs.

• To efficiently choose and combine renewable energy assets for a building or for
sets of buildings, thus reducing the risks associated with the uncertainty and vari-
able generation patterns to a minimum and promoting the use of renewable energy
sources.

• To reduce operational times by using a dynamic approach. The motivation of this
task is the lack of documentation problem with respect to HVAC equipment and
sensors installed, which makes errors tractability and assets linkage very difficult
in daily building operations.

• To reduce HVAC maintenance costs by adopting a proactive approach to HVAC
failures instead of a reactive approach by acting before the failure happens.

• To automate this manual work for decreasing mobilisation time, as the current time
spent for building mobilisation to an analytics platform requires a manual process
of several days of manual tagging.

Another challenge is the lack of data provided to achieve these goals. Not enough
data is normally provided for industrial applications in BMS. In comparison to other
studies, where sufficient data from specific HVAC systems is available, the data used
here is limited, e.g. only room temperature sensors are used instead of internal param-
eters of air handling units, which is not provided. This adds an extra challenge to the
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problem that needs to be dealt with.

The motivation for each of these challenges to be tackled within the context of build-
ing management systems are outlined as follows:

First, for DSR interventions, a method for detecting and forecasting events of high
energy demand is proposed, which are managed at national level in DSR programmes,
such as the UK Triads. The methodology consists of two stages: load forecasting with
Long-Short-Term-Memory neural network and dynamic filtering of the potential highest
electricity demand peaks by using the exponential moving average. The methodology is
validated on real data of a UK building management system.

Second, once the periods of highest demand for DSR programs have been identified to
generate energy savings, the problem of the choice of the optimum combination of renew-
able sources is tackled. Due to decrease of the electricity prices from solar and wind gen-
erators, and the European Union regulations for decarbonisation of the economy, more
than 40% of the most important Fortune 500 companies in the world now have targets
related to green energy. This is one of the main reasons why multi-technology Power Pur-
chase Agreements (PPAs) are becoming increasingly important. However, there are risks
associated with the uncertainty and variable generation patterns in wind speed and solar
irradiation. Besides, there are not many approaches to predict wind and solar generation
in the forecasting horizon required by PPAs, which is usually of several years. Long-term
wind and solar energy generation forecasts are proposed, followed by cost optimisation
in energy generation scenarios.

Third, when the DSR opportunities and optimal combination of renewable generation
assets have been considered for optimal resource allocation and energy savings oppor-
tunities, optimisation of building operations are considered using building sensors. In
large buildings, linking heating, cooling or ventilation systems between themselves and
to physical spaces is a very time-consuming task that requires highly skilled engineering
knowledge, as all these systems are interconnected and they have a certain influence to
each other (ventilation systems are often connected to heating and cooling), which of-
ten makes task of locating the sources of error or anomalies very time consuming and
difficult as they are performed manually. A different approach would be to work out
relationships and equipment linkage from time series data provided by the sensors, thus
inferring equipment links from which anomalies can be traced back to the source more
easily. A data-based solution is proposed to obtain equipment relationships based on
cross-correlations to relate Air Handling Units (AHUs) to their respective areas of oper-
ation. A methodology is also proposed to identify whether or not to trust correlations
based on the difference between supply and return temperature. A case study is pre-
sented based on a large building with 16 AHU systems.

Fourth, internal temperature sensors are used also for operational optimisation, but
applied to early signals detection. In the context of sensor data generated by BMS, early
warning signals are still an unexplored topic. The early detection of anomalies can help
prevent malfunctions of key parts of a heating, cooling and air conditioning (HVAC)
system that may lead to a range of BMS problems, from energy waste to fatal errors in
the worst case. Early warning signals of BMS sensor data were analysed for early fail-
ure detection. Variance, lag-1 autocorrelation function (ACF1), power spectrum (PS) and
variational autoencoder (VAE) techniques are applied to both univariate and multivari-
ate scenarios.
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Fifth, once the internal operational aspects of the building have been considered, the
next step is the on-boarding speed. When working with building management systems,
one faces two problems. On the one hand, each Building Management System (BMS)
manufacturer has proprietary data structures and architecture. On the other hand, there
is no standard for the naming conventions of the sensors or equipment within these struc-
tures by default. Translating building sensor points into a naming standard is a very
time-consuming task that requires highly skilled engineering knowledge. This should
be done using each item’s name in the BMS (points) into the clean structured format (la-
bels). The necessity of this manual step in the process is slowing the proliferation of IoT
integration with existing BMS and causing large costs to companies during the BMS roll
out. Medium to large buildings have between 200 and 1000 points. Manually translating
these points into labels (the tagging process) takes around 8 hours for every 100 points.
AI based series of multi-label classification methodologies are proposed to translate ex-
isting BMS points into formatted labels automatically. The methods are compared using
several accuracy metrics and then the best performing algorithm is chosen.

This thesis considers to first tackle the external aspects of the building, in relation to
DSR and renewable resources optimisation in a real case scenario, as PPA contracts have
a length of 10 to 15 years and DSR events can be predicted every winter. Then, internal
and operational aspects of the building have been considered, as this is a process of con-
tinuous improvement within the building, as more cases for internal optimisation can be
considered by using the results of this work as a solid background. The scheme of the
above for the industrial application can be seen in Figure 1.1.

Figure 1.1: Schematic of industrial application for the Thesis.

As can be seen in Figure 1.1 Triad, which is the specific case study for DSR events, ex-
tracts national electricity demand data and stores it in a data base, before being run in an
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application whose results are input to the building analytics platform. The PPA function-
ality gathers data from different providers manually, before performing forecasting and
optimal asset combination. Early warning signals and BMS clustering use data directly
from the building analytics platform, in order to generate signals as independent appli-
cations. The automatic tagging problem imports the names from a database remotely,
which are then processed and classified before building mobilisation.

In general, this works includes a series of machine learning applications in the un-
explored area of smart buildings. In this thesis, these applications solve common prob-
lems of control optimisation of the built environment. Equipped with the results of this
work, building managers will be more prepared to respond to and organise energy re-
sources more efficiently and to acquire a proactive approach to system failures and errors
tractability, with a successful implementation in industrial applications. This thesis con-
siders both internal and external aspects of the building. The external aspects are related
to optimisation of energy resources and demand side response, and internal aspects re-
fer to building sensor data that measures temperature and other factors related to policy
comfort, HVAC systems or electricity consumption (meter data).

The main contributions to knowledge of this Thesis in terms of demand side response,
power purchase agreements and building management systems can be summarised as:

• Development of a deep learning system for detecting and forecasting events of high
energy demand at a national level for general DSR interventions. With RRMSE =
2.23% achieved in LSTM and being able to predict Triads with a fixed level of risk.

• Development of methods for long-term wind and solar generation forecast and a
linear programming-based method for optimal combination of renewable assets
with no weather data available.

• Methods for obtaining relationships between HVAC assets and their respective ar-
eas of influence in large facilities through clustering time series analysis from tem-
perature sensor data. Results show a 70% of correct association of Air Handling
Units (AHUs) with their respective areas of operation in a large facility with 16
AHUs and a correct Fan Coil Unit (FCU)-room association.

• Development of early warning signals for temperature sensor data that detects
anomalies up to 32 hours prior to failure.

• An automatic method for translating building sensor points into a haystack nam-
ing standard that uses multi-stage text classification and that achieves a 90% of true
positives. Also, the addition of a confidence formula to create a boundary for de-
tecting false positives has been developed.

This thesis is organised as follows: In Chapter 2, an analysis of the current state of re-
search is presented. Chapter 3 describes the methodology used for the experiments. This
Chapter is divided in four main parts: the first one focused on time series forecasting and
estimation, describing the techniques used in the DSR intervention and PPA assessment.
The second one focuses on time series clustering, the third one in Early Warning Signals
(EWS) methodologies and the fourth one is focused on text classification methodologies.
The design of experiments for the five problems mentioned above, description of the
problem structure and the data characteristics involved on each of them, as well as the
results are outlined in Chapter 4. Finally conclusions, limitations and further work are
presented in Chapter 5.
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Chapter 2

Literature review

In recent years, smart building efforts were focused on cutting costs by streamlining
building operations such as air conditioning and lighting. However, despite of the re-
cent developments in analytics and machine learning, very little effort has been made
in exploring these capabilities in buildings, despite of the vast amount of data available
nowadays from building management systems. Managing building operations is critical
to reducing annual building operating costs as mentioned in older works such as (Snoo-
nian, 2003), however, there is a whole range of methodologies to apply to this field that
have not been explored, even to the date. Recently, Internet of Things and cloud com-
puting took part in the boost of smart buildings capabilities (Plageras et al., 2018), which
gives plenty of room for improvement on analytic tools to enhance such capabilities.

In another classic of the smart buildings literature, Snoonian (2003) points out that
smart buildings are the basic building blocks for smart cities, and explores several as-
pects of the buildings to be considered for smart building capabilities, such as demand
side management capabilities, micro renewables, micro energy storage and electricity-
price based consumption controller. This work considers that demand side response
capabilities of buildings should be considered within the smart buildings tool set: for
consumer electricity prices on the one hand, and for grid frequency and demand balance
on the other.

In more recent works, new technologies are incorporated to smart buildings to better
balance supply and demand by decentralised mechanisms. Such as the use of blockchain
technologies in Van Cutsem et al. (2020), which presented a decentralised framework to
manage the electrical consumption in a community of Smart-Buildings and local Renew-
able Energy Sources (RES). Froufe et al. (2020) identifies 11 drivers which foster build-
ings to be smarter emerged and evolved, which were divided in three categories: users
(health, well-being and meeting expectations), owners (improvement of the cost-benefit
ratio) and environment (reduction of consumption emissions and improvement of the
interaction of the building with the environment). The work presented in this thesis aims
to cover these three areas. Another work that aims to reduce consumption is done by De
Paola et al. (2020), which presents a novel hybrid intelligent architecture which exploits
heterogeneous devices pervasively deployed in the environment to reduce the energy
consumption of buildings. Studies that use of IoT in smart buildings have recently in-
creased due to the many potential applications in this area, as it is the case of Casado-Vara
et al. (2020), which uses a technique named IoT slicing that combines complex networks
and clusters in order to reduce algorithm input errors and improve the monitoring and
control of a smart building, to transform temperature data so it can be used as an input
for monitoring and control algorithms in smart buildings to optimise their performance.
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Other IoT applications in smart buildings can be found, such as Carli et al. (2020) which
considers an IoT based architecture for model predictive control of HVAC systems that
optimizes the indoor thermal comfort and the energy consumption.

Figure 2.1: Smart-Buildings community with local RES: structure, communication, and
power flows (Van Cutsem et al., 2020)

The consideration of heating, ventilation and air conditioning systems as a key part
of smart buildings is also included in this work. According to (Weng et al., 2012), in
the US buildings consume a 70% of the total electricity generated. They discussed the
importance of actuation in making buildings more energy efficient through the develop-
ment of several mechanisms for actuating the HVAC system and controlling plugs based
on occupancy. More recent works focused on HVAC systems such as Gholamzadehmir
et al. (2020) which acknowledges that the highest amount of energy consumption occurs
in buildings, and reviews advanced control strategies and their impact on buildings and
technical systems with respect to energy/cost saving. The scheme of application through
a cloud platform can be seen in Figure 2.2. Other works consider forecasting internal
space temperatures accurately for HVAC systems control, such as Mtibaa et al. (2020),
which considers long short-term memory networks to predict indoor air temperature
based on direct multi-step prediction. Yu et al. (2020) uses an HVAC control algorithm is
proposed to solve the Markov game based on multi-agent deep reinforcement learning
with attention mechanism, which does not require any prior knowledge of uncertain pa-
rameters and can operate without considering thermal dynamics models.
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Figure 2.2: Application of Adaptive Predictive Control Strategies (APCS) as a supervisory
control system through a cloud platform (Gholamzadehmir et al., 2020)

This work considers a series of machine learning techniques for both energy sys-
tems (forecasting techniques and software for demand side response and power purchase
agreements) and HVAC, which also includes early warning signals, text classification for
efficient building mobilisation and automatic sensor group clustering to identify links
between sensor data, equipment and their physical areas of influence.

2.1 AI for demand, wind and solar generation forecast

2.1.1 DR interventions and load forecasting

The changes in energy policy aim to substantially increase renewable energy generation
and reduce carbon emissions. Addressing the growing energy demand, aging infrastruc-
ture and intermittency of renewable energy requires an efficient forecasting methodology
to predict periods of peak energy demand. Long-term power load forecasting at national
level is an important basis for Demand Side Response (DSR) planning, which aims to
reduce the need for last-minute energy generation from non-renewable sources.

In the energy sector, Demand Side Response is meant to substantially reduce the need
for investment in peak generation. This is done by minimising consumption at times of
high demand. With the goal of adding stability to the system, demand response lowers
the need for coal and gas-fired spinning reserves. This reduces carbon emissions because
most power plants burn fuel/coal continuously in order to supply power at short no-
tice and thus reduces anthropogenic impact and decreases the need for local network
investments. Demand side response refers to “voluntary changes by consumers of their
electricity use pattern” (ELEXON, 2018), either in response to changes in the price of elec-
tricity over time or through incentive payments.

Reducing electricity demand peaks is a key issue for DSR programs and for reduction

16



of carbon emissions, as less power will have to be generated by coal and gas. In Faruqui
et al. (2010), 15 recent assessments of residential dynamic pricing programs are surveyed,
most conducted in the US after the year 2000. According to their survey, Time-of-Use
(ToU) tariffs induce a reduction in peak consumption that ranges from 3% to 6% and
Critical Peak Pricing (CPP) has the effect of decreasing peak usage by between 13% and
20%. In a more recent study, Li et al. (2020b) investigates UK consumers heterogeneous
engagement in demand-side response, focusing on the activities that constitute the major
part of domestic energy consumption. The findings can potentially help policy makers
to focus on more targeted DSR plans and improve existing models that consider these
factors. The variety of DSR programs has been increasing in Europe over the past years.
However, the number of systems specifically oriented to national DSR programs in the
scientific literature is lacking.

There is a rich variety of methodologies for peak load forecasting, and there have been
significant improvements in time series forecasting due to the increase of the computer
capacity which has led to new computational methods such as Machine Learning and
other AI approaches. In Kouroupetroglou et al. (2017), in the comparison of machine
learning models for short-term load forecasting in the Greek electric grid, six machine
learning methods are compared: Support Vector Machines (SVM), K-Nearest Neighbors
(KNN), random forests, Neural Networks (NN), xgboost and model trees. This is very
relevant to the present research due to its load forecasting methods used at a national
level. Four experiments were performed in order to minimize the error of prediction
accuracy. The results of these experiments show that, overall, model trees performed
better in terms of prediction error, followed by xgboost and SVM. In another comparative
study, (Al-Musaylh et al., 2018), three methodologies are compared for electricity demand
forecasting: Multivariate Adaptive Regression Spline (MARS), Autoregressive Integrated
Moving Average (ARIMA) and SVM. The results of the study show that, in terms of
statistical metrics, MARS model yielded the most accurate results for 1/2-hours and 1-
hour forecasts, whereas the SVR models were better for a 24 h horizon and the ARIMA
model’s performance was lower for all forecasting horizons as it generated very high
forecast errors.

Another commonly used approach for load forecast are Artificial Neural Networks
(ANNs). ANNs are composed of a network of processing nodes (or neurons), which
perform numerical transformations and are interconnected in a specific order so differ-
ent weights are assigned to give importance to different factors through training the net-
work. According to Chen et al. (1992), ANNs are well-known for being able to forecast the
outputs of nonlinear datasets, to efficiently perform different simultaneous tasks. There
are several studies for load forecasting using ANNs, such as the comparative study in
Kandananond (2011), in which three methodologies, ARIMA, ANN and Multiple Linear
Regression (MLR) were deployed to forecast the electricity demand in Thailand. The re-
sults showed that based on the historical data and on the error measurement the ANN
model was superior to the other two. In Filik et al. (2011), mathematical models and neu-
ral networks to forecast the long-term electricity demand in Turkey are compared. Some
short-term load forecasting studies combine ANNs with other methods, such as Saini et
al. (2002) which is an ANN based peak load forecasting using Levenberg-Marquardt and
quasi-Newton methods. Also, González-Romera et al. (2008) focused on the periodic be-
havior of consumption for forecasting the Spanish monthly electricity demand, in which
the trend of electricity demand was predicted using an ANN combined with Fourier se-
ries. There are novel alternative methods that have been compared to more traditional
ANN approaches, such as Singh et al. (2018), whose study integrates an evolutionary
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approach with ANNs for short-term load forecast, based on "follow the leader" behavior
(Fernandez et al., 2011). This hybrid approach is compared with four other variations of
ANNs, showing that they are outperformed by the "follow the leader" hybrid approach
in terms of predictive accuracy measures. The emerging class of ANN, extreme learning
machine (ELM) plays an important role for this purpose in Li et al. (2016), because it is
invoked to predict the hourly load of the next day and it improves its performance signif-
icantly. In more recent studies, ANNs are less frequently used due to the new techniques
that outperform ANNs, however different variations of this method are appearing re-
cently, such as Aly (2020), which uses bootstrap aggregating based ensemble ANN for
short term load forecasting, or hybrid methods such as the support vector regression and
ANNs, also for short-term load forecasting, in Abad et al. (2020).

Deep Neural Networks (DNNs) are also used for the purpose of load forecasting.
DNNs are ANNs with several hidden layers, adding complexity to its structure. He
(2017) studies one day ahead forecasting of hourly loads based on deep networks. The
study of Hamedmoghadam et al. (2018) has a more specific goal, to use DNNs to predict
the monthly electricity demand in Australia based on time series of consumption rates as
well as socioeconomic and environmental factors. In a more recent study, Sideratos et al.
(2020) combines attributes from ensemble forecasting, ANNs and deep learning architec-
tures to predict the hourly load for the next seven days. Also Lai et al. (2020) presents a
novel load forecasting method known as deep neural network and Historical Data Aug-
mentation (HDA), which uses historical data augmentation to enhance regression by the
DNNs.

Figure 2.3: Framework of the DNN-based regression model and HDA (Lai et al., 2020)

Other methodologies such as Radial Basis Function (RBF) have been used to address
the problem of load forecasting, (Yun et al., 2008; Liu et al., 2017a; Khwaja et al., 2017).
The study of Yun et al. (2008) combines the RBF neural network with the Adaptive Neu-
ral Fuzzy Inference System (ANFIS) to adjust the prediction by taking into account the
real-time electricity price. Khwaja et al. (2017) compares three different versions of RBF
to predict electricity load. In the area of short-term load forecasting, Cao et al. (2015) ad-
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dressed this problem by using ARIMA model and similar day method for intraday load
forecasting. For very short-term load forecasting, Qingle et al. (2010) also proposed an
ANN-based predictor that takes the load values of the current and previous time steps
as the input to predict the load value at the coming step.

SVMs are also very relevant for load forecasting. This is shown in Chen et al. (2004)
and Hong (2009), as well as more recent modified SVM versions, which are combined
with other methods in order to achieve a better accuracy. This is the case of Daut et al.
(2017) for load forecasting method using a combined Least Square SVM (LSSVM) and
modified artificial bee colony (ABC-LSSVM), which proved to have a better performance
than the standard ABC-LSSVM and LSSVM. Another example of modified SVM for load
forecasting is shown in Liu et al. (2017a), which uses the sperm whale algorithm and
wavelet least square support vector machine with DWT-IR for feature selection. Also,
more recent versions of this algorithm combined with other techniques produce satisfac-
tory results, as it is the case of Feng et al. (2019), which combines the dragonfly algorithm
and SVMs to produce short term load forecasting of offshore oil field microgrids. For
short-term load forecasting, improved SVM with extreme machine learning is used, us-
ing xgboost and decision trees as a hybrid feature selector is proposed in Ahmad et al.
(2020). This is illustrated in Figure 2.4

Figure 2.4: Model proposed by Ahmad et al. (2020)

Recurrent Neural Networks (RNNs) are very popular in the scientific literature as
they can work on sequences of arbitrary length. More particularly, in Bianchi et al. (2017),
a comparative study of short-term load forecast is performed by using different classes of
RNNs, and although there is not a specific RNN model that outperforms the others in ev-
ery prediction problem, it shows that LSTM and Gated Recurrent Units (GRUs) achieve
outstanding results in many sequence learning problems. LSTM, together with GRUs,
present no vanishing/exploding gradient problem. This has been proven in Zheng et al.
(2017) which shows that LSTM outperforms traditional forecasting methods in the short-
term electric load forecasting. They compare its performance with other methods such as
Seasonal Autoregressive Integrated Moving Average model (SARIMA), a nonlinear au-
toregressive neural network model with exogenous inputs (NARX), SVM and NNETAR,
a feed-forward neural network model for univariate time series forecasting with a single
hidden layer and lagged inputs. Some other studies combine these methodologies, such
as Tian et al. (2018), which uses a deep neural network model for short-term load forecast
based on LSTM and Convolutional Neural Network (CNN), achieving the lowest error
in comparison to the other algorithms tested. Kong et al. (2019) performs short-term load
residential load forecasting using an LSTM Recurrent Neural Network showing a Mean
Absolute Percentage Error (MAPE) between 1.5% to 35%, depending on the household.
There are other several publications about LSTM for speech recognition, sentiment anal-
ysis and autonomous driving systems (Graves et al., 2013; Wang et al., 2016; Xu et al.,
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2016). The abundance of more recent studies in this field proves that these techniques
are still useful in this field. One example of this is shown in Bouktif et al. (2020), which
shows multi-sequence LSTM-RNN deep learning and meta-heuristics for electric load
forecasting. A short-term load forecasting algorithm using RNNs with input attention
mechanism and hidden connection mechanism is shown in Zhang et al. (2020), whose
results prove better than others for experiments in two datasets. A typical architecture
of RNNs with a typical attention mechanism is shown in Figure 2.5. A similar approach
which uses sequence to sequence RNNs and attention is Sehovac et al. (2020).

Figure 2.5: Architecture of RNNs with typical attention mechanism (Zhang et al., 2020)

2.1.2 Triad background

Triad forecasting is a matter of great interest for businesses, as this is an event that costs
a significant amount of money, specially to those with higher number of infrastructural
objects (banking, retail, telecommunications). Triads are the three half hour periods of
peak power demand across the National Grid in a year (from November to February).
These three points are used to calibrate the system costs, which are passed on to industry.
The aim of the Triad system is to incentivise industry and users to help smooth out peaks
in energy demand during the winter, especially in cold snaps (ELEXON, 2018).

According to Newbery (2011), the Triad charging system encourages demand reduc-
tion at these peak hours and hence signals the need for less generation and transmission.
ELEXON provides a forecast for the UK electricity demand and energy managers, and
businesses rely on this information (publicly available) to know when a Triad is going
to happen. However, this information is incomplete and inaccurate as the demand val-
ues that ELEXON seeks to forecast are not the ones which Triad is calculated against.
The model proposed in this work creates a better decision making framework because
calling Triads implicates switching off equipment. Some companies cannot handle the
disruption internally, as they need to run fuel generators, and this leads to considerable
expenses.
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TNuoS charges, which cover the costs of operating transmission networks, may rep-
resent around 5% of the bill. These fees are revised annually and forecast for 5 years
ahead. The 2017 forecast published by National grid (Grid, 2018), shows the value of
Triad growing from an average of £44 (≈57.36$) per kW to £59 (≈76.90$) per kW used
during peak times. This forecast can be seen in Table 2.1.

The charge varies across 14 zones and is based on user’s average half-hourly demand
over three Triad periods taking place every winter season (ibid.). Because of economic
interests for companies, most of the current Triad forecast systems are not publicly avail-
able.

In Marmaras et al. (2017) the electricity demand of each building on an actual Triad
peak date and time was predicted successfully, and an overall forecasting accuracy of
97.6% was demonstrated for the considered buildings. Marmaras’ model uses data from
three different sources at various stages to predict the most probable half-hour of the day
when the Triad could occur. These are data from National Grid, weather data and his-
torical energy consumption; and its training set consist of historical data from 1990. This
work, however, only validates the effectiveness of Triad forecasting using one year of
data, not necessarily that the same model would work for longer periods and therefore,
not offering a flexible framework when any changes (such as new policies) occur.

As changes happen very often in this field, ideally some parameters should be reg-
ulated. A single standalone system that works for every Triad season without having
to do any modifications is difficult to develop. Algorithm validation is also not easy to

Table 2.1: Forecast of Triad fees (£/kW) forecast from season 2018/2019 to 2022/2023

Region
Season

18/19 19/20 20/21 21/22 22/23

Nothern
Scotland

18.35 21.69 27.94 27.19 28.81

Southern
Scotland

25.13 29.17 33.99 35.13 37.92

Nothern 36.92 41.50 44.31 48.63 51.20
Noth
West

43.87 48.40 51.01 55.79 58.73

Yorkshire 43.83 48.47 51.15 56.25 59.31
Noth Wales &

Mersey
45.43 49.97 52.66 57.27 60.70

East
Midlands

47.39 52.26 55.59 60.83 64.07

Midlands 48.85 53.50 56.26 61.71 65.19
Eastern 49.37 54.33 57.91 63.17 66.51
South
Wales

46.78 50.89 54.18 59.64 64.01

South
East

52.52 57.11 60.34 65.51 68.72

London 54.84 60.21 63.92 69.30 72.89
Southern 53.80 58.55 61.67 66.74 69.94

South
Western

53.86 57.30 60.08 63.71 67.73
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because of the two reasons: data availability and constant changes in the patterns of the
training data. This is why a certain degree of flexibility is proposed that the user can tune
according to the degree of risk that can be afforded.

2.1.3 PPAs and renewable energy generation forecasting

Energy is the backbone of our economy, with a lot of emphasis being given to electrifi-
cation under an agenda which is focused on climate change, sustainability and security
of supply. Consumers, investors and politicians have influenced energy intensive organ-
isations to find more efficient and sustainable ways to meet their electricity requirements.

According to Fulbright et al. (2016), more than 40% of Fortune 500 companies now
have targets related to renewable energy procurement, energy efficiency or cutting Green-
house Gas Emissions (GHG). One example is Google, whose target in 2010 was to achieve
100% renewable energy by 2017 for their global operations, including data centers and
offices (Hölzle, 2016).

As defined in Jenkins et al. (1999), a Power Purchase Agreement (PPA) is a long-term
contract between an Independent Power Producer (IPP) and an off-taker, usually an en-
ergy intensive organisations or a utility company. PPAs are seen as a hedging tool by
many organisations, as they offer an opportunity for energy buyers to achieve price cer-
tainty and at the same time meet their sustainability objectives.

Mature renewable technologies were price competitive in 2020 and could offer prices
for their intermittent output at all-time lows. The intermittency of renewable technolo-
gies is seen as one of the main challenges in renewable PPAs. Many corporates are reluc-
tant to be exposed to this risk, despite the fact that it constitutes only a small fraction of
the total value of a PPA.

In physically settled PPAs there is usually a Balancing Responsible Party that under-
takes the balancing tasks, which are necessary to achieve effective hedging via PPAs. The
balancing responsibilities should reflect three types of risks, which are related to variable
generation patterns, (Hedges et al., 2019):

• Balancing risk: Risk associated to the exposure of power system costs that arise
when an asset’s forecast generation is different from its actual generation. This risk
is related to the imbalance cost, therefore the more an asset contributes to the power
system’s imbalance, the higher the cost.

• Shape or profile risk: This risk is related to the variability of wind speed or solar
irradiation, and is independent of the total volume generated by the asset.

• Volume risk: It captures the variable generation of an asset over a certain period
of time. This can be related to deviations in the long-term, such as higher than
expected wind speed or lower levels of irradiation due to abnormal weather condi-
tions.

Risks can be mitigated depending on the structure of the PPA contract itself (Brindley,
2019), but also by achieving the best possible forecast for both wind and solar generation.
A long-term scale forecasting horizon is considered, of at least one year, for wind and
solar generation.
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Wind generation forecasting has always been of interest for energy community, as
estimating wind generation forecast error has an influence in sizing reserves and also
in shape-balancing risk (Gil et al., 2010; Constantinescu et al., 2009; Lowery et al., 2012;
Mauch et al., 2013). Wilczak et al. (2015) points out the importance of wind forecast, but
their aim is to improve the accuracy of short-term wind forecast. In another example, So-
lari et al. (2012) uses geostrophic wind data to forecast wind speed for port safety, but the
maximum horizon achieved is in the order of days. Similarly, Cheng et al. (2017) aims to
forecast wind speed using anemometer data, but the forecast horizon is short-term. Also
Lange et al. (2006) outlines several techniques for wind forecast, but it follows a similar
forecast horizon. Many wind forecast horizons are oriented to achieve short-term accu-
rate results (Huang et al., 2011; Akçay et al., 2017; Bossanyi, 1985), even though what is
considered in this field as long-term does not extend to more than 120 hours, as is the
case of Barbounis et al. (2006). A case of wind speed long-term forecast is found in Azad
et al. (2014), where a series of Neural Network (NN) methodologies are used to forecast
wind speed in a period of 6 months by using historic wind speed pattern data. Other
predictions are short-term (Negnevitsky et al., 2006; Shi et al., 2013; Pinson et al., 2009;
Juban et al., 2007). More recent studies such as Li et al. (2020a) shows a combination of
SVM and an improved dragonfly algorithm that shows better prediction performance
compared with back propagation NNs and Gaussian process. Another novel application
on this is shown in Sun et al. (2020), which uses a combination of variational model de-
composition and convolutional LSTM and shows better performance in comparison to
similar variations including variational model decomposition, too.

The interest is in estimating electricity generation mid- and long-term, in particular,
more within several intervals during the year than in a forecast for the next period. Matos
et al. (2010) and Pinson et al. (2007) use probabilistic modeling and Markov Chain Monte
Carlo (MCMC) to generate the wind samples, but they do so for a time horizon of maxi-
mum 50 hours. There are many studies based on Bayesian methodologies to model short-
term wind forecast (Jiang et al., 2013; Bracale et al., 2015; McLean Sloughter et al., 2013),
achieving very good results. As mentioned before, many wind models use meteorolog-
ical data (wind speed, solar irradiation) to forecast generation, but the inconvenience of
this is that the forecast goes as far as the meteorological model goes, and this is usually
short-termIn more recent works, Chen et al. (2020) designs a novel medium-term wind
power forecasting based on multi-resolution multi-learner ensemble adaptive model se-
lection with good results, but the maximum forecasting horizon is only 18 hours. The
scheme of this model can be seen below in Figure 2.6. This model first transforms the
data into multi-resolution dataset, then 16 submodels are created from 4 base learners,
which then uses adaptive model selection and finally support vector regression is used
as a high level ensemble model with the selected sub-models from the previous part.
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Figure 2.6: Framework of the model proposed by Chen et al. (2020)

Concerning solar forecast, the challenge is less difficult in comparison to wind fore-
cast. This is due to the hours of daylight which are known. There are climatological
factors that influence solar generation, such as cloudiness (Reikard, 2009; Heinemann
et al., 2006; Sfetsos et al., 2000; Perez et al., 2010). One of the most popular approaches
is NN-based models, such as Gensler et al. (2016), which uses autoencoders and Long
Short-Term Memory (LSTM) NNs to perform the forecast, or using Artificial Neural Net-
works for this purpose, as in Chen et al. (2011) and Abuella et al. (2015). When looking
at the forecasting period, similar to wind, most of the predictions are focused in the short
term (Urquhart et al., 2015; Golestaneh et al., 2016; Bacher et al., 2009), therefore they
cannot be used for the purpose of PPA forecast. Even more recent models create more
sophisticated methods that achieve very good results, they still do not reach the forecast-
ing horizon that is needed for this problem. It also brings the work of Abdel-Nasser et al.
(2019), which uses LSTM-RNN to produce the forecasts and achieves a good result. An-
other interesting model that uses a similar approach for day-ahead solar forecasting is Li
et al. (2019), which outperforms other compared models such as LSTM, SVM, RBF and
Back Propagation Through Time (BPTT). The scheme of this model is shown in Figure 2.7
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Figure 2.7: Flowchart for PV generation power forecasting (Li et al., 2019)

The goal of this work is to produce long-term probabilistic forecasts of wind and solar
energy generation, with time horizon of one year, taking into account the above three
types of risks in order to find an optimal match of the forecasts with respect to the target
consumption profile.

2.2 AI applications in BMSs

2.2.1 HVAC systems and time series classification

Building Management Systems (BMS) present clear advantages for energy control such
as identifying locations of potential energy waste for energy optimisation, decreasing
equipment operating cost, providing indoor environmental safety and comfort through
Heating, Ventilation, and Air Conditioning (HVAC) systems control, as well as controls
of water consumption, elevators, etc. Over the past few years, a lot of efforts have been
put to control the three main important aspects of the building: energy consumption,
security and comfort. The schematic in Figure 2.8 represents the a high level overview
of the built environment and role of BMS control signals and information flow, which
also takes into account the supply of energy and data from the grid for demand response
events. This figure shows the main building blocks of BMSs, in relation to the whole
smart building spectrum:
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Figure 2.8: Schematic of BMS

The literature has been reviewed in two main parts in this section: the first one is
dedicated to supervised and unsupervised HVAC equipment linkage for fault detection
and diagnosis, as the main purpose of linking HVAC equipment is to trace back system
failures and to detect system anomalies. The second one to time series clustering, as these
are the kind of methodologies used to solve this problem.

When mobilising a set of building sensors into an analytics platform, BMS points are
translated into a naming standard such as Haystack (Quan et al., 2003) or a more uni-
fied metadata schema such as Brick (Balaji et al., 2016), so that the analytics platform can
recognise them, and sensor points can be programmed into rules for energy consump-
tion, systems linkage, etc, which requires a metadata framework to form a link between
point types, physical spaces and the linkage of HVAC components. One of these methods
is the framework for metadata normalisation Plaster in Koh et al. (2018), which requires a
certain level of human supervision such as knowing the point type, location and relation-
ship with other equipment parts, specially in large facilities. A methodology that works
out relationships between HVAC points based on sensor data may help to reduce human
interaction when building this framework. However, it may happen that the company
or individuals who want to perform this either do not have the resources or skill set to
translate BMS points into such standards. BMS systems transfer sensor data to analytics
platforms to be used for building optimisation.

Ventilation is one of the major areas of electricity consumption. In large industrial
facilities, Air Handling Units (AHUs) are key consumption points. As represented in
Figure 2.10, several units are also involved in AHUs, such as electric fans, humidifiers
(in some AHUs), heating and cooling, which interact with other systems, such as boilers,
cooling systems, etc. Therefore, controlling AHU’s parameters means to control a signifi-
cant part of electricity consumption, as this is a point where other systems converge. The
goal of this work is to infer relationships between AHUs and both building areas and
other HVAC parts for large manufacturing facilities using only time series data from the
installed BMS sensors.

Previous studies have presented novel methodologies to infer relationships between
HVAC components of large commercial buildings such as Pritoni et al. (2015), that utilises
perturbations of subsystem variables to reveal correct associations with a 76% success.
The authors state that statistical methods are not good for this purpose, however they
only use correlations between variables and they don’t test more complex statistical method-
ologies. Koh et al. (2016) uses a series of supervised learning methodologies to infer
point type from sensor data, as well as to control perturbations to verify relationships
between HVAC system parts. Gao et al. (2018) compares different supervised learning
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Figure 2.10: Schematic of AHU

methodologies, inferring equipment characteristics from time series features. The case
study presented in our work proposes a system with old infrastructure where neither
documentation nor prior knowledge is available, therefore a supervised learning classi-
fication approach would not be feasible. Inputs and outputs are known but, in order to
verify such outputs, verification from experienced engineers has been necessary in or-
der to compensate the lack of documentation, which has been a work that lasted several
weeks. Similarly, Park et al. (2018) use supervised classification to infer AHU-VAV links
by first extracting statistical features from the data and then applying random forests for
each VAV. This is shown below in Figure 2.9, where the highest value of cross-correlation
is used to determine the relationship between VAV damper position and supply air duct
pressure for each AHU to infer the correct relationships. A study offering relationship
between equipment parts according to physical spaces and with minimal intervention is
presented in Li et al. (2017), which converts time series into frequency domain with short-
time Fourier transformation operator, that contains implicit information about changes
in sensor patterns. Then it wraps them in time dimension by using dynamic time warp-
ing and a predefined time wrapping function.

Figure 2.9: Architecture of RNNs with typical attention mechanism by Park et al. (2018)

The methodology applied in this study could be useful for diagnosis of system errors,
which are defined after establishing normal working conditions of the system according
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to the clusters. When there is a significant number of AHUs and the temperature gets
outside a comfort policy, the origin of this failure can be very difficult to trace back. For
AHU fault diagnosis some previous work has been reported in the literature. Lee et
al. (1996) describes the application of Artificial Neural Networks (ANNs) to the prob-
lem of fault diagnosis in an AHU by using residuals of system variables to quantify the
dominant symptoms of fault modes of operation. Following the same approach, Lee
et al. (2004) proposed AHU subsystem level fault detection using a General Regression
Neural-Network (GRNN), residual generation and fault detection and diagnosis. A novel
feature extraction technique to extract temperature and power associated features from
high-dimensional and unstructured terminal unit data is presented in Dey et al. (2020b),
to diagnose faulty HVAC in an automatic and remote manner. Air handling unit Perfor-
mance Assessment Rules (APAR) was used by Schein et al. (2006). They utilised control
signals to determine the mode of operation of the AHU. A subset of expert rules which
correspond to that mode is then evaluated to determine whether a fault exists. In the
review of fault detection and diagnosis methodologies carried by (Yu et al., 2014), vari-
ous Fault Detection and Diagnosis (FDD) techniques are described to illustrate the use of
evaluation standard parameters for improving the performance of AHUs. They divide
FDDs into three main categories, namely analytical-based methods, knowledge-based
methods, and data-driven methods. In a more recent study, Dey et al. (2020a) proposes a
method that employs sequential two-state clustering to identify abnormal behaviour of
the fan coil unit. Some other recent studies on HVAC systems fault detection and diag-
nosis can be seen in Dey et al. (2020b), Stopps et al. (2019) and Yang et al. (2020). The last
one presents very interesting findings about a model predictive control system with an
adaptive machine-learning-based building model for building automation and control
applications, achieving 58.5% reduction of cooling energy in the office and 36.7% reduc-
tion of the electricity consumption of the air-conditioning system. The schematic of the
ANN with the dynamic recurrent nonlinear autoregressive exogenous (NARX) architec-
ture as a part of this model, which adds delayed weights as inputs, is shown in Figure
2.11.

Figure 2.11: A schematic diagram of the NARX ANN for modeling dynamic systems by
Yang et al. (2020)

The methodologies for detecting failures of AHUs have the specificity of using either
control signals or the internal parameters of the AHU itself. In large facilities, linking dif-
ferent physical spaces with their correspondent control systems is needed to detect the
sources of deviation from the prescribed conditions. There is growing demand to under-
stand and extract value from sensor data, especially in large spaces where the amount of
AHUs and of time series data provided by different sensors can create confusion when
looking for links between different equipment units. So the real problem to solve is to
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add clarity to equipment-spaces linkage and therefore, to create real value from sensor
data.

This sensor data linkage is done by studying similarities between the time series data,
and by clustering them based on these similarities. Aghabozorgi et al. (2015) states that
finding the clusters of time series can be advantageous in different domains for anomaly
and discord detection, recognising dynamic changes in time series, prediction and rec-
ommendation, and pattern discovery. The problem of this study fits into the pattern
detection category, as the aim is to detect similarities between time series to identify links
between assets.

One of the widely used metrics for time series similarities is Dynamic Time Warping
(DTW). One of the pioneer works, Berndt et al. (1994) describes experiments with this
dynamic programming approach to the problem of pattern detection. Rakthanmanon et
al. (2012) demonstrates that DTW could be used for mining massive data sets faster than
with Euclidean distance. Jeong et al. (2011) designs an approach that penalizes points
with higher difference between a reference point and a testing point in order to prevent
incorrect distance caused by outliers. This methodology is explained more in detail in
the methodology section, Eq. 3.23.

Some other distance metrics have proven successful for pattern detection in time se-
ries data. Using integrated periodogram distance, Caiado et al. (2006) presents a met-
ric based on different dependency measures to classify time series as stationary or non-
stationary. Simulation results proved that the logarithm of the normalized periodogram
and the metric based on the autocorrelation coefficients can distinguish ARMA and ARIMA
models, which does not happen with the classical Euclidean distance. Lasso-based ap-
proaches are also widely used for time series grouping. As an example, Chan et al. (2014)
proposed a two-step lasso procedure for multiple change-point estimation in time se-
ries. Tucker et al. (2001) decomposes high dimension Multivariate Time Series (MTS)
into smaller dimension MTS which are relatively independent of one another, based on
correlation between the variables. This methodology is explained more in detail in the
methodology section, Eq. 3.27.

In recent years, several studies have been done in the field of time series clustering,
such as Bode et al. (2019), which presents a time series clustering approach for building
automation and control systems. This work uses unsupervised machine learning algo-
rithms to improve supervised classification by adding more robust features compared to
manual selection. Bandara et al. (2020) compares a set of recurrent neural networks on
groups of similar time series for clustering, showing that long-short-term memory neu-
ral networks present a good result for this purpose as well. Other recent works on time
series clustering methodologies and applications can be seen in Alonso et al. (2019) and
Khiali et al. (2019).

2.2.2 Early Warning Signals analysis

The main problem in the state-of-the-art BMSs is that they tend to use a reactive man-
agement approach instead of a proactive one. The system failure is detected once it has
happened, thus causing a disruption in services and forcing engineers to temporarily
shut down some of the equipment in order to fix the failure. This work proposes a proac-
tive approach to early detection of BMS failures, aiming at both Early Warning Signals
(EWS) and forecast of time series sensor data.
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There are several studies of EWS in dynamical systems such as climatic variables that
can be applied to our case study due to its nature as dynamical system. An example is
Prettyman et al. (2018), which uses lag-1 autocorrelation (ACF1), the Detrended Fluctu-
ation Analysis (DFA) exponent and Power Spectrum (PS) in tropical cyclon data. The
comparison of the different indicators for this study can be seen in Figure 2.12. For the
multivariate tropical cyclone data case, Prettyman et al. (2019) uses Empirical Orthogo-
nal Functions (EOF) for dimensionality reduction prior to applying ACF1, DFA and PS.
They also study the possibility of using the Jacobian matrix eigenvalues of the system
as tipping point indicator. In the same area of application, (Lenton et al., 2012; Livina
et al., 2007) use ACF and DFA to detect climate tipping points. In (Livina et al., 2010) a
novel statistical method is applied, which is the method of potentials Livina et al. (2013),
for EWS to analyse the changing number of climate states during the last 60 kyr. The
method detects the changes between states by estimating the probability density of the
recorded time series. In the predictive maintenance field, Livina et al. (2019) uses DFA
and ACF to detect anomalies in electronic components commonly used in applications of
the automotive and aviation industries.

Figure 2.12: Comparison of ACF(1), DFA and PS indicators applied to sea-level pressure
data (Prettyman et al., 2018)

Previous publications prove that EWS have a wide range of applications other than
climate pattern change analysis. Also, early detection of failures for critical system com-
ponents in general as explained in Qiu et al. (2015), which uses deep belief NNs for fea-
ture extraction and hidden state analysis of hidden Markov model to estimate the oper-
ating status of a compressor unit. Another popular area of application is economics, such
as the analysis of banking system collapse. Squartini et al. (2013) studies early warning
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signals of topological collapse in interbank networks. An earlier work in the similar field,
Davis et al. (2008) compares early warning systems for banking crises, right after the fi-
nancial crises of 2007. Another popular area of application of EWS is credit risk diagnosis,
for example, Lu et al. (2013) uses a different and interesting approach. They apply com-
putational linguistic text mining to extract and quantify relevant Chinese financial news
to develop EWS for financial distress. Also, there are several applications in biology, with
a wide variety of applications within the field such as Rogers et al. (2018), which aims to
detect EWS of tree mortality in boreal North America using multi-scale satellite data, us-
ing the normalised difference vegetation index.

Variational Autoencoders (VAE) are becoming increasingly popular for failure detec-
tion. In Andrews et al. (2016) they use an autoencoder residual vector error magnitude.
This method is tested on several images datasets, concluding that it is a valid methodol-
ogy for failure selection, as the hidden layer representation is capable of characterising
the fundamental attributes of of the system within normal conditions, therefore to mea-
sure the deviation from "normal functioning". A scheme for the VAE is shown in Figure
2.13. Following a similar method in a manufacturing field, Wen et al. (2018) use VAE for
degradation assessment of the ball screw. The assessment is done using the Variational
Autoencoder Reconstruction Error (VAERE) and it demonstrates the progressive degra-
dation of this component. The scheme of this approach can be seen in Figure 2.14, where
HI stands for health indicator.

Figure 2.13: VAE scheme by Wen et al. (2018)
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Figure 2.14: Framework for the degradation assessment method for the ball screw (Wen
et al., 2018)

2.2.3 Automatic text classification

Text classification

The purpose of our work is to apply several machine learning methods for text classifi-
cation in the context of Building Management Systems (BMSs). The mobilisation of a site
implies the translation of different elements that are used in analysis platforms with the
purposes of detecting failures of internal systems (heating, cooling), along with control-
ling areas of major electricity consumption and potential savings.

Most medium-to-large buildings have installed BMS which can provide valuable data
to any IoT implementation. This data includes the operational states of existing equip-
ment in the building and occupancy comfort parameters for the installed sensors. Au-
tomatic text classification is usually done by extracting features from the text document.
This is a semi-supervised machine learning problem since the classes are pre-defined. In
this work, a generic strategy for text classification is followed as defined in Dalal et al.
(2011), which has the following steps: training set of text documents, pre-processing, fea-
ture extraction, machine learning model selection, train classifier and test classifier. The
scheme of these steps can be seen below in Figure 2.15.
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Figure 2.15: Generic strategy for text classification by Dalal et al. (2011)

Bayesian methodology is widely applied in text classification. Singh et al. (2019)
compares models for Naive Bayes (NB) text classification, and finds that multi-variate
Bernoulli model performs well with small vocabulary sizes, while the multinomial model
performs better at larger vocabulary sizes. Liu et al. (2002) combines the Expectation
Maximisation (EM) algorithm with the NB classification method using only partial in-
formation, one class of labeled documents and a set of mixed documents, showing ex-
tremely accurate results under certain class restrictions. In Chai et al. (2002), Bayesian
online perceptron and Gaussian processes have been implemented and tested, showing
that their performance is comparable to that of Support Vector Machines (SVMs). Liu
et al. (2019) uses parallel naive Bayes algorithm for large-scale Chinese text classification.
More recent examples for this algorithm for text classification can be seen, for example
in Ranjitha et al. (2020), where Naive Bayes is used for text classification, which lead to
an advantage in terms of characteristic dialect processing. Another recent work can be
found in Le et al. (2019), where this technique is also combined with sentiment lexicon.
The effectiveness of this technique is further enhanced with the use of a dictionary as an
input source and a document preparation process which improves the accuracy to 98.2%.

Decision trees also play an important role in text classification. Harrag et al. (2009) use
decision trees applied to text categorisation and classification. Random forest is an en-
semble learning version of decision trees, as it constructs a multitude of decision trees at
training time and outputs the class that is made of every of the contained classes. In terms
of performance, Ali et al. (2012) shows that the random forest gives better results than
dcision trees for the same number of attributes in large medical datasets. With respect to
text classification, Akinyelu et al. (2014) uses random forests for content-based phishing
detection, which yields a very high classification accuracy. Xu et al. (2012) presents an
improved random forest algorithm by simultaneously employing a new feature weight-
ing method and the tree selection methods to categorise text documents. As a result, the
algorithm can effectively reduce the upper bound of the generalisation error and improve
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classification performance.

SVMs are very popular for text classification. Joachims (1998) and Joachims (2001)
show that SVMs are appropriate for this task, and it outperforms other algorithms. Also
Tong et al. (2001) introduce an algorithm for performing active learning with SVMs, i.e.
an algorithm for choosing which instances of data to request next for the training stage.
Alsaleem (2011) shows that SVMs outperforms NB. In Sun et al. (2009), a comparative
study on the strategies addressing imbalanced text classification using SVM classifiers is
described. They evaluated 10 methods on 3 benchmark datasets using area under the PR-
curve as the performance metric, finding that the standard SVM learnt the best decision
surface in most test cases. In more recent studies on SVM for text classification, Gopi et al.
(2020) classifies tweets data based on polarity using improved RBF kernel on SVM, which
outperforms other SVM-RBF classifier and models. Kurnia et al. (2020) classifies user
comments using word2vec embedding and SVM classifier. They classify comments from
social media about mobile networks applications, achieving a 79.5% accuracy. Another
recent methodology on SVM for text classification can be seen in Zhang et al. (2019),
where text is represented mathematically by vector space model, and the classifier is
trained to classify the text based on the principle of SVM. The framework of the SVM
for this classification system can be seen in Figure 2.16. Another interesting work can be
seen in Wang et al. (2019), combines Char Convolutional Neural Networks with SVM,
to obtain the emotional tendencies of users reviews. Chatterjee et al. (2019) uses multi-
class classification using SVM and one-vs-rest, which divides a multi-class classification
problem into one binary classification per class. On top of that, this is enhanced by using
multi-threading and CUDA.

Figure 2.16: Framework of SVM Chinese text classification system by Zhang et al. (2019)

Logistic regression also provides good results in text classification. The study of
Genkin et al. (2007) uses lasso logistic regression, which provides state-of-the-art text
categorisation while producing sparse and thus efficient models. In the same way, Ifrim
et al. (2008) present a coordinate-wise gradient ascent technique for learning logistic re-
gression in the space of all n-gram sequences (contiguous sequence of n items from a
given sample of text or speech) in the training data. They use several datasets, interest-
ingly including a Chinese language dataset among them. A modified logistic regression
for positive and unlabeled learning is applied by Jaskie et al. (2019), who introduce a
new modified logistic regression with a variable upper bound that provides a better the-
oretical solution for the proposed problem. A comparison between Bayes classification
and logistic regression is studied in tweets categorisation in Prabhat et al. (2017), show-
ing after training that logistic regression gives a 10.1% more accurate and 4.34% more
precise than the Bayes algorithm. Logistic regression and its variations are popular for
sentiment analysis, as can be seen in recent studies such as Ramadhan et al. (2017) which
studies tweets sentiment analysis by extracting the features first, then transforming the
list of features into binary form and transformed again used Tf-idf method before being
classified using logistic regression. This is very relevant for our work, as tweets have
a character limitation, so this would prove that logistic regression is suitable for clas-
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sification using text that is shorter than usual. Following a similar line of work, Rane
et al. (2018) compares several methodologies, including logistic regression, SVM, Naive
Bayes, AdaBoost, among others, for sentiment classification of Tweeter data for an US
airline service analysis. Results show that logistic regression shows a good score with a
F-measure of 81.9%, but it is outperformed by random forests in the first place, with a
86.5% F-measure. This creates a solid base for the BMS text classification case explored
in this Thesis, as several of these methods are used in this work for short text classifica-
tion. Also, for another work of tweet sentiment analysis, Hasanli et al. (2019) compared
logistic regression, Naive Bayes and SVM to detect sentiment polarity. Logistic regres-
sion and SVM show a better performance if bag-of-words is used for the pre-processing,
and Naive Bayes performs better if term frequency - inverse document frequency is used.

Deep learning has been increasingly gaining popularity and the literature provides
examples of using some of these methods for text classification as well. Liu et al. (2017b)
presents the first attempt at applying deep learning to extreme multi-label text classifica-
tion (XMTC), with a family of new Convolutional Neural Network (CNN) models which
are tailored for multi-label classification. Zhang et al. (2015) constructed several large-
scale datasets to show that character-level convolutional networks could achieve state-
of-the-art or competitive results for text classification. In Lai et al. (2015) they introduce
a recurrent convolutional neural network for text classification without human-designed
features, showing that the proposed method outperforms the state-of-the-art methods
on several datasets, particularly on document-level datasets. More recent works on text
classification can be seen for example in Elnagar et al. (2020). Here, the authors perform
Arabic text classification using deep learning models. Results show that attention-Gated
Recurrent Units (GRUs) achieves a top performance of 96.94% by using the dataset NA-
DiA, which is the largest dataset of Arabic documents. Another example is given by Yao
et al. (2019), where a novel text classification method termed text graph convolutional
networks is used with the purpose of text classification. Results of this work shows that
this promising methodology outperforms other state-of-the-art deep NNs such as CNN,
LSTM and others that are not NNs, such as logistic regression. The algorithms are run
in various datasets, such as news or movie reviews, with a large corpus. Gargiulo et al.
(2019) also uses DNNs for hierarchical extreme multi-label text classification. They de-
scribe a methodology named Hierarchical Label Set Expansion (HLSE) used to regularize
the data labels, evaluating the methodologies on the PubMed scientific articles collection,
proving the usefulness of the proposed HLSE methodology. The graphical representation
of the DNN model used for this work is shown in Figure 2.17. Deep learning methodolo-
gies proved unmistakably useful for text classification and they should be considered, as
the literature suggests, for large corpus text where a lot of features need to be processed
to perform the classification. For the purpose of this problem, whose length of the text is
the real challenge (11 words maximum per label), DNNs are not considered. Although
they can be considered for further research.
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Figure 2.17: Graphical representation of the DNN models used b Gargiulo et al. (2019)

Text processing and categorisation

In recent years, there has been a lot of progress in natural language modeling and repre-
sentation. Natural Language Processing (NLP) is of major interest in research as it rep-
resents the core business of Internet companies today. Goodman (2001) defines language
modeling as the art of determining the probability of a sequence of words and intro-
duces the n-grams. Assuming that similar words appear in similar contexts, Brown et al.
(1992) used counts of classes, which leads to generalisation, therefore better performance
on novel data. Bag-of-words model is one of the most popular representation methods,
whose statistical framework is explained in Zhang et al. (2010). It consists of the sum of
one-hot codes, ignoring the order of the words, but it can be extended to bag-of-Ngrams
to capture local ordering of words. Term Frequency - Inverse Document Frequency (TF-IDF)
is another common technique that evaluates how important a word is to a document in
a collection of corpus proportionally to the number of times it appears in the document.

In a more advanced version of text modeling there are word vectors, also known as
embedding. Each word is represented by a real valued vector in N-dimensional space
(usually N = 50 − 1000). These representations manage to capture many degrees of
textual similarity. Mikolov et al. (2013b) shown that word vectors capture many linguis-
tic properties (gender, tense, plurality, even semantic concepts). Mikolov et al. (2013c)
presents two novel architectures for computing continuous vector representations of words,
and they measure the quality of these representations in a word similarity task. This
work introduces Word2Vec, which uses a NN model to learn associations from a large
corpus of text. The representation of this architecture is shown in Figure 2.18. In this
representation, the CBOW architecture predicts the current word based on the context,

36



and the Skip-gram predicts surrounding words given the current word. Mikolov et al.
(2013a) explores the previously mentioned similarities in languages for translation, reach-
ing above 90% accuracy for the most confident translations. Although for the purpose of
this problem such a deep language representation is not needed, this progress in NLP
may be useful for future BMS automatic tagging improvements. In a more recent study,
Miaschi et al. (2020) studied the linguistic knowledge implicitly encoded in the internal
representations of BERT, a contextual language model (Devlin et al., 2019), in compar-
ison to a contextual-independent one (Word2Vec). The findings reveal that contextual-
independent model, the sum works best for obtaining sentence representations and for
the contextual-dependent one, the mean works best.

Figure 2.18: Model representation for vector representation by Mikolov et al. (2013c)

For the part of text classification for automatic BMS tagging, text classification to cre-
ate a system that tags BMS sensor data automatically is performed. Several methods for
text classification are compared, by following the generic strategy of Dalal et al. (2011)
for solving these type of problems. Bag-of-words model for feature extraction is applied
prior to the classification. In section 3.5, the methods to be used for text classification are
introduced.
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Chapter 3

Methodology

In this chapter, several methods are described that can be divided in three main cate-
gories: those related to time series forecasting and estimation, clustering or time series
similarity measure methods; machine learning methods for text classification; and early
warning signal methods.

3.1 Time series modeling and forecasting

In section 3.1.1, a background for LSTM neural networks is given. In Section 4, the per-
formance of this model has been compared with ANN, SVM, random forests, Bayesian
regression and the mean-only model. The reason is that these models proved to perform
well for previous works in load forecasting and therefore, they are compared with LSTM.
Another reason is that LSTM is a methodology that has proven give a good performance
for time series forecasting, due to its proven capability of capturing both long and short-
term seasonality, such as yearly and weekly patterns, which are found in the national
energy demand data of this study. The basics for the other models are explained in dif-
ferent sub-sections within Section 3, as they are used for other challenges in this work.

The coming parts of Section 3.1 describe the methodologies used for wind and solar
power forecasting.

3.1.1 LSTM and exponential moving averages

Long-Short Term Memory (Hochreiter et al., 1997) has proven to be a useful method
for time series analysis of records with several factors correlated with the output. This
method can provide a good working system for the UK national electricity demand fore-
cast, and an effective way to ensure that the system addresses correlations in that data.

LSTM cells, which are LSTM units comparable to neurons in ANNs, manage two state
vectors and for performance reasons they are separate (ibid.). The scheme of a single cell
is illustrated in Figure 3.1:
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Figure 3.1: LSTM schematic (Hochreiter et al., 1997).

The state of the cell is represented by two vectors: h(t) and c(t). Vector h(t) can be
interpreted as the short-term state and c(t) as the long-term state.

The current input vector x(t) and the previous short-term state h(t−1) are fed to four
different fully connected gates. They serve different purposes:

• The main gate is the one that outputs c(t). It has the usual role of analysing the
current inputs x(t) and the previous short-term state h(t−1).

• The forget gate (controlled by f(t)) controls which part of the long-term state should
be erased.

• The input gate (controlled by i(t)) controls which parts of c(t) should be added to the
long-term state.

• The output gate (controlled by o(t)) controls which part of the long-term state should
be read and output at this time step (both to h(t)) and c(t).

Function σ represents the logistic transformation after a fully connected NN set. The
key idea is that the network can learn what to store in the long-term state, what to throw
away, and what to read from it. The long-term state transverses the network from left to
right, it goes through a forget gate, dropping some memories, and it adds new memories
through the addition operation. After that it is copied and processed through the tanh
function, whose result is filtered by the output gate. This produces the short-term state
h(t).

Equations 3.1 - 3.6 summarise how to compute the cell long-term state, and its output
at each time step for a single instance (Geron, 2017):

i(t) = σ(Wxi · xt + Whi · ht−1 + bi), (3.1)

f(t) = σ(Wx f · xt + Wh f · ht−1 + b f ), (3.2)

o(t) = σ(Wxo · xt + Who · ht−1 + bo), (3.3)
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c(t) = g(t) = tanh(Wxg · xt + Whg · ht−1 + bg), (3.4)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t), (3.5)

y(t) = h(t) = o(t) ⊗ tanh(c(t)), (3.6)

where:

• Wxi, Wx f , Wxo, Wxg are the weight matrices of each of the four gates for their con-
nection to the input vector xt.

• Whi, Wh f , Who and Whg are the weight matrices of each of the four gates for their
connection to the previous shot-term state ht−1.

• bi, b f , bo and bg are the bias terms for each of the four gates.

• ⊗ represents element-wise vector multiplication.

In order to achieve a more accurate result, parameter tuning is performed. These
parameters are the number of years of data used for training, the number of cells and the
number of epochs. This will also be discussed later on in section 4.1.

Exponential Moving Average

Exponential Moving Average (EMA) is a modified version of the simple Moving Average
(MA), i.e. a type of moving average with more weight given to the latest data. The EMA
works as a classifier in this case, generating binary signals, 1 when the peak is over the
EMA, 0 when it is below it. The EMA is defined as follows:

St = αyt−1 + (1− α)St−1, (3.7)

where:

• St: value of the EMA for t = now.

• α: smoothing constant. When α is close to 1, dampening is quick and when α is
close to 0, dampening is slow.

• yt−1: actual observation for t− 1.

• St−1: value of the EMA for t− 1.

As a filter, EMA acts as a physical boundary, choosing as peak load any value above it.
This filter value will be a certain percentage multiplied by EMA, depending on the level
of risk that the user can afford to take, and that will be applied according to each DSR
intervention. The system scheme, as well as the final values chosen after the calibration
stage, are shown in Figure 4.6 for the specific case study of Triad peaks forecasting.
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Model evaluation

A range of statistical error criteria is used. The LSTM forecasting method is to be com-
pared with other machine learning techniques, therefore several accuracy evaluation
metrics are defined. As accuracy estimate, the Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and the relative error (%) based on MAE and RMSE (MAPE and
RRMSE) are used (Mohanad et al., 2018):

RMSE =

√√√√ 1
N

N

∑
j=1

(yj − ŷj)2, (3.8)

RRMSE = 100 ∗

√
1
N ∑N

j=1(yj − ŷj)2

ȳj
, (3.9)

MAE =
1
N

N

∑
j=1

∣∣yj − ŷj
∣∣ (3.10)

MAPE = 100 ∗ 1
N

N

∑
j=1

∣∣∣∣yj − ŷj

yj

∣∣∣∣ , (3.11)

• N: Total number of values;

• yj: actual (observed) value to compare the forecast with;

• ŷj: forecasted value, output of the LSTM;

• ȳj: average of the array of observed values.

3.1.2 Wind generation estimation

For wind and solar energy generation, the forecasting horizon goal is of several years,
although one year of data is available to test the results. As a part of this Thesis, only pre-
vious power generation time series data has been used to create the forecasting models.
Meteorological data could have been used also for this purpose that could have improved
these results, but the forecasting horizon is very long term and existing forecast on some
parameters such as wind speed, solar radiation, cloud cover parameters can be available
for short-term forecasting, but not for a forecasting horizon of several years. As part of
this work, it is assumed that historical records already contain implicit seasonal informa-
tion for each asset, including how location affects the specific outputs for each.

As the novelty of this work is to generate very long-term forecasting, Bayesian mod-
eling is used to model the time-series and then Markov Chain Monte Carlo for the simu-
lations of long-term wind power generation. In the literature, this method proved to be
the one which provided a longer-term forecast (Matos et al., 2010), therefore it has been
decided to explore this methodology to create a different model and to generate a forecast
of a year. Another reason for using Bayesian modeling is the flexibility it for modeling it
offers. The model can be trained to automatically identify switchpoints within the year
for more accuracy.

Next, some basic concepts such as the Bayes theorem and Markov Chain Monte Carlo
are introduced. Then the specific model for wind forecasting for this work is described
and last, the stochastic model for solar power forecasting is defined.
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Bayes theorem

Bayesian inference is the process of deducing properties about probability distribu-
tion from the observed data by using the Bayes theorem (Bayes, 1763). First, a prior
distribution is defined, by estimating the histogram of the observed dataset. The prior
distribution is used as the belief, then the prior parameters are updated according to the
Bayes theorem:

P(A|X) =
P(X|A)P(A)

P(X)
. (3.12)

P(A) refers to the prior distribution, P(X|A) is the likelihood distribution, and P(A|X)
refers to the updated posterior probability.

Markov Chain Monte Carlo

The main idea of Markov chain (Carlo, 2004) is to have an estimate state x that begins
as an arbitrary value, further develops and eventually becomes a sample from a certain
objective distribution p(x). Markov chains are sampled from some distribution q(t)(x),
where t denotes the number of time steps. At the beginning, the sampling algorithm
departs from some distribution q(0) that arbitrarily initialises x for each chain. Then q(t)

is influenced by all previous Markov chain steps. The goal is for q(t)(x) to eventually
converge to p(x).

According to Goodfellow et al. (2016), when a single Markov chain state x is updated
to a new state x′, the probability of a single state transitioning to state x′ is given by

q(t+1)(x′) = ∑
x

q(t)(x)T(x′|x), (3.13)

where T(x′|x) is the transition distribution that specifies the probability that a random
update will go to state x′ when departing from state x. T can be re-writen using a matrix
A, defined so that Ai,j = T(x′ = i|x = j), and the expression can be re-defined according
to Carlo (2004) as

v(t) = Av(t−1). (3.14)

Model of wind energy generation

For the purpose of wind generation estimation, Bayesian modeling is used. It is known
that wind patterns are very difficult to predict, therefore this methodology needs to han-
dle some degree of uncertainty. We rely solely on historical wind generation data to
estimate wind generation. The fact of not using any climatological information adds an
extra difficulty to the problem, as patterns have to be inferred from historical data.

The first step taken is to detect changes on the wind generation distribution. Then,
for every separation or period, the model has been fit individually using a mixture model
(Reynolds, 2009). The high level overview of the process can be seen in Figure 3.2.
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Figure 3.2: Overview of the wind generation model. One-year data is used for estimation
of switch points. A different model is then applied separately to every period of data to
get estimates for the period.

The first assumption is that for every period, the wind energy generation patterns
have a particular probability distribution. Then the model assigns the switchpoints where
changes in the arguments of such probability distribution occur. Switch points are then
included in a discrete Poisson distribution, whose parameters have been defined accord-
ing to the switch function implemented in the python library PyMC3 (Salvatier et al.,
2016).

The schematic of the switch point detection model can be seen in Figure 3.3. Here,
the index priors for the different switch points (or τs) have been defined with uniform
distribution. It is assumed that wind generation data fits a beta distribution. The reason
to select beta distribution is that it is very versatile: it can take either an "U" shape or just
decrease from the left or increase towards the right side of the histogram. Beta distribu-
tion supports values between 0 and 1, therefore wind generation data has to be re-scaled
within that range.

Once the data has been trained and the switch points have been obtained, the data is
separated into the different subsets and train every period individually. The year 2018
is used as the training period, therefore the timeline with the parameters would be as
shown in Figure 3.4.

For every sub-period, a mixture model is used composed of three beta distributions,
whose parameters α and β are defined by uniform distribution with values between 0
and 10. The weights of each distribution have been defined by a Dirichlet distribution
with α = 1, under the condition that the sum of all of them is equal to 1.

The wind generation histogram accumulates more values near the minimum and the
maximum, as observed in Figure 3.5 where switch points have already been applied. But
it also can be observed that it may accumulate points around the centre of the histogram.
This is the reason for choosing more than one distribution as a prior.
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α1	~	Uniform(lower=0,
upper=2)

β1	~	Uniform(lower=0,
upper=10)

gen1 ~	Beta(α1,β1)

αn	~	Uniform(lower=0,
upper=2)

βn	~	Uniform(lower=0,
upper=10)

genn ~	Beta(αn,βn)

�1	~	Uniform(lower=0,	upper=1250)

�2	~	Uniform(lower=�1,	upper=4200)

�n-2	~	Uniform(lower=�n-1,	upper=len(data))

μ1	~	Switch(gen1	<	�1	<	gen2)

μ2	~	Switch(gen2	<	�2	<	gen3)

μn-1	~	Switch(genn-1	<	�n-1	<	genn)

. . .

. . .

. . .

dates ~	Poisson(μ)

Prior distributions for dates

Prior distributions for observed data

Figure 3.3: Switch-point model description. Priors for the beta distributions are defined
by an uniform distribution between 0 to 10 for α and β. τn are defined by an uniform
distribution too, where the lower boundary is the previous tau distribution to keep every
limit consecutive to each other, and the upper one is restricted up to two months with
respect to the previous upper limit, approximately. gen are different wind generation
subsets, which are optimal after model is trained with observed data.

gen1 gen2 gen3 gen4 gen5 gen6

�1 �2 �3 �4 �5

2018

Figure 3.4: The timeline defining the estimation of wind generation for year 2018.

As can be seen in Figure 3.5, wind generation patterns oscillate between the maximum
and the minimum, with a significant amount of values on both extremes. This pattern
is more obvious during winter and spring, as the value moves to the centre (closer to
minimum generation) in summer. After the summer period, the pattern starts inclining
again towards maximum generation values.
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Figure 3.5: Histograms of wind generation for every switch point separation. The energy
data has been normalised.

α1	~	Uniform(lower=0,
upper=10)

β1	~	Uniform(lower=0,
upper=10)

b1 ~	Beta(α1,β1)

α2	~	Uniform(lower=0,
upper=10)

β2	~	Uniform(lower=0,
upper=10)

b2 ~	Beta(α2,β2)

α3	~	Uniform(lower=0,
upper=10)

β3	~	Uniform(lower=0,
upper=10)

b3 ~	Beta(α3,β3)

gen = w1*b1 + w2*b2 + w3*b3  

w1 ~	Dir(α=1)
w2 ~	Dir(α=1)
w3 ~	Dir(α=1)

with w1 + w2 + w3  = 1

Figure 3.6: Mixture model for every period formed by three beta distributions, whose
priors are defined by uniform distribution between 0 and 10 for both α and β. Dir is the
Dirichlet distribution used to fit the weights.
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3.1.3 Model of solar energy generation

A similar argument used for wind generation forecast, is used to decide the model for
solar forecasting. Although in this case an added goal is to eliminate the random compo-
nent of the very long-term forecast, as there is a very clear daily pattern associated with
daylight hours. For this reason, a stochastic model has been designed which considers
daily patterns and yearly seasonality. The parameters of the stochastic model are trained
by using one year of solar power generation data.

A procedure is developed that relies on historic generation data, in order to extrapo-
late the generation to the following years according to a certain yearly decay of PV panels.
The annual solar panel degradation can be assumed as 1% (Stahley, 2019). As meteoro-
logical data is not contemplated, a noise component to approximate random generation
patterns is needed. For this purpose, red noise is generated (Gilman et al., 1963), with a
scaling exponent β = 0.9, mean value= 1, standard deviation= 0.5, to create multiplica-
tive noise.

The algorithm starts by calculating the rolling average of 30 half-hour periods. Next,
the minimum and maximum of such rolling averages are estimated. Then, the lengths
of the vectors for number of days and number of hours of light are defined, as to define
two main trends is needed: a seasonal and an intraday. For both, a sinusoidal wave is
used. Diurnal shape is introduced into the seasonal shape, with the maximum genera-
tion peaking at midday. Red noise is introduced after this, obtaining a red noise vector of
the same shape as the training data and multiplying it, element-wise, by the previously
obtained vector. Rate of decay of panel is added after that, depending on the number of
years considered for the estimation. The definition of the model is as follows:

Let S = [S0, ..., Sn] be the n = 30 period rolling average vector of solar generation, and
Smin, Smax the minimum and maximum values of S where:

St = St−1 +
1
n
(St − St−(n−1)), with St =

1
n

n−1

∑
i=0

St−i. (3.15)

Now, let ts be a vector of length equal number of days in the year and td be a vector of
length equal Number of half-hour periods in a day, both uniformly sampled from [0, π].
M is also defined as the number of points in our training data. The seasonal component
of the model is defined as:

y(t) = sin(t)Smax, with t ∈ ts, (3.16)

Seasonal component is defined as the part of the stochastic model that models the
seasonal behavior (winter, summer, etc.):

fseasonal(t) =

{
Smin if y(t) ≤ Smin,
y(t) if y(t) > Smin.

Now, z is defined as a vector of zeros of length M, to which the day periods are added
according to:

Solar(k) = z(k) + fseasonal(t) sin(td), (3.17)

for 24 < k + 48 < M, 0 < t < number of days in a year. As mentioned before, red noise
is added η(β = 0.9, mean = 1, sd = 0.5, size = m) and rate of decay of 1% defined here as
D(i). Now, 3.17 can be re-defined as:

46



Solar(k) = (z(k) + fseasonal(t) sin(td)) ·D(i) · η(i), (3.18)

for 24 < k < M − 24, with k − 24 multiple of 48; 0 < t < number of days in a year;
0 < i < M.

3.2 Optimisation of energy use

3.2.1 Minimisation of costs subject to shape

Price of newly built assets is prioritised over shape profile in the optimisation problem,
as in a real case scenario a client would seek to fulfill electricity demand by paying the
minimum price possible. In real case scenario there are other less quantifiable parameters
that would influence a buyers decision, but in this study the focus is on the key parameter,
which is the price of the asset:

minimize
M

∑
m=1

βm ∗ Psm ∗ ~Sm +
K

∑
k=1

γk ∗ Pwk ∗ ~Wk,

subject to
M

∑
m=1

βm ∗ ~Sm +
K

∑
k=1

γk ∗ ~Wk ≥ ~C,

M

∑
m=1

βm +
K

∑
k=1

γk ≥ 1,

m = 1, ..., M; k = 1, ..., K,

βb = 0, 1; ∀ b ∈ 1, ..., M,
γc = 0, 1; ∀ c ∈ 1, ..., K,

(3.19)

where Ps and Pw are kWh prices for every solar and wind generation asset; ~S and ~W
are the vectors containing generation data for solar and wind, respectively; ~C is the tar-
get consumption profile; and β and γ are the binary decision variables for each genera-
tion source (’on’ or ’off’). Therefore, this is a linear programming minimisation problem,
whose goal is to minimise the cost of energy generation for both assets, subject to differ-
ence between the aggregated generation sources and the target consumption profile and
having to choose at least one asset, in order to find the optimal combination. This op-
timisation problem has been implemented in Python, using optimize method from SciPy
v1.4.1 library (Jones et al., 2001–).

3.2.2 Minimisation of shape profile without cost

A real case scenario involves costs. However, for further work on this area, it would be
useful to experiment with an optimisation problem that only takes into account shapes
with no cost, which also can be used in different scenarios. In order to test this minimisa-
tion problem, existing shapes are considered without forecast from three types of assets:
solar, wind and landfill gas generation.
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minimize
N

∑
n=1

αn ∗ ~LFn +
M

∑
m=1

βm ∗ ~Sm +
K

∑
k=1

γk ∗ ~Wk − ~C,

subject to
N

∑
n=1

αn +
M

∑
m=1

βm +
K

∑
k=1

γk ≥ 1,

n = 1, ..., N; m = 1, ..., M; k = 1, ..., K;

αa = 0, 1; ∀ a ∈ 1, ..., N
βb = 0, 1; ∀ b ∈ 1, ..., M
γc = 0, 1; ∀ c ∈ 1, ..., K

(3.20)

where ~LF, ~S and ~W are the vectors containing generation data for landfill gas, solar and
wind, respectively; ~C is the target consumption profile; and α, β and γ are the binary de-
cision variables for each generation source. This is a linear programming problem, whose
goal is to minimise the difference between the aggregated generation sources and the tar-
get consumption profile. This optimisation problem has been implemented in Python,
using optimize method from SciPy v1.4.1 library (Jones et al., 2001–).

To find an optimal solution different solvers are used. A commonly used one is Lim-
ited memory Broyden-Fletcher Goldfarb–Shanno (L-BFGS-B) algorithm (Zhu et al., 1997)
is a limited-memory algorithm for solving large nonlinear optimisation problems sub-
ject to simple bounds to variables, which is the main difference with respect to BFGS
(Mokhtari et al., 2014). This solves unconstrained nonlinear optimization problems. The
method is intended for problems on which Hessian matrix is difficult to obtain. The
Truncated Newton (TNC) group of algorithms (Grippo et al., 1989) are designed for op-
timising non-linear functions with a large number of independent variables. The differ-
ence with the previously mentioned BFGS methods is that TNC algorithms do not use
Hessian matrix. This method is normally truncated to a limited number of iterations.
Constrained Optimisation By Linear Approximation (COBYLA) (Conn et al., 1997) is a
numerical optimisation method for constrained problems on which the derivative of the
objective function is not known. This iterative process uses the information obtained
in the previous iteration for the next iteration yielding to continuous solution improve-
ment. Sequential Least Squares Programming (SLSQP) optimizer (Kraft, 1988) uses the
Han–Powell quasi–Newton method with a BFGS update of the B–matrix and an L1–test
function in the step–length algorithm. The Nelder-Mead method (Powell, 1973), also
known as downhill simplex method, is a numerical direct search method in a multidi-
mensional space, which uses the vertices of a polytope of n dimensions to approximate
to a local optimum, therefore does not guarantee global optimality. The Powell method
(Powell, 1964) does not take derivatives, therefore it does not need to be differentiable.
This method minimises the function by a bi-directional search along each search vector,
iterating an arbitrary number of times until no significant improvement is made.

L-BFGS-B, TNC, COBYLA or SLSQP algorithms have in common that they support
constraints. TNC-based algorithms (TNC, BFGS) are more robust and therefore would
provide a solution where in other cases the optimal solution fails to converge. Simi-
lar happens with other gradient-based methods such as SLSQP. However, they require
more computer memory for being a gradient-based method (Venter, 2010) and therefore
they can be less suitable for very large datasets. Non-gradient based methods such as
COBYLA are generally quicker and can find the optimum within the linear approxima-
tion of the objective that it creates (Wendorff et al., 2016) but it is more likely to fail in
finding a global optimum if the problem is too complex. In general all the techniques are
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a trade-off between computational weight and complexity. The choice of most suitable
optimisation technique is investigated for the problem.

3.3 Clustering methodologies

The aim is to partition a set of data sets into homogeneous groups or clusters using ma-
chine learning techniques. Partition is performed in such a way that the objects in the
same cluster are more similar to each other than to the objects in other clusters. Several
time series data clustering metrics are tested, namely correlations, dynamic time warping
and integrate periodogram distance. These metrics are used to perform agglomerative
hierarchical clustering and then a different clustering methodology is tested: graphical
lasso.

Apart from the examples exposed in the BMS clustering methodology in Section 2.2.1,
another example on how hierarchical clustering works on sensor data is Shukla et al.
(2020), which uses hierarchical clustering with LSTM to detect outliers on time series
sensor data. The result of the clustering can be seen in Figure 3.7, which uses euclidean
distance as distance measure for the time series clustering. For this work several distance
metrics, that proved to separate the clusters correctly in several scenarios, are compared
for the clustering.

Figure 3.7: Dendrogram explaining cluster formation in sensors (Shukla et al., 2020)

For this reason, hierarchical clustering with different distance metrics should be a
good approach for BMS temperature sensor data clustering, too.

3.3.1 Graphical lasso

In Friedman et al. (2008), the problem of estimating sparse graphs, graphs with only few
edges, by a lasso penalty to the inverse covariance matrix is considered. Let X1, ..., Xn
be independent and identically distributed Np(µ, Σ) and being the estimated precision
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matrix, which is the inverse matrix of the covariance matrix, denoted Ω ≡ Σ−1. The
following optimisation problem is considered, according to Friedman et al. (2008):

Objective: Ω̂λ = argminΩ∈SP
+
{tr(SΩ)− log det(Ω) + ||Ω||1}, (3.21)

where tr is the trace, λ > 0, and the penalisation parameter ||Ω||1 = ∑i,j |Ωi,j| is the
L1-norm of Σ (lasso regularisation parameter). This problem maximises the penalized
log-likelihood with respect to Ω, so the nodes are not fully connected and the connec-
tions kept on each cluster have useful information concerning the relationships of time
series in each cluster. This happens because lasso regularisation parameter shrinks the
less important features coefficient to zero, removing less meaningful coefficients. The al-
gorithm employed to solve this problem is the GLasso algorithm, which is explained in
Friedman et al. (ibid.).

With this estimate of the inverse of the correlation matrix, the partial independence
relationship is obtained. If two features are independent conditionally of the others, the
corresponding coefficient in the inverse of the covariance matrix would be zero, as it
learns independence relations from the data, instead of being a distance measure itself
between time series.

According to the authors of the implementation package in "scikit-learn", the search
for the optimal penalization parameter is done on an iteratively refined grid: first the
cross-validated scores on a grid are computed, then a new refined grid is centered around
the maximum, and so on Pedregosa et al. (2011). One of the challenges here is that the
solvers can fail to converge to a well-conditioned estimate. The corresponding values
of α then come out as missing values, but the optimum may be close to these missing
values.

3.3.2 Agglomerative hierarchical clustering

Agglomerative Hierarchical Clustering (AHC) has a long history, especially in taxonomy
or classificatory systems, and phylogenetics (Lance et al., 1967; Ward Jr, 1963). Further
studies generalised this algorithm (Sibson, 1973), and have further developed and im-
proved (Defays, 1977; Jain et al., 1988).

Based on the definition given in Zaki et al. (2014), the goal of hierarchical clustering is
to create a sequence of nested partitions or clusters, which can be conveniently visualised
via a tree or hierarchy of clusters, also called the cluster dendrogram. In AHC, it starts
with each of the n points in a separate cluster, and then merges the two closest clusters
until all points are members of the same cluster. Algorithm 1 shows this procedure, with
D = {x1, . . . , xn}, where xi ∈ Rd, a clustering ζ = {C1, . . . , Ck} is a partition of D.
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Algorithm 1: Agglomerative Hierarchical Clustering (D,k), reproduced from
Zaki et al. (2014):
1 ζ ← {Ci = xi} |xi ∈ D| ; // Each time series is in a separate cluster

initially

2 ∆← {δ(xi, xj) : xi, xj ∈ D} ; // Compute matrix with distances

3 repeat
4 Find the closest pair of clusters Ci, Cj ∈ ζ;
5 Cij ← Ci ∪ Cj ; // Merge the clusters

6 ζ ← (ζ \ {Ci, Cj }) ∪ {Cij } ; // Update the clustering

7 Update distance matrix ∆ to reflect new clustering;
8 until |ζ| = k;

Various distance measures between time series can be used for clustering: Pearson’s
correlation coefficient, dynamic time warping and integrated periodogram distance.

Pearson’s correlation similarity

Let x = [x1 x2 ... xL]
T and y = [y1 y2 ... yL]

T be two zero-mean real-valued random vectors
of length L. As described in Benesty et al. (2009), the Pearson’s correlation coefficient
between x and y is

ρ2(x, y) =
E2(xTy)

E(xTx)E(yTy)
, (3.22)

with E being the expected value. According to the "tsclust" package documentation
in Montero et al. (2014), two different measures of dissimilarity between two time se-
ries based on the estimated Pearson’s correlation can be computed. These can be d1 =√

2(1− ρ) or d2 =

√(
1−ρ
1+ρ

)β
, where β specifies the regulation of the convergence.

Dynamic Time Warping

The DTW’s idea is that the sequences can be extended by repeating elements and the
distance is calculated between extended sequences. DTW can handle input sequences of
different lengths (Gan et al., 2007).

Let x = [x1 x2 ... xr]T and y = [y1 y2 ... ys]T be two time series, where lengths r and
s are not necessarily equal. Let M be an r × s matrix with the (i, j) element containing
the squared Euclidean distance between two points xi and yj. Each element (i, j) in M
corresponds to the alignment between two points xi and yj. Let W = w1, w2, ..., wk be
a warping path, where the kth element wk = (ik, jk). Then max (r, s) ≤ K < r + s − 1
with the warping paths having the following restrictions: monotonicity, continuity and
boundary conditions. There are exponentially many paths that satisfy these conditions,
the optimal path being the one which minimizes the warping cost (Keogh et al., 2000):

DTW(x, y) =

√
∑K

l=1 wl

K
=

√
∑K

l=1 d(xil , yjl )

K
, (3.23)

where (il , jl) = wl for l = 1, 2, ..., K. Then the optimal path can be found through dynamic
programming as
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γ(i, j) = d(xi, yi) + min [γ(i− 1, j), γ(i− 1, j− 1), γ(i, j− 1)], (3.24)

where γ(i, j) is the dynamic time warping distance between the sub sequences x1, x2, ..., xi
and y1, y2, ..., yj.

Integrated Periodogram Distance

This distance based on the normalised periodogram was introduced in Caiado et al.
(2006). Let Px(wj) = (1/n)|∑n

t=1 xte−itwj |2 and Py(wj) = (1/n)|∑n
t=1 yte−itwj |2 be peri-

odograms of time series x and y, respectively, at frequencies wj = 2π j/n, j = 1, ..., [n/2]
in the range [0, π], [n/2] being the largest integer less or equal to n/2. The interest lies
only in its correlation structure, so normalized periodogram is used and it is defined by
NP(wj) = P(wj)/γ̂, where γ̂ is the sample variance of the time series. Also, since the
variance of the periodogram ordinates is proportional to the spectrum value at the corre-
sponding frequencies, logarithms can be taken and therefore, the distance between x and
y can be defined by Caiado et al. (ibid.) as

dLNP(x, y) =

√√√√[n/2]

∑
j=1

[
log(NPx(wj))− log(NPy(wj))

]2. (3.25)

Knowing that the periodogram has the equivalent representation

P(wj) = 2

[
γ̂0 +

n−1

∑
k=1

γ̂kcos(wjk)

]
, (3.26)

where γ̂k is the sample autocovariance function (defined in more detail in Brockwell et al.
(1991)) which leads to

dNP(x, y) = 2
√

n

√√√√n−1

∑
k=1

(ρ̂k,x − ρ̂k,y)2. (3.27)

3.4 Early warning signals and Dimensionality reduction

The current state-of-the-art of failures analysis to HVAC applications, either applies math-
ematical methods to specific assets, or install specific hardware. For this work there is not
enough data to build models about specific HVAC assets nor hardware can be installed,
therefore data availability restricts this problem. Due to the lack of applications of early
warning signals to HVAC systems under these specific conditions, other areas of appli-
cation with a similar dynamic are used as a reference for choosing the methodologies to
apply.

For this problem, several methods used for applications of EWS to climate-related
problems and vibration analysis in manufacturing are considered. Climate and manufacturing-
related fields use methodologies such as variation, power spectrum, auto-correlation,
and VAE for early pattern detection. They have the key characteristics, specially in cli-
mate analysis, that can be compared to BMS sensor data analysis as both are dynamical,
interdependent systems.
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3.4.1 Early warning signals

There are a number of techniques to detect Early Warning Signals (EWS) as mentioned
in Section 2.2.2. For the purpose of early failure detection applied to BMS four indicators
are used based on variance, power spectrum, ACF1 and VAE. These early warning indi-
cators are used with a chosen sliding window along the time series preceding the onset
of a transition. In this case, the choice of the length of the sliding window is a trade-
off between time-resolution (data availability) and the clarity of the change of the signal
prior to transition. In order to identify trends before the transition, Kendall τ correlation
coefficient is used (Kendall, 1948) in one of the indicators, PS, as this indicator presents
a more chaotic behavior prior to transition. A positive Kendall τ coefficient indicates in-
creasing trends in the indicators prior to transition, as applied in Lenton et al. (2012).

Variance
The first indicator used is the variance of time series, which is defined by:

s2 =
∑(xi − x)2

n− 1
, (3.28)

where s2 is the sample variance, xi is the value of one observation, x is the mean value
of all observations and n is the number of observations. The reason to use variance is to
compare a more simple approach with other EWS indicators.

Power Spectrum
Another EWS indicator is the power spectrum scaling exponent β , which is calculated
by estimating the slope of the power spectrum S( f ) of the data, plotted on logarithmic
axes (Bak et al., 1987) in medium term range (Prettyman et al., 2018). Exponent β can be
estimated according to Livina et al. (2007) as:

S( f ) ∼ f−β, (3.29)

where the power spectrum is approximated by the periodogram, obtained from the abso-
lute value of the fast Fourier transform. Then β is obtained by measuring the slope inside
of the frequency range 10−2 ≤ f ≤ 10−1.

Lag-1 Auto-Correlation Function
Autocorrelation function is also used for the purpose of this work. This function mea-
sures correlation of the time series within itself at different time lags. According to Box
et al. (2015), the definition of the lag-k autocorrelation function is:

rk =
∑n−k

i=1 (xi − x)(xi+k − x)
∑n

i=1(xi − x)2 (3.30)

Lag-1 (k = 1) autocorrelation function (ACF1) is used, estimated in sliding windows
to obtain ACF-indicator.

Variational Auto-Encoder (VAE)
This technique is a novel methodology for EWS. According to Kingma et al. (2019), the
VAE is a network which attempts to represent the input with a PDF instead of sev-
eral hidden nodes. This is illustrated in Kingma et al. (2013), with a training set X =
[x1, x2, ..., xA]

T being x vectors from time t = 1 to time t = A.

VAE uses a neural network for the probabilistic encoder qθ(z|x) to approximate the
posterior of the generative model pθ(x, z). Let the prior over the latent variables be the

53



centered isotropic multivariate Gaussian pθ(z) = N (z; 0, I). The parameters of the dis-
tribution are computed with a fully-connected neural network with a single hidden layer
that attempts to reduce the reconstruction error. According to Kingma et al. (2013), the
posterior is approximated with a multivariate Gaussian with a diagonal covariance struc-
ture:

log qθ(z|x(i)) = logN (z; µ(i), σ2(i)I) (3.31)

where mean and standard deviation, µ(i) and σ(i), are the outputs of the encoding half of
the network. Concerning the decoder half of the network, samples are computed from
the posterior z(i,l) ∼ qθ(z|x(i)) using z(i,l) = gφ(x(i), ε(l)) = µ(i) + σ(i) � ε(l) where ε(l) ∼
N (0, I), with� being an element-wise multiplication. As both prior (pθ(z)) and posterior
(qθ(z|x)) are assumed to be Gaussian, the resulting estimator for the model and datapoint
x(i) is, according to Kingma et al. (ibid.):

L(θ, φ; x(i)) ' 1
2

J

∑
j=1

(1 + log ((σ
(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2) +

1
L

L

∑
l=1

log pθ(x(i)|z(i,z)),

where z(i,l) = µ(i) + σ(i) � ε(l) and ε(l) ∼ N (0, I). (3.32)

It is first assumed a system working under normal conditions and training the model
parameters (µ(i) and σ(i)) with such data. As EWS indicator, the reconstruction error is
tracked, which is defined with the root mean square error (RMSE), described by:

RMSE =

√
∑n

i=1(ŷi − yi)2

n
, (3.33)

where n denotes the number of sampled points in a sequence, and ŷ and y are the re-
constructed output and the actual state. The VAE indicator is constructed, therefore, by
measuring the reconstruction error according to the RMSE, defined as the Variational
Autoencoder Reconstruction Error (VAERE). An application in manufacturing of this
methodology for EWS can be seen in Figure 3.8. The Health Indicator (HI) is constructed
based on VAE for this work for a specific manufacturing application (Wen et al., 2018).
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Figure 3.8: Health Indicator (HI) construction method based on VAE (Wen et al., 2018)

3.4.2 Principal component analysis

Principal Component Analysis (PCA) was first introduced in Pearson (1901). It is a
methodology that obtains an r-dimensional basis that best captures the variance in the
data. Given input data D ∈ Rn×d and the desired threshold α, it selects the smallest set of
dimension r that captures at least an α fraction of the total variance. The steps are shown
in Algorithm 2.
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Algorithm 2: Principal Component Analysis (D,α), reproduced from Zaki et al.
(2014):

1 µ = 1
n ∑n

i=1 xi ; // Compute mean

2 Z = D− 1 · µT ; // Center data

3 Σ = 1
n (ZTZ) ; // Compute covariance matrix

4 (λ1, λ2, ..., λd) = eigenvalues(Σ) ; // Compute eigenvalues

5 U = (u1 u2 ... ud) = eigenvectors(Σ) ; // Compute eigenvectors

6 f (r) = ∑n
i=1 λi

∑d
i=1 λi

, ∀r = 1, 2, ..., d ; // Fraction of total variance

7 Choose smallest r so that f (r) ≥ α ; // Choose dimensionality capturing α
fraction of total variance

8 Ur = (u1 u2 ... ur) ; // Reduced basis

9 A = {ai|ai = UT
r xi, i = 1, ..., n} ; // Reduced dimensionality data

The trajectory with the largest projected variance is called the first principal compo-
nent, the orthogonal trajectory to the first one which captures the second largest projected
variance is the second principal component, and so on.

3.5 Text classification methods

This section describes the text classification algorithms used for the purpose of BMS tag-
ging. For classification, the study deals with multi-class and multi-label problems. There
are several methods compared for the purpose of this work: logistic regression, decision
trees, random forests, multinomial Naive Bayes and SVM. Considering that the text to
classify has the peculiarity of being very short (i.e. maximum 11 words per input), the
choice of the method works better is investigated in this case.

From the different methodologies explored in the literature review for the text classi-
fication part, the ones explored in this Thesis are the ones whose applications are similar
to the problem defined here. The text explored in this work for BMS application has a
maximum length of 11 words, therefore past applications to short text classification with
a high accuracy have been explored.

Other applications for short-text classification, such as the diverse tweets classifiers,
utilised random forests, xgboost, logistic regression, Naive Bayes and SVM among oth-
ers. These classifiers proved to deliver good accuracy for these particular problems.
Therefore the methodologies explained in this section are the ones that are used to obtain
the results, due to the length of the text used here.

All methods have been implemented in Python v3.7, and the library used to repro-
duce the algorithms is sci-kit learn (Pedregosa et al., 2011).

Logistic regression classification

Logistic regression is also called logit regression, maximum-entropy classification (Max-
Ent) or the log-linear classifier. Despite its name, this linear model works as a classifier
more than as a regressor. The logistic function is a monotonic function defined between
0 and 1 (Wright, 1995)
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f (x) =
L

1 + e−k(x−x0)
, f (x) ∈ [0, 1], (3.34)

where x0 is the value of the sigmoid midpoint, L is the saturation point of the curve and
k the logistic growth rate or steepness of the curve. The objective function of the logis-
tic regression maximizes the likelihood function. The Maximum Likelihood Estimation
(MLE) can be written as follows (White, 1982):

argmaxβ : log

{
n

∏
i=1

P(yi|xi)
yi(1− P(yi|xi))

(1−yi)

}
, (3.35)

where yi is the output between 0 and 1, P(yi|xi) the posterior probability which is equal
to 1/(1 + e− f ), and β is the vector of weights/coefficients.

Decision trees

Decision trees form classification (or regression) models in the form of a tree structure.
They break the dataset down into increasingly smaller subsets while the decision tree is
incrementally developed. The resulting decision tree has decision nodes and leaf nodes.

S

Predictor 1

Predictor 2

a b c

Predictor 3

TRUE FALSE

. . .

Predictor n

B C

0 1

1 0

Figure 3.9: Schematics of decision table and decision tree.

The core algorithm for building decision trees is the Iterative Dichotomiser 3 (ID3),
developed by Quinlan (1986). The algorithm begins with the original set, iterates on
every unused attribute of the set S and calculates the entropy H(S), defined as H(S) =

∑x∈X −p(x) log2 p(x), where S is the current dataset, X the set of classes in S and p(x) the
proportion of the number of elements in class x with respect to the number of elements
in set S.

Random Forests

Random forests or random decision forests (Barandiaran, 1998) are an ensemble learn-
ing method for classification, that constructs a finite number of decision trees at training
time, increasing the number of results for a better output. This ensemble method should,
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by definition, provide better, although sometimes very similar, results.

After training, predictions for unobserved samples x′ can be made by averaging the
predictions from all the individual regression trees on x′, f̂ = ∑B

b=1 fb(x′). In the case of
classification trees, the alternative option is performed by taking the majority vote, also
known as voting algorithm.

XGBoost

xgboost was developed by Chen et al. (2016). The methodology creates a scalable end-
to-end tree boosting system and introduce a sparsity-aware algorithm for parallel tree
learning. It uses a gradient boosting framework. Generally, xgboost is fast when com-
pared to other implementations of gradient boosting. The summary of the main features
are listed below:

• Regularisation: It penalises more complex models through lasso and Ridge regu-
larisation to prevent overfitting.

• Sparsity awareness: It automatically captures missing values depending on train-
ing loss and handles different types of sparsity patterns more efficiently.

• Cross-validation: The algorithm has a built-in cross-validation method at each it-
eration, thus excluding the need to hard-code this search and to specify the number
of iterations required.

• Parallelisation: It uses parallelised implementation. This is possible due to the
interchangeable nature of the different loops, building many different trees in par-
allel. This feature allows many users to run state-of-the-art algorithm without re-
quiring a very powerful computer.

Multinomial Naive Bayes

Multinomial Naive Bayes (Maron, 1961) is a specialized version of Naive Bayes (NB) that
is widely used in text analysis. Whereas simple NB would model presence and absence of
particular words, multinomial naive Bayes explicitly models the word counts and adjusts
the underlying calculations, as explained in McCallum et al. (1998), combining probabil-
ity distribution of Pr with fraction of documents belonging to each class for each class j
and word i, at a word frequency of fi, according to McCallum et al. (ibid.):

Pr(j) ∝ πj

|V|

∏
i=1

Pr(i|j) fi , (3.36)

where πj =
classj

∑N
n=1 classn

is the fraction of documents or labels on each class, and |V| the
feature space. The sum of logs is used to smooth the probability going increasingly up
when a word re-appears several times, for which the log frequency is taken:

Pr(j) = log(πj) +
|V|

∑
i=1

log(1 + fi) log(Pr(i|j)). (3.37)
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Support vector machines classification

SVMs are discriminative classifiers originally developed by Vapnik et al. (1963), based
on a separating hyperplane. Given labeled training data (supervised learning), the al-
gorithm outputs an optimal hyperplane which categorizes new examples. In a two-
dimensional space, this hyperplane is a line dividing a plane into two parts, and each
class lays on each side.

Let us consider the case of two classes. A training dataset has n points of the form
(~x1, y1)...(~xn, yn), where yi has the value of either 1 or −1, indicating the class to which ~xi
belongs. The goal is to find the "maximum-margin hyperplane" that divides the group of
points of both classes. Any hyperplane can be written as the set of points ~x that satisfies:

~w ·~x− b = 0, (3.38)

where ~w is the normal vector to the hyperplane, and b
||~w|| determines the offset of the

hyperplane from the origin along the normal vector. For the hard-margin case, the min-
imisation problem to solve is:

minimise ||~w|| subject to: yi(~w · ~xi − b) ≥ 1 for i = 1, ..., n (3.39)

In the soft-margin case, the minimise function according to McCallum et al. (1998), is:[
1
n

n

∑
i=1

max(0, 1− yi(~w · ~xi − b))

]
+ λ||~w||2, (3.40)

where the parameter λ determines the trade-off between increasing the margin size and
ensuring that each point belongs to the correct side of the margin.

The way to transform SVM to create a non-linear classifier is by means of the kernel
trick, a method of using a linear classifier to solve a non-linear problem. Boser et al. (1992)
suggested a way to create non-linear classifiers by applying the kernel trick to maximum
margin hyperplanes. The resulting algorithm is similar, except that every dot-product is
replaced by a non-linear kernel function. This allows the algorithm to fit the maximum-
margin hyperplane in a transformed feature space.

As explained in the literature in Section 2.2.3, Rane et al. (2018) compares some of
these methodologies for sentiment analysis. The comparison of the different methodolo-
gies for this particular work can be seen in Figure 3.10.

Figure 3.10: Accuracy of classifier for tweets sentiment analysis by Rane et al. (2018)
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Chapter 4

BMS AI Design implementation and
results

4.1 Triad forecast

A period of 4 years of national electricity demand data is used for the analysis, as there
are policies that change in a relatively short period of time. The Triad forecasting model
will be validated for four different periods, all of them from November to February, when
the Triad season occurs. LSTM is applied and trained for this period.

4.1.1 Triad data analysis

In this section, the historic data is analysed and the relationship between the settled de-
mand data and the energy generation are found with some of the renewable sources.
Next, a plot with the historical Triad is discussed, and last, correlations in the data are
sought that are going to be used as inputs for the LSTM model, as well as to identify
seasonality in the training data.

Settled data and renewable generation

The data used for selecting Triad days is not the Initial Demand Out-turn (INDO), but the
Settlement Final/ 1st Reconciliation/ 2nd Reconciliation (SF/R1/R2), which is the actual
load on the grid once the BM units have submitted all the sub-meter data. This data is
settled at around 9, 20 and 90 days post the event and is the data that Triad is calculated
against. The main difference between INDO and settled is the removal of the station load
(the load the power station uses to power itself). This is why the output forecast first is
the SF/R1/R2.

There are limitations in the models depending on the amount, type and quality of
data available. There are forecasts provided for the INDO; however, as there are no fore-
casts for the Settled Demand (SD) available, a model needs to be defined based on the
available data. The idea is to find parameters that keep a relationship with the difference
between the INDO and the SD. Generation renewables (wind and solar generation), and
the mentioned difference between actual INDO and the SD keep such relationship. As
shown in Figure 4.1, plotting INDO− SD against the sum of solar and wind generation,
the points obtained can be approximated by a linear regression, which makes solar and
wind generation possible predictors for the SD forecast system.
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Figure 4.1: Correlation between renewables generation and settled data

The fact that this data is correlated means that it can be used for a predictive model
that forecasts the SD as a first step for Triad forecasting.

Historical Triads

In order to analyse Triad, it is useful to know when Triad historically happened, so sta-
tistical insights can be gained for future decisions.

From the 2008/09 to the 2015/16 winter seasons, 45.8% of Triad occurred on Mondays
and 29% on Thursday, with other weekdays only accounting for one in four Triads. Out
of the total 24 cases, 22 occurred between 17:00 and 17:30 and 2 occurred between 17:30
and 18:00. A reason why a Triad may happen in a latter hour around February may
be explained by the number of hours of sunlight, which grows longer after the January
period and thus, moving forward the second peak of electricity demand, meaning that
users switch on lighting a bit later than before, generating possible peaks later than in the
beginning of the Triad season.

4.1.2 LSTM inputs analysis

First of all, it is necessary to study the influence factors of the SD. From the model point
of view, it is also interesting to identify correlations between the temperature and INDO.

• National Demand Forecast (NDF)

• Wind Generation Forecasting (WIND)

• Transmission Demand Forecast (TSDF)

• Solar Generation Forecasting (SOLAR)

The four input data variables are forecasts for the next 48 half-hour periods predicted
by ELEXON, obtained 24 hours before the event of interest. Solar and wind data is based
on historical data and local wind and solar forecasts, used by National Grid to forecast
likely levels of solar and wind generation. NDF is based on historically metered gen-
eration output for Great Britain. The values shown here take into account transmission
losses and include station transformer load, pump storage demand and interconnector
demand (ELEXON, 2018). In the plots of National Demand Forecast and Transmission
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Demand Forecast data of several years as shown in Figure 4.2, it can be seen that both
of them are decreasing over the years. This means that the actual demand does decrease
and that this fact needs to be taken into consideration.

Figure 4.2: National Demand Forecast (a) and Transmission Demand Forecast (b) from
January 2008 to October 2017

Also, it is useful to display every quarter of the year for the actual INDO to see the
differences in patterns between seasons. So, taking the year 2017 as an example, each
quarter of the year is plotted in Figure 4.3.

Figure 4.3: UK Electricity Demand for the 4 quarters of the year 2017 on the left: Panel (a)
January - March, panel (c) April - June, panel (e) July - September and panel (g) October
- December. Random week taken from each corresponding quarter, Monday to Sunday,
on the right: 16/01/2017 to 22/01/2017 (b), 01/05/2017 to 07/05/2017 (d), 07/08/2017
to 13/08/2017 (f) and 06/11/2017 - 12/11/2017 (h).

As can be seen in Figure 4.3, the patterns of energy use are different depending on the
season and/or day of the week. As for wind and solar energy, they depend on weather
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conditions. For the Triad season 2016/17, these values are displayed in Figures 4.4 and
4.5.

Figure 4.4: Observed data of the national total solar generation from November 2016
to February 2017 (a) and from 16th January 2017 to 22nd January 2017 (b). Data source:
ELEXON (2018).

Figure 4.5: Observed data of the national total wind generation from November 2016
to February 2017 (a) and from 16th January 2017 to 22nd January 2017 (b). Data source:
ELEXON (2018).

To determine data correlations, the standard correlation coefficient (Pearson’s r) can be
computed. The result of the four inputs that are being considered as inputs can be seen
in Table 4.1.
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Table 4.1: Pearson’s r coefficients between Settled Data and the other variables.

Variables Pearson’s r with SD
NDF 0.99
TSDF 0.99

SOLAR 0.18
WIND -0.15

As expected, a strong positive correlation exists between SD and NDF and TSDF val-
ues, and these are going to define the shape of the forecast. Also there are correlation
between the wind and solar generation, and SD data. Now that the relationships be-
tween variables and the data has been discussed, the model will be built and tested.

4.1.3 System configuration

The goal of our modeling is to produce Triad signals (as few as possible) to determine a
DSR intervention.

First of all the data is rescaled between 0 and 1 as this is a beneficial machine learning
practice: when feeding the algorithm, the weights are assigned during the training stage
of the system, and having different scales of values may lead to bad fitting and not reach-
ing a global maximum solution. The rest of the system, which is also described in Figure
4.6, is as follows:

• LSTM forecasting: Provides with the SD forecasted values for the next 48 half-
hour settlement periods. This architecture built consists of 40 concatenated cells,
with 250 epochs, and a batch size worth of 6 days of data.

• Peak extraction: The maximum demand peak of the day is extracted and added
to a vector with the previous forecast peaks. For filtering purposes, weekends
and Christmas period (23rd of December to 2nd of February) are excluded from the
dataset.

• Filters: After the demand of the next 24 hours has been forecast, two different filters
have been used based on a simple approach. The idea is to use two Exponential
Moving Averages (EMAs) multiplied by a factor. As an example of what the filter
values may be, for this work the percentages to 3.5% and 4% are set for the soft and
hard filters, lower and higher risk respectively.
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Forecast SF/R1/R2 for the next 48
periods (Next 24 hours) 

SF/R1/R2 
40 LSTM Cells 
Epochs = 250 

Batch Size = 48*5
Amount of training data: 
From 2013/2014 (winter

periods)

EMA 

α = 0.001 
40 periods 

filter = 1.035 

(Soft filter) 

LIKELY signals 

WIND

NDF

SOLAR
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Scale input data
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EMA 
 

α = 0.001 
40 periods 
filter = 1.04 

 
(Hard filter) 

VERY LIKELY signals 

Peaks of forecast demand
organised in a vector 

Weekends extraction
Christmas holidays extraction

Figure 4.6: Triad detection procedure. After Settlement Final, First Reconciliation and
Second Reconciliation (SF, R1, R2) have been forecasted, irrelevant forecast data such as
weekends and Christmas holidays are extracted for their exclusion. Then, Exponential
Moving Averages (EMAs) are calculated over forecasted values to obtain areas of high
Triad risk.

The implementation of the detection procedure was carried using Python, with the
Keras library. The dataset was divided into the following subsets for model deployment.
The training set includes the data from the four different inputs (WIND, SOLAR, NDF
and TSDF). Both training and test sets refer to final settled data (SF/R1/R2):
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• Training Set: 1st November 2015 to 14th of February 2018. November to February
for each year is the period for which the SF/R1/R1 data is available. Training and
test set are consecutive, meaning that the period used for the test is consecutive to
the training, so time sequence is taken into account.

• Test set: next 14 days after the last day of the training set (15th to 28th of February
2018). The purpose of this testing set is to estimate the performance when changing
the hyperparameters in order to choose the optimum combination of these. This
test data must not have been used for training.

A summary of the datasets can be found in Table 4.2.

Table 4.2: Training and testing data for Triad forecast.

Training Testing
Number of points 11472 672

(%) 94.46% 5.54%

Date range
01.11.2015 to

28.02.2018
15.02.2018 to

28.02.2018

These train-test split percentages are used due to the need of using as much data from
previous and actual periods as possible to capture long-term trends, and two weeks of
test data would suffice to show the periodicity captured in the forecast, both intraday
and weekly. Long-term forecast is performed, thus the model is trained on the date from
the previous years. The horizon of the forecasting is four months. As our model has four
inputs, based on the description in 4.1.1, the LSTM architecture will contain a fixed num-
ber of the concatenated cells. This number is to be determined during the experiment.

The schematic of the model can be seen in Figure 4.7.

LSTM Cell 1

LSTM Cell 2

LSTM Cell n

. . .

y(t-(n-1))

y(t-(n-2))

y(t)
x1(t-(n-1))

x2(t-(n-1)) x3(t-(n-1))

x4(t-(n-1))

x1(t-(n-2))

x2(t-(n-2)) x3(t-(n-2))

x4(t-(n-2))

x1(t)
x2(t) x3(t)

x4(t)

Figure 4.7: LSTM schematic with 4 inputs

4.1.4 1st calibration stage: training data size

As mentioned in section 3.1.1, the LSTM parameters need to be tuned in order to achieve
better performance. The hyperparameters of this network are calibrated according to the
number of epochs, the number of years of data for the training stage and the number of
cells constituting the network.

The experiment has been carried out by increasing the number of epochs, as well as
the number of years of the testing period, varying the batch size used for training the
LSTM. One epoch makes reference to the number of times the model has seen a number
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of instances equal to the number of instances in the training data. The batch size is the
number of values taken by the algorithm at every step, in this case 6 days worth of data
(48 half-hours each day).

Table 4.3 shows the metrics with the best result obtained that correspond to 250
epochs with 288 batch size (6 days with 48 periods each) with the whole dataset. This
means that the earlier the year of testing the shorter the amount of training data. The
length of the test period has an influence on the number of epochs. Therefore for further
experiments, the whole dataset before the test period is to be taken because less data is
available.

Table 4.3: Training and testing accuracy metrics according to the numbers of epochs.

Epochs 50 150 250 300 350
Training accuracy

RMSE (MW) 740.85 694.44 693.11 699.76 698.65
RRMSE (%) 2.09 1.94 1.94 1.96 1.96
MAE (MW) 574.24 522.95 521.28 527.60 526.56
MAPE (%) 1.66 1.52 1.51 1.53 1.53

Testing accuracy
RMSE (MW) 833.44 799.75 793.53 796.59 798.27
RRMSE (%) 2.35 2.24 2.22 2.23 2.24
MAE (MW) 625.15 578.4 578.15 577.67 578.43
MAPE (%) 1.75 1.60 1.60 1.60 1.60

4.1.5 2nd calibration stage: number of neurons

Next, the number of neurons of the LSTM needs to be determined by using the results
obtained in the prior calibration stage. For the experiment in Table 4.3, 30 concatenated
cells were used and the average of the values for ten runs have been taken for each metric.
In Table 4.5 the results of this experiments can be seen together with a boxplot with the
Forecasted Error (FE) (Al-Musaylh et al., 2018), which is the difference between observed
and predicted values, for each model presented in Figure ??.

Table 4.4: Boxplot for each model of forecast values realisation with different numbers of
LSTM cells.

Number of
neurons

10 20 30 40 50 60

RMSE (MW) 801.82 798.85 795.54 795.66 794.33 797.97
RRMSE (%) 2.25 2.24 2.23 2.23 2.22 2.23
MAE (MW) 585.26 578.86 576.48 575.99 578.95 581.17
MAPE (%) 1.61 1.60 1.60 1.60 1.61 1.61

Table 4.5: Accuracy metrics for the number of neurons in the LSTM.
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Figure 4.8: LSTM modeled energy demand time series.
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In this experiment, the values for 10 runs are averaged. It can be concluded that for
this forecasting horizon, the number of concatenated cells to be chosen is 40, as the met-
rics in Table 4.5 show the best results for this number of cells.

The training algorithm used is the Adam optimiser, with a learning rate = 0.001
(Kingma et al., 2014). The total number of parameters, weights and biases is 7241 and
the number of training instances is 11472.

The modeled demand time series can be seen in Figure 4.8. In this experiment, 14 days
(672 points for 48 half-hours per day) were modeled in February 2018, from Wednesday
to Tuesday. It also can be seen that the weekly patterns are lower than for weekdays. The
next section will consider the filters and signals for Triad as the last stage of the modeling
system.

4.1.6 LSTM comparison with other models

In this section, the performance of LSTM is compared with several other popular meth-
ods. First, the LSTM is compared with the mean-only model and then with a simpler ver-
sion of ANN with the same characteristics in terms of the number of cells and learning
rate used for the LSTM. Also the LSTM model is compared with SVM regression, ran-
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Table 4.6: Comparison of models based on accuracy metrics.

Model LSTM Mean-only ANN SVM
Random
forests

Bayesian
regression

RMSE (MW) 795.66 6013.81 850.82 2321.85 1868.25 806.05
RRMSE (%) 2.23 16.91 2.37 6.50 5.27 2.27
MAE (MW) 575.99 5295.46 619.42 2009.95 1588.54 587.68
MAPE (%) 1.60 15.24 1.74 5.78 4.55 1.62
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Figure 4.9: Forecast error of the five models.

dom forests and Bayesian regression models. The results of the comparison are shown in
Table 4.6 and illustrated in Figure 4.9.

This shows that LSTM model outperforms other models. It is important to mention
that Bayesian regression results are following closely the performance of the LSTM in the
second place, which makes this methodology a good alternative worth testing in similar
DSR scenarios.

4.1.7 Cross-validation

Generalised performance of a learning method and its prediction capability rely on in-
dependent test data (Friedman et al., 2001). Therefore, cross-validation is necessary to
ensure that the results are reliable when new data is introduced. Time-series data is
the object of the forecast, therefore a cross-validation that considers the serial correla-
tion inherent to the problem is needed (Arlot et al., 2010). Therefore, one step ahead
cross validation is performed (Hyndman et al., 2018) consisting of use 1, . . . , k samples,
to predict k + 1 value (or alternatively k + 1, . . . , k + m values). This is performed for the
whole period of validation and then 24 hours of data are added to the model to obtain
the following day’s output.

4.1.8 Filters configuration

Applying the data filters is the last stage of data processing. They play the role of data
points classification between Triad and no Triad.

For the filters, as mentioned in section 3.1.1, EMAs have been used. The idea is to call
Triads as any value above the 3.5% and 4% for hard and soft filters, respectively, of the
40 days EMAs. The values have been chosen to capture all three Triads causing the least
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disruption possible. For filters validity in terms of parameters selection they must satisfy
the following:

• To successfully predict the three Triads at least with one of the two filters;

• To be able to successfully call at least two Triads using the signals of both filters.

• To call the minimum number of Triad possible so the energy supply disruptions in
buildings are kept to minimum;

The level of financial/energy risk that is to be taken into account depends on the
user. This is why two filters are used to manage the risk. In Figures 4.10 - 4.13 the
forecast peaks for the Triad seasons 2014/15, 2015/16, 2016/17 and 2017/18 respectively
are shown, together with both filters:

Figure 4.10: 2014/15 forecast peaks for each day and EMA filters.

Figure 4.11: 2015/16 forecast peaks for each day and EMA filters.
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Figure 4.12: 2016/17 forecast peaks for each day and EMA filters.

Figure 4.13: 2017/18 forecast peaks for each day and EMA filters.

The performance of the filters can be measured by counting the number of signals that
our model generates versus the number of Triad predicted in the hindcast. The summary
of these results can be seen in Table 4.7, in which, for each year, the number of signals
given by each filter, as well as the number of actual Triad days predicted. It shows the
number of positive signals generated and the last two are the number of these signals
that predicted the actual Triads.

Table 4.7: Number of signals calling Triad for each filter and number of Triads predicted.

Seasons Soft Filter Hard Filter
Triad Predicted

(Soft)
Triad Predicted

(Hard)
2014/15 19 14 3 3
2015/16 21 19 3 3
2016/17 19 14 3 3
2017/18 21 16 3 2

The condition respect to the soft filter has been met by properly forecasting the three
Triads in the first three testing years (2014 - 2017) and successfully predicting 2 out of 3
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over the 2017/2018 period. The aim is to call the minimum number possible of signals, so
EMA parameters are valid for all three years of testing, meaning that the three conditions
for filters calibration mentioned in Section 4.1.8 have been met.

This system failed to predict only one of the Triads with one of the filters but, in this
case certain parameters have been left fixed for all the testing periods. The flexibility of
this system allows to adjust the filters in future scenarios.

This system was implemented in the Mitie company in December 2018 and it runs
automatically every day in winters since then. A schematic of the software can be seen in
AppendixA.

4.1.9 Findings summary

Development of a deep learning system for detecting and forecasting events of high en-
ergy demand at a national level for general DSR interventions, with RRMSE = 2.23%
achieved in LSTM and being able to predict the Triads with a fixed level of risk.

4.2 Risk balancing of renewables PPA

The objective of this study is two-fold: estimation of solar and wind generation for the
following year, and optimisation of price and shape of the business consumption profile.
The estimation of both wind and solar generation relies only on observed data, therefore
no other predictors are used. For the electricity prices are estimated by averaging a cer-
tain range of prices given for year 2018, which is the training period used. Information
about total volume generated and prices for the 2018 can be seen in Table 4.8:

Table 4.8: Annual volume (KWh) and price (£/MWh) for different assets and consump-
tion profile.

Wind
Farm 1

Wind
Farm 2

Wind
Farm 3

Wind
Farm 4

Solar
Farm 1

Consumption
Profile

Annual
volume
(MWh)

77728.30 19579.12 55530.87 41753.34 58776.61 195511.72

Price
(£/MWh)

51.50 53.98 55.60 61.03 48.40 -

Temporal resolution of data is half-hourly, therefore the total length of the annual data
is 17520 points for all wind and solar farms, and for the consumption profiles. Specific
characteristics such as turbine model and farm locations are not provided, due to data
confidentiality.

4.2.1 Wind generation

After applying the switchpoint model described in Section 3.1.2 to wind asset 1, these are
different dates obtained for wind pattern change, and the respective histograms for each.
Note that in this study 5 switchpoints are used.

Our goal is to generate similar patterns by using Bayesian modeling and MCMC.
Figure 4.14 shows the weight, α and β values for the three distributions comprising the
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Figure 4.14: Parameters for the Bayesian mixture model in each interval between switch-
points.

mixture model. The weights show the importance of each of the distributions in each
period of generation. The results are used for wind simulation for the following year, as
our main interest is to capture a range where the wind generation values are more likely
to be homogeneous. The results of this model for every period can be seen in Figure 4.15:

It can be seen that 20 simulations of the mixture model of the three beta distributions
approximate the histogram of the data very well for every period. This figure displays
the differences between summer and winter period in both observed and simulated data.
Due to the smoothness of the mixture data, it can be seen that the simulated data could
miss some spikes in generation data close to 0.9, but due to the nature of the beta dis-
tribution, it captures the small values well in all cases. This shows the flexibility of beta
distribution in different scenarios.

The generated simulations are compared with their respective observations. Results
can be seen in Table 4.9.

Table 4.9: Comparison of actual and simulated total annual volume for 2019 for the four
wind farms (hindcast exercise).

Wind
farm 1

Wind
farm 2

Wind
farm 3

Wind
farm 4

Actual volume
(MWh)

77728.30 19579.12 55530.87 41753.34

Simulated volume
(MWh)

80448.22 23164.32 60067.23 48774.21
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Figure 4.15: Histograms of wind generation and MCMC estimations for a wind asset
(for six separated sub-periods). A total of 20 MCMC traces have been used to create the
histograms in every sub-period. The data has been scaled between 0 and 1.
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4.2.2 Solar generation

Figure 4.16: Actual and simulated solar generation for year 2019. The simulations have
been carried out with the stochastic model described in 3.1.3. The top panel represents
data of half hour temporal resolution. The bottom panel represents daily average gen-
eration. Year 2018 has been used as a reference period for training in order to simulate
values to the following year.

Figure 4.16 shows solar generation for 2019 and its corresponding simulations for the
same year. The reference year used for training the stochastic model is 2018, therefore
rate of decay is applied over the following year. As the model considers minimum and
maximum peaks on the range of its 30 period moving average, the pattern followed by
the seasonal trend is similar. Oscillations within the same day are modeled by the red
noise.

Daily modeled data is shown with the seasonal trend and the noise. The noise ampli-
tude increases from winter to summer, and then decreases back to winter levels. These
irregularities are reproduced by the simulated data, which shows, not only the same sea-
sonality pattern, but also the same noise pattern.

Also, the forecast for the three years with available data set are compared, in terms of
the total volume, in MWh. These results can be seen in Table 4.10.

Table 4.10: Comparison of actual and forecast total annual volume of solar generation for
three consecutive years, from January 2017 to December 2019.

2017 2018 2019
Actual volume

(MWh)
58776.61 62362.27 58424.66

Simulated volume
(MWh)

59845.69 59789.51 59955.11
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Figure 4.17: Optimal mixed generation of wind and solar, and energy consumption. Ev-
ery panel corresponds to ten days in six different periods of year 2019. Time resolution is
half-hourly.

Now that the estimations for both wind and solar generation have been calculated, the
same model is applied for the rest of wind assets and find the best modeled output that
minimises total cost and difference of shape between total aggregated and consumption.

4.2.3 Optimal cost shape match

After estimating future wind and solar generation, the same methods have been used for
estimating generation in the rest of the farms to find the optimal combination of wind
and solar generation. For the consumption profile, it is assumed that a very similar pat-
tern repeats year after year, as it has been observed in the historical data.

As shown in Figure 4.17, the total aggregated generation sometimes exceeds the con-
sumption curve. The total aggregated generation struggles to reach consumption for
baseload during the summer period, due to the lack of wind generation available. How-
ever, there is normally a compensation of solar generation within the day during peak-
load.

Figure 4.18 shows daily aggregated data for both optimal generation and consump-
tion, where the lack of wind generation in summer can be seen. Also, the plot shows that
the consumption increases in summer, therefore the total difference is even higher. Wind
generation tends to decrease in summer, yet solar generation usually increases.
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Figure 4.18: Optimal daily mixed generation of wind and solar and energy consumption
in 2019. Temporal resolution is daily.

For solving this optimisation problem several solvers were applied (TNC, COBYLA,
Powell, etc.), but they did not converge to a suitable solution. Therefore, the problem has
been solved heuristically, by prioritising cost over shape.

Optimisation has been performed over the half-hourly data (Figure 4.17). For opti-
misation, half-hourly resolution data is chosen to assess more accurately the amount of
electricity to buy or sell within the day. This helps one to assess the risk of purchasing
energy blocks in the intraday or mid-term energy market.

4.3 Electricity generation and consumption profile optimisation
with no cost

This section details a different minimisation problem that takes into account the minimi-
sation of the difference between consumption and the sum of the generation profiles in
order to get an optimum combination of generators to meet demand.

This minimisation problem has not been built from a forecast as the previous prob-
lem description does. Instead, actual consumption profiles are used. The reason for this
is that landfill gas generation sources are used (together with wind and solar generation)
and this type of generation source for forecast is not considered, as the most common sce-
nario for a PPA based on renewable sources are wind and solar generation due to their
cheaper price per MWh.

This experiment uses a total of 19 landfill gas assets, 7 wind assets and 1 solar asset.
This is limited by the amount of asset data of each type that could be obtained. For
the electricity consumption, profiles from four different companies have been obtained.
Their names could not be disclosed due to data confidentiality, but their characteristics
can be seen in Table 4.11:

77



Table 4.11: Annual energy volume (KWh) of four different industry samples.

Consumption
Profile 1

Consumption
Profile 2

Consumption
Profile 3

Consumption
Profile 4

Industry Restaurant Supermarket Banking Property
Annual
volume

2019 (MWh)
495030.79 52301.81 231836.36 62347.60

Due to the many gaps in the generation data, only a month of data has been used for
both consumption and generation profiles: 01-06-2019 to 01-07-2019.

For the purpose of the optimal combination of renewables assets, actual consumption
and generation are first matched. For this, the solver that minimised the the difference
between aggregated generation and target consumption is used, as defined in Eq. 3.20.

Figure 4.19: 30 min resolution data, from 1st of June to 1st of July 2019, of consumption
profile 1 and its corresponding optimal combination of generation assets from the given
asset list.
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Figure 4.20: Half-hourly data of consumption profile 2 and its corresponding optimal
combination of generation assets from the given asset list.

Figure 4.21: Half-hourly data of consumption profile 3 and its corresponding optimal
combination of generation assets from the given asset list.
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Figure 4.22: Half-hourly data of consumption profile 4 and its corresponding optimal
combination of generation assets from the given asset list.

Figures 4.19 to 4.22 show the results of the consumption profile and aggregated gen-
eration match. It can be seen here the role of each type of asset: wind and landfill gas
compensate most part of the baseload, whereas solar covers generation peaks. Landfill
gas generation is generally more steady and less seasonal, and the character of solar gen-
eration compensates for intraday consumption. The role of solar for peakload is very
important, as solar energy is generally cheaper and it compensates consumption within
a number of hours when electricity is more expensive.

Figure 4.23: Optimal combination of assets for each profile.

In Figure 4.23, it can be seen the asset distribution for optimal scenarios. In the two

80



Table 4.12: Root mean square error of different solvers for the optimisation problem
(KWh).

Profile
Solvers

L-BFGS-B TNC COBYLA SLSQP
Nelder
-Mead

Powell BFGS

Profile 1 6591.66 6298.82 6421.64 10926.69 7485.87 6698.55 6750.58
Profile 2 1033.18 525.69 508.07 546.19 490.56 1168.20 1168.21
Profile 3 1772.56 1772.56 1781.71 4712.48 2416.77 1946.07 1946.07
Profile 4 18306.65 18306.65 18306.65 18458.90 18469.47 18345.50 18345.50

profiles with the highest consumption (1 and 3), there are renewable assets other than
landfill. This shows that when only shape is considered, landfill gas is the most versatile
renewable asset. The reason for this is that the random component inherent to generation
is much lower than in wind. Also, profiles 1 and 3 are the only ones that include solar
assets. The reason for this can be that only one solar asset data is available, and adding
this profile would add a generation which is too high even for peakload consumption.
With a wider range of solar generation assets or the possibility of buying just a part of
generation (not considered in this case study) the results would change and peakload
would be compensated better.

Table 4.12 shows the RMSE of different solvers used for optimisation. For the purpose
of this problem, the result is picked with the smallest RMSE.

4.3.1 Findings summary

Development of Bayesian model for long-term wind generation forecast and stochastic
model for long-term solar generation forecast and a linear programming-based method
for optimal combination of renewable assets with and without consideration of costs per
Kwh, with no weather data available.

4.4 AHU linkage using BMS correlations

4.4.1 Experiments 1 and 2: Manufacturing facility (Ground floor)

The building used in the case study is a large facility that consists of office spaces on the
one hand, and manufacturing halls on the other hand. The office spaces contain meet-
ing rooms and common spaces such as canteen, kitchen, changing room and open spaces.
The manufacturing part comprises several dedicated spaces as this is an automotive man-
ufacturing plant. In terms of cooling, heating and ventilation systems, the building has 3
chillers, 6 boilers, 6 fan coil units and 16 multi-speed fan AHUs. As the focus of this work
are AHU systems, the actual linkage between AHU-space, control strategy and number
of sensors can be seen in Table 4.13. Some of the AHUs have been excluded due to the
lack of sensors in their respective areas of influence, which makes them irrelevant to this
study.
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Table 4.13: AHUs of the manufacturing facility, their associated areas of influence and
the number of temperature sensors in such areas. AHUs’ temperatures are controlled
by the average value of the temperature sensors located in their respective areas. Data
has temporal resolution of 10 minutes. Excluded AHUs, AHU06 and AHU15 have also
shown.

AHU Associated zone Control strategy
N. of

temp. sensors

AHU01 lab rooms
Avg. room temp
- fixed set point

4

AHU02 support room
Avg. room temp
- fixed set point

3

AHU03 wax room
Avg. room temp
- fixed set point

4

AHU04 shell room
Avg. room temp
- fixed set point

4

AHU05 NPI room
Avg. room temp
- fixed set point

3

AHU06 clean room
AHU Return temp

- fixed set point
0

AHU07A/7B foundry area
Avg. room temp
- fixed set point

8

AHU09/10 finish room
Avg. room temp
- fixed set point

4

AHU11 inspection/X-Ray rooms
PI control loop

- variable set point
5

AHU12 canteen
Avg. room temp
- fixed set point

1

AHU14 pre-fire room
Avg. room temp
- fixed set point

2

AHU15 fresh air make-up unit Fixed supply temp 0

AHU16 shell rooms
Avg. room temp
- fixed set point

2

Our experiments are based on Table 4.13 that contains "ground truth" for the case
study. The data has been obtained from the manufacturer for every AHU individually
(AHU Specification (Barkell)). Technical specifications include dimensions of boxes and
specifications of motors, fans, thermal wheel (if applicable), coils, etc. Every sensor is
tagged with a specific name describing the company and followed by building location
and subset (Ventilation, Metering, Cooling, Heating, Globals, Terminals and Lighting).

The building used for this case study is a Rolls Royce plant located in Rotherham,
with 1639 BMS points in total. The considered period is June to July 2018 (30 days). The
facility comprises two main areas: the production plant on the ground floor and the of-
fices on the upper floor.

Time series data provided by sensor points is not often reliable, as there are data
gaps, unnecessary units, and anomalies, (data subsets misplaced between points because
of extraction). The selected data points are:

• AHU Supply Air Temperature (SAT) points: These points measure the tempera-
ture of the air supplied to the area. There is one of these points per AHU.
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• AHU Return Air Temperature (RAT) points: These points measure the tempera-
ture of the air extracted from the space prior to re-circulation or disposal.

• Room temperature points: Sensors are located in each room to measure tempera-
ture. There are between one and four sensors located in each room, and measure-
ments is the average of the sensor values.

• Fan Coil Unit (FCU) room temperature: Output temperature of FCUs. This piece
of equipment is connected (or close) an AHU.

4.4.2 Experiments 3: Office spaces (First floor)

The office spaces contain the meeting rooms and common spaces such as restaurant, can-
teen, kitchen, changing room and open spaces. A schematic is shown in Figure 4.24. In
this case study, FCUs feed air to specific meeting rooms in the office above the manufac-
turing facilities.

FCU02

Weak
link

Medium link

Strong
link

AHU01

AHU13

AHU02

Room B

Boiler

Outside air

Room A Room C

FCU03FCU01

Facility

Figure 4.24: Schematic of AHUs and FCUs linkage

Meeting rooms have the following generic names: Rhenium, Tugsten, Nickel, Cobalt,
Tantalum, and the gym. The main goal of this experiment is to link the respective rooms,
each being fed by a different FCU, with their closest AHU unit. The strength of these
links can be described by the Person’s correlation coefficient, its high values showing a
strong, very likely correlation, medium showing a moderate strength and low a weak
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link.

Various experiments are performed to relate AHUs with their respective work spaces,
as well as FCUs with their respective AHUs. In experiment 1, a comparison of the perfor-
mance for different clustering techniques is performed in a controlled experiment con-
sisting of only a small part of the facility. Then the best performing methodologies from
experiment 1 are used in experiment 2 for the whole facility. Experiment 3 shows a dif-
ferent clustering focus, linking a different piece of equipment, fan coil units, with their
respective areas of influence.

The concept of difference in temperature is introduced and a comparison of different
clustering techniques is performed in a controlled experiment consisting of only a small
part of the facility. Then the best performing methodologies from the prior experiment
are used for the whole facility. After this, the next experiment has a different clustering
focus, linking a different piece of equipment and fan coil units, with their respective areas
of influence.

4.4.3 Linkage significance and difference in temperature

In order to test if the correlations are significant, the following is done. If the link be-
tween room sensors and SAT is established, the internal difference in temperature is to
take into consideration. All spaces in the facility may generate heat internally (kitchen,
manufacturing process, people, computer equipment, etc.) which could make it difficult
to identify the respective AHUs. This is why this internal heat disruption is measured in
the first place, and then gradually add complexity to the clustering.

For this purpose, the difference between supply and return air temperature has been
taken into account,

∆T = |SAT − RAT| (◦C). (4.1)

Table 4.14 represents the mean, variance, minimum and maximum value of the element-
wise difference between supply and return air temperatures for each AHU.
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Table 4.14: Mean, variance, minimum and maximum values of the difference bettween
supply and return air temperature (Co)

AHU
number

Mean Variance
Min

Value
Max

Value
AHU01 2.39 7.25 0.00 11.30
AHU02 6.20 14.37 0.01 13.45
AHU03 8.01 0.90 0.48 14.62
AHU04 2.87 0.97 0.02 8.47
AHU05 3.74 0.63 0.04 10.89
AHU06 3.97 0.75 0.06 6.20

AHU07A 17.16 1.06 12.92 20.18
AHU07B 15.49 1.13 12.28 18.34
AHU09 10.37 1.40 8.23 14.86
AHU10 10.12 1.59 6.69 13.80
AHU11 2.28 0.98 0.00 4.99
AHU12 3.50 5.50 0.00 10.69
AHU14 8.09 17.38 0.00 15.61
AHU16 1.04 0.56 0.00 7.90

Table 4.14 shows that some AHUs, such as 7A, 7B, 9 and 10, present a much higher
mean value of their difference in supply and return temperatures. However it can be seen
that the variance in some of them is not very high, meaning that the high mean difference
in temperature is stable. This probably happens in an area which has been constantly in-
fluenced by external factors. On the other hand, areas with a relatively low mean and
with a high variance can be found, meaning that the physical space presents temperature
disruptions very often.

These values of difference in temperature are to be used as a measure as to how much
the defined AHU linkage can be trusted. Therefore a limit for the mean difference in
temperature as 7.5Co is set, above which the cluster is considered as not reliable as the
internal heat disruption may be too high. The reason for choosing this value is that the
clustering algorithms fail in linking AHUs with sensors above an approximate value of
8Co in experiment 2.

4.4.4 Linking three AHUs to five different rooms

For the first experiment, three AHUs have been selected. According to Table 4.14, the
ones with a relatively low mean and variance are chosen i.e. the ones with a lower inter-
nal difference in temperature. Also it is necessary to validate how good the solution is,
so the site engineers are consulted on the room names to which the AHUs are supplying
air to. The chosen AHUs and corresponding rooms are:

• AHU05 supplying air to the "NPI room"

• AHU11 supplying air to the "Visual inspection", "Manual inspection" and "X Ray"
rooms

• AHU16 supplying air to the "Shell drying" room

The techniques discussed are applied in the first experiment and later, these results
are compared with the real connections. In a properly clustered group, the AHU’s SAT
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Table 4.15: Lasso clustering results

AHU
Room temperature

sensors

Cluster 1: AHU05 Supply Air Temp
Room NPI Room Temp No3
Room NPI Room Temp No2
Room NPI Room Temp No.1

Cluster 2: AHU16 Supply Air Temp
Drying Shell Drying Cell Temp No2
Drying Shell Drying Cell Temp No1

Cluster 3: AHU11 Supply Air Temp

Room Manual Inspection Room Temp
Room Manual Inspection Room Temp.1

Room Visual Inspection Room Temp
Room Visual Inspection Room Temp.1

Ray X Ray Room Temp

Table 4.16: Distance between clusters considered for creating a boundary for eac2h AHC
metric.

Distance
metrics

Correlations DTW IPD

Clusters
distance limit

1.4 10000 150

should be in the same group together with their corresponding space temperature sen-
sors. The clustering dendrograms correspond to the AHC clustering technique with three
distance metrics. AHC can be represented as a dendrogram because the algorithm pro-
gressively separates the clusters based on the distance metrics until all the points form
a separate cluster. For this reason, the lasso clustering methodology is represented sep-
arately in Table 4.15, because in this algorithm the search for the optimal penalisation
parameter is done in an iteratively refined grid.

For the experiments, it is assumed that it is known that the BMS points belong to
different AHU systems and room temperature sensors. What it is assumed not to know
beforehand is which of the 13 AHUs are associated with which of the 11 physical spaces.
The parent-child relationship is known once the AHU has been associated with its corre-
sponding physical space.

In the dendrograms, the distance chosen determines which branches below that dis-
tance form a cluster. The same distances are used later in the experiment with the whole
building evaluation. An ideal cluster should contain the AHU sensors together with their
respective temperature sensors within the same space. Figures 4.25, 4.26 and 4.27 show
the clustering results for different distance metrics.

The fact that the AHUs’ SAT belongs to the same cluster means in the case of AHC
that, in the lowest levels of the dendrogram, the time series are closer (in terms of the cho-
sen distance) to each other, and form groups that are more distant from each other as the
branches go up. In the case of graphical lasso, it means that the elements corresponding
to the estimated inverse of the covariance matrix are zero between clusters, thus forming
groups of time series that present the most similar number of common features.

Figure 4.25 shows that correlations-based AHC clusters AHU05 and AHU11 correctly
with their corresponding temperature sensors. AHU16 is in a cluster together with one of
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Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 4.25: Experiment 1: Correlations-based AHC with 3 AHUs. The numbers above
the dendrogram indicate the incremental distance between clusters according to this met-
ric. The dashed box indicates the supply air temperature of the respective AHU. The
other points correspond to space temperature sensors.

87



Cluster 1

Cluster 2

Figure 4.26: Experiment 1: DTW-based AHC with 3 AHUs. The numbers above the
dendrogram indicate the incremental distance between clusters according to this metric.
The dashed box indicates the supply air temperature of the respective AHU. The other
points correspond to space temperature sensors.
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Cluster 1

Cluster 2

Cluster 3

Figure 4.27: Experiment 1: IPD-based AHC with of 3 AHUs. The numbers above the
dendrogram indicate the incremental distance between clusters according to this metric.
The dashed box indicates the supply air temperature of the respective AHU. The other
points correspond to space temperature sensors.
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Table 4.17: Success rate for every clustering methodology. Total % of success rate has
been chosen in relation to the total number of aggregated sensors correctly clustered for
all three AHUs.

Correlations
AHC

DTW AHC IPD AHC Lasso

AHU 05 3/3 (100%) 0/3 (0%) 0/3 (0%) 3/3 (100%)
AHU 11 5/5 (100%) 0/5 (0%) 1/5 (20%) 5/5 (100%)
AHU 16 1/2 (50%) 2/2 (100%) 0/2 (0%) 2/2 (100%)

% success rate 90% 20% 10% 100%

its sensors, however the other sensor is excluded, thus forming a separate cluster. Figure
4.26 shows the same clustering methodology but based on DTW. It can be seen that the
clusters do not respond to the logic of the physical connections. Similarly, in Figure 4.27
the clusters do not separate correctly either. Table 4.15 shows the results of lasso cluster-
ing. In this case, all the clusters are correct. The three AHUs are properly linked to their
respective temperature sensors within the same cluster.

Results have been summarised in Table 4.17. The percentages are obtained based on
the rate of room temperature sensors contained within the cluster with their correspond-
ing AHU each. For instance, correlations AHC clusters elements properly within AHUs
05 and 11 but missed one of the two elements in cluster containing AHU16. The one
showing the best results is the graphical lasso clustering, which correctly groups AHUs
with their respective areas of influence. This performance is followed by correlations
clustering.

Now that the techniques that perform best have been identified to be correlations-
based AHC and Lasso clustering, they are used for the next experiment.

4.4.5 Linking all AHUs to rooms (whole building evaluation)

In experiment 2, the two best performing techniques discussed in section 4.4.4, Pearson’s
distance-based AHC and lasso clustering are used, with all AHUs and all temperature
sensors within the building. In the results of the Pearson’s correlation distance-based
AHC shown in Figure B.1, correct clusters are considered by using the same distance
to analyse the clusters as in experiment 1. As an example for correct cluster, Figure B.1
shows that AHU01 is contained within the same branch levels as the four lab rooms, as
expected. Similarly, AHU07A and AHU07B are clustered with the Foundry area. Other
areas such as Finish rooms, Wax rooms and the canteen, they are in different clusters
with respect to their AHUs. Interestingly, it is observed that the related rooms are usu-
ally found together in the lowest level of the branches. Another observation is that AHUs
that share common spaces are also clustered together, such as AHU07A and AHU07B. Re-
sults for lasso clustering table have been included in Appendix B. In the results of lasso
clustering in Table B.1, same as in experiment 1, AHUs and room temperature sensors
are found within the same cluster. Some of the clusters only group room temperature
sensors, but no AHU SAT is present, as is the case of clusters 2, 5 and 9. On the other
hand, clusters with only AHUs and no temperature sensors are observed in cluster 11.
AHU06 is discarded for the lack of sensors in the room.

As defined in section 4.4.3, a limit value of 7.5Co is set for the difference between
SAT and RAT. In Table 4.18 the obtained results are summarised. The table presents
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the average difference in temperature, confirmation/denial of linkage in the appropriate
category and the issue associated with the AHU if any.

• Issue (a): Open plan space. Heat exchange occurring between adjacent rooms.

• Issue (b): The AHU is enabled and provides 100% cooling nearly constantly but is
having no effect on setpoint (the temperature value set) or is not enough to cool to
the set-point. This implies the AHU is not mechanically sound or capable to meet
requirements (onsite investigation may confirm this).

• Issue (c): Heat gain is too high. Issues reported with heat coming from internal
sources: kitchen, servers, crowded areas, etc.
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Table 4.18 shows the results of this experiment. The performance of both method-
ologies is very similar, except that lasso fails to cluster wax rooms with their respective
temperature sensors. In general, it can be said that correlations-based AHC performs bet-
ter than graphical lasso in terms of the number of sensors belonging to the correct cluster.
70% reveals that this methodology identifies underlying connections between AHUs and
their respective spaces. Also, it can be observed that the AHUs with a mean ∆T above
the set-up limit fail to predict the matches between AHUs and physical spaces in general,
although exceptions can be seen in graphical lasso and AHU03. AHUs 07 A and B are in
the same branch as their respective sensors in the AHC technique. AHUs 2 and 12 have
a very high variance (as shown in Table 4.14), which does not seem to affect the perfor-
mance of the algorithms in the case of AHU 2. For AHU 12, both methods fail to predict
its only sensor with the canteen. When looking at its variance, it seems to be higher than
other AHUs, as the canteen is crowded mainly during lunch time. This, together with
the fact that its only sensor may be misplaced, could explain this issue.

The intention was to test the fact that the difference in temperature has determinant
effect on obtaining these relationships. In general this relationship proves correct but
there are sometimes exemptions. In the case of AHU07 A & B and despite being an open
space, correlations-based AHC has been able to properly identify all 8 sensors in this
more challenging case. Therefore it can be concluded that this fact cannot be confirmed
or the experiment is insufficient.

4.4.6 Linking AHUs with FCUs

The main goal of this experiment is to link the respective rooms, each being fed by a
different FCU, with their closest AHU unit. These relationships are shown per FCU, and
the links of these with all (if any) of the correlated AHUs. This is summarised in Table
4.19.
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Table 4.19: AHU and FCUs linkage. Numerical association with correlation and the de-
gree of strength defined by flag category. Bold numbers represent the highest correlation
value encountered per space, which is linked to a specific AHU. The linkage has been
defined according to the value of the coefficient as low (0-40),medium (40-70) and high
(70-100).

AHU FCU Linked
Pearson’s correlation

coefficient
Linkage

AHU01
Nickel

Tugsten
Gym

0.68
0.34
0.29

Medium
Low
Low

AHU02

Nickel
Cobalt

Tugsten
Rhenium
Tantalum

0.89
0.51
0.51
0.48
0.05

High
Medium
Medium
Medium

Low

AHU04
Cobalt
Nickel

0.14 Low

AHU07A
Tugsten
Nickel
Gym

0.25
0.24
0.06

Low

AHU07B
Nickel

Tugsten
Gym

0.20
0.14
0.06

Low

AHU09
Nickel
Gym

0.02
0.01

Low

AHU10
Nickel

Tugsten
Gym

0.07
0.04
0.02

Low

AHU11
Cobalt

Rhenium
0.06
0.02

Low

AHU13
Cobalt

Rhenium
Tantalum

0.55
0.45
0.16

Medium
Medium

Low

AHU16
Cobalt

Tantalum
Rhenium

0.08
0.03
0.02

Low

It is concluded from correlations that the most influential AHUs to the FCUs are AHU
01, 02 and 13. After validation with the engineers, it has been found out that AHU02 is
the one that has the highest influence over these areas. Therefore, some other potential
dependencies are uncovered from the supply air temperatures of AHUs 01 and 13 to
some of the rooms (Nickel, Tugsten and Gym for AHU01 and Cobalt, Rhenium and Tantalum
for AHU13).

4.4.7 Findings summary

Methods for obtaining relationships between HVAC assets and their respective areas of
influence in large facilities through clustering time series analysis from temperature sen-
sor data. Results show a 70% of correct association of AHUs with their respective areas of
operation in a very large facility (16 AHUs) and a correct FCU-room association by using
correlations.
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4.5 Early warning signals

The goal of this part of the thesis is to apply EWS techniques for early failure detection in
Building Management Systems.

Our variable of interest is the supply air temperature (SAT) of a particular zone of the
building in the manufacturing plant. SAT is controlled by the average room temperature
measured by four sensors installed in the zone using the control signal of pre-established
fixed setpoint. This means that target temperature is set to a determined value. Average
room temperature is then used by the system to regulate the percentage of openness of
heating or cooling valves, according to the setpoint. Another factor that influences the
temperature of the room is the Outside Air Temperature (OAT). These four variables are
represented in Figure 4.28, where the time 0, denotes the empirical onset of the failure.
In the x-axis, time zero indicates the moment of the failure. Negative and positive values
are therefore, the moments before and after the failure. It has been designed like this so
the anticipation of the signal with respect to the failure can be easily visualised.

Figure 4.28: Sensor variables affecting room temperature: (a) Supply Air Temperature
and Outside Air Temperature in degrees Celsius. (b) Percentage of opening for each of
the heating and cooling valves. Figure showns data data from 5:30AM of the 25th of
January 2019 starting 64 hours prior to the failure.

The system operates as follows:

• Outside Air Temperature controls frost coil valve. Frost coil valve protects the Air
Handling Unit (AHU) from very low temperatures: the parts contain liquid ele-
ments, and they can contract and damage the AHU.

• Supply Air Temperature controls heating and cooling valves. As this is a winter
period, the cooling valve will be closed most of the time, but during anomalous
overheating it activates and provides cooling to the environment.

First, univariate analysis of the SAT is conducted by using different indicators in-
troduced in Section 3.4.1, and then other variables are taken into account, reducing the
system dimensionality and applying the same techniques to compare both approaches
and identify which one provides an EWS at the earliest time.
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4.5.1 Univariate analysis

For the purpose of this study, univariate analysis is performed only with SAT, then mul-
tivariate analysis is performed with all variables controlling SAT by reducing the dimen-
sionality before applying these techniques.

Results for univariate analysis are presented in Figure 4.29, where SAT is presented
together with the EWS indicators. The plot shows data from 64 hours prior to the failure
at moment 0, which is when the temperature increases anomalously for the first time.
Different windows are used to obtain every EWS: 22 hours for variance and ACF1, 8
hours for PS and 4 hours for VAERE. The window size has been selected according to
the clarity of the signal they provided on each indicator. Y-axis of the variance has been
represented in logarithmic scale, for convenience.

Figure 4.29: EWS of supply air temperature with four indicators: variance, auto-
correlation function, power spectrum and variational autoencoder. The moment of the
failure (when the supply air temperature increases anomalously for the first time) is
9:30AM of the 27th of January 2019. Plot starts at 5:30AM of the 25th of January, 64 hours
prior to the failure. Window sizes used: 22 hours for variance and ACF1, 8 hours for
PS and 4 hours for VAERE, as these sizes were found to work best when applying these
methodologies. Data resolution is 10 minutes.

As shown in Figure 4.29, ACF1 and variance are the indicators presenting the most
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Figure 4.30: Histogram of the frequency distribution of the Kendall trend statistic for the
PS indicator for the univariate case, for the different windows across the indicator.

clear signals. It can be observed that PS also increases before the failure occurs, although
it gives a signal with a shorter period. VAE has been first trained with the system func-
tioning under normal conditions. The output displayed shows the VAERE. This seems to
show a drop right before the tipping point, but less than 4 hours prior to event.

As can be seen in Figure 4.30, Kendalls show a more robust positive trend than nega-
tive, as the majority of values are greater than zero. However, some negative values can
be seen as oscillations occur. PS has been the only methodology chosen for this purpose,
as it is the indicator presenting the most chaotic behaviour.

4.5.2 Multivariate analysis

Multivariate analysis for EWS is shown in Figure 4.31. The plot on the top corresponds
to OAT, cooling valve and heating valve reduced with PCA to their first principal com-
ponent or direction to the minimum projection variance. The windows used for each
indicator for multivariate analysis are: 22 hours for variance and ACF1, 16 hours for PS
and 20 hours for VAERE.
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Figure 4.31: Multivariate EWS analysis of the temperature failure with PCA and four
indicators: variance, auto-correlation function, power spectrum and variational autoen-
coder. The moment of the failure (when the supply air temperature increases anoma-
lously for the first time) is 9:30AM of the 27th of January 2019. Plot starts at 5:30AM of the
25th of January, 64 hours prior to the failure. Window sizes used: 22 hours for variance
and ACF1, 16 hours for PS and 20 hours for VAERE, as these sizes were found to work
best when applying these methodologies. Data resolution is 10 minutes.

98



Figure 4.32: Histogram of the frequency distribution of the Kendall trend statistic for the
PS indicator for the multivariate case, for the different windows across the indicator.

Comparing this plot with the univariate one, it is observed that ACF1 and variance
present clear EWS signals, whereas the variance represents a more steady slope in the
multivariate case. PS shows a more prompt signal in the multivariate case, 24 hours
prior to failure in comparison to 8 hours prior to the failure in the univariate analysis.
However, values of the Kendalls coefficient incline a bit more towards negative values
than in the univariate case, although still positive values are predominant. This means
that PS indicator is less robust in the multivariate case. An earlier signal is also given
by the VAE, whose indicator for the multivariate signal gives a clear EWS after 32 hours
before the event, in comparison to the 4 hours prior to failure of the univariate case.

4.5.3 Findings summary

Development of early warning signals for temperature sensor data that detects anomalies
up to 32 hours prior to failure, considering both the SAT for the univariate case and all
variables affecting SAT for the multivariate case, and without considering the control
loop for this temperature sensor.

4.6 Machine learning for BMS tag classification

The existing infrastructure uses various naming conventions for sensors and equipment
of buildings using labels that are given at the moment of the installation for brief de-
scription of the component’s type, location, parent-relationship, etc. For example, Boiler
1 Temp Sensor describes a sensor that measures the temperature of the water in boiler
number 1. There are several problems related to this descriptive naming system:

• There exists no naming standard. This complicates tagging when mobilising sev-
eral buildings to the same analytics platform. Most of these analytics use naming
conventions to create general rules that apply to all buildings.

• Some tags are incomplete. The labels are created to give a short description. This
means that some words would appear much shortened. Such as Temp instead of
Temperature or Grnd flr instead of Ground floor.

• Duplicates. If the building is large enough, with a lot of equipment, there can be
duplicates in labels. This is due, for example, to upgrades of the equipment that
may occur when renewing older systems, or if new areas are built.
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The goal of this part of the thesis is to automatically create tags, defined by the
Haystack specification (Quan et al., 2003), based on the information provided from BMS.
A tag is a name/value pair applied to an entity (sites, equipment, sensor points, etc.)
following the Haystack standard, as shown in Haystack (2019), which is an open source
initiative that standardises semantic data models to make easier data handling. Their
applications include automation, control, energy, lighting, HVAC and other BMS appli-
cations. A tag defines a property or attribute of a BMS unit. Some elements are already
tagged by default, whereas others need to be tagged according to some data criteria.

There are three main groups on which to enclose every tag considered for this case
study: Point tags, Service type and Equip tags. These are the descriptions of every main
category according to Haystack (ibid.), from the lowest to the highest level of concision:

• Service type: Used to classify the labels into eight main categories, namely cooling,
heating, lighting, ventilation, metering, monitoring, terminals and globals.

• Equip tags: Refers to equipment type. Equipment is often a physical asset such as
an AHU, boiler or chiller. These tags can also refer to logical grouping such as a
chiller plant. There are a total of 26 equip tags including category ′0′ (when a point
does not belong to any of them). Each label must belong to one category at least.
There are never more than two categories assigned to it.

• Point tags: It refers to a lower level abstraction of the labels. There are 36 main types
of Point tags in the dataset and they represent the most complex classification part,
as there can be many tags refering to one label and even its manual assignation is
difficult.

Tagging stage 1: Point Tags classification

First the focus lies on the multi-label classification problem concerning point tags classi-
fication. The focus on this tag types is due to the complexity of the problem. Then, a
second experiment is carried out using the rest of the main categories with the most suc-
cessful technique, from the lowest to the highest level of complexity, to provide with a
complete solution of the tagging problem, as well as an overall accuracy result.

The data is extracted from different versions of the same Trend BMS controller type
(TREND, 2018). The raw data is used for the purpose of training/testing the algorithms.
An example of the extracted data is shown in Table 4.20:

Table 4.20: Excerpt of BMS raw data. Type, units and interval refer to characteristics of
the data, whereas outstation and module refer to the characteristics of the BMS.

Label Type Outstation Module Units Interval
IL4-6 Damper Boolean 15 D11(Sv) None 300

AHU2 Low Temp Hold Off SP Numeric 12 K1(V) °C 3600
Extact Fan28 Override Boolean 15 W3(S) None 3600

AHU Heating Coil Numeric 17 D2(Sv) None 300
. . .
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Table 4.21: Example of tagged data (other categories have been removed from the table
for simplicity)

Label Point tags
AHU1 Dampers sensor, damper, recirc
AHU1 Frost Stat sensor, valve, frost

AHU1 Max Supply Temp sp, temp, air, discharge, oneA
UPS Rm Fire Sys Fault sensor, alarm

. . . . . .

The tags to assign to each row of data are defined by the Haystack specification
(Haystack, 2019), and they are separated into several categories for different purposes.
Some of the examples of these tagging categories are shown in Table 4.21.

All points are classified as sensors, commands and setpoints (sp) using one of the follow-
ing three tags:

• sensor: input, analogue/digital input, sensor

• cmd: output, analogue/digital output, actuator, command

• sp: setpoint, internal control variable, schedule

This work uses BMS controller data, according to the real system deployed at the
Mitie company (U.K.). The dataset contains data from 37 buildings, of which 36 have
been used for training and 1 for testing.

Tagging part 2: All categories

For this part, all three categories are used to define the problem: Service type, equip tags
and point tags. These three separated problems, each connected to the next. Because of
this, the problem is solved with an increased level of complexity. With a label as an in-
put, the algorithm has to perform three stages of classification to identify correct types
and tags. The first problem classifies the labels according to service type, the output of this
problem is used to separate the data in these groups, which are then treated as different
problems for equip tags classification. The outputs of each problem are then used as pre-
dictors for point tags classification, after which the final result is obtained.

An example of data classification can be seen below in Table 4.22:

Table 4.22: Example of tagging problem with all categories

Label Service type Equip tags Point tags

CHW Pump 1 Enable Cooling
cooling
pump

sensor, run

East VT Valve Heating vtHeating cmd, heat
HWS TEMP SETPOINT Heating boiler sp, leaving, temp, water
Space cooling setpoint Terminals fcu sp, air, cool, temp, zone

. . . . . . . . . . . .
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4.6.1 Point Tags classification

Process overview

First, the data is pre-processed and sparse matrices are concatenated before the two-step
model classification. The process is shown in Figure 4.33.

Lan/Outstation

Controller
reference

Text label

Units

Type

Lan

Outstation

1. Separate by uppercase
2. Convert to lowercase

3. Stemming

Sensor type

Data type

Bi-grams bag of
words

One hot encoding
categorisation

Concatenate
sparse

matrices
First step
prediction

Second step
prediction

Multiclass classification 

sp
cmd
sensor

Multi label classification

Rest of 33 fields

Takes first step output and
BMS fields as input data

x1

x2

x3

x4

x5

x6

x7

y1 y2X

Figure 4.33: BMS label classification for pre-processing data and predicting categories.

One of the biggest challenges in BMS data pre-processing is that the default names
of the sensors (text labels) are introduced manually. Therefore many typos, acronyms,
groups of words written together separated by upper case, etc can be found. The text la-
bel is first separated by upper case letters, taking into consideration those which contain
acronyms. Then these are converted to lower case. Next, stemming is applied, which is
the process of reducing words to their stem. This refers to the roots of the words known
as lemma. With this, the classification algorithm is more likely to capture similarities.
Then, the result is categorised with bi-grams (groups of two words) bag of words (Zhang
et al., 2010).

Lan and outstation fields can be found together, so they can be separated before cat-
egorisation. Same with controller reference, such fields contain sensor type information
(I/O such as switches, temperature sensors, etc.) and data type (static, variable, etc.).

After that, all the fields with their respective vector representations are concatenated
in a matrix (in which most elements are zeros), whose rows serve as inputs for the first
step. The first step aims to predict only sp, cmd or sensor, as all labels always belong to
one of these three categories. Second step aims to predict the rest of the labels by using
the first step prediction, so extra information (plus the input data) is added for better
accuracy.

Text classification results

The results of the experiments have been presented in two tables: Table 4.23 presents the
train and test accuracy for the first and second classification steps. The algorithm counts
an element as correctly tagged when 100% true positives and 100% true negatives per
label are obtained. Table 4.24 presents the individual accuracy per tag type for a sample
of the eight first tags and per method used.
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Table 4.23: Text classification results of applying five techniques and their % of absolute
and relative accuracy. Bold font highlights the best performing methodology in the test
set.

LogReg RndForests XGBoost MultinomialNB LinearSVC
First Step

Train 99.80 99.99 99.78 98.75 99.78
Test 99.73 99.07 99.84 87.69 99.50

Second Step
Train 83.75 96.34 81.43 55.84 85.21
Test 89.01 87.14 88.68 58.24 87.64

Table 4.24: Results of applying five techniques to the individual tags, % of accuracy per
tag type. Bold font denotes the highest score for each tag type.

Tag LogReg RndForests XGBoost MultinomialNB LinearSVC
air 98.68 98.24 97.52 98.85 97.91
alarm 99.18 98.90 98.68 96.04 99.07
chilled 99.89 99.94 100.0 88.52 99.84
co2 99.56 99.50 99.89 90.66 99.84
cool 99.89 100.0 99.89 98.74 100.0
damper 99.57 99.56 99.50 90.44 99.56
discharge 98.52 98.90 98.79 94.40 98.57
enable 100.0 100.0 100.0 95.99 100.0

Results in Table 4.23 show that for the experiments performed with our data, xgboost
algorithm provides the best result for test accuracy, closely followed by logistic regression
and linear SVC. The best accuracy achieved at the second step, however, is by logistic re-
gression, followed by xgboost and linear SVC.

Results per tag type in Table 4.24 show that the accuracy per tag type varies with
every different method. In fact, it can be observed that every method outperforms on at
least one predicted tag.

Assessment of errors

The class probability for each prediction is considered, which is the probability for each
label of belonging to a certain class, to calculate the confidence of the prediction and
to discard all the elements below a certain boundary. Gneiting et al. (2007) provided
summary measures for the evaluation of probabilistic forecasts, by assigning a numerical
score based on the predictive distribution. The probabilities of our system do not seem
to follow a clearly defined distribution, as shown in Figure 4.34.
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Figure 4.34: Prediction probabilities histogram of test set.

Therefore, it has been decided to create a different metric to assess and discard val-
ues based on the prediction confidence. Prediction confidence consists of re-formulating
each probability, so that a probability around 0.5 results in a confidence around 0. For
each prediction probability, obtained as the algorithm’s output, Pi, the confidence score
is defined, Ci, calculated as shown in Eq. 4.2:

Ci = 2 · |Pi − 0.5| . (4.2)

For simplicity, the all-tags averaged confidence per label is calculated. The aim of this
is to filter the values by how strong the choice of the algorithm is, therefore the value of
the confidence around a prediction probability of 0.5, will have a confidence value close
to zero, but a probability close to either 0 or 1 will result in a confidence value close to
1. The resulting chart with all the confidence values of the test set can be seen in Figure
4.35, in which a boundary of 0.85 has been set.

Figure 4.35: Prediction confidence of test set calculated according to Eq 4.2. The dashed
line represents the boundary, currently set to 0.85.

With the chosen boundary of 0.85, the results can be found in Table 4.25. Each dot of
the dataset represents a particular confidence score for that particular label. The choice of
the boundary is related to the strength of the decisions. A lower boundary value implies
a lower value of true and false negatives, but a higher value of true and false positives.
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Table 4.25: Percentages of true/false positives/negatives with respect to the total length
of the test set, 1875 labels.

Positive Negative
True 83.74% 3.95%
False 8.52% 3.79%

True positives are the labels that pass the boundary and whose classification is correct,
true negatives are the ones that did not pass the filter because they are predicted with
low confidence, but the classification is incorrect, false positives are the elements with
an incorrect classification but that are not detected because they are predicted with high
confidence and false negatives are the elements whose prediction is correct but with low
confidence overall. As shown in Table 4.25, 83.74% of the test set is correctly put in the
category of good predictions, whereas a 3.95% of the test set is correctly identified as
misclassified elements.

4.6.2 All categories evaluation

The complete text classification problem scheme has been illustrated in Figure 4.36. XG-
Boost methodology has been used in all prediction stages based on the previous experi-
ment.

Text pre-
processing

Service type
prediction

X

Cooling

Globals

Heating

Lighting

Metering

Monitoring

Terminals

Ventilation

y11

y12

y13

y14

y15

y16

y17

y18

y

Forecast separated
in eight problems

Equip type
prediction

y11 to y18

Multi label 
classification

26 equip tags 
for every 

sub-problem

First step
point tags
prediction

Multi class 
classification

sp
cmd
sensor

y21 to y28

First step
point tags
prediction

Multi label 
classification

Rest of 33 fields

y31 to y38 Y

Figure 4.36: BMS label classification of multi-stage process.

As can be seen, the predictions start from the same pre-processing as the previous ex-
periment. Then the first prediction is performed for service type. As the results obtained
for both train and test sets are above 95%, the output is sub-divided into the eight service
type categories that serve individually as training inputs for the following step. The rea-
son for doing this is to improve the chances of success for further category predictions.
For example, a predicted equip tag of boiler would come from a heating service type for
sure. Therefore there is no need of training the equip tag problem according to other ser-
vice categories. Then, every individual result is moved to point tag predictions as it was
done in the previous experiment.

The results for every prediction stage can be seen in Table 4.26.
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Table 4.26: Percentages of true/false positives/negatives in text classification with re-
spect to the total length of the test set for all predictions, 1875 labels.

Service type Equip tags Point tags

Positive Negative Positive Negative Positive Negative

True 93.85% 0.99% 92.37% 1.59% 90.29% 2.08%

False 1.09% 4.06% 4.96% 1.09% 5.45% 2.18%

The percentage of true positives decreases as the complexity of the forecast increases.
Also, the number of false positives increases, as every stage inherits the errors from the
previous one.

The final rate of true positives of the output is 90.29%. In comparison with the pre-
vious experiment, it can be seen that the accuracy in this one is higher. This means that
sub-dividing the problem into the eight predicted service type categories is favourable to
the accuracy of the solution.

4.6.3 Findings summary

The findings of this part include an automatic method for translating building sensor
points into a haystack naming standard that uses multi-stage text classification and that
achieves a 90% of true positives. Also, the addition of a confidence formula to create a
boundary for detecting false positives has been developed.
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Chapter 5

Conclusions and further work

The goal of this thesis is to develop a series of solutions for the built environment: from
mechanisms to regulate electricity prices to automatic solutions with BMS data involving
sensors clustering, early warning signals analysis of sensor failure and automatic BMS
text classification.

5.1 Conclusions

Key Findings:

• Development of a deep learning system for detecting and forecasting events of high
energy demand at a national level for general DSR interventions. With RRMSE =
2.23% achieved in LSTM and being able to predict Triads with a fixed level of risk.

• Development of methods for long-term wind and solar generation forecast and a
linear programming-based method for optimal combination of renewable assets
with no weather data available.

• Methods for obtaining relationships between HVAC assets and their respective ar-
eas of influence in large facilities through clustering time series analysis from tem-
perature sensor data. Results show a 70% of correct association of Air Handling
Units (AHUs) with their respective areas of operation in a large facility with 16
AHUs and a correct Fan Coil Unit (FCU)-room association.

• Development of early warning signals for temperature sensor data that detects
anomalies up to 32 hours prior to failure.

• An automatic method for translating building sensor points into a haystack nam-
ing standard that uses multi-stage text classification and that achieves a 90% of true
positives. Also, the addition of a confidence formula to create a boundary for de-
tecting false positives has been developed.

5.1.1 DSR events forecasting

A system for load forecasting of DSR events is designed, either long or short term, de-
pending on the DSR intervention performed. The model is composed of two steps: Load
forecasting and highest peaks extraction with respect to the latest n days. The goal is
to forecast all the three Triad peaks with the least possible number of calls in order to
reduce the number of DSR interventions. The LSTM model is calibrated and its per-
formance is compared with ANN, SVM, random forests, Bayesian regression and the
mean-only model. This demonstrates that LSTM outperforms other models, and that its
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performance is closely followed by Bayesian regression. It is shown that, over the 4 years
of testing, 11 peaks are forecast in total, showing that the number of signals for the soft
and hard filters are, respectively, 19 and 14 for the winter of 2014, 21 and 19 for the winter
of 2015, 19 and 14 for winter of 2016 period and 21 and 16 for the winter of 2017.

Once a Triad signal is positive, then as much equipment as possible is switched off
and generators are run, consuming fuel for every DSR signal. The factors chosen for
the filters are to be defined by the user, in this case, 3.5% and 4% (soft and hard filter
respectively). This defines the level of risk that the company, building manager or DSR
manager want to take. The risk assessment would determine the number of signals that
the organisation can afford in terms of fuel/disruption, and the risk of missing the Triad,
which is subject to a cost.

The energy system layout may change in the future, as can be seen in the re-distribution
of transmission losses per region according to the P350 amendment approved on the 24th
of March 2017 (Grid, 2018). This could affect the way the forecast performs, and may lead
to a correction factor for a better forecasting, as well as factors re-calibration. The most
limiting factor in the current system design is data availability.

Due to recent changes in energy systems, it is necessary to focus on more generalised
methodologies that offer a certain degree of flexibility in order to be adapted to DSR in-
terventions. This may lead to further developments in the area of more flexible forecast
for different long/short term DSR scenarios.

The future energy systems will require either nonlinear growth of infrastructures,
which is not sustainable, or wider-scale, smart interventions which are agile, low-cost
and reduce carbon emissions. The UK energy market presents a set of DSR interven-
tions which are economically grounded and of high potential of implementation in other
countries with similar demand for energy, without large investments into infrastructure.
This makes modeling and forecasting of DSR programmes of high relevance to interna-
tional energy markets. The modeling approach introduced is concise, accurate, compu-
tationally light and flexible for further tuning, according to market and risk management
requirements.

5.1.2 PPA and renewable energy generation forecasting

In this part of the thesis, two techniques are applied, Bayesian and MCMC, to estimate
wind energy generation: one for detecting change points in the data using beta distri-
bution, and another for seasonal period separation. A stochastic model is developed to
forecast solar generation. In order to find the optimal combination of renewable assets
with respect to a particular consumption profile, linear programming is used to minimise
costs and fulfill the required electricity demand. The optimal combination of intermittent
output of renewable projects could support energy buyers, balancing-related costs of the
PPA and last, but not least, create a basis which can reduce some balancing-related tau-
tology costs of the buyer’s import utility contract.

This analysis shows that, despite the intermittent behavior that makes wind forecast
a very challenging task, a good forecast is achieved for one year horizon. By breaking the
problem down into several sub-periods, with different parameters of beta distribution,
a forecast could be achieved, whose histograms were good based on the comparison of
their posterior with respect to their actual distribution. A different approach was fol-
lowed for solar generation forecasting. The optimal combination of several probability
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densities provides a decision on which farms to choose for a particular consumption pro-
file.

This work is a simplified version of a real case scenario. In normal PPA negotia-
tions, many projects would be offered from several generators with different price struc-
tures. The length of these contracts would lie between five and ten years instead of one.
However, this model still serves as a basis for real case scenarios, as they would use the
same forecasting principles that can be extrapolated to a longer forecasting horizon and
a higher number of assets.

5.1.3 BMS sensors clustering

A solution is proposed to obtain equipment relationships based on data correlations and
clustering that relate AHUs to their respective areas of operation. This is an important
industrial challenge that requires a smart solution.

Graphical lasso and correlations-based AHC are the two best performing techniques
in the BMS experiments. In the first experiment, lasso clustering proved slightly better
than correlations distance-based AHC. In the second experiment, however, their perfor-
mance is quite similar, with few differences on Wax and Shell rooms but with the same
number of successfully clustered elements. Experiment 3 shows satisfactory results as
the physical spaces linked to the FCUs correspond to the real case. This approach allows
to quickly scan the system, as one AHU can be connected to more than one FCU, being
in the same area of influence in the case they are not directly attached.

This methodology can be generalised to large buildings with a similar problem. The
system could potentially input labeled time series data corresponding to sensors and out-
put the clusters. Although the accuracy is not 100%, this data-driven approach removes
weeks of engineering visits to the facility to establish these relationships manually and
looking at documentation. By applying this methodology, it becomes quite straightfor-
ward to establish a first step towards more advanced analytics or to determine a standard
naming system that encompasses parent-child relationships.

This top-down perspective aims not to use internal parameters of AHUs and other
BMS information, but instead their direct output. Systems internal information is less
likely to be available in comparison to the room temperature sensors which are com-
monly installed, but the hardware connections are not documented. The most recent
evolution in smart buildings implies installation of a significant amount of sensors in
large facilities, so this creates the necessity of generating real value from the data through
data mining. Time series clustering can be used on a daily basis by the site engineers who
need to trace back faults without the need of an extensive installation information on that
particular building.

5.1.4 EWS for BMS failures

Several early warning signal techniques are applied to analyse BMS temperature sensor
data and percentage of openness of heating and cooling valves to activate heating and/or
cooling systems, respectively, in a certain area of a large industrial facility. The analysis
included univariate and multivariate EWS, using the following indicators: variance, ACF,
PS and VAE. PCA has been used for dimensionality reduction in the multivariate case.
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The analysis shows that, in general, the indicators provide an earlier and more reliable
signal in the multivariate case. This improvement can be seen especially in PS and VAE.
In the case of PS, the difference is that the indicator changes its pattern 24 hours prior to
failure. With the VAE, the reconstruction error does not reproduce the gradual increase
before the failure in the univariate case despite of the abrupt temperature change. In the
multivariate case, the VAE does show the expected behaviour, producing an early warn-
ing signal almost 32 hours prior to failure. The reason that the VAE does not provide a
good signal in the univariate case may lay in what is considered a normal functioning
system when training the model using only SAT. Such distribution makes small changes
due to external factors, which actually control its non-stationary behaviour. In the mul-
tivariate case, the behavior of the system is defined mainly by the heating valve, which
steadily opens and closes to provided heating to the environment within an established
range or set point.

The early detection of such failures gives time to on-site engineers to make adjust-
ments when necessary before these failures actually happen. This not only reduces main-
tenance and operational costs, but also produces energy savings by advising when parts
of the system should not be activated in some given period, thus compensating the ”blind
spots” from the BMS control system, and extracting real value from the data generated.

5.1.5 BMS label classification

A two-stage text classification of BMS labels is performed. The results show that xgboost
performs better than the other four methods, but the others make good candidates for
this stage too, except maybe for multinomial Naive Bayes, which shows slightly worse
results. The outperformer in the second stage classification, the multi-label problem, is
logistic regression. The top performers that follows are xgboost algorithm. Again, the
Naive Bayes method performs the worst of the five. The accuracy per tag type shows
that certain algorithms may be better in predicting certain tags than others. In this part of
the work, xgboost and logistic regression have been considered to design the system, but
the aim for further work will be a combination of methods for the second stage, using
each method for doing only the classifications they are best at, to improve the general
accuracy of the whole implementation. Sub-dividing the problem into several problems
improves its accuracy for the whole system, as expected.

In terms of the model’s deployment, the assessment of errors is very important. The
main problem are the false positive results. The false positives are the incorrectly tagged
elements that passed to the building analytics software. These elements may be difficult
to detect, especially for buildings with a big number of points. Increasing the confidence
boundary may help solve this problem and reduce false positives to a minimum. This
also may reduce the number of true positives, increasing the amount of manual work.

Our research provides a novel machine learning solution for the real-world BMS,
which can be applied in several systems, or even re-trained with new requirements that
could appear in the future.

5.2 Further work

In load forecasting for DSR events, the developed model produces a satisfactory load
forecast at the national level. Although this model captures the demand trend, it does not
consider indoor physical factors, such as occupancy, internal system’s efficiency, which
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may require more power from the grid in the case of older infrastructures. The future
research may include charging electric vehicles in the consumption patterns, as well as
varying electricity prices, as those have an impact on the electricity generation patterns.
Also, due to the satisfactory results produced by Bayesian regression, further work may
include this methodology for comparison with LSTM if similar data is used.

The main limitation of the PPA optimisation problem is related to data availability
and quality. Two years of data could be obtained for every wind farm, and three years
for the solar farm. To test this model by using a longer forecasting horizon, especially
for wind, would have been more ideal. Also, regarding data availability, only data from
one solar farm could be obtained, so repeating the experiment with a higher number of
solar farms would give a wider perspective of solar energy market. As can be seen in the
results for wind simulations, satisfactory results are achieved by breaking the problem
down to five switchpoints. However for further research in this area, it would be inter-
esting to create even more granularity to consider individual estimations and finding an
optimal number of switchpoints, preventing overfitting. Also, as the novelty of this work
is to perform an estimation of wind and solar power in the very long term, the compari-
son of these results with other models leaves room for further development.

Text classification also leaves room for further development. In this problem, DNN
architectures have not been tested due to the need of large datasets with a large corpus to
extract features with a high accuracy. This does not mean that a specific DNN architec-
ture modification cannot be arranged to produce similar or better results, therefore there
could be potential for improvement if more data is provided.

It can be said that data availability and quality have been the two major issues en-
countered. This would make somehow difficult the implementation of the methods, as
their data extraction was not trivial. For the BMS clustering, the lack of official documen-
tation made the verification of the results time consuming (with on-site engineers). Sim-
ilar for the BMS tagging problem, as the verification of the results needed constant feed-
back from control engineers in order to know if the results obtained from new imported
buildings were correct (as tagging data is obviously not available for new buildings).
Also, as the goal is to compare some of the most popular text classification algorithms
in the literature for very short text classification, there is room for comparison with deep
learning models for this specific type of text in the future. In the case for EWS applications
to BMS system, lack of data and difficulty of automation acquired a different perspective.
Here, the problem lies, not only in the automation of the data acquisition part, but also in
the location of specific failures in order to test the algorithms. Further work to improve
these results would imply an improvement of software solutions for data extraction, as
well as the location of new failures and case studies to further improve and generalise
these results.

111



Publications/conferences list

Publications

• J. J. Mesa-Jimenez, L. Stokes, C. Moss, Q. Yang, and V. N. Livina "Modelling Energy
Demand Response Using Long-Short Term Memory Neural Networks", Springer, Energy
efficiency (2020) (DOI: 10.1007/s12053-020-09879-z)

• J. J. Mesa-Jimenez, L. Stokes, Q. Yang, and V. N. Livina "Machine learning for BMS
analysis and optimisation", IOP, Engineering Research Express (2020) (DOI: 10.1088/2631-
8695/abbb85)

• J. J. Mesa-Jimenez, L. Stokes, Q. Yang, and V. N. Livina "Machine Learning for Text
Classification in Building Management Systems", Elsevier, Journal of Building Engi-
neering (Under review)

• J. J. Mesa-Jimenez, L. Stokes, Q. Yang, and V. N. Livina "Early Warning Signals of
Failures in Building Management Systems", Springer, Applied Intelligence (Under re-
view)

• J. J. Mesa-Jimenez, A. Tzianoumis, L. Stokes, Q. Yang, and V. N. Livina "Long-Term
Wind and Solar Energy Generation and Optimisation of Power Purchase Agreements",
Springer, Energy Systems (Under review)

Conferences

• Postgraduate Institute for measurement science (PGI) conference. Sustaining our
environment. Title: Technologies in the built environment to reduce electricity consump-
tion. Teddington, London, UK - November 06, 2019.

• Institute for Research Development, Training and Advice (IRDTA). DeepLearn 2019.
Title 3rd International Summer School on Deep Learning. Warsaw, Poland - July 22-26,
2019.

112



Appendix A

Appendix. Triad software

The main purpose of this application is to generate signals for Triad, DSR in other words,
to output the half hour periods when a Triad is more likely to happen. Internally, the
system is composed of a forecasting model and two boundaries. The forecasting model
determines the value of next day’s national electricity demand, and the boundaries pro-
vide a simple method, that call Triads or no-Triads (1 or 0, respectively) if the value of the
forecast demand is above/below the respective boundary.

A.1 Initial set-up

Settings.ini, as well as dbo.LSTM_ModelParameters contain all the variables that can be
modified to run the algorithm. This is something that will have to be set up at the begin-
ning, with none or few changes in the future.

Then, EMALoader.py is run. It is the file that loads the first sets of data to perform the
initialization of the exponential moving averages. This is done just once, after adjusting
the parameters that are to be obtained from the DataBase. This file will need to be run ini-
tially once, but there may be readjustments after changing parameters from settings.ini,
then it may be run later again.

TrainingLoader.py has been built with the purpose of extracting data for the daily train-
ing but some of this data, for example first to the final reconciliation demand data, is not
available in the API of ELEXON currently, so it has been built for the hypothetical case
that this data could be available in the future.

Training data has been extracted manually and added to dbo.UK_INDO_DemandData.
which contains the training data for the next whole season. The file contains the Train-
ing.csv data, in case the training data needs to be loaded again.

Figure A.1 summarises the procedure to follow in case of data base initialisation.
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Figure A.1: Schematic of the Triad software.

A.2 List of files and daily production of results

The TRIAD software is expected to run every day at 8:00am by executing the main.py
script, obtaining automatically the data from the API. Main.py is the only file that needs
to be run every day, it either grabs the data to make predictions for today, or it takes data
for doing the prediction on a specified day (in settings.ini). Software running period is
from 1st November to 28th February (Triad season). From 23rd December to 2nd January
the software will not run, due to Christmas period and the subsequent low demand.

• API_ELEXON.py: contains functions to extract data from the API.
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• DB.py: contains the class that calls all the DataBase connection function.

• EMALoader.py: loads initial EMA data when launched .

• Main.py: file that performs the daily runs. It contains the main blocks of the daily
working system.

• Parameters.py: obtains all the necessary parameters from both DBs and Settings.py.

• TrainingLoader.py: loads the data for the purpose of training the algorithm. (Not
in use at the moment as this data is not available from the API).

• TRIADfunctions.py: contains adjacent functions used by other scripts.

• config.ini: configuration file. Contains the parameters that may be changed (DataBase
Credentials, API Key and links, date of daily running).

• ReadMe file.
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Appendix B

Appendix. Experiment 2: Whole
building evaluation

Table B.1: Experiment 2. Lasso clustering results

AHU in cluster
Room temperature
sensors in cluster

Cluster 1: AHU02 Supply Air Temp

Support Rm3 Temp
Support Rm2 Temp
Support Rm1 Temp

Room Inspection Svcs Rm Temp1

Cluster 2: (No AHU in cluster)

Foundry Room Temp4
Foundry Room Temp3
Foundry Room Temp2
Foundry Room Temp1
Foundry Room Temp 3
Foundry Room Temp 2
Foundry Room Temp 1

Cluster 3:
AHU07A Supply Air Temp
AHU07B Supply Air Temp

Radiant Foundry Verification Rm Temp
Canteen Room Temp
Room Finish Temp 4
Room Finish Temp 3
Room Finish Temp 2
Room Finish Temp 1

Room Finish Room Temp 3
Room Finish Room Temp 2
Room Finish Room Temp 1
Room Finish Room Temp

Cluster 4: AHU11 Supply Air Temp

Room Manual Inspection Room Temp
Room Manual Inspection Room Temp.1

Room Visual Inspection Room Temp
Room Visual Inspection Room Temp.1

Ray X Ray Room Temp

Cluster 5: (No AHU in cluster)
Room Inspection Svcs Rm Temp4
Room Inspection Svcs Rm Temp3
Room Inspection Svcs Rm Temp2

Cluster 6:
AHU10 Supply Air Temp
AHU01 Supply Air Temp
AHU14 Supply Air Temp

Lab Scope Rm Temp
Lab Polish Rm Temp

Lab Mount Cutoff Rm Temp
Room Lab Shell Rm Temp,

Cluster 7: AHU05 Supply Air Temp
Room NPI Room Temp No3
Room NPI Room Temp No2
Room NPI Room Temp No.1

AHU in cluster
Room temperature
sensors in cluster

Cluster 8: AHU16 Supply Air Temp Drying Shell Drying Cell Temp No1

Cluster 9: (No AHU in cluster)

Drying Shell Drying Cell Temp No2
Room Shell Room Temp No4
Room Shell Room Temp No3
Room Shell Room Temp No2
Room Shell Room Temp No1

Cluster 10:
AHU03 Supply Air Temp
AHU09 Supply Air Temp

Room Inspection Svcs Rm Temp1
Room Wax Room Temp No4
Room Wax Room Temp No3
Room Wax Room Temp No2
Room Wax Room Temp No1

Cluster 11:
AHU12 Supply Air Temp
AHU04 Supply Air Temp
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Room.Shell.Room.Temp.No3
Room.Shell.Room.Temp.No2
Room.Shell.Room.Temp.No1

Supply.Fan.1.Secondary.AHU04.Supply.Air.Temp
Drying.Shell.Drying.Cell.Temp.No2

Room.Shell.Room.Temp.No4
Room.Inspection.Svcs.Rm.Temp2

Room.Inspection.Svcs.Rm.Temp4
Room.Inspection.Svcs.Rm.Temp3

Room.Manual.Inspection.Room.Temp.1
AHU11.Supply.Air.Temp

Ray.X.Ray.Room.Temp
Room.Visual.Inspection.Room.Temp.1

Room.Visual.Inspection.Room.Temp
Room.Manual.Inspection.Room.Temp

AHU12.Supply.Air.Temp
Supply.Fan.1.Secondary.AHU14.Supply.Air.Temp

Drying.Shell.Drying.Cell.Temp.No1
Supply.Fan.1.Secondary.AHU16.Supply.Air.Temp

Supply.Fan.1.Secondary.AHU03.Supply.Air.Temp
Supply.Fan.1.Secondary.AHU09.Supply.Air.Temp

Supply.Fan.1.Secondary.AHU07B.Supply.Air.Temp
Supply.Fan.1.Secondary.AHU07A.Supply.Air.Temp

Foundry.Room.Temp1
Foundry.Room.Temp3

Foundry.Room.Temp.3
Foundry.Room.Temp.2
Foundry.Room.Temp.1

Radiant.Foundry.Verification.Rm.Temp
Room.Finish.Temp.3

Room.Finish.Room.Temp.2
Room.Finish.Room.Temp.1
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Canteen.Room.Temp
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Room.Lab.Shell.Rm.Temp
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Figure B.1: Experiment 2: Correlations based AHC clustering with the complete set of
AHUs in the facility. The number above indicates the incremental distance between clus-
ters according to this metric.
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