
Presence and Performance of

Mobile Development Approaches

A thesis submitted for the degree of Doctor of Philosophy

by

Andreas Biørn-Hansen

Department of Computer Science,

Brunel University London

Supervisors:

Professor Dr. Gheorghita (George) Ghinea, Brunel University London, UK

Professor Dr. Tor-Morten Grønli, Kristiania University College, Norway

November 2020

Abstract

At the centre of the multi-trillion dollar mobile app economy, we find the

mobile apps – smartphone-optimised software downloadable from platform

marketplaces, including Google’s Play Store and Apple’s App Store. While

the development of these apps has traditionally been conducted on a per-

platform basis, using the native platform-specific programming languages and

architectures, in this thesis, I explore alternative development approaches for

cross-platform mobile apps. Original contributions to knowledge include new

empirical insight into the presence and performance of these alternative ap-

proaches. The background is an identified lack of empirical studies on these

topics, which has spawned claims and allegations across practitioners’ out-

lets and scholarly research. This thesis follows the design science research

methodology, focusing on the development and evaluation of mobile apps

for performance testing, and scripts to facilitate studying the presence of

technical frameworks in published apps. In terms of performance, the find-

ings indicate that while the native development approach provides an over-

all better performance output, cross-platform frameworks can deliver better

performance output in certain situations and for specific hardware metrics.

Adding to the complexity is the challenge of significant performance varia-

tions between the assessed frameworks’ generated Android and iOS apps. As

for framework presence in published Android apps, the findings indicate that

cross-platform frameworks are present in approximately 15% of the sampled

dataset (= = 661 705 apps) with adoption fluctuating between app categories

and that the choice of technology and framework has a significant impact on

compiled app file size.

Acknowledgements

I wish to first and foremost extend my gratitude to my two supervisors, Pro-

fessor George Ghinea (Brunel, UK) and Professor Tor-Morten Grønli (KUC,

Norway), without whom this thesis and the years as a PhD Fellow (KUC)

and Doctoral Researcher (Brunel) would not have been the same. All dis-

cussions, whether formal towards a panel or submission, or informal chats

and meetings, have always been highly appreciated – I am lucky to have been

supervised by the both of you. I also want to thank my research development

advisor, Professor Xiaohui Liu (Brunel, UK) for his advice and discussions

during my years at Brunel University.

To Oda, thank you for sticking with me through years of late nights,

vacations and weekends spent preparing lectures, reviews and revisions, and

for all the help and discussions during these years. You’re one of a kind.

To my family, parents Ingveig and Lars, sister Torunn and her significant

other Jostein, nieces and nephew Julie, Eline and Erik – thank you all.

At Kristiania University College, I wish to thank my colleagues for dis-

cussions and support throughout the years, especially the Mobile Technology

Lab group, head of department Eivind Brevik, and those I have been fortu-

nate enough to share an office with during these years.

To my friends, thank you for not growing too tired of all the academic

talk. A special thanks to Daniel who managed to drag me out of the academic

bubble now and then, with beers, games and coding.

November 2020 Biørn-Hansen, A.

List of Publications

Peer-Reviewed Journals

1. Andreas Biørn-Hansen, Christoph Rieger, Tor-Morten Grønli, Tim A

Majchrzak, and Gheorghita Ghinea. An empirical investigation of per-

formance overhead in cross-platform mobile development frameworks.

Springer Empirical Software Engineering, 25(4):2997–3040, June 2020.

URL https://doi.org/10.1007/s10664-020-09827-6

2. Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea.

A survey and taxonomy of core concepts and research challenges in

cross-platform mobile development. ACM Computing Surveys, 51(5),

November 2018a. URL http://doi.org/10.1145/3241739

3. Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea.

Animations in cross-platform mobile applications: An evaluation of

tools, metrics and performance. MDPI Sensors, 19(9), May 2019a.

URL https://doi.org/10.3390/s19092081

Peer-Reviewed Conferences

1. Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea.

Cross-platform frameworks in google play store: Trends and directions.

In ACM Symposium on Applied Computing (SAC). ACM, (In-review)

2. Andreas Biørn-Hansen and Gheorghita Ghinea. Bridging the gap: In-

vestigating Device-Feature Exposure in Cross-Platform development.

November 2020 Biørn-Hansen, A.

https://doi.org/10.1007/s10664-020-09827-6
http://doi.org/10.1145/3241739
https://doi.org/10.3390/s19092081

In Proceedings of the 51st Hawaii International Conference on Sys-

tem Sciences, pages 5717–5724. ScholarSpace, January 2018. URL

http://doi.org/10.24251/HICSS.2018.716

3. Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea.

Baseline requirements for comparative research on Cross-Platform mo-

bile development: A literature survey. In Proceedings of the 30th Nor-

wegian Informatics Conference. Bibsys, November 2017. URL http:

//ojs.bibsys.no/index.php/NIK/article/view/427

November 2020 Biørn-Hansen, A.

http://doi.org/10.24251/HICSS.2018.716
http://ojs.bibsys.no/index.php/NIK/article/view/427
http://ojs.bibsys.no/index.php/NIK/article/view/427

List of Figures

1.1 The platform-specific (native) development approach illustrated. 9

1.2 Holistic workflow illustration of cross-platform development. . 11

2.1 Overview of the hybrid approach build workflow. 27

2.2 Overview of the interpreted approach build workflow. 29

2.3 Overview of the cross-compiled approach build workflow. . . . 31

2.4 Overview of the model-driven development approach build

workflow. 33

2.5 Overview of the Progressive Web Apps approach build workflow. 35

2.6 Illustration of connection between app and device-platform

features. 46

2.7 Taxonomy of cross-platform development. 61

3.1 Hevner’s Three Cycle View of Design Science Research. 66

3.2 Adapted Design Science Research Process Model 67

4.1 The process of gathering performance measurements. 87

4.2 Log-scaled boxplot of Time-to-Completion results (in ms) per

framework per task. 93

List of Figures

4.3 Log-scaled boxplot of Time-to-Completion results (in ms) per

framework independent of task and device type. 94

4.4 Linearly scaled boxplot of ComputedRAM results (in MB) per

framework per task. 97

4.5 Linearly scaled boxplot of ComputedRAM usage (in MB) across

all tests and devices per framework. 101

4.6 Linearly scaled boxplot of CPU usage (in %) across all tests

and devices per framework. 103

4.7 Linearly scaled boxplot of CPU results (in %) per framework

per task. 104

5.1 Three main steps of the Lottie animation. 140

5.2 Example of a side-menu drawer opening sequence. 142

5.3 Cropped example of a developed artefact. 144

5.4 Example of how FPS is reported using adb systrace for An-

droid apps. 155

5.5 Example of measuring FPS in Xcode’s Core Animations In-

struments tool. 157

6.1 Data harvesting process from Google Play Store, AndroZoo

and Android Manifests. 169

6.2 Log-scaled distribution of cross-platform frameworks and na-

tive development. 174

6.3 Log-scaled distribution of native and cross-platform frame-

works across top four Play Store categories. Ordered by frame-

work name. 176

November 2020 Biørn-Hansen, A.

List of Figures

6.4 Log-scaled framework distribution over time from 2008 to 2019.181

6.5 Boxplot of .apk size per framework. 187

6.6 Search interest for React Native, Xamarin, Ionic, Cordova,

Titanium and Adobe AIR. 189

November 2020 Biørn-Hansen, A.

List of Tables

1.1 Characteristics of the Apple iOS and Google Android platforms. 6

1.2 Thesis research objectives. 16

2.1 An overview of development approaches and an exhaustive list

of associated technical frameworks 23

2.2 Summary of state of research on cross-platform development. . 60

3.1 Design Science Research artefact categories 71

4.1 List of technologies included in the experiment. 81

4.2 List of devices used for measuring performance. 90

4.3 Overview of overall Time-to-Completion performance results. . 95

4.4 Overview of PreRAM performance results. 98

4.5 Overview of RAM performance results. 98

4.6 Overview of ComputedRAM performance results. 99

4.7 Results from Spearman’s Rank-Order Correlation Coefficient

tests on PreRAM and ComputedRAM against the native baseline

implementation results. 100

4.8 Overview of CPU performance results. 102

List of Tables

4.9 Results per framework on accelerometer performance, metric:

Time-to-Completion (ms). 107

4.10 Results per framework on accelerometer performance, metric:

CPU (%). 108

4.11 Results per framework on accelerometer performance, metric:

PreRAM (MB). 109

4.12 Results per framework on accelerometer performance, metric:

ComputedRAM (MB). 110

4.13 Results per framework on contact performance, metric: Time-

to-Completion (ms). 112

4.14 Results per framework on contact performance, metric: CPU

(%). 113

4.15 Results per framework on contact performance, metric: PreRAM

(MB). 114

4.16 Results per framework on contact performance, metric: ComputedRAM

(MB). 115

4.17 Results per framework on file system performance, metric:

Time-to-Completion (ms). 116

4.18 Results per framework on file system performance, metric: CPU

(%). 117

4.19 Results per framework on file system performance, metric:

PreRAM (MB). 118

4.20 Results per framework on file system performance, metric:

ComputedRAM (MB). 119

November 2020 Biørn-Hansen, A.

List of Tables

4.21 Results per framework on geolocation performance, metric:

Time-to-Completion (ms). 121

4.22 Results per framework on geolocation performance, metric:

CPU (%). 122

4.23 Results per framework on geolocation performance, metric:

PreRAM (MB). 123

4.24 Results per framework on geolocation performance, metric:

ComputedRAM (MB). 124

4.25 Weighting of frameworks on bridge performance, ordered by

sum
∑

(higher is better). 125

5.1 Frameworks and technologies scrutinised for animation perfor-

mance. 135

5.2 List of mobile devices included in the animation experiment. . 136

5.3 Tools associated with animation performance metrics. 139

5.4 Results from animation performance tests. 146

6.1 List of the 13 technologies included in the identification algo-

rithm. Table grouped by approach. 171

6.2 Distribution of apps per framework grouped by Play Store

category. Table ordered by category. 178

6.3 Overview of mean .apk size per framework. Table ordered

by mean .apk size. 186

6.4 Comparison of Google Trends from 2018 and 2019 (Fig. 6.6)

to the findings (Fig. 6.4). 190

November 2020 Biørn-Hansen, A.

Contents

Abbreviations

1 Introduction 1

1.1 Background . 1

1.2 Mobile Development . 5

1.3 Motivation . 11

1.4 Aim, Research Questions & Objectives 13

1.5 Contributions . 16

1.6 Thesis Structure . 18

2 Literature Review 19

2.1 Development Approaches . 19

2.2 The Research Foundation . 36

2.3 User Experience . 39

2.4 Software Platform Features 45

2.5 Performance & Hardware Utilisation 50

2.6 App Store Analysis . 56

2.7 Taxonomy & State of Research 59

Contents

3 Research Methods 62

3.1 Philosophical Perspective . 62

3.2 Design Science Research . 64

3.3 Experiments . 70

4 Bridge Performance of Mobile Development Approaches 75

4.1 Awareness of Problem: A Potential Performance Overhead . . 76

4.2 Suggestion: Measure Performance Output 78

4.3 Development of Artefacts & Methods 81

4.4 Evaluation of Bridge Performance 92

4.5 Discussion . 125

4.6 Conclusion . 127

5 Animation Performance of Mobile Development Approaches130

5.1 Awareness of Problem: Performance of Cross-Platform User

Interfaces . 131

5.2 Suggestion: Measure Animation Performance 132

5.3 Development of Artefacts . 139

5.4 Evaluation of Animation Performance 144

5.5 Discussion . 150

5.6 Conclusion . 160

6 Presence of Mobile Development Approaches 162

6.1 Awareness of Problem: Cross-Platform Framework Usage in

Published Apps . 163

6.2 Suggestion: Analyse Harvested Apps & Metadata 165

November 2020 Biørn-Hansen, A.

Contents

6.3 Development of Harvesting Mechanism & Identification Algo-

rithm . 167

6.4 Evaluation and Discussion . 172

6.5 Conclusion . 192

7 Conclusions & Future Work 194

7.1 Performance of Cross-Platform Frameworks 195

7.2 Presence of Cross-Platform Frameworks in the Google Play

Store . 198

7.3 Empirically Validated Principles for Mobile Development . . . 200

7.4 Implications for Industry & Practitioners 204

7.5 Implications for Research . 205

7.6 Limitations & Validity . 206

7.7 Summary of Contributions . 208

7.8 Suggestions for Future Work 209

Bibliography 211

Appendices 245

A Retrieving Google Play Store Metadata 246

B Replication Package for Experiment “Bridge Performance” 250

C Replication Package for Experiment “Animation Performance”251

D Replication Package for Experiment “Presence of Frame-

works” 252

November 2020 Biørn-Hansen, A.

Contents

E Brunel University Ethical Approval 253

November 2020 Biørn-Hansen, A.

Abbreviations

ADB Android Debug Bridge

API Application Programming Interface

APK Android Package

B2B Business-to-Business

CLI Command-Line Interface

CPU Central Processing Unit

DEX Dalvik Executable

DSL Domain-Specific Language

DSR Design Science Research

FFI Foreign Function Interface

FPS Frames per Second

GPU Graphics Processing Unit

MDD Model-Driven Development

MSR Mining Software Repositories

RAM Random Access Memory

Abbreviations

SDK Software Development Kit

SWE Software Engineering

TTC Time to Completion

(G)UI (Graphical) User Interface

UX User Experience

VM Virtual Machine

November 2020 Biørn-Hansen, A.

Chapter 1

Introduction

This chapter is devoted to providing the reader with an overview of the

current smartphone ecosystems alongside introducing mobile software devel-

opment in general. Subsequently, the research motivation is described, along

with the thesis aim, research questions and objectives, followed by a list of

contributions to the field of practice and the knowledge base.

1.1 Background

The technological advances in ubiquitous and mobile computing over the last

two decades have had an immense impact on society, organisations and peo-

ple. When Weiser (1991) in his seminal essay proposed the idea of tabs as

centimetre-sized, wearable computing devices, the Motorola MicroTac Classic

had just released. This device was rather contrasting from Weiser’s charac-

teristics of a tab, and what today’s smartphone represents, with its extend-

able antenna, 10-character display and physical T9 keyboard. In the years

1

Chapter 1 1.1. Background

to follow, IBM would release the Simon Personal Communicator known as

the first smartphone to be publicly released (Sager, 2012), Apple and Palm

would start producing personal digital assistants (PDAs), Nokia’s line of the

popular Communicators was released, and devices such as the touchscreen-

enabled Nokia 7710 would continue to push in the direction of Weiser’s idea.

However, close to one and a half decades would pass before the envisioned

tab – or what became the smartphone – would become ubiquitous. Although

a handful of smartphone devices such as the LG Prada were released prior to

the launch of the Apple iPhone in 2007, the latter is widely recognised as the

beginning of the mainstream smartphone era. Approximately a year after the

launch of the iPhone, the first Android-based smartphone was released, the

HTC Dream. They both represented a shift away from the older generation

of mobile phones and the earliest smartphones, along with PDAs, Commu-

nicators and physical QWERTY and T9 keyboards, and towards Weiser’s

idea of a tab device. It is noteworthy that in terms of advances in perfor-

mance, the Apple iPhone 11’s A13 (GadgetVersus) chip is capable of close to

155 times the FLOPS performance of the 1991 supercomputer C-DAC PARAM

8000 (Singh, 2007, p. 215) released at the time of Weiser’s essay – a tes-

tament to technological progress; “Tabs will also take on functions that no

computer performs today.” - Weiser (1991, p. 3)

These days, the smartphone market encompasses an estimated 3,5 billion

users worldwide (Statista, 2019), using tens of thousands of distinct device

models (OpenSignal, 2015), with capabilities ranging from budget phones to

high-end phones with performance equivalent to a laptop or desktop com-

puter. Unsurprisingly, the smartphone has manifested itself as indispensable

November 2020 2 Biørn-Hansen, A.

Chapter 1 1.1. Background

and ubiquitous in everyday life. Perhaps one of the driving forces behind the

widespread adoption is that along with the introduction and proliferation

of the smartphone, there followed entire ecosystems and platforms of mo-

bile application software (apps for short) – easily downloadable and readily

available to the end-user. Apps can range from messaging services to games

and other computationally demanding forms of entertainment, to device per-

sonalisation and photography, to social media and education platforms, to

news and industrial utilities – and anyone with the right skillset can develop

and publish an app. These mobile platforms and their accompanying apps

are at the core of the thesis at hand, as they undergo empirical evaluation

and assessment in terms of performance, alongside scrutiny of underlying

development approaches and technologies. Notwithstanding that the lat-

est high-end smartphone devices inherit the performance capabilities of 155

supercomputers from 1991, relevant literature suggests that there are signif-

icant differences in app performance depending on the technologies used in

the development (Biørn-Hansen et al., 2018a, Dhillon and Mahmoud, 2015,

Willocx et al., 2016). The literature further suggests that this might impact

the fluidity of user interfaces and response time of integrated platform and

device features, for instance, geolocation, sensors and file system operations.

These subjects are further investigated in this thesis (Chapters 4 and 5),

alongside an analysis of the use – or presence – of these technologies in pub-

lished apps available on the Google Play Store app marketplace (Chapter 6).

Investigating these subjects are of importance also outside of following up on

suggested future work by fellow researchers. When developing mobile apps,

practitioners and decision makers are faced with a large pool of development

November 2020 3 Biørn-Hansen, A.

Chapter 1 1.1. Background

approaches and technologies to choose from (see Table 2.1), decisions which

can ultimately impact such factors as product time to market and develop-

ment price. These factors can be monumental in the development phase,

provided that the global app economy accounts for trillions of U.S. dollars

(Statista, 2021) reaching billions of users worldwide.

In terms of the situation on mobile platforms and ecosystems, while some

have lasted, others were unable to compete for the enormous and continu-

ally growing smartphone user base. The 2010s witnessed the rise and fall of

Microsoft’s Windows Phone and Windows Mobile ecosystem, the Firefox OS

smartphone project, Symbian, MeeGo, Ubuntu Touch and others. Based on

usage statistics, it is widely recognised that there are currently two leading

mobile platforms as we enter the 2020 decade, operated by Apple Inc. and

Google LCC. The latter, Google’s Android OS, is the leading mobile plat-

form from a global market-share perspective (70.68%), while Apple’s iOS

is the second-most adopted mobile platform (28.79%) (StatCounter, 2020).

Their market-shares do however vary greatly between regions and countries

as reported by StatCounter, where the platforms are closer to equally divided

in some Western countries (e.g., United Kingdom and Norway). In terms of

devices, while Apple’s iOS operating system and encompassing ecosystem are

only available through their own line of products, Google’s Android ecosys-

tem is available to mobile manufacturers through licensing agreements. This

means that while Apple has full control of both software and hardware, thus

can optimise both accordingly, Google does not hold the same level of con-

trol outside their own product line of mobile devices (i.e., the Google Pixel

series). A result of the Android platform and ecosystem being available to

November 2020 4 Biørn-Hansen, A.

Chapter 1 1.2. Mobile Development

other manufacturers is the fragmentation of devices and installed Android

versions which have become a challenge for developers and companies seek-

ing to launch apps on the platform (Wei et al., 2016). Indeed, a report from

OpenSignal (2015) noted more than 24 000 distinct Android-based device

models. Although this leaves us with predominantly two mobile ecosystems,

the fragmentation and differences between them are vast and many. From a

developer’s perspective, the differences between iOS and Android do not stop

at device and hardware fragmentation. Each of the mobile platforms imposes

specific rules and regulations for developers to follow, alongside guidelines,

proprietary and protected app distribution channels – marketplaces, pro-

gramming languages and design practices. The platforms inherit technical

characteristics adding to the complexity of app development, as summarised

in Table 1.1 and further detailed in the upcoming Section 1.2.

1.2 Mobile Development

The differences between the Android and iOS platforms are rather vast from

the perspectives of developers and the platforms’ end-users. This section will

elaborate primarily through the lens of the app developer, focusing on the

inherent challenges related to developing platform-specific and cross-platform

apps, i.e., apps developed using techniques which allow for publishing across

two or more platforms.

November 2020 5 Biørn-Hansen, A.

Chapter 1 1.2. Mobile Development

1.2.1 Platform Characteristics

The two leading platforms are heterogenous across most technical character-

istics. A summary of how they differ is provided below in Table 1.1, and

subsequently elaborated on further.

Table 1.1: Characteristics of the Apple iOS and Google Android platforms.

Platforms

iOS Android

Programming
languages

Swift, Objective-C, C Java, Kotlin, C, C++

User
interface

Storyboards, SwiftUI, code XML, code

Development
tool (IDE)

Xcode (or third-party) Android Studio (or third-party)

Design
guidelines

Human Interface Guidelines Material Design

Marketplace Apple App Store Google Play Store

Programming languages and user interface development. Both

platforms provide the developer with specific options in terms of supported

programming languages. The Android platform supports Java and Kotlin

when targeting the Android SDK (Software Development Kit), while the

Android NDK (Native Development Kit) adds additional support for C and

C++. The Apple iOS platform has had Objective-C as its primary language

for many years until the addition of the Swift language in 2014. Apple iOS

also has support for C and C++ through Objective-C++. However, although

both platforms support C and C++, the underlying APIs and rendering

mechanisms differ between Android and iOS, making it infeasible to share

November 2020 6 Biørn-Hansen, A.

Chapter 1 1.2. Mobile Development

business logic and user interface code across platforms primarily using C or

C++ through the native SDKs or NDKs.

Development tools and requirements. To execute a build process for

an iOS app, the developer must do so on a compatible macOS-based machine

with the Xcode IDE and CLI installed. Although iOS apps could be devel-

oped on Windows-based machines, the build step and binary compilation of

the app must be done on a compatible macOS machine. For Android devel-

opment, the requirements are considerably less rigid. The Android Studio

IDE is installable on Windows, macOS, Linux and Chrome OS, all of which

enable Android app development.

Design guidelines. Best practices and patterns for designing interac-

tions and layouts are part of the platform-specific design guidelines. Although

the same app may exist on both Android and iOS, the user would expect dif-

ferent interaction patterns and aesthetics based on the platform they use. An

Android app should not necessarily look and behave identically to an iOS

app due to platform differences and user expectations (O’Sullivan, 2015).

The Material Design guidelines dictate best practices for designing Android-

based apps. The Human Interface Guidelines govern the same principles for

the Apple iOS platform, describing the intricacy of designing well-functioning

iOS apps.

Marketplaces. Perhaps the driving forces of the smartphone revolution

are the marketplaces that host and distribute apps to end-users, enabling

developers to reach out to the platform users. These marketplaces allow for

uploading of new apps and distribution of updates to existing apps. There

are two primary marketplaces: Google Play Store for the Android ecosys-

November 2020 7 Biørn-Hansen, A.

Chapter 1 1.2. Mobile Development

tem, and the Apple App Store for the iOS ecosystem. Both marketplaces

are considered walled gardens, where internal systems and procedures decide

which apps and app updates are allowed entry, as well as which existing pub-

lished apps to be removed from public access. Publishing apps to the Google

Play Store is free of charge to the developer, while Apple charge $99 USD

per year for distribution of apps through their App Store. To be present

in both marketplaces can be of importance based on the targeted market;

such cross-marketplace availability is referred to as multi-homing (Hyryn-

salmi et al., 2016). A significant difference between Android and iOS is

access to side-loading of apps, i.e., the process of installing apps that are not

necessarily part of the official marketplaces. While Android enables users to

execute installable app files, named Android Package - APK (.apk) - directly

on the phone, for instance through an email attachment or via an Internet

download, the iOS ecosystem prohibits such activities. The relatively lax

regulations from Google for Android app side-loading have spawned various

third-party app marketplaces not governed by Google. Perhaps the most

famous third-party marketplace is F-Droid, hosting and distributing approx-

imately 2 000 open-source Android apps (Itzchak Rehberg, 2020). In compar-

ison, Google Play Store hosts an approximate 2 570 000 Android apps, while

the Apple App Store has 1 840 000 iOS apps as of Q4 2019 (Statista, 2020).

For research purposes, third-party marketplaces and repositories have seen

considerable use in related work (Coppola et al., 2019, Martin et al., 2017,

Zeng et al., 2019). Such is also the case for the thesis experiment presented

in Chapter 6, where apps from the official Google Play Store are harvested

through a third-party repository, AndroZoo, developed by the University

November 2020 8 Biørn-Hansen, A.

Chapter 1 1.2. Mobile Development

of Luxembourg (Allix et al., 2016) specifically to enable efficient app store

research and analysis.

1.2.2 Technical Perspectives

Consumers and developers alike are thus faced with two incompatible and

competing mobile ecosystems. Developing multi-homed apps require knowl-

edge of multiple programming languages, understanding of disparate design

guidelines, manage fragmented APIs and OS versions, distribution channels

(marketplaces), supported development tools, and supported hardware. An

app developed for Android cannot be installed or executed on an iOS-based

device, or vice versa, an inherent characteristic of the native development ap-

proach (Heitkötter et al., 2012a). Native development entails that separate

code bases are required for multi-homed apps (e.g., for distribution through

both Google Play Store and Apple App Store), as illustrated in Figure 1.1.

.apk

GUI: XML/programmatic
Business logic:Java/Kotlin

Android Studio

.ipa

GUI:Storyboards/programmatic
Business logic:Swift/Objective-C

Xcode

Android

iOS

Figure 1.1: The platform-specific (native) development approach illustrated.

This lack of interoperability between the leading ecosystems has gener-

ated considerable interest from both industry and research (Biørn-Hansen

et al., 2018a) in third-party1 development tools aiding in the creation of

1In this context, third-party refers to the development tools being developed and sup-
ported by other parties than the platform owners, i.e., not by Apple and Google them-

November 2020 9 Biørn-Hansen, A.

Chapter 1 1.2. Mobile Development

apps executable on both platforms with a high degree of code reuse. This

concept is generally referred to as cross-platform development. From a holis-

tic perspective, the idea of cross-platform development is to allow developers

to target multi-homing as a viable product requirement without dealing with

an array of specialised programming- and markup languages (Biørn-Hansen

et al., 2018a). Particular tools for developing cross-platform apps can also to

a large degree mitigate the need for in-depth implementation experience of

platform design guidelines, as the tools take on the responsibility of render-

ing guideline-adhering user interface elements based on the underlying target

platform.

When abstracting away implementation details and technical fundamen-

tals, Figure 1.2 depicts one way of illustrating cross-platform development

for mobile. The developer writes code for the graphical user interface and

business logic in one or more programming languages usually dictated by the

cross-platform tool or framework. For instance, this could be JavaScript, C#,

Java, Dart, or Domain-Specific Languages (DSLs). The tool or framework

will in turn package the cross-platform code alongside necessary platform-

specific resources, and compile the app into a suitable executable file format,

for instance .apk (Android Package) for Android and .ipa (iOS App Store

Package) for iOS.

The complexity illustrated in Figure 1.2 increases exponentially with the

introduction of implementation details. Such details may include specific

programming language(s) for development of business logic and the graph-

ical user interface, the granularity of platform and device control provided

selves.

November 2020 10 Biørn-Hansen, A.

Chapter 1 1.3. Motivation

.apk

GUI: Markup/programmatic
Business logic:Framework-dictated language

Android
Studio

.ipa
Xcode

Cross-platform
tool/framework

Figure 1.2: Holistic workflow illustration of cross-platform development.

by the cross-platform tool or framework, mechanisms for rendering graphi-

cal user interfaces, and underlying API access. More in-depth descriptions

and illustrations of cross-platform solutions follow in Section 2.1. We can

generally place these tools for developing cross-platform apps into an over-

arching approach category, based on how they function and operate on a

fundamental level. Section 2.1 further elaborates on implementation details

and highlighting differences between the approaches. Adding to the complex-

ity of (cross-platform) mobile development is the vast array of available tools

and frameworks aiding in the development process, displayed in Table 2.1 in

the literature review, counting over 60 cross-platform tools and frameworks.

1.3 Motivation

The motivation for conducting this research stems from (i) personal inter-

est in unveiling the state of cross-platform development, (ii) suggestions for

empirical studies posed by related work and an identified array of unbacked

claims and assertions, along with (iii) the increasing industry interest in cross-

platform technologies and the potential benefits and drawbacks of such, along

with the proliferation in smartphone apps and usage. Each point is further

November 2020 11 Biørn-Hansen, A.

Chapter 1 1.3. Motivation

elaborated on below.

Personal motivation. Having a background in software engineering in-

dustry targeting mobile and Web apps, I have followed the field from the

perspective of a hobby practitioner since 2012, and a professional since 2013

working with Web, native and cross-platform mobile development in Nor-

wegian consultancy companies, startups and for in-house product develop-

ment teams. The frequent need for publishable apps across several mobile

platforms (multi-homing) on limited budgets and with small teams led to

an interest in cross-platform development as a potential alternative to the

native development approach, and an enabler for rapid application develop-

ment. It is through industry experience that my interest in cross-platform

development grew, and through encountering a frequent notion of dislike and

potential misconceptions from industry voices and outlets that my interest

towards empirical validation and rigorous research increased further.

Academic motivation. It is suggested in numerous studies to carry

out empirical validation of findings, assertions and claims. This concern was

explicitly raised for future research by Heitkötter et al. (2012a) in their sem-

inal work comparing cross-platform approaches. Conducting an assessment

of performance and user interface responsiveness in cross-platform apps is

highlighted as suggestions for further scrutiny by Xanthopoulos and Xinoga-

los (2013) in their influential comparative study, and again in performance-

oriented studies including but not limited to those by Willocx et al. (2016)

and Deĺıa et al. (2017). While the assessment of related work in Chapter 2

shows that numerous studies have expanded on these suggestions, there is

an identified lack of large-scale studies on performance and framework pres-

November 2020 12 Biørn-Hansen, A.

Chapter 1 1.4. Aim, Research Questions & Objectives

ence. This thesis is a step towards closing that gap, by providing guiding

principles for app development derived from three empirical experiments as

further explained in Section 1.4.

Industry motivation. To better understand the industry’s perceived

issues and challenges with cross-platform mobile development, we surveyed

(Biørn-Hansen et al., 2019b) practitioners and developers on their thoughts

and experiences with using such technologies. It became evident that the

respondents’ were primarily concerned with the performance compared to

native apps, user experience (UX), the maturity of frameworks and technolo-

gies, and user interface development (UI). These results formed the founda-

tion for the work towards this thesis, and will be revisited in Chapters 4, 5

and 6. Additionally, the continuing discourse between cross-platform tech-

nologies scrutinised in research and technologies more frequently discussed

by industry was another motive and relevance gap identified.

1.4 Aim, Research Questions & Objectives

As can be derived from the thesis motivation and upcoming literature re-

view, there is a notable lack of empirical studies on newer cross-platform

mobile development framework performance and app marketplace presence.

As a result, a wide array of claims and allegations from both industry and

academia is identified, where the existing knowledge base of empirically ver-

ified results is inadequate. Consequently, this has spawned the overarching

aim and research questions for this PhD thesis and its experiments:

Thesis aim: To provide a set of guiding principles for conducting mobile

November 2020 13 Biørn-Hansen, A.

Chapter 1 1.4. Aim, Research Questions & Objectives

app development based on results from empirical experiments.

'&1: How do apps developed using cross-platform mobile development ap-

proaches and associated frameworks perform compared to native mobile

apps in terms of hardware and platform utilisation?

(D1 − '&1.1: To what degree do cross-platform mobile development

frameworks impose additional performance-related overhead when

compared to native mobile development?

(D1 − '&1.2: Do the performance metrics fulfil their purpose in re-

searching animated user interfaces in mobile apps?

(D1 − '&1.3: How well do the official performance insight tools cater

to the profiling of animation and transition performance in the

cross-platform apps developed?

(D1−'&1.4: Which of the platforms, iOS or Android, requires the least

amount of device- and hardware resources in order to execute and

run performant animations and transitions?

'&2: How common is the presence of cross-platform development frame-

works compared to the native development approach in published mo-

bile apps?

(D1 − '&2.1: What is the distribution of cross-platform development

frameworks on the Google Play Store across app categories?

(D1−'&2.2: How has the use of cross-platform frameworks in deployed

apps changed over the last 12 years?

November 2020 14 Biørn-Hansen, A.

Chapter 1 1.4. Aim, Research Questions & Objectives

�~?>Cℎ4B8B1: Apps developed using the native approach should gener-

ate .apk files of smaller file size than apps developed using cross-

platform development frameworks due to not relying on bundled

interpreters, virtual machines or WebView containers.

Lastly, two objectives have been formed based on the above aim and

research questions, related to Performance and Presence, as further detailed

in Table 1.2, which details the relevance, objective and purpose of the work

conducted, and corresponding thesis chapters.

November 2020 15 Biørn-Hansen, A.

Chapter 1 1.5. Contributions

Table 1.2: Thesis research objectives.

Objectives
“Empirically assess cross-platform development approaches on their . . . ”

Performance Presence

Corresponding
experiment(s)

Reported in Chapters 4 and 5. Reported in Chapter 6.

Relevance Identified lack of newer empirical
studies on cross-platform
performance, while discussions
in industry are plentiful and
oftentimes subjective.

Industry discussions on usage
(or presence) of development
approaches and technical
frameworks. Lacking an
empirical foundation for
informed decision making and
discussions.

Approach Empirically assess the
performance of technical
frameworks aggregated on
overarching development
approach based on metrics
related to hardware and software
benchmarking.

Empirically investigate the
presence of cross-platform
development frameworks in
mobile apps published to the
Google Play Store marketplace.

Purpose Highlight potential performance
deviation between development
approaches and provide a better
understanding of performance
differences in underlying system
components. Derive results to
develop empirically validated
principles and suggestions for
mobile development.

Provide an overview of
framework usage in industry,
and provide academia and
industry with empirical
indications to increase scientific
relevance in technical discussions
and decision making. Derive
results to develop empirically
validated principles and
suggestions for mobile
development.

1.5 Contributions

This PhD thesis contributes with the following six components, which are

the experiments and their results, and software, data and principles derived

from investigating the research questions.

November 2020 16 Biørn-Hansen, A.

Chapter 1 1.5. Contributions

• A set of empirically validated principles and suggestions for (cross-

platform) mobile development, derived from the experiments and in-

terpretations inferred from their results and discussions, presented in

Section 7.3 (derived from '&1 and '&2).

• A large-scale empirical analysis and comparison of the performance of

apps developed using cross-platform mobile development frameworks

regarding access to- and use of device and platform features (answers

'&1).

• An analysis and comparison of animated user interfaces and their per-

formance in apps developed using cross-platform mobile development

frameworks (answers '&1).

• A large-scale investigation into the presence and trends of cross-platform

mobile development frameworks in published Android apps from the

Google Play Store (answers '&2).

• An open-sourced dataset2 of package names for 99 304 identified cross-

platform apps which have been published to the Google Play Store

(derived from '&2).

• Open sourced tools and scripts2 for data gathering and analysis tar-

geted towards Android apps (derived from '&1 and '&2).

2Link to tools and scripts repository: https://github.com/andreasbhansen/phd-th
esis-contributions

November 2020 17 Biørn-Hansen, A.

https://github.com/andreasbhansen/phd-thesis-contributions
https://github.com/andreasbhansen/phd-thesis-contributions

Chapter 1 1.6. Thesis Structure

1.6 Thesis Structure

Chapter 2 describes the state of research on cross-platform mobile develop-

ment and further motivates the thesis at hand by highlighting knowledge

gaps arising from research and practice.

Chapter 3 dwells on philosophical perspectives, the research methodology

and applied research methods.

Chapter 4 describes the experiment targeting the performance of bridge

technologies allowing for foreign function invocation or native code invocation

in cross-platform technologies.

Chapter 5 describes an experiment exploring the performance of animated

elements in user interfaces developed using cross-platform technologies.

Chapter 6 describes an experiment on the presence of cross-platform tech-

nologies in published Google Play Store apps.

Chapter 7 discusses the results derived from the three experiments in the

context of related work, and compiles the new knowledge into a set of descrip-

tive guiding principles and suggestions for conducting mobile development.

Finally, the chapter provides conclusions on the work conducted throughout

the thesis, alongside thoughts and suggestions for future work.

November 2020 18 Biørn-Hansen, A.

Chapter 2

Literature Review

Throughout this chapter, we explore the knowledge base related to native and

cross-platform mobile development. The chapter starts by detailing the most

frequently encountered approaches and technologies for developing mobile

apps. Afterwards, we further investigate existing knowledge on topics kernel

to the PhD; user experience, software platform features, performance and

app store analysis. Towards the end is a taxonomy of mobile development

alongside an executive summary of the state of research.

2.1 Development Approaches

The background section (see Section 1.2) briefly introduced the concept of

cross-platform mobile development and the existence of tools, frameworks

Communication of Research: This is an extended version of the publication in
the ACM Computing Surveys (2018a). The content and format has been modified to fit
the thesis narrative. The literature review has also been updated to reflect the latest
advancements to the field.

19

Chapter 2 2.1. Development Approaches

and categorisation of these into development approaches. Most of these ap-

proaches are frequently mentioned in the literature (e.g., El-Kassas et al.

(2017), Heitkötter et al. (2012a), Smutný (2012)), and a taxonomy has been

developed for a consistent language when discussing both with academics

and practitioners (see Figure 2.7). Each approach, as further elaborated

on below, has its own set of characteristics (El-Kassas et al., 2017). These

characteristics are visually presented in Figure 2.7, the taxonomy model con-

structed to provide a consistent language and shared understanding of the

technical aspects of cross-platform development. Technical frameworks for

app development can generally belong to a single approach, strictly which

depending on such characteristics as further explored both in Table 2.1, and

throughout the remainder of this chapter.

The coming subsections introduce the most prevailing cross-platform ap-

proaches and associated frameworks, discussing each to a degree where a

fundamental understanding of the benefits and challenges they pose should

be conceivable. The naming of these approaches tend to vary between

authors and studies, but those used throughout the literature review are

those most frequently encountered when compared to alternative names, e.g.,

“{Native—WebView—Web-to-native} wrapper” as sometimes seen in-place

of hybrid (Ribeiro and da Silva, 2012, Willocx et al., 2016).

This is also true for the categorisation of frameworks, i.e., to which ap-

proach a framework belongs. An example of this is the NeoMAD framework,

which according to Ettifouri et al. (2017) is listed under the cross-compiled

approach, while Willocx et al. (2016) argue that it is a source-code transla-

tor, the latter an approach not covered by this literature review as it is not

November 2020 20 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

commonly encountered in the literature to the best of my knowledge. One

framework, specifically MoSync, can be placed into two approaches, which

before it was discontinued (MoSync AB, 2015) provided both a C++ based

cross-compiled framework, in addition to a JavaScript-based framework for

interpreted app development. Each approach poses benefits and challenges,

and no single approach is inherently “best suited for all situations”. It is

important to note that cross-platform is an umbrella term for a wide variety

of concepts, technologies, approaches, frameworks and libraries. The term

is also somewhat context-dependent, meaning that cross-platform develop-

ment could for instance refer to the development of software across multiple

device types, not only mobile, as discussed by Rieger and Majchrzak (2018).

Nevertheless, throughout this current literature review, the focus is on mo-

bile smartphones, leaving other smart devices such as cars, smart homes and

Internet of Things devices out of scope.

It is important to acknowledge the existence of development approaches

not discussed in this review, which covers the hybrid, interpreted, cross-

compiled, model-driven and Progressive Web App approaches. These are left

out for lack of prevalence in the literature, and no mentions of them in prac-

titioner outlets to the best of my knowledge. Examples of such approaches

include Component-Based development (e.g., Escoffier et al. (2015), Perchat

et al. (2013)) and Integrated Cross-Platform Mobile Development (El-Kassas

et al., 2014), the latter a proposed approach drawing from best practices in-

herited from other approaches. Notwithstanding their novelty or possible

application, no studies and experiments have been identified which include

these approaches, except for those previously cited. Thus, not enough data

November 2020 21 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

has been generated to sufficiently or with purpose provide an overview of

their state of research or use in industry.

In the context of the approaches included in this review, an exhaustive list

of identified technical frameworks has been developed. Each framework cat-

egorised within an approach best describing their characteristics, and listed

in Table 2.1. In the table column “Hybrid”, the frameworks using Cordova

as their underlying technology, allowing execution of Web-based code on-

device, have been marked (∗). As the table depicts, the majority of hybrid

cross-platform frameworks do rely on Cordova for these tasks, although some

outliers exist, namely Capacitor and Trigger.io. Cordova’s prevalent position

is examined further as part of Section 2.1, detailing the hybrid approach.

Furthermore, in the context of Table 2.1, it contains frameworks of all life-

cycles, ranging from alpha-stage, through production-ready, to having been

discontinued for some time. The purpose of Table 2.1 is to exhaustively in-

troduce cross-platform mobile development frameworks identified in existing

research, in industry outlets, and through exploring the field, i.e., regardless

of whether a framework is in active development or not. After the table, we

continue exploring each development approach in more detail, starting with

the hybrid approach.

November 2020 22 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches
T

ab
le

2.
1:

A
n

ov
er

v
ie

w
of

d
ev

el
op

m
en

t
ap

p
ro

ac
h
es

an
d

an
ex

h
au

st
iv

e
li
st

of
as

so
ci

at
ed

te
ch

n
ic

al
fr

am
ew

or
k
s,

as
p
u
b
li
sh

ed
in

B
iø

rn
-H

an
se

n
et

al
.

(2
01

8a
,

p
.

3)
.

D
ev

el
o
p

m
en

t
A

p
p

ro
a
ch

es

H
y
b
ri
d

In
te
rp

re
te
d

C
ro

ss
-c
o
m
p
il
e
d

M
o
d
e
l-
D
ri
v
e
n

P
ro

g
re

ss
iv
e

W
e
b

A
p
p
s

T
e
ch

n
ic
a
l

F
ra

m
e
w
o
rk

s

C
or

d
ov

a
∗

C
ap

ac
it

or

P
h

on
eG

ap
∗

Io
n

ic
∗

O
n

se
n

U
I
∗

F
ra

m
ew

or
k
7
∗

A
p

p
G

y
ve

r
∗

Q
u

as
ar

F
ra

m
ew

or
k
∗

S
en

ch
a

T
ou

ch
∗

In
te

l
A

p
p

F
ra

m
ew

or
k
∗

In
te

l
X

D
K
∗

R
h

oM
ob

il
e

K
on

y
?

E
vo

T
h

in
gs
∗

N
S

B
/A

p
p

S
tu

d
io

∗

C
o
co

on
∗

T
ri

gg
er

.i
o

R
ea

ct
N

a
ti

v
e

N
at

iv
eS

cr
ip

t

T
ab

ri
s.

js

F
u

se
to

o
ls

M
oS

y
n

c

T
it

an
iu

m
A

p
p

ce
le

ra
to

r

A
d

o
b

e
A

IR

S
m

a
rt

fa
ce

C
lo

u
d

W
ee

x

K
on

y

J
as

on
et

te

L
u

aV
ie

w

X
a
m

a
ri

n

F
lu

tt
er

C
o
d

en
a
m

e
O

n
e

X
o

jo
M

o
b

il
e

M
o
n

o
C

ro
ss

C
o
ro

n
a

A
p

p
o
rt

a
b

le

Q
t

M
o
b

il
e

M
o
S

y
n

c

R
A

D
S

tu
d

io
(D

el
p

h
i)

C
ro

ss
li

g
h
t

R
o
b

o
V

M

M
a
rm

a
la

d
e

R
h

o
d

es

D
ra

g
o
n

R
A

D

M
D

2

M
o
b

M
L

A
p

p
la

u
se

M
o
b

l

M
en

d
ix

A
p

p
ia

n

M
A

M
L

M
o
b

ia
M

o
d

el
er

X
m

o
b

A
X

IO
M

M
O

P
P

E
T

m
d

sl

A
u

to
m

o
b

il
e

W
eb

R
a
ti

o

X
IS

-M
o
b

il
e

M
o
b

D
S

L

Io
n

ic

Z
u

ix

M
it

h
ri

l

P
o
ly

m
er

S
ve

lt
e

P
re

a
ct

V
u

e.
js

A
n

g
u

la
r

R
ea

ct
.j

s

S
te

n
ci

l.
js

G
li

m
m

er
.j

s

E
m

b
er

.j
s

v
ip

er
H

T
M

L

M
o
o
n

.j
s

November 2020 23 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

The Hybrid Approach

This approach allows for the use of standard Web technologies including

HTML, CSS, and JavaScript, in an app development context for the im-

plementation of user interfaces, native integrations and business logic. The

approach works internally by initialising a new native app project, which

includes a WebView component (Latif et al., 2016) as well as code for com-

munication between the WebView and native code (Android Developers, n.d.,

Gok and Khanna, 2013). As the WebView component is, simply put, an em-

beddable Web browser (Android Developers, n.d.), it allows for the execution

and rendering of HTML, CSS and JavaScript files. These files make up the

hybrid app’s logic and user interface components, included as part of the

app bundle together with the native app project and code. The developer

can then point the WebView to render a specific HTML page, programmati-

cally controlling what the component displays to the user (Gok and Khanna,

2013). Accordingly, as a hybrid app developer, one will write the entirety of

the front-end and business logic of the app using Web technologies, then have

a regular native app wrap and bundle the Web code displaying it through the

embedded WebView component. Due to this technique, the hybrid approach

is also found referred to as native-wrapper (Willocx et al., 2015), as it wraps

Web assets into a publishable, deployable native app, installable from any

typical mobile app marketplace.

As this requires a fair bit of code and setup, Apache Cordova has be-

come a popular tool and library for initialising new hybrid apps (Willocx

et al., 2015). Instead of leaving all the above work to the developer, i.e.,

the initialisation and setup of WebViews and communication protocols, Cor-

November 2020 24 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

dova will through the use of a command-line tool generate a new native

app including a WebView and two-way communication between the Web-

View and native code (Cordova, n.d.). Such communication referred to as

bridging (Adinugroho et al., 2015), allows developers to communicate with

platform-specific native code from within a non-native environment, such

as a JavaScript context. For reference, this technique of executing code be-

tween distinct programming languages is also called foreign function interface

(FFI). One would typically use bridging and FFIs to, for instance, process

or handle tasks deemed too computationally expensive for JavaScript, or to

leverage functionality typically only accessible in native environments (Adin-

ugroho et al., 2015, Rieger and Majchrzak, 2016). The bridge is called from

the app’s JavaScript code, executing a native-code function and potentially

returning some value from the native-side back to the JavaScript context,

e.g., a GPS coordinate requested from JavaScript fetched from native code.

Thus, bridging functionality should be deemed of high importance to en-

sure a native app-like user experience, as further performance measured in

Chapter 4.

In addition to providing trivial hybrid app initialisation, Cordova also pro-

vides a plugin system with thousands of available plugins, including camera

access, GPS access and contact list access, features requiring the aforemen-

tioned bridging system to operate (Corral et al., 2012b). The plugin system

also provides a standardised method for the hybrid app developer commu-

nity to contribute with additional plugins (Biørn-Hansen and Ghinea, 2018),

at least for the hybrid frameworks building on Cordova. Since the Cordova

library primarily provides the communication layer and command-line tools

November 2020 25 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

for (most) of the hybrid app development frameworks (ref. Table 2.1), ad-

ditional tools and libraries are used to create native-like and native-feeling

user interfaces and interactions (Latif et al., 2016). Previous research and

search engine queries have identified a wide range of such libraries. Examples

include Ionic1, Framework72, Onsen UI3 and Sencha Touch4. They all have

in common the focus of facilitating the development of user interfaces for

hybrid apps (e.g., Latif et al. (2016)). Because a hybrid app is a Website

presented inside a native app through the use of a WebView component, the

user interface may look as native-app-like or non-native-app-like as one may

wish (Griffith, 2017), depending on the CSS styling. However, developing

native-app-like user interfaces which adhere to the interface guidelines of all

supported platforms, e.g., Android Material Design and Apple Human Inter-

face Guidelines, may be challenging and time-consuming to do from scratch

(Gok and Khanna, 2013, p. 7). This is the power of user interface libraries

such as those mentioned above, as they mimic the look of native app user

interface components using HTML, CSS and JavaScript (Gronli et al., 2014).

Because the files all contain standard Web technology code, they work

in every (embeddable) browser (Adinugroho et al., 2015) and allow for re-

use of existing knowledge for Web developers. This reason has made the

hybrid approach highly popular amongst cross-platform developers (Ali and

Mesbah, 2016, Malavolta et al., 2015a). Because a hybrid app has a native

app as its foundation, it can be submitted into app stores the same way as

an app developed using the native development approach, and thus differs

1http://ionicframework.com/
2https://framework7.io/
3https://onsen.io/
4https://www.sencha.com/products/touch/

November 2020 26 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

significantly from a regular Website or Web app which for now is constrained

to the executing browser’s implemented device and platform APIs.

The illustration in Figure 2.1 provides an overview of how the hybrid

approach works, where Cordova is the controlling entity, managing the ex-

ecution, rendering and packaging of the app’s user interface (HTML, CSS)

and the business logic (JavaScript). An alternative to Cordova, named Ca-

pacitor, is being developed by the Ionic team. Thus, although the below

illustration accurately depicts state of the art in hybrid app development at

the time of writing this review, specific frameworks, thereof Ionic, are now

incorporating Capacitor as the default communication layer library.

Builds a Native app for each
platform, bundling the
packaged code base

Common HTML,
CSS and
JavaScript
code base

(predominantly)
Cordova

Packaged

Executes
code within
WKWebView
controlled
by Cordova

Executes
code within
WebView
controlled
by Cordova

Executes
code within
WebView
controlled
by Cordova

Figure 2.1: Overview of the hybrid approach build workflow.

The Interpreted Approach

Similar to the hybrid approach previously described, it is common to find

development frameworks of the interpreted approach enabling developers to

build their apps using the JavaScript language (e.g., Facebook (2018), Telerik

November 2020 27 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

(n.d.)), although JavaScript is not a language inherent to the interpreted ap-

proach. Apps developed using the interpreted approach are fundamentally

different from hybrid apps, as interpreted apps do not rely on a WebView

component to render a bundled Website (El-Kassas et al., 2017) (see Fig-

ure 2.2). Instead, interpreted apps can render actual native user interface

components to the screen, not HTML- and CSS-based views (Dhillon and

Mahmoud, 2015), although there are examples of interpreted tools which do

not have this as a goal (e.g., the Unity game engine). This works through

the use of on-device JavaScript interpreters (Majchrzak et al., 2017), hence

the naming of the approach. In terms of code interpreters, JavaScriptCore is

the default interpreter on iOS devices (Alcocer, 2013, Facebook, 2017). On

Android devices, the interpreter in use differs between frameworks belong-

ing to the approach, but JavaScriptCore and V8 are both frequently used

engines (e.g., Alcocer (2013), Facebook (2017)), alongside the newer React

Native-based engine Hermes.

Specific frameworks of the interpreted approach, such as Titanium Ap-

pcelerator, are occasionally incorrectly associated with the cross-compiled

approach (e.g., Escoffier et al. (2015)). While both approaches generate na-

tive user interfaces, the interpreted approach does not compile, convert or

transpile the codebase into native byte code, which is how the cross-compiled

approach works. Indeed, as documented by the Titanium framework, a

JavaScript interpreter is required as a layer of abstraction (Appcelerator,

n.d.), making Titanium a framework of the interpreted approach.

In order to communicate between the JavaScript layer and native code

layer which has access to native device features, the interpreted approach also

November 2020 28 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

employs the technique of bridging (with foreign function interfaces), similar

to how the hybrid approach facilitate such access (Biørn-Hansen and Ghinea,

2018). An interesting note is that a “Cordova for interpreted apps” has yet to

be developed, meaning frameworks of the interpreted approach lack the com-

mon foundation found in hybrid apps. Thus, plugins or modules for exposing

certain features to JavaScript from the native environments belonging to one

interpreted framework would not work out of the box in another framework

due to differences in implementation and bridging APIs. Examples of such

inoperability include plugins in technical frameworks such as Facebook’s Re-

act Native and Telerik’s NativeScript. While they both belong to the same

development approach, the underlying framework APIs are of such different

nature that a plugin or module developed for one framework cannot currently

work in the other. This inoperability fragments frameworks and developer

communities of the interpreted approach significantly, whereas, for hybrid

development, all frameworks building on top of Cordova could theoretically

use the same Cordova plugins.

Builds a Native app for each
platform, bundling the
packaged code base

 Common
code base

{framework}
Packaged

Executes
app using

JavaScriptCore

Executes
app using
V8

Executes
app using
ChakraCore

Figure 2.2: Overview of the interpreted approach build workflow.

November 2020 29 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

The Cross-compiled Approach

A core difference between the cross-compiled approach and the aforemen-

tioned approaches is that due to being compilers, frameworks and develop-

ment tools of the cross-compiled approach do not rely on WebView compo-

nents or on-device (JavaScript) interpreters for the rendering of user inter-

faces or communication with the underlying platform and device features.

Instead, a common language such as C# (Xamarin) is compiled to native

byte code executable on targeted platforms (Ciman and Gaggi, 2016) (see

Figure 2.3). Thus, the bridging layer known from, for instance, the inter-

preted and hybrid approaches does not exist in cross-compiled apps. Neither

the use of- nor the access to native device features is controlled by such

a layer but is exposed rather to the app developer through the framework

Software Development Kit (SDK), which accordingly maps functionality to

the underlying platforms’ SDKs. Another positive consequence of compil-

ing to native byte code is that they render native user interface components

(Willocx et al., 2015).

There is a lack of consensus regarding which frameworks belong in the

cross-compiled approach. Indeed, the approach is more of a “catch-all” cate-

gory for frameworks and technologies not belonging to the other approaches.

An example of disagreement includes a study by El-Kassas et al. (2017),

claiming that the Xamarin cross-platform tool belongs to the interpreted ap-

proach, together with, for instance, Titanium Appcelerator. On the other

hand, Willocx et al. (2015) claim Xamarin belongs to the cross-compiled ap-

proach due to how it does not rely on interpreters, as it instead compiles a

common language into native byte code (Xamarin, 2017). As such, Xamarin

November 2020 30 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

is throughout this thesis considered a tool of the cross-compiled approach,

due to Willocx et al.’s reasoning.

Builds a Native app for each
platform using byte code
generated by the framework.

Common
code base/language

{framework}
Input

Executes
app

Executes
app

Executes
app

Figure 2.3: Overview of the cross-compiled approach build workflow.

The Model-Driven Approach

This approach draws from the common software development paradigm

Model-Driven Development (MDD), also referred to as Model-Driven Soft-

ware Development (MDSD) (Heitkötter et al., 2013). While being a some-

what commonplace approach in the relevant body of knowledge (e.g.,

Heitkötter et al. (2013), Krainz et al. (2016), Ribeiro and Araújo (2016),

Rieger (2018)), technical implementations building on the MDD approach

are seemingly rare among practitioners and in developer communities, also

beyond the context of (cross-platform) mobile development (Gorschek et al.,

2014). This lack of use is partially confirmed by Umuhoza and Brambilla

(2016) in their survey on MDD approaches for cross-platform mobile de-

velopment. They categorise technical tools and frameworks into Research

Approaches and Commercial Solutions, where the latter category only lists

November 2020 31 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

four tools, none of which frequently cited in the previous literature to the

best of my knowledge.

Frameworks of the MDD approach differ in terms of integrated func-

tionality, as discussed by Heitkötter and Majchrzak (2013). The technical

framework "�2, as presented in their study, does not require any knowl-

edge of platform-specific programming languages. According to Ribeiro and

da Silva (2012) in their study on cross-platform approaches, these types of

abstractions are part of the underlying methodology of MDD development.

Frameworks of the MDD approach facilitate the generation of user interfaces

and business logic based on constructed models and templates, suitable for

mobile app development as they “[...] allow[s] platform independent mod-

eling, which can later on be transformed to multiple mobile platforms”, as

described by Usman et al. (2017, p. 2).

Common for MDD frameworks is the use of Domain-Specific Languages

(DSLs) (Xanthopoulos and Xinogalos, 2013). Developers and non-developers

alike are enabled by the framework-provided DSL to build their software.

Thus, developing apps across mobile platforms will require knowledge of the

DSL rather than Objective-C and Java. Generators will then convert the

models/code into native source code for the targeted platforms (Heitkötter

and Majchrzak, 2013) (see Figure 2.4). From a developer perspective, most

MDD frameworks develop and expose distinct DSLs (Umuhoza and Bram-

billa, 2016), as illustrated in Le Goaer and Waltham (2013)’s study titled

“Yet Another DSL for Cross-platforms Mobile Development” in which the

authors propose the Xmob DSL for mobile development. The distinct nature

of the DSLs may render knowledge and code transferability from one MDD-

November 2020 32 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

based framework to another low or non-existent. However, MDD framework

super-users with expert knowledge of the DSL may develop genuinely na-

tive apps using shared codebases (Heitkötter and Majchrzak, 2013). Indeed,

one of the philosophies behind the model-driven approach is enabling non-

developers and non-technical users with domain expertise to model line-of-

business apps based on a provided textual or graphical DSL (Rieger, 2018).

Framework generates native source code,
which can be executed without
WebViews or interpreters

Models
representing
logic and UI
built with DSL

{framework}

Executes
app

Executes
app

Executes
app

Figure 2.4: Overview of the model-driven development approach build work-
flow.

The Progressive Web Apps Approach

While still lacking some inherent characteristics of other cross-platform ap-

proaches (for instance access to significant device and platform features

(Biørn-Hansen et al., 2018b)), Progressive Web Apps – or PWAs for short

– have gained popularity amongst practitioners since 2016 (Biørn-Hansen

et al., 2018b). At its core, a PWA is a Web app with enhanced capabili-

ties. While being hosted on- and served by- a Web-server to users accessing

the Website’s URL in a browser, one goal of this novel approach is to allow

for Web apps to look and feel like a regular native or cross-platform built

November 2020 33 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

app (see Figure 2.5). Due to being Web-based, PWA user interfaces can be

designed to look and feel similar to native apps using the same methods as

in the hybrid approach, specifically through the use of HTML and CSS for

structure and style.

When accessing a PWA-enabled Website, a banner will prompt the user

asking them to install the Website onto their phone. Accepting the prompt

will download all necessary assets, including JavaScript files, HTML and CSS,

images and fonts, and allow for offline use of the Website. The now-offline

PWA is added to the user’s home screen, similar to any app downloaded

from app stores. In Apple’s iOS version 11.3, the underlying technology

enabling PWAs to function, i.e., Service Workers, has been added support

for, allowing iOS users to take advantage of Progressive Web Apps, although

with some technical limitations, e.g., lack of state management between ses-

sions, and white screens in the App Switcher, according to Firtman (2018b).

Upon launching the PWA from the home screen, an artefact-less browser

window will open the previously downloaded assets, and read a manifest file

to configure a splash screen, icons and colour configurations. In this context,

being artefact-less means no address bar, browser settings (icon) or similar

are displayed, only the Website’s content – effectively meaning that unless

the user knows about the concepts of PWA, they will not know that the app

is running within a browser. This can significantly increase the app-like feel-

ing of using a PWA compared to a regular Website browsed using traditional

means.

Extending a regular Web app into a Progressive Web App involves the

integration of Service Workers, a JSON-based manifest file and a bundle of

November 2020 34 Biørn-Hansen, A.

Chapter 2 2.1. Development Approaches

Serves the PWA through a URL.
When accessed on a compliant device,
will enable download of PWA onto device

Web-based
code base

Executes
app in
browser

Executes
app in
browser

Executes
app in
browser

Upload

Web
host

Figure 2.5: Overview of the Progressive Web Apps approach build workflow.

static user interface components not dependant on dynamic content referred

to as Application Shell (Biørn-Hansen et al., 2018b). The purpose of the

Service Worker is to control and manage the app’s lifecycle, business logic

for data synchronisation and handling of push notifications, all through a

script file written in JavaScript that can execute functionality while the app

is in the background or not running on the device (Gaunt, 2018).

The academic body of knowledge on Progressive Web Apps is limited

to only a handful of published works (e.g., Biørn-Hansen et al. (2018b),

Chan-Jong-Chu et al. (2020), Majchrzak et al. (2018), Malavolta et al. (2017,

2020)). These publications, along with practitioners’ outlets such as Google

Web Fundamentals and the Google I/O conference, would indeed act as the

foundation for further scholarly research. Along with the advent of Progres-

sive Web Apps, research involving technical assessments, conceptual discus-

sions and case studies would be a natural step towards including PWAs in

mobile and Web computing research.

November 2020 35 Biørn-Hansen, A.

Chapter 2 2.2. The Research Foundation

2.2 The Research Foundation

While a solid, although ageing, theoretical foundation on cross-platform mo-

bile development is identified, new development frameworks and approaches

seeking, for instance, to bring native user experiences to cross-platform apps

have emerged and rapidly gained popularity over the last few years (Biørn-

Hansen et al., 2018b). When Dalmasso et al. (2013, p. 1) stated that cross-

platform apps were “Not as good as Native apps” in terms of user experience

and that the quality of such apps ranges between “Medium to low”, these

results, due to the age of the study and the dynamic nature of the field, might

not reflect the current state of the art. Section 2.3 further explores and dis-

cusses studies related to the users’ perspective, as results from newer research

have the potential to contradict Dalmasso et al.’s findings, a testament to

the fast-paced innovation within this field of practice and research.

The literature review at hand is not the first taxonomy or survey on mo-

bile application development, nor is it hopefully the last. A study by Rieger

and Majchrzak (2018) explores the vast landscape of app-enabled devices, in

which they generated a taxonomy based on dimensions related to media in-

put, output, and device mobility. The nature of their taxonomy is distinctly

different from that on hand. While their taxonomy is based on a categorisa-

tion of all app-enabled hardware focuses on the aforementioned dimensions,

the focus of this literature review is to investigate the state of research on

cross-platform app development and discuss areas within the field in need

of further work. Nevertheless, there most certainly is an overarching topical

link between the taxonomies, being that of (mobile) apps. Also identified

was the taxonomy by El-Kassas et al. (2017) for cross-platform mobile de-

November 2020 36 Biørn-Hansen, A.

Chapter 2 2.2. The Research Foundation

velopment. The authors describe and illustrate low-level differences between

development approaches in a technical matter, thus a study recommended

for those interested in a taxonomy of a more software engineering-oriented

fashion compared to the review at hand. Thus, whereas El-Kassas et al.

(2017) provide, for instance, code-supported pros and cons of an array of

development approaches, as previously mentioned, the aim of this literature

review is instead to provide an overview of the state of the art and research.

Several comprehensive studies have been identified as part of the literature

search process. One example thereof is Heitkötter et al. (2012b)’s seminal

paper on cross-platform approach evaluation, from the early days of cross-

platform mobile development research. They present 14 criteria for different

perspectives of the development process and proceed to map their results

and findings to said criteria. They go into topics such as licensing, platform

support, user experience, maintainability and ease of development. They pre-

sented possibilities for future work such as empirically verifying their results

and ensuring that academia stays up to date with the technological progress

in the field. The latter suggestion has been followed up by academia to a

varying degree. While cross-platform development is still actively researched,

newer studies tend to perhaps draw too much from previous research rather

than including innovative and novel technologies in new experiments.

Due to the overarching and broad-covering nature of the seminal paper

by Heitkötter et al. (2012b), it does not go in-depth into any of its presented

topics or evaluation criteria. The authors predominantly scratch the surface

of what they present, but they do lay a foundation for what is important

when researching the field. The topics presented could all be of relevance for

November 2020 37 Biørn-Hansen, A.

Chapter 2 2.2. The Research Foundation

in-depth research, and the value of the contribution increases accordingly.

Due to its impact on the field of research, Rieger and Majchrzak (2016)

published a revised version seeking to extend the “cross-platform” term into

other contexts such as smart homes, smart cars and smart TVs. By doing

so, they have established a foundation for research on cutting-edge novel

technologies and use-cases. Nevertheless, researching the suggested contexts

is a task for future research, as it extends beyond the scope, motivation and

purpose of this thesis.

Furthermore, a variety of studies are from the earlier days of cross-

platform research. Perhaps one of the earliest works identified was that

of Charland and LeRoux (2011). Theirs is a particularly interesting con-

tribution, as both authors were involved in the creation of the PhoneGap

framework during its early days, a commercial distribution of the open-source

Cordova framework. Their perspectives may thus differ from practitioners

and academics. In their paper, Charland and Leroux discuss differences in

how native and Web apps were developed in 2011. An interesting observation

is that very little has changed since the paper was published. While devel-

opment tooling and environments have inherently progressed and become

more advanced, Web apps are still predominantly developed using the same

languages (HTML, CSS and JavaScript), although WebAssembly is starting

to allow for non-traditional languages in front-end and full-stack Web devel-

opment. Native apps are also still developed the same way – and may still

account for most apps in the app stores (Viennot et al., 2014), platform- and

device fragmentation (especially on Android) is still very much true (Grønli

and Ghinea, 2016, Willocx et al., 2015), and platform conventions (design,

November 2020 38 Biørn-Hansen, A.

Chapter 2 2.3. User Experience

user experience) are still a widely discussed subject when debating native

versus cross-platform development (Angulo and Ferre, 2014, Mercado et al.,

2016). All this makes for possible future research contributions of significant

impact. The fact that problem areas identified at the beginning of cross-

platform development are still very much tangible and real today shows that

not enough research effort has gone towards developing real solutions. The

coming section discusses one such frequently mentioned problem area, specif-

ically user experience and perceived quality of cross-platform developed apps.

2.3 User Experience

Are developers biased in their decisions on cross-platform versus native de-

velopment? Will their decisions inherently be coloured by the fact that they

work towards a goal of well-optimised and well-performing apps and user

interfaces, regardless of actual user perception? Can end-users notice the

difference between cross-platform and native apps, and if they do, does it

matter? These questions are interesting in the context of this thesis, as it is

common in both academia and industry to find critical and often unsupported

claims regarding user experience in cross-platform apps, even regardless of

overarching research questions. An example of such is a statement from a

well-cited study by Dalmasso et al. (2013, p. 324), reporting that when it

comes to the development of user interfaces, cross-platform frameworks and

tools cannot provide interface elements comparable to those found in na-

tive apps. They also follow up with a statement on the importance of rich

user interfaces, and how cross-platform frameworks should indeed implement

November 2020 39 Biørn-Hansen, A.

Chapter 2 2.3. User Experience

such.

A study by Boushehrinejadmoradi et al. (2015, p. 441) also claims that

the hybrid approach and its associated frameworks will generate apps that

are inherently subpar compared to native apps for certain types of app cat-

egories, but they do not provide any empirical evidence to back their claim.

Similar claims form the basis of some cross-platform approach decision frame-

works, thereof studies by Shah et al. (2019), Latif et al. (2016) and Lachgar

and Abdali (2017), reporting that user interfaces generated by the hybrid ap-

proach are inferior to those in native apps due to execution in the WebView

– although they provide no empirical evidence thereof.

The few studies identified that focus on the end-user perception of cross-

platform apps employs mostly quantitative methods for data gathering.

While one study relies on data from laboratory and longitudinal research

methods (Angulo and Ferre, 2014), others focus on mining and analysing

quantitative data in the form of app store reviews (Ali and Mesbah, 2016,

Malavolta et al., 2015b, Mercado et al., 2016), some through the use of

Natural-Language Processing (Mercado et al., 2016). Caulo et al. (2019)

interviewed 18 participants to better understand the potential impact and

benefits of migrating a hybrid app to a native Android app, finding that

the participants liked the migrated Android app better than the hybrid app.

These cited studies make up the identified body of knowledge on research

on the user’s perspective of cross-platform apps. Thus, it is evident that a

topic this commonly discussed requires additional research and perhaps a

more comprehensive array of research methods, for instance, using advanced

equipment, including eye trackers and brain-computer interfaces.

November 2020 40 Biørn-Hansen, A.

Chapter 2 2.3. User Experience

A different approach to testing user interfaces was conducted by Huber

et al. (2020), in a recent study on the impact of in-app interactions on memory

(RAM) consumption, CPU usage, janky frame rendering and GPU usage. Their

findings indicate a varying impact on all metrics as they compare a baseline

native Android app to React Native and Ionic-Capacitor implementations.

For instance, React Native consumes more CPU than both the native im-

plementation and the Ionic-Capacitor implementation, and Ionic-Capacitor

more than native. In terms of RAM usage, the cross-platform frameworks are

substantially more requiring across all tests and devices, in one case (Re-

act Native) using more than 28 times the memory compared to the native

implementation. Frame rendering is found to be inconsistently janky across

the implementations, with Ionic-Capacitor rendering the most janky frames.

Huber et al. (2020)’s findings are of great importance to understand the

trade-offs involved in deciding on a technology and development approach.

Assessing RAM and CPU consumption is followed up in Chapters 4 and 5.

The studies incorporating mining and analysis of app store reviews dis-

play interesting quantitative results, but alas, such studies are far between.

Nevertheless, an experiment of this kind has been conducted by Ali and

Mesbah (2016), presenting a rating scale named Aggregated User-perceived

Rating (AUR) to attempt to rate user perception based on an app’s star

rating and the number of reviews. They find that the much-criticised hybrid

approach, in their paper represented by the PhoneGap framework, scores

the highest on the AUR scale (higher is better), compared to the Titanium

Appcelerator and Adobe AIR frameworks, both of which are frameworks of

the interpreted approach. The authors also found that within specific app

November 2020 41 Biørn-Hansen, A.

Chapter 2 2.3. User Experience

categories such as comics, business, entertainment and finance, hybrid apps

received a greater AUR than native apps in the same categories. The authors

conclude their study by stating that hybrid apps can be of such quality that

they may provide native app-like experiences (Ali and Mesbah, 2016, p. 54).

Their results concur with Malavolta et al. (2015b)’s study on end-user

perception of Google Play Store (Android) apps, following much of the same

research approach and method for measuring perceived app performance.

Indeed, cross-platform apps published to some categories continually score

higher than native apps in the same categories – e.g., in categories such as

business, medical and lifestyle. These findings also match those presented by

Ali and Mesbah (2016). However, both the entertainment and music & video

categories vary significantly between the studies. In Ali and Mesbah (2016)’s

study, both categories contain seemingly better hybrid apps than native ones.

These findings are in stark contrast with results published by Malavolta et al.

(2015b). One explanation could be that there were notable variations in the

data sets. A total of 3 041 315 reviews from 11 917 apps were the basis of the

Malavolta et al. (2015b) study, while 9 948 hybrid and native apps, totalling

19 896 apps, were analysed by Ali and Mesbah (2016). Another explanation

for the differences between the studies could be the formula used to calculate

rating.

Using Natural-Language Processing to analyse app reviews from Google

Play Store and Apple’s App Store, Mercado et al.’s (2016) study on devel-

opment approach choice’s impact on end-user experience fills an essential

space in the knowledge body. It complements previous studies (Ali and

Mesbah, 2016, Malavolta et al., 2015b) with a language processing strategy

November 2020 42 Biørn-Hansen, A.

Chapter 2 2.3. User Experience

and model rather than formulas for star reviews and review counts. Their

findings indicate that end-users perceive apps developed in different cross-

platform approaches differently and that users leave reviews regarding their

varying experiences with such apps (Mercado et al., 2016, p. 48). It would

be of interest to know if the apps receiving negative user reviews belong in

either of the outlier categories as discussed by Ali and Mesbah (2016) and

Malavolta et al. (2015b). From a technical perspective, conducting code re-

views of the mentioned hybrid apps identified by Mercado et al. (2016) could

help answer why the apps were rated so poorly. No academic literature has

been identified on code-wise optimisation of hybrid apps, thus looking to in-

dustry literature makes more sense. Books such as High Performance Mobile

Web (Firtman, 2016) and Hacking Web Performance (Firtman, 2018a) could

help in creating a code review baseline for both Progressive Web Apps and

apps of the hybrid approach. Nevertheless, the findings quoted above are

highly relevant for academia and industry and fill a gap in which much of

the previously published work discusses unsupported claims.

In the qualitative research space, only one study of scale directly involving

end-users has been identified. A study by Angulo and Ferre (2014) involves

both laboratory and longitudinal studies on the end-user perception of cross-

platform app quality. To rigorously evaluate and compare such quality, the

researchers developed four apps, including two interpreted-approach apps

(one for Android and one for iOS) as well a native app for each platform to

understand the baseline quality expected. Method-wise, they employed the

System Usability Scale for their questionnaire, a tool considered an industry-

standard (Usability.gov, 2013). Results indicated more scepticism amongst

November 2020 43 Biørn-Hansen, A.

Chapter 2 2.3. User Experience

iOS users towards non-native apps than among Android users (Angulo and

Ferre, 2014, p. 7). In their tests, 91% of Android users and 79% of iOS

users found the cross-platform app to behave as- or similar to the native

baseline app. Their study is the only one identified that leverages not only

quantitative methods (e.g., app review analysis), but focuses more on user

involvement. Their conclusion, as cited below, is a step towards discon-

firming previous studies’ unsupported claims regarding user experience in

cross-platform apps.

“[...] a good level of UX can be obtained if the cross-platform

development framework is chosen carefully in terms of providing

adapted interaction styles for each platform, and the development

team has UX expertise. But there are more possibilities of getting

a better UX by maintaining the control over interaction issues that

provides the development of an app with native code.” - Angulo

and Ferre (2014, p. 8)

Alas, the study did not include any cross-platform apps of the hybrid,

cross-compiled or model-driven approaches, the former often more commonly

criticised than the others due to depending on the WebView component (e.g.,

Boushehrinejadmoradi et al. (2015), Latif et al. (2016)). Nevertheless, this

only confirms the need for more user-oriented research on cross-platform

apps. A study that does assess the user experience of a hybrid PhoneGap

app, although with a limited group of subjects, is the seminal paper by

Heitkötter et al. (2012a). While they have not conducted any user experi-

ments to scrutinise their implementation objectively, the authors discusses

their own experience using the hybrid app, reporting that they found the app

November 2020 44 Biørn-Hansen, A.

Chapter 2 2.4. Software Platform Features

to be as responsive as- and to provide comparable performance to- a native

application (Heitkötter et al., 2012a, p. 304). Nonetheless, the possibilities of

bias in their reporting, further evaluating similar implementations – though

with a subjective group of test subjects – can help in clarifying how users

perceive cross-platform apps.

2.4 Software Platform Features

In their seminal work, Heitkötter et al. (2012b) state that device and platform

feature access would typically include the camera, GPS, push notifications

and similar functionality belonging either to the platform itself (Android

or iOS operating system) or the devices’ hardware, to which the platform

SDKs provide access. Having programmatic access to device and platform

features is a requirement typically listed as part of cross-platform framework

evaluations, and it is common to find comparative studies focusing on the

differences between technical frameworks in terms of the number of program-

matically accessible features (Heitkötter et al., 2012a). The importance of

such access should be paramount to any app development approach, as a

(cross-platform) app without access to device and platform features would

have significant functional limitations compared to native apps (Luo et al.,

2011). Access to these types of features is also commonly listed as a funda-

mental requirement in decision frameworks targeting the choice of develop-

ment approach and technical frameworks, examples being that of Latif et al.

(2016)’s study, stating that cross-platform frameworks must provide access

to all of the features available.

November 2020 45 Biørn-Hansen, A.

Chapter 2 2.4. Software Platform Features

Figure 2.6 shows the connection between the cross-platform app, the in-

termediary abstraction layer providing programmatic access to device fea-

tures, and some examples of such features available through the platform

and device. What the intermediary layer is and how it works, depend on

the development approach. Whereas the hybrid, Progressive Web App and

interpreted approaches all will depend on an abstraction layer during run-

time, the cross-compiled and model-driven approaches typically do not, as

the apps compiled using these approaches will have direct access to the un-

derlying system and platform.

Camera

File system

Calendar

Geolocation

Abstraction layer
(interpreter or

WebView)

or

mappings
between

framework and
native SDK

App

</>

Figure 2.6: Illustration of connection between app and device-platform fea-
tures.

The efficiency and ease of device feature access in hybrid and interpreted

apps have previously been assessed (Biørn-Hansen and Ghinea, 2018). Both

approaches were found to do well at providing easy programmatic access to

native features, and no features were identified which could not be integrated

and executed from within a cross-platform environment, whether the bridging

technology was the interpreted or hybrid approach. This paper is potentially

a point of departure for disconfirming previous claims on the subject, e.g.,

a study from Corral et al. discussing advantages and constraints of cross-

November 2020 46 Biørn-Hansen, A.

Chapter 2 2.4. Software Platform Features

platform development. In their 2012 paper, they state that cross-platform

frameworks do not fully cater programmatic access to certain features (Corral

et al., 2012a, p. 1205), without emphasising which features that are com-

monly missing. Nevertheless, home screen widgets, or app-widgets which

can be pinned to the user’s home screen, can at the time of writing not be

developed using hybrid or interpreted frameworks without implementing this

in native code.

A study by Palmieri et al. (2012) compares five major cross-platform de-

velopment frameworks of different approaches on a variety of parameters,

including feature access. Their findings indicate that, while the statement

from Corral et al. (2012a) did indeed to a degree report correctly on the

then status-quo of feature access, the level of access provided by the frame-

works varied greatly. While the hybrid approach, in the paper represented

by PhoneGap, provided APIs to all but one of the compared features, the

DragonRad framework supported only close to half of the features listed.

The same two frameworks are also scrutinised in a study by Ribeiro and

da Silva (2012). However, in this study, the list of features used for compar-

ison is less exhaustive than in Palmieri et al. (2012)’s investigation, creating

a misconception that DragonRAD can access the majority of such device

features.

Another paper exemplifying progress within the field is a study by Smutný

(2012), discussing the benefits of “going native” in the context of deciding

on a development approach. They claim that developing an app using the

native approach will allow for the best user experience if the app is used

primarily offline (Smutný, 2012, p. 654). However, both cross-platform apps

November 2020 47 Biørn-Hansen, A.

Chapter 2 2.4. Software Platform Features

and Progressive Web Apps, as previously discussed, are offline-capable and

functional, and should, to a great extent, not differ from the offline experience

found in native apps. The Web approach does, according to Smutný (2012),

not support offline mode, but this is no longer the case due to the possibilities

of Progressive Web Apps (Majchrzak et al., 2018).

Progress within device- and platform feature accessibility can be drawn

from studies such as that by Escoffier and Lalanda (2015), focusing on hetero-

geneity and dynamism in cross-platform apps. Regarding the state of feature

access in 2015, the authors mention that cross-compiled solutions including

Xamarin and Rhodes do not expose a feature-set vast enough to cater to the

development of complex apps (Escoffier and Lalanda, 2015, p. 75). These

findings somewhat contradict those presented in Palmieri et al. (2012)’s ar-

ticle, in which the authors state that Rhodes could access the majority of

the features implemented in their study. Also, the Xamarin Website does

not seem to agree with the claims presented by Escoffier and Lalanda (2015).

This claim from 2015 may no longer apply, as the official statement from

Xamarin entirely contradicts it, claiming that Xamarin does indeed provide

access to all the platform and device functionality available, and list features

such as iBeacons and Android Fragments as relevant examples (Xamarin,

n.d.).

Similar claims have also been identified pointing in the direction of the

Web approach – thus indirectly Progressive Web Apps. Although regular

Web apps and Progressive Web Apps both suffer from limitations imposed

by Web browsers, browser vendors and device feature availability exposed

through JavaScript and HTML5 (Biørn-Hansen et al., 2018b), it is common

November 2020 48 Biørn-Hansen, A.

Chapter 2 2.4. Software Platform Features

to encounter outdated claims related to which device features these devel-

opment approaches may access. Examples include programmatic access and

control of device camera and GPS, which also in newer research (e.g., Lach-

gar and Abdali (2017)) are reported inaccessible for these approaches. These

claims contradict the findings provided by browser feature test platform “Can

I Use”, stating that both these features can be utilised in Web apps and

Progressive Web Apps (Can I Use, n.d.a,n) – the same is also reported by

Ciman and Gaggi (2016) in their large-scale energy consumption experiment.

Nevertheless, other features are indeed not available from within a browser

environment as of the time of writing, examples being those of device cal-

endar and contact list. In an attempt to better the situation for Web apps,

the WebAppBooster framework developed and presented by Puder et al.

(2014), is an independent service running in the background on a mobile de-

vice, listening to connections executed from localhost environments such as

a browser. This service allows Websites running in a regular browser to call

upon the WebAppBooster through the WebSockets protocol, which in turn

executes some functionality only available through native SDKs, including

access to contact lists and sending of SMS. Not only is this approach novel

and attractive, but the article also represents one of few scholarly research

papers in which such a framework is presented outside of the model-driven

development sphere, where academic tools seem more prevalent than those

originating from practice.

November 2020 49 Biørn-Hansen, A.

Chapter 2 2.5. Performance & Hardware Utilisation

2.5 Performance & Hardware Utilisation

The general perception in academia regarding the performance of apps de-

veloped using cross-platform frameworks is that it is inherently inferior to

native apps due to abstraction layers such as interpreters, WebView engines

and code transpilation- and compilation steps. An example of this percep-

tion is found in a study by Huy and vanThanh (2012) on the evaluation of

development approaches, claiming that hybrid apps are performance-wise in-

ferior to native apps due to the HTML rendering process that is required to

take place in a WebView-based application, and that the result of this is that

hybrid apps cannot replace native apps (Huy and vanThanh, 2012, p. 25).

Based on this statement, a discussion that could be had is whether or not

hybrid – or cross-platform approaches in general – are supposed to replace

the native approach, or rather provide alternative development techniques

and possibilities in contexts benefiting from such.

By traversing the performance-oriented literature, several studies have

been identified, most spanning a timeframe from 2012 through 2020. A

recently conducted experiment by Dorfer et al. (2020) details the memory

(RAM) consumption, CPU usage and battery usage scrolling, maps, location

tracking and networking. Their findings indicate a varying impact on all

metrics as they compare a baseline native Android app to a React native

implementation. On average, the React Native app consumes less memory

than the native baseline; however, consumes between two and four times the

CPU. In terms of battery, their findings also indicate that the React Native

implementation consumes more battery on average. Dorfer et al. (2020)’s

findings are of great importance to understand the trade-offs involved in

November 2020 50 Biørn-Hansen, A.

Chapter 2 2.5. Performance & Hardware Utilisation

deciding on a technology and development approach. The subjects of RAM

and CPU consumption are followed up in Chapters 4 and 5 in this thesis.

Of other studies identified, we find that of Willocx et al. (2016), in which

methods frequently found in performance studies are employed, including

measuring memory consumption, disk space use and CPU usage on apps de-

veloped using a variety of cross-platform frameworks. They conducted a

number of tasks while recording device performance, one of which proved to

be more efficient in the cross-platform implementation than its native im-

plementation baseline, which was that of page navigation in hybrid apps.

One of their most important contributions and findings indicate acceptable

performance loss in cross-platform apps, although the penalty introduced

depends heavily on approach and framework (Willocx et al., 2016, p. 45).

Additionally, they describe differences between high-end and lower-end mo-

bile devices, and that the penalty is specifically acceptable on the higher-end

ones.

However, while some experiments, such as the aforementioned perfor-

mance study find that cross-platform apps generally perform inferior to na-

tive apps, one study identified reports the exact opposite. Ahti et al. (2016)

found that their hybrid PhoneGap-based app had faster startup-time, con-

sumed less memory and demanded much less disk space on Android compared

to their native app. These findings are in stark contrast to most literature,

and the authors describe a PhoneGap-based implementation which had its

weaknesses related mostly to user experience but provided a “technically fea-

sible alternative” to native development (Ahti et al., 2016, p. 47). Their

report of weaknesses in user experience and app user interface appearance

November 2020 51 Biørn-Hansen, A.

Chapter 2 2.5. Performance & Hardware Utilisation

could be due to their use of a traditional Web interface library, Bootstrap,

on top of PhoneGap. There are some Bootstrap alternatives they could have

employed which expose HTML-based interface components mimicking both

look and behaviour of native mobile interface components (Gronli et al.,

2014), two examples being Ionic and Onsen UI. Nevertheless, their perfor-

mance findings are of utmost interest, and contradict statements such as the

aforementioned statement by Huy and vanThanh (2012, p. 25).

In addition to the experiments previously outlined, a comprehensive study

by Ciman and Gaggi (2016) on device energy consumption was also identi-

fied. In their study, the authors measure the impact on energy consumption

in an experiment including a wide array of device functionality and hardware

sensors using four cross-platform frameworks – namely PhoneGap, Titanium

and MoSync, and a regular Web app. They find that it is of utmost im-

portance to base the choice of development approach and framework on the

software specification at hand, but that cross-platform apps developed will

regardless introduce some form of an energy consumption overhead. The

interpreted approach is found to be more performant than they assumed, al-

though an increase in device CPU usage was noted due to the need for runtime

code interpretation. An interesting result from their experiment is that the

previous statement also holds for apps of the cross-compiled approach, which

are considered “real native application[s]” (Ciman and Gaggi, 2016, p. 16).

Drawing from these results, the cross-compiled based Xamarin framework

which should generate native apps, do seemingly introduce a performance

overhead when compared to the native approach, according to Willocx et al.

(2015). While their findings vary significantly between different devices and

November 2020 52 Biørn-Hansen, A.

Chapter 2 2.5. Performance & Hardware Utilisation

platforms, the hybrid approach represented by PhoneGap tends to score lower

than both Xamarin and the native approach. However, there are test cases

in which PhoneGap and Xamarin present close to identical results, being

those of CPU usage and on-device installation size. Dhillon and Mahmoud

(2015) also report similar findings in their empirical investigation of technical

frameworks, in which they find that the cross-compiled MoSync framework

performs with notable differences on iOS and Android. While their iOS

implementation performed well, the Android app performed subpar to what

they expected from a framework of this approach.

Moreover, in the well-cited study by Dalmasso et al. (2013), which scruti-

nises and performs a comparison of cross-platform development frameworks,

the authors discuss device performance using metrics including memory us-

age, power consumption and CPU usage. Because these metrics are frequently

encountered in performance-oriented experiments, studying the progression

of cross-platform performance through surveying existing literature could

draw from papers such as theirs. The authors identify the hybrid PhoneGap

app to be hardware-wise more performant and efficient than the interpreted

Titanium app, although the trade-off is that of user experience and interface

components which they found lacking in PhoneGap. While the experiment

and the reported results contribute to the body of knowledge, a potential

weakness in their research design is the lack of a native app from which

they could extract a performance baseline for the metrics measured. Such

a baseline is present in similar studies, for instance, those by Ciman and

Gaggi (2016), Corral et al. (2012b), Willocx et al. (2015). Without a native

baseline, it would be inherently difficult to validate whether the performance

November 2020 53 Biørn-Hansen, A.

Chapter 2 2.5. Performance & Hardware Utilisation

measurements of the cross-platform apps rendered better or worse results

than the performance goal – which should be native-like performance, ac-

cording to several highly-cited studies (Latif et al., 2016, Xanthopoulos and

Xinogalos, 2013).

Although the Progressive Web Apps development approach is still in its

infancy and thus has not yet seen much academic research effort, two studies

were identified scrutinising its performance. In this respect, Malavolta et al.

(2017) assess the possibility of an impact on energy consumption due to Ser-

vice Workers executing and running background tasks. In brief, a Service

Worker is a script that can run in the background as part of installed PWAs,

conducting tasks such as data synchronisation, push notifications and data

caching (Majchrzak et al., 2018). While no significant impact was noted,

it was still suggested that the inclusion of a Service Worker is a trade-off

in terms of (minimal) energy consumption impact and the additional fea-

tures it can provide. The latter is at the core of our study as described in

Biørn-Hansen et al. (2018b), in which a feature comparison and performance

measurement between the native, interpreted, hybrid, and PWA approaches

are presented. The results imply app launch- and interface render times

on par with apps generated by the hybrid and interpreted approaches while

requiring multiple orders of magnitude less disk space.

The earliest performance study identified, an experiment by Corral et al.

(2012b) reveals that native app performance in cross-platform developed apps

was not to be expected at the time of publishing, and reports an overall per-

formance penalty in lapsed time for the measured tasks (for instance writing

to and from a disk file, requesting data from the network or GPS module).

November 2020 54 Biørn-Hansen, A.

Chapter 2 2.5. Performance & Hardware Utilisation

However, being that the penalty is only infrequently of any sizeable devia-

tion from the native baseline, the authors also state that the penalty should

be satisfactory for what they refer to as “general-purpose business applica-

tions” (Corral et al., 2012b, p. 742), or line-of-business apps. A refresh and

validation of their study would be of immense interest, although extended

with more up-to-date frameworks and technologies for greater future valid-

ity and industry relevance. Their study included a native app and a hybrid

approach PhoneGap app, but the proliferation of cross-compiled and inter-

preted frameworks should be accounted for in newer studies. Also, a better

understanding of differences in user expectation between business apps and

regular consumer apps could help in decision-making processes.

Within the model-driven approach, studies targeting business contexts

are frequently encountered (e.g., Ernsting et al. (2016), Heitkötter and Ma-

jchrzak (2013), Majchrzak and Ernsting (2015), Rieger (2018)), and thus per-

formance testing and surveying of business user app expectations could be

of importance to understand the target group. Alas, although there are nu-

merous frameworks of the model-driven approach originating from academia

(e.g., Heitkötter et al. (2013), Jia and Jones (2015), Kramer et al. (2010)),

there is a general absence of performance discussions and empirical experi-

ments examining the generated apps. A hypothesis for why this topic is so

infrequently encountered in the literature could be that the models exposed

by the frameworks translate to native platform code, and should thus in the-

ory not differ from native apps (Gaouar et al., 2015). However, in a study by

Jia and Jones (2015) on designing Domain-Specific Languages, the authors

claim that apps developed using MDD-based frameworks and tools also suf-

November 2020 55 Biørn-Hansen, A.

Chapter 2 2.6. App Store Analysis

fer from performance penalties, something their DSL, ADSML, is aiming to

improve. Nonetheless, they provide no empirical evidence to verify neither

claim – that the average MDD tool suffers from performance constraints, nor

that ADSML is “[...] capable of generating high-performance native appli-

cations” (Jia and Jones, 2015, p. 2). Suggestions for further research on

frameworks within the MDD approach often include empirical verification of

results (e.g., Umuhoza et al. (2015)). Reports of performance benchmarking

of MDD generated apps are yet to be encountered in the literature identified

but could help to increase industry adoption of such frameworks, as suggested

by Majchrzak and Ernsting (2015), the developers of the MD2 framework.

This suggestion is followed up in the performance experiment described in

Chapter 4.

2.6 App Store Analysis

With more than four million apps available across the Google Play Store

and Apple App Store (Statista, 2020), these marketplaces are not only dis-

tribution channels towards the platforms’ end-users, they are also massive

software repositories with excellent research potential. The rapid develop-

ment of the mobile computing field and the enabling factors provided through

it have led to considerable academic and industry interest in research and

development of mobile apps. Studies from recent years have for instance fo-

cused on the impact of programming language on app quality in a study on

Java versus Kotlin for development of Android apps (Góis Mateus and Mar-

tinez, 2019), assessing and comparing code smells in iOS and Android apps

November 2020 56 Biørn-Hansen, A.

Chapter 2 2.6. App Store Analysis

(Habchi et al., 2017), and providing guidelines for ensuring the development

of energy-efficient apps (Cruz and Abreu, 2017). Although app store anal-

ysis in the context of cross-platform mobile development is relatively new,

descriptive studies have been published and cited frequently since the earli-

est frameworks were released. For instance, the study by Heitkötter et al.

(2012b) shaped much of the research to follow due to actionable suggestions

for future research, and for laying the foundation for framework compar-

isons. Also Charland and LeRoux (2011) discussed early on the possibilities

of Web-based mobile apps as a potential challenger to native apps and placed

cross-platform development on the research agenda. From a holistic perspec-

tive, studies related to cross-platform development and app store analysis

often fall within the context of empirical investigation of software and meta-

data through Mining Software Repositories.

Mining Software Repositories (MSR) has established itself as a mature

yet growing field of research within software engineering (Martin et al., 2017,

Robles, 2010). While MSR is not a new field, the proliferation of the smart-

phone led to an increase in MSR research on mobile ecosystems. Mining and

analysing mobile app marketplaces have been essential to our understanding

of user behaviour on mobile devices (Hoon et al., 2013), the impact of pro-

gramming languages for app development (Góis Mateus and Martinez, 2019),

measuring the presence of hybrid development frameworks (Malavolta et al.,

2015a), malware and vulnerability detection (Schütte et al., 2015), the evolu-

tion of mobile ecosystems (Wang et al., 2019), library usage in Android apps

(Li et al., 2016), and more. The present thesis builds on previous work con-

ducted within the field of MSR, although shifts the focus to cross-platform

November 2020 57 Biørn-Hansen, A.

Chapter 2 2.6. App Store Analysis

development, and with a primary focus on using readily available data sources

such as AndroZoo rather than mining the Google Play Store directly. The

use of MSR techniques within the mobile app ecosystem context was covered

by Martin et al. (2017) in their comprehensive survey on the state of research

on large app store repositories in the context of software engineering. They

point to a growing academic interest towards studying these software reposi-

tories, with an increase in published software engineering research analysing

mobile apps. However, they do not survey studies related to cross-platform

mobile development specifically. App store studies incorporating the context

of cross-platform development are nevertheless encountered in the body of

knowledge.

One such study is by Mercado et al. (2016), in which the authors leverage

user reviews mined from the Google Play Store and the Apple App Store to

investigate the impact on the user-perceived quality of apps developed with

cross-platform frameworks. It is noteworthy that their findings indicate dif-

ferences between iOS and Android users regarding the perception of quality

concerns in hybrid, interpreted and native apps. This leads to an interest-

ing discussion on the use of cross-platform frameworks. Their findings are

of great interest in decision making and better understanding implications

related to the choice of technology.

Malavolta et al. (2015b) also scrutinise the user perspective in their study,

although looking more specifically at user perception of hybrid mobile apps,

also based on reviews mined from the Google Play Store. Similarly to the

study described in Chapter 6 of this thesis, they provide an overview of cross-

platform framework usage and distribution across the Play Store categories,

November 2020 58 Biørn-Hansen, A.

Chapter 2 2.7. Taxonomy & State of Research

although with a more limited dataset of = = 11 917 apps and a partially

different set of cross-platform frameworks (Cordova, Titanium, PhoneGap,

Sencha, Kivy, Rho Mobile, UIU and Enyo). Through comparison of Mala-

volta et al. (2015b)’s results, indications of how this distribution has changed

since the study was published in 2015 can be provided, but also how their

findings from 2015 align with the findings on distribution over time (further

investigated in Section 6.4.3).

From a broader perspective, Viennot et al. (2014) conducted a measure-

ment study of the Google Play Store, describing their Web crawler architec-

ture along with results on topics including native library usage, advertisement

libraries, graphics engine usage, and briefly on cross-platform framework us-

age. Their results indicate that 9.20% of non-popular apps are built using

cross-platform technologies, while 2.60% of popular apps are built the same

way.

2.7 Taxonomy & State of Research

Having conducted a comprehensive review of cross-platform mobile develop-

ment literature, certain gaps in the body of knowledge emerge. In Table 2.2,

the state of user experience, software platform features, feature availability,

and performance and hardware is briefly summarised based on the previous

sections exploring each topic more in-depth.

As can be derived from Table 2.2, several areas of research within cross-

platform mobile development either lack research all-together or suffer from

predominantly dated knowledge bases. Additionally, the state of research

November 2020 59 Biørn-Hansen, A.

Chapter 2 2.7. Taxonomy & State of Research

on app store analysis is also described in the literature review, although

not included in Table 2.2 as the topic does not fit into the approach-based

categorisation used in the table.

Table 2.2: Summary of state of research on cross-platform development.

Hybrid Interpreted Cross-
compiled

Model-
Driven

Progressive
Web Apps

User Ex-
perience

Quantitative.
Lacking
qualitative.

Some
qualitative.
Insufficient.

Insufficient
research.

Insufficient
research.

No
identified
research.

Software
Platform
Features

Well-
researched.

Well-
researched.

Some
research.
Conclusion
lacking.

Some
research.
Conclusion
lacking.

Some
research.
Conclusion
known.

Feature
availability

Debated.
Likely not
limited.

Debated.
Likely not
limited.

Debated.
Likely not
limited.

Likely not
limited.

Browser
constrained.

Performance
and
Hardware

Well-
researched.
Dated.

Well-
researched.
Dated.

Well-
researched.
Dated.

Insufficient
research.

Insufficient
research.

Specifically, the research gaps addressed by this thesis are those of hard-

ware consumption and app performance generated by cross-platform frame-

works (as described in Table 2.2), and the app store presence of these tech-

nologies (described in Section 2.6). There is a pressing need for updated re-

search on both topics, as the industry moves forward with new frameworks,

thoughts and technologies. Much of the academic efforts towards investigat-

ing cross-platform apps were conducted between 2011 and 2017, after which

the number of new studies declined, particularly within the topics covered in

this literature review.

In addition to the condensed findings presented in Table 2.2, a technical

November 2020 60 Biørn-Hansen, A.

Chapter 2 2.7. Taxonomy & State of Research

Cross-platform app development

Hybrid Interpreted Cross-compiled Model-Driven Progressive Web Apps

Languages:
HTML, CSS and

JavaScript

User interfaces:
HTML-based

Execution env.:
WebView

Device & feature
access manager:
Cordova-Capacitor

Languages:
Predominantly

JavaScript

User interfaces:
Predominantly Native

Execution env.:
Interpreter

(V8 or JavaScriptCore)

Device & feature
access manager:

Framework-dependent

Languages:
Predominantly C#

and Java

User interfaces:
Native

Execution env.:
Native byte code

Device & feature
access manager:

Framework-dependent

Languages:
Domain-Specific

Languages

User interfaces:
Native

Execution env.:
Native code

transformed from models

Device & feature
access manager:

Direct Native access

Languages:
HTML, CSS and

JavaScript

User interfaces:
HTML-based

Execution env.:
Browser

Device & feature
access manager:

Browser

Figure 2.7: Taxonomy of cross-platform development.

overview is provided, addressing the five development approaches discussed

throughout this review. Figure 2.7 depicts the current state of the art in

terms of predominant programming languages, app execution environments,

how user interfaces are rendered, and which controlling entity is managing

access to the device- and platform features.

Having assessed previous literature and through that identified two sig-

nificant research gaps related to framework presence and performance, the

coming chapter discusses methods and models for carrying out and evaluating

the three thesis experiments addressing these gaps.

November 2020 61 Biørn-Hansen, A.

Chapter 3

Research Methods

This chapter is devoted to exploring philosophical perspectives of science,

the design science research methodology, and the experimental design and

evaluation in order to contextualise the thesis as a whole. More in-depth

details on each conducted experiment is presented throughout the subsequent

thesis chapters.

3.1 Philosophical Perspective

There is a vast array of assumptions, paradigms and perspectives involved

in conducting scientific work. Epistemological discussions are frequently en-

countered in computer science and software engineering, as they are in, for

instance, the natural and social sciences. This section discusses among other

the epistemological perspective subscribed to while conducting the experi-

ments and overall thesis – specifically positivism. As a point of departure

for the discussion to come, the thesis’ related field of study is considered to

62

Chapter 3 3.1. Philosophical Perspective

be somewhere between computer science and software engineering, specifi-

cally applied computer science; wherein there is a focus on developing and

measuring software solutions with an impact on both practice and academia.

Rather than using mathematical proofs, models and formal methods for val-

idation, my interest is more towards an objective and statistical interpreta-

tion of performance measurements. Rather than building or expanding on

existing software solutions to attempt improving algorithmic throughput or

a reduction in a software’s hardware requirements, my interest is on building

relatively isolated technical artefacts for the purpose of reporting on what is

state of practice in performance and presence of cross-platform frameworks.

Based on the discussion by Eden (2007) in their examination of philosophical

disputes in computer science and software engineering, the work presented

in this thesis is considered to belong to the technocratic paradigm, which is

described as the idea that computer science is:

“[...] an engineering discipline, treats programs as mere data,

and seeks probable, a posteriori knowledge about their reliability

empirically using testing suites.” - Eden (2007, p. 3)

The data used to support the findings reported in Chapters 4, 5 and 6

are predominantly quantitative and statistical. The data has been extracted

based on the use of scripts and test suites in an exploratory and experimental

approach, deriving knowledge a posteriori – through observations and exper-

iments. Although the knowledge body on cross-platform mobile development

is quite robust as illustrated in Chapter 2, due to the variations in exper-

imental design, physical test devices, cross-platform frameworks, and the

November 2020 63 Biørn-Hansen, A.

Chapter 3 3.2. Design Science Research

rapid development of the field, the work conducted is still more exploratory

than confirmatory. Results from the experiments conducted are based on

measurements using objective metrics with an emphasis on reproducibility

of results, focusing on detached interpretation of results, subscribing to the

idea that a single reality exists although with inherent contextually differing

world-states. Indeed, these are all characteristics of the positivistic scientific

perspective (Vaishnavi and Kuechler, 2015, p. 31).

3.2 Design Science Research

As the overarching research methodology, design science research (DSR) has

been used. The purpose of DSR is to guide projects aiming at conducting

rigorous and relevant design-driven research, where design in our context

represents implemented and evaluable technical artefacts. Through this sec-

tion, the DSR methodology is explored and discussed, alongside its use in

this thesis.

3.2.1 An Overview of the DSR Methodology

While there are numerous takes on what design science research is and is not

(Baskerville, 2008), Hevner et al. (2004) ultimately describe it as a problem-

solving methodology; input is gained from industry and gaps in the body

of knowledge, research is conducted using rigorous methods, and output is

commonly relevant to both practitioners, organisations and science. It is

a science of the artificial (Simon, 1996), and revolves around the design

and evaluation of novel artefacts, whether being code, systems or concepts

November 2020 64 Biørn-Hansen, A.

Chapter 3 3.2. Design Science Research

(Baskerville, 2008). For this thesis, the technical artefacts designed and

evaluated are based on executable code; scripts and mobile apps.

Much of the seminal work on DSR is written in the context of Information

Systems (IS) research, perhaps most notably studies including Nunamaker

et al. (1990), March and Smith (1995), Hevner et al. (2004), Peffers et al.

(2007), Iivari (2007) and Gregor and Hevner (2013). Although the emphasis

in these studies is on IS research, the significance for systems development

both as an activity and a methodology is clear. Accordingly, Nunamaker

et al. (1990) describe the importance of prototyping technical artefacts and

the subsequent experiments and evaluation, for instance, in terms of per-

formance. They further describe observing the impact on organisation and

individuals as a consecutive step, not as a necessity for conducting design

science research.

A recent study by Engström et al. (2020) investigates the use of DSR in

software engineering and systems development literature. The authors map

38 software engineering papers published in the International Conference on

Software Engineering (ICSE) to a proposed design science research template.

Their findings indicate that although few papers explicitly mention the use

of DSR, there is an implicit link to DSR in the software engineering (SWE)

projects through the problem formulation and proposed solution in the con-

text of rigour, relevance and novelty. Thus, while the fundamentals of DSR

originated in IS research, the findings by Engström et al. (2020) indicate

that although its use in related fields is equally suitable, the methodology is

rarely explicitly mentioned in published studies within SWE. For this thesis,

the background on- and understanding of DSR lean on both the traditional

November 2020 65 Biørn-Hansen, A.

Chapter 3 3.2. Design Science Research

literature from an IS perspective, accompanied by newer literature also en-

compassing DSR in SWE, such as studies and books by Wieringa (2014),

Vaishnavi and Kuechler (2015) and Engström et al. (2020).

Several models have been developed for explaining, conducting and eval-

uating DSR projects over the past decades. This thesis leans on two specific

models for the methodological grounding of the project. The first model is

by Hevner (2007), the “Three Cycle View” (see Figure 3.1), illustrating the

interconnectivity and dependencies on rigour and relevance in a design sci-

ence research project. It was indeed this focus which was particularly vital

in the choice of methodology for the thesis at hand.

Knowledge Base Design Science Research

Build Design
Artifacts &
Processes

Evaluate

Design
Cycle

Application Domain
• People
• Organizational
Systems
• Technical
 Systems

• Problems
& Opportunities

Relevance Cycle

• Requirements

• Field Testing

 Rigor Cycle

• Grounding
• Additions to KB

Foundations

• Scientific Theories
& Methods

• Experience
& Expertise

• Meta-Artifacts
(Design Products &
Design Processes)

 Environment

Figure 3.1: Hevner’s Three Cycle View of Design Science Research.
Reprinted from “A Three Cycle View of Design Science Research” by Hevner
(2007, p. 2). © Copyright 2007 by BePress.

The three blocks and accompanying cycles make up Hevner’s DSR model,

describing the overarching concepts of how a DSR project is influenced by

both a surrounding environment and existing rigor. While the “Three Cycle

View” provides a holistic perspective of the main components of DSR, it does

November 2020 66 Biørn-Hansen, A.

Chapter 3 3.2. Design Science Research

not by itself provide guidance for the actual implementation and execution

of a DSR project. For this, a process model proposed by Vaishnavi and

Kuechler (2015) has been followed.

3.2.2 Adopted DSR Process Model

It is important to note that several process models for DSR projects exist,

which is also acknowledged in Vaishnavi and Kuechler (2015)’s model de-

scription – explaining their model as an iteration of that previously proposed

by Peffers et al. (2007) (Vaishnavi and Kuechler, 2015, p. 19).

Knowledge
flows

Process
steps

Outputs

Awareness of
problem

Suggestion

Development

Evaluation

Conclusion

Proposal

Tentative design

Artefact

Performance
measurement

Results

Knowledge
contribution

Design science
knowledge

Circumscription*

Explanation of mapping to
thesis chapters 4, 5 and 6's structure

Introducing the study, motivation,
background, synopsis of literature,
revisiting the thesis goals

Research methods, design and
proposed analyses techniques

Explanation of artefact development

Presentation of rigorous evaluation of
the produced artefacts, and discussion
of results towards literature and goals

Describe contributions and future work

Figure 3.2: Design Science Research Process Model adapted from “Design
Science Research Methods and Patterns”, by Vaishnavi and Kuechler (Vaish-
navi and Kuechler, 2015, p. 15). © Copyright 2015 by Taylor & Francis
Group, LLC.; Modified to include a description of each step’s relevance to
the structure of Chapters 4, 5 and 6 (inside the dotted box to the right).

The process model by Vaishnavi and Kuechler (2015) was chosen for pri-

marily two reasons: (i) it provides guidance and a clear structure along with a

November 2020 67 Biørn-Hansen, A.

Chapter 3 3.2. Design Science Research

set of actionable steps to follow, and (ii) each step maps well to the structure

and narrative of the thesis experiment chapters. Indeed the five steps derived

from the process model – Awareness of problem, Suggestion, Development,

Evaluation, and Conclusion – have been used to structure the experiments

presented in this thesis, respectively Chapters 4, 5 and 6. The model, as

illustrated in Figure 3.2, consists of five specific steps, each generating a

particular output while contributing to knowledge through circumscription.

The use of the model and its steps in this project have been included to

the right in Figure 3.2, thus the original figure has been modified to contain

thesis-specific details.

The short description of each of the five steps to follow are based primar-

ily on those provided by the process model creators, Vaishnavi and Kuechler

(2015, p. 14-17), alongside own interpretations and comments. Starting at

the Awareness of problem phase, the research gap is identified and high-

lighted (derived from the literature review in Chapter 2). A design science

problem can originate from either academia, industry or a combination. The

basis of the aim, objectives and research questions introduced in Chapter 1,

is the combination of an academic literature gap and an industry need. The

output, a research proposal, is the anchoring to relevance and state of the

art. The following step, Suggestion, is the anchoring to rigour, describing

and proposing, for instance, an experimental design, analysis techniques and

other components related to method and methodology. Thus, this step in

regards to this thesis is related to Chapters 2 and 3, and the suggestion of

methods and evaluation accompanying the experiment chapters. Following

is the Development step, in which the artefact development is detailed, for

November 2020 68 Biørn-Hansen, A.

Chapter 3 3.2. Design Science Research

instance, the development and use of specific algorithms, technical tools and

frameworks, user interfaces and systems. For this step, the authors stress

that an artefact implementation “need not involve novelty beyond the state-

of-practice for the given artefact” (Vaishnavi and Kuechler, 2015, p. 16).

This has been the case for two of the experiments towards this thesis, re-

spectively in Chapters 4 and 5, in which the novelty is not the technical

artefacts themselves, but rather the performance measurement outputs and

subsequent analysis of the experiments. The Evaluation step is where ei-

ther tentative or concluding results from experiments and observations are

brought forward and discussed in light of research questions, hypotheses and

the existing knowledge body. For the experiments described in Chapters 4,

5 and 6, the evaluations are primarily based on statistical, descriptive and

partially prescriptive knowledge from performance measurements and soft-

ware repository mining. Finally, the Conclusion draw on all previous steps

but focuses on communicating the results of the former evaluation step, and

the overall contributions, whether exploratory or confirmatory.

3.2.3 Alternatives to DSR

As previously indicated, design science research is a natural methodologi-

cal choice for conducting the type of research presented in this thesis. Be-

yond the scope of this thesis, a natural extension of the conducted exper-

iments would be to measure their impact in the context of organisations

and people. Conducting for instance Action Research (AR) and Action De-

sign Research (ADR) as vehicles for engaged scholarship could be feasible

approaches (Moloney and Church, 2012), merging artefact development in

November 2020 69 Biørn-Hansen, A.

Chapter 3 3.3. Experiments

DSR with the interdependence on organisational needs and policies. Another

possibility could be to conduct case studies with companies either develop-

ing cross-platform apps, or who are looking into developing a new product

from scratch or migrating from or to a native or cross-platform approach.

Such work could provide valuable knowledge to researchers and framework

developers on intricacies and requirements. As gauged by Engström et al.

(2020), work in software engineering is often conducted without explicitly

mentioning the use of an overarching methodological framework. Thus, an

alternative to DSR for the type of work conducted in this thesis could also be

the absence of a methodology. However, this could affect both the structure

and scientific rigidness of the thesis, which are heavily influenced by DSR

theory and models.

3.3 Experiments

The three experiments conducted towards this thesis, as to be described in

Chapters 4, 5 and 6, all rely on a combination of artefact development and

statistical and descriptive evaluation. The technical artefacts are primarily

mobile apps developed for performance evaluation, and programs designed

to harvest and analyse large datasets. This section outlines the development

and evaluation of these technical artefacts and on the mining and analyses

of software and metadata from the Google Play Store and Androzoo.

November 2020 70 Biørn-Hansen, A.

Chapter 3 3.3. Experiments

3.3.1 Artefact Development

At the core of the design science research methodology is the design, creation

and evaluation of IT artefacts. Both March and Smith (1995) and Hevner

et al. (2004, p. 77) describe four types of IT artefacts or outputs from a DSR

project, specifically Constructs, Methods, Instantiations and Models. This

list is extended by Vaishnavi and Kuechler (2015, p. 20) with Frameworks,

Architectures, Design principles and Design theories. Four of these are of

direct relevance to this thesis and its outputs, which are summarised in Table

3.1.

Table 3.1: Design Science Research artefact categories by Hevner et al. (2004,
p. 77) and Vaishnavi and Kuechler (2015, p. 20), extended with a mapping
of relevance to this thesis.

Artefact Type Description Thesis Relevance

Constructs Vocabulary and symbols The taxonomy of cross-
platform mobile develop-
ment presented in Chapter
2.

Instantiations Implemented and prototype
systems

Mobile apps implemented for
use in data gathering, sta-
tistical analyses and perfor-
mance evaluation in Chap-
ters 4 and 5.

Methods Algorithms and practices The cross-platform frame-
work recognition algorithm
developed towards the study
on framework presence in
Chapter 6.

Frameworks Guiding principles, real or
conceptual

The final outcome of this the-
sis as presented in Chapter 7.

November 2020 71 Biørn-Hansen, A.

Chapter 3 3.3. Experiments

A great deal of the artefact development has been of the Instantiations

type, where mobile apps have been developed for the sake of performance

benchmarking and extraction of subsequent results. A Construct in the shape

of a taxonomy was developed and published as part of the literature review,

while a Method in the form of a framework identification algorithm was de-

veloped for the Google Play Store analysis experiment in Chapter 6. As

for the final thesis contribution presented in Chapter 7, a Framework type

artefact has been developed as a set of guiding principles based on the em-

pirical experiments and their outputs, in the context of the thesis’ aim and

objectives.

3.3.2 Artefact Evaluation

While the design and creation of IT artefacts are integral parts of the design

science research methodology, so is the evaluation of said artefacts. Con-

siderable effort has been put into the artefact evaluation and development

of reproducible research designs, through open sourcing of results, datasets

and technical artefacts. Hevner et al. (2004, p. 85) list eight attributes on

which an IT artefact can be evaluated, of which the accuracy and perfor-

mance attributes are made use of in the thesis experiments. Combining the

performance attribute from Hevner et al. (2004) with the benchmarking at-

tribute proposed by Vaishnavi and Kuechler (2015, p. 282) describes well the

experiments and evaluations described in Chapters 4 and 5 wherein the per-

formance of native and cross-platform mobile apps is benchmarked in terms of

native code communication (bridging) and animations, on metrics including

time-to-completion (TTC), CPU usage, RAM consumption, GPU RAM consump-

November 2020 72 Biørn-Hansen, A.

Chapter 3 3.3. Experiments

tion, and Frames-per-Second (FPS). The physical mobile devices used in the

data extraction for the experiments described in Chapters 4 and 5 include

both low-, mid- and high-end devices to target a complete range. This was

deemed necessary to increase the validity and generalisability of results, and

the choice of testing on physical devices rather than emulators – although

more complex and time-consuming – was deemed equally important.

The accuracy attribute was also a central part of one experiment, respec-

tively in Chapter 6 in which a proposed algorithm was designed to identify

apps in the Google Plays Store which have possibly been developed using

cross-platform development framework(s). Although evaluating the accu-

racy by itself is not the main contribution of the experiment, it was an

integral part in the iterative development of the algorithm, ensuring that the

algorithm would to a satisfactory degree correctly identify the use of cross-

platform frameworks. The subsequent evaluation in the experiment is more

statistical and descriptive, contributing to the overall thesis aim.

Each experiment chapter will further detail the artefact development and

evaluation and tie the results and discussions back to the thesis research

questions posed in Chapter 1.

3.3.3 Ethics

Results and findings presented in this thesis are based on performance mea-

surements and data from public and available repositories (Google Play Store

and AndroZoo) and has not relied on human or organisational involvement.

Limitations are raised as part of the published manuscripts and in Chapter

7 to highlight known and potential shortcomings and threats to validity of

November 2020 73 Biørn-Hansen, A.

Chapter 3 3.3. Experiments

results and findings. For this PhD thesis project, an application was sent

to the Brunel Research Ethics Online (BREO) office for ethical considera-

tion, and was approved by the appointed ethics committee (approval form

included in Appendix E).

November 2020 74 Biørn-Hansen, A.

Chapter 4

Bridge Performance of Mobile

Development Approaches

This experiment investigates an essential part of cross-platform mobile apps’

performance, namely the bridge providing access to underlying platform and

hardware APIs. The chapter firstly revisits the problem described previously

in the thesis introduction, along with research questions and methods of

data gathering and data analyses. Subsequently, the evaluation of bridge

performance is presented, statistically analysing time to completion for the

benchmarked tasks, memory consumption and CPU usage. A weighting of the

benchmarked frameworks is then provided, summarising the chapter findings.

Communication of Research: This is an extended version of the publication in
Springer Empirical Software Engineering (2020). The content and format has been modi-
fied to fit the thesis narrative. Replication package available in Appendix B.

75

Chapter 4 4.1. Awareness of Problem

4.1 Awareness of Problem: A Potential Per-

formance Overhead

Revisiting the Objective. The performance of cross-platform frameworks

is often discussed in both academic and industry outlets, as previously

described in Chapter 2 on related work. The purpose of the experiment

described in this chapter is to investigate the potential performance overhead

imposed through the use of such frameworks and their bridging mechanisms

for communication between the cross-platform and native environments, by

comparing performance results from five frameworks to a native Android

app baseline implementation. This investigation is conducted towards

answering the first thesis research question ('&1) regarding performance

as described in Section 1.4. Derived from this experiment, a weight-

ing of the benchmarked frameworks is developed based on their overall

relative performance output as measured through a series of benchmark tests.

Background and Literature Synopsis. Certain studies indicate

an inherent performance loss in cross-platform apps, although end-users may

not negatively experience this during everyday use (Angulo and Ferre, 2014).

Nevertheless, the choice of a suitable technical development framework

has been found to matter a great deal in terms of expected performance

(Corbalan et al., 2018). Besides, it is not clear if cross-platform apps are

inherently subpar to native apps in terms of performance output: using

frameworks that generate native apps might yield code that outperforms

hand-written code due to optimisation; interpreted apps could undergo

November 2020 76 Biørn-Hansen, A.

Chapter 4 4.1. Awareness of Problem

runtime optimisation that leads to better performance than apps optimised

at compile-time.

Ciman and Gaggi (2016)’s comprehensive evaluation of energy consump-

tion for multiple cross-platform frameworks reports significant differences in

hardware performance between the evaluated frameworks. They also ob-

served differences between programming languages, e.g., how their C++

based artefact was outperformed by an artefact designed using JavaScript,

although both artefacts were built using the MoSync development frame-

work that supports both programming languages. In a recent related study,

Corbalan et al. (2018) focus on the increase in energy consumption caused

by cross-platform frameworks, although their results and methods differed

compared to those from Ciman and Gaggi (2016). Their findings showed

that whereas Apache Cordova handled processing and audio playback well,

it performed poorly in their video playback measurement. The Corona frame-

work (renamed to Solar2D in 2020), on the other hand, performed well at

video playback but had issues with intensive processing – illustrating possible

trade-offs when deciding on a development framework.

The results presented by Ciman and Gaggi (2016) share similarities with

those reported in related performance studies, e.g., by Willocx et al. (2015,

2016) focusing on the hardware impact imposed by a variety of frameworks

and implementations. Whereas accelerometer and GPS sensor values, cam-

era, and network access represent standard evaluation criteria, many platform

features have already been covered as well as deliberate restrictions to in-

November 2020 77 Biørn-Hansen, A.

Chapter 4 4.2. Suggestion

app computations – although also implemented using a set of cross-platform

frameworks (Deĺıa et al., 2017). For instance, access to platform features in

PhoneGap/Apache Cordova was approximately twice as slow compared to

native apps and going up to a factor of 20 for file system access and beyond

for GPS sensor usage (Corral et al., 2012b). However, more recent studies

indicate that the framework is still more resource-intensive; load times are

40% slower than for native apps (Que et al., 2016), and sometimes it even

outperforms native implementations (Deĺıa et al., 2017). Performance over-

head is further investigated in this current experiment to better understand

the state of performance in cross-platform apps compared to native apps.

4.2 Suggestion: Measure Performance Out-

put

To better understand the potential performance overhead imposed through

the use of cross-platform mobile development frameworks, technical artefacts

were developed to undergo performance scrutiny. This section describes the

research question, objective and technologies involved in this experiment.

November 2020 78 Biørn-Hansen, A.

Chapter 4 4.2. Suggestion

4.2.1 Objective and Research Question

The objective is to measure the performance of native-side access to platform

features through invoking- and having data returned over a bridge (commu-

nication layer)- from foreign function interfaces (FFIs) or framework- and

approach-specific equivalents. The main contribution from this experiment

is an in-depth investigation of the technologies enabling cross-platform de-

velopment frameworks to provide functionality similar to what is found in

native app development by measuring the performance-oriented impact of

individual hardware or platform features and to empirically assess the per-

formance of cross-platform app development to this extent. Evidently, the

tangible contribution is a weighting of the assessed frameworks on their rel-

ative performance output and hardware consumption. The results produced

go towards answering the first overarching thesis research question,

'&1: How do apps developed using cross-platform mobile development

approaches and associated frameworks perform compared to native mobile

apps in terms of hardware and platform utilisation?

For this experiment, one research question has been formed based the

knowledge gap surfacing from the literature review and background section:

that with the introduction of newer frameworks and approaches, the depre-

cation of older technologies, and the lack of large-scale empirical studies on

bridge performance has spawned an array of assertions and claims in both

academia and industry.

November 2020 79 Biørn-Hansen, A.

Chapter 4 4.2. Suggestion

(D1−'&1.1: To what degree do cross-platform mobile development frame-

works impose additional performance-related overhead when compared to

native mobile development?

4.2.2 Technologies

A total of six artefacts have been developed using five cross-platform frame-

works and the native development approach, and profiling tools have been

used to measure the performance of these apps. Unlike the majority of stud-

ies in which performance of cross-platform development frameworks is in-

vestigated, the artefacts developed in this current experiment use a wide

array of technologies, including frameworks of the model-driven development

approach, hybrid approach, interpreted approach, cross-compiled approach,

and the native approach.

Table 4.1 lists six technologies which have been used in the development

of the artefacts. Of these, one belongs to the native approach, i.e., it does

not support cross-platform deployment. It serves as the Android baseline

benchmark. The remaining five technologies allow for the creation of iOS

and Android apps based on a common code base, although for this exper-

iment, only the Android platform has been assessed. They vary in terms

of programming language, associated development approach, industry adop-

tion, among other aspects.

November 2020 80 Biørn-Hansen, A.

Chapter 4 4.3. Development

Table 4.1: List of technologies included in the experiment.

Framework Version Associated
Approach

Programming
Language

APK
Size

Ionic v3.9.2 Hybrid (Cordova-based) TypeScript 10.3MB

React Native v0.53.2 Interpreted JavaScript 9.7MB

NativeScript v3.4.1 Interpreted JavaScript 30.2MB

Flutter v0.5.1 Cross-compiled Dart 32.8MB

MAML / MD2 v2.0.0 Model-Driven Development DSL 3.2MB

Native Android - Native Java 2.7MB

4.3 Development of Artefacts & Methods

This section further elaborates on the rigorous artefact implementation work

conducted towards this experiment, describing benchmarked features and the

data gathering process, alongside detailing the data analysis conducted.

4.3.1 Artefact Design and Implementation

The focus in this experiment is on the capabilities of the cross-platform frame-

works to provide access to the device hardware and operating system features

of the underlying platform, and not the frameworks’ capabilities to render

user interfaces1. A unified representation across the different framework im-

plementations is essential, and use separate views for each task (see next

1In fact, studying the visual capabilities in the light of a debate about native look and
feel (Heitkötter et al., 2012b, Majchrzak and Heitkötter, 2014) would be an interesting
idea for an empirical research paper, ideally conducted with real users.

November 2020 81 Biørn-Hansen, A.

Chapter 4 4.3. Development

Section 4.3.2) which can be selected from an introductory start screen. Al-

though the number of runs for a specific benchmark can be specified, this

feature was in the end not made use of, as instead only a single benchmark

run was executed before restarting the app and starting over (see Figure 4.1).

When executing the benchmark through a Start Benchmark button in the

user interface, the app will initialise the benchmark run of the respective

feature by measuring the time until the value of the platform feature is re-

trieved. This value (time-to-completion, TTC) is printed to the screen and

manually transferred into an external datasheet. Section 4.3.3 describes the

gathering of measurement results from the remaining metrics.

4.3.2 Benchmark Features and Tasks

A plethora of hardware features exist that invite for benchmarking, including

sensors (accelerometer, gyroscope, compass), network (cellular, WiFi, Blue-

tooth, NFC), native events (hardware back button, volume keys), device

information such as battery status, and many more. Additionally, features

of the operating system, storage databases, contact lists, or notifications, can

all be accessed by native apps and therefore also through bridge components

in cross-platform frameworks.

Comprehensive sensor usage statistics are not available and can only be

approximated through requested app permissions. From the 42 Android

apps in the Google Play Store that have more than 1 billion installations

November 2020 82 Biørn-Hansen, A.

Chapter 4 4.3. Development

(Androidrank, 2019), 37 apps request (external) file system access, 33 access

contact lists, 26 use GPS location, 24 ask for image capture permissions,

23 read out the phone status, 18 request microphone access, eight read or

modify calendar entries, eight want to read SMS, and one app accesses body

sensors. However, not all features require explicit permissions by the user,

e.g., the accelerometer sensor, and every app has access to some software

features such as a database.

From this extensive list of possible features, five benchmarks were de-

signed. These relate to both hardware and software capabilities. Features

were selected to reflect the most common use cases (based on the usage

statistics presented) while at the same time being present on many devices –

in contrast to specialised sensors, which only a few devices provide and few

people use. Moreover, benchmarks were chosen to be executable mostly in

isolation, avoiding elaborate multi-device set-ups that rely on external fac-

tors such as network quality beyond a developer’s control, helping to provide

objective and reproducible results.

The features implemented as tasks for benchmarking are as following:

Accelerometer: The accelerometer sensor captures data on the accelera-

tion force applied to the device in all spacial axes in </B2. It is mostly

used for simple routine tasks such as device orientation changes but

can be employed for complex activities, for examples in augmented re-

ality (AR) settings. The benchmark requests these three values (G , ~, I

November 2020 83 Biørn-Hansen, A.

Chapter 4 4.3. Development

axes) for the next update. To measure the minimum reaction time, the

sensor sampling rate is set to the mode SENSOR DELAY FASTEST,

which avoids artificial delays intended to reduce processor load and

power consumption.

Contacts: Contact lists are routinely utilised by almost all users of smart-

phones. The contacts benchmark involves creating and inserting a new

contact into the device’s contact list. In terms of the contacts’ infor-

mation, each contact object was provided with a name and a mobile

phone number. This was deemed the minimum amount of data needed

to store a new contact in a real-world context.

File system: Similarly, reading files stored on the file system is evaluated.

The test is conducted using a benchmark PNG image of 528 x 528

pixels and a size of 613 kB. In order to separate the device access from

the UI representation, only the time between the base64-encoded string

is decoded in memory and ready for assignment to a view element (but

excluding the actual image rendering to the screen) is measured.

Geolocation: Finally, accessing location information via GPS sensor or

network-based positioning mechanisms is another common use case of

mobile-specific functionality. It is used for routing, to provide location-

based services and hints, and for other localisation purposes. This

benchmark retrieves the longitude and latitude values of the device’s

current location based on the vendor-recommended location retrieval

mechanism, as the geolocation implementation between the frameworks

differed in terms of options granularity.

November 2020 84 Biørn-Hansen, A.

Chapter 4 4.3. Development

4.3.3 Data Gathering

For this experiment, data was gathered on time-to-completion (TTC), CPU us-

age, idle-state RAM occupancy (PreRAM), and busy-state memory occupancy

(RAM). All measurements, except time-to-completion, were recorded using the

Android Studio profiler tool using the default Java sampling method for data

collection, which captures values using a frequent sampling interval of 1 ms.

Because more accurate trace-based inspection of method calls impacts run-

time performance but provides no additional value in terms of the above

metrics, the configuration is sufficient for this experiment. Specifically CPU

and memory usage (RAM) are metrics also included in previous performance

studies, including Dalmasso et al. (2013) and Willocx et al. (2015). The

TTC metric is provided in milliseconds, and describe the duration of time be-

tween invoking a benchmark task in the cross-platform context and having

the results returned from the app’s native-side. An example of this is the

time it takes from requesting accelerometer data until the values are pro-

vided back to the cross-platform context, ready to be displayed to the user.

The CPU usage is the percentage of processing power consumed at peak dur-

ing benchmarking. Within the Android Studio profiler, values are provided

for the specific app; thus, the single highest consumption observed for the

given benchmark is gathered. Idle-state RAM consumption (PreRAM) is the

observed memory consumption in megabytes when the app is running on a

device just before executing a benchmark task. This facilitates the analysis

of fundamental memory requirements among the frameworks included in the

experiment. The busy-state RAM consumption (RAM) is the observed peak

November 2020 85 Biørn-Hansen, A.

Chapter 4 4.3. Development

of memory consumption in megabytes during the execution of a benchmark

task. Specifically, it is the difference between the RAM and PreRAM variables

(denoted as ComputedRAM) that will assist in understanding the actual im-

pact on memory consumption caused by each specific benchmark task and

framework.

All performance benchmarks were conducted on physical mobile devices

rather than on emulated hardware due to subtle differences in receiving re-

alistic sensor input and effects of continued physical execution (Joorabchi

et al., 2013) – to the extent that evasive malware can use a multitude of

heuristics to detect emulators (Mutti et al., 2015). Furthermore, the hetero-

geneity of devices, including attributes such as processor and memory, needs

to be taken into account as stressed by Noei et al. (2017) in their research on

user perception of software quality versus device and app attributes. All the

Android APK app installation files were built for release rather than debug

mode. This was especially required for specific cross-platform frameworks,

as, e.g., Flutter limits the performance of apps built and compiled using de-

bug mode. Nevertheless, to extract information on app-specific usage and

utilisation of CPU and memory on-device, APKs built for release must include

a debuggable property in their Gradle configuration (Google LLC, 2019a).

This is done to enable Android Studio’s profiler tool to gather necessary

profiling data for inspection.

First, the time-to-completion feature benchmark was conducted using

APKs without the debuggable property. Secondly, the APKs were re-

November 2020 86 Biørn-Hansen, A.

Chapter 4 4.3. Development

compiled, this time including debuggable, and conducted the profiling using

the Android Studio profiler environment. This approach should allow the

time-to-completion benchmark to produce results unaffected by potential

monitoring overhead, while afterwards being able to retrieve CPU and RAM

data using the means available. Both processes are illustrated in Figure 4.1,

displaying the extraction of results from within the app while running on a

device, and results from Android Studio.

Install APK
on device

Navigate to respective
task page

Run task

Extract result from app:

Time-to-completion

Close app

Open app

Extract results from

Android Studio profiler:

CPU, PreRAM, RAM

Figure 4.1: The process of gathering performance measurements.

Furthermore, Figure 4.1 illustrates the effort put into the data gather-

ing process. For each loop, as illustrated in the figure, only one (= = 1)

benchmark run was executed. This process was then repeated = = 30 times

for each combination of device, feature and performance metric. In order

to extract results on time-to-completion (TTC), a task would be executed,

and upon completion, the result (in milliseconds) would be displayed within

the app’s user interface, after which the result of the benchmark would be

November 2020 87 Biørn-Hansen, A.

Chapter 4 4.3. Development

transferred manually from the app into a datasheet. As recent research in-

dicates a non-trivial energy consumption overhead related to the use of au-

tomation frameworks (Cruz and Abreu, 2019), process automation related

to data gathering was avoided. This holds true for extracting results on CPU,

PreRAM and RAM, all of which were manually extracted from the Android Stu-

dio profiler. The process involved starting the Android Studio profiler and

letting it record the preferred metrics, executing the benchmark on-device,

then manually inspecting the recorded event timeline to identify the impact

on the metrics caused by the execution of the benchmark. A separation was

made between the process of extracting the time-to-completion metric, and

the process of extracting the remaining metrics; CPU, PreRAM, and RAM. Thus,

all benchmark tests were executed twice to gather the aforementioned results

using different processes: once for TTC, and once more for the remaining three

metrics. There were no automated services or processes involved in the data

gathering process. Every interaction with the app, every extraction of data,

whether from within the app or from the Android Studio profiler, were done

manually.

Benchmarking the JavaScript-based implementations (i.e., Ionic, React

Native and NativeScript) leverages the Date API for calculating elapsed time

towards the TTC metric. While there are other timer units available for

JavaScript, including DOMHighResTimeStamp (W3C, 2018), no other timer

than DateTime for the Dart-based Flutter implementation was identified

(Google LLC, 2019b). Thus, in an attempt to harmonise the timer units,

the JavaScript Date API was used in place of DOMHighResTimeStamp. These

November 2020 88 Biørn-Hansen, A.

Chapter 4 4.3. Development

differences in time units and their resolutions could be seen as a technical

limitation inherently affecting the obtained results. Nevertheless, the lack of

a unified cross-language timer implementation ultimately led to this decision.

Preparation of the included devices was a significant step towards ensur-

ing a unified hardware baseline. Thus, prior to the benchmarking, network-

ing features including WiFi access, Bluetooth connectivity, and mobile data

were turned off, limiting external interference. All background apps were

terminated, and the benchmark started after ensuring in the Android Studio

profiler that overall processor load had abated. After each completed bench-

mark run (i.e., retrieval of one set of results, either CPU, RAM and PreRAM, or

time-to-completion (TTC)), the app would be terminated and restarted, then

proceed to the next benchmark run, and repeat the process in order to avoid

distorted results from warm starts of the app screens which already reside in

memory (Singh, 2017). Restarting the app from scratch also limits caching

of app content and executing previously just-in-time compiled code by the

Android Runtime (Google LLC, 2019c) – although these operating system

level optimisations are generally beyond the control of the app developer, it

was aimed for realistic real-world behaviour of the device.

For this experiment, the performance measurements were conducted on

a total of six mobile devices, as further described in Table 4.2. The devices

included in this experiment represent a wide range of hardware, including

both budget smartphones and state of the art. The number of devices is

also above or on par with most recent related work, for instance Huber et al.

November 2020 89 Biørn-Hansen, A.

Chapter 4 4.3. Development

(2020) (three devices), Barros et al. (2020) (two devices), Willocx et al. (2016)

(four devices).

Table 4.2: List of devices used for measuring performance.

Model CPU (Cores) Memory OS

Samsung S8 2.3+1.7 GHz (Octa) 4GB Android 8.1

Samsung A3 (2016) 1.5 GHz (Quad) 1.5GB Android 7.0

Huawei Mate 10 Pro 2.36+1.8 GHz (Octa) 6GB Android 8.0

Huawei Mate 8 2.3+1.8 Ghz (Octa) 3GB Android 6.0

LG Nexus 5X 1.4+1.8 GHz (Hexa) 2GB Android 8.1.0

Sony Xperia Z5 1.5+2.0 GHz (Octa) 3GB Android 6.0

4.3.4 Data Analysis

In total, = = 16 290 individual data points were manually gathered for this

experiment. Of this, 4 320 data points are related to time-to-completion

(TTC) metric, 3 990 to CPU load, 3 990 to idle-state memory usage (PreRAM),

and 3 990 to memory usage during benchmarking (RAM). Additionally 3 990

data points were analysed, which are the arithmetic computations of RAM

subtracted from PreRAM, providing the actual memory impact of execut-

ing a given benchmark (ComputedRAM). The difference in = data points be-

tween time-to-completion and the other metrics is due to issues with the

NativeScript-based implementation on one of the benchmark devices for

which detailed performance profiling was unavailable.

The resulting raw data was then statistically analysed in order to identify

differences between the frameworks. The native Java implementation served

November 2020 90 Biørn-Hansen, A.

Chapter 4 4.3. Development

as a baseline to which all other frameworks are compared. By respecting

current best practices and state-of-the-art system APIs, one could assume a

high performance (i.e., low utilisation of resources and fast execution times)

for this implementation. However, frameworks might utilise highly optimised

modules that do not make use of the Android (Java) SDK but rely on low-

level C++ code which can potentially outperform the native baseline.

In the following section, descriptive statistics such as mean, minimum,

and maximum values as well as the respective standard deviation are pro-

vided for each combination of feature and framework. For assessing a poten-

tial significance of variance in the results, ANOVA tests (U = .05) along with

effect sizes using omega squared (l2) were performed, following the inter-

pretations provided by Kirk (1996). The effect size provides an indication of

what percentage of the variance between two groups can be explained by the

independent variable. While the ANOVA can provide on whether or not two

(or more) groups are statistically significantly different from each other, the

test does not help in determining where those significant differences are to

be found. Thus, where the tests reported of statistical significance, this was

followed up using Tukey post-hoc tests between each individual framework

with results from the native implementation as a baseline standard. In each

table provided in the subsections to follow, the ? value column indicates the

level of statistical significance to the native implementation results provided

by the Tukey test.

Regarding the memory usage before (PreRAM) and during (RAM) the bench-

November 2020 91 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

marks, the ANOVA (U = .05) was used, alongside Spearman’s rank-order

test to reveal any correlation between idle-state memory usage (PreRAM) and

ComputedRAM.

4.4 Evaluation of Bridge Performance

This section firstly assesses overall performance results independent of indi-

vidual tasks and devices. Consequently, the bigger picture is explored: how

do the frameworks perform in terms of overall time-to-completion, CPU usage,

as well as idle-state and during-task memory occupancy. For Figures 4.2, 4.3,

4.4, 4.5, 4.6 and 4.7, regular outliers are denoted by a black circle (•), while

more extreme outliers by an asterisk (*). Subsequently, each individual task

is assessed on its performance across the frameworks scrutinised.

4.4.1 Time-to-completion

The time-to-completion (TTC) metric describe the duration between when a

foreign function call is invoked from the cross-platform context of the ap-

plication, and when the result of the call is returned via the bridging layer

from the native side. From this metric, the speed-wise performance of each

cross-platform framework can be evaluated, with the native implementation

results as a baseline.

November 2020 92 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Task

Fi
le

sy
st

em

C
on

ta
ct

s

G
eo

lo
ca

tio
n

A
cc

el
er

om
et

er

T
im

e-
to

-c
om

pl
et

io
n

(m
ill

is
ec

on
ds

)

N
at

iv
eS

cr
ip

t
Fl

ut
te

r
Io

ni
c

M
A

M
L/

M
D

2
R

ea
ct

 N
at

iv
e

N
at

iv
e

Fr
am

ew
or

k

Pa
ge

1

10
0

00
0

10
 0

00
10

00
10

0
10

Figure 4.2: Log-scaled boxplot of Time-to-Completion results (in ms) per
framework per task.

November 2020 93 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Figure 4.2 shows a boxplot of time-to-completion per framework per task

and Figure 4.3 (p. 94) depicts a boxplot illustrating the time-to-completion

between the different frameworks, regardless of task.

From a visual assessment of the results, a large number of outliers in the

dataset are found. This could indicate that for the majority of the imple-

mentations, time-to-completion is highly fluctuating. Only NativeScript and

Flutter did not to the same degree show the same fluctuating results; how-

ever, the Flutter implementation has an overall higher mean TTC than the

other frameworks. Nevertheless, results from the Ionic benchmarks indicate

that the framework may cross the 10 000 ms mark for fetching geolocation

data more often than the other implementations.

Fr
am

ew
or

k

NativeScript

Flutter

Ionic

MAML/MD2

React Native

Native

Time-to-completion (milliseconds)

Page 1

100 00010 000100010010

Figure 4.3: Log-scaled boxplot of Time-to-Completion results (in ms) per
framework independent of task and device type.

November 2020 94 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

In order to determine if differences in time-to-completion are statistically

significant between the technical frameworks, a one-way ANOVA was con-

ducted individually per framework with the native implementation as the

baseline. As depicted in Table 4.3 (p. 95), the low values for ? < 0.01 for

all cross-platform frameworks indicate significance except for MAML/MD2.

This, however, aligns well with the intention of a model-driven framework

that generates source code ideally indistinguishable from a native implemen-

tation.

Table 4.3: Overview of overall Time-to-Completion performance results.

Descriptives Analysis against native

Framework Mean SD max min ANOVA ? l2 Tukey ?

Native 278.72 714.98 10401 12 - - -

React Native 656.54 2253.47 15968 19 < .001 .012 = .002

MAML/MD2 295.20 846.71 18453 40 = .690 -.001 = 1.0

Ionic 1021.04 3762.86 29969 26 < .001 .018 < .001

Flutter 354.50 211.88 1234 22 = .006 .004 = .971

NativeScript 200.34 322.80 3620 30 = .007 .004 = .967

November 2020 95 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

4.4.2 Memory Consumption

This experiment differentiates between the general memory usage as occupied

by the app in an idle state (PreRAM), and the memory usage during bench-

marking (RAM). In particular, the actual impact on memory usage caused by

the task benchmarked can be assessed by subtracting the latter value from

the former. That is if an app consumes 85MB PreRAM in idle state, and

100MB RAM during a task run, the memory impact for that task is 15MB –

which is what the ComputedRAM metric reflects. Depending on the program-

ming style and framework architecture, an app might seemingly use little

additional memory for executing tasks but require much idle memory, e.g.,

to continually hold some data structures in memory.

In Tables 4.4, 4.5 and 4.6, summaries of the overall memory usage are

provided, in terms of PreRAM, RAM and ComputedRAM in that respective order.

These results are independent of specific features and devices, and instead,

provide a holistic perspective of the state of memory usage in the technical

artefacts benchmarked. In Figure 4.4, a per-feature boxplot is provided,

separated on framework. While still providing an overview, the boxplot also

sheds light upon the differences in memory usage in more detail than the

tables do. For instance, through visual assessment of Figure 4.4, the Ionic

framework in general uses the most ComputedRAM memory, but also has the

greatest variance.

The idle-state memory usage metric, PreRAM (cf. Table 4.4), is the

November 2020 96 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Feature

Fi
le

sy
st

em

C
on

ta
ct

s

G
eo

lo
ca

tio
n

A
cc

el
er

om
et

er

C
om

pu
te

dR
A

M
 (

in
 M

B
)

4
0

3
0

2
0

1
0

0

N
at

iv
eS

cr
ip

t
Fl

ut
te

r
Io

ni
c

M
A

M
L/

M
D

2
R

ea
ct

 N
at

iv
e

N
at

iv
e

F
ra

m
ew

or
k

Pa
ge

1

Figure 4.4: Linearly scaled boxplot of ComputedRAM results (in MB) per
framework per task.

November 2020 97 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.4: Overview of PreRAM performance results.

Descriptives Analysis against native

Framework Mean SD max min ANOVA ? l2 Tukey ?

Native 49.53 17.03 84.80 15.82 - - -

React Native 57.68 17.30 92.80 25.39 < .001 .053 < .001

MAML/MD2 51.96 16.47 85.60 26.43 = .001 .005 = .233

Ionic 93.78 20.75 125.40 20.75 < .001 .576 < .001

Flutter 101.67 31.51 168.20 29.94 < .001 .514 < .001

NativeScript 63.93 15.48 87.60 37.03 < .001 .147 < .001

Table 4.5: Overview of RAM performance results.

Descriptives Analysis against native

Framework Mean SD max min ANOVA ? l2 Tukey ?

Native 55.01 16.88 95.70 29.34 - - -

React Native 62.22 17.21 99.50 29.99 < .001 .042 < .001

MAML/MD2 57.39 16.40 96.50 36.59 = .007 .004 = .269

Ionic 105.72 24.08 156.50 50.79 < .001 .598 < .001

Flutter 104.95 30.50 176.20 40.79 < .001 .506 < .001

NativeScript 71.49 13.79 92.60 41.52 < .001 .197 < .001

profiler-reported usage when the app is running on the device and have nav-

igated to the respective benchmark’s view, but prior to running the bench-

mark. This way, any potential overhead that cross-platform frameworks im-

pose on the memory occupancy at runtime when compared with the native

baseline results can be measured. As expected, the native baseline has the

November 2020 98 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.6: Overview of ComputedRAM performance results.

Descriptives Analysis against native

Framework Mean SD max min ANOVA ? l2 Tukey ?

Native 5.48 4.13 21.80 0.30 - - -

React Native 4.53 4.13 17.17 0.30 < .001 .012 = .006

MAML/MD2 5.42 3.84 18.00 0.10 = .777 -.001 = 1.0

Ionic 11.93 9.05 38.00 0.90 < .001 .173 < .001

Flutter 3.27 3.48 17.40 0.00 < .001 .076 < .001

NativeScript 7.56 2.61 16.20 0.70 < .001 .067 < .001

lowest reported RAM (cf. Table 4.5) usage. Across all tasks, Flutter has the

highest idle-state memory usage of the studied frameworks, up to a tenfold

increase for the geolocation task compared to native.

To account for possible correlations between PreRAM and ComputedRAM

(cf. Table 4.6), Spearman’s rank-order correlation coefficient test was con-

ducted for each cross-platform implementation against the native baseline.

While all results are statistically significant, the size of correlation varies, as

presented in Table 4.7. To discuss the strength of the correlation size, the

rule of thumb interpretation by Hinkle et al. (1988) is followed. From the

results in Table 4.7, we find that Ionic is the only framework with a positive

correlation, although less than AB = .3 which according to Hinkle et al. should

be interpreted as a negligible correlation. The only non-negligible correla-

tion identified is that between native and Flutter, where Flutter has a low

negative correlation. Looking at Flutter’s results in Tables 4.5 and 4.6, this

November 2020 99 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

could indicate that while Flutter has a high PreRAM, the impact on memory

usage caused by executing the benchmark task – ComputedRAM – is low.

Table 4.7: Results from Spearman’s Rank-Order Correlation Coefficient tests
on PreRAM and ComputedRAM against the native baseline implementation re-
sults.

Framework Observations
(=)

Correlation
coefficient (AB)

Significance
level (?)

React Native AB(1440) -.166 < .001

MAML/MD2 AB(1440) -.162 < .001

Ionic AB(1440) .286 < .001

Flutter AB(1440) -.424 < .001

NativeScript AB(1100) -.117 < .001

Figure 4.5 shows the linearly scaled boxplot for ComputedRAM usage in

megabytes across all tests and devices per framework. We can observe from

the figure that Flutter has a consistent low memory usage, although with a

significant amount of high outliers. Also, results for Ionic show a considerable

variation. NativeScript has the second-highest mean RAM usage, but with

the lowest standard deviation. Only MAML/MD2 exhibits no significant

deviation from the native implementation.

November 2020 100 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Fr
am

ew
or

k

NativeScript

Flutter

Ionic

MAML/MD2

React Native

Native

Page 1

ComputedRAM (MB) usage

4030201000

Figure 4.5: Linearly scaled boxplot of ComputedRAM usage (in MB) across
all tests and devices per framework.

4.4.3 CPU Usage

In this experiment, the CPU usage across all the frameworks as laid out in

Table 4.8 is measured. The mean values were quite concentrated, with React

Native and Ionic standing out as less efficient. Although CPU usage will be

heavily framework dependent, it introduces a possibility to see the impact of

the individual frameworks from the tests.

Figure 4.6 – the boxplot of CPU usage – shows the use in percent across

all tests and devices per framework. MAML/MD2 comes out as the winner,

although quite a few outliers can be observed. NativeScript performs with

the most concentrated values and no particular outliers exposed. The mean

November 2020 101 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.8: Overview of CPU performance results.

Descriptives Analysis against native

Framework Mean SD max min ANOVA ? l2 Tukey ?

Native 17.50 8.24 49.60 5.90 - - -

React Native 23.17 13.57 66.60 1.80 < .001 .059 = .000

MAML/MD2 16.11 8.12 45.90 5.90 = .001 .006 = .101

Ionic 22.35 11.11 59.93 0.09 < .001 .057 = .000

Flutter 19.60 9.64 56.75 0.00 < .001 .013 = .001

NativeScript 15.71 8.38 35.73 5.00 = .001 .010 = .060

values of NativeScript and MAML/MD2 again outperform the native base-

line implementation; however, differences are not significant according to the

ANOVA test.

November 2020 102 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Fr
am

ew
or

k

NativeScript

Flutter

Ionic

MAML/MD2

React Native

Native

CPU %

Page 1

1008060402000

Figure 4.6: Linearly scaled boxplot of CPU usage (in %) across all tests and
devices per framework.

While Table 4.8 and Figure 4.6 both provide CPU usage results indepen-

dent of device and feature, Figure 4.7 provides a more detailed look into

the various frameworks’ per-feature CPU usage performance. Through visual

assessment of Figure 4.7, especially the Contacts API had highly fluctuating

CPU usage across all but the NativeScript-based implementation, indicating

that for specific tasks, cross-platform frameworks may outperform the native

baseline implementation in terms of reliability and consistency of perfor-

mance results.

November 2020 103 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Feature

Fi
le

sy
st

em

C
on

ta
ct

s

G
eo

lo
ca

tio
n

A
cc

el
er

om
et

er

CP
U

(%
)

7
0

6
0

5
0

4
0

3
0

2
0

1
0

0

N
at

iv
eS

cr
ip

t
Fl

ut
te

r
Io

ni
c

M
A

M
L/

M
D

2
R

ea
ct

 N
at

iv
e

N
at

iv
e

Fr
am

ew
or

k

Pa
ge

1

Figure 4.7: Linearly scaled boxplot of CPU results (in %) per framework per
task.

November 2020 104 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

4.4.4 Accelerometer

On Android, it is not possible to query the current value of the accelerome-

ter through a platform-provided API call. Instead, the sensor sends system

events when changes are detected, which can then be handled by appropri-

ate event listeners. For the native application, the benchmark activity can

directly register an event listener on benchmark start and access the sensor

values from an upcoming update event. This results in the by far lowest time

to completion. In contrast, MAML/MD2 apps internally use a custom event-

action cycle to handle the separation of user interface or data changes and

their effect. Requesting the sensor value requires registering for an update of

the SensorProvider, which in turn needs to wait for an upcoming sensor value

update. Therefore, more time is required for the additional cycle, which is

reflected in a two times slower retrieval as depicted in Table 4.9.

For the React Native implementation, it was experimented using the op-

tion updateInterval provided by the observable-based accelerometer plu-

gin. While the default interval was 100ms, it was found to directly effect

the benchmark results, consistently reporting ~100ms results. Lowering the

interval to 0ms, the app would become unresponsive. However, at a 50ms

interval, the accelerometer benchmark reported values both above and below

the set interval, rendering it more similar to the other implementations.

Results from benchmarking the accelerometer sensor indicate that the

framework choice has a statistically significant impact on performance across

November 2020 105 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

all considered metrics, although with a varying effect size. Below, each metric

is investigated in detail to uncover differences in performance impact between

the cross-platform frameworks using results from the native implementation

as the baseline.

Time-to-Completion for Accelerometer

By inspecting the Tukey post-hoc results in Table 4.9, it is evident that

MAML/MD2, Ionic, and Flutter are all statistically significantly different

from the native implementation in terms of time-to-completion results for

the accelerometer task. React Native and NativeScript are reported as non-

significant in the same context. Based on the descriptive statistics, the native

implementation has the lowest mean and the lowest reported minimum value

but also exhibits the second-highest standard deviation. React Native and

NativeScript both have low mean and standard deviation values which in-

dicate a consistent accelerometer performance among the implementations

benchmarked. The Flutter implementation is the furthest away from the

native implementation for this feature, with a seven-fold mean value com-

pared to native, the highest standard deviation, and the maximum value in

absolute terms.

)8<4 : � (1074, 5) = 657.217, ? < .001, l2 = .752 (4.1)

November 2020 106 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.9: Results per framework on accelerometer performance, metric:
Time-to-Completion (ms).

Framework Mean SD max min Tukey ?

Native 48.1 51.87 682 12 -

React Native 65.1 20.26 110 19 = .095

MAML/MD2 97.3 30.48 158 40 < .001

Ionic 76.3 23.75 124 26 < .001

Flutter 357.2 133.25 900 22 < .001

NativeScript 65.5 24.30 136 30 = .082

CPU Usage for Accelerometer

Looking to the Tukey post-hoc results in Table 4.10, the benchmark results

from React Native and MAML/MD2 are statistically significantly different

from the native implementation, while Ionic, Flutter, and NativeScript are

non-significant. Results from the MAML/MD2 implementation indicate that

it has a lower mean CPU usage, lower standard deviation, and a lower max-

imum value than any other implementation, including the native baseline.

React Native, on the other hand, uses more CPU capacity than all other con-

sidered frameworks, both in mean and maximum values. The most native-like

results are here provided by Flutter, with a mean value, standard deviation,

and maximum value close to the native implementation, although with a

lower minimum value.

�%* : � (984, 5) = 29.527, ? < .001, l2 = .126 (4.2)

November 2020 107 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.10: Results per framework on accelerometer performance, metric:
CPU (%).

Framework Mean SD max min Tukey ?

Native 17.2 8.52 41.8 5.9 -

React Native 23.6 13.00 64.9 1.8 < .001

MAML/MD2 13.2 4.65 29.5 5.9 < .001

Ionic 20.0 8.80 49.5 2.9 = .027

Flutter 18.4 7.30 31.9 .9 = .791

NativeScript 14.6 8.30 31.7 5.0 = .227

PreRAM Usage for Accelerometer

The Tukey test in Table 4.11 indicates that all but one implementation are

statistically significantly different from the native implementation results.

MAML/MD2 has the most native-like usage of PreRAM. On the contrary,

Flutter has the highest mean, highest standard deviation, and the highest

maximum and minimum values. Closely following Flutter is the Ionic

implementation, which shares similarities regarding high values across all

statistical columns.

%A4'�" : � (984, 5) = 224.237, ? < .001, l2 = .530 (4.3)

November 2020 108 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.11: Results per framework on accelerometer performance, metric:
PreRAM (MB).

Framework Mean SD max min Tukey ?

Native 46.95 15.80 78.9 23.3 -

React Native 58.60 17.55 92.8 37.8 < .001

MAML/MD2 50.98 16.83 81.7 27.0 = .434

Ionic 95.06 21.44 125.4 59.8 < .001

Flutter 101.01 30.23 168.2 62.9 < .001

NativeScript 61.05 15.93 81.9 37.0 < .001

ComputedRAM Usage for Accelerometer

The Tukey tests in Table 4.12 reports that React Native, MAML/MD2, and

Flutter are statistically non-significant compared to native, while Ionic and

NativeScript are significantly different. Both Ionic and NativeScript have

higher means, although only Ionic has a higher standard deviation, and a

three-fold maximum value compared to native. React Native and MAML/

MD2 are comparable in performance, although their mean values are lower

than the native implementation, the standard deviation comparable, and

maximum values lower. The mean values indicate that Flutter has the lowest

mean ComputedRAM usage, although this needs to be seen in relation to the

highest mean PreRAM usage discussed in the previous section.

�><?DC43'�" : � (984, 5) = 69.015, ? < .001, l2 = .256 (4.4)

November 2020 109 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.12: Results per framework on accelerometer performance, metric:
ComputedRAM (MB).

Framework Mean SD max min Tukey ?

Native 3.58 2.76 10.1 .9 -

React Native 3.00 2.80 8.7 .5 = .815

MAML/MD2 2.99 2.83 9.7 .1 = .808

Ionic 9.59 8.31 30.4 1.0 < .001

Flutter 2.77 3.42 17.4 .0 = .506

NativeScript 7.09 2.45 11.0 .7 < .001

4.4.5 Contacts

As for implementation and benchmarking challenges, when benchmarking on

devices without SIM cards, the process of creating and saving new contacts

could fail without any exceptions thrown by the development framework.

Using the adb logcat CLI tool to inspect an unfiltered stream of logs from

the device over USB, it was possible to manually look for relevant silent

failures. The lack of a signed-in Google account was identified as the primary

reason why the contacts API did not function as expected. This exception

was mitigated by ensuring the device had indeed access to a signed-in Google

account.

Results from benchmarking contacts performance indicate that the frame-

work employed has a statistically significant impact on performance across

November 2020 110 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

all metrics included, although with a varying effect size. Below, each metric

is investigated in detail to uncover differences in performance impact between

the cross-platform frameworks using results from the native implementation

as the baseline.

Time-to-Completion for Contacts

As reported in Table 4.13, all but the MAML/MD2 based implementation

are statistically significantly different from the native baseline results. For

this benchmark, MAML/MD2’s native-like performance is indicated by a

Tukey ? close to 1.0. Mean-wise, the NativeScript implementation has the

highest (worst) score with a three-fold increase in TTC compared to the na-

tive baseline, while MAML/MD2’s performance is, in fact, better than the

native baseline by about 2 (two) milliseconds. While NativeScript has the

highest mean value, Flutter’s performance is seemingly the least consistent

framework in this test, with a TTC varying from 95ms to 1 234ms.

)8<4 : � (1074, 5) = 275.815, ? < .001, l2 = .560 (4.5)

November 2020 111 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.13: Results per framework on contact performance, metric: Time-
to-Completion (ms).

Framework Mean SD max min Tukey ?

Native 95.43 26.93 241 53 -

React Native 159.61 52.40 437 91 < .001

MAML/MD2 93.06 26.55 253 43 = .0.999594

Ionic 193.58 64.70 482 83 < .001

Flutter 242.31 135.64 1234 95 < .001

NativeScript 321.07 61.41 741 196 < .001

CPU Usage for Contacts

Looking at the descriptive statistics in Table 4.14, only two implementa-

tions have statistically significantly different means compared to the native

implementation, namely React Native and Ionic. In this benchmark, the

MAML/MD2 implementation has a lower mean CPU utilisation, lower stan-

dard deviation, lower maximum value and equal minimum value to the native

implementation.

�%* : � (984, 5) = 13.407, ? < .001, l2 = .059 (4.6)

November 2020 112 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.14: Results per framework on contact performance, metric: CPU (%).

Framework Mean SD max min Tukey ?

Native 16.69 10.06 49.6 6.0 -

React Native 22.10 15.48 64.2 5.0 < .001

MAML/MD2 13.69 6.80 37.1 6.0 = .155

Ionic 21.35 13.46 59.9 3.0 = .003

Flutter 19.09 12.64 56.7 0 = .381

NativeScript 15.61 8.54 30.7 6.0 = .981

PreRAM for Contacts

From Table 4.15, we find that the native implementation has the lowest

mean, maximum and minimum values. As indicated by the Tukey post-hoc

test, results from the MAML/MD2 implementation closely resemble those

of the native counterpart at a highly non-significant level of difference. All

other implementations are statistically significantly different from the native

baseline, with Flutter furthest away with the highest results across all metrics

– in several cases a two-fold increase. The lowest standard deviation is found

in the NativeScript implementation, although the mean memory usage is

higher than in native, React Native and MAML/MD2.

%A4'�" : � (984, 5) = 215.704, ? < .001, l2 = .520 (4.7)

November 2020 113 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.15: Results per framework on contact performance, metric: PreRAM

(MB).

Framework Mean SD max min Tukey ?

Native 48.18 17.30 79.7 24.8 -

React Native 58.43 17.89 87.2 30.5 < .001

MAML/MD2 50.08 16.24 84.6 28.1 = .954

Ionic 93.50 21.48 119.1 37.3 < .001

Flutter 101.35 29.88 154.9 57.7 < .001

NativeScript 62.36 15.60 83.0 38.0 < .001

ComputedRAM for Contacts

While Flutter has the lowest reported mean and minimum values (cf. Ta-

ble 4.16), the standard deviation is slightly higher than what is found in the

native baseline results. Both React Native and MAML/MD2 have results

indicating native-like performance, while Ionic and NativeScript are both

statistically significantly different from native. Ionic has the highest values

across all metrics in this test.

�><?DC43'�" : � (984, 5) = 75.003, ? < .001, l2 = .272 (4.8)

November 2020 114 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Table 4.16: Results per framework on contact performance, metric:
ComputedRAM (MB).

Framework Mean SD max min Tukey ?

Native 3.72 2.81 9.8 .5 -

React Native 3.13 2.74 8.9 .3 = .749

MAML/MD2 3.15 2.84 10.1 .4 = .780

Ionic 9.46 7.50 27.8 1.1 < .001

Flutter 2.75 3.19 12.5 0 = .224

NativeScript 7.08 2.37 11.1 5.0 < .001

4.4.6 File System Access

File system access frequently occurs when data such as images are stored

on-device or on the external flash storage (as opposed to the system-provided

database which can be used to store structured data in the order of mag-

nitude below 1MB per entry). Typically, file system access is performed

asynchronously to avoid blocking the main UI thread until the data is

persisted or retrieved. For this task, it is worth noting that no asynchronous

interface was available in NativeScript for accessing the file system. Thus,

the only option was to make use of the synchronous interface, rendering the

implementation of the app somewhat different than those for the other apps.

November 2020 115 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

Time-to-Completion for File System Access

As reported in Table 4.17, NativeScript has the most native-like performance,

showing even lower mean, standard variation, and maximum values compared

to native. The MAML/MD2 implementation has the third-best performance

in the test and cannot be regarded as statistically different from native.

Results indicate that Flutter has the overall highest values across all metrics,

with a six-fold increase in mean time-to-completion compared to the baseline.

)8<4 : � (1074, 5) = 459.062, ? > .001, l2 = .680 (4.9)

Table 4.17: Results per framework on file system performance, metric: Time-
to-Completion (ms).

Framework Mean SD max min Tukey ?

Native 82.34 22.93 166 32 -

React Native 154.74 45.79 281 70 < .001

MAML/MD2 103.38 25.84 158 51 = .520

Ionic 360.35 87.84 644 157 < .001

Flutter 528.02 263.91 1197 301 < .001

NativeScript 75.58 19.18 155 44 = .994

November 2020 116 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

CPU Usage for File System Access

As reported in Table 4.18, across MAML/MD2, Flutter, and NativeScript,

the differences from the native baseline are minimal. NativeScript has the

lowest mean and maximum values, although higher standard deviation and

minimum values than native. Both React Native and Ionic are statistically

significantly different from the native implementation, with the former having

the lowest mean usage, but the highest standard deviation (cf. Table 4.18).

�%* : � (984, 5) = 38.270, ? < .001, l2 = .158 (4.10)

Table 4.18: Results per framework on file system performance, metric: CPU

(%).

Framework Mean SD max min Tukey ?

Native 18.20 7.33 42.9 6 -

React Native 27.45 14.38 66.6 1.8 < .001

MAML/MD2 19.68 9.53 45.9 6.9 = .739

Ionic 28.19 10.82 54.6 .9 < .001

Flutter 18.93 7.51 36.0 0 = .984

NativeScript 17.00 9.24 35.7 6.9 = .944

November 2020 117 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

PreRAM Usage for File System Access

By inspecting the mean variation in Table 4.19, we find significant differ-

ences in minimal and maximal memory requirements between the frame-

works. While React Native, MAML/MD2 and NativeScript are relatively

close to the native implementation in terms of PreRAM usage, both Ionic and

Flutter consume a statistically significantly larger amount of memory, the

latter close to a two-fold increase compared to native.

%A4'�" : � (984, 5) = 180.822, ? < .001, l2 = .476 (4.11)

Table 4.19: Results per framework on file system performance, metric:
PreRAM (MB).

Framework Mean SD max min Tukey ?

Native 54.08 17.59 84.8 26.6 -

React Native 57.37 16.84 87.7 36.1 = .685

MAML/MD2 55.87 16.43 83.8 30.2 = .968

Ionic 93.91 19.67 120.1 64.7 < .001

Flutter 103.01 33.56 167.6 29.9 < .001

NativeScript 63.98 14.67 83.9 43.0 = .004

November 2020 118 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

ComputedRAM Usage for File System Access

For this test, Ionic particularly stands out as performing relatively subpar

when compared to the native implementation, with significant variations

from max 38.0 to min 2.8, observing a standard deviation of 7.92 more than

double the size relative to all other frameworks but the native performance

(cf. Table 4.20) The MAML/MD2 implementation has the closest-to-native

performance, with a Tukey ? of 1.0. While both Ionic and Flutter are sta-

tistically significantly different from the native baseline on mean values, the

Flutter implementation has a much lower mean than native.

�><?DC43'�" : � (984, 5) = 174.612, ? < .001, l2 = .467 (4.12)

Table 4.20: Results per framework on file system performance, metric:
ComputedRAM (MB).

Framework Mean SD max min Tukey ?

Native 8.07 5.46 21.8 .3 -

React Native 9.41 3.59 17.2 3.3 = .101

MAML/MD2 8.14 3.23 18.0 1.0 = 1.000

Ionic 18.45 7.92 38.0 2.8 < .001

Flutter 3.83 3.72 16.6 .4 < .001

NativeScript 9.30 1.84 12.7 2.3 = .378

November 2020 119 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

4.4.7 Geolocation

In contrast to the accelerometer sensor, the GPS module in Android is not

just event-based, but access is provided through an intermediate location

manager (FusedLocationProvider as used by the native implementation

or LocationManager), which aggregates different location providers such as

GPS or a WiFi network. The manager object directly supports querying

for the last known location. To retrieve up-to-date location values and avoid

using cached values, which are updated according to a system-controlled rate,

the time to request a new location value through a high accuracy request is

measured. Nevertheless, the origin of the retrieved value may be based on

previous network information, the GPS sensor, or a fused value based on

different sources and varying accuracy.

Time-to-Completion for Geolocation

There is an internal process of waking up the GPS sensor for power reasons

which leads to multi-second delays until a location value is retrieved from the

hardware sensor. This occurs independently of the data collection method

of completely closing and restarting the app as Android’s location manager

applies its own criteria on when the GPS sensor is queried. Consequently,

minimum and maximum values in time-to-completion depicted in Table 4.21

exhibit a wide variation for all frameworks.

November 2020 120 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

The most prominent outlier is the Ionic-based implementation. As the

code already implements the geolocation provider options as suggested by

the Ionic team (Lynch, 2018), no further optimisation of code or the under-

lying geolocation plug-in was implemented. Implementing optimisations for

one framework would necessitate similar optimisations also in the remaining

artefacts, but this was not the objective of this experiment. From searching

for information on the issue, numerous questions regarding the geolocation

feature in Ionic were encountered, which is also noted as the motivation be-

hind the work of Lynch (2018). Thus, the results should be treated as what

one would expect of the framework without any optimisations.

)8<4 : � (1074, 5) = 23.997, ? < .001, l2 = .096 (4.13)

Table 4.21: Results per framework on geolocation performance, metric:
Time-to-Completion (ms).

Framework Mean SD max min Tukey ?

Native 889.05 1244.50 10401 58 -

React Native 2246.74 4122.66 15968 37 = .002

MAML/MD2 887.07 1551.66 18453 48 = 1.000

Ionic 3453.94 6991.73 29969 63 < .001

Flutter 291.18 165.98 684 71 = .560

NativeScript 339.24 588.07 3620 45 = .560

November 2020 121 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

CPU Usage for Geolocation

Drawing from the results presented in Table 4.22, only Flutter is statistically

significantly different from the native implementation in terms of mean per-

formance. While MAML/MD2 has the most native-like performance, with a

Tukey ? value of 1.0, NativeScript has a lower mean CPU usage than native

although with a slightly higher standard deviation. Minimum and maxi-

mum values of the NativeScript implementation closely resemble those also

reported by the native implementation.

�%* : � (1014, 5) = 9.273, ? < .001, l2 = .041 (4.14)

Table 4.22: Results per framework on geolocation performance, metric: CPU

(%).

Framework Mean SD max min Tukey ?

Native 17.94 6.64 32.8 6.9 -

React Native 19.58 9.58 43.6 1.8 = .458

MAML/MD2 17.83 8.73 44.4 6.0 = 1.000

Ionic 19.84 8.56 45.8 9.9 = .290

Flutter 22.00 9.80 41.9 0 < .001

NativeScript 15.65 7.55 31.9 5.0 = .215

November 2020 122 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

PreRAM Usage for Geolocation

Drawing from the results in Table 4.23, MAML/MD2 is relatively close to the

native implementation in terms of PreRAM usage, although having a slightly

higher mean. Both Ionic and Flutter require significantly more memory than

native, at close to- or above a twofold increase. React Native and Native-

Script are closer to native than the two frameworks previously mentioned.

%A4'�" : � (1014, 5) = 207.898, ? < .001, l2 = .504 (4.15)

Table 4.23: Results per framework on geolocation performance, metric:
PreRAM (MB).

Framework Mean SD max min Tukey ?

Native 48.91 16.66 79.1 15.8 -

React Native 56.34 16.97 86.1 25.4 = .009

MAML/MD2 50.94 15.90 85.6 26.4 = .940

Ionic 92.66 20.49 125.1 20.5 < .001

Flutter 101.34 32.46 165.4 37.0 < .001

NativeScript 67.24 15.24 87.6 38.0 < .001

November 2020 123 Biørn-Hansen, A.

Chapter 4 4.4. Evaluation

ComputedRAM Usage for Geolocation

As reported in Table 4.24, for this task, the implementations written in

both React Native and Flutter are statistically significantly different from

the native baseline in a positive fashion, as they both consume less mem-

ory. NativeScript’s memory requirement resembles that of the native imple-

mentation, while both MAML/MD2 and Ionic used more memory than the

aforementioned frameworks, although the latter used significantly more.

�><?DC43'�" : � (1014, 5) = 59.239, ? < .001, l2 = .222 (4.16)

Table 4.24: Results per framework on geolocation performance, metric:
ComputedRAM (MB).

Framework Mean SD max min Tukey ?

Native 6.56 2.92 13.5 1.6 -

React Native 2.60 2.91 11.8 0.5 < .001

MAML/MD2 7.40 3.20 14.2 2.6 = .542

Ionic 10.26 9.18 32.8 .9 < .001

Flutter 3.74 3.48 16.0 .2 < .001

NativeScript 6.97 2.84 16.2 .7 = .976

November 2020 124 Biørn-Hansen, A.

Chapter 4 4.5. Discussion

4.5 Discussion

To provide a general overview of the development technologies’ performance,

they were weighted based on each measurement metric’s mean value. The

framework with the lowest mean is assigned a score of 6 (best), the highest

mean a score of 1 (worst), and the remaining scores are assigned in the

same order to the remaining frameworks. This inverse ranking of the six

considered technologies allows us to identify the overall performance-wise

best- and worst-scoring technologies in this investigation. For this weighting,

there is no separation between the different mobile devices or benchmarking

tasks (e.g., geolocation, accelerometer, etc.). Instead, the weighting is based

on the results presented in Sections 4.4.1, 4.4.2 and 4.4.3.

Table 4.25: Weighting of frameworks on bridge performance, ordered by sum∑
(higher is better).

Framework TTC CPU PreRAM RAM ComputedRAM
∑

Native 5 4 6 6 3 24

MAML/MD2 4 5 5 5 4 23

NativeScript 6 6 3 3 2 20

React Native 2 1 4 4 5 16

Flutter 3 3 1 2 6 15

Ionic (Cordova) 1 2 2 1 1 7

Performance-wise, the model-driven MAML/MD2 framework closely re-

sembles the overall
∑

of the native development approach, according to Ta-

ble 4.25. This is unlike several of the more industry-adopted frameworks

November 2020 125 Biørn-Hansen, A.

Chapter 4 4.5. Discussion

scoring lower on the weighting. Indeed it is surprising that there is a seeming

lack of industry adoption of model-driven frameworks (Biørn-Hansen et al.,

2019b) when they perform so close to the native performance baseline. Thus,

findings derived from this current experiment may imply that practitioners

and industry decision-makers should look more towards the model-driven

approach, based on the performance results presented in this experiment.

As Table 4.25 illustrates, the hybrid approach-based Ionic framework (re-

lying on Cordova for native access) has the overall lowest score. It ranks low-

est on three of five metrics, however, still outperforms React Native on CPU

usage and Flutter on PreRAM usage by one point each. The framework’s over-

all ranking is in line with previous studies on performance in cross-platform

applications, including El-Kassas et al. (2016), Katevas et al. (2016), and

Abousaleh et al. (2014).

Flutter has PreRAM and RAM scores comparable to the Ionic framework’s

results, however has the best score for ComputedRAM. This could indicate

that while Flutter has high overall memory requirements, the effect on the

memory usage when executing a task is lower than for the other frameworks.

In terms of TTC and CPU, Flutter has an average score. No previous academic

efforts to empirically investigating the performance of the Flutter framework

have been identified.

What Table 4.25 best illustrates is some of the trade-off developers face.

If time-to-completion is the most critical metric, thus adopting NativeScript,

November 2020 126 Biørn-Hansen, A.

Chapter 4 4.6. Conclusion

this will come at the cost of ComputedRAM. If minimising ComputedRAM is

important, Flutter scores the highest, but also has the lowest PreRAM score,

meaning it overall consumes the most memory prior to executing a task (ge-

olocation, contacts, etc.). As a developer or decision-maker deciding on a

cross-platform development framework, having a clear idea of product re-

quirements and specifications is of paramount importance.

4.6 Conclusion

In the experiment described in this chapter, the performance overhead im-

posed by cross-platform mobile development frameworks in Android apps

compared to the native development approach has been investigated. Specif-

ically, the performance of native-side foreign function interface calls from a

cross-platform context has been addressed, to invoke and run device and

platform functionality, including geolocation API, contacts API, file sys-

tem integration, and accelerometer integration. Data has been gathered on

five metrics: CPU usage, idle-state memory consumption (PreRAM), during-

benchmark memory consumption (RAM), the difference between RAM and

PreRAM (ComputedRAM), and the lapsed time from invoking a benchmark task

until data is returned from the native side (time-to-completion (TTC)).

In total, = = 16 290 individual data points related to these metrics were

manually gathered for analysis through a rigorous and time-consuming data

November 2020 127 Biørn-Hansen, A.

Chapter 4 4.6. Conclusion

collection process. Both the statistical analysis and a weighted evaluation of

the results are used to investigate how well the developed artefacts perform

compared to a developed native baseline artefact.

(D1 − '&1.1: To what degree do cross-platform mobile development

frameworks impose additional performance-related overhead when

compared to native mobile development?

Evidently, the results presented in Table 4.25 suggest that using one of the

cross-platform frameworks tested will impose additional performance over-

head compared to native in the context of executing native-side function-

ality. The severity of this overhead, however, ranges from rather small in

the case of MAML/MD2, to more than threefold in the case of Ionic when

compared on the final weighting
∑

. Nevertheless, while the native approach

has the highest overall
∑

(best performance output), other cross-platform

frameworks were found to possibly be more performant on specific metrics,

such as NativeScript’s time-to-completion and CPU usage, and Flutter’s min-

imal increase in memory usage during task benchmarking, as reported in the

ComputedRAM column.

The results indicate that the use of cross-platform frameworks for the

development of mobile apps may lead to decreased performance compared

to the native development approach. Nevertheless, the results also indicate

that specific cross-platform frameworks can perform equally well or even

November 2020 128 Biørn-Hansen, A.

Chapter 4 4.6. Conclusion

better than native on specific metrics but no framework scores best across all

features in this experiment. These findings reinforce the importance of well-

defined technical requirements and specifications, without which deciding on

a cross-platform framework or overall development approach can potentially

lead to underperforming apps. In the upcoming chapter, the performance of

cross-platform apps is further scrutinised within the context of animations

and user interfaces.

November 2020 129 Biørn-Hansen, A.

Chapter 5

Animation Performance of

Mobile Development

Approaches

This experiment investigates the performance of animated user interfaces in

native and cross-platform mobile apps. The chapter firstly summarises the

problem statement, research questions, and the experimental setup. Subse-

quently, the artefact development is described, followed by the evaluation

of animation performance and a thorough discussion of results, metrics and

tools.

130

Chapter 5 5.1. Awareness of Problem

5.1 Awareness of Problem: Performance of

Cross-Platform User Interfaces

Revisiting the Objective. In the previous experiment described in Chap-

ter 4, the performance of the underlying communication bridges which cross-

platform frameworks use to communicate with native code and functionality

was assessed. In the experiment described in the current chapter, the perfor-

mance of cross-platform frameworks and apps is further scrutinised towards

answering the first thesis research question ('&1) regarding performance as

described in Section 1.4, but change the focus to the user interface, and the

fluidity of animations. The review of related work in Chapter 2 indicated

that user-focused research within cross-platform development is sparse and

in need of additional empirical efforts to extend the body of knowledge.

Background and Literature Synopsis. Nowadays, it is common to en-

counter animated graphical user interfaces in mobile apps (Trapp and Yas-

min, 2013), with use cases including those of branding purposes, commu-

nication of information and interaction patterns, training, and to enhance

overall user experience (Huhtala et al., 2010). Thus, it should be safe to

assume that animations and transitions are integral parts of modern user in-

terfaces, performance- and view-estate constrained handheld mobile devices.

Communication of Research: This is an extended version of the publication in
MDPI Sensors - Special Issue on Mobile Computing and Ubiquitous Networking (2019a).
The content and format has been modified to fit the thesis narrative. Replication package
is available in Appendix C.

November 2020 131 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

Although the importance of high-performing user interfaces is clear (Reddi

et al., 2018), little empirical research has been conducted on the performance

of animated user interfaces in cross-platform apps. A longitudinal study on

user experience and user perspectives by Angulo and Ferre (2014) indicated

that there were differences between Android and iOS users on how they per-

ceived cross-platform apps. Indeed, 91% of Android users and 79% of iOS

users found the cross-platform app to behave as- or similar to- the native

baseline app. This could, for instance, indicate that cross-platform frame-

works do a better job implementing Android-specific user interface guidelines

than for iOS. We find that mentions of the importance of user experience

and native-like user interfaces flourish in the literature (e.g., Heitkötter et al.

(2012a), Lachgar and Abdali (2017), Latif et al. (2016)), alas research – es-

pecially of empirical nature – has not been identified to the same extent.

This experiment targets parts of this gap, being that of empirical evaluation

of the hardware-wise performance outputted by cross-platform development

frameworks, and the tools used for analysing and gathering of performance

measurement data.

5.2 Suggestion: Measure Animation Perfor-

mance

This section is dedicated to presenting the research questions and the research

methods employed, thereby the cross-platform frameworks scrutinised, equip-

November 2020 132 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

ment utilised, and an overview of performance metrics and tools used for

measurement and data gathering. In order to investigate the performance

of user interfaces in cross-platform frameworks, a systematic approach for

conducting the experiments and data gathering is employed. The user inter-

face performance of three cross-platform frameworks is benchmarked, with

two native apps for the baseline performance comparisons. To ensure verifi-

cation of results and the possibility of re-using technical artefacts in future

research, the technical development conducted as part of this experiment has

been open-sourced on Github (see Appendix C).

5.2.1 Research Questions

Based on the assessment of existing research on performance in cross-platform

development, as presented in Chapter 2, three research questions for this

experiment have been formed. These cover the suitability of the metrics in-

cluded in the experiment, limitations imposed by profiling tools, and differ-

ences in performance between the mobile platforms. Together, they provide

new knowledge used towards answering the first thesis research question,

'&1: How do apps developed using cross-platform mobile development

approaches and associated frameworks perform compared to native mobile

apps in terms of hardware and platform utilisation?

This experiment also assesses the metrics used, the tools used for pro-

November 2020 133 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

filing and insight, alongside the performance measurements. The research

questions are answered as part of the discussion in Section 5.5, where each

question is re-iterated and answered throughout the subsections. The three

research questions for this experiment are as follows,

(D1 − '&1.2: Do the performance metrics fulfil their purpose in researching

animated user interfaces in mobile apps?

(D1 − '&1.3: How well do the official performance insight tools cater to the

profiling of animation and transition performance in the cross-platform

apps developed?

(D1 − '&1.4: Which of the platforms, iOS or Android, requires the least

amount of device- and hardware resources in order to execute and run

performant animations and transitions?

5.2.2 Technologies

To answer the research questions previously presented, a comprehensive as-

sessment of performance has been conducted. A total of eight apps have

been developed using the frameworks and technologies listed in Table 5.1:

two native apps in addition to the three cross-platform frameworks which

each generate an Android and an iOS app to ensure cross-platform deploy-

November 2020 134 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

ability. The two native apps developed enable gathering of baseline perfor-

mance results to accurately understand and measure how the cross-platform

apps perform in comparison. Making any performance-oriented comparisons

without the presence of baseline performance results would be inherently

challenging. The use of native baselines is also found in other studies, such

as in both Ciman and Gaggi (2016)’s energy consumption analysis study,

and in Willocx et al. (2015)’s performance study.

Table 5.1: Frameworks and technologies scrutinised for animation perfor-
mance.

Technology Version # Approach Language IDE

Native Android 26 (SDK) Native Kotlin Android Studio
Native iOS Xcode 9 Native Swift Xcode
React Native 0.49.5 Interpreted JavaScript Text editor
Ionic 3.15.2 Hybrid JavaScript Text editor
Xamarin Forms 2.4.0.38779 Cross-Compiled C# Xamarin Studio

It is important to note that no optimisation was conducted to any of the

implementations or codebases. While one could do extensive work in order

to optimise performance in all frameworks and technologies included in this

experiment, such work is beyond the scope of the experiment. Only the

performance delivered out of the box is of interest in this experiment, as this

is what developers can expect to work with after initialising a new project.

November 2020 135 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

5.2.3 Experimental Setup

The tests were conducted using the mobile devices listed in Table 5.2. At the

time of the experiment, both devices had installed the latest operating system

updates available. During the tests, both devices were set to maximum screen

brightness, had mobile data, GPS and Bluetooth turned off, and did not have

any other apps running in the background simultaneously. Each app was

restarted prior to each experiment and task, this to help us generate results

unaffected by previous benchmark runs.

Table 5.2: List of mobile devices included in the animation experiment.

Model Released OS (version) Memory Processor

LG Nexus 5X 2015 Android (8.0) 2GB Snapdragon 808
Apple iPhone 6 2014 iOS (11.1.1) 1GB Apple A8

5.2.4 Metrics and Data Gathering Tools

The following list of metrics has been recorded in this study, deemed of

importance to properly scrutinise the performance and possible penalties

introduced with the use of cross-platform development frameworks.

November 2020 136 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

Metrics Measured

Frames-per-second (FPS). Suggested as an important metric for measur-

ing fluidity of movement in graphical user interfaces (Basques, 2018,

Reddi et al., 2018). Animations and transitions that are not displayed

in a constant close-to-60 FPS can be perceived as ”janky” according

to some studies (e.g., Lewis (2017)), a term used to describe partially

unresponsive interfaces, or interfaces that underperform. Measuring

jank is also suggested by Reddi et al. (2018). Contrastingly, at 60 FPS,

an interface and its animated elements are fluently displayed (Lewis,

2017). The importance of measuring FPS is put to the test throughout

this experiment. During the experiments, each animation and transi-

tion is executed twice and the data from the second run is used, this due

to constraints in certain frameworks as loading the Lottie animation file

contributed to some perceivable lag.

CPU usage. Apps generated in a cross-platform fashion have been reported

to differ in terms of CPU usage between the various development frame-

works (Ciman and Gaggi, 2016, Willocx et al., 2015). This work ex-

tends such previous work, and apply methods for measuring CPU usage

specifically in the context of animations. Thus, this experiment fills a

knowledge gap in terms of user experience of cross-platform generated

apps, and the frequently encountered inclusion of CPU as a mean for

measurement makes including it here as well ideal, also to discuss the

suitability of the metric in Section 5.5.

November 2020 137 Biørn-Hansen, A.

Chapter 5 5.2. Suggestion

Device memory (RAM) usage. Mobile devices are significantly and in-

herently constrained by the performance of the underlying hardware.

Especially the availability of memory can hamper the user experience;

hence the inclusion of the RAM usage measurement in the tests con-

ducted.

GPU memory usage. Data on GPU memory usage was extracted for Android

only. It was found that on iOS devices, GPU and CPU seem to share the

same memory (Unity, n.d.) – alas, no method for proper extraction of

GPU-only memory usage was identified. As such, Table 5.4 displaying

the performance results does not present GPU memory usage for the iOS

apps.

Tools Overview

A handful of tools were selected to measure the four performance-oriented

metrics listed previously. For measuring iOS performance, all but one metric

could be measured using Instruments, the official profiling tool from Ap-

ple. The one metric which could not be measured using Instruments was

GPU memory usage, as briefly explained in the last section of 5.2.4. Measur-

ing Android performance involved the use of both command-line interfaces

(CLIs) and a graphical profiling tool, the former being adb (Android Debug

Bridge) and the latter being Android Studio, the official development IDE

by Google. Android Studio had previously been equipped with a GPU Monitor

as part of its array of profiling tools, but it was deprecated and removed from

November 2020 138 Biørn-Hansen, A.

Chapter 5 5.3. Development

the latest version of the IDE as of the time of writing (Android Developer,

n.d.), hence the need for the CLIs to gather additional insights not provided

by Android Studio.

Table 5.3: Tools associated with animation performance metrics.

Platforms Metrics Tools

Android FPS adb systrace

RAM Android Studio Profiler
CPU % Android Studio Profiler
GPU RAM adb dumpsys

iOS FPS Instruments: Core Animation
RAM Instruments: VM Tracker

CPU % Instruments: Time Profiler
GPU RAM -

5.3 Development of Artefacts

This section is dedicated to presenting the three animations and transitions

implemented as parts of the artefacts, and an overview of the artefacts’ vi-

sual design baseline. This experiment strives to present each animation and

transition implementation in a level of detail rendering reproducibility of the

artefacts possible1.

1Note that all artefacts are open-sourced (see Appendix C).

November 2020 139 Biørn-Hansen, A.

Chapter 5 5.3. Development

5.3.1 Lottie Star Animation

Lottie is a library developed by the engineering team at Airbnb for the ren-

dering of JSON-defined animations exported from Adobe After Effects. The

library is cross-platform compatible, and can display animations in both na-

tive Android and iOS apps, as well as in Ionic2, React Native3, Xamarin4

and more. An animation by Michael Harvey on Lottiefiles.com5 was identi-

fied as the most popular open-source Lottie animation at the time of writing

(33kB), containing multiple stages and elements, as depicted in Figure 5.1.

The animation involves movement, appearing and disappearing elements, and

is of a fast-paced nature. The animation was deemed attractive for scrutiny

purposes due to the variety of elements and its popularity.

Figure 5.1: Three main steps of the Lottie animation.
2https://github.com/chenqingspring/ng-lottie
3https://github.com/airbnb/lottie-react-native
4https://github.com/martijn00/LottieXamarin
5https://www.lottiefiles.com/72-favourite-app-icon

November 2020 140 Biørn-Hansen, A.

https://github.com/chenqingspring/ng-lottie
https://github.com/airbnb/lottie-react-native
https://github.com/martijn00/LottieXamarin
https://www.lottiefiles.com/72-favourite-app-icon

Chapter 5 5.3. Development

5.3.2 Navigation Transition

When navigating between pages and views in mobile apps, transition ani-

mations are executed to provide a visual indication of an ongoing page (or

context) switch. Such transitions vary between platforms and the type of

navigation executed, for instance, a modal pop-up, a page switch adding to

the navigation stack, or a replacement of the current view. In this exper-

iment, the focus is on performance testing the transition animation going

from one page to another. Inherently, the result from this is coloured by the

actual navigation event’s potential performance.

The frameworks and native technologies included in this study, as listed

in Table 5.1, did, for the most part, integrate navigation functionality. Only

React Native required a third-party navigation library, and there were several

open-source alternatives. While both React Navigation6 and React Native

Navigation7 provided easy navigation APIs, the latter was the only library

exposing actual native navigation APIs and transitions, not JavaScript-based

native-like mimics. As such, to make a fair comparison to the other frame-

works tested, React Native Navigation was used for navigation. For further

research, it could be of interest to study the differences between JavaScript-

based and native transitions in the context of both device resource usage and

user experience.

6https://reactnavigation.org/
7https://github.com/wix/react-native-navigation

November 2020 141 Biørn-Hansen, A.

https://reactnavigation.org/
https://github.com/wix/react-native-navigation

Chapter 5 5.3. Development

5.3.3 Side Menu Animation

The opening of the side menu and its associated opening animation are typ-

ically triggered whenever a user presses the hamburger menu icon, i.e., the

icon in the very left image, consisting of three stacked horizontal lines. This

navigation pattern is common in real-world implementations (Majchrzak

et al., 2017).

Figure 5.2: Example of a side-menu drawer opening sequence.

Achieving the intended behaviour using the frameworks at hand resulted

in a variety of implementations, each one seemingly unique to the respective

framework, as reported below.

Xamarin. An official example code base8 for implementation of side menus

was made use of, created by David Britch at Xamarin.

React Native. The React Native Navigation third-party library was used

to enable view navigation. A side menu implementation was also avail-

able in the library, which was subsequently used in the implementation.

Ionic. Upon starting a new Ionic project, their CLI prompts the possibility

8Xamarin side menu repository on Github: https://developer.xamarin.com/samp

les/xamarin-forms/Navigation/MasterDetailPage/

November 2020 142 Biørn-Hansen, A.

https://developer.xamarin.com/samples/xamarin-forms/Navigation/MasterDetailPage/
https://developer.xamarin.com/samples/xamarin-forms/Navigation/MasterDetailPage/

Chapter 5 5.3. Development

of scaffolding a side menu-based project, which adds some required and

related boilerplate code.

Native Android. The side menu-enabled template which was available

upon project initialisation in the Android Studio IDE was utilised.

Native iOS. The side menu navigation pattern is not native to the iOS

platform; thus, no such component existed in the Xcode development

environment by default. A third-party library was found to compen-

sate, which adds an easy-to-use API for providing side menus in Swift

iOS, called SideMenu9 written by developer Jon Kent.

A Visual Overview

Each of the applications developed inherit the same user interface layout

and visual design. In Figure 5.3, the React Native application running on the

Android platform is depicted to illustrate the visuals of the finished artefacts.

At the top, a navigation bar including a “hamburger menu button” displays

the title of the current view. Not depicted is the side menu drawer which

will open upon pressing the hamburger menu button, but an example of this

is illustrated in Figure 5.2. Below the navigation bar, following in a vertical

stack-wise layout are the animation view (yellow star), a button to execute

a play-through of the animation, and at the end a button to navigate to

another page.

9SideMenu repository on Github: https://github.com/jonkykong/SideMenu

November 2020 143 Biørn-Hansen, A.

https://github.com/jonkykong/SideMenu

Chapter 5 5.4. Evaluation

Figure 5.3: Cropped example of a developed artefact.

5.4 Evaluation of Animation Performance

The findings from the experiments have been condensed into Table 5.4, with

additional notes on the findings located below the table. When encountering

arrows (→ and ←) in the table, these represent the value displayed in the

direction of the arrow. To exemplify, in the case of the native iOS app during

the Lottie animation playing, memory usage was reported to be 49.08MB

before (pre), during and after (post) the execution of the animation. Thus,

only the value during the animation is reported in numbers, with arrows

replacing the value in the pre and post fields.

For those tasks whose running-time could not be programmatically cal-

culated, such as the opening time of the React Native side menu on iOS,

each framework’s source code was traversed to extract the defined transition

or animation duration. These extracts have been carefully marked using a

November 2020 144 Biørn-Hansen, A.

Chapter 5 5.4. Evaluation

question mark in the FPS column in Table 5.4.

A challenge encountered during the data-gathering phase was the dif-

ferences in the apps’ performance before conducting the benchmarks. An

example of this from Table 5.4 is the performance of the native Android

app, which prior to starting the Lottie animation reported of memory con-

sumption of 62.34MB, while the reported consumption was 49.46MB prior

to the navigation transition benchmark. Below follows a brief explanation of

annotations in Table 5.4’s header:

FPS. “CountDur. (jank)” refers to the overall reported count of frames ren-

dered, the duration of the animation in those cases where running time

was less than a full second, and the number of janky frames as reported

by the Android profiler tool.

CPU Peak. The results of this metric’s measurements are reported in per-

centage, as they are by the profiling tools on both platforms.

Memory (RAM) Peak. Describes the RAM consumption prior to the ani-

mation running (pre), during the animation, and after the animation

is complete (post).

November 2020 145 Biørn-Hansen, A.

Chapter 5 5.4. Evaluation

Table 5.4: Results from animation performance tests.

Technology FPS

CountDur.

(jank)

CPU

Peak
Memory

Peak (MB)
(pre) during (post)

GPU

Memory
(Android)

Lottie Star Animation Performance
Nexus 5X (Android)

Native 60 (16) 25.58% (62.34) 68.49 (64.14) 2.33MB
React Native 60 (18) 21.62% (73.47) 93.72 (∼90) 3.45MB
Ionic 59 (26) 29.93% (93.39) 124.27 (∼116) 4.55MB
Xamarin Forms 60 (37) 19.95% (116.7) 125.34 (117.08) 6.47MB

iPhone 6 (iOS)

Native 30-23 40% (→) 49.08 (←) -
React Native 46-5 100% (51.96) 53.56 (←) -
Ionic 17-23 30% (→) 67.75 (67.90) -
Xamarin Forms 48-5 70% (→) 91.67 (101.95) -

Navigation Transition Performance

Nexus 5X (Android)

Native 5328ms (3) 29.34% (49.46) 73.5 (59.06) 2.36MB
React Native 18340ms (2) 22.82% (68.84) 82.04 (80.40) 1.08MB
Ionic 21482ms (14) 21.78% (91.45) 132.76 (104.75) 4.55MB
Xamarin Forms 18377ms (9) 20% (105.78) 108.71 (107.21) 6.48MB

iPhone 6 (iOS)

Native 18200ms 100% (→) 49.80 (←) -
React Native 28250ms? 100% (52.14) 53.38 (←) -
Ionic 36500ms? 50% (→) 66.65 (←) -
Xamarin Forms 23-6586ms 100% (→) 103.23 (←) -

Side Menu Performance
Nexus 5X (Android)

Native 27443ms (1) 7.93% (64.53) 64.92 (64.67) 2.29MB
React Native 35573ms (0) 11.73% (69.20) 69.70 (69.60) 1.08MB
Ionic 32617ms (8) 21.97% (93.79) 114.79 (109.84) 4.55MB
Xamarin Forms 28458ms (0) 13.86% (103.55) ∼87 (84) 6.36MB

iPhone 6 (iOS)

Native 30-350ms 67% (37.63) 41.13 (←) -
React Native 6-4200ms? 70% (→) 76.70 (←) -
Ionic 14-8280ms? 60% (→) 67.14 (←) -
Xamarin Forms 7-3300ms? 75% (→) 102.45 (←) -

November 2020 146 Biørn-Hansen, A.

Chapter 5 5.4. Evaluation

5.4.1 Lottie Star Animation Performance

All implementations on Android, including native, reported large numbers of

janky frames during the execution and play-through of the Lottie animation.

The native implementation saw the fewest janky frames rendered, used more

CPU than React Native and Xamarin, but saw only a minor increase in RAM

consumption. For this task, the increase in RAM consumption through all

cross-platform frameworks illustrate the penalty introduced by using cross-

platform technologies. Ionic’s jump from 93.39MB to 124.27MB RAM con-

sumption upon Lottie execution display that there are certainly trade-offs

involved when developing cross-platform applications. Another negative as-

pect of the penalty is how memory consumption after specific tasks does not

decrease to its original value. This is true for all the apps generated using

cross-platform technologies, indicating a potential memory leak. While Xa-

marin produced the highest amount of janky frames (more than half of the

attempted rendered frames), it used the least CPU but consumed the most

RAM.

5.4.2 Navigation Transition Performance

For Android, it is interesting to note how the native app relies the heaviest

on the CPU, in fact consuming 9.35% more CPU than the lowest-consuming

app being the Xamarin-based implementation, although the latter having a

November 2020 147 Biørn-Hansen, A.

Chapter 5 5.4. Evaluation

much higher impact on RAM consumption at 108.71MB versus 73.5MB for

the native app. The highest-consuming implementation in terms of RAM

on Android is the Ionic app at 132.76MB, seeing a significant impact upon

execution of the navigation transition task, increasing RAM consumption by

41.31MB. However, Ionic was also the framework to render the most frames

of all the Android implementations, although with a high count of reportedly

janky frames. It also peaked at a lower CPU consumption than the native app,

although 1.78% higher than the Xamarin app.

On the other hand, Ionic on iOS outperformed both the native baseline

and the other cross-platform frameworks on the FPS and CPU usage metrics

while consuming more RAM (at 66.65MB) than native (49.80MB) and React

Native (53.38MB), but far less than that of the Xamarin implementation at

103.23MB. However, one thing to note is that the native app conducts the

navigation in 200ms, whereas the Ionic app – based on Ionic’s source code –

uses 500ms for the same task. Thus, the FPS count is higher for the native

app due to the short play-through time, assuming that the length of the

navigation is correctly reported.

5.4.3 Side Menu Performance

While the Ionic framework on iOS required the least amount of CPU activity,

it rendered only half of the frames compared to the native approach – which

used 7% more CPU than Ionic. However, the native approach consumed

November 2020 148 Biørn-Hansen, A.

Chapter 5 5.4. Evaluation

26.01MB less RAM than Ionic. Comparing Android to iOS on side menu

navigation, the Ionic framework consumed 114.79MB RAM on Android, while

67.14MB on iOS. These deviations in performance between the platforms

result in difficulties when deciding on a particular framework and technology.

Perhaps the most interesting discrepancy is that of native iOS versus

native Android, in terms of CPU consumption. At 7.94% CPU usage, Android

consumed 59.07% less CPU than its iOS counterpart. However, Android still

consumed 23.79MB more memory than the iOS app.

By empirically comparing the performance of the cross-platform frame-

works, React Native on Android rendered the most frames without any re-

ported jank while using only marginally more CPU than the native app and

consuming only a few MB more RAM, and using the least amount of GPU RAM.

In fact, RAM consumption was only marginally impacted by the execution of

the side menu task, which is comparable to that of the native app’s perfor-

mance. React Native on iOS did, however, not render a number of frames

comparable to the native app, although using the second most GPU and CPU.

Xamarin on iOS, similar to React Native, render few frames, but con-

sumes more RAM and CPU than the other frameworks. On Android, Xamarin

renders consistent frames without jank, at a lower CPU and RAM usage than

Ionic. Still, React Native on Android performs better at this task than both

Xamarin and Ionic. On iOS, Ionic was the most performant and hardware-

consumption friendly framework, rendering more frames than the other cross-

November 2020 149 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

platform frameworks, relying less on CPU power than native, and consuming

the least amount of RAM compared to the other frameworks.

5.4.4 Additional Observations

For the iOS apps, far fewer drastic increases in hardware penalties were

recorded than for the Android apps. Most of the iOS implementations did

not report any increases in consumption of any of the metrics. This is in

stark contrast to Android, where the most significant increase in hardware

consumption is that of the Ionic app during navigation transition. In one

instance, RAM consumption decreased upon execution of the task, being Xa-

marin forms during the side menu test – starting at 103.55MB RAM consump-

tion, decreasing to 87MB.

5.5 Discussion

This section considers each of the experiment’s research questions in turn,

discussing investigated performance metrics, profiling tools, and deviations

in performance between the Android and iOS platforms.

November 2020 150 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

5.5.1 Performance Metrics

(D1 − '&1.2: Do the performance metrics fulfil their purpose in re-

searching animated user interfaces in mobile apps?

While the frames-per-second metric can be of great value for measuring

interface fluidity in games or apps with long-running animations, it did not

provide the same value when measuring the fast-paced short-running anima-

tions. The other metrics, including CPU, RAM and GPU RAM usage, are common

in performance-oriented research (e.g., Dalmasso et al. (2013), Willocx et al.

(2015, 2016)). Nevertheless, the extraction of GPU memory statistics from

the iOS profiling tool was not found to be possible, rendering it less usable

for a cross-platform comparison. Also, the GPU memory results generated

per framework were found to only have had minor to no variations between

the test, e.g., Ionic which used 4.55MB regardless of the task or React Na-

tive outputting 3.45MB during the Lottie animation, and otherwise 1.08MB

during the two other tasks. Due to the lack of significant differences between

the benchmark tasks, the GPU memory metric was not found to be of partic-

ular importance for comparative studies on cross-platform development. CPU

and RAM metrics were found to provide insightful information on potential

performance penalties introduced by cross-platform frameworks.

The difficulty of reasoning about user interface performance based on the

FPS metric led us to believe that user-centric studies on performance and

November 2020 151 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

perceived performance is perhaps more generalisable than profiling-based

empirical assessments. As an example, as displayed in Table 5.4, the na-

tive Android app rendered only five frames during the 328ms long naviga-

tion transition. The reported jank could nevertheless be an indication of

unoptimised frame rendering. Further research is needed on the correlation

between FPS, reported jank and end-users’ performance perception, as even

the Xamarin Lottie animation reporting 37 janky frames could be challeng-

ing to distinguish from the other frameworks reporting of fewer unoptimised

frames.

5.5.2 Evaluation of Performance Profiling Tools

(D1 − '&1.3: How well do the official performance insight tools cater

to the profiling of animation and transition performance in the cross-

platform apps developed?

Both platforms provided their own tooling for performance profiling. In

the case of Android profiling, three distinct tools had to be used – effectively

increasing the overhead of the task. Nevertheless, all the tools employed pro-

vided highly granular and understandable data. In the case of the iOS apps,

the data generated by the profiling tools were found to be less granular, and

no GPU RAM measuring tool was identified. Both platform providers could

have created performance profiling experiences requiring less overhead while

November 2020 152 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

providing more data. The Android profiling experience, while requiring sev-

eral tools and the use of CLIs, outputted the most insightful and actionable

data. Below follows a discussion in more detail on the experiences of gather-

ing data using the profiling tools provided through Android Studio, adb and

Xcode’s Instruments.

5.5.3 Android Data Gathering

It was attempted to use third-party programs to measure and gather

data on the frames-per-second performance of the artefacts’ user interfaces.

GameBench and FPS Meter were frequently mentioned in practitioners’ fo-

rums; however, both were seemingly unable to report the performance of the

implementations properly, both varying significantly from the results out-

putted by the official profiling tools, and often not producing any output

at all. Also, as both GameBench and FPS Meter are supposed to run on

the device in the background while measurements are recorded, they were

deemed to potentially impact the performance results.

A combination of tools was required to retrieve data from the metrics

included, as presented previously in Table 5.3. During the initial data-

gathering phase, experimentation with a variety of third-party profiling tool

alternatives was conducted. Due to the experiences from using these tools,

the use of them was avoided for data gathering, as the app’s performance

was impacted by the tools. An example of such a tool is the built-in per-

November 2020 153 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

formance monitor for React Native (Ramos and Lemos, 2017), which was

found to increase the RAM consumption of the app. In these tests, the ini-

tialisation and continuous profiling of the React Native monitor increased

the RAM consumption from 80.23MB to approximately 106MB, with 110MB

at peak consumption during initialisation. Such knowledge is invaluable for

conducting proper performance testing, as incorrectly reported results could

quickly be introduced into the data sets if control measurements are ignored.

Another obstacle encountered while performance testing the applications,

explicitly for measuring CPU usage, was Android 8 (Oreo)’s then newly intro-

duced security measures (Anonymous, 2017), disallowing third-party appli-

cations to gain access to CPU data. Subsequently, the official Android Studio

profiler as well as adb systrace (see below) were the only viable options for

data gathering from the Android-based apps. Thus, no verification of the

results using third-party software was possible. For the sake of security, this

newly implemented measure might have a positive effect, but for the sake of

research and system performance insight, it severely limits the possibilities

of results verification and ease of access to third-party system monitoring.

On the positive side, the Android Debugging Bridge (adb) was able to

generate highly detailed performance reports using the following command

(henceforth referred to as adb systrace):

$ python systrace.py --time=5 -o trace_<framework>.html

↩→ sched gfx view -a app_package_name

November 2020 154 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

Figure 5.4: Example of how FPS is reported using adb systrace for Android
apps.

By using the above adb systrace command, a five-second snapshot of

the specified app’s performance is recorded and outputted in HTML format,

which can be opened in a browser and used to drill down into any single-

frame performance issues. Figure 5.4 illustrates the part of the generated

report displaying data on FPS. Every individual dot in Figure 5.4 represents a

single frame, where green ones (darkest) have been optimally rendered, while

orange or red ones (lighter colour) represent a frame that has been rendered

in a suboptimal fashion. This could be due to the rendering time exceeding

16.6ms per frame, the time available to do any frame-specific calculations and

rendering in order to keep a user interface at a stable 60 frames-per-second

(Maust, 2015).

For animations and transitions lasting less than a second, being the menu

opening animation and the page navigation transition, only the performance

measurements reported during that given sequence was included alongside

the measured millisecond count in superscript. For the Lottie animation

lasting more than a second, only the first 1000ms of the animation’s mea-

surements are included.

In terms of retrieval of GPU memory usage statistics, the following com-

mand line tool was used:

November 2020 155 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

$ adb shell dumpsys gfxinfo app_package_name

The tool was executed directly after each animation event was complete, as

the tool outputted data limited to the last 128 rendered frames (note that in

periods without changes to the interface, no frames were logged by the tool).

5.5.4 iOS Data Gathering

For the iOS apps, using the official performance profiling tool developed

by Apple, Xcode Instruments, granted access to all the data and metrics

needed, except for GPU memory usage. The Instruments tool implemented

several profiling instruments, several of which reported on slightly similar

metrics. Practical suggestions were also drawn from previous research by

Willocx et al. (2015), which listed the types of instruments they included

and mapped them to specific metrics. Some deviations from their suggestions

were made, such as using the Time Profiler instruments rather than Activity

Monitor for CPU measurement, as the reported output rendered results that

were less complex to interpret, but delivered the same relevant data quality.

For measuring device memory usage, the VM Tracker Instruments-exposed

memory metric Resident Size was used, described to be the actual device

memory consumed by the targeted application (Stack Overflow, 2013).

Lastly, to measure FPS, the Core Animation instrument was used. Alas,

November 2020 156 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

no instruments for reporting on janky frames were identified, rendering inves-

tigation of frame-specific problems more difficult than in Android profiling.

Due to the granularity level and lack of drilling capabilities of the profiling

data and instrument, cross-second FPS counts are included. This process is

illustrated in Figure 5.5, where each blue bar represents a second of on-screen

activity, such as displaying the Lottie animation. The empty spaces between

the bars represent time passed without any frame activity, i.e., no frames

were (re-)drawn during those seconds. If an animation is executed well into

an already-begun second (Instruments-wise), Instruments will start reporting

performance during that second and finish sometime during the next second

slot. Thus, this is the reason for cross-second FPS reporting, in Table 5.4

illustrated with a dash between the reported FPS, e.g., “30-23” in the iOS

native app FPS results during a running Lottie animation.

Figure 5.5: Example of measuring FPS in Xcode’s Core Animations Instru-
ments tool.

5.5.5 Platform Performance Deviations

(D1−'&1.4: Which of the platforms, iOS or Android, requires the least

amount of device- and hardware resources in order to execute and run

performant animations and transitions?

November 2020 157 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

The performance, as reported by the profiling tools illustrate an interest-

ing discrepancy, in that the reported CPU usage on Android is consistently

lower than that reported on iOS across all three tasks and regardless of

technical framework. In fact, CPU usage as reported during the navigation

transition task is at 100% on iOS for all but the hybrid app, a finding corre-

lating to previous research (Willocx et al., 2016) also stating that navigation

transition is identified to be more performant in hybrid apps than in e.g.,

native due to browser navigation optimisation. The only occurrence of both

platforms performing similarly is in the case of the Ionic apps running the

Lottie animation, where CPU is peaking at 29.93% on Android, and 30% on

iOS.

Nevertheless, it is also essential to acknowledge the discrepancy between

the native baseline implementations, especially that of CPU consumption dur-

ing the side menu task – 7.93% on Android versus 67% on iOS. While one

could speculate that this is the result of iOS’s lack of a native side menu

component (as mentioned, the implementation relied on a third-party com-

ponent), one must also note that iOS, in general, has a higher CPU usage, but

lower RAM consumption. A recent effort by Afjehei et al. (2019) has brought

forth IPerfDetector, a tool for detecting performance anti-patterns related

to memory consumption, updates to the user interface, and threading in iOS

apps. Applying such a tool to the native baseline implementations could

potentially further describe the reasoning behind the significant difference in

CPU consumption between the two platforms.

November 2020 158 Biørn-Hansen, A.

Chapter 5 5.5. Discussion

To fully answer this section’s research question, one metric is missing

from the data set, being that of janky frames in the iOS implementations.

Conducting a measurement-based comparison without the presence of this

metric, renders an empirical-backed conclusion challenging, as working to-

wards eliminating janky frames is deemed essential for the user experience

(Reddi et al., 2018). Nonetheless, it is noted that iOS apps are more con-

sistent in the consumption of RAM, while on Android, the apps’ consumption

tends to fluctuate.

While there are notable differences between the Android and iOS plat-

forms, the same is also true for the cross-platform frameworks scrutinised.

While a specific framework can be performant on Android, it is not neces-

sarily the most optimal framework on iOS – and vice versa. An example of

this is the Ionic framework, which on Android consumes the most RAM in two

out of three tests (at the same time also being close to consuming the most

also in the third), while on iOS it varies between the second- to third most

RAM-efficient framework. From previous research, similar results in terms of

the performance penalty introduced by the WebView component in hybrid-

based apps are found (Latif et al., 2016). Overall, the nature of these plat-

form variations renders cross-platform development additionally challenging,

as one framework can be most performant on iOS, while on Android, a differ-

ent framework can be beneficial to make use of instead. These discrepancies

were also true for non-user-interface research, for instance, as reported by

Willocx et al. (2016) in their performance analysis of cross-platform frame-

works, displaying similar results. Also, specific product requirements may

November 2020 159 Biørn-Hansen, A.

Chapter 5 5.6. Conclusion

call for the need of a specific framework, e.g., if Lottie animations are more

critical than side menu navigation, then one framework may cater better to

the requirements than the alternative technologies.

Nevertheless, on Android, the interpreted-based React Native framework

was deemed the most performant cross-platform framework among those in-

cluded in this experiment. The penalties introduced in terms of hardware

consumption are less severe than those caused by Ionic and Xamarin, while

also outputting a higher FPS than the other frameworks. Also on iOS does

React Native produce better results than the alternative frameworks in terms

of RAM consumption, but varies between the tasks on CPU usage and consis-

tency of rendered FPS. In fact, the hybrid-based Ionic framework does overall

consume between second- and third most RAM, but is the most CPU efficient

in two of the tasks – also more so than native, and it renders an FPS that,

in two of the tasks, are of a higher count than the other frameworks. The

only exception is during the Lottie animation, in which Ionic rendered 11-13

fewer frames than React Native and Xamarin respectively.

5.6 Conclusion

The frameworks included for assessment in the experiment described in this

chapter are React Native, Ionic and Xamarin Forms. In addition to the

cross-platform apps, one native app for each platform, respectively iOS and

November 2020 160 Biørn-Hansen, A.

Chapter 5 5.6. Conclusion

Android, are implemented for gathering baseline performance results for com-

parison purposes. The amount of available performance measurement tools,

both official and third-party, lead to some confusion in terms of picking the

right ones, mainly as some could – and inherently would – introduce addi-

tional overhead in terms of device resource consumption. A key takeaway

from this experiment is that numerous trade-offs must be accounted for when

choosing cross-platform over native development. For instance, one cross-

platform framework may deliver good performance results on Android, while

delivering subpar results on iOS – and vice versa. React Native was found

to deliver the most performant user interface animations among the set of

cross-platform frameworks, although Ionic on iOS was more CPU efficient than

both frameworks and the native baseline implementation. Thus having some

knowledge of the end-users’ hardware may help decide on an approach or

framework for app development. The results indicate that there is no silver

bullet among the technologies benchmarked. Having now scrutinised the per-

formance of both the bridge implementations and user interface fluidity of a

set of cross-platform frameworks towards answering the first thesis research

question ('&1), the following chapter describes the experiment towards an-

swering the second thesis research question ('&2) and objective, investigating

the presence of these frameworks in apps published to the Google Play Store.

November 2020 161 Biørn-Hansen, A.

Chapter 6

Presence of Mobile

Development Approaches

This experiment investigates the presence of cross-platform mobile develop-

ment frameworks in published Android apps. The chapter firstly summarises

the problem statement, research questions and hypothesis, and the experi-

mental setup. Subsequently, it describes the development of the app har-

vesting and framework identification algorithm, followed by the evaluation

and discussion on framework usage across marketplace categories, changes in

framework usage over time, app file sizes, and a discussion on trends from

an industry perspective.

162

Chapter 6 6.1. Awareness of Problem

6.1 Awareness of Problem: Cross-Platform

Framework Usage in Published Apps

Revisiting the Objective. In the previous two experiments, the per-

formance of cross-platform frameworks and their generated apps has been

scrutinised on a variety of metrics including, but not limited to CPU%, RAM

consumption, and time-to-completion (TTC). In this experiment, the usage,

or presence, of these frameworks in published apps available on the Google

Play Store is investigated, using a sample dataset of = = 661 705 apps, along

with metadata for each app. The distribution of framework usage across

Play Store categories is assessed, along with trends over the last decade, and

app file sizes. The objective is to uncover the actual use of cross-platform

frameworks, and discuss how this differs from trends encountered in industry

outlets. This investigation is conducted towards answering the second thesis

research question ('&2) regarding the presence of cross-platform frameworks

in published apps, as described in Section 1.4.

Background and Literature Synopsis. A significant body of knowledge

exists on mobile app store analysis considering the field is only a decade old at

the time of writing. There is a wide range of topics covered in the literature,

as surveyed by Martin et al. (2017); however, only a handful of identified

papers cover cross-platform development. Several of these focus on mining

Communication of Research: This is an extended version of the publication cur-
rently in-review. The content and format has been modified to fit the thesis narrative.
Replication package is available in Appendix D.

November 2020 163 Biørn-Hansen, A.

Chapter 6 6.1. Awareness of Problem

and analysing user reviews, for instance Malavolta et al. (2015b) studying

cross-platform framework usage and user perception of apps generated using

a set of eight frameworks. Their findings indicate that hybrid apps account

for 3.73% of their investigated dataset (= = 11 917) and that the majority

of these are found in the Play Store categories Finance, Medical, and Travel

and Local. According to the authors, native apps on average receive better

ratings than hybrid apps, although, on perceived performance, the results

vary significantly between the various app categories. Mercado et al. (2016)

describes a similar study, wherein the authors investigate how the choice of

development approach impacts user reviews for = = 50 apps. For instance,

their results indicate that for iOS users, interpreted apps are perceived more

performant and usable than native apps and that Android users had a more

pessimistic view on hybrid apps than on native apps. Although there are

a handful of studies looking into the presence of cross-platform apps, the

experiment to follow includes a broader array of frameworks in the identi-

fication algorithm, and a large sample dataset (= = 661 705). There is also

additional emphasis specifically on challenges related to .apk size and the

impact this has on potential app downloads and user acquisition, as high-

lighted by Tolomei (2017) of the Google Play Store team.

November 2020 164 Biørn-Hansen, A.

Chapter 6 6.2. Suggestion

6.2 Suggestion: Analyse Harvested Apps &

Metadata

Harvesting Android installation files and associated metadata directly from

the Google Play Store has previously been reported as a task of considerable

complexity due to implemented security measures. Instead of circumventing

these measures, as has previously been described by Li et al. (2017), readily

available open and paid services providing access to Android installation files

and metadata have been used.

6.2.1 Research Questions and Hypothesis

As introduced in Section 1.4, the overarching thesis research question re-

lated to the presence of cross-platform frameworks in deployed apps reads as

follows:

'&2: How common is the presence of cross-platform development frame-

works compared to the native development approach in published mobile

apps?

Derived from this research question, two sub-research questions and one

hypothesis have been formed:

November 2020 165 Biørn-Hansen, A.

Chapter 6 6.2. Suggestion

(D1 −'&2.1: What is the distribution of cross-platform development frame-

works on the Google Play Store across app categories?

(D1−'&2.2: How has the use of cross-platform frameworks in deployed apps

changed over the last 12 years?

�~?>Cℎ4B8B1: Apps developed using the native approach should generate

.apk files of smaller file size than apps developed using cross-platform de-

velopment frameworks due to not relying on bundled interpreters, virtual

machines or WebView containers.

6.2.2 Harvesting Android installation files

Through the AndroZoo project, the University of Luxembourg is provid-

ing researchers with a massive binary-based dataset for Android app analy-

sis. AndroZoo is a repository of Android Package (.apk) files and a service

through which researchers can download such files if granted access (in the

form of an API key). What the AndroZoo service provides is direct access

to app installation files that either are or have been published to the Google

Play Store or similar app marketplaces. Thus, access to published, real-

world Android apps has been drastically simplified compared to scraping the

Google Play Store directly.

November 2020 166 Biørn-Hansen, A.

Chapter 6 6.3. Development

6.2.3 Harvesting app metadata

A frequent concern when harvesting data from third-party data providers

who do not expose their data through APIs, is the risk of being IP banned

after an unknown number of Web page requests. Such data harvesting is

typically referred to as Web Scraping and relies on extracting data from

Websites based on the Website’s HTML structure, tags and IDs. The first

approach to gathering data from the Google Play Store attempted various

methods of Web Scraping. However, the risk of getting IP banned for making

repetitive requests to the Google Play Store Website was deemed unnecessary

so much so that the data gathering instead went through a paid third-party

API1, hosted and made available through the API service RapidAPI. The

API should be considered a middleware data provider, placed in between the

Google Play Store and us, mitigating the risk of IP bans.

6.3 Development of Harvesting Mechanism

& Identification Algorithm

This experiment is of an exploratory and deductive nature, with analyses

based on quantitative data. The procedure for conducting the analysis is

twofold: firstly, details on the process of gathering the data used for analy-

1https://rapidapi.com/maxcanna/api/google-play-store?endpoint=5414be4d

e4b031830c0100b8

November 2020 167 Biørn-Hansen, A.

https://rapidapi.com/maxcanna/api/google-play-store?endpoint=5414be4de4b031830c0100b8
https://rapidapi.com/maxcanna/api/google-play-store?endpoint=5414be4de4b031830c0100b8

Chapter 6 6.3. Development

ses are presented, namely binary .apk files from AndroZoo and associated

metadata from the Google Play Store. Following that is a description of

the framework identification algorithm used to search for pre-defined rules

and patterns in the .apk files, thus identifying which (if any) cross-platform

framework(s) have been used in the development of the apps.

6.3.1 Data Gathering

To gather the Android installation files (.apk) needed to answer the research

questions, access to the AndroZoo service was granted, a large dataset made

available by researchers at the University of Luxembourg (as described in de-

tail by Allix et al. (2016)). Data gathering through AndroZoo instead of the

Google Play Store was a deliberate choice to increase the reproducibility and

availability of the dataset and results, as Google Play Store mining is unnec-

essarily complicated and time-consuming (Allix et al., 2016) when more ac-

cessible services exist, especially so when these were developed specifically for

the benefit of researchers. Due to the structure and services provided by An-

droZoo, researchers interested in replicating or continuing the work presented

in the current experiment may study the data gathering process and open-

sourced dataset (see Section 1.5). The AndroZoo dataset was filtered on apps

published in the Google Play Store, as the dataset also contains apps from

various other sources including, but not limited to PlayDrone, AppChina and

F-Droid. The .apk files were downloaded onto a LaCie 12big 120TB hard

drive using the GNU Parallel package (Tange, 2018), then further analysed

November 2020 168 Biørn-Hansen, A.

Chapter 6 6.3. Development

using on-premise hardware. The dataset consisting of = = 661 705 compiled

(.apk) apps require 9.2TB of hard drive space. After downloading the .apk

files, associated metadata was gathered from the Google Play Store through

the RapidAPI service, and the .apk installation files were piped through

the cross-platform framework identification algorithm (described in Section

6.3.2). The data gathering process is illustrated in Figure 6.1.

AndroZoo1.Download and
store .apkfiles

3a.Identify cross-
platform frameworks
based on .apk

Package name

{ … }

3b.Extract Android
Manifest from .apkfile

.apk

Google
Play Store

2. Gather app
metadata from
Google Play Store

App ID

4. Persist metadata,
manifest and
identified framework

Figure 6.1: Data harvesting process from Google Play Store, AndroZoo and
Android Manifests.

6.3.2 Framework Identification Algorithm

In order to identify the use of a cross-platform framework based on an .apk

file, a pattern matching algorithm was developed, looking for specific string-

based values, files, folders, etc. As the technical landscape of cross-platform

development is vast, with more than 60 individual frameworks listed as part

of the literature review in Chapter 2 (Table 2.1), it was necessary to decide

on a specific set of frameworks for which condition-based rules could be cre-

ated. Table 6.1 contains the 13 frameworks for which rules were developed to

analyse the .apk files. All four major development approaches are accounted

November 2020 169 Biørn-Hansen, A.

Chapter 6 6.3. Development

for in the list. In terms of sample size, Martin et al. (2017) found that stud-

ies on app store analyses wherein analysed apps have a median sample size

of 1 679 and a mean of 44 807 apps. The sample size of = = 661 705 .apk

files puts the experiment in the upper percentile in terms of the number of

assessed apps (Martin et al., 2017, Fig. 4).

The framework identification algorithm is inspired by Ali and Mesbah

(2016)’s study on characterising hybrid apps based on an algorithm account-

ing for three frameworks, which in this current experiment is extended to 13

frameworks across three development approaches. The algorithm traverses a

directory containing # .apk files to identify the various frameworks, search-

ing for information for- and in meta tags, manifest files, text- and binary files.

The following two rulesets were developed to identify the various frameworks.

A mapping between rulesets and frameworks is found in Table 6.1.

1. File/folder search in the .apk ’s extracted /assets/ folder.

2. String search in extracted AndroidManifest.xml.

The algorithm was validated by downloading and testing .apk files as-

sociated with apps from each framework’s showcase page. The development

of the algorithm was highly iterative. The version of the algorithm used to

extract the dataset presented in this experiment managed to identify all the

tested showcase apps correctly.

November 2020 170 Biørn-Hansen, A.

Chapter 6 6.3. Development

Table 6.1: List of the 13 technologies included in the identification algorithm.
Table grouped by approach.

Technology Approach
Programming

language
Release
year Ruleset

Native* Native Numerous 2007/08 -
Adobe Air Interpreted Numerous 2008 (1,2)
NativeScript Interpreted JavaScript 2014 (2)
Qt (Mobile) Interpreted C++/QML 2013 (2)
Fuse Interpreted JavaScript/C# 2012 (2)
Titanium Interpreted JavaScript 2009 (2)
React Native Interpreted JavaScript 2015 (1,2)
Weex Interpreted JavaScript 2016 (2)
Codename One Cross-compiled Java/Kotlin 2012 (2)
Flutter Cross-compiled Dart 2017 (2)
Xamarin Cross-compiled C# 2011 (2)
Capacitor Hybrid JavaScript 2017 (1,2)
Cordova (+PhoneGap) Hybrid JavaScript 2009 (1,2)
Ionic (Cordova-based) Hybrid JavaScript 2013 (1,2)

As a note on the native category: in this study, to categorise apps as

belonging to the native development approach, the requirement was that the

.apk did not match any of the rules specified for the cross-platform frame-

works included. Hereinafter, these are described as Unidentified or native,

as the algorithm could not identify the use of a framework, nor necessarily

the lack thereof. This is a limitation to the experiment.

While Robles (2010) previously reported that studies within Mining Soft-

ware Repositories (MSR) had been found to incorporate a low level of repli-

cability due to the lack of available datasets, the identification algorithm and

dataset with extracted data (.csv) from this current experiment have been

made available through GitHub2, along with necessary instructions. The

2GitHub repository for scripts and dataset: https://github.com/andreasbhansen/

phd-thesis-contributions/

November 2020 171 Biørn-Hansen, A.

https://github.com/andreasbhansen/phd-thesis-contributions/
https://github.com/andreasbhansen/phd-thesis-contributions/

Chapter 6 6.4. Evaluation and Discussion

binary .apk files, however, were not uploaded as these can be retrieved

through the AndroZoo service3 based on their unique identification string

found in the .csv dataset.

6.4 Evaluation and Discussion

This section details findings related to framework usage and distribution, app

file size, and a discussion on technology trends versus adoption. It begins the

discussion and presentation of findings by analysing the dataset in light of

the research questions and hypothesis. Subsequently follows a more holistic

discussion on the newly derived knowledge, looking at differences between

actual technology adoption and perceived interest from practitioners based

on search trends.

6.4.1 Framework Distribution for Apps on Google

Play

The discussion on findings starts by providing an overview of the adoption of

cross-platform frameworks in apps published to the Google Play Store. The

current section and the section to follow both discuss results in light of the

experiment’s first research question ('&1):

3AndroZoo repository Website: https://androzoo.uni.lu/

November 2020 172 Biørn-Hansen, A.

https://androzoo.uni.lu/

Chapter 6 6.4. Evaluation and Discussion

(D1 − '&2.1: What is the distribution of cross-platform development

frameworks on the Google Play Store across app categories?

Although industry outlets have set their focus on more recent frame-

works including React Native and Flutter (e.g., Greif et al. (2018), Skuza

et al. (2019)), we can look to Figure 6.2 to find indications of numerous

frameworks having considerably larger market shares of published apps on

the Google Play Store as per the sample dataset. In terms of development ap-

proaches, native apps account for the majority of the analysed apps, accord-

ing to Figure 6.4. In numbers, the analysed dataset consists of = = 562 401

native apps (≈ 85%) and = = 99 304 (≈ 15%) cross-platform apps. Each of

the top three cross-platform frameworks listed in Figure 6.2 belongs to dif-

ferent approaches, respectively hybrid (Cordova), cross-compiled (Xamarin)

and interpreted (Adobe AIR). Grouping the count of apps on development

approach (see Table 6.1) rather than on framework, the hybrid approach

accounts for = = 48 371 apps, interpreted for = = 27 468 apps, and cross-

compiled for = = 23 484 apps. The hybrid approach is thus the largest of

the development approaches in terms of published apps on the Google Play

Store.

Specifically, the number of hybrid apps is in rather stark contrast to the

Gartner (2013) prediction that by 2016, a majority of mobile apps will be

based on cross-platform technologies. Based on a thorough search yielding no

results, Gartner does not seem to have provided similar predictions for 2020

November 2020 173 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

Fr
am

ew
or

ks

Unidentified

Cordova

Xamarin

Adobe AIR

Ionic

Titanium

React Native

Qt Mobile

Codename One

NativeScript

Weex

Flutter

Capacitor

Fuse

Number of apps
1,000,000100,00010,0001,0001001010

23,345

19

562,401

7,379

3,568

976

82

11,169

2

13

37,180

126

3

15,442

Page 1

Figure 6.2: Log-scaled distribution of cross-platform frameworks and native
development.

or later, neither have such predictions been identified by similar companies

or organisations. Nevertheless, looking to related studies, these numbers are

somewhat higher than what has previously been reported by Viennot et al.

(2014) (9.20% of non-popular apps specifically). However, the number of

hybrid apps identified is more extensive in this experiment (8.67%) than in

Malavolta et al. (2015b), where the hybrid approach accounted for 3.73%

of the apps analysed. This discrepancy could be the result of framework

identification technique or sample size, as Malavolta et al. (2015b) analysed

= = 11 917 apps, while for this current experiment = = 661 705 apps were anal-

ysed. It may also be an indication of growing industry interest in the hybrid

development approach. However, statistics on the number of downloads of

the Cordova tool is approaching an all-time low according to the Website

November 2020 174 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

npm-stat (Vorbach, 2019) covering download statistics for JavaScript third-

party packages.

6.4.2 Framework Distribution Across Google Play

Categories

Investigating the distribution of cross-platform framework usage across app

categories on Google Play Store can indicate how practitioners and industry

have made use of these technologies for targeting various types of apps, for in-

stance, the particular presence of cross-platform frameworks in one category,

and the absence of such in another. It could as such also give an indication

of which categories have been found particularly suitable or unsuitable for

cross-platform technologies, for instance, due to specific requirements such

as complex graphics processing or reliance on low-level C or C++ code, sit-

uations in which cross-platform frameworks may not be beneficial.

The aggregated results are presented in Figure 6.3 and Table 6.2. The for-

mer is a log-scaled visualisation of the use of development technologies across

the top four Play Store categories, the latter a contingency table displaying

a tabularised distribution of apps across development technologies grouped

by Play Store categories. Due to the amount of Play Store categories, only

the top four Google Play Store categories based on the number of apps re-

gardless of development approach have been visualised, which according to

November 2020 175 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

Table 6.2 (column “
∑

w/ native”) are Games4 (= = 136 316), Education

(= = 57 662) and Lifestyle (= = 46 675). In terms of cross-platform framework

usage, looking to Table 6.2 (column “
∑

w/o native”), Games (= = 13 248),

Business (= = 12 426) and Education (= = 12 091) are the top three Play Store

categories with the most identified apps. Thus, the Lifestyle category was

replaced with Education when excluding the native development approach,

and instead focusing specifically on cross-platform apps, hence the top four

categories in Figure 6.3.

415

20

5,287

1

1,245

10

80

245

954

22,192

3

4,166

9,133

8

2,744

2

207

6

182

64

64

123,068

838

2,672

8

3,997

4

1

1,284

3

82

1,239

881

45,571

1

1,919

290

8

4,472

1

836

3

30

909

511

38,437

1

1,177

GAMES LIFESTYLE

BUSINESS EDUCATION

10 1,000 100,000 10 1,000 100,000

Xamarin
Weex

Unidentified
Titanium

React Native
Qt Mobile

NativeScript
Ionic
Fuse

Flutter
Cordova

Codename One
Adobe AIR

Xamarin
Weex

Unidentified
Titanium

React Native
Qt Mobile

NativeScript
Ionic
Fuse

Flutter
Cordova

Codename One
Adobe AIR

Number of apps

Figure 6.3: Log-scaled distribution of native and cross-platform frameworks
across top four Play Store categories. Ordered by framework name.

Of the = = 13 248 games identified, Adobe AIR (= = 9 133) and Cordova

4The Games category is an aggregation of all the sub-categories on Play Store within
gaming, for instance, adventure, puzzle and strategy.

November 2020 176 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

(= = 2 744) together account for 89.65% of the cross-platform apps in the

category. Although Adobe AIR markets itself as a cross-platform framework

for both app and game development, 59.19% of the identified Adobe AIR apps

are in the games category, a higher percentage than any other framework.

This presence could indicate that while Adobe AIR can cater to both gaming

and non-gaming apps, it is a technology preferred by game developers more

so than by non-game app developers.

Regarding the Business category, B2B apps might prioritise differently in

terms of user experience and functionality than apps developed for regular

consumers (Anglin and Telerik, 2014). Given that the hybrid approach (thus

Cordova) is frequently perceived as being nearly incapable of achieving pre-

dictable native-like user experience across platforms and older devices (e.g.,

Ahti et al. (2016), Dhillon and Mahmoud (2015), Nunkesser (2018)), apps in

the Business category might skew towards functionality over user experience.

November 2020 177 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

T
ab

le
6.

2:
D

is
tr

ib
u
ti

on
of

ap
p
s

p
er

fr
am

ew
or

k
gr

ou
p

ed
b
y

P
la

y
S
to

re
ca

te
go

ry
.

T
ab

le
or

d
er

ed
b
y

ca
te

go
ry

.

C
a
te

g
o
ry

A
d
o
b

e
A

ir
C

a
p
a
ci

to
r

C
o
d
e
n
a
m

e
O

n
e

C
o
rd

o
v
a

F
lu

tt
e
r

F
u
se

Io
n
ic

N
a
ti

v
e
-

S
cr

ip
t

Q
t

M
o
b
il
e

R
e
a
ct

N
a
ti

v
e

T
it

a
n
iu

m
W

e
e
x

X
a
m

a
ri

n
N

a
ti

v
e
*

∑ w
/

n
a
ti

v
e

∑ w
/
o

n
a
ti

v
e

A
R

T
A

N
D

D
E

S
IG

N
44

0
2

61
0

0
20

0
7

5
7

0
51

38
43

40
40

19
7

A
U

T
O

A
N

D
V

E
H

IC
L

E
S

16
0

1
14

4
0

0
48

0
4

10
46

0
28

6
24

83
30

38
55

5
B

E
A

U
T

Y
12

0
0

86
0

0
21

0
2

15
17

0
11

0
15

73
18

36
26

3
B

O
O

K
S

A
N

D
R

E
F

E
R

E
N

C
E

25
5

0
6

16
67

0
0

84
0

11
14

35
18

3
1

64
1

35
88

8
39

54
1

36
53

B
U

S
IN

E
S

S
41

5
0

20
52

87
0

1
12

45
10

80
24

5
95

4
3

41
66

22
19

2
34

61
8

12
42

6
C

O
M

IC
S

36
0

0
22

0
0

17
0

0
0

1
0

21
17

25
18

22
97

C
O

M
M

U
N

IC
A

T
IO

N
86

0
4

61
8

0
0

25
3

4
23

34
85

0
56

5
95

90
11

26
2

16
72

D
A

T
IN

G
7

0
0

11
8

0
0

7
0

1
2

4
0

22
41

2
57

3
16

1
E

D
U

C
A

T
IO

N
26

72
0

8
39

97
4

1
12

84
3

82
12

39
88

1
1

19
19

45
57

1
57

66
2

12
09

1
E

N
T

E
R

T
A

IN
M

E
N

T
69

7
0

5
20

52
0

0
52

5
4

33
86

20
3

2
10

19
33

02
9

37
65

5
46

26
E

V
E

N
T

S
16

0
0

11
2

0
0

65
3

2
29

46
0

27
1

67
1

12
15

54
4

F
IN

A
N

C
E

93
0

3
18

50
0

0
44

3
2

7
69

75
5

1
12

37
13

12
5

17
58

5
44

60
F

O
O

D
A

N
D

D
R

IN
K

90
0

1
76

6
0

0
33

8
1

5
36

30
7

0
55

9
56

32
77

35
21

03
G

A
M

E
S

91
33

0
8

27
44

2
0

20
7

6
18

2
64

64
0

83
8

12
30

68
13

63
16

13
24

8
H

E
A

L
T

H
A

N
D

F
IT

N
E

S
S

18
2

3
7

13
97

1
0

62
9

1
32

59
10

13
0

95
8

14
02

4
18

30
6

42
82

H
O

U
S

E
A

N
D

H
O

M
E

16
0

0
14

1
0

0
49

1
8

14
28

0
14

1
19

63
23

61
39

8
L

IB
R

A
R

IE
S

A
N

D
D

E
M

O
15

0
0

61
0

0
29

1
7

5
19

0
60

14
39

16
36

19
7

L
IF

E
S

T
Y

L
E

29
0

0
8

44
72

1
0

83
6

3
30

90
9

51
1

1
11

77
38

43
7

46
67

5
82

38
M

A
P

S
A

N
D

N
A

V
IG

A
T

IO
N

20
0

1
64

9
0

0
18

3
1

20
25

10
6

1
43

3
65

02
79

41
14

39
M

E
D

IC
A

L
10

9
0

4
10

86
0

0
29

9
4

22
44

39
5

0
76

1
66

85
94

09
27

24
M

U
S

IC
A

N
D

A
U

D
IO

16
7

0
3

83
1

0
0

17
4

1
42

18
14

7
0

40
9

35
70

5
37

49
7

17
92

N
E

W
S

A
N

D
M

A
G

A
Z

IN
E

S
81

0
2

79
1

0
0

36
8

3
19

74
17

4
1

53
4

15
87

2
17

91
9

20
47

P
A

R
E

N
T

IN
G

28
0

0
33

0
0

13
0

2
3

1
0

44
48

9
61

3
12

4
P

E
R

S
O

N
A

L
IS

A
T

IO
N

10
0

0
40

0
0

23
0

0
1

8
0

48
31

29
0

31
42

0
13

0
P

H
O

T
O

G
R

A
P

H
Y

53
0

0
87

0
0

26
0

11
12

13
0

70
10

89
0

11
16

2
27

2
P

R
O

D
U

C
T

IV
IT

Y
18

1
0

13
13

52
1

0
56

8
6

11
2

80
22

4
2

17
37

15
25

0
19

52
6

42
76

S
H

O
P

P
IN

G
29

0
5

99
8

0
0

37
4

5
4

77
16

8
3

95
2

84
47

11
06

2
26

15
S

O
C

IA
L

54
0

5
65

8
0

0
32

5
1

7
77

14
0

0
47

7
71

73
89

17
17

44
S

P
O

R
T

S
13

8
0

0
13

02
0

0
35

1
4

16
66

19
0

0
94

9
10

52
8

13
54

4
30

16
T

O
O

L
S

27
5

0
12

12
60

0
0

58
2

4
14

9
78

20
3

1
16

57
34

41
2

38
63

3
42

21
T

R
A

V
E

L
A

N
D

L
O

C
A

L
14

2
0

6
22

43
3

0
91

3
2

30
14

4
43

5
2

11
19

17
58

2
22

62
1

50
39

V
ID

E
O

P
L

A
Y

E
R

S
59

0
1

12
5

1
0

33
0

18
8

29
0

45
42

09
45

28
31

9
W

E
A

T
H

E
R

9
0

1
10

7
0

0
74

1
5

5
18

0
62

24
42

27
24

28
2

∑
15

43
0

3
12

6
37

15
7

13
2

11
16

2
82

97
6

35
68

73
75

19
23

33
8

56
21

41
66

13
92

99
25

1

November 2020 178 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

Looking at previous research on Google Play Store category distribution

of cross-platform apps, Malavolta et al. (2015b) had the Business category

listed as the seventh most cross-platform populated Play Store category. As

their study is from 2015, an explanation of this discrepancy could be a shift

towards more massive investments in business digitisation, leading to an

increase in B2B and line of business apps, and thus in the use of Cordova.

However, the results presented by Ali and Mesbah (2016) align much closer

to the distribution presented in Table 6.2, with the Business category as

the predominant outlet for hybrid apps. As the results indicate, the hybrid-

based Cordova framework is the most used cross-platform framework within

the Business category, accounting for 42.55% of cross-platform apps in the

category. Do note that the far-right sum (
∑

) columns in Table 6.2 differs from

the number of identified cross-platform apps due to parsing and extraction

issues with a small number of apps’ Play Store category.

By inspecting the Google Play Store’s page on top apps in the Education

category, we find Massive Open Online Courses (MOOC) from MIT, Udemy

and Coursera, alongside apps for Learning Management Systems (LMS), in-

teractive language courses such as Duolingo, and note-taking apps. The

strong presence of cross-platform apps in this category could indicate that

cross-platform frameworks can cater to varying degrees of complexity and re-

quirements, as the aforementioned apps range from predominantly list-view-

based apps (note-taking) to more performance-demanding products focusing

on video rendering and animated content.

November 2020 179 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

Other specific categories also stand out, but rather due to the relatively

considerable absence of cross-platform apps. Personalisation is one extreme

case of such, where cross-platform frameworks account for 0.41% of the cat-

egory’s identified apps. Apps in the Personalisation category include, for

instance, custom Android launchers, custom keyboards, icon and wallpaper

packs, apps focusing on home screen widgets, and ringtone providers. While

apps focusing on content delivery, including icons, ringtones and wallpapers,

may not require deep integration into native device and platform functional-

ity, creating custom Android launchers and keyboards do require such inte-

grations. Those types of apps may require a higher degree of platform-specific

native code than, for instance, a Business category app, as the former’s pre-

dominant focus is on modifying the underlying Android system front-end.

Another category lacking the presence of cross-platform apps is Photogra-

phy, wherein such apps account for 2.74%. It could be argued that possible

reasons are similar to those of the Personalisation category; a significant need

for platform-specific native code for communication with the underlying plat-

form and device features, such as to perform face recognition and tracking

with superimposed filters in real-time (e.g., adding dog ears to a video feed

and changing facial features).

6.4.3 Framework Distribution Over Time

A challenge with analysing framework distribution and usage over time stems

from a side-effect of obfuscation during .apk compilation (Kambourakis

November 2020 180 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

et al., 2017). Specific measures and obfuscation techniques will render an

app’s compilation time (Dalvik executable files’ creation dates, DEX DATE)

unusable as the date is set to the 1970s, 1980s or an arbitrary year; 2001, 2046

or 2059 which were all observed in the dataset. Prior to downloading .apk

files from the AndroZoo repository, a filter was applied to only download

files with a seemingly usable (i.e., non-obfuscated) date between 2008 and

2019. In Figure 6.4, a log-scaled distribution of framework usage between

year 2008 and 2019 is depicted. Native apps were excluded from the figure to

focus exclusively on cross-platform presence. This section is concerned with

addressing the experiment’s second research question ('&2).

N
um

be
r o

f a
pp

s

10,000

1,000

100

10

1
0

Release year

201920182017201620152014201320122011201020092008

Framework
Adobe AIR
Capacitor
Codename One
Cordova
Flutter
Fuse
Ionic
NativeScript
Qt Mobile
React Native
Titanium
Weex
Xamarin

Page 1

Figure 6.4: Log-scaled framework distribution over time from 2008 to 2019.

(D1−'&2.2: How has the use of cross-platform frameworks in deployed

apps changed over the last 12 years?

November 2020 181 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

The year 2016 was particularly interesting, considering the findings in

Figure 6.4, as all the assessed cross-platform frameworks increased in adop-

tion that year. One possible explanation for this is the industry-generated

hype surrounding the first release of React Native in 2015 (Alpert, 2015), an

implementation which turned more stable in 2016. The possible newfound

interest for cross-platform development could have led industry practitioners

to also look for alternatives to React Native, resulting in higher adoption and

usage across all frameworks.

Up until 2018, the dataset indicates that Cordova was for five consecu-

tive years the dominating cross-platform development framework. Cordova

peaked in terms of deployed apps in 2016 (= = 16 225). However, in 2018 Xa-

marin surpassed Cordova for the first time since 2011. Based on data from

the Stack Overflow developer surveys from 2017 and 2018 (Stack Overflow,

2017, 2018), Xamarin is more appreciated than Cordova for both years, with

a slight increase in developer appreciation for both frameworks. The Xam-

arin growth in 2018, according to the data, could possibly be related to the

Microsoft acquisition of Xamarin in 2016. Xamarin grew simultaneous to the

decrease in Cordova adoption. The decreasing use of Cordova is also reflected

in the decline of desktop installs of the Cordova tool, as illustrated by the

download statistics provided by the npm-stat Website (Vorbach, 2019).

Based on discussions from industry outlets, Facebook’s React Native has

gained quite some traction among practitioners (Skuza et al., 2019). As

shown in Figure 6.4 however, an earlier implementation of the interpreted

November 2020 182 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

approach does still see more usage in published apps – namely the Titanium

framework from Appcelerator. While React Native had a spike after its

release in 2015, the Titanium framework was still found to be more popular

for published apps up until 2019 where React Native saw a considerable

increase in adoption, from = = 431 in 2018 to = = 2 004 in 2019, whereas

Titanium in 2019 was at = = 1 922.

Looking to Figure 6.4, Cordova was used in 144 of the sample size apps

in 2008, an outlier compared to the remaining frameworks. However, the

increase in the use of Cordova has continued since then, with the exception of

2009 and 2010. Interestingly to observe, is that for several of the frameworks

with high usage volumes, such as Xamarin, Adobe AIR and Cordova, the

trend for the last two years, 2018 / 2019, shows a decline. It will be interesting

to see whether this trend continues, and could be an indication of a swing

in the pendulum between native apps and cross-platform apps, where the

former has an indication to be on the rise at the moment.

6.4.4 Impact on APK File Size

The importance of keeping the compiled binary .apk size as small as pos-

sible is stressed by the Google Play Store team’s research. Their findings

indicate a 1% decrease in app downloads per 6MB increase in .apk size.

Additionally, apps beyond 100MB in size are more prone to see a cancella-

tion of the Play Store download by an increase of 30% compared to apps less

November 2020 183 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

than 100MB in size (Tolomei, 2017). Thus, investigating the potential im-

pact which cross-platform frameworks impose on the compiled .apk size is

essential. Prior to the investigation, a Levene’s test was conducted to check

for homogeneity of variance in the dataset (U = .05) (Field and Hole, 2003).

This is important in of terms uncovering possible violations of assumptions

for follow-up tests, for instance in the case of the ANOVA which assumes

normal distribution. The test reported of statistically significant variance,

thus violating the assumption of homogeneity of variance in ANOVA, at

� (13, 661691) = 318.927, ? < .0005. Due to the number of outliers (see Figure

6.5), high standard deviation and sample variance of identified apps between

the categories of development approaches (see Table 6.3), ranging from two

(2) apps in the case of Fuse up to 37 180 apps in the case of Cordova, and fur-

ther 562 401 unidentified/native apps, it was deemed infeasible to conduct

hypothesis testing using an analysis of variance. Instead, the focus is on

reporting and interpreting results based on descriptive statistics to discuss

Hypothesis 1 (�1), and highlight mean (Ḡ) .apk size alongside standard

deviation (f), maximum and minimum values in Table 6.3 accompanied by

a boxplot of .apk size per cross-platform framework.

The mean .apk size generated by the various cross-platform frameworks

can have immediate implications for decision making and requirements en-

gineering. Developing apps for storage-constrained devices requires caution

and thought, and the appropriateness of an app’s file size depends on factors

such as primary market (e.g., Western countries versus developing regions)

and significance for end-user (e.g., daily use versus one-time use). An app

November 2020 184 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

targeting a developing country may need to put additional emphasis on file

size to avoid unnecessary cost and download time-related to the acquirement

of the app (see for example Google’s case study on the Ola ridesharing app

(Google, 2017)). Developing an app meant for daily use may grant the devel-

oper fewer constraints in terms of file size, while an app used only once, for

instance, a public transportation app needed during a holiday, can perhaps

face additional scrutiny by the end-user for being unnecessarily large. Find-

ings and results derived from the current experiment can thus potentially be

of great value to practitioners during processes of technical decision making.

This section is concerned with addressing the experiment’s hypothesis (�1).

�~?>Cℎ4B8B1: Apps developed using the native approach should gen-

erate .apk files of smaller file size than apps developed using cross-

platform development frameworks due to not relying on bundled inter-

preters, virtual machines or WebView containers.

The results presented in Table 6.3 and Figure 6.5 indicate that the vast

majority of the frameworks generate apps with a higher mean .apk size than

the native development approach. Nevertheless, three frameworks were found

to generate lower means. On the grounds of the results presented in Table

6.3, Hypothesis 1 (�1) can be rejected; native apps are not inherently smaller

in file size than cross-platform apps. Nevertheless, the only three exceptions

to the hypothesis were Fuse, Cordova and Codename One. The remaining

frameworks were shown to produce apps of larger mean file size than the

November 2020 185 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

native approach. It is important to note that both Fuse and Codename One

have a significantly lower number of identified apps used for comparison,

while Cordova has a more comparable size.

Table 6.3: Overview of mean .apk size per framework. Table ordered by
mean .apk size.

Technology #
Mean
(kB)

SD
(f)

Max
(kB)

Min
(kB)

Xamarin 23 345 34 142,45 20 579,42 198 528,01 2 510,52

Weex 19 33 439,57 26 852,28 97 842,74 930,33

Flutter 13 31 657,93 26 088,96 94 889,04 7 200,16

Titanium 7 379 28 380,40 24 104,87 102 230,71 804,60

React Native 3 568 27 239,81 14 494,94 112 823,37 3 734,31

Adobe AIR 15 442 23 556,74 17 359,39 107 526,09 32,64

Capacitor 3 21 841,82 75,41 21 885,39 21 754,74

Qt Mobile 976 20 706,93 14 849,85 104 086,80 73,58

NativeScript 82 19 314,41 12 166,07 85 992,08 6 741,01

Ionic 11 169 15 273,53 14 355,10 104 716,90 315,74

Unidentified 562 401 13 776,04 17 490,73 176 575,43 3,38

Fuse 2 12 675,19 2 584,90 14 502,99 10 847,39

Cordova 37 180 12 527,55 13 151,81 106 686,63 95,72

Codename One 126 8 011,64 7 934,04 38 516,81 1 895,09

Total 661 705 14 924,16 17 953,00 198 528,01 3,38

On the opposite side of Codename One is Xamarin with the highest mean

kB size. Looking at the overview of the number of apps per framework per

Play Store category in Table 6.2, Xamarin is mainly present in the Business

category (= = 4 166). While it could be that apps in this category are in gen-

eral larger in size, also the presence of Cordova in the Business category is

substantially larger than in any other category (= = 5 287), yet has a mean kB

size close to three times smaller than the average Xamarin app. These find-

November 2020 186 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

●●● ● ●●● ● ●●●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ● ●● ● ●●● ●● ●●●● ●●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ●● ●● ● ●● ● ●● ●●● ●●● ● ● ●● ●●●● ●●● ●●●●●● ●●● ●●● ●● ● ● ●●● ●● ●● ●●● ●●●●● ●● ●● ●●● ● ●●●●●● ●●● ●● ● ●● ● ● ●● ● ●● ●● ●●●●● ●● ●●●● ● ●● ●●● ● ●●●● ●● ●●●● ● ●● ● ●● ●● ●●● ● ●●● ● ●● ●●● ● ●● ● ● ●●●● ● ●● ●● ● ●● ●●●●● ●●● ●●● ● ●●● ●● ●●● ●● ● ●●● ●● ●●●●● ●● ● ●●● ●●●● ● ●● ● ●● ●● ●● ●●● ● ● ●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ● ● ● ●● ●●●●●● ● ●● ● ●●●●●●● ●●●●● ● ● ●●● ●● ●● ●●● ●●●● ●●● ●● ●●● ●● ●●●●● ●● ●●●●●●●●●●●●● ● ●● ●●● ●● ●●●● ●● ●●● ● ●●●●● ● ● ● ●● ●● ●●●● ●● ●●● ●●● ● ●●● ●●● ● ●● ●●●●●●● ●● ● ●● ●● ●● ●●●● ●●● ● ●● ● ●● ● ● ●●●●● ●●● ●● ●● ● ●●● ● ●● ●●●● ●●●●●●● ● ●● ● ●●●●●●● ●● ● ●● ●●● ●● ● ● ● ●●● ●●●● ●●● ● ●● ● ● ●●●● ● ●● ●●●● ●● ● ●●●● ● ● ● ● ● ●●●●● ●● ● ●● ● ●●●●●● ●● ● ●● ●●●● ● ● ●● ●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●●● ● ●●● ●●● ● ●●● ●●● ●●● ●● ●● ●●●● ●● ● ●●●● ● ●●● ● ●●●● ●● ●● ● ●●● ●●● ● ● ●●● ● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ● ● ● ● ●●●●● ●●●●●●●●● ●● ● ●●● ● ● ●●● ● ●●● ●● ●● ●● ●●● ● ● ●●●● ● ●● ●●●●● ● ● ●● ● ●●●● ● ● ● ●● ● ●●● ●●●● ● ●● ●●●●● ●●●● ● ●●● ●●●● ● ●●● ●● ●● ●● ● ●●● ●●●● ● ●●●● ● ●● ● ●● ● ●● ●●●●● ●●● ●● ●● ●● ● ●●● ● ●● ● ● ●●●● ●● ● ● ●● ●●● ●● ●●●● ● ● ● ●● ● ●●●●●● ● ●●●● ●●●●● ●● ●● ●● ● ●●● ●●● ●●●● ●● ● ● ●● ●● ●●● ● ● ●●●●● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ● ●● ●●●● ●●● ●● ●● ●●● ●●● ●● ●● ● ● ●● ●●●● ●●● ●●●● ●●● ● ●● ● ● ●●● ● ●● ● ●●● ●● ●● ●●● ●● ● ●● ● ●●● ● ●●●● ●● ● ●●● ●●● ●●● ● ●● ●● ● ● ●● ● ●● ●● ●●●●● ● ● ●●●●●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●●●● ●●●●● ● ● ●●● ●●● ●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●● ● ●●●● ●● ●● ● ●●● ●● ● ●● ●● ● ●●● ●● ● ● ● ●● ●●●● ●●●●●● ● ●●●● ●● ●● ●●●● ● ● ●●● ● ●● ● ●●● ●● ●●●●● ●● ●●●●●● ● ●● ●●● ●● ●●●● ●● ●●● ●●● ●● ● ●●●●● ●● ●● ● ●●●● ●●●● ●●●●● ● ● ●●●● ● ●●●●● ●● ● ●● ●●

● ●● ● ● ●● ●● ●●●●

●●● ●● ●●●● ●●●●● ●● ●● ● ●● ●●● ●● ● ●●●●●●● ●● ●● ●●● ●●● ●● ●●●●● ● ●●● ● ● ●● ●●● ●●● ● ●●●●●●● ● ●● ●●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ● ●● ● ●●●●●● ●●●● ●● ●● ●●●● ●●● ● ● ●●● ● ●● ●● ●●● ●● ●●● ● ●● ● ● ●●●● ●● ●●● ● ● ●●● ● ●●●●● ●● ●●●●● ●●● ●●● ●● ●●● ●● ●●● ● ●● ● ●● ●●●●●● ● ● ● ●● ●●●● ●● ●● ● ● ●●● ●●●● ●● ● ● ●● ●● ●●●● ● ●●● ● ●●●●● ●●● ● ●● ●●● ● ● ●●● ● ●●● ●● ● ●●●● ● ● ● ●● ● ●● ●● ●● ●●● ● ●● ● ●● ●● ● ●●● ●● ●● ● ●●● ● ● ●●●●●● ● ●●●●● ● ●●●●● ●●● ●● ●● ●●●●●● ●●● ●● ●● ●● ●●● ● ● ●● ●● ●● ● ●● ● ●● ●● ●●●● ● ●● ●● ●●● ●● ●● ●●● ● ● ●● ●● ●●●●●● ●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ● ●●● ●●●● ●● ●● ● ●● ●● ●●● ●● ● ●●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ● ●●●● ● ●●●● ●●●●● ●● ●● ●● ●● ●● ●●● ●●●●● ● ●●● ●● ●● ●● ●●● ●●●● ●●● ●● ● ● ●● ● ●● ● ●●●●●●●●●●●●● ●●●● ● ● ●●●●● ● ●●●●● ●●●● ●●●● ●● ●●●● ●● ●● ● ●●●●●● ● ●●● ●● ●●●● ●● ● ●●●●● ● ●● ●● ● ●● ●● ●● ● ●● ● ●●●●● ● ●●● ● ●● ●●●● ●● ●● ● ● ●● ●● ●● ● ●● ●●● ●●● ●●● ●● ● ●● ●● ● ●●●●● ●● ●● ●●●● ● ●●●●●● ● ●● ●●●●●●● ●● ●● ●● ●●●●●●●● ●● ● ●● ● ●●● ●● ●● ●●●● ● ● ●● ●●●● ●● ●●●● ●●●● ●● ●● ● ●● ●●●●● ● ●●● ●● ●● ●●● ● ●●● ● ●●● ● ●●● ●

●

●●●● ●●● ● ●●●● ●●●● ●● ● ● ●● ●●●●●●●●● ●●●● ●●●●● ●●● ●●●●● ● ●● ●● ●●●●●●● ●●●● ●●●●● ●● ●●●● ●●●●● ●●● ●●●●● ●● ●●●●● ●●● ●●● ●● ●●●● ● ●● ●● ●● ●●● ●●●●●●● ●● ● ●●● ● ●●● ●● ● ●● ● ●●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ● ●● ●● ●● ●●● ●●● ● ● ●●● ● ●● ●● ● ●● ●● ●●●● ●● ● ●● ●● ● ●●● ● ●● ●● ● ●●●● ●● ●● ● ●●● ●● ●●●● ●● ●●●● ● ●● ●●●● ● ●●● ●●● ●● ●● ● ●● ● ●●●●● ●●● ●● ●●● ●●●● ●● ● ●●●● ● ● ●● ●●● ●●●●● ● ● ●● ● ●● ●●●● ●● ●●●● ●●● ●● ● ● ●● ● ●●●● ● ●●●●●●● ● ● ●● ●●● ●●●● ●●●● ●● ● ●● ●●●● ● ●● ●●● ● ●●●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●●●● ●●● ●● ●●●●● ● ●● ●● ●● ● ● ●●● ●● ●●●● ● ●●●●● ●● ●● ●● ● ●● ●● ●●●●●●● ●●●●●● ●●● ●●● ● ● ●●● ●●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ●●●● ●● ● ●●● ●● ●● ●●●● ●● ● ●● ●●● ●●● ●● ● ●●●● ●●●●●● ●

●●

●● ●●● ●● ●● ● ●● ●●● ●●● ● ● ●●● ●●● ● ● ●●● ● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●● ●●● ●● ●● ● ●●●● ●● ●● ● ●●●

● ●● ●● ●● ●● ● ●●● ●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●● ●●●●●●● ●● ●●●

●● ●●●●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ● ●●●● ● ●●●●● ● ● ●● ●● ●●● ● ●● ●● ●● ●●●● ●●● ● ●● ● ● ●● ●● ●● ● ●● ● ●●● ● ●●● ●● ●●●●●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●●●●● ●●● ●●●●● ●●●● ●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ● ●●● ●●● ●●● ●● ● ●● ●● ●● ●●●●● ●●● ●●●●● ●● ● ●●●●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ●●●●●● ●●●● ● ●●●● ●●● ●●● ●●●●● ●●● ●●●●●●●●● ●●● ●●●● ●●●●●● ●●● ●●●●●●●●●●●●● ● ●●● ●●●●●●●●● ●●●●●● ●●● ●● ●●●●●●● ●● ●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●● ● ●●●● ●● ●●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●● ●●● ●●● ●●●● ●●●●● ● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●●●●●●● ●●●●● ●● ●● ●●●●●●● ●● ●● ●●● ●●● ●●● ●● ●●●● ●●●●● ●●● ●●● ● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●● ●●●● ●● ●●●● ●●●●●● ●●●●● ●● ●● ●●● ●●●● ●●●●●●● ●●●●●● ●●● ●●●●● ●●●● ●●●● ●●●●● ●● ●● ●●●●●●●● ●●●●●●●● ●● ●●●● ●●●●●●●● ●●●●●●●● ●● ●●●●●●● ●●● ●●● ●● ●●●●● ●●● ●●●●● ●●● ●● ●● ●●●●● ●●●●●● ●● ●●●●●●● ●●● ● ●●● ●●● ●● ●● ●●●● ●● ●● ●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ● ●●●● ●●●●●● ●●●●● ●●●● ●●● ●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●● ●● ●● ●●● ●●●● ●●●●●● ●●●● ●●● ●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●● ● ●● ●●●●● ●●●●● ●● ●●●● ● ●● ●● ●●●●● ●●●●● ●● ● ●● ●● ●●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●●● ● ●●● ●● ●●●●●● ●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●●●● ●● ●●●●● ●●● ●●●●● ●●●●●●●●● ●●● ●● ●●●●● ●●● ● ●● ● ●● ● ● ●●● ● ●● ●● ●● ● ●●●● ● ●● ● ● ●● ●●● ●● ● ● ●●● ●● ●● ● ●●

●● ●● ●● ●●● ●● ●● ● ●●● ● ●●● ●●● ●●● ● ●●● ●●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ● ●● ●●● ● ●● ●● ● ● ●●● ●● ● ● ●●● ● ●●● ●● ●● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●● ●● ●●●●●●●● ● ● ● ●● ●● ●●●● ●●● ● ●● ●● ●● ●●● ●● ● ●●● ●● ●● ●●● ● ●●●● ●● ●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●●● ●●●● ● ●● ● ● ● ●●● ●●● ● ●● ●● ● ● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ● ● ●●●●●● ● ●●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●● ●● ●●● ● ●● ●●● ●●●● ●● ● ●● ●● ●● ●● ●●●●● ● ●●●●● ●● ●●● ●●●●● ● ●●●● ● ●●● ●●● ●●● ●● ● ●●● ● ●●●● ●●●●● ● ● ●● ●●● ● ● ● ●● ● ● ●● ● ●●●●● ● ● ● ●● ● ● ●● ●● ● ●●●●● ●● ● ●●● ● ●● ● ● ●●●● ●● ●●●● ●● ●●●●● ●● ● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ● ●●● ●●●●●● ● ●● ●● ●●●● ●●●● ●●● ●●●●●● ●● ●● ●● ●●● ● ●● ● ● ●● ●●●● ●●●● ● ●● ● ●● ●●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●●●●● ●●●●● ●●● ●●● ●● ●● ●●●●● ● ●●●● ● ● ●● ●● ● ●●●●● ●● ●●●● ●●●● ● ●●●●●● ● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●●●●●● ● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●● ● ● ●●●● ●●●●● ●●●●● ●● ●●● ● ● ●● ● ●● ● ●●●●● ●● ● ● ● ●● ●●●● ●● ●● ●● ● ●●●● ● ●● ●●● ● ●●● ●●●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ● ●●● ●●●● ●● ● ●●●●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●●● ● ●●● ● ● ● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●●●● ●●●● ●●● ●●● ●● ●●● ●●●● ●●● ● ● ●● ●●● ● ● ●●● ● ●● ● ● ● ●● ●● ●●●● ● ●●● ●● ●● ●● ●● ●●●● ●●●●● ● ●● ● ●● ●● ● ●●●●●●● ● ● ●●●● ● ●● ● ●● ●● ●●●● ●●● ● ●●●●● ● ●●● ●●● ● ● ●● ●● ●● ● ● ●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ● ●●●● ●●●● ●● ●● ● ●● ● ●●●●● ● ● ●●●●● ●● ● ●●● ●●● ●●●● ●● ● ●● ● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ●●● ●●●● ● ●● ● ● ●● ● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●●●●● ● ●● ● ●● ● ●●● ●● ●●●● ● ●● ● ● ●● ● ●●●● ●●● ● ●●● ●● ● ●● ● ●●● ●● ● ●● ● ●●● ●●● ●●●● ● ●●● ●● ● ●● ● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ● ●●● ●●● ●●● ● ●●● ● ● ●●● ●●● ●● ●● ● ●● ●●●●● ● ●●● ● ●●● ●●●●●●● ● ●●● ● ● ●●● ●● ● ●● ●● ● ●●● ●●●● ●●● ●●● ●●●●●●●● ● ●● ●●●● ●● ●●● ● ●● ●●● ●● ●●● ● ● ●● ●● ● ● ●● ● ●● ●●● ● ●● ●●● ● ●●●●● ●●●● ●● ●● ●● ●●● ● ●●● ● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●●●● ● ● ●●● ●●●● ● ● ●●● ● ●●●● ●●●● ● ● ●● ●●●● ●● ●● ●●● ● ●● ●●●●●●● ● ●●● ● ● ●●●● ●●●● ●● ●●● ● ●● ●● ●● ●●● ●● ● ●● ●●● ●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ● ● ●●● ●●●● ● ●●● ●● ● ●● ●●●● ●●●● ● ● ● ●●● ● ● ●● ●●●●● ●●● ●●●● ●●● ● ●● ● ●● ● ● ●● ●●●● ●● ●● ●●● ●● ●●● ● ● ●●● ●● ●● ●● ●● ● ● ● ●● ● ●● ●● ●●●● ●● ● ● ●●●● ●● ● ●●●●●● ●● ●● ●● ● ●●● ●● ●●●● ●●● ●●● ●● ● ● ●● ●● ● ●● ●● ●●● ● ●● ●● ●●● ● ●●●●●●●● ●●● ●●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●●●● ● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●●● ● ● ●● ● ●● ●●●● ● ●●●●● ● ●●●●●● ●● ●● ●●●● ●●●●● ● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ● ● ●●●●● ● ●● ●●●● ●●● ● ● ●●●●●● ●●●● ●● ●● ●● ●● ●●● ●● ●●●● ●●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●●● ● ●●●● ●● ●●● ●● ●●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●●●●●● ● ●●● ● ●● ●● ● ●● ●● ●●●● ● ●●● ●●●● ●●●●●●●●●● ●● ●● ● ● ●● ● ●●●● ●●● ● ●● ●● ● ●●● ●● ●● ●●●●● ●●● ●● ●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ●●●● ●●●● ●● ●●● ● ●● ●● ●● ● ● ●●● ●●● ●● ● ● ●● ●●●● ●● ●●●● ●●● ●●●● ●●●●● ● ●● ●● ●●● ● ●●●● ●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●● ●●●●●● ●● ● ●●●● ●●●● ● ●●● ●●●● ● ●●●●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●●●● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ●● ● ●●●●● ●●● ●●●● ●● ●● ●●● ● ●●●● ● ●● ●●● ●● ●●● ● ●●● ● ●● ●●● ● ●●● ●●●● ● ●● ●● ●● ● ●●● ●●●● ● ●●● ●● ● ●● ●●●● ●● ●●● ● ● ● ●●●● ● ●● ●● ●● ●●● ●●● ●● ●●● ● ● ●●● ●● ● ●● ●● ●●●● ●● ●●● ●●● ●●●● ● ● ●●● ● ●● ●●● ● ● ●● ● ● ●●● ●●● ● ●● ●●● ●● ●● ●●● ● ●●●● ●● ●●●●● ●● ●● ●●●● ●●● ●●●● ●● ●● ● ● ●● ●●●● ● ●● ●●●●● ●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●● ● ●●●● ●●●● ●●● ●●●●● ●●●● ●● ●●●● ●●●● ●● ●● ● ●●●●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●●●●● ●●● ●●●● ●●● ● ● ●●●● ●● ● ●● ● ●●●● ● ●●●● ●●● ● ●● ●● ●●●● ●● ●● ●● ● ●●● ●●● ●● ●●● ●●● ●● ● ●● ●●●● ● ●●● ● ●●● ●●● ● ●● ●● ●●● ● ●● ●●●● ● ●● ● ●● ●● ●●● ● ●●●●● ●●● ● ●● ●● ● ●●●●● ●●●●● ●● ●● ●●● ●● ● ●●●●●●● ●●● ●● ●●●● ●●● ●● ●●●●● ●●● ●●●●● ● ●●● ● ●●● ●●● ●● ●● ●●●● ●●●●●● ●●●●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ●●●● ●●● ● ●●●●●●●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ● ● ●● ●●● ●● ● ●●● ●● ● ●●●●● ●●● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●● ● ●●●● ●● ●●●● ● ●● ●●●● ● ●● ●● ●●● ● ●●●● ●● ●● ● ●● ● ● ●● ●●● ● ● ●● ● ●●● ●●●● ●● ●●● ●●● ● ●●● ●● ● ●● ● ●●● ● ●●● ●●● ● ●●●● ● ●● ●● ●● ●●● ●● ●●●● ●●●● ●●● ● ● ●● ●● ●●● ●●●●●● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●● ●●● ● ●●● ●● ● ●●● ●●● ●●● ●●● ● ●●●● ●● ●●● ●●●● ● ●● ● ●● ●●● ●●● ●● ●●● ●●●●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ●●●● ● ● ●● ● ●●●● ● ●●● ● ●● ●●● ● ●●● ●● ●● ●●● ● ●●● ● ● ● ●●●● ●●● ● ● ●●●●●● ●●● ●● ●● ●●● ●●●● ●●●● ●●●● ● ●●●● ●●● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ● ●● ● ● ●●●● ●● ●●●● ●●● ●●● ● ●●● ● ● ●●●● ● ●●●● ●●● ●● ●● ●●● ● ● ●●●● ●● ●● ●● ● ●●●●● ● ●● ● ●●●● ● ●● ●●●● ●● ● ●●● ●●● ●● ●● ●●●● ●● ● ● ●● ● ●● ● ●●● ● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●●● ●● ●● ● ●● ● ●● ●● ●●● ● ●●●● ●●● ● ●●●● ●● ● ●●● ●●● ●● ● ●●● ●●●●● ●●● ● ●● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●●● ●● ●● ● ●●●● ● ●● ●●● ●●●●●● ●●● ●●●●● ●●● ● ●● ●●● ●●●● ●● ● ●● ●●●● ● ● ● ● ●● ●● ●●●● ● ●●● ●●●● ●● ● ●● ● ● ●●●●●●● ●●● ●●●● ●●● ● ●●● ●●● ●● ● ●● ●● ●●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●● ● ●●● ● ●●● ● ●● ● ●●●● ●●●●● ●●●●●●●● ● ●●● ● ● ●●● ● ●● ●● ● ●●● ●●●●● ● ● ●● ●●●● ● ●● ● ●● ●●● ● ● ●●●● ●●● ●● ● ●● ● ●●●● ● ●●●● ● ●● ● ●●●●● ●● ●● ●● ●●● ● ●● ● ●● ● ●●●●●● ● ●● ●●● ●● ●● ●●● ● ●●●●●●●●●●●●● ●●●● ●●●● ● ●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●●● ● ●●● ● ●● ● ●●● ●●● ●● ●● ●● ●●●●● ●●●●●● ● ●●●● ●●●● ● ●● ● ●●●● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●●●●●● ● ●● ● ● ●● ● ● ●●●● ●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●●● ●● ●●● ● ●● ● ●● ●●●●● ● ● ●●● ●●●●●● ●●●● ● ●●●● ●● ● ● ●●●● ●● ● ●● ●● ● ●●● ●●●●● ● ●●●● ●●●●● ●●● ●●● ● ●●● ● ●● ●● ●● ● ● ●● ● ●● ● ●● ●● ● ●● ●●●● ● ● ● ●● ●● ●●● ●●●●● ●●●● ●● ● ●●● ● ●● ●● ● ●● ●●●● ● ●● ●● ● ●●● ●●●● ●●● ●● ● ●●●●● ● ●●● ●● ●●●●●● ●● ●●● ● ●●●● ● ● ●● ● ●●●● ●● ● ●● ● ●●● ●● ●●●● ● ●● ● ●●● ●● ●●● ●●●● ●●● ●●● ● ● ●● ●●● ●● ● ●●●●● ●●● ●●●● ●●● ● ●●●● ●● ●●● ●● ●● ●●●●● ● ●●● ● ●● ● ●●●● ● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●●●● ●● ● ●● ●●● ●●●●●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ● ●● ●●● ● ●●● ● ● ● ●● ● ●● ●● ● ●●● ●● ●●●●● ● ●● ●●●●● ●●● ●●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ● ●● ● ● ● ● ● ●●●●● ●● ●●● ● ●● ●● ●●● ● ●●●●● ● ● ●●● ● ●● ● ● ●●●●● ● ●●●● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●●●● ●● ● ●● ●●● ● ●● ●● ●● ●● ●● ● ● ●●● ●● ●●● ● ●● ●●●●●● ●● ● ●● ●●●● ●●●● ● ●● ●●●● ● ●● ●●● ● ●● ●● ●●● ● ● ●● ●● ●● ● ●●●●●● ● ●● ●● ●● ● ●● ●●●●●● ●● ●● ●● ● ●●● ● ●●●● ●● ● ●● ● ● ● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ●●●●●● ●●● ●●● ● ● ●● ●● ●●●● ● ●● ● ●●●●● ●● ●●●● ● ●● ●●● ● ●●●● ● ●●● ●●● ●●●● ●●●●● ● ●● ●● ●● ●●● ● ●● ●● ●● ●● ● ●●●● ●● ●●●● ●●● ● ●● ● ● ● ●● ●●●● ●●● ●●●● ● ●●● ●●● ●●●● ●●● ● ● ●●●●●●●● ● ●● ●● ●●● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●●● ●● ● ●● ●●●● ● ●● ●●● ●●●●●● ● ● ●● ●●●● ●●● ● ●●● ● ●● ●● ●●● ●● ●● ● ●● ● ●●● ● ●●● ● ● ●●● ● ●●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●● ● ●●●●● ●● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●●● ● ● ●● ●●●●● ● ●●● ● ●●● ●●●●●● ●● ● ●●●● ●●●● ●● ●●● ●● ● ●●●● ●●● ●●● ●● ●●● ●● ●● ●●●● ● ●●●● ● ●●● ●● ●●●●● ●● ●●● ●●●● ●●●● ●●●● ● ●●● ●● ● ● ●●●● ●● ●● ●●● ●●●● ● ●●● ●●● ● ●●●● ● ●● ● ●● ●●● ●●● ●● ●●●● ●● ●● ●● ● ●●● ●●●● ● ● ●● ●●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●●●●● ●● ●●● ● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●●●●●● ● ●●● ●● ●● ● ● ●● ● ●● ● ● ●●● ●● ●●●● ● ● ●● ● ●●●●● ● ●●●● ●●●●● ●● ●● ●● ●●●●● ● ● ●● ●●● ●● ●●● ●●● ●● ●● ●●●● ●● ● ●● ● ●●● ●●●●●●●● ●●●●● ●●●●● ●●●●● ●●● ●●● ● ●● ● ●●●●● ● ●● ●●● ●●●● ●●●● ● ● ●●● ●●●● ● ●●●●● ●●●● ● ● ●● ● ●●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●●●● ●●●●● ●● ● ● ●● ●● ●●● ●●● ●●● ●●● ●●● ●●●● ● ●●● ●●●●● ●●● ● ●●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ● ● ● ●● ●●● ● ●● ●● ● ●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●●●● ● ●● ●●● ● ●●● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ● ● ●●●●● ●●●● ●● ● ●●●● ●● ●●● ● ●●● ●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ● ●●●●●● ● ●● ●●●● ●●● ●● ●●●● ●● ● ●●● ● ● ●● ●●● ● ● ● ●●● ●●● ●● ●●● ●● ● ●● ● ●●●●● ●●●● ●●● ●● ●● ● ●●●● ● ● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ● ●●● ●●● ●● ● ●●● ●●●●●●● ● ● ●●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ●● ●● ● ● ●●●● ●● ●●● ●●● ●● ●●●●● ● ● ●●● ● ●●●● ●● ●● ●● ●●● ● ●● ●●●● ● ●●● ●● ●● ●●● ●● ●●● ● ●● ●●●● ●●● ●●●● ●● ●●●● ●●●● ● ●● ● ●●● ● ●● ●● ● ●● ●●● ●● ● ●●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ● ●●● ●● ●●●● ●● ● ●● ●● ● ●●● ●● ● ●●●●●● ●●●● ● ●●● ●● ●●●●● ●●●●● ● ● ●●●● ● ●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ● ●●● ● ●●●● ●● ●● ●●●● ●●● ●● ●●● ●● ●● ●●● ● ●● ●● ● ● ●● ●● ●● ● ●● ● ●●● ● ●●● ● ●● ● ●●●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ● ●● ● ● ●●●● ●●● ● ●● ● ● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●● ● ● ●● ● ● ●● ●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●● ● ●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●●●● ●● ●● ●● ● ●● ●●● ● ● ●●● ●● ● ● ●●● ●●●●● ● ●● ●● ●● ●● ● ●● ● ●●● ●●●● ●●● ● ●●●● ●● ●● ● ●●●● ●● ●●●● ●● ● ● ●● ●● ●● ●●● ●● ●●● ●●● ●●●● ● ●● ●●● ● ●●●● ●● ●● ●●● ●● ●●●● ● ●● ● ●● ●● ●●●●●● ● ●●●●● ● ● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●●●● ●●●● ●● ● ●● ●● ●●● ● ●● ●● ●●●● ●● ● ● ●● ● ●●● ●● ●●●● ● ● ●●●● ● ●●●●● ●●● ● ●● ●● ●● ●●●●● ● ● ●● ● ●●● ●● ● ●● ●●● ● ●●● ●●●● ● ●● ●●●● ● ●● ● ●●● ●● ● ●● ●●● ●●●●●●● ●● ● ● ●●● ● ●●●●●● ● ●● ●●●● ●●● ●●● ● ●● ●●●● ●● ●●● ●● ●●● ● ●● ●●● ●●● ●●● ● ● ●● ● ●●● ●● ● ●●● ● ●●●●● ● ● ●● ●●●● ●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●●●● ●●● ● ●●●● ● ● ●● ● ●●● ●● ●● ● ●● ● ●● ● ●●● ●● ●● ● ●● ●●●● ●● ●● ●● ●● ● ●●● ●●● ●●● ● ●●● ●● ● ●● ●● ●●●●● ● ●●● ● ● ●● ●●●● ●●● ●●●● ● ● ● ●●● ● ● ●●● ●● ●●●● ● ●●● ●●● ● ●● ●●●●● ●● ●● ●●● ●●●● ●● ●●●●● ●● ●●● ● ●●●● ● ● ●●●● ●●●●●● ●●● ●● ● ●● ●● ●● ● ●● ●●●● ● ●●●● ●● ●●● ● ●●● ● ●● ● ● ●● ● ●● ●● ● ●● ●● ●●● ● ●●●● ●●● ● ●●●● ●●● ●●● ● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ● ● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●●● ●●●● ● ● ● ●●● ●● ●●● ●● ●●● ● ●● ●● ●●●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●●●● ● ●● ●● ●●● ●● ● ●● ●●●● ●●●●● ● ●● ●●●● ●●● ●●● ● ●●●●●● ● ●●●●●● ●● ●● ● ● ●●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ● ●●● ●● ● ●●● ● ● ●● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●● ●●● ● ●● ● ●●● ● ●●● ● ●● ●● ●●●●● ● ●● ●●● ● ● ●●●● ●● ● ●●●● ●● ●● ● ● ●● ●●●● ●●●●● ●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ● ●●● ●● ● ●● ● ● ●● ●●● ●● ● ●● ●● ● ●●● ●● ● ●● ●● ●● ● ● ● ●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●●● ●●●● ● ● ●● ●● ● ●●●●● ● ●●● ●●●● ●● ● ●●●● ●● ●● ●●● ●●●● ●●● ● ●●●●● ● ●●●●●● ●●●● ●● ● ●● ●●●● ● ● ● ●●●●● ● ● ●● ● ●● ●● ●● ●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●● ●●● ●● ●● ●● ●●● ● ● ●● ● ●● ●● ● ●●●● ●● ●●●●● ●● ●●●● ● ● ● ●● ● ●●● ●●●● ●● ●● ● ● ● ●● ●●●●● ●● ● ●● ●●● ● ●●● ●●● ●● ●●● ●● ● ●● ●●● ●●●● ●● ● ●●●● ●● ●● ●●● ●●●● ●●● ●●●● ● ● ●● ●● ● ● ●●● ● ●● ●●● ● ●● ●● ●● ● ●●● ●●●● ●●●● ●● ●● ●● ●●● ●● ● ●● ● ●●● ● ●●● ●● ● ●●●● ● ●●● ●●●● ●● ●● ●●● ●●● ● ●●● ● ●●● ● ●●●● ●●●● ●●●●●● ● ●● ●● ● ● ●●● ●●● ●● ●● ●●● ●●● ● ●● ●●●● ●● ● ●●●●● ●●●●●●● ●●● ●●● ●● ●●● ●●● ● ● ●● ●● ●● ● ●●● ●●●● ● ●●● ●● ● ●● ●● ●●●● ●●●●●● ● ●●●●● ● ● ●●● ●●● ● ● ●● ●●● ●● ● ●●● ●● ●● ● ●●●●● ●●● ● ●● ● ●●●● ● ●● ● ● ●●● ●●●●●● ●●● ●● ●●● ●● ● ●●●●●● ● ● ● ●● ● ●●● ●● ● ●●● ●● ● ●●●● ●● ●● ●● ●● ●●●● ● ● ●●● ● ● ●● ●● ● ● ●●●● ●●●● ●●●●●● ●●● ●● ● ●● ●● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●●●● ● ●● ● ●●● ●●●●● ●● ●● ●● ●● ●●●● ● ●●●● ●● ●● ●●● ● ●●●● ●● ● ●●● ● ●●● ●● ●●●● ●● ● ●● ● ●● ●● ●● ●● ●●● ● ● ●● ● ●●●● ● ● ●● ●● ●● ● ● ●● ●●● ●● ● ●●●● ● ●● ● ●●● ●●● ●● ●●● ● ●● ● ●● ●●● ●● ●● ● ●● ●●● ● ●●● ●●●● ●●●● ●● ● ●●● ● ●●● ●● ●●● ●● ● ●●● ● ●● ● ●● ●●● ● ●● ●●● ● ●●●● ●● ●● ●●● ●● ● ●●●● ●●●● ●● ●● ●● ● ●●● ●● ●●● ●●● ● ● ●●● ●● ● ●● ● ●● ● ●● ●● ● ● ●● ●●● ●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ● ●●● ●● ●● ● ● ●●●● ●● ●● ●● ●● ●●● ●● ● ● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ● ●●● ● ● ●●● ●●● ●● ●●●●● ● ●● ●●● ●● ●● ●●● ● ●●●● ●● ● ●●●●● ● ●● ● ●●● ●●● ● ● ●●● ●●● ●●●●● ●●● ●●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ● ● ● ●●● ●●● ● ●● ● ●●● ●●●●●● ●●●● ●● ●●●●●●●● ●● ●●●●● ● ●●●● ● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ●● ● ● ●●● ●● ●● ● ● ●●● ● ● ●●●●● ●●●● ●● ●● ●●● ● ● ●●● ●● ● ● ●● ●● ●●●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ● ●●● ●● ● ●●●●● ●●● ●● ●●● ●●●● ●●● ● ● ●●●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ● ●●●●● ● ●●● ●●●●● ●●●●●●●● ●●● ●● ●● ● ● ●● ●● ● ●●● ● ●●● ● ●● ●●●● ● ●● ●●● ● ●● ●●● ● ● ●● ●● ●● ● ●● ●●● ●●● ●●●●●● ●●● ●●● ● ● ●●●● ●●●● ●● ●● ●●● ●●●● ● ●● ●●● ●●● ● ●● ● ●● ●●● ●●●●● ● ●● ●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ● ●● ●●●●● ● ●●● ● ●●● ● ● ● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●● ●● ●● ● ● ●● ● ●● ●●●● ●●● ●●●● ●● ●●●● ●●● ● ●● ● ● ●●● ●●● ●● ●● ● ●●● ●● ●●● ●●● ●●● ● ● ●●●●● ●●● ●●●● ● ● ●●●● ● ● ●●●●●● ● ●● ● ●● ● ●● ●●● ●●● ●●● ●● ●●●● ●●● ● ● ●● ●●●●●●● ●●●●●●●●●●●●●●● ●● ●●● ●●●● ● ●●●● ● ●● ●● ● ●●● ●●● ●● ● ● ● ●● ● ●● ● ●● ●●●●● ●●●● ●● ●● ●● ● ●●● ● ●● ●● ●● ●●●● ● ● ●●●● ●● ●● ● ●●●● ●●● ●● ● ●● ●●● ●● ●●●● ●●● ●● ●●● ●●●● ●●●●●● ● ●●● ● ●● ● ● ●● ●●● ●● ● ●● ● ●●● ●● ●●● ●●● ●●● ●● ● ● ●● ●●●●● ●●●●●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ●●●● ●● ● ●● ●● ●● ●●●● ● ● ●●● ●● ● ●● ●●●● ● ●●● ●● ●● ● ●●● ● ●●● ●● ●● ● ●● ●● ● ● ● ●●● ●●● ● ●●● ●● ●● ●● ●● ●●● ●● ● ● ●● ● ●● ● ●● ●● ●● ●● ●●●● ●●●●● ●●● ●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●●● ●● ●●●●●●●● ●●●●● ● ●● ●●● ●● ●● ●●● ● ●● ●●● ●● ●● ●●● ●●● ●●● ●● ● ●●● ●● ●● ● ●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ● ●● ●● ●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●●●● ●● ●●● ● ●● ● ●● ● ●● ●●●● ●● ●●● ● ● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●● ●●●●●● ●●●●●●●●● ●● ●● ●● ●● ●● ● ●●●● ●● ● ● ●● ●●● ●●● ● ●● ●● ● ● ●●●● ●●●●●●● ● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ●●● ●●●● ● ● ● ●●● ●●● ●●● ● ●● ●● ●●●● ● ●● ●● ●●● ●● ●●●● ●● ●● ●●●● ● ● ●● ● ●●●● ●● ● ●●●● ●●●● ●● ●●●● ●● ● ●● ●● ●●● ●●●●● ●● ●● ● ●● ●●● ● ●●● ●● ● ●●●●● ● ● ●● ●● ●●● ● ● ●●● ●●● ● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ● ●● ● ●●●●●●● ● ●● ●●●● ● ● ● ●●●● ●● ●●● ●● ●●●● ● ●●●● ● ●●●● ●● ●● ●●●● ●●●●●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ●●●● ●● ●● ● ●●● ●●● ●● ●●● ●● ●●●● ● ●● ●●● ●● ● ● ● ●● ●● ●● ● ●●● ●●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●●● ● ●●● ● ●●● ●●● ●●●●● ●● ● ●● ●●●●● ● ●●●● ● ●● ●● ●●● ●●● ● ●●●● ●●● ●●● ●●●● ●● ●●● ●● ● ●● ●●● ● ●● ●●● ●●●● ●● ●● ●●● ●●● ●● ●●●● ● ●● ●● ● ● ● ● ●● ● ●●● ●●● ● ● ●● ●● ● ●●● ●● ● ●●● ●●● ●●● ● ●●●● ●●● ● ● ●●● ● ●●● ● ●●●● ● ●● ● ●●●●● ● ●●● ●●●● ●● ●● ● ●● ● ● ●● ● ● ●● ● ●●● ●●● ● ●●● ●● ● ●● ●●●●●● ● ●● ● ●●●●● ●●● ●●●●●●● ● ●● ● ●●● ●●●●●●●● ● ●●●●●●● ●●●●●● ● ● ●●●● ●●●●● ●● ●●●● ●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ● ●●● ●● ● ●● ● ● ●● ●●● ● ●● ●●●● ●● ●● ●● ●●●●● ● ●● ●● ● ●●●● ●● ●● ● ●● ●● ●● ● ●● ● ●●● ●●●●●● ●●● ●●● ●●● ●● ●● ● ●●● ● ● ●●● ●● ●●● ●● ● ●●● ●●●● ● ●●● ● ●● ● ● ●●● ● ●● ● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ●●●● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●● ●●● ●● ●●● ● ● ●●●● ● ●●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ● ●●● ●● ●● ●●●●● ●●●● ● ●●● ●●● ● ● ●● ● ●● ●●● ●● ●● ●●●● ● ●● ●● ●● ●● ● ●● ●●●● ●●● ●●● ●● ●● ● ●●● ●● ● ● ●● ● ● ● ●● ●●● ●●●●● ●● ● ●● ●● ●● ● ●●●● ● ●●● ●● ●●●●● ●● ●●●● ●● ●●● ●● ●● ● ●● ●●● ●●● ● ●●●●● ●● ●● ●●● ●●● ● ●● ●●● ●●● ●●●●● ●●●● ● ●● ●● ● ● ●●●●● ● ● ●● ● ●●● ● ●●● ●● ●●● ● ●●● ● ● ● ●●● ●●● ● ●● ●● ●● ●● ●●●● ● ● ●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ●●● ●● ●● ●● ●● ●●●●● ● ●● ● ●● ●●●● ●● ●● ●● ●● ● ●●●● ● ● ●●●●●● ● ●●● ● ● ●● ●● ●●● ●● ●●●● ●●●●●● ● ●●● ● ● ●●●● ● ●● ● ●● ●●● ●●● ●● ● ●● ●●● ●● ●● ●●●● ● ● ●●●●● ●● ● ●● ●● ● ●● ●●●● ●●● ●●●● ●● ●●●● ●●●● ● ●●● ●● ●●● ●●● ● ●●●● ●● ● ●● ●●● ● ●●● ● ●●● ● ●●●● ●●●● ● ●● ●●●●●● ● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ●●●●●●●● ● ●●● ● ●● ●●●● ● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●● ●●●● ●● ●● ● ●● ●●●● ●●● ● ●● ●●● ●● ●● ● ●●● ● ● ●●● ● ● ●●● ●●● ● ●●●● ●●●● ●● ●●●● ●● ●● ●● ●●● ● ●●● ●● ● ● ●●● ●● ●●● ●● ●●●● ● ● ●● ● ●● ●● ●● ● ● ●● ●●●● ● ●●●● ●●● ●● ●● ●●● ● ● ●● ●●●●● ●● ●●●●● ●● ● ●● ● ●●● ●●● ●●● ●● ● ●● ●● ●●● ●● ●●● ● ●● ● ●●● ● ●●● ●● ●●● ●● ●● ● ●● ●● ●●● ●●● ●● ● ●●● ●●●● ● ● ●●● ●● ●● ● ● ● ●● ● ●● ●●● ● ●●●●● ●● ●● ●●● ●● ●● ● ● ●● ●●●● ● ●●● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ● ●● ●● ●●● ● ●● ●● ●● ●● ● ●●● ●●●●● ●● ●● ●● ●●● ●● ● ●●● ● ● ●●●● ● ●●●●● ●● ● ●● ● ●● ●● ●●● ● ● ●●●● ●● ●●● ●●● ●● ●●●● ●●● ● ●●●●●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ● ●●● ●● ●●●●●● ●●● ● ●● ●● ●●●● ● ●● ●●●● ●●● ● ● ●● ● ●● ● ● ●● ● ●● ●●● ●● ●●●● ● ●● ●●●● ● ●●●● ●● ● ●● ●● ●● ●● ●●●● ●●● ● ●●● ● ● ● ●● ●●●●●● ●● ●● ●●● ● ●●●● ● ●● ● ● ●● ●●●● ●● ●● ● ●●● ● ●● ●● ●●● ● ●● ● ● ● ●●● ●●●●● ● ●●● ● ● ●● ●● ●●● ●● ●●●● ● ●●● ●● ● ●● ●●●● ●●●● ●●● ●● ● ●● ●● ●●●●● ●● ●●●●● ● ●● ● ●● ●●●● ●● ●●● ●● ●● ● ● ● ●● ●● ●● ●●● ●● ●●●● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●● ●● ●● ●● ● ● ●●● ● ●● ● ●●●●● ● ●● ●●● ● ● ●● ● ●●●●● ● ● ●● ●● ●●● ● ● ●● ●● ●● ●●●● ●●● ●●● ● ● ●● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ● ●● ●●● ● ●● ● ●● ●● ● ●●●● ●●● ● ●●● ● ● ●●●● ●●●●● ●●● ● ●● ● ●● ●● ● ●●● ● ● ●● ●● ●● ●●● ● ●● ●●● ●●● ● ●● ●●●● ●●● ●●●●● ●● ●● ● ●●● ●●●● ● ●●●●● ●● ●● ●● ●● ●●● ●● ●● ● ● ●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●● ● ● ●● ●● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●● ● ●●●● ●● ●● ●●● ●● ●● ●● ●● ●●● ● ●●●●●● ●●● ●● ● ●● ● ●● ●●● ● ●●●●●● ● ●●● ●● ●● ●●●●●●●● ●●●●●●●●●● ●●● ● ●● ●● ●● ●● ●●●● ● ● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●●●● ●● ●● ●●●●● ●●● ● ● ●● ●●●●●●● ●● ●●● ●● ●●●● ●●● ● ●● ●● ●● ●● ● ●● ● ● ● ●●● ●● ● ●●● ●● ● ●● ●●●● ● ●●●●● ●● ●● ●●● ● ● ●●●● ●●●●●● ●●● ●● ●●● ●● ● ● ●● ●●● ●● ●●● ●● ●● ●●● ●●●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●●●● ● ●●●● ●●● ●● ●●● ● ●●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●● ●● ●● ● ●● ●●● ●● ● ● ●●● ●●●● ● ●●●● ●●● ●● ●● ● ● ●● ●● ● ● ●● ●● ●● ● ● ●● ●● ● ●● ●●●●●● ●●●● ●● ●● ●● ●● ● ● ●●● ● ●● ●● ●●● ●●●● ●●● ●● ●●●●● ●● ● ●●● ●●● ●●●● ●●● ● ●● ● ● ●●● ●●● ●● ●●●●● ● ● ● ● ●●●● ● ●●●● ●● ●● ●● ● ● ● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ●●●●● ●●●●● ●●●● ● ●● ● ● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ● ●●●● ●●● ●● ●●●●●●● ●●● ●●● ●●● ● ●●●●●● ●●● ● ●● ●● ●● ● ●●● ● ● ●● ● ● ●●● ●● ●●●● ●● ●●● ●● ● ●●●●● ● ●●● ● ● ●● ●● ● ●●● ●●● ●●● ● ●● ●●● ● ●●●● ● ●●●●● ●●● ●● ● ● ●●●●●● ● ●●●● ●● ●●● ● ●● ● ●●●● ●● ●● ● ●● ●●● ● ● ●● ●● ●● ● ●● ●●●● ●●●● ●● ● ●●● ● ● ● ●●●●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ● ●● ●●●●● ●●● ●●● ● ● ●●●● ●● ● ●●●●●● ● ●●● ● ●● ●●● ●● ●● ● ●●● ●●● ●●● ●● ●●●●● ●● ●● ●●● ●●●●● ●● ● ●● ●● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ●●● ● ●● ●● ●● ●● ●●●● ● ● ●●● ●●● ● ●●● ● ●●● ●●● ●●● ●● ● ●● ●●●● ●● ● ●● ●●● ●● ●● ● ●●● ● ● ●●● ●● ●● ●●● ● ●●●● ●● ● ●●●●● ●●● ●● ●●● ● ●●● ● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●● ●● ●● ● ●● ●●●● ●● ● ●●● ●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●●● ●●● ● ●● ● ●● ●●● ●● ●●● ●● ●●● ●●●● ●●● ●● ●● ●●●● ●● ● ● ● ●● ● ●● ●● ●● ●●●● ●●● ● ●● ●● ●●●● ●●● ● ●● ● ● ●● ● ●● ● ●● ● ● ● ●● ●● ● ●● ●● ●● ● ●● ●●● ●● ● ●●● ● ●● ● ●●●● ●● ● ●●●● ●●●● ●●●● ●●●●●●●● ●● ●● ● ● ●● ● ●● ● ●●●●● ●●● ●●● ●●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ●●●● ● ● ●● ●● ●●● ● ●●●●● ● ●● ●● ● ●● ● ● ● ●● ●● ●● ● ●● ● ● ● ●●●● ●●●● ● ●● ●●●● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ● ●● ● ●● ●● ●●● ●●●● ● ●● ● ● ●● ●● ●● ● ●● ●●● ●● ● ● ●● ●●● ●● ● ●●●●● ●●● ●●● ●●●● ●● ●● ●● ●●● ●●●●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ●● ●● ●● ● ● ●● ● ●● ●● ●● ●● ● ●●● ●●● ●● ● ●●● ● ●● ●●● ●●● ● ●●● ●● ● ●●●●● ●●● ●● ● ●●● ● ● ●● ●● ● ●● ● ●● ●●● ●●●●● ● ●●●● ●● ●● ●●●● ● ● ●● ● ●●●●● ● ● ●● ●● ●●● ●● ●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●●●●● ●●● ●● ● ●●●● ● ●● ●● ● ● ●●● ●● ●● ●●●● ●●● ●●● ●●● ●●●●● ● ●●●● ●●● ●● ● ● ●● ●●●●●● ●●●● ●●● ● ●● ● ●● ●●●● ● ●● ●● ● ●● ●● ●● ● ●●●●● ●● ● ●●● ● ● ●● ●●● ● ● ●●● ● ●●●●●●● ● ●●●● ●● ● ●●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ● ● ●●● ●●●● ● ●●● ●● ● ● ●● ●● ●● ● ● ●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●●● ●● ●●● ● ● ●● ●●● ● ●●●●● ● ●● ●● ●●● ●●●●●● ● ●● ●● ● ●● ●●● ●● ●● ●● ● ●● ●● ●●● ●●● ●●● ●● ● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●● ● ●●●● ● ● ●● ●●●● ● ●●● ●● ● ●● ●●● ●●● ● ● ●● ●● ●● ●●● ● ●●● ● ●● ●● ●●●● ● ●●●● ●● ● ●● ●●●● ●● ●●●●● ●●●● ● ● ●●●●●● ●● ●● ●●●● ● ● ●●●● ● ● ●●●●●●● ●● ●● ●●● ●● ● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ● ●●● ● ●●● ● ● ●● ●● ● ●●●● ●●● ●● ● ●● ● ● ●●● ●● ●●●● ●●●●● ● ●● ●●● ●● ●● ● ● ●● ●●● ●● ●●● ●● ● ● ●●● ●●● ●●● ● ●● ●●● ● ●● ●●●● ●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ●● ●● ● ● ● ● ●● ●●● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ● ●●● ●● ● ●● ●●●● ●● ●● ● ●● ●● ●● ●●●● ● ●●● ●● ●●●●●● ● ●●●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●● ● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●●●● ●● ●● ●●● ●●● ● ● ● ●●● ● ●●● ● ●●● ●●●●●●● ●● ● ●● ● ●●●● ●●● ●●●●●● ●●●● ● ●●● ●●●● ● ●●●● ●●●● ●●●● ● ● ●●●● ●●●●●● ●● ●●● ●●●●● ● ●●●● ● ●●● ● ●● ●●●●● ●● ●● ● ●●● ●● ●● ●●●● ● ●●● ● ● ●● ●●● ●● ●● ● ●● ●●● ● ● ●● ●● ●● ●●●● ● ● ● ●● ● ●●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●●●●● ● ● ●● ● ●● ●●●● ●●● ●● ●● ●●●● ●●●● ● ●● ●●● ● ●●●●● ● ● ●● ●●● ●● ● ●● ●●● ●●● ●●●● ●● ●● ● ● ●●●● ●● ●● ●● ● ●● ●● ●●● ●●●● ● ●●● ●●●●● ● ● ●●●●● ●●● ● ●● ●● ●● ● ●●● ● ●●● ● ●●● ●● ●● ● ●● ●●●● ●●● ●● ● ●● ● ● ●●●●● ●● ● ●● ●●● ●● ● ●●●●●●●● ●● ●●●● ●● ● ●●● ●●● ● ●●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ● ● ●●● ●● ●● ●● ●●● ●●●●●● ●● ●●●● ● ●● ● ●● ●● ●●●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●● ● ●●● ●●●● ●●● ● ●● ●●● ●●● ●●●● ●●●●●● ●●●●● ●● ●●● ● ● ●● ●● ● ●● ●● ● ● ●● ●●● ●●● ●● ●●● ● ●● ●● ●●● ●●●● ●●●● ●● ●●●●●● ●●● ●● ●●● ● ●● ●●●● ●●●●● ●● ●● ●● ●●● ● ●●● ● ●● ● ●●●● ● ●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ● ●● ●● ● ●●●●● ●●● ● ●●●● ●● ●● ●● ●● ●●●●●●●● ●● ●● ●●●● ●● ●●●● ●● ● ● ●●●● ●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●● ●●●● ●●●●● ●●● ●● ●● ●●●● ●●● ●●●● ●● ●●● ●●● ● ●●● ● ●● ●● ● ●●● ● ●●● ● ●●●●●● ● ●●●●●● ●● ● ●● ●● ●● ●●●● ●● ●● ●● ●●●●● ●●● ● ●●●● ● ●● ●● ●●● ●● ●●●● ●● ●● ● ●●●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●● ● ● ●● ●● ● ●● ● ●● ●● ●●● ● ●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●●●●●●● ●● ●●●● ●● ●●● ● ●●● ●●● ● ●● ●●● ●● ●● ● ●●● ● ●● ● ●● ●●● ● ● ●● ●● ●● ● ● ● ●●● ●● ●● ●●●● ●● ●● ● ● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●● ●● ●● ●●● ●●●●● ● ● ●● ●●● ●●● ●●● ●● ● ●●●● ● ●● ●● ●● ●● ●●● ●●●● ● ● ●● ●●● ●●● ● ●● ●● ●● ●● ● ●●● ● ●●●● ●●● ●●● ●● ● ●●● ●●● ●● ● ●●●● ●●●● ● ● ●● ● ●● ●●●● ● ● ●● ● ● ●●●● ●● ●●●●● ●● ● ●●● ●●● ● ●● ●● ●●● ●●● ● ●● ● ●●● ● ●● ● ●● ●● ● ● ●● ●●● ● ●●●● ●●● ● ●●● ● ●●● ●● ●●●● ● ●● ● ●● ● ●● ●●● ●●● ●●● ● ●●●●● ● ●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●●●● ●● ●● ●●●● ●●● ●● ●● ● ●●● ●●● ●●● ●● ●● ●●● ●● ● ● ●●● ●●● ●● ●● ●●● ●●● ● ●●● ● ●●● ●●● ●●● ●● ●●● ●●● ●●● ● ●● ●●●● ● ●●● ●● ● ● ●● ●● ● ●●● ●●●● ● ●● ●● ●● ●●● ●●● ●● ●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●●● ● ●●●● ●● ● ●●●●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●● ●●● ● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●●●● ●●●● ● ●●●● ●● ●●●● ●●●●● ● ● ● ●●●● ● ●●● ●● ● ●●●●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●●●● ●● ●● ● ● ●●● ●●● ● ●●● ●●● ●● ●●● ●●●● ●●●● ●● ●●●● ● ● ●●● ●●●● ● ●●● ●● ● ●●●● ●● ●● ● ● ●● ●● ●● ●● ● ●●●● ●●● ● ●●●● ●● ● ●● ● ● ●●● ●● ● ●●● ●●● ● ●●● ● ●●● ●● ● ●●●● ●● ●● ●●● ● ●● ● ● ●●● ●●● ●●● ● ●● ● ●● ●● ● ● ●●● ●●● ● ●● ●●● ● ●● ●●● ●●● ●● ● ●● ● ●● ●●● ●● ●●● ●● ●● ● ●●●●● ●● ●●● ●●●●●●● ●● ●● ●●● ●● ●●● ● ● ●●● ● ●●●● ●●● ● ●● ● ●●●● ●● ●● ●●● ● ●●● ●● ●●● ●●●● ●●● ●● ●●● ● ●●● ●●●● ●● ●●● ● ●●● ●● ●●● ●● ● ●●●●● ●●●● ● ●● ●● ●● ●● ●● ●● ● ● ●●●●● ●● ●●● ●●●● ●●● ●●●● ●●● ●●●●● ●● ●●●● ●● ●●● ●●●● ●●● ● ●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●●●● ●● ●●● ●● ●● ●●●● ●●●● ● ●●●● ● ● ●●● ● ● ●● ●● ●● ●●● ●●●● ●●●● ●● ●● ● ●● ●● ●●● ●● ●● ●●● ●●● ● ● ●●● ●● ●●●● ●●●●● ●● ●●●● ● ●● ●●●● ●● ●●●● ● ●● ●● ●●●● ●● ●●● ● ●● ●●● ● ●● ●●● ●● ●● ● ●● ●●●● ●● ●● ● ●● ● ●●●● ●● ● ● ●●● ● ●●● ●●● ● ●● ● ●● ●● ●●●● ● ●● ●●● ●●● ● ●●● ●● ●● ●●● ●●●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●●●● ●●● ●● ● ● ●● ● ● ● ●● ● ●● ●● ●● ● ●● ●●● ● ●●● ●●● ●●● ●● ● ●● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●● ● ●●●● ●●●●● ●●●● ●●● ●●●● ●● ● ●● ● ●●● ● ●● ●●●●●● ●●●●● ●● ●● ●●●● ● ●●● ●● ●●●●●● ●●●● ● ●● ●● ●● ● ●●● ● ●●●● ●●●● ●●●●● ● ●●● ●● ●●● ●●●● ● ●● ●●● ●● ●● ●●●●● ●●●● ●●● ● ●●● ● ●●● ●● ● ●●●●●● ●● ● ●● ● ●● ● ●●●● ●●●● ●● ● ●● ●● ●● ● ● ●● ●●● ●●●●●● ●●● ● ●● ●● ● ●● ● ● ●●●● ● ●●● ●● ●● ●●●● ●●●●● ●● ●● ● ●●● ●● ●● ● ●●● ●●● ●● ●● ●●● ● ● ●● ●● ● ● ●● ●●●●●● ●●● ●●● ●● ●●●● ● ●●● ●● ● ●● ●●● ●● ●●● ● ●● ● ● ●● ●●● ● ● ●● ●● ● ●● ●● ●●● ●● ●● ● ●●●● ● ●● ●● ●●●● ●●● ● ●● ● ●● ●●● ● ●●● ● ●●●●●●● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●●●● ● ●●● ●● ●●●● ●● ● ●●●●● ●● ●● ● ● ●●● ●●● ●● ●● ●●● ● ● ●●●● ●● ● ●●● ● ● ●●● ●● ● ●●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●● ●●●● ●● ●● ●●● ● ●● ● ●●●●●● ●●● ●● ●●● ● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●● ●●●●● ●● ● ●● ● ●●● ● ● ● ●●● ●● ● ●●● ● ●●● ● ●●●●●●● ●●●● ●●●● ● ●●● ● ● ●● ● ● ●● ●●● ● ●● ● ●●● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ●●●● ● ●● ● ●● ●●● ● ●● ●●●● ●●●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●●● ● ●●● ●● ●●● ●● ●●●●● ● ●● ●● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ● ●● ●● ●● ●●●●●●● ●●●● ●●● ●● ●●●● ●● ● ●●● ●● ●●●● ●●●●● ●●● ● ●● ●●● ●●● ●● ●●●● ●●●● ● ●●●● ●● ●●● ●● ● ●●● ●● ●●●● ●●●● ●●●●●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●●● ● ●● ●● ●●●● ●● ●●● ●●● ● ●● ●● ●●●●● ● ●● ● ●● ●●●●●●● ●●● ●● ●● ●● ●● ●●●●● ●●●●● ●● ●●● ●●●● ●● ●● ●●● ●●● ●●●● ●● ●●● ●●●●● ●●● ●● ● ●●● ●●● ●●●● ●● ●● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ●● ● ● ●● ●●● ● ●● ●●●●● ●● ● ●●●● ●●●●● ● ●● ●●●● ●● ● ●● ●●● ●● ●●● ●●●● ● ●● ● ●● ● ●● ●● ●● ●●● ● ●● ●●● ●● ●● ●●●● ●●● ●● ●●●● ● ●● ● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●● ●●● ● ●●●●● ●●● ● ●● ●●●● ●● ●● ●● ●● ●●●● ● ●● ●● ● ● ●● ●● ●● ● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●● ●●● ●● ● ●● ● ● ●●●● ●●● ●●●● ●●● ●●●● ●● ●●● ● ●● ●●● ●● ● ●● ● ●● ●● ● ●● ● ●●● ● ●●● ●●●● ●●● ● ● ● ●●● ● ●●●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●● ● ●● ● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●● ● ● ●●● ● ●● ●●●● ●●●● ●●●●●● ●●●● ●● ● ●● ●●●●●●●●●●●●●●●● ● ●●● ●● ●● ● ● ●●●●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●●●●● ●●● ●● ●●● ●● ●●● ● ●● ●● ● ●● ●● ●●●● ●● ●●●● ● ●●● ● ● ●●● ● ●● ● ●● ● ●● ● ●●● ● ●● ● ●●● ●●●● ●● ● ●● ● ●●●● ● ●● ●●●●● ●●● ● ●● ● ●●● ●● ● ● ● ●●● ●● ●● ● ●● ●● ●●● ● ●● ● ●● ●●●● ● ●●● ● ●●● ●●●●●● ● ● ● ●● ●●●● ●● ●● ●● ● ●● ● ●● ●● ● ●●● ● ● ●●● ● ●● ●● ● ●● ●●●●● ● ●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●●● ● ● ●●●● ●● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●● ● ●●● ●●● ●● ●●● ●●● ●●● ● ● ●● ●● ●●● ●●●● ● ●●●● ●● ● ● ● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ●●●● ●●●● ●●● ●●●● ●●●●● ●●●● ●● ●●● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ● ● ●● ● ●● ●● ●●● ●●●●● ● ● ●● ●●● ●● ●●●● ●● ● ●●● ● ●●● ● ●● ●●●●● ●● ● ●● ●● ●● ●●● ● ●●● ●●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●● ●●● ● ●●● ●● ●● ●●●● ● ●●● ● ● ● ●●● ●● ● ●●● ●● ●● ●● ● ●●● ●●● ●● ●● ●●● ●●● ●●●●● ●●●● ● ●●●●● ● ● ●●● ●●● ●● ● ●●●● ● ●●●● ● ● ● ●● ●●● ● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●● ●●● ●●● ●● ●● ●● ●●●●● ●●●● ●● ●●● ● ●●● ●●● ● ●●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ● ●● ●● ●●●●● ●●●● ●● ●●● ●●● ●● ●● ●●●● ● ●●●● ●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ● ● ●● ●● ● ● ●● ● ●● ●●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ●●● ● ● ●●● ●● ● ●●● ● ●● ● ●●●● ● ●●● ●●● ● ● ●●● ●●● ●● ● ●● ● ●● ●●● ●● ●●● ●● ●● ●●● ●●●●● ●● ● ●●● ● ●●●● ● ●● ●● ●●●●● ●● ●● ●●●●● ● ●●●●● ●● ●● ●●● ●●●●● ●●● ●● ● ●● ● ●●● ●● ● ● ●●● ● ●● ●●● ●●● ●● ●●●● ●● ● ●●●●● ●● ●● ● ●● ●● ●● ●●●● ●● ●● ●●● ● ●● ●● ● ●●●● ● ● ●●●● ●●● ●●●●● ●● ●● ●●● ●●●●● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ●● ● ●● ●●● ● ●● ●●●● ●● ●● ● ● ● ●●●●● ●●● ● ●● ●●●● ●●●● ●●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ●●●●●●●●● ● ●● ●●● ●● ●● ●● ●●●● ●● ● ●● ●●● ●● ● ●● ● ●● ● ● ● ●● ●●● ● ●●● ●● ●●● ● ●● ● ● ● ●●● ●●●● ●●● ●● ●●● ●●● ●●● ●●●● ●●●●●●●● ● ●● ●● ●●●●● ● ● ●● ●●● ●● ● ●● ●● ●● ●●● ●●● ●● ●●●●●●● ●●● ● ●● ● ●●● ● ● ●●● ●●● ●●●●● ●●● ● ●● ●●● ●● ●●● ● ●● ●●●● ● ● ●●● ●●● ● ●● ●● ●●● ● ● ●● ●● ●●● ● ●●● ● ●● ●●●● ● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●● ●●●● ●●●● ●●●●● ●● ●● ●● ●● ●● ● ●●● ● ●● ●●●● ●● ●●●●●●● ●●●● ● ●● ● ●●● ●●● ● ●●●●● ● ● ●● ● ●●● ●● ●●● ●● ● ●● ●●● ● ●●●● ●● ●● ●● ●● ●● ●●●● ● ● ●●● ●● ●●● ●● ●●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ●●●● ● ● ●●● ●●● ●●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ●● ● ●● ● ●●● ●●● ● ●● ●●●●● ●●●● ●● ●●● ● ●●● ●● ● ●● ●●● ●● ●●● ●●● ● ● ●● ●● ● ●● ●●●● ● ● ●●●●● ●●● ● ●● ●●● ● ●●●●● ●● ●●●● ●● ●●● ●●●●● ● ●● ● ●●● ●● ●● ●●●●● ●●● ● ●●● ●● ●● ●● ●●● ●●●●●● ●●●●●●●●● ●●● ●● ●●● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●● ● ●● ●●●● ●●● ●● ●●● ●●● ●●●● ● ●●● ● ●●● ● ●●● ● ●●● ●●● ● ●● ●● ●●●●●●● ●●●●● ●● ●● ●●● ●● ● ● ● ●● ● ●● ● ●● ●●●● ●●●● ● ●●● ●● ●● ● ●●● ● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●●●● ● ●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ● ● ● ●● ●●● ●●●● ●● ●● ●●● ● ●●● ● ●● ●● ● ●●● ●● ●● ●● ●●● ● ● ●● ●●● ● ●●● ●●●● ● ●● ● ●●●●● ● ●● ●●●● ● ●●●● ●●● ●● ●●● ●●● ●●●● ●●● ● ●● ●● ● ●●● ●●● ●●● ●● ●●● ● ● ●●●● ● ●● ● ●● ● ●●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●●●●● ●● ●● ●● ●●●● ●● ●●● ●● ●● ● ●●● ● ●●● ●● ●● ●●●●●● ●●●●● ●● ●●●● ● ●● ●● ● ● ●●● ● ●●●●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●●● ● ●● ● ●● ●● ●● ●● ●●● ●● ● ●●●● ●● ●●●●●●●●●●● ●● ● ● ● ●● ●● ●●● ● ● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ● ●●● ●●●● ● ● ●●● ● ●●●● ● ●●● ●●●●●●●● ●●●●● ●● ●● ● ● ●●●● ●● ●● ●●●● ●● ● ●●● ●● ●● ●●●● ● ● ●●● ● ● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ● ●●● ●●● ● ●● ●● ● ● ●●●● ●● ●●● ●● ● ●●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ● ●● ●●●●●●●● ●● ●● ●●●● ● ● ●● ●●● ●● ●●●● ●●●● ●●● ●●●● ● ●● ●●● ●●●● ● ●● ● ●● ●●● ●●●●● ●● ●● ● ●● ● ●●● ●●●● ●● ●● ●● ●● ●● ●● ● ● ●●● ● ●●● ●●● ●●● ●●● ● ●●● ●● ●●● ● ●● ●● ●●●● ●● ●●●● ●●●● ●●●●●● ●● ●● ●● ● ●● ● ●●●●● ●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●● ●● ●●● ● ●●●●●●●●●● ●●● ● ●●● ●● ● ●●● ●● ●● ● ●● ●● ●●●●●● ● ●● ● ●● ● ●● ●●●● ● ● ●● ●● ●● ●● ●● ●●● ●● ●●● ● ●● ●●● ● ● ●●● ●●● ● ● ●●● ●●● ●●● ●● ●●●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ● ●●● ● ● ●● ●● ●● ●● ●● ●● ● ● ●●●● ●● ●●●● ● ●●●●● ●● ●●●●●● ●●● ● ●●● ●●● ● ●● ●● ● ●●●● ●●●● ●● ● ●● ●●● ●● ● ●● ●● ●● ● ● ●● ● ● ●●● ● ●●●● ● ●●●● ●● ● ●●●● ●●● ●●● ●● ● ●●●● ● ●●● ●● ● ● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●●●● ●● ●● ●● ●●● ● ● ●● ●● ●● ● ●●●● ● ●● ● ● ●● ●● ● ●● ●●●● ● ● ● ● ●●● ● ●● ●● ●●●● ● ●● ●● ●● ● ● ●●●●● ●● ●● ●●● ● ● ●●● ● ●● ●● ● ●●●● ● ●● ● ●●● ●●● ●●● ● ●●● ●● ●● ● ●●● ●●● ●●●●●● ●●● ●●●●● ●●●● ● ●●● ● ●●● ●● ●● ●● ●●●●●● ● ●●●● ●●● ● ● ●●●●● ●●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●● ●●●● ●●● ●● ●●●● ●●● ● ●● ●● ● ●●● ●●●● ● ●●●●●● ●● ● ●●●●●● ● ●● ●●● ●●● ●●● ●●● ●● ● ● ●●● ●● ●●●● ●● ●●● ●● ●●● ● ●● ●●● ●●●● ●● ●●●●● ●● ●●●● ●●● ●● ●● ●●●● ●●● ● ● ●● ●● ●●●●●●●●●● ●●● ●●● ● ●●●●● ●● ●●●●● ●● ● ●●● ●● ●● ●●●●●● ●● ●● ●●●● ●●● ● ● ●● ●●● ● ●● ● ●●● ●●●●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●● ● ●●● ●●● ●●● ●● ● ● ●● ●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ● ●● ● ●●● ● ● ● ●● ●●● ● ● ● ●●● ●● ●●● ●● ●● ● ●● ●●● ● ●● ● ● ●●● ● ● ●● ● ●●●● ● ●●● ●●● ●●● ●●●● ●●● ●● ● ● ●●●●● ● ●●●● ● ●● ●● ● ●●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ●●●● ●●● ● ● ●● ●● ●● ●●● ●●●● ●●● ●●●●● ● ●● ●●●●●● ●●●● ●●● ● ●● ●● ●● ● ●●●● ● ●● ●● ● ●● ●●● ●●● ●● ●●●● ● ●●●●●● ●● ●●● ● ● ●●●● ●● ●● ●●●● ●● ● ●●● ● ●● ●● ● ● ●●● ●●● ●●● ●●● ●● ●●● ●●●● ● ●● ●●● ● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ●● ●●●● ●● ● ●● ● ● ●●●● ●●● ● ●● ● ●● ● ●●● ● ● ●● ●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ● ● ●●● ●●●● ●● ●●● ●●● ●● ● ●●●●● ● ●● ● ● ●● ●● ●● ● ●●●● ●●● ●●●● ●●●● ●●● ●● ● ●● ● ● ● ●●●●● ● ● ●● ●●● ● ●● ●● ●●●●● ●●● ● ●● ●● ●●● ●●● ●●●● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●● ● ●● ●●● ● ●●●● ●● ●●● ●●● ● ●● ●● ●●● ●● ● ●●● ● ●●● ●● ●● ● ●● ● ● ●● ●● ●● ● ● ●● ●● ●●● ●●●● ● ●● ●●●● ● ●● ●●● ●● ●●● ●● ● ●●●●● ●● ● ●● ●●●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ●● ● ●●● ● ●●● ●● ● ●● ●● ● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ● ●● ●●● ● ●● ● ●●●● ● ●● ●●● ● ●●● ●● ● ●●● ● ●● ●● ●● ●●● ● ●●● ●●●● ●● ● ●● ●●● ● ● ● ●●●●● ●● ●● ●●● ● ●●●● ●● ●● ● ●●● ● ●●● ●●● ● ● ●●● ●●● ● ●●●● ●● ● ●●●●● ● ●●● ● ●●●● ●● ●●● ●●● ● ●● ● ●●● ● ●●● ● ●● ● ●●●● ●●● ● ●●● ●● ●●●● ●●●● ● ● ●● ● ●● ●●● ● ●● ● ●●●● ● ● ●●● ● ●● ●● ●●● ● ●● ●● ● ●● ● ● ●●● ●● ● ●● ●● ●● ●●● ●● ●●● ● ● ●●● ●●● ● ●●● ●●● ● ● ● ●● ●●● ●● ●●● ● ●●● ● ● ●● ●● ●● ● ●●● ● ●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●● ● ● ●● ●● ●● ● ● ●●● ●● ●●● ● ● ●● ●●●● ●● ● ● ●● ●● ● ● ●●● ●●●● ●● ●● ● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ●● ●● ●●●● ● ●●● ●●● ●● ●● ● ●●●● ●●●● ●● ●● ● ●● ● ●●● ●●● ●●● ● ●●● ● ●●●● ●●● ●●● ● ● ●● ●● ●●● ●● ● ●● ●●●● ● ●●● ● ●● ●●●●● ●● ●●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ●●● ● ●● ●●●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ● ● ●● ●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●●●● ●● ● ● ●●● ●●● ● ●● ●● ● ● ●● ●● ● ●●● ●●● ● ●● ●● ● ● ●● ● ●●● ● ●●●● ●●●● ● ●● ●● ●● ● ●● ●●● ● ●●● ●●●● ●● ●● ●●● ●● ●● ●● ● ● ●●● ●●●● ● ●● ● ● ●●● ●● ● ● ●● ●● ●● ● ●● ●● ●●●● ●● ●●● ● ●●● ●●●●●● ●●● ●●● ●● ●●●●● ●● ● ● ●●● ●●● ●●●● ● ● ●● ● ● ●●● ●● ● ●● ●● ●● ●●● ● ●● ● ●● ● ●●● ●● ●●● ● ●● ●● ● ●●● ● ●●● ● ● ●● ●● ● ● ●● ● ● ●●● ●● ● ●●● ● ● ●●●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●● ● ●● ●● ●● ● ●●● ● ●●● ● ●● ● ●●●● ●●● ●●● ●● ●●● ● ● ●●● ●●●●●●● ● ●● ●● ● ●● ● ●● ●●● ●● ● ●●●●● ●●● ● ●●● ●●● ● ● ●● ● ●● ● ●●● ●● ● ●●●● ● ●● ● ●●● ●●● ● ●● ●●● ● ●● ● ● ●● ●● ●●● ●●● ● ● ●●● ●●● ● ●● ● ●● ●●●● ●●● ●●● ●●●●● ● ●● ●● ●● ●● ●● ● ● ●●●● ●● ●● ●●●●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●●● ● ●● ●● ●● ●●● ● ●● ● ●●● ●● ● ● ●●● ●●●●●●● ●● ● ●● ● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ●● ● ●● ● ●●● ●● ● ●● ●● ●●● ●●● ●●●● ●● ● ● ● ●● ●● ● ●●● ●● ● ● ●● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ● ●●●● ● ●●● ●●●● ●●●● ● ●● ● ●●● ●●● ● ●●●●●● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●●● ● ● ●●●●● ● ● ●●● ●●● ● ● ●●● ● ● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ● ●●●● ●● ●● ●●● ●●●●● ●● ●●● ●● ● ●● ●● ● ● ● ●● ●●● ●● ●●●● ● ●● ●● ● ●●● ● ●●● ●● ●●●● ● ●● ●● ●● ●●● ●●●● ●●● ● ●● ●● ● ●● ● ●● ● ●●●● ● ●●● ● ●● ●●● ●● ● ● ●●●● ● ●●● ●● ●● ●●● ●●●● ●● ●● ● ●● ●● ●●● ●●● ● ● ●●● ●● ●●●●●●● ●● ●● ● ●● ●● ●● ●●●●●●● ●●●● ●● ● ●●●●● ●● ●●●● ●●●● ● ●● ●●● ●● ●●●● ●●● ●● ● ● ●●● ●●● ● ●●● ●● ●●● ●● ●●●● ● ●●●● ●● ●●● ● ●●● ●● ● ●● ● ●●●●●●● ●● ●● ●● ● ●●●● ● ● ●●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●●● ●● ●● ●●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ● ● ●●● ●●● ●● ●● ●●● ● ●● ●●●●●● ●● ●●● ●●● ●●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●●●● ●●●●●● ● ●● ● ● ●●● ● ●● ● ● ●● ●● ●● ●●● ●●● ●● ●●●●● ●● ●● ● ●●●● ● ●● ●● ● ●●● ●●● ● ●●●●●● ●● ●●● ●●● ●●●● ●●● ● ●●● ● ● ●● ●● ●● ● ●● ●●●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●●●● ●● ●● ●●● ● ● ●●● ●● ● ●● ●● ● ●●● ●●● ●● ● ●● ●● ● ●●● ● ●● ● ●●● ●●●●●● ●● ● ● ● ●●● ● ●●● ●●● ●● ●● ● ● ●● ● ●● ●● ●● ●● ●●● ●●● ● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●● ●● ● ●●● ● ●● ●●● ●●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●●●● ●● ● ●●●● ●● ●● ●● ● ●● ●● ● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●●● ●●●●● ●● ● ●● ●●●● ●●● ●●●● ●●●● ●●● ● ●●●● ● ●● ●●●● ●● ●● ●● ●● ● ● ● ●●● ●●● ●● ● ●● ●● ●● ●●● ●● ●●●●● ● ●● ● ●●●●● ●● ●●● ● ● ●● ●●●●●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ●●●●●●● ●●●●● ●●● ● ●● ●●●●● ●●● ●● ●●● ●● ●●●● ●●● ●● ● ●● ● ●●●● ● ● ●● ● ●●●● ● ● ●● ● ●● ●●● ●●●● ●● ● ●●●● ● ●● ●●●●● ●● ●● ● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ●●● ●● ●●● ●● ●●● ● ●● ● ●● ● ●●● ● ●●● ●● ●● ● ● ●● ●● ●●● ● ● ● ●● ●●●● ●● ●● ●●● ●● ●● ●●● ●●● ●● ● ● ●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●●● ●●●● ●● ● ●● ●●●●●● ●●●● ●●● ●●● ●● ● ● ●● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●●● ● ● ●● ● ●●● ● ●● ●●●●●● ● ●● ●●●● ● ●●●●●●●●●●●● ●● ●●● ●● ●● ●● ● ●●● ●●●●● ●● ●● ●●● ● ●● ●● ● ● ●● ● ● ●●● ● ● ●● ● ●● ● ● ● ●●● ● ●● ●● ● ● ●●● ●●●● ●●● ● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●● ●●● ● ●● ●●● ●● ●● ●●● ●● ●●● ● ●● ●●●●● ● ● ●● ●● ●● ● ●●● ● ●● ● ●●● ● ●● ●●● ●●●● ●● ● ●● ●●● ● ●● ●● ●●●● ●●● ● ●●●● ●● ●● ●●●● ●● ● ● ●●●●● ●● ● ●● ●●●●●● ●● ● ●●●● ● ● ● ●●● ●● ●●● ●●● ●●● ● ●● ●● ●●● ●●● ●● ●●●● ● ●● ● ●● ● ● ●●●●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●●●●● ●● ●●● ●● ●● ● ●● ●●● ●● ●●● ●●●●● ●● ●● ●● ●●● ● ●●● ● ●●● ●●● ● ● ●●●●● ●●●● ●● ● ●●●● ●● ●● ●● ●● ●● ●●● ● ● ●● ● ●● ●●● ●● ●●●●● ● ●● ●● ●● ●●● ●●● ●● ● ●● ● ●● ● ●● ●●● ●● ●●● ● ●●● ● ●●● ●● ● ●●●●● ●● ●●● ● ●●● ● ● ●● ●● ●●●● ● ●● ● ● ● ●● ●● ●● ●● ●● ● ●● ●●● ●● ● ●● ●●● ● ● ●●●● ●●●● ● ●●● ●●●●● ● ●● ● ●●● ● ●●●● ●● ● ●● ●●●● ●●● ● ●● ●● ●●●●●● ●● ●●● ●● ●● ●● ● ●● ●● ●●●●●●● ●●●●● ●● ●●●● ●● ●● ●●● ●●● ●●● ● ●● ●●● ● ●● ●● ●● ●● ●●●●●● ● ●●●●● ●● ●●● ●● ● ●●●● ● ●● ●●● ●● ●● ● ● ●● ● ●● ● ●●●● ●● ●●●● ● ● ●● ●●●● ● ●●● ●●● ● ● ●● ●●● ● ● ●● ●●● ●●● ● ● ●●●● ● ●●●●●●●● ●● ●● ●● ●●●●●●●●● ●●●●●●●● ●●●● ●● ●●●●● ●● ● ●● ●● ●●● ●● ● ●●● ●●● ●●●● ● ●● ●●● ●●●● ●●●●● ●● ●●● ●● ●● ● ● ●●●● ●●● ●● ●● ●●●● ● ●●● ●●●● ● ●●●● ●●●● ●● ●●● ● ●●● ●●● ●●● ● ● ●● ●●● ●●● ●● ●●●●● ●● ●● ● ●● ●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ●●● ● ●●● ● ●●●● ● ●● ● ●● ●● ● ●● ●● ●●● ●●●● ●● ●● ●●● ●●● ●●●● ● ●●● ●● ●● ● ● ●●● ●● ●●●● ● ●●●●●● ●● ●●● ● ●●●● ●●● ●● ●● ●● ●●●●● ●●● ●● ● ●●● ●●●●●● ● ●● ●● ● ●● ●● ● ●● ● ● ●●●● ● ●● ●● ● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ●●●● ● ● ●● ●●● ●●● ●●●● ●● ●● ● ●●●● ●●●●●● ● ● ●● ● ●●●● ●●●● ●●● ● ● ●● ● ● ● ●● ●● ●●●● ●●● ● ●●●● ● ●● ●● ●●●● ● ●●● ●● ●●●● ● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●●●●●●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●●●● ● ● ●● ● ●●● ●●● ● ●●● ●●● ● ●●●●●●● ● ●●● ●● ● ●● ●●● ●● ●● ●●● ● ●●●● ●● ●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●●● ● ●● ● ●● ●● ● ●●●●●● ●●● ●● ●● ● ●● ● ●●● ●●● ● ●●● ●● ●●● ● ●●●●● ● ●● ●● ●● ● ● ●● ● ●● ● ●● ●● ●●● ● ●● ● ●●●● ●● ●● ● ●● ●●●● ●● ●● ●● ●●●●●● ● ●●●●● ●●●●● ●●● ●● ●● ●● ● ●● ●● ● ●● ● ●●●●●●●●● ●● ●● ●● ● ●●● ●●● ● ●●● ●●●● ●●●●● ●●●● ●●●●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●● ● ●● ●● ● ●● ●●● ●● ●●●●●● ●●●●● ● ●●● ● ●● ● ●●●● ●●●●● ●● ●●● ● ●● ●● ●● ● ● ●●● ●● ● ●● ● ●● ● ●●● ●●● ●● ● ●●● ●●● ●●●● ●● ● ●● ● ●● ●● ● ● ●●● ●● ●● ● ●● ● ● ● ● ●●●● ● ●● ● ●●● ●●● ●●● ●●● ●●●●●● ● ●● ●●● ●●●●●● ●●● ●●● ●● ● ●● ● ●● ●●●●● ● ●●●● ● ●●●● ● ●● ●●● ●●● ●●●●● ●● ●● ● ●● ● ●● ●●● ●● ●● ●●●● ● ●●● ● ●● ● ● ●● ●●● ● ●● ●●● ●● ●● ● ●● ●●●● ●●● ●● ● ●●● ●●●● ● ●●●●● ●●● ●●●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●● ● ● ●● ●● ● ●●● ●●● ● ● ●●● ● ●●●● ● ●●● ● ●●● ●● ●● ● ● ●●●●● ●● ●●●● ●●● ●● ●● ●●● ●● ● ●● ● ●●● ●●●● ●●●●●●● ● ●●●● ●● ●●● ●● ●●● ●● ● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ●●● ●●● ●● ●● ● ●● ● ●●● ●●●● ●● ●● ● ●●● ●● ●●● ● ●● ●●●● ●● ●● ●●● ●●● ●● ● ●●●●● ●●●● ● ● ●●●● ●●● ●●● ●●● ●● ● ●●●● ● ● ●● ●●●● ●● ●● ● ● ●●●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●●● ●●● ●● ● ●●●● ●● ● ● ●●●● ● ● ●● ●●● ●●● ●●●● ●●●● ●● ● ●●● ●●● ●● ●●●●● ● ● ●●●● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●● ● ●● ●●●●● ●●● ● ●●●● ● ●●●● ● ●●● ● ●● ● ●● ●● ●●● ● ● ●● ● ●● ●●●●● ● ●●●●● ●●● ● ●● ●●●●●● ●●● ● ●●●● ●●● ●● ●● ● ●●●● ●● ● ●●● ●●● ●● ● ●● ● ●● ●●●●● ● ● ●● ● ●● ● ● ●●● ●●●●●●●●●●●●● ● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●●● ● ●●● ●● ●● ● ●● ● ●● ●● ● ● ●●●● ●●● ●● ●● ●●●● ●● ●● ●●● ●●●● ●● ●●● ● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●● ●●●● ● ● ● ● ●● ● ●●● ● ●●● ● ● ●●●● ●● ●●● ●● ●● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●●●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●●●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ●●● ● ● ●●● ●● ●● ● ●● ●● ●● ●●● ●● ● ●●●● ●● ●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ● ●●● ●●●●● ●● ●●● ●● ● ●● ● ●● ● ●●● ●● ●● ● ●●● ● ●●●●●● ●● ●● ●●● ● ●●●● ●●● ● ●●● ●●● ●● ●●●● ● ●●● ●● ●● ●● ● ●●● ●● ●●●● ● ● ●●● ● ●● ●● ● ●●● ●● ● ●●●●● ●● ●● ●●● ● ●●●●● ●● ●● ●●● ●●● ● ●● ●●●● ● ●●● ● ●● ●● ●●● ● ●● ● ●● ●●● ●● ●● ● ●●● ●●●● ●●●● ● ●●● ●●● ●●●● ● ●● ● ●●● ●● ● ●●●●● ● ●● ● ●●● ●● ●●● ●● ●●● ● ●● ● ● ●●●●● ● ●● ●● ●● ● ●● ●● ● ●●●●●● ●●● ●●● ●●●● ●● ● ●● ● ● ●● ● ●● ●●●● ●● ● ●● ●● ● ● ●●● ●●● ●●●●●● ●●● ●●● ●●●●●●● ●● ●●● ● ● ●● ●●● ●●●● ●● ●●●●●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ● ● ●●●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ● ●●●● ● ●● ●● ●●●● ●●● ●●● ●● ● ●● ●● ●● ●●● ●● ● ● ●●●●● ●●●● ●●● ●●● ●●●●● ●● ● ● ●●● ● ●● ● ●● ●●● ●●●● ●● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●●●● ● ●● ● ● ● ●● ●● ●●● ●● ●● ●●● ●●● ● ●● ●●● ●● ●●● ● ● ●● ●●● ● ●●●● ●●●● ● ●● ●●●● ●● ● ●● ● ● ● ●● ● ●● ● ●●●● ●●●● ●●● ●●● ●● ●● ● ●●● ●●● ● ● ●● ●●●● ●● ● ●●●● ●●● ●●● ●● ● ●● ● ● ●●● ●●● ● ● ●●●●●● ●● ● ●● ● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●●●● ●● ● ●● ●●● ●● ● ● ● ●● ● ●●●● ●● ●● ●● ●● ● ●●● ●●● ●●● ●● ●● ●● ● ●● ●●● ● ●● ● ●●●● ●●● ● ●●● ● ●● ●● ● ●●● ●● ●●●● ● ●●● ● ●●● ●●● ●●● ●●●●●● ● ●● ●● ●●●● ●●● ●● ● ●● ●● ● ●●● ● ● ●●● ●●● ●●● ● ●● ● ●● ●●● ●● ●●●● ●●● ●●● ●● ●●● ● ●●●● ●●●●● ●● ● ● ●● ●● ●● ● ● ●● ●●●● ● ● ●●●● ● ●●● ● ●●● ● ●● ●● ● ● ●● ● ●● ●●● ● ● ●●● ●● ● ●● ●●● ● ●● ● ●● ●● ● ●●●●●● ●● ●●● ●●● ● ●●●●●●● ●● ● ●● ●● ●●● ● ● ●●● ● ●● ●●● ●● ●●●●●● ● ●● ● ●● ●● ●●● ● ●●● ●●●● ●● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●●● ● ● ●● ●●●●●●●● ●● ● ● ● ●●● ●● ●● ●● ●●● ● ●●●● ●● ● ● ●●● ●●● ●●● ● ●●● ●●● ●●●● ●●●● ●● ●●● ●● ● ● ●● ●● ● ●●●● ● ●●●●● ● ● ●● ●●●● ●●● ● ●● ●●● ●●● ●● ● ● ●●●● ●●● ●● ●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ● ●● ● ●● ● ●●●● ● ● ●●● ●● ● ●●●●●●● ●●●●● ●●● ●●● ●●● ● ●●●●●● ●●●● ●● ●●● ●●● ●●● ●● ● ●● ●● ●●●● ● ● ●● ●●●● ● ●●● ● ●● ● ●●● ●●● ●●● ●●●● ●●●●●●●● ●●● ●●●●● ●● ●●● ●● ● ●●● ●●●●●●● ●●●●● ●● ●● ●●● ● ● ●●●● ●● ●● ●● ●●● ●●●●● ●●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ● ●● ●●●● ● ●●●●●●●●●●● ●● ●●● ●●● ● ● ●●● ● ● ●● ●●●● ● ●● ● ●● ●● ● ● ●●● ● ●● ●● ●●●●● ●● ●●● ●● ●● ●●●● ●● ● ●●●● ●●● ● ● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ● ●● ●● ●● ● ● ●● ●●● ●●● ●●● ● ●●● ● ●● ● ●● ●●● ●●●● ●●● ●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●●●●●● ●● ●● ●● ●●● ● ●● ●● ● ●●● ●● ●●●●● ● ●● ●●● ●● ● ●● ●● ● ●●●● ● ●●● ● ●●● ●●● ●● ●●● ●● ●● ● ●● ● ●● ●●●●● ●● ●● ●● ● ●●● ●● ●●●● ●● ● ● ●● ● ●●●● ●●●● ●●● ● ●●●●●●●●● ●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●●● ●●●● ● ● ●●● ●●●●● ●●● ●●● ●● ●● ●● ●●● ● ● ●● ●●●●● ●● ●●● ●● ●● ● ●● ● ● ● ●● ●●●● ● ● ●● ●●●● ●● ●● ●● ● ● ● ●●●● ●●●●● ●● ●● ● ●● ●●●● ●●● ●● ●●●● ● ●● ●●● ●●● ●● ●●● ●● ●● ●● ● ● ●● ●●●● ● ●●●● ●●● ●● ● ●●● ●●● ●● ●●●● ●● ● ●●● ● ●●● ●● ● ●● ●●●●● ●● ●●● ● ●●● ● ●● ●● ● ●● ● ●●●● ●●● ● ●●● ●●●● ● ●●● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ●● ● ● ●●● ●● ●●●● ●●● ●● ● ●● ●● ● ●●● ●● ●●● ●●● ●●● ●●●●● ● ● ●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●● ● ●●● ●●● ●●● ●● ● ●●●●● ● ●●●●●●● ●●●●● ● ● ●●● ●● ●●● ● ● ● ●● ●●● ● ●● ● ● ●●●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●●●●● ● ●●●● ●● ● ●● ●●● ● ● ●●● ●●● ●●● ●● ●●● ● ● ●●● ● ●●● ●●● ●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ● ●● ●●●● ●● ●● ● ● ●●● ● ●● ● ● ●●●● ●●●● ●● ●● ●●● ●●● ●● ● ●●●● ●● ● ●●● ●● ●● ●● ●●●●● ● ●● ●●● ●● ●● ●●● ● ●● ● ● ●●● ●●● ●●●● ● ●● ●●● ●● ●●●●● ●●●● ●● ●●● ● ●●● ● ●● ● ●● ●●● ● ● ●●● ●●● ●●● ●● ● ●● ●●● ● ●● ●● ●● ●● ● ●●●● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●●●● ●● ● ● ●●● ● ● ●● ● ●● ●● ●●● ● ●●● ●● ●● ●●●● ● ●●● ●● ●● ●● ● ●●● ● ●● ● ●●● ● ● ●●●● ●● ● ● ●●● ●● ●●●●● ●● ●●● ●● ● ● ●●● ● ● ● ●●● ●● ●● ● ● ●●●● ●●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●● ● ●●● ●●●● ● ●●● ● ● ●● ●● ● ● ● ●●●●● ●● ●●● ● ●● ●● ●●● ● ●●● ●●●● ●●● ●● ● ●● ●● ●●● ● ●●● ●● ●● ● ●● ●● ●●●● ●●●●●●● ●●● ●● ● ●● ●●●● ●● ●● ● ● ●●●● ●●●● ●●● ●●● ●●● ●●● ● ●● ● ●● ●●● ● ●●●● ●●● ●●● ●●●●● ● ●● ● ●●●● ● ●●●● ●● ●● ● ●●● ●● ●●● ● ●●●●● ● ●● ●●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ●●●● ●● ● ●● ● ● ●●● ●● ●● ●● ●● ●● ●●● ● ●● ● ● ●● ● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ●● ●● ● ●●●●● ● ●●● ●●● ● ●● ● ●●●●● ●●● ● ●●●● ● ● ●●● ●●● ●● ●●●● ●● ● ●●●● ●● ●● ● ●● ●● ●●● ●●● ●●● ● ●● ●●●● ●● ● ●●● ● ● ●●● ●● ●● ●● ● ●●●● ● ●● ●●●●● ● ●●● ●● ●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●●●● ●● ●●● ● ●●●● ●●● ● ●●●●● ● ●● ● ● ●● ●●● ●●● ● ●● ●●●● ● ●● ●● ●●●● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●●● ●● ●●● ● ● ● ● ●●● ● ●●●● ●● ● ● ●●●●● ●● ● ●● ●● ● ●● ●●● ●●● ● ●● ●● ● ●● ● ● ●●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ● ● ● ●●● ●●● ● ●●●●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ● ●● ●●● ●●● ●●● ●●●● ●●● ● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ● ● ●● ● ●● ●●● ●●● ●●● ● ●●●● ●● ●● ●● ●● ● ● ●● ●●● ● ●● ●●● ●● ● ●●●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ● ●●● ●● ●● ●●● ●●●● ●●● ● ●●● ●● ● ● ●●●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ● ●● ●●●●●● ●● ●● ●●● ●● ●● ● ●●● ● ● ● ●● ● ● ●●●● ● ●●● ●● ●●● ●● ● ●● ● ● ●● ●●●● ●● ●● ●● ● ● ●●● ● ●●● ●●●● ● ●●●●● ●● ●●● ● ●●●● ● ●● ● ●●● ● ● ●●●● ●●● ●●● ● ●●●● ●● ●●●●●● ●●● ●●●● ● ●●●● ● ●●● ● ●●● ● ●● ●●● ● ● ●● ●●●● ●●● ●● ● ●● ●● ●●● ●●● ●●●● ● ●● ●●● ● ● ●●●●● ●● ●● ●● ● ● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●●● ● ●●●● ●● ●●●● ●●● ●●● ●●●● ● ● ●●● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ● ●● ●● ●● ●● ● ● ●●●● ●● ●●●●●● ●● ●●●●● ●● ●● ●● ● ●●● ●● ●● ●● ●●●● ● ●● ● ● ●●●● ●●●●● ●●● ●●●●● ●●●● ●●●●● ●●● ●●● ● ● ●●● ● ● ●●● ●●●● ●●●● ●●● ●●● ● ● ●● ●● ●●● ● ●●●● ●●●●● ● ●● ●● ●● ●● ●● ●● ●●●● ● ● ●● ● ● ● ●● ● ●● ● ●● ● ●●● ● ●● ●● ●● ●● ● ● ●● ● ●●● ● ● ●●●●● ●●● ●● ●●●● ●● ●●● ● ●●● ●● ●● ●●●●● ●● ● ●● ●●● ●●●●● ●●● ● ●●●● ● ●●● ●● ●●● ● ●●●●● ● ● ●●●● ●● ●●●● ●●●● ● ●●●● ●● ●●●●● ● ●●●● ●●● ● ●● ●● ● ●● ●● ●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●●●● ●●● ●●●● ● ●● ● ●● ●● ●● ●●● ●●●●●●● ● ●●●●●●●●● ●●●●●●● ●● ●●● ●● ●● ●● ● ● ●●●●● ●●● ● ●● ●●● ●●●●● ●● ● ●● ●●● ● ●● ●●● ●● ●●●● ● ●● ●● ● ●●● ●● ● ●●●●●● ●● ●● ● ● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●● ● ●●●●● ●● ●● ● ●●● ●● ● ●●● ● ●●●● ●● ●● ●● ● ●●●● ●● ●●● ● ● ●● ●● ●●● ● ●● ●● ● ●●●● ● ● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ●●●●● ●● ●● ●●● ●●● ●●● ●●● ●●●●● ● ●●●● ●● ●● ●● ●● ●● ● ● ●●●● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ● ●●● ● ●● ●● ●● ●● ● ●● ●●● ● ●● ●●●●● ● ●●● ●●●●● ●●●●● ●● ●●● ● ●●●● ● ●● ● ●● ● ●●● ●● ●● ● ●●● ●● ● ● ●●● ● ●●● ●●●● ●●● ● ●● ●● ●●●● ●●●●● ●●● ●●● ● ●● ● ●● ● ● ●●● ● ● ●● ● ●● ●●●● ●● ●● ● ● ●● ● ●● ●● ●● ●●● ●●● ● ● ●●●● ●●● ●● ●●● ●●●●● ● ●●● ●●● ●●● ●● ●●●● ●● ●●●●● ●● ●●● ●● ● ●●●●● ●● ●●● ●● ●● ●●●● ● ●●● ●● ●●●● ●● ●● ●●●●●● ●● ●●● ●● ● ●●●● ●●● ●●●●● ●● ● ● ●●●● ●●●● ● ● ●●●●● ●● ● ● ●●●●●● ●● ● ●● ●●● ●●● ●● ●●● ●●●● ● ●● ●●●● ●●● ●●● ● ●●● ● ●●● ● ●●●●●●●●● ●●● ●● ● ●●● ● ●●●●● ●● ●●●● ● ● ●●● ●● ●●●● ●● ● ●● ●● ●●● ●● ● ● ●● ● ●● ●● ● ●●●● ● ●● ●● ●● ●● ● ● ● ●● ● ●● ●●● ●● ●●●● ●● ●●● ● ●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ●●● ●●●● ●●● ●● ●● ●●●●●● ●●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ● ●●● ● ●●● ●● ● ●●● ● ●● ● ●● ● ●●● ●● ●● ● ●● ● ● ● ●●● ● ●●● ●● ●●●●● ●●●● ●●● ● ● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●●● ●●●● ●● ●●● ●●● ●● ● ●● ● ● ●●● ● ● ●●● ●● ● ●● ●●●● ●● ●●● ●● ●●●●●●● ●●● ●●● ● ●●● ● ● ●● ●●● ●● ●● ● ●● ● ● ●●● ●● ●●● ● ●● ● ●● ●●●● ●● ● ●● ●●●● ● ●● ●●● ●●● ● ●● ●● ●●● ● ● ●● ● ●● ●● ●● ●●●●● ● ●● ●●● ●●● ●● ●● ●●●● ● ●●● ●● ● ●●● ●● ● ●●● ●●●● ●● ● ●● ● ●●● ●● ●● ●●●●● ●●●●●● ●● ● ●●●●● ● ●● ●●● ●● ●● ● ●●● ●●● ● ●● ●●● ● ●● ●● ● ● ● ● ●● ●● ● ● ●● ●● ● ●● ●●●●● ● ● ●● ●●● ●● ●● ●● ● ●●●● ●●● ● ●●● ● ●●●● ● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●●● ●● ●●●●● ●● ● ●●●● ●●● ● ●● ●●● ●●●●● ●●●● ● ●● ●● ●● ●●●● ●● ●●● ●● ● ●● ●●● ● ●●●●● ●● ●●●● ● ●● ● ●● ● ●●●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ●● ● ● ●● ●●●● ●● ● ●● ● ●● ● ●● ●●● ●●● ●● ●●● ●●●● ● ●● ●● ●●● ●● ● ● ●● ●● ●● ●●●● ● ●●● ●● ●●● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●●●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ● ●●●●● ●● ●● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●● ● ●● ●● ●●● ●●●● ● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ●●●● ●● ●●● ●●●● ●● ●●● ● ● ●●●● ●●●● ●● ●● ● ●●●●●●● ●● ●●●●● ●●● ●●● ● ●● ●● ●●●●●● ●● ● ●● ●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●● ●●● ● ● ●●● ● ● ●●● ● ● ●● ● ●●● ●● ●● ● ●● ●●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●●● ● ●● ●●● ●●● ●●●● ●● ● ●● ●● ● ● ●● ●●● ●● ● ●●●●● ●●● ● ●● ●●● ●●● ● ●● ●● ● ●●●●●● ●●● ●●● ●● ●● ●●● ● ●●● ● ●●●● ●● ●●●●● ●●● ●●● ● ●●● ● ●● ● ●●● ● ● ●● ● ●●●● ●●● ●● ● ●● ●● ●●●● ●●● ●● ● ●● ●● ●● ● ●● ●●● ● ● ●● ●●● ●● ●● ●●● ●● ●●● ●● ● ●●● ●● ●● ● ●● ●●●●●●●● ●● ●● ● ● ● ●●● ● ●● ●● ●● ●● ●●●● ● ●●●● ●● ● ●● ●●● ● ●●● ●● ●● ●●●●● ● ●●● ●●● ●● ●● ●●● ● ● ● ●●● ●● ●● ●● ●●● ● ●●●● ●● ● ●●● ●● ●●●● ●● ●●● ●●● ●● ●●●● ●● ● ● ● ●● ●● ● ●● ●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ● ● ● ● ●●● ● ●●● ● ● ● ●● ●● ●● ●●●● ●●● ● ●● ●●● ●● ●● ● ●● ●● ●● ●●●●●● ●● ●● ● ● ●● ●● ● ●●●● ●● ●● ●● ●● ●●● ● ●●● ● ●● ● ●● ● ●●● ●● ● ●●●●● ●● ● ●● ●●● ●●●● ●●●●● ●●● ●●●● ●●● ●●● ● ● ●●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●●●● ●●● ●● ● ●● ●●● ●●● ●● ●●● ●●● ● ●● ●●●● ●●● ● ●● ● ●● ●●● ●●●● ● ●● ●● ● ● ●●● ●● ●● ● ● ●● ●●● ● ●● ● ●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ● ●● ● ●●●● ●● ● ●●● ●● ● ●●● ● ●● ●● ● ●● ●● ●●● ●● ●● ●● ●●● ●●●● ●● ●● ● ●● ● ●●● ● ● ●● ● ●●● ● ●●● ●●● ● ●● ●● ●● ●● ● ●● ● ●●● ●●● ● ● ●● ● ●● ●● ●●● ● ● ●● ●● ●● ●●●●● ●● ● ● ●●● ●● ●● ●●●●● ●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●●●● ● ●●● ●●●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ●●●● ●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ●●●●●●●●●●●●● ●●● ●● ●● ●● ●● ● ●● ● ● ●● ●● ●● ●● ●● ●●●● ● ●●● ●●●● ●●●●● ●●●●●● ● ●●● ● ●● ●● ●●●●● ● ● ●●● ●●●●●● ●● ●● ●● ● ●● ●●● ● ● ●● ●● ● ●● ●● ●● ●●● ● ●● ●●●●● ●● ●● ● ●●●●● ●● ●●●● ● ●●● ●● ●● ●●● ● ●●●● ● ● ● ●●● ● ●● ● ● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ● ●●●●● ● ● ●●●● ●●● ● ●●●●● ● ●● ●●●●●●● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●●● ●●●●● ● ●● ●●●● ●● ●● ●●●● ●●● ●●● ● ●●● ●● ●●●● ●● ● ● ●●● ●● ●● ● ●●●●●● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ● ●●● ● ●●●● ● ●● ●●● ● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ● ●●●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●● ● ●●● ●●●● ●●●●● ●● ●●● ●●● ●●● ● ●●● ●● ● ●● ●●● ● ●●● ● ●●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ● ● ●●●●● ●●● ●●● ●●●● ●● ●● ● ●●● ● ● ●● ● ●●● ●●● ●● ● ●● ●● ●● ●●●● ●●● ● ●● ●●● ● ●●●●● ●●● ●●●● ● ●● ●● ● ●●● ● ●● ● ●● ●●● ● ●●● ●● ●●●●● ●●●● ●● ●●● ●● ●● ●● ●●● ● ●● ● ● ●●● ● ● ●●●●● ● ●●● ●●● ●●●●● ●● ●●● ● ●● ● ●●●● ●● ● ●●●●●● ● ● ●● ●● ●●●● ● ●● ● ●●●●●● ●●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●● ●● ●●● ●●● ● ●● ●● ● ●●●● ●● ●●● ●●●●● ●● ● ●● ●●●●● ● ●● ●● ●● ● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●●● ●●● ●● ● ● ●● ●● ●● ● ● ●● ●●● ●● ●●● ●●● ●●● ●●●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ● ●● ●● ●●● ● ●● ●● ● ● ●●●● ●● ● ● ●●●●●●●●●●●●●● ●● ● ●● ● ●● ●●● ● ●●● ● ●● ●● ●● ●●● ● ●● ●●●● ● ●●● ● ● ●●● ●● ●●● ●●●●● ●● ● ●●● ● ●● ● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●●● ● ●●●● ●●●●●● ●● ●●● ●● ●● ●● ● ● ●● ●●● ● ● ●● ●● ● ●●●●● ●●● ●● ●●● ●●● ●● ●●●●● ● ● ● ● ●●● ●● ● ● ●●●● ● ●● ●● ●● ●●● ●● ●● ●●●●●●●● ●● ●●● ● ●● ●● ●●●●● ●●● ●●● ●● ●● ●● ●● ●● ●●●● ●●●● ● ●●● ● ●● ●● ● ●●● ● ●● ●● ● ●● ●●●● ● ●● ●● ●●● ●●●●●● ●●● ● ●● ●● ●●● ● ●●● ● ● ● ●● ● ●● ●● ●●●● ● ●●●● ●●● ● ●●●● ●●● ● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ● ●●●●●● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●●● ●● ●●● ●● ●●● ●●● ● ●● ●●●●●● ●●● ●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●●● ●●● ●● ●● ● ●● ● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●● ●● ●●● ● ● ●●● ●● ● ● ●● ●● ●●●● ● ●●●●● ●●● ● ●● ● ●● ●● ● ●●● ● ●●●●● ●●● ●● ● ● ●● ●● ● ●●●● ●●● ●● ● ●●● ●●●● ●● ●● ● ●● ● ●● ●●● ●● ● ●● ● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●●●●● ● ●●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●●● ● ●● ● ●● ●●● ●● ● ●●● ●● ● ● ●● ●● ●● ● ●●● ●●●● ●●●● ●● ● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●● ●●● ●●● ● ●●● ● ●● ●●● ●● ● ● ●● ● ●●●● ● ● ●● ●●● ●● ● ● ●●● ●● ● ●●● ●●● ● ●● ●●●●●● ● ●● ● ●●● ●●● ● ●● ● ●●● ●●●● ●● ●● ●●● ●● ● ●● ● ●●● ●●●● ●●●●● ●●● ●●●●● ●●● ● ●●●● ● ●● ● ●●● ● ● ●● ●●●● ● ● ● ●●● ● ●● ●●●●● ●● ●●● ●●●●●●● ●●● ● ● ●● ●● ● ●●●● ●●● ●● ●●● ● ●● ●●●●●● ● ●● ●● ●● ●● ● ●● ●● ● ●●● ● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●● ●● ● ●● ●● ● ●● ●●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●●●●●● ●●● ● ●● ● ●●● ●● ●●●●●● ●●● ● ●●● ●●● ●●●● ● ● ●● ● ● ●● ●● ●●● ●●● ● ● ●● ● ●●● ●● ●●● ● ●●●●● ●●● ● ● ●●● ● ●● ●● ●●● ●● ●● ●●● ● ● ●●● ● ●● ●●● ●● ●●● ●● ●● ● ●●● ● ●●● ● ●● ●● ● ● ●●●●●● ● ● ●●● ●● ●● ●●●● ●●● ● ●● ●●●●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ● ● ●● ●● ● ●● ●●●●●●● ●● ● ● ● ●● ●● ●●● ●●●● ● ●● ●● ●●● ●●● ● ●● ●● ●●●●● ● ●● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●●●● ●●● ●●●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●●●● ●● ●●●● ●● ● ●● ●●● ● ●●● ●●●● ● ● ●● ● ●● ●● ●● ●●●● ● ●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ● ●● ●●●● ● ●● ● ● ●● ● ● ●●●●●●●● ●● ●● ● ●●●● ● ●●● ●●● ● ●● ●● ● ●●● ●● ●●●● ●●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●●● ● ●● ●● ●● ● ● ●● ●● ● ●●● ● ●●● ● ●●●● ●●● ●● ●●● ● ●●● ● ●●●● ● ●●●● ●●●● ● ● ●● ● ●● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●● ●●●● ●● ● ●●● ●●● ●● ●●● ●●●●● ●●●●● ●● ● ●●● ●●●● ● ● ● ●●●●● ●● ● ●●● ●● ● ●● ● ●● ●●● ●●● ●● ●●● ●● ●● ●●●● ●●● ●● ● ●● ●● ●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●●●● ● ●● ●●● ●● ●●● ●●●● ●●● ●●● ●●● ● ● ●●● ●●● ● ●●● ● ●●● ●●● ● ● ●●●● ● ● ●●● ●● ●●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●●● ●●● ●●● ● ●●● ●●●● ● ●● ●●● ● ●● ●● ● ● ● ● ●●●● ● ●●●● ● ●●●● ● ●●● ●● ●● ●●●●● ●●● ●● ● ● ●● ●●● ●●● ●● ●●●●● ●●● ●● ●●● ● ● ●● ●● ● ●●● ● ●●● ●●●●● ●● ●●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●●●●●● ● ●●●● ● ●●● ●●● ● ● ●●● ● ●●● ● ● ●●● ●●●● ● ●● ● ●●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●●● ●●●● ●●●● ●●● ●● ●●●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ●● ●●●● ●● ●● ● ●●●●● ●● ● ●● ●● ● ●● ● ● ●● ●● ●●●● ●●●● ●●● ● ●●●●● ●● ●●●● ●● ●●●● ●● ●●●● ● ● ●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ● ●●● ●● ●●● ● ● ●● ● ●● ●● ●● ●●●● ●● ● ●● ●●● ●●● ●● ● ● ●●● ●●●●● ●● ●● ●● ● ●●●●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●●●●●● ●●●●● ●●● ●●● ●●●●● ●● ● ●● ●●● ● ●●●● ●●● ● ●●● ●● ●● ●●●● ●● ● ●● ●●● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ●● ●●●● ● ●●● ● ●● ●● ●● ●●● ● ●●● ● ● ●● ●●●●●●● ●●● ●● ●●● ● ●● ●● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ●●●● ●● ● ●●● ● ●● ●● ● ● ● ●● ●●● ●● ● ●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ● ● ●●●● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●●● ●● ●● ●● ●● ● ●●● ● ● ●●●● ●● ● ●● ●● ●● ● ●● ●●● ●●● ●● ●●● ●●● ●●● ● ● ●●●● ●● ●●●●● ● ● ●●● ●● ● ●● ●● ● ●●●●● ● ●● ●●● ●● ● ●● ●● ● ● ● ●●●● ●● ● ●●●● ●● ● ● ●●● ●●● ●● ●●● ● ●●● ●● ● ●●●●● ●●●●● ●●● ●●● ●●● ●● ●●● ●●●●● ● ● ●● ●● ●●● ●●●●●● ●● ●● ●●● ●● ●●● ● ●●●● ● ●●●●● ●●● ●●● ● ●● ● ●● ●●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●●● ● ● ●● ●●●● ●● ● ●●●●● ● ●●●● ●● ●●● ●●●● ●● ●● ●●●● ●●● ● ●●●● ●● ●● ●●● ●●● ●●●● ●● ●● ●●● ●●● ●● ●● ● ● ●●● ●●●● ●●●● ●● ●●● ●●● ●●●● ●●● ●● ●● ●● ● ●●●● ●● ● ● ● ●●● ●●● ● ●● ● ●● ●●●● ●●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●●● ●●● ●●● ●●● ● ●● ●● ● ●● ● ●●●●●● ●● ●●●● ●●●● ●● ●● ●●● ●● ● ● ●●● ● ●●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●●●●● ●●● ●● ●● ● ●●● ●●●● ●● ●●●●● ●●●● ● ●●●●●●● ● ●●● ●●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●● ● ●● ●● ● ● ●● ●● ●●● ●● ●●●● ●●● ●● ●●● ●●● ● ● ●●●●●●●●● ●● ● ●● ●●●● ● ●● ●● ● ●● ● ●●● ● ●●● ● ●● ●●● ● ●●● ●● ●●●●● ●● ●●●● ● ●● ●● ● ● ● ● ●●●●● ●● ● ●●● ● ●●● ● ● ●●●●● ● ●● ● ●●● ●●● ●● ●●●● ●●●●● ●●●● ●●● ●●●●●●●●●● ● ●●● ●● ● ●●●● ●●●●●● ●●● ●●● ● ●● ●● ● ●● ●●●● ● ● ●● ●● ●●●●● ● ●●●● ●●● ● ●●●● ● ● ● ● ●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●● ● ●●● ●● ● ●● ● ●●● ●●● ● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ● ●●●●●●●●● ● ●●● ●●● ●● ●●● ●● ●●● ● ●●● ● ● ●●●● ● ●● ●● ● ●●●●● ●●●●●●● ● ●●● ●● ●● ●● ●●● ●●● ●●● ● ● ●●● ●●● ●● ● ●●● ●●●● ●● ●●● ● ●● ●●● ● ●● ●● ● ●●●●● ● ●● ●● ●● ●● ●● ● ●● ●●● ●●● ● ●● ● ●●●● ●● ●●● ● ●● ● ●●●● ● ●●●●● ● ●● ●●● ●● ●● ●●● ●●●● ● ●●● ● ● ●●● ●●● ● ●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ● ●● ●● ● ●● ●● ●● ●●●● ●●●● ● ●● ● ● ●●●● ●●●●●●● ●●● ●● ● ● ●●● ● ● ●● ●●● ●●● ●●● ● ●● ●●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●● ●●●● ●●●● ● ●●● ●● ●●●●● ● ●● ●●● ●● ● ●●●●●●● ● ●●●● ●●● ●● ●● ●●●●● ●● ●● ● ● ●●● ● ●● ●● ●● ●● ●● ● ● ●● ●●● ●●● ● ●● ●●●● ●●●● ●● ●● ●● ● ●● ●●● ●●● ● ● ●●● ●●●● ●● ● ●● ●●●● ●● ●●●● ●● ●● ● ●●● ●●●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●●●●● ● ●● ●●●● ● ●●●● ●●● ●●●● ●●● ●● ●●● ● ●●● ●●● ●● ●●● ● ●●● ●●● ● ●●● ●●●● ●●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ●● ● ● ●● ●● ●●● ●●●●● ● ●● ●● ●● ●● ●● ●●●● ●● ●●● ● ●●● ● ● ●● ● ● ●● ●● ●●● ●●● ● ●●● ●●●●● ● ●● ●●● ● ●● ●●● ●●● ● ●●●● ● ● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ● ● ●●● ●●●●●●● ●● ●●●●● ● ●● ● ●● ●●●● ●● ● ●●● ●●● ● ●●● ●●● ●● ●●●● ●●● ●●● ●●● ●● ●●●●● ●●●● ●●● ●● ●●● ●● ●● ●● ● ●● ●●● ● ●●● ●● ● ●● ●● ●●● ●● ●●● ●● ● ●●● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●●● ● ●●●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ●● ● ●●● ● ●● ● ●●● ● ●●●●●●●●● ●● ●● ● ● ●●● ●●● ●● ●●●● ● ●●●●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●● ●● ● ● ●●●● ●● ● ●●● ● ● ●● ● ●● ●●● ●●●● ● ● ●●● ● ●●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●● ● ●● ● ●● ● ●●● ●●●● ●●●● ●●● ● ●●● ●● ● ●● ●● ● ●●●● ●● ●●● ●● ● ● ●●● ● ●●● ●●● ●● ● ●●● ●● ●● ● ● ●●●●●● ●● ● ●● ●●● ●● ●● ●● ●●● ●●●●● ●● ●●●● ●● ●●● ●●●● ●● ● ●●●● ●● ●●● ● ●●● ●●● ●● ●●● ● ●● ●●●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ● ● ●● ● ●● ●●● ●● ●● ●●● ●● ●● ●● ●●● ● ●●● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ● ●● ● ● ●● ● ●● ●● ● ● ●● ●●● ●●●● ●●● ●● ●● ●●● ●●● ●●●●● ● ●●● ●● ●● ● ●●●●● ●● ● ●● ●● ●●● ●●● ●●● ●●● ● ●●● ●●●● ●●●● ● ●●● ●●●●● ●●● ● ● ●●●●● ● ● ●●● ● ●●● ●●●● ● ●●● ●● ●● ● ●●● ● ●●●● ● ● ●●●●● ● ●●● ● ●●●●● ● ●●● ●●●●● ●●● ●● ●●●●● ●● ●●●● ●● ●● ● ●●● ●●● ●●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●●●● ● ●●● ●● ●●● ●●● ●● ●●●● ● ●● ●● ●●● ● ●●● ●● ●●●●● ●●●●●●●●● ● ● ●●●●●●●● ●●●●● ●● ● ●●●● ● ●●●● ● ●● ●●●● ● ●●● ● ●● ●● ●● ●●●●● ●●● ● ●●●● ●● ● ●●● ● ●● ● ●● ● ●● ●●● ●● ●●●● ●●●● ●●●● ●● ●●● ● ●● ● ●● ●● ●● ● ● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●● ● ● ●●● ●●●● ● ● ●●●● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●●●●●● ●●● ●● ●●●● ●● ●●● ● ●● ●●● ●● ●● ●●●●● ● ●● ● ●●●● ●● ●● ● ●●● ●●● ● ●● ● ● ●● ● ●● ●● ●●●● ●●●● ●●●●● ● ●● ●●● ●●●●● ●● ●●●●● ● ● ●●● ●●● ● ●●● ●●●● ●● ● ●● ●● ●●● ●● ● ●●● ●● ●●● ● ●● ●●●● ● ●●●●● ●● ●●● ● ●●● ●●● ●●●●●●● ●●●●●● ● ●● ●● ●● ●●● ● ●●●● ●● ●● ● ●● ●●● ●●●● ●● ●●● ● ●●● ●● ●●●● ●●● ●●●● ●●● ●● ●● ●● ●● ● ●●● ●●●● ●● ●● ●● ●● ● ●●● ●● ● ●●●●● ●●● ●● ●●●● ●● ●●● ● ●●●● ● ●● ●●● ●●●● ● ●● ● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●●● ●●●●●● ●● ●●● ●● ●● ●● ●●●● ● ●●● ●●● ●● ●● ●● ● ●●●● ●● ●● ● ●●●●●● ●●●● ●● ● ●● ●●● ●●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ● ●●● ●● ●● ● ●● ●●● ●● ●●●● ●● ●●● ●●●● ● ●●●● ●●● ● ●● ●●●● ● ●● ●● ● ●●●●● ●● ● ●●● ● ●● ● ● ● ●●●● ●●●● ● ●●● ● ●●●●● ●● ●●●● ● ●●● ●● ●● ●●●● ● ● ● ● ●●● ●●●● ● ●●● ●● ●●● ●●●● ● ● ●● ●● ●● ●● ●● ●●●● ●●● ● ●●●●● ●●● ●● ● ● ●● ●●●●●● ●● ●●●●● ● ●● ●●● ●● ● ●●●●●● ●●● ●● ●●●● ● ●●● ● ●● ●● ● ● ●●●● ●● ● ●●●●●● ●●● ●●● ●● ●●●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ●● ●●● ●● ● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●●● ●●●●●● ●●● ● ●● ●● ●●●●● ●● ●● ● ●●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ●●● ●●●● ●● ●●● ● ●●● ● ●●●● ● ●●●● ● ●●●● ●● ● ●●●●●●●● ●● ● ●● ●● ●●●● ● ●● ●●● ●● ● ●●● ●●●● ●● ●●● ● ● ●● ● ●●● ● ● ●●● ●●●● ● ● ●●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ● ●● ●●● ●● ● ●● ●●●● ●● ●● ●● ● ● ●●● ●● ● ●● ●● ●● ● ● ●● ●●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●●●● ● ●● ●● ●●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●●● ● ●●● ● ●● ●●● ● ●●● ●●● ●●●●●● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ●● ● ●●● ● ●●●●● ● ●● ● ●● ●● ● ●●● ●● ●● ● ●●● ●●●● ●●●● ● ●●● ● ●● ● ●●● ●● ●● ● ●● ●●● ● ● ●● ● ●●● ●● ●●●● ●●● ●● ●●●●●●● ●● ●● ●●●● ●● ●● ●●●● ● ●●● ●● ●● ● ●●● ●●●● ●● ●●● ●●●●● ●● ●● ● ●● ● ● ●● ●●● ● ●●●● ●● ● ● ●● ●● ●●● ● ●● ● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ● ● ●● ● ● ●●● ●● ●● ●●●●● ● ●● ●● ●● ●●● ●●●● ● ●● ●● ●●●● ●●●●● ●● ●● ● ●●●●●● ●● ● ●● ●● ●● ●● ● ● ● ●● ● ●●● ● ●● ●●●● ●●●● ● ●● ●●● ●●● ●●● ●●●●● ●● ●● ● ● ●●● ● ●● ● ●● ●● ● ●● ●● ●●● ● ●●● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●●●●● ● ● ●● ●● ● ● ●● ● ●● ●●● ●●● ●● ●●● ● ●●●● ●●● ● ● ●●●● ●● ●● ●●● ●●● ●● ●●●●●●● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●●● ● ●●●●●●● ●●●●● ●●●●●● ● ●● ● ●●●● ●●● ● ●● ●● ●●● ● ●●● ●●● ● ●●●● ●●● ● ● ●● ● ●● ●●●● ● ●●●●● ● ● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ● ●●●● ●● ● ●●● ● ●●● ●● ●●● ●●●● ●●● ●●● ●●● ●●● ● ●●● ● ●● ●● ● ●● ●● ●● ● ●●● ●● ●● ● ● ●●●●● ● ●●● ● ●●● ●● ●●●● ● ●● ● ●●● ● ●●● ●● ● ●● ●●● ●●●● ●●●● ● ●●● ● ●●●●● ●●● ● ●●●● ●● ●●● ● ●● ●●●● ●● ● ●● ●● ●●● ●● ● ● ●●●● ●●●● ●● ● ●●● ●● ● ●● ● ● ●● ● ●●●● ● ●● ●● ● ●● ●●● ●●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●●● ● ●● ● ●● ● ●● ●● ● ● ● ●●●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ● ●●● ● ● ● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ● ●●● ●● ●● ● ●●● ● ●●● ● ●● ●● ●●● ● ● ●● ● ●●● ● ●●● ●●● ● ●●● ●● ● ●● ● ● ●●●● ●●● ●● ●●●● ● ●●●● ● ●● ●● ● ●● ●● ●● ● ●●● ●● ●● ●●●●● ● ●●● ●● ● ●●● ●● ●● ●●● ●●● ● ●● ●● ● ●● ●● ●●●●● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ●● ●● ●●●● ●●● ● ●● ● ● ●●● ●●●●●●● ●●●●●● ● ●● ●● ●● ●●● ● ●●● ● ●● ● ●● ●● ●● ● ● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●● ●● ● ●● ●● ● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●●● ● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ●● ●●● ● ●●● ●● ●● ●●●● ● ●● ●● ●●●● ● ●● ●● ●● ● ●●●● ●● ●●● ●● ● ●● ●● ●●●● ● ●●● ●●● ●●● ● ● ●●●● ●●● ● ●● ●●●●● ● ● ●●● ●●● ●● ●●● ● ●●●●● ●●● ● ● ●● ●● ●●● ●●● ●● ●● ●●●●●● ● ● ●●●● ● ●● ●● ●● ●● ● ●● ●●● ● ● ●●● ●●● ●●● ●●●● ● ● ●●● ● ●●● ●●● ●● ●● ● ●●●● ● ●● ●● ●● ●●●●●●● ●●● ● ●● ●● ●● ● ●●●●● ● ● ●●● ●●● ●● ●● ●●●●●● ● ●● ● ● ● ●● ●● ● ● ●● ● ●● ●● ● ● ●●● ●● ●● ● ●● ●●● ● ●● ●●●●● ●● ●● ● ● ●● ●●●●● ●● ● ●● ● ●●● ● ●●●●●●●● ● ●● ●● ● ● ●●● ●● ●●● ●●● ● ● ●●● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●●● ● ● ● ● ●●● ● ● ●● ●●●● ●●● ●● ●● ●● ●● ● ●● ● ●●● ● ● ●● ● ●● ● ●●●● ●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ● ●●● ●● ● ●●● ●● ● ● ●●● ● ● ●● ●● ●● ●● ●● ●●● ●●●● ●● ● ● ●● ●● ● ●● ●●● ● ●●●● ● ● ●● ● ● ●●● ●● ● ● ●● ● ●● ● ●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●●● ●● ●● ●●●●●● ●● ●●● ● ● ●● ●●●● ●●● ● ● ● ●● ● ●● ●●● ●●● ● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ● ●●● ●●● ●●●●●● ●● ●● ● ●●●●● ●●●● ● ●●● ●●● ●●● ● ● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●● ●●● ●● ●●●● ●● ●●●●●● ●●●● ●● ●● ●●● ●●● ●●● ● ●●● ●●●● ●●● ●●●● ●●●● ● ●● ●●● ● ● ● ●● ●● ●● ●●● ● ●●● ●●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●●● ● ●●● ●● ●●● ● ●● ●●● ●●● ● ●● ● ● ●●● ●● ●●●● ●● ● ● ●● ●● ●● ●● ● ● ● ●●● ●●● ●● ●●●●●●● ●● ● ●● ●● ●● ●●● ●●● ●●●●●●● ●●● ●●● ●●● ● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ●●● ●●● ● ●● ●● ● ●● ●● ●●● ●● ● ●●● ● ●●●●●● ●● ●●● ● ●●●●● ●●● ● ●●● ●●● ●● ●● ●● ●●●● ● ● ●● ●● ●● ● ●●●●●●● ● ●●● ●● ● ●● ●●● ● ●●●● ●● ●●●● ●●● ●●●● ●●● ●● ●● ●●● ●● ●● ●● ● ●●●●●● ● ●● ●● ●●●●●● ●●● ●●● ●●●●● ● ●●● ●● ●●● ●● ●● ● ●● ●●● ●● ●●● ●●● ● ●●●●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●●●● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ●●● ●● ●● ●●● ●● ●● ● ●●● ● ●●●● ● ●● ●● ●●● ● ●● ●●●●● ●●● ●●●● ●● ●●●● ●●●● ●● ● ● ●●● ● ● ● ●●●● ●● ●●●● ●● ●● ●● ●● ● ●●●●●●● ●●● ●● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ●●●●● ●●●●●● ●●● ●● ●●● ● ●● ● ● ●● ●●●● ● ● ●● ●●● ●●● ●●●● ●●●● ●●● ● ●●●● ● ●●● ● ●●●● ●● ●●● ● ●● ●●●● ● ●● ●● ●●● ● ● ●● ●●●●●●● ●● ●● ●●●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ● ● ●●●● ●● ●●●●●● ●● ●● ●● ●● ● ●●● ●●●●●● ●● ●●● ● ●●● ● ●●● ●● ● ●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ●●● ● ● ●● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ● ● ●● ●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ●● ● ● ●● ●●●● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ● ●●●● ●●● ●●●● ● ●● ●●●●● ●● ●● ●● ●● ● ●●● ● ●●●● ●● ●●●● ●● ●● ●●● ●●● ●●●● ●● ● ●●● ●● ●● ●●● ● ● ●● ●●● ●● ●● ●● ● ●●●● ● ●●● ●● ● ● ●● ●●● ● ● ●●● ● ●●● ●●● ●●● ●● ●●● ● ● ●● ● ●●● ●● ● ● ●●●● ●● ● ●●●● ●●● ● ●●●● ●● ●●●● ● ●● ●●● ●● ●●● ●● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ●● ●●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●●●● ● ●●●● ●●●● ●● ●●●● ●●● ● ●● ●●● ●●● ● ●● ●●●● ●●● ●●● ●●● ● ●● ● ● ●●● ●●●● ● ●●●● ● ●● ●●● ●● ● ●● ●●● ●● ●● ●● ●●● ● ●●●●● ●● ● ●●● ●● ●● ●●● ●●●● ●●● ● ●● ● ●●●● ●●● ● ●●● ● ●●●● ● ●●●● ●● ● ●●● ●● ●●●● ●● ● ●●●●● ● ●●● ● ●●●●● ● ●●● ●●●●● ●● ● ●●● ● ● ●● ● ●● ● ● ●● ● ● ● ● ● ●● ●● ● ●● ●●● ●●●● ●●●● ●●● ● ●● ●●●● ●● ●● ● ●●● ● ●● ● ●●● ●●● ● ●● ● ● ● ●● ●● ● ●●●● ●●●●●●● ● ●●●● ●● ●●● ● ●● ●●● ●● ● ● ●●●● ●●● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●● ●● ●●● ●●●● ● ●● ●●● ● ●● ●●● ●●● ●●●● ●●● ●● ●● ● ● ●● ●●●●● ●●● ●●●●● ●●● ● ●●●●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●●● ●● ●●● ●●●● ●●● ●●●● ●● ●● ●●● ● ● ●●● ●● ●●●●● ●●●● ● ●● ● ● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●● ●●●● ●● ● ●●● ●●●●●● ●●● ●● ●● ●●● ●●● ●●● ●●● ●●●● ● ● ●● ●● ●●●● ●●● ●● ●● ● ● ●● ●●●●● ●● ●● ●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ● ●●●●●●●● ●●● ●● ●●● ●● ●● ●● ● ●●●● ●●●●●● ●● ●●● ●●● ● ●●●●● ●● ● ●● ●● ●●● ●●● ●●●●● ●●●● ●●●● ●●●● ● ● ●● ● ●● ●● ●● ●●● ● ●●●● ●● ● ●● ●●● ●● ●●● ● ●● ● ●● ●● ● ●●●● ●●●●● ● ●● ● ● ●● ● ●● ● ●● ●● ●●● ● ●● ● ● ●●●● ● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●●● ●● ●●●● ●●●●● ● ●●● ● ●●●● ●● ● ●●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ● ●●● ●● ●●●● ●● ● ●●●● ● ●●● ● ● ●● ●●●● ●●● ●●● ●●●●●●●●● ● ● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●●● ●●● ●●● ●● ●● ● ●● ●●●● ●● ●●● ●● ●●● ●● ● ●●●● ● ●● ● ●●● ●●● ●●● ●● ● ●● ●●● ● ● ●● ●●●● ●● ●● ●●● ●● ●● ●●●●● ●●● ●● ● ●● ●● ●●● ●●● ● ● ●● ●● ● ●● ● ●●● ● ●●●● ●●●● ● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●●● ● ●●● ●●● ●●●● ●●● ●● ●● ●●●● ●●● ●● ●●●● ● ●●●● ●● ●● ●●● ● ●● ●● ● ●● ●●● ● ● ●● ●● ●●●● ●●● ●●● ●● ● ●● ●●● ●●● ● ●●●● ● ● ●●● ●●● ●● ●● ●● ● ● ●●●● ●●● ● ●● ● ●● ● ●● ● ● ●● ●●● ●● ●● ●●●● ●● ● ●● ●● ●●● ● ●●●● ●● ●● ●● ●●●● ●● ●● ●●● ●●● ●● ●●●● ● ● ●● ●●● ●● ●●● ● ●●● ● ●●●●●●● ●● ●●● ●● ●●● ● ●● ●●● ●●●●●●● ●●● ● ●● ●●●● ●● ●● ●●●●● ●● ●●●●● ● ●●● ●●●● ● ●●● ●● ●●●●● ●● ●●●● ● ●● ●●● ● ●●●● ●●●● ●●● ●●● ●● ●●●●●●●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●● ● ●●● ● ●●●● ●● ●●●●●●●● ●●●● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ● ● ●●● ●● ●● ●●● ● ●● ●● ●●●● ●●● ●●● ● ●●● ● ●●●●● ● ● ● ●●●●● ●●●● ●● ●● ●● ●●●● ●● ●●● ●●● ● ● ●● ●● ● ●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●● ●●● ● ● ●●● ●●●●● ● ●●● ● ●● ●●● ● ●●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ●● ● ● ● ● ● ●●● ●●●● ● ●●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●●●●●●●● ●●● ●●● ● ● ●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ●●●● ●●●● ●● ●●● ● ●●● ●● ●●● ● ●●● ● ● ●● ●●● ● ●● ● ●● ●● ●● ● ● ●● ●● ●●● ●●● ●● ●● ● ● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ● ●●●● ● ● ●● ●●● ●●● ●● ●● ●● ●●●● ●●●●● ●●●●●●● ●● ● ●● ●●● ●●●● ●●●●● ● ●●● ●●● ●● ●● ●●●●● ●●●● ●●● ●●● ●●● ● ● ● ●●●● ●●●●●● ●● ● ●● ●● ● ●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ● ●●● ●●●●● ●● ●● ●● ● ●● ●● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●● ●● ●● ●● ● ●●●● ●●● ●● ●●● ●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●●●● ● ●●● ●● ●●● ●●● ● ●● ●● ●●●●●● ●● ●● ●●● ●● ●●● ●●●● ●● ●● ● ●● ●●● ●●● ●● ●●● ●● ● ●● ●●●● ●● ●● ●●●● ● ● ●● ● ●●●● ●●● ● ●●● ●●● ● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ● ●●● ● ● ●●● ● ●●●● ●● ●●● ●● ●●●● ●●●●●● ●●●●● ● ●●● ●● ● ● ●●●● ●● ● ● ●●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●●●● ● ● ● ●● ●● ● ●●● ● ●●● ●●●●●● ●● ●●● ● ●● ●● ● ● ●● ● ●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●● ● ●● ●●●● ●●● ●● ●● ●●● ●●●●● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ●● ● ●●●●●●● ●● ●● ● ●●●●● ● ●● ●●● ● ●●● ●●●●●● ●●● ●● ● ●● ●● ● ●● ●●● ● ●● ●●● ●●●● ● ●● ●●●● ●● ●●●● ●● ● ●●● ● ● ●● ●●●● ● ●●●● ● ●●● ●●● ●●●● ● ● ●● ● ●●● ●● ●●●● ●● ●●● ●● ●● ● ●● ● ●●●● ●●● ● ●● ●● ● ●● ● ● ●● ●●●● ●●● ●●● ●● ● ●●● ●●● ● ● ●●● ●● ●● ● ●● ● ● ●●●● ● ●● ●●●● ●● ●●●● ●● ● ●●●● ● ●● ● ●●● ●● ● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●●● ● ●●● ●● ●●●●●●●●●●●●● ●● ●●● ●● ●●●●● ●●●● ●●● ●● ● ● ●● ●● ● ●●●● ●● ●● ●●●●● ●●● ● ●●● ●●●● ●●● ● ●●●● ●●● ●● ● ●● ●● ●● ● ● ●●●●● ● ●●●● ● ● ●●● ● ●●● ●●● ●●●●● ● ●● ● ●●●●●● ● ●●●●● ● ●●●● ●● ●●● ● ●● ● ●●●● ● ●● ●●● ● ●●● ● ●● ● ● ●●● ●● ●●● ●● ● ●●● ● ● ●●●● ●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ●●● ●●● ●● ● ● ●● ●● ● ● ● ●● ● ●●● ●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ●●●● ● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●● ● ●●●●●● ● ● ● ●●● ●●● ●●● ●●●● ●● ● ●● ● ● ●● ●● ● ●● ● ●●● ● ●● ● ●●● ●●● ● ●● ● ●●● ●● ●●● ●● ●● ●●●● ●● ●● ●●● ●●●● ●●●● ●● ●● ● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●●● ●● ●● ●● ●● ●●● ●●●● ●● ● ●● ●● ●●● ● ● ●●● ●● ●● ● ●● ●● ●●●● ●● ●●● ●●●●● ● ●● ●●● ●● ● ●● ●●●●● ●● ● ●● ●●●● ●●● ● ●● ●●● ●●●● ● ●● ● ●●● ●●●● ● ●●● ●●●● ● ●● ● ●●● ●●● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●●● ● ●●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ●● ●●●●● ●●●● ●●● ● ● ●●●●●●● ●●●● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ●●●● ● ●●● ●● ●● ●●● ● ●● ● ●● ● ● ●●●● ●●● ●● ●●●●●●●● ●●●●● ●● ● ●● ●●●●● ● ●● ●●● ● ●●● ● ●● ●●● ● ●●● ●● ●●●●● ●● ●●● ●●● ● ● ●●●● ●●● ●● ●● ●●● ●● ● ●●● ● ●●●● ●●● ●● ●● ●● ●● ●●●● ●●● ● ● ● ●●● ●●● ●● ●●● ● ●●●● ●● ●●● ● ●●● ●●● ●● ●● ●● ●● ●●●● ●●●●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●● ● ● ●●● ●●●●● ●● ●● ●● ●● ●●● ● ● ●● ●●●●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●● ●●●●●● ●●● ● ● ●●●● ●●● ●● ●● ● ●● ●●● ●●● ●● ●●●● ● ● ●● ●● ●● ●● ●●● ● ●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●● ●● ● ●● ●● ●● ●●● ● ●● ●● ● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ●●● ●●● ●● ●●●● ● ●● ●● ●●●● ●●● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ●●●●● ●● ● ●●●● ●●● ●●●● ●●● ● ●● ●●● ●●●●●●● ●●●●●● ● ●● ●●● ●● ●● ●● ● ●● ●●●● ● ●● ●●● ●● ● ●● ●●●● ●● ● ●● ●●● ●● ● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ● ●● ● ●● ● ●● ●●● ●● ● ●●● ●●●● ●● ●● ●●●● ●● ●●● ●● ●● ●●●● ●● ●● ● ●● ● ●●● ● ●● ● ●● ●●●●●● ●●●● ● ●● ●●● ● ●●● ●●● ●●● ●● ● ●● ● ●● ●● ●●● ● ●●● ●● ●●● ●● ● ●●● ●●●● ●● ● ●●●● ● ●●●● ● ●● ●●● ●●●●●● ●● ●●●● ●● ● ●●●●●● ●●● ●●● ●● ●● ●●● ●●●● ●● ●●●● ●● ●● ● ● ● ●● ● ●●●● ●● ● ●● ● ●● ●●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●●●● ● ●● ● ●●● ●● ●●● ●●● ●●● ●● ●● ● ●●●● ●● ●● ●●● ●●●●● ●● ● ●●●●● ● ●●● ● ●● ●● ●●● ● ●●●●● ●● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●● ● ●●●●●● ●●● ● ●● ●●● ●●●●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ●● ●● ●●●●●● ● ●●● ● ● ●● ●● ● ●●● ●●● ●●●● ● ● ●● ●●● ● ●● ●●● ●● ●●●● ● ●● ●●●● ●● ●●● ●● ●● ●● ●●●●●● ●●●● ●● ●● ● ●● ●●● ●● ● ● ● ●● ● ● ●●●●●● ●●● ●●●● ●● ● ● ●●● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●●● ●● ● ● ●●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●●● ●●●● ●●●●●● ●●● ●●● ●●● ●●● ●●● ● ● ● ●● ● ● ●●● ●●● ●●● ●● ●● ●●● ●●●●● ●●●●●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ●●● ● ●●●● ●●● ●●● ●●●● ●●●●● ●● ● ● ●●● ● ●●●● ● ●●● ●● ● ●● ●● ●● ●●● ●● ●●●● ●● ●● ● ●● ● ●●● ●● ●● ●●● ● ●● ●●● ● ●● ●●●●●● ●●● ●● ●●●●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●●● ● ●● ●● ●●● ● ●●●●● ●● ● ●● ●● ●● ●● ●●● ● ●●●● ● ●● ●● ●●● ● ●●●● ● ●●●●● ●●● ●● ● ●● ●●●●●● ● ●●●● ● ●●●●●● ● ●●●● ●●● ●● ●● ●●● ●● ●● ● ●● ● ●●●●●● ● ●●● ●● ●●●●● ●●● ● ●●● ●● ●●●● ● ●● ● ●●● ● ● ●●● ●● ●●● ●●● ●● ● ●● ●●●●●● ● ●●●●● ● ● ●● ● ●● ●● ● ●●●●● ●● ●●● ●●●●● ●●● ● ●● ● ●● ●●●●●● ●●● ●●● ● ●●● ●●●● ●● ●● ●●● ● ●● ●●●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●●●●● ●●● ● ● ● ●● ●● ● ●● ● ●● ●● ●●●● ● ●● ●● ●●● ● ●●● ● ●●●● ●● ●● ● ●● ●● ● ●●●● ● ●●● ● ● ● ● ●●●● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●●●●●●●●●●● ●● ● ●●●● ●●● ●● ●●●●●● ● ● ●● ● ●● ●●●● ●●● ● ●● ●● ● ● ● ●● ●●●● ●●● ●● ● ●● ●● ●● ●● ● ●●● ●●●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ● ●●● ● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●●●●● ●●●● ●●●●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ● ●● ● ●●● ● ● ●● ●●● ● ●●● ●●● ●●● ● ●●● ● ●●● ●● ●● ● ● ●● ●● ●● ●●● ●● ● ●● ● ●● ● ● ●●●● ● ● ●● ●●● ● ●● ● ●●●●●● ●● ● ●● ●●● ●● ● ●●●● ● ● ●●● ●●●● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●● ●●● ●●●● ●●●●●●● ● ●●● ● ●● ●● ● ●● ● ●●● ● ●●●●● ●●●● ●● ● ●●● ●● ●●●● ●●● ● ●● ● ●● ●●● ●●●● ●●●●● ●● ● ●● ●● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ● ● ●●● ●●● ●● ●● ● ●● ●● ●● ● ●● ● ● ●●●● ● ●● ● ●●● ●●● ● ●● ●●●●● ● ●●● ●●● ●●● ●● ● ●●● ●●●●●● ●●●● ●● ●●●● ●● ●●● ● ●● ●● ●●● ●●●● ●● ● ●●●● ●● ●●● ●● ●● ●● ●● ●●●● ●●● ● ● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●● ●●● ● ●● ● ● ●● ●● ●● ●●● ● ● ●●● ●● ● ●● ● ● ● ●●●● ● ●● ●● ●●● ●● ●● ●●● ● ● ●●● ● ●●● ●● ●●● ●● ● ● ●●●●●● ● ●● ● ● ●●●●● ●●● ● ● ●● ●●● ● ●●●● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ●● ● ●●●● ●●● ● ●●● ●●● ● ●●● ● ●● ● ●●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ● ● ●●● ●●●● ●● ●●●●● ● ● ●●●● ● ●● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ●● ●●● ● ●●● ●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ●●●● ● ●● ●●● ●● ●●● ●●●● ● ●● ●● ● ●●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●●●●● ● ●● ●●●● ●●● ●●●● ● ●● ●● ● ●● ● ●● ●●● ● ●●● ●● ●● ●●● ●●●● ●●● ● ●●● ● ●● ●●● ●● ●● ●● ● ●● ●●●●● ●● ● ● ● ●●●● ●● ● ●● ●●●●● ●●● ●●● ●●● ● ● ●● ● ●●●●● ●● ●● ●●●●● ●● ● ●●● ●●● ●● ● ● ●● ●● ● ● ●● ●● ●● ●●● ● ●●● ● ● ●● ● ●●● ●●● ●● ● ●●●● ●● ●●● ● ● ● ●● ● ●● ● ●●● ●● ●●● ●●● ● ●● ● ●●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●●●●●●●●●● ●●● ● ●●● ● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ● ●●●●● ●●● ●●●● ● ●●● ●●● ● ●● ●●● ●●● ● ●● ●●● ● ●● ●● ●● ●● ● ●●● ●● ●●●● ●● ● ●●● ●● ●●● ● ● ●●● ● ●● ● ● ●● ● ●● ●●● ● ● ● ●●●● ●● ●●● ●● ●● ● ● ● ●● ●●●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●●●●● ● ●● ●● ●● ●●● ●● ●●● ● ● ● ●●● ●●●● ● ●●● ● ● ●● ●●●● ●●●● ● ●● ● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●●●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●● ● ●● ●● ●● ●● ● ● ●●● ●● ● ●●● ● ● ● ● ●●●● ●●● ●●● ●● ●●● ● ●●● ●● ●●● ● ●●● ● ●● ●● ● ● ●● ● ●● ●● ●● ●● ● ●●● ●● ●●● ●● ●●● ● ● ● ● ●●● ● ●●● ● ●●● ●● ● ● ●● ●●●● ● ●● ●● ● ● ●●●● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ● ●●●●●● ●● ● ●●●● ●●●● ●●● ●●● ●●● ● ●● ●●● ● ●●● ● ●● ●● ●●●● ● ●● ●●●●● ●● ●● ●● ● ●● ●● ●● ● ●●●● ● ●●● ●●●●● ● ●● ●● ●● ●●● ●● ●● ●●● ●●● ●● ● ●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●●●● ● ●●● ● ●● ●●● ●●● ●●●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ●●● ●● ● ●● ●● ● ● ●● ●● ● ● ● ●●● ●●●●● ●● ● ●● ●● ● ●●● ●●● ●● ●●●●● ●● ●●● ●● ● ●●●● ●● ●●● ●● ●●● ● ●● ●●●●● ●●● ● ●●●● ●●●● ●●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ● ● ●● ● ● ●● ● ●● ●● ●●●●● ●●● ●● ● ● ● ●●● ●●●●● ●● ●● ●●● ●●● ●●●● ●● ● ●●● ● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●●●●● ●● ●●●● ●● ● ● ● ●●●●● ●● ●●●● ● ●● ●●● ●● ● ●●●● ● ●●●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ● ● ●●● ●● ●●●● ● ● ●●●● ●● ●● ● ● ● ●●● ●●● ●● ●● ● ●●● ●● ●●●●●● ● ● ●● ● ●●● ●●●● ●●● ● ●● ●● ● ●● ●●● ●● ● ● ●● ●● ● ● ●● ●●● ●● ●●●●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ● ●● ● ●●●●● ●●● ● ● ●● ● ● ●● ●●● ●● ●●●●● ●● ● ●●●●● ●● ● ●●● ● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ●● ● ● ●●●● ●● ● ● ●● ●● ●● ● ●●● ● ●●●●● ●● ●● ● ●● ● ●● ●● ●●● ●●●●● ●● ●●● ●● ● ●●● ● ●●●●● ● ●● ●● ● ●●●● ● ●● ●● ● ●●●● ● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●●●●● ●●● ●● ●● ●●●● ●●● ● ●●● ● ●●●● ●● ●●● ● ● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●●● ●●●● ● ●●● ●●●● ● ●● ●● ●●● ● ● ●● ●●● ● ●●● ●● ●●● ●●● ●●●●● ●●● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●●● ●●● ●● ●●● ●●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ● ●●● ●●● ●●●● ●● ●●●● ●●●●●● ●●●● ● ●● ●●● ●● ●● ● ● ●●●● ●● ● ● ●● ●● ●●● ●● ● ● ●● ●● ●● ●● ● ●●● ●● ● ●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●●●●●●●●● ● ●● ●●●●● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●●●● ●●● ●●●●●● ●● ● ●●●● ●●●●●●● ●●● ● ●● ●● ●● ●● ●● ● ●●● ● ●●● ●● ● ●●●●● ● ●●● ●●●● ● ●● ●● ● ●● ● ●● ● ● ●●●● ●● ● ●● ●●●●●● ●●● ●●●●●●● ● ●●● ●● ● ●●● ● ●● ●● ●●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●● ●● ●● ●●●● ●●●●●● ● ●● ● ● ●●● ● ●●● ●●●● ● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●●● ●●● ●● ●●●●● ● ●● ●●● ●●● ● ● ●●● ●●● ● ●● ●●●● ●● ●● ● ●● ● ●●● ●●●●●● ●● ●●● ●●● ● ●●● ●●● ●● ●● ●●●● ● ●● ●●●●● ●● ●●● ● ●●● ●●● ● ●● ●●● ● ●●●● ● ●● ●● ●●● ●●● ●● ●●●● ●● ●● ●● ● ●● ●●● ●●●● ●● ●● ●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ● ●● ●●● ● ●●● ●●● ●● ●●● ●● ● ● ●●●● ● ● ● ●●● ● ●● ●●● ●● ●● ●●● ●● ●● ● ● ●●●● ●● ● ●● ●● ●● ●● ●●● ●● ●●● ● ●● ●●●●● ●● ●●● ●●●● ●● ● ●●● ● ●● ●● ●●● ●● ●●●●●● ●●●●●● ●●● ●● ●● ●●●● ●● ●●● ●●● ● ●●●●● ●● ● ●●● ●●●● ● ●● ●● ● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●● ●●●●● ●● ● ●●●● ●●●●● ●●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ● ●● ●●●●●● ● ●●●● ● ●● ●● ●●● ●●● ● ●●●● ● ●● ● ● ● ● ●●● ●● ● ●●●● ●● ●● ●● ●●●●●● ●●●●●●●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●●●● ● ●● ●● ●●● ●● ● ●●●● ●●●● ●● ●●● ● ●●●● ●● ●●● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●● ● ●● ●●●●● ●● ● ●● ●●●●● ● ●● ●●●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ● ●●● ●● ● ●●● ●●● ●●● ●●●● ●● ●●●● ● ● ●●● ●●●● ● ●● ● ●●● ●● ●● ●● ● ●● ●● ●●●● ●●● ●●●● ●●●● ●●●● ●●● ●● ● ●●● ●●● ●●● ●● ●●● ●●●●●● ●●● ●● ● ●●● ●● ●● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ● ●●● ●● ● ●●●● ●● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●● ●●●●● ●●●● ●● ●●● ● ●●● ●●●● ●●● ●●● ●●● ●● ● ● ●● ●● ●● ● ●● ●● ● ●● ●●● ● ●●●● ●● ●●● ●●●● ●● ●●● ●● ●● ●● ● ●● ●●● ●●● ●●●●● ●● ●●● ●●●●● ●● ● ●● ●● ●●●● ●●● ●● ●●●● ●● ●● ●●●●● ● ●● ●● ● ●● ●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●●● ● ● ●●● ●●●●● ● ●● ●●●● ●●●●● ●● ● ●●●● ●●●● ●●●●●●● ● ●●● ●● ●●●●● ● ●●● ● ● ●● ●● ●●●●● ● ●●●●● ●● ●●● ●●● ●● ● ●● ●●● ● ●●●●●● ●● ●● ● ● ●●● ● ●●● ●● ●●● ●● ●● ●●●● ●●●●●●● ● ● ●●● ● ● ●● ●● ●●●● ●● ●● ●●●●●● ●●●● ● ● ● ●● ●● ●●●●●●● ●●●● ●● ● ●● ●● ● ●●●● ●● ●● ●● ● ●● ●● ● ●●●● ● ●●● ●● ● ●●● ● ● ●●●● ●●● ●● ● ●●● ● ●● ●●●● ●●●●● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ●● ●● ●●●●●●●●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ● ●●●● ●● ●●●● ● ●● ●●●● ● ●●● ●●● ●● ●●●● ●●● ●● ● ●●● ●● ●● ●●●●●●●●● ● ●● ●● ●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ● ●● ● ●●●●● ●●●● ●● ● ●●● ● ●● ●● ●●●● ●● ● ●●●●● ● ●●●●● ● ●● ●● ●● ● ●●●● ●● ●●●● ●● ●● ●● ●●●● ● ● ●●● ● ●● ● ●● ●●● ●●● ●●● ● ●●●●● ● ● ●● ●●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ●●●

●●●

● ● ●● ●●● ● ●●●●●●● ●● ●●●●● ●●●●● ● ●●●● ●● ● ● ●●● ●●●●● ●●●●●●● ●● ●●● ●●● ● ●●● ●● ●● ● ●●●● ● ●●●● ● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ● ●●●●●●● ●●● ●●●●● ●●●● ●●●● ●●● ● ●●●●● ●● ●● ●● ●● ● ● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●●●● ●●●● ●●● ● ●● ●● ● ●●● ● ●●●● ● ●●● ● ● ●● ●●●● ●● ● ●●●●●● ● ●● ●● ● ● ● ●●● ● ●●● ● ●●●● ● ●●● ●●● ● ●●● ● ●●● ●●● ●● ●● ●●● ● ●●● ●● ● ●● ●● ● ● ● ●● ●● ●● ●● ●●● ●●●● ●●● ● ● ●● ●● ●● ●● ● ●●● ● ● ●●● ●●● ●●● ●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ● ●● ●●● ●● ●● ●●● ●● ●●● ●●●●● ● ●● ●●●●●●● ●● ●●●● ● ●●●● ●● ●●●● ●●●●●● ● ●●● ●● ●● ●●●●●● ●●● ● ● ●● ● ● ●● ●●● ●● ● ●● ●● ●●●● ●●●● ●●● ● ●●●● ● ●● ●●● ●●● ●●● ●●● ●●● ●●● ● ●●● ●● ● ●●●●●●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ●● ●●● ●●●●● ● ●●●● ●● ●●●●● ●●● ●● ●●●●● ● ● ●● ●●● ●●● ●●●●● ●●● ●● ● ●● ●● ●● ● ●●● ●●●● ● ● ●●●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●●● ●●●●●●●● ● ●●●●● ● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ● ●● ●●● ●● ●●● ● ●●●● ● ●● ●●● ●●● ●● ● ●● ● ● ●●● ●● ● ●●●● ●●●● ● ●● ●● ●● ●●● ●●● ●● ● ●●● ●●●●● ●● ●● ● ●● ●● ●●●● ●●● ●●●●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●● ●●● ●●● ●● ● ● ●● ●●●● ●● ●●● ● ●● ● ● ●● ●● ●●● ●●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ● ●●● ●●●● ●●●● ● ● ●●● ●● ● ●●●● ● ●● ●●●●● ●●● ● ●● ●●●●● ●● ● ●●● ●● ●●● ● ●● ●●● ● ●●●● ●● ● ●●● ● ●● ●● ● ●● ●●● ● ●●●● ●● ●●● ● ●●●● ●●●● ● ● ●●● ●● ●● ●●●● ●● ●●●●●●● ●●●●● ●●● ●●● ●●●● ●● ● ● ● ●● ●● ●● ● ●●●● ●●● ● ● ● ●● ● ●●●●● ● ●● ●●● ● ●●● ●●● ●● ●●● ● ●● ●●●● ●● ●●● ●●●● ●●● ●● ●● ●● ● ●● ●●●● ●●● ●●●●● ●●●●●● ●● ● ●● ●● ●● ●● ●● ●● ●●●●● ●● ●●●● ●●●● ●● ● ● ●●●●● ●●●●● ●● ●●●●● ●● ●●● ● ● ●● ●● ●●● ● ●●● ●●●● ●●● ● ●●● ●● ●●●●● ● ●● ●●●● ● ●● ● ●● ●● ● ●● ●●● ● ● ●●● ●●●●● ● ● ●●● ●● ● ●●● ●● ●● ●●●●●●●●●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ● ●● ●● ● ●● ●●● ●● ● ●●●●●●● ●●●● ●●● ●●●●● ● ●● ●●● ●● ●● ● ●●●● ●●●● ●● ●●●●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●●●● ●●●● ● ●● ●● ● ●●● ●●● ● ● ●●●● ● ●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ●●● ●● ● ●●●●●●● ●● ●●●● ●● ●● ● ●●●●● ●●● ●●●● ● ●● ● ●●● ● ●●● ●●●● ●●●● ●●●● ●●●● ●●● ●● ● ●●● ●●● ●●● ● ●● ●●● ● ●● ● ●● ●● ●● ●●● ● ●● ●●● ●●●●●● ● ●●●●● ●●● ●● ●● ●●● ● ●● ●●●● ● ●●●●● ● ●● ● ●● ● ● ●●●●●● ●●● ●● ●●●●●● ● ●● ● ●●● ● ● ●●●●● ● ●● ●●●● ●●●● ●● ●● ●● ● ●●● ● ● ● ●●●●●● ● ●● ●● ● ● ●● ● ●●●●● ● ●● ●● ●● ●●●● ●●● ●● ●●● ●● ●● ● ●● ● ●●● ●●●● ●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●●●●●●● ●●● ● ●●●●●● ●● ● ● ●● ●● ●●● ●●● ● ●● ●● ●● ● ●● ●●●● ● ● ●● ●●● ●● ●● ●●●●● ● ●●●●● ●Xamarin

Weex

Unidentified

Titanium

React Native

Qt Mobile

NativeScript

Ionic

Fuse

Flutter

Cordova

Codename One

Capacitor

Adobe AIR

0 50000 100000 150000 200000
Mean APK Size (kB)

Figure 6.5: Boxplot of .apk size per framework.

ings contradict those presented by Corbalán et al. (2019), where three types

of apps were developed with- and compared across five cross-platform frame-

works involved. The authors report Xamarin to output average-sized apps

when compared to the alternative frameworks, whereas Corona, Titanium,

and NativeScript produce larger apps, and Cordova and native Android pro-

duce smaller apps. While the Corona (now Solar2D) framework is not part

of the identification framework, Table 6.3 may indicate that both Titanium

and NativeScript produce smaller mean file sizes than Xamarin.

These results are more in line with those presented by Willocx et al.

(2015), in which the native development approach is compared to apps gen-

November 2020 187 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

erated using PhoneGap and Xamarin through a software engineering effort.

The authors find that Xamarin for Android generates apps approximately

five times the size of the native baseline, and three times the size of Phone-

Gap. However, for the iOS counterpart, Xamarin had approximately half

the file size footprint the Android app had, suggesting that a study similar

to the one at hand should be carried out also for the Apple App Store and

compared. Such an effort could be of value and importance to practition-

ers using cross-platform development frameworks for the sake of platform

multi-homing (Hyrynsalmi et al., 2016), i.e., the process of developing and

publishing a given app to both the Android and iOS ecosystems.

6.4.5 Analysing Trends and Adoption from an Indus-

try Perspective

By looking to Google Trends, we can compare the search interest for cross-

platform frameworks with the framework distribution over time from Figure

6.4. By doing so, possible discrepancies in framework adoption versus what

is frequently searched for on Google can be identified. Raw data from Google

Trends does not include search volume, but instead a range from 0 to 100 per

keyword illustrating search interest relative to the other keywords, a process

further detailed by Google (n.d.). The Google Trends data was harnessed and

processed using the open-source Python library gsvi (Pirchner, 2020). This

approach was chosen over exporting data directly from Google Trends due

to the service’s maximum limitation of five keywords and the search trend

November 2020 188 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

relativity challenge, a limitation and challenge gsvi circumvented due to

clever processing and normalisation of the Google Trends data. Due to the

possibility of keyword ambiguity, for instance, the meaning of Ionic which

could refer to the app development framework, but also to the chemical

process “ionic bonding”, or to the Fitbit Ionic wearable, the results from

Google Trends were filtered based on the category “Programming” (code

31).

1008040 200

Page 1

React Native
Xamarin

Ionic
Cordova

Titanium
Adobe AIR

React Native
Xamarin

Ionic
Cordova

Titanium
Adobe AIR

20
19

20
18

Average search interest
60

Figure 6.6: Search interest for React Native, Xamarin, Ionic, Cor-
dova, Titanium and Adobe AIR. Data source: Google Trends
(https://www.google.com/trends).

The results of this procedure are illustrated in Figure 6.6, in which the

search trends for the top six frameworks from 2018 and 2019 as displayed in

Figure 6.4 are compared, specifically Xamarin, Ionic, Cordova, React Native,

Adobe AIR, and Titanium. We can conclude from Figure 6.6 that Google

Trends provides indications that React Native has been searched for more

November 2020 189 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

often than the other frameworks listed both in 2018 and 2019. The two

other interpreted approach frameworks, i.e., the React Native alternatives

– Titanium and Adobe AIR – are to be found at the bottom of the chart.

React Native, Ionic and Cordova all saw an increase in search interest from

2018 to 2019, while Xamarin and Titanium both decreased. Adobe AIR

saw little search interest during both years. To compare these trends to the

results of this experiment, the data from Figure 6.4 and Figure 6.6 has been

tabularised and ranked, as can be seen in Table 6.4.

Table 6.4: Comparison of Google Trends from 2018 and 2019 (Fig. 6.6) to
the findings (Fig. 6.4).

Google Trends

2018 & 2019

Results 2018 (Fig. 6.4) Results 2019 (Fig. 6.4)

1 React Native Xamarin (7 219) Xamarin (10 178)

2 Xamarin Cordova (5 329) Adobe AIR (3 457)

3 Ionic Adobe AIR (4 461) Cordova (2 573)

4 Cordova Titanium (1 921) React Native (2 004)

5 Titanium Ionic (1 241) Titanium (1 922)

6 Adobe AIR React Native (431) Ionic (772)

Once the Google Trends data and the experiment results are seen side by

side, certain discrepancies between search trends and framework adoption in

both years can be noted. Particularly React Native is seeing the most in-

dustry interest relative to the other frameworks based on the Google Trends

data, while based on the experiment results it was the sixth most adopted

framework in 2018 and fourth in 2019. This discrepancy could indicate that

November 2020 190 Biørn-Hansen, A.

Chapter 6 6.4. Evaluation and Discussion

mobile developers are interested and curious regarding new technologies, al-

though the interest does not necessarily translate into actual adoption and

use in published projects. From the developer survey questionnaire on per-

ceived issues and challenges with cross-platform development published in

Biørn-Hansen et al. (2019b), framework maturity was highlighted as the third

(of eight) most frequently perceived challenge with cross-platform develop-

ment, which could provide some context to the experiment results. It is also

noteworthy that Adobe AIR, the third (2018) and second (2019) most used

framework in published Android apps according to Figure 6.4, does not see

much search interest at all during either 2018 or 2019, as seen in Figure 6.6.

This could potentially indicate that there is a stable community of Adobe

AIR developers who keep publishing apps, while the more trending frame-

works including React Native are less stable but generates comparably more

search interest. While the Google Trends search interests are equal between

2018 and 2019, the framework adoption differs between the two years. Cor-

dova was used in considerably fewer apps in 2019 than in 2018, so much so

that Adobe AIR ranks second in adoption in 2019 whereas Cordova was the

second most adopted in 2018. It is also noteworthy the quintuple increase in

React Native apps between the two years, which could potentially be seen

in correlation to the increase in search interest for React Native (see Figure

6.6).

Another industry-based source of data for gauging of framework interest

is the State of JavaScript survey from 2018 (= > 20 000 respondents) con-

ducted by Greif et al. (2018). In their survey, React Native is the clear outlier

November 2020 191 Biørn-Hansen, A.

Chapter 6 6.5. Conclusion

in terms of developer interests, with 53.2% of respondents stating they are

interested in learning it. While React Native enjoys the interest of develop-

ers, NativeScript is on the other side of the presented quadrant, between the

categories “Assess” and “Avoid” due to varying satisfaction. Both Cordova

and Ionic are also listed in the survey and quadrant, but both frameworks

get a significant percentage of votes for the survey option “Heard of it, not

interested”. This contrasts to the presented findings on framework adop-

tion in this current experiment. Noteworthy is also the absence of Xamarin,

Adobe AIR and Titanium Appcelerator from the survey, three of the more

popular frameworks in use on Google Play Store according to Table 6.4, also

more popular than React Native in 2018. Results from previous studies pro-

vided indications that Adobe AIR might outperform the native approach on

specific tasks according to Dhillon and Mahmoud (2015), and so its absence

from developer-oriented studies should perhaps be reviewed. Based on these

findings, a suggestion for future surveys similar to what was conducted by

Greif et al. (2018), is to include a more comprehensive list of technologies

for participants to choose between, possibly leading to a more detailed and

accurate view of the use of technologies.

6.5 Conclusion

The presented findings indicate that cross-platform apps account for approx-

imately 15% of the explored dataset. Contrary to the industry-generated

November 2020 192 Biørn-Hansen, A.

Chapter 6 6.5. Conclusion

hype surrounding certain technologies and frameworks, the hybrid devel-

opment approach has for years been the most popular path for developing

cross-platform apps, only to be challenged by the cross-compiled approach

in 2018. While there was an increase in the adoption of React Native and

NativeScript in 2016 – frameworks that are frequently discussed in industry

outlets, both frameworks saw a decrease during the two years to follow, be-

fore React Native had a considerable rise again in 2019. This could indicate

that practitioners were particularly interested in hands-on experience with

new technologies at the time of release, but did not opt to adopt these until

the technologies increased in maturity. In terms of Google Play Store cate-

gories, Business, Education and Games all saw plenty of cross-platform apps,

unlike categories such as Personalisation and Photography, which both saw

minimal use of cross-platform frameworks. Due to the amount of available

data for this experiment, some degree generalisation of results is achieved.

With a population size of approximately 2.7 million apps (Statista, 2020) in

the Google Play Store, the experiment’s sample size of = = 661 705 .apk files

results in a 99% confidence level of accuracy, with an approximate 0, 255%

margin of error. Thus, the experiment should provide a representative in-

dication of the state of cross-platform framework usage in the Google Play

Store.

November 2020 193 Biørn-Hansen, A.

Chapter 7

Conclusions & Future Work

This chapter synthesizes the new knowledge derived from Chapters 4, 5 and

6, while providing answers to the thesis research questions, and revisiting the

thesis aim introduced in Chapter 1. A list of empirically validated guiding

principles for conducting mobile development is then presented, after which

the research impact, limitations and validity are discussed.

194

Chapter 7 7.1. Performance of Cross-Platform Frameworks

7.1 Performance of Cross-Platform Frame-

works

'&1: How do apps developed using cross-platform mobile development

approaches and associated frameworks perform compared to native

mobile apps in terms of hardware and platform utilisation?

Mobile developers have previously reported that reuse of code for building

apps across platform has been challenging (Ahmad et al., 2018). Consider-

ing that such is currently not possible in the case of native mobile develop-

ment, cross-platform approaches and technologies have seen much interest

from both academia and industry the last decade. However, these technolo-

gies are by practitioners often associated with a performance output inferior

to that of a native app (Ahmad et al., 2018, Biørn-Hansen et al., 2019b,

Patkar et al., 2020). To investigate the matter of performance of native-side

communication and user interfaces, this PhD thesis project has employed a

design science research approach to investigate actual performance output,

through development and performance measuring of mobile apps and under-

lying cross-platform frameworks alongside native baseline implementations.

As uncovered in Chapters 4 and 5, there is no “silver bullet” framework

or technology for ensuring optimal performance in all situations. Looking

at the overall results of Chapter 4 on bridge performance, it is clear that

the native Android baseline implementation was the most consistently per-

November 2020 195 Biørn-Hansen, A.

Chapter 7 7.1. Performance of Cross-Platform Frameworks

formant out of the artefacts produced, with the cross-platform approaches

either in close proximity or with a significant performance overhead. How-

ever, further investigating the details of the findings shows that for instance

the time-to-completion metric (TTC) on retrieving geolocation coordinates

in Ionic is significantly slower than the native baseline implementation by

close to a factor of four (3 453,94ms versus 889,05ms), but also that Flut-

ter was close to twice as fast (291,18ms) as the native baseline. In terms

of ComputedRAM in the geolocation experiment, React Native had the lowest

memory consumption across all artefacts (mean of 2,60MB versus the native

baseline’s 6,56MB). These results, indicating that cross-platform frameworks

can in certain situations outperform native, align with previous research, for

instance, the performance comparisons reported of by Willocx et al. (2016) in

which their native baseline was running on a high-end iOS device consumed

the most memory when compared to the performance results of seven out

of ten frameworks. For file access and retrieval, NativeScript was the fastest

to complete the task (75,58ms versus native’s 82,34ms) and had the lowest

CPU% consumption (17,00% versus native’s 18,20%), but consumed second-

most ComputedRAM (9,30MB versus native’s 8,07MB). Thus, there are clear

performance trade-offs involved in deciding on mobile development approach

and potentially a cross-platform framework, although the differences may be

potentially trivial.

As for the animation performance reported in Chapter 5, React Native

was found the most performant cross-platform framework out of those in-

cluded in the benchmark (React Native, Ionic and Xamarin Forms). Dif-

November 2020 196 Biørn-Hansen, A.

Chapter 7 7.1. Performance of Cross-Platform Frameworks

ferent from the bridge performance experiment in Chapter 4 where the An-

droid platform was scrutinised, in this current experiment, both iOS and

Android were included. Ionic did also provide good results on specific met-

rics, including on iOS where it was more CPU efficient than native and the

other frameworks tested. However, with measurement data from both An-

droid and iOS, we find an additional layer of complexity in technical decision

making: while Ionic on iOS consumed the least CPU in several cases, it con-

sumed the most on Android in all but one case being that of navigation

transition performance where it (21,78%) was more performant than both

the native baseline (29,34%) and React Native (22,82%). That hybrid-based

cross-platform frameworks perform well or even outperform native on in-app

page navigation and transitions align with previous research (Willocx et al.,

2016), although recent research indicates that they consume more CPU and

RAM than native and React Native on user interface interaction tasks (Huber

and Demetz, 2019).

In summary, the performance of cross-platform frameworks has been scru-

tinised both throughout this PhD project and in related work. Generating

prescriptive knowledge, for instance, a decision framework, based on the em-

pirical work is seemingly infeasible due to the fast-paced nature of the field

and the sheer number of available devices, frameworks, features and other

product-specific requirements. Nevertheless, aggregated findings from the

conducted experiments indicate that cross-platform frameworks can provide

performance benefits for specific tasks and metrics. Ultimately, this chal-

lenges the practitioner to consider parameters including but not limited to

November 2020 197 Biørn-Hansen, A.

Chapter 7 7.2. Presence of Cross-Platform Frameworks

end-users’ device and available hardware, level of performance needed in user

interface rendering and native-side bridge communication, and the necessity

of native integrations.

7.2 Presence of Cross-Platform Frameworks

in the Google Play Store

'&2: How common is the presence of cross-platform development

frameworks compared to the native development approach in published

mobile apps?

From the experiment presented in Chapter 6, we see that cross-platform

apps account for approximately 15% (= = 99 304) of the investigated dataset

(= = 661 705). This number is significantly lower than Gartner (2013)’s pre-

diction stating that by 2016, half of all mobile apps will be developed using

a cross-platform framework, or more specifically, the hybrid development ap-

proach. Nevertheless, 15% still display that the use of cross-platform devel-

opment frameworks is somewhat common, although the native development

approach is by far the most common in use. These results align with those

presented in the seminal Google Play measurement study by Viennot et al.

(2014), in which the authors reported of cross-platform framework usage in

approximate 15% of what they categorised as non-popular apps, and in 3%

November 2020 198 Biørn-Hansen, A.

Chapter 7 7.2. Presence of Cross-Platform Frameworks

of popular apps. Their study investigated the use of PhoneGap, Adobe AIR

and Titanium, a list further extended in Chapter 6. Ali and Mesbah (2016)

also investigated the use of the same list of frameworks as Viennot et al.

(2014). Their dataset (= = 80 000) consisted of approximately 20% cross-

platform apps, thus a 5% positive difference from both Viennot et al. (2014)

and the results from Chapter 6.

The trade-offs discussed in the previous section regarding the first thesis

research question ('&1) on performance are further fuelled by the results

from this experiment on framework presence, as it is also clear that certain

frameworks are often significantly more used within specific app categories.

Business (∼36%), Finance (∼25%) and Education (∼21%) are examples of

categories seeing an above-average number of published apps developed us-

ing cross-platform frameworks. This is in contrast to the categories Pho-

tography (∼2,44%) and Personalisation (∼0,41%), where significantly fewer

apps than on average are developed using cross-platform frameworks. These

results may provide an indication of the suitability of using cross-platform

frameworks when developing towards these categories. We know from previ-

ous research by Mercado et al. (2016) that end-users may also be impacted

by choice of a cross-platform framework as derived by their finding on hy-

brid app performance where Android users tend to have a more negative

perception than iOS users. Also, it may be that the average business or fi-

nance app requires fewer native integrations (hence less bridge performance

requirements) and perhaps cater more to business-to-business or other end-

users who are more focused on functionality than on fancy and animated

November 2020 199 Biørn-Hansen, A.

Chapter 7 7.3. Empirically Validated Principles for Mobile Development

user interfaces. Indeed, findings presented by Francese et al. (2017) indicate

that usability is more critical in consumer-apps than in business-to-business

apps, potentially explaining the large number of business and finance apps

developed using cross-platform frameworks. Within Photography and Per-

sonalisation, however, access to more computational power (photo and video

editing) and native integrations (device and home-screen personalisation)

may be significant product requirements.

In summary, the presence of cross-platform apps on the Google Play

Store is noted, accounting for approximate 15% of the investigated sampled

dataset. However, significant differences in the use of cross-platform frame-

works emerge when investigating usage between the Play Store app cate-

gories. The obvious example is the Business and Finance categories which

see more use of cross-platform frameworks than Personalisation and Photog-

raphy, which are essentially void of cross-platform apps.

7.3 Empirically Validated Principles for Mo-

bile Development

Thesis aim: To provide a set of guiding principles for conducting

mobile app development based on results from empirical experiments.

November 2020 200 Biørn-Hansen, A.

Chapter 7 7.3. Empirically Validated Principles for Mobile Development

Based on the experiments conducted, a set of empirically verified guiding

principles (�%1...5) for mobile apps development have been formed. These

should be considered descriptive rather than prescriptive. Reasons for this

are elaborated on in the upcoming section on limitations and threats to

validity.

�%1: The native development approach is a safe choice in terms of per-

formance of user interfaces and animations, and platform and device

feature access, as can be derived from the results of the conducted ex-

periments. Nevertheless, certain functionality and context are found

to benefit from the use of cross-platform frameworks in terms of per-

formance, outperforming the native approach. From the animations

experiment in Chapter 5, it becomes evident that cross-platform frame-

works may differ in performance between Android and iOS – thus where

one framework can provide optimal performance on one platform, the

performance is less optimal on the other platform. This, in turn, adds

an additional layer of complexity for choosing a framework for app

development across multiple platforms.

�%2: According to research by the Google Play team, there is a corre-

lation between .apk size and app installs. They report an average

1% decrease in app installations per 6MB increase in .apk size, with

the impact being more severe in emerging markets (Tolomei, 2017).

They also report a 30% higher chance of app download cancellation for

apps above 100MB. This is noteworthy, as developing space-conscious

apps can be a challenge, especially with cross-platform development

November 2020 201 Biørn-Hansen, A.

Chapter 7 7.3. Empirically Validated Principles for Mobile Development

frameworks. Indeed, as identified in Chapter 6, most cross-platform

frameworks will compile binaries (.apk) of significantly larger size

than the native approach, which had a mean size of 13 776,04kB. The

hybrid development approach was found to generate binaries of approx-

imately the same size as the native apps, with Cordova apps averaging

12 527,55kB and Ionic apps averaging 15 273,53kB. At approximately

2.4x the average size of a native app, we find Xamarin apps averag-

ing 34 142,45kB. Thus, the choice of a cross-platform framework can

directly impact the end-user’s willingness to download an app due to

the generated .apk size.

�%3: It was discovered during both performance experiments (Chapters 4

and 5) that on-device performance measurement tools and automation

tools may have an impact on performance readings, through imposing

additional performance overhead. This impacted the research design

and data gathering methods for both experiments, as automated tools

were replaced with manual performance data extraction and data en-

try to spreadsheets. Thus, it is essential for researchers who make use

of- or develop tools for performance measuring to know of- and reflect

upon – the indications that such monitoring tools may themselves in-

troduce additional performance overhead. Reddi et al. (2018) calls for

the construction of new methods and tools for performance benchmark-

ing on mobile, for which the findings in this thesis further illustrate the

need. Indeed, using certain measuring tools could severely impact re-

sults from performance measurements if control measurements are not

conducted, especially if using framework-specific measurement tools –

November 2020 202 Biørn-Hansen, A.

Chapter 7 7.3. Empirically Validated Principles for Mobile Development

i.e., using the built-in monitor in React Native (which may introduce

overhead) versus the Android Studio profiler for an Ionic app (which

may not introduce overhead). The same also goes for automation tools

(Cruz and Abreu, 2019), where recent research has indicated an im-

posed performance overhead as a result of using such tools. Thus,

conducting performance research using a combination of task automa-

tion tools along with specific performance measurement tools can lead

to skewed and incorrect results.

�%4: An app’s target marketplace category may significantly influence the

choice between developing a native app or make use of a specific cross-

platform framework, as derived from Chapter 6. A prime example

of this from the experiment is the significant difference in the use of

cross-platform frameworks between published business apps (35.9%)

and personalisation (0.41%) or photography apps (2.74%). There are

likely logical reasons for these variations, for instance, computational

processing requirements and the significance of native access, and in-

vestigating the state of practice can uncover such patterns.

�%5: Basing technical decisions on industry hype (hype-driven development)

may not be representative of the actual use of technologies, as investi-

gated in Chapter 6. Whereas React Native enjoys the majority of in-

dustry interest, Xamarin, Cordova and Adobe AIR are all significantly

more used in recently published apps. This could indicate that many

developers will default to technologies of a particular maturity, and

instead investigate more novel technologies in unpublished projects.

November 2020 203 Biørn-Hansen, A.

Chapter 7 7.4. Implications for Industry & Practitioners

Thus, accurate technical decision making requires additional parame-

ters, for instance, empirical insights as those generated through Chapter

6.

7.4 Implications for Industry & Practitioners

Discussions on the feasibility and suitability of cross-platform development

technologies are frequently encountered in industry outlets and forums. Of-

ten, we find these discussions to lack an informed base. This has motivated

the work at hand, seeking to provide empirically backed insight and gener-

ate new knowledge of how cross-platform technologies perform compared to

native apps. For industry, mainly results on bridge performance, animation

performance, generated .apk sizes, and distribution of cross-platform frame-

works across Google Play categories can assist in making informed technical

decisions and as background for discussion.

In the performance experiment presented in Chapter 4, a handful of de-

vice and platform features were measured using a set of performance-related

metrics. These findings indicate significant differences between the frame-

works across all metrics, and more intricately, which framework performs the

most optimal differs between the tested features as described in Section 7.1

discussing the first thesis research question ('&1). This may significantly

impact technical decision making for practitioners, as there is seemingly no

November 2020 204 Biørn-Hansen, A.

Chapter 7 7.5. Implications for Research

“silver bullet” in terms of framework or technology.

7.5 Implications for Research

For researchers, the findings on framework usage can be a point of depar-

ture for the selection of relevant tools and frameworks for further research.

If conducting research which should be of relevance also to practitioners, it

should be of great interest to do so using the tools and frameworks practi-

tioners use, alongside exciting and novel frameworks yet to be fully adopted

by either practitioners or researchers.

A finding with a direct impact on how we conduct research involving per-

formance measurements is described in �%3, and relates to the performance

impact imposed through the use of automation and performance profiling

tools. This also has clear implications for peer review of newer research, and

assessment of previous research: has this performance overhead been taken

into account in the research design and analysis?

For educators, a better understanding of the popularity and adoption

of tools can aid in choosing technologies for hands-on training in (cross-

platform) mobile development courses. The results and approach to mea-

suring performance may also be interesting course material for discussing

drawbacks and possibilities of cross-platform and native mobile app develop-

November 2020 205 Biørn-Hansen, A.

Chapter 7 7.6. Limitations & Validity

ment.

7.6 Limitations & Validity

Software. A limitation to the thesis experiments is that of the technologies

involved in the design and implementation of the technical artefacts used

for performance evaluation. The sheer number of technologies available (see

Table 2.1) is of such magnitude that it is infeasible to test them all. Thus, for

studies conducting artefact implementation using such frameworks and tech-

nologies, it has been essential to highlight the specific technologies involved.

Provided that two of three experiments focus exclusively on Android, and

one experiment on both Android and iOS, findings regarding cross-platform

performance and presence on iOS are more limited than results for Android.

Although more results from the iOS ecosystem would have been interesting

to analyse, we know from practice that cross-platform frameworks are also

adopted for other purposes than developing cross-platform apps (as described

in Biørn-Hansen et al. (2020)). For instance, they introduce a different mental

model than native development and may enable, for instance, Over-the-Air

updates and other knowledge requirements, e.g., programming languages.

Another threat to the validity is the conscious decision not to conduct any

code-wise optimisation of the developed apps for the experiments in Chap-

ters 4 and 5. Thus, the results should reflect the expected performance of a

newly initialised app in each of the technologies scrutinised.

November 2020 206 Biørn-Hansen, A.

Chapter 7 7.6. Limitations & Validity

Hardware. The significant fragmentation in available Android-based

hardware makes it infeasible to conduct performance evaluations on even a

statistically representative sample size of devices. While a limitation to this

study, it is equally a challenge for practitioners and industry – it is infeasible

to maintain a testbed of devices of such magnitude. Thus, a smaller number

of devices have been used for performance testing and evaluation. It has

been of utmost importance to use a range of devices representing a snapshot

of the state of the market during the time of conducting the studies. This

includes high-end, mid-range and low-end devices to ensure validity across

the device spectrum, and also the inclusion of numerous operating system

versions due to the version fragmentation on Android (StatCounter Global

Stats, 2020).

Methods and Findings. As for the generalisability of the findings

presented throughout this thesis, the previous sections regarding software

and hardware limitations are essential. The degree of generalisability varies

between the conducted experiments and their derived findings. While the

performance experiments, in particular, do not provide prescriptive knowl-

edge applicable to “any and all” contexts or situations, the results can be

taken as guidance and could provide empirical insights constrained by the set

of employed cross-platform frameworks and mobile devices. Technical deci-

sion making involves great complexity and parameters beyond the scope of

this thesis; for instance, demographics of the end-user, developer team size,

and required time to market. As for the reliability of the results, datasets

and algorithms have been open-sourced to ensure repeatability and trans-

November 2020 207 Biørn-Hansen, A.

Chapter 7 7.7. Summary of Contributions

parency, employed frameworks and devices are explicitly listed throughout

the experiments, and two of three thesis experiments as well as the litera-

ture review have undergone peer review and been published in high-ranking

outlets, while the last experiment as described in Chapter 6 is in-review as

of thesis submission. Statistical tests have been applied, although for future

work it would be suggested to lean on the teachings of Fenton and Bieman

(2015) into research involving software metrics, for instance the robustness

of the median (replacing or in addition to the mean) value in non-normally

distributed metrics-based datasets (Fenton and Bieman, 2015, p. 284).

7.7 Summary of Contributions

This thesis contributes to knowledge and practice by introducing a set of

empirically validated guiding principles for conducting mobile development.

Not only should these principles be of interest to practitioners and fellow

researchers, they may also help inform processes such as academic peer review

of experimental designs and results. These principles have been derived from

three empirical experiments investigating the presence and performance of

cross-platform frameworks, two of which have at the time of thesis completion

been peer-reviewed and published, with the third study in-review. Alongside

this core contribution, datasets, tools, apps and scripts have been open-

sourced for increased reliability, reproducibility and to provide a point of

departure for future research. A detailed overview of contributions are listed

November 2020 208 Biørn-Hansen, A.

Chapter 7 7.8. Suggestions for Future Work

in Section 1.5.

7.8 Suggestions for Future Work

Motivated by ongoing discussions in industry and academia on the per-

formance and usage of cross-platform frameworks, this thesis makes an

effort to investigate both matters empirically using a design science re-

search approach. Through two experiments focusing on the performance

('&1) of cross-platform apps, it is found that contrary to frequently en-

countered claims and allegations, the performance of apps generated using

cross-platform frameworks is not inherently inferior to that of a native app.

The presented findings indicate that while the native development approach

overall scores highest in terms of performance output, cross-platform frame-

works and approaches can score better on specific metrics and in certain

situations. The presence ('&2) of cross-platform apps in the Google Play

Store is evident, accounting for approximately 15% of the sampled dataset

(= = 661 705). It is noteworthy that there are significant variations in the

adoption of cross-platform frameworks between the Google Play Store cat-

egories, indicating that adopting a cross-platform framework may be better

suited for certain types of apps, for instance in the business, education and

lifestyle segments as per the findings. A set of empirically verified princi-

ples for (cross-platform) mobile development has been presented as a part

of the thesis contributions, aiming to provide actionable insights to practi-

November 2020 209 Biørn-Hansen, A.

Chapter 7 7.8. Suggestions for Future Work

tioners and researchers in industry and academia. The proliferation of apps,

smartphones, novel device types, technologies and frameworks calls for con-

tinuous research going forward, particularly qualitatively investigating the

performance of cross-platform apps from a user perspective.

Looking to Table 2.2 we find that the state of research on cross-platform

development demands a particular focus on user experience and security

going forward. There is an evident absence of qualitative studies on user

experience, investigating the actuality of users’ perception of user interfaces

and usability of cross-platform apps, hereunder also accessibility. This is most

useful, as allegations and claims without empirical backing are frequently

encountered in both scholarly research and in practitioners’ outlets.

Due to the nature of mobile development and the pace at which innova-

tion and development take place, there is a need for continuous research going

forward. Not only does the pace of innovation equal new and novel device

types, but it also means novel frameworks and technologies for app devel-

opment. While numerous cross-platform technologies and frameworks have

been released over the last few years, e.g., React Native, NativeScript, Plat-

form Uno, .NET MAUI, Flutter etc., there are good reasons to believe that

innovation in tooling and technologies will continue demanding the attention

of researchers. As novel frameworks are introduced, older ones deprecate,

such as the recently announced discontinuation of support for the PhoneGap

framework (Adobe I/O, 2020) – leaving developers looking for guidance on

choosing the next technology for (cross-platform) mobile development.

November 2020 210 Biørn-Hansen, A.

Bibliography

Mustafa Abousaleh, David Yarish, Deepali Arora, Stephen W Neville, and

Thomas E Darcie. Determining per-mode battery usage within non-trivial

mobile device apps. Proceedings - International Conference on Advanced

Information Networking and Applications, AINA, pages 202–209, May

2014. ISSN 1550445X. URL https://doi.org/10.1109/AINA.2014.29.

Timothy Yudi Adinugroho, Reina, and Josef Bernadi Gautama. Review of

multi-platform mobile application development using WebView: Learning

management system on mobile platform. In Procedia Computer Science,

volume 59, pages 291–297. Elsevier, August 2015. URL http://doi.org/

10.1016/j.procs.2015.07.568.

Adobe I/O. Update for customers using PhoneGap and PhoneGap build.

https://blog.phonegap.com/update-for-customers-using-pho

negap-and-phonegap-build-cc701c77502c, August 2020. Accessed:

2020-8-12.

Sara Seif Afjehei, Tse-Hsun (peter) Chen, and Nikolaos Tsantalis. iPerfDe-

tector: Characterizing and detecting performance anti-patterns in iOS ap-

211

https://doi.org/10.1109/AINA.2014.29
http://doi.org/10.1016/j.procs.2015.07.568
http://doi.org/10.1016/j.procs.2015.07.568
https://blog.phonegap.com/update-for-customers-using-phonegap-and-phonegap-build-cc701c77502c
https://blog.phonegap.com/update-for-customers-using-phonegap-and-phonegap-build-cc701c77502c

Chapter 7 Bibliography

plications. Empirical Software Engineering, 24(6):3484–3513, December

2019. URL https://doi.org/10.1007/s10664-019-09703-y.

Arshad Ahmad, Kan Li, Chong Feng, Syed Mohammad Asim, Abdallah

Yousif, and Shi Ge. An empirical study of investigating mobile applications

development challenges. IEEE Access, 6:17711–17728, March 2018. URL

http://doi.org/10.1109/ACCESS.2018.2818724.

Ville Ahti, Sami Hyrynsalmi, and Olli Nevalainen. An evaluation framework

for Cross-Platform mobile app development tools: A case analysis of adobe

PhoneGap framework. In Proceedings of the 17th International Conference

on Computer Systems and Technologies 2016, CompSysTech ’16, pages 41–

48, New York, NY, USA, June 2016. ACM. URL http://doi.org/10.1

145/2983468.2983484.

Ricardo Alcocer. But I thought titanium was cross platform!?, 23 July 2013.

URL http://www.appcelerator.com/blog/2013/07/but-i-thought-

titanium-was-cross-platform/. Accessed: 2017-8-3.

Mohamed Ali and Ali Mesbah. Mining and characterizing hybrid apps.

In Proceedings of the International Workshop on App Market Analytics,

WAMA 2016, pages 50–56, New York, NY, USA, November 2016. ACM.

URL http://doi.org/10.1145/2993259.2993263.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

AndroZoo: Collecting millions of android apps for the research commu-

nity. In 2016 IEEE/ACM 13th Working Conference on Mining Soft-

November 2020 212 Biørn-Hansen, A.

https://doi.org/10.1007/s10664-019-09703-y
http://doi.org/10.1109/ACCESS.2018.2818724
http://doi.org/10.1145/2983468.2983484
http://doi.org/10.1145/2983468.2983484
http://www.appcelerator.com/blog/2013/07/but-i-thought-titanium-was-cross-platform/
http://www.appcelerator.com/blog/2013/07/but-i-thought-titanium-was-cross-platform/
http://doi.org/10.1145/2993259.2993263

Chapter 7 Bibliography

ware Repositories (MSR), pages 468–471. IEEE, May 2016. URL http:

//doi.org/10.1145/2901739.2903508.

Sophie Alpert. Introducing react native. https://reactjs.org/blog/2

015/03/26/introducing-react-native.html, March 2015. Accessed:

2019-9-12.

Android Developer. GPU monitor, n.d. URL https://developer.androi

d.com/studio/profile/am-gpu.html. Accessed: 2018-2-25.

Android Developers. WebView, n.d. URL https://developer.android.

com/reference/android/webkit/WebView.html. Accessed: 2017-8-3.

Androidrank. Free android market data, history, ranking, 2019. URL https:

//www.androidrank.org/.

Todd Anglin and Telerik. Web, native and cross-platform - three approaches

to mobile app development. Technical report, Telerik, 2014. URL https:

//www.telerik.com/docs/default-source/whitepapers/choose-rig

ht-approach-mobile-app-developmentbb581d10116543e79a9febdb18

7fd0a3.pdf?sfvrsn=0.

Esteban Angulo and Xavier Ferre. A case study on Cross-Platform devel-

opment frameworks for mobile applications and ux. In Proceedings of the

XV International Conference on Human Computer Interaction, pages 1–8.

ACM, September 2014. URL https://doi.org/10.1145/2662253.2662

280.

Anonymous. Google issue TrackerAndroid O prevents access to /proc/stat,

November 2020 213 Biørn-Hansen, A.

http://doi.org/10.1145/2901739.2903508
http://doi.org/10.1145/2901739.2903508
https://reactjs.org/blog/2015/03/26/introducing-react-native.html
https://reactjs.org/blog/2015/03/26/introducing-react-native.html
https://developer.android.com/studio/profile/am-gpu.html
https://developer.android.com/studio/profile/am-gpu.html
https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html
https://www.androidrank.org/
https://www.androidrank.org/
https://www.telerik.com/docs/default-source/whitepapers/choose-right-approach-mobile-app-developmentbb581d10116543e79a9febdb187fd0a3.pdf?sfvrsn=0
https://www.telerik.com/docs/default-source/whitepapers/choose-right-approach-mobile-app-developmentbb581d10116543e79a9febdb187fd0a3.pdf?sfvrsn=0
https://www.telerik.com/docs/default-source/whitepapers/choose-right-approach-mobile-app-developmentbb581d10116543e79a9febdb187fd0a3.pdf?sfvrsn=0
https://www.telerik.com/docs/default-source/whitepapers/choose-right-approach-mobile-app-developmentbb581d10116543e79a9febdb187fd0a3.pdf?sfvrsn=0
https://doi.org/10.1145/2662253.2662280
https://doi.org/10.1145/2662253.2662280

Chapter 7 Bibliography

March 2017. URL https://issuetracker.google.com/issues/37140

047. Accessed: 2018-1-23.

Appcelerator. Appcelerator platform, n.d. URL http://docs.appcelera

tor.com/platform/latest/#!/guide/Titanium Platform Overview.

Accessed: 2018-2-1.

Lucas Pugliese Barros, Flávio Medeiros, Eduardo Cardoso Moraes, and An-

derson Feitosa Júnior. Analyzing the performance of apps developed by

using Cross-Platform and native technologies. In SEKE 2020 Proceedings,

December 2020. URL https://doi.org/10.18293/SEKE2020-122.

Richard Baskerville. What design science is not. European Journal of Infor-

mation Systems, 17(5):441–443, October 2008. URL http://doi.org/10

.1057/ejis.2008.45.

Kayce Basques. Get started with analyzing runtime performance, January

2018. URL https://developers.google.com/web/tools/chrome-dev

tools/evaluate-performance/. Accessed: 2018-3-12.

Andreas Biørn-Hansen and Gheorghita Ghinea. Bridging the gap: Investi-

gating Device-Feature Exposure in Cross-Platform development. In Pro-

ceedings of the 51st Hawaii International Conference on System Sciences,

pages 5717–5724. ScholarSpace, January 2018. URL http://doi.org/10

.24251/HICSS.2018.716.

Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. Cross-

platform frameworks in google play store: Trends and directions. In ACM

Symposium on Applied Computing (SAC). ACM, (In-review).

November 2020 214 Biørn-Hansen, A.

https://issuetracker.google.com/issues/37140047
https://issuetracker.google.com/issues/37140047
http://docs.appcelerator.com/platform/latest/#!/guide/Titanium_Platform_Overview
http://docs.appcelerator.com/platform/latest/#!/guide/Titanium_Platform_Overview
https://doi.org/10.18293/SEKE2020-122
http://doi.org/10.1057/ejis.2008.45
http://doi.org/10.1057/ejis.2008.45
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/
http://doi.org/10.24251/HICSS.2018.716
http://doi.org/10.24251/HICSS.2018.716

Chapter 7 Bibliography

Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. Baseline

requirements for comparative research on Cross-Platform mobile develop-

ment: A literature survey. In Proceedings of the 30th Norwegian Informat-

ics Conference. Bibsys, November 2017. URL http://ojs.bibsys.no/in

dex.php/NIK/article/view/427.

Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. A

survey and taxonomy of core concepts and research challenges in cross-

platform mobile development. ACM Computing Surveys, 51(5), November

2018a. URL http://doi.org/10.1145/3241739.

Andreas Biørn-Hansen, Tim A Majchrzak, and Tor-Morten Grønli. Pro-

gressive web apps for the unified development of mobile applications.

In Web Information Systems and Technologies, volume 322 of Lecture

Notes in Business Information Processing. Springer, July 2018b. URL

http://doi.org/10.1007/978-3-319-93527-0.

Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. An-

imations in cross-platform mobile applications: An evaluation of tools,

metrics and performance. MDPI Sensors, 19(9), May 2019a. URL

https://doi.org/10.3390/s19092081.

Andreas Biørn-Hansen, Tor-Morten Grønli, Gheorghita Ghinea, and Sahel

Alouneh. An empirical study of cross-platform mobile development in in-

dustry. Wiley Hindawi Wireless Communications and Mobile Computing,

2019, January 2019b. URL https://doi.org/10.1155/2019/5743892.

Andreas Biørn-Hansen, Christoph Rieger, Tor-Morten Grønli, Tim A Ma-

November 2020 215 Biørn-Hansen, A.

http://ojs.bibsys.no/index.php/NIK/article/view/427
http://ojs.bibsys.no/index.php/NIK/article/view/427
http://doi.org/10.1145/3241739
http://doi.org/10.1007/978-3-319-93527-0
https://doi.org/10.3390/s19092081
https://doi.org/10.1155/2019/5743892

Chapter 7 Bibliography

jchrzak, and Gheorghita Ghinea. An empirical investigation of per-

formance overhead in cross-platform mobile development frameworks.

Springer Empirical Software Engineering, 25(4):2997–3040, June 2020.

URL https://doi.org/10.1007/s10664-020-09827-6.

Nader Boushehrinejadmoradi, Vinod Ganapathy, Santosh Nagarakatte, and

Liviu Iftode. Testing Cross-Platform mobile app development frameworks

(t). In 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 441–451. IEEE, November 2015. URL

http://doi.org/10.1109/ASE.2015.21.

Can I Use. Geolocation API, n.d.a. URL https://caniuse.com/#feat=ge

olocation. Accessed: 2018-2-16.

Can I Use. getUserMedia/Stream API, n.d.b. URL https://caniuse.com/

#feat=stream. Accessed: 2018-2-16.

Maria Caulo, Rita Francese, Giuseppe Scanniello, and Antonio Spera. Does

the migration of cross-platform apps towards the android platform matter?

an approach and a user study. In Product-Focused Software Process Im-

provement, pages 120–136. Springer International Publishing, November

2019. URL https://doi.org/10.1007/978-3-030-35333-9 9.

Kwame Chan-Jong-Chu, Tanjina Islam, Miguel Morales Exposito, Sanjay

Sheombar, Christian Valladares, Olivier Philippot, Eoin Martino Grua,

and Ivano Malavolta. Investigating the correlation between performance

scores and energy consumption of mobile web apps. In Proceedings of

the Evaluation and Assessment in Software Engineering, EASE ’20, pages

November 2020 216 Biørn-Hansen, A.

https://doi.org/10.1007/s10664-020-09827-6
http://doi.org/10.1109/ASE.2015.21
https://caniuse.com/#feat=geolocation
https://caniuse.com/#feat=geolocation
https://caniuse.com/#feat=stream
https://caniuse.com/#feat=stream
https://doi.org/10.1007/978-3-030-35333-9_9

Chapter 7 Bibliography

190–199, New York, NY, USA, April 2020. Association for Computing

Machinery. URL https://doi.org/10.1145/3383219.3383239.

Andre Charland and Brian LeRoux. Mobile application development: Web

vs. native. Queue, 9(4):20, April 2011. URL http://doi.org/10.1145/

1966989.1968203.

Matteo Ciman and Ombretta Gaggi. An empirical analysis of energy con-

sumption of cross-platform frameworks for mobile development. Pervasive

and Mobile Computing, October 2016. URL https://doi.org/10.1016/

j.pmcj.2016.10.004.

Riccardo Coppola, Luca Ardito, and Marco Torchiano. Characterizing the

transition to kotlin of android apps: a study on F-Droid, play store, and

GitHub. In Proceedings of the 3rd ACM SIGSOFT International Workshop

on App Market Analytics - WAMA 2019, pages 8–14, New York, New York,

USA, August 2019. ACM Press. URL https://doi.org/10.1145/3340

496.3342759.

Leonardo Corbalan, Juan Fernandez, Alfonso Cuitiño, Lisandro Delia,

Germán Cáseres, Pablo Thomas, and Patricia Pesado. Development frame-

works for mobile devices: A comparative study about energy consumption.

In Proceedings of the 5th International Conference on Mobile Software En-

gineering and Systems, MOBILESoft ’18, pages 191–201, New York, NY,

USA, May 2018. ACM. URL https://doi.org/10.1145/3197231.3197

242.

Leonardo Corbalán, Pablo Javier Thomas, Lisandro Delia, Germán Cáseres,

November 2020 217 Biørn-Hansen, A.

https://doi.org/10.1145/3383219.3383239
http://doi.org/10.1145/1966989.1968203
http://doi.org/10.1145/1966989.1968203
https://doi.org/10.1016/j.pmcj.2016.10.004
https://doi.org/10.1016/j.pmcj.2016.10.004
https://doi.org/10.1145/3340496.3342759
https://doi.org/10.1145/3340496.3342759
https://doi.org/10.1145/3197231.3197242
https://doi.org/10.1145/3197231.3197242

Chapter 7 Bibliography

Patricia Pesado, and others. A study of non-functional requirements in

apps for mobile devices. In Cloud Computing and Big Data, volume 1050

of Communications in Computer and Information Science, pages 125–136.

Springer, July 2019. URL https://doi.org/10.1007/978-3-030-2771

3-0 11.

Cordova. Architectural overview of cordova platform, n.d. URL https://

cordova.apache.org/docs/en/latest/guide/overview/index.html.

Accessed: 2017-8-3.

Luis Corral, Andrea Janes, and Tadas Remencius. Potential advantages

and disadvantages of multiplatform development Frameworks–A vision on

mobile environments. In Procedia Computer Science, volume 10, pages

1202–1207. SciVerse ScienceDirect, August 2012a. URL https://doi.or

g/10.1016/j.procs.2012.06.173.

Luis Corral, Alberto Sillitti, and Giancarlo Succi. Mobile multiplatform

development: An experiment for performance analysis. Procedia Computer

Science, 10:736–743, January 2012b. URL https://doi.org/10.1016/

j.procs.2012.06.094.

Luis Cruz and Rui Abreu. Performance-Based guidelines for energy effi-

cient mobile applications. In Proceedings of the 2017 IEEE/ACM 4th

International Conference on Mobile Software Engineering and Systems

(MOBILESoft), pages 46–57. IEEE/ACM, May 2017. URL https:

//doi.org/10.1109/MOBILESoft.2017.19.

Luis Cruz and Rui Abreu. On the energy footprint of mobile testing frame-

November 2020 218 Biørn-Hansen, A.

https://doi.org/10.1007/978-3-030-27713-0_11
https://doi.org/10.1007/978-3-030-27713-0_11
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://doi.org/10.1016/j.procs.2012.06.173
https://doi.org/10.1016/j.procs.2012.06.173
https://doi.org/10.1016/j.procs.2012.06.094
https://doi.org/10.1016/j.procs.2012.06.094
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1109/MOBILESoft.2017.19

Chapter 7 Bibliography

works. IEEE Transaction on Software Engineering, October 2019. URL

https://doi.org/10.1109/TSE.2019.2946163.

Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet, and Navid

Nikaein. Survey, comparison and evaluation of cross platform mobile

application development tools. In Wireless Communications and Mobile

Computing Conference (IWCMC), 2013 9th International, pages 323–328.

IEEE, July 2013. URL http://doi.org/10.1109/IWCMC.2013.6583580.

Lisandro Deĺıa, Nicolás Galdamez, Leonardo Corbalan, Patricia Pesado, and

Pablo Thomas. Approaches to mobile application development: Compar-

ative performance analysis. In Proceedings of the 2017 Computing Confer-

ence, pages 652–659, July 2017. URL https://doi.org/10.1109/SAI.

2017.8252165.

Sunny Dhillon and Qusay H Mahmoud. An evaluation framework for cross-

platform mobile application development tools. Software: Practice and

Experience, 45(10):1331–1357, October 2015. URL http://doi.org/10

.1002/spe.2286.

Thomas Dorfer, Lukas Demetz, and Stefan Huber. Impact of mobile cross-

platform development on CPU, memory and battery of mobile devices

when using common mobile app features. Procedia Computer Science,

175:189–196, August 2020. URL https://doi.org/10.1016/j.procs.

2020.07.029.

Amnon H Eden. Three paradigms of computer science. Minds and Machines,

November 2020 219 Biørn-Hansen, A.

https://doi.org/10.1109/TSE.2019.2946163
http://doi.org/10.1109/IWCMC.2013.6583580
https://doi.org/10.1109/SAI.2017.8252165
https://doi.org/10.1109/SAI.2017.8252165
http://doi.org/10.1002/spe.2286
http://doi.org/10.1002/spe.2286
https://doi.org/10.1016/j.procs.2020.07.029
https://doi.org/10.1016/j.procs.2020.07.029

Chapter 7 Bibliography

17(2):135–167, July 2007. URL http://doi.org/10.1007/s11023-007

-9060-8.

Wafaa S El-Kassas, Bassem A Abdullah, Ahmed H Yousef, and Ayman M

Wahba. ICPMD: Integrated cross-platform mobile development solution.

In 2014 9th International Conference on Computer Engineering Systems

(ICCES), pages 307–317. IEEE, December 2014. URL http://doi.org/

10.1109/ICCES.2014.7030977.

Wafaa S El-Kassas, Bassem A Abdullah, Ahmed H Yousef, and Ayman M

Wahba. Enhanced code conversion approach for the integrated cross-

platform mobile development (icpmd). IEEE Transactions on Software

Engineering, 42(11):1036–1053, March 2016. URL https://doi.org/10

.1109/TSE.2016.2543223.

Wafaa S El-Kassas, Bassem A Abdullah, Ahmed H Yousef, and Ayman M

Wahba. Taxonomy of Cross-Platform mobile applications development

approaches. Ain Shams Engineering Journal, 8(2):163–190, June 2017.

URL https://doi.org/10.1016/j.asej.2015.08.004.

Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and

Maria Teresa Baldassarre. How software engineering research aligns with

design science: a review. Empirical Software Engineering, pages 2630–

–2660, April 2020. URL https://doi.org/10.1007/s10664-020-09818

-7.

Jan Ernsting, Christoph Rieger, Fabian Wrede, and Tim A Majchrzak. Re-

fining a reference architecture for Model-Driven business apps. In 12th

November 2020 220 Biørn-Hansen, A.

http://doi.org/10.1007/s11023-007-9060-8
http://doi.org/10.1007/s11023-007-9060-8
http://doi.org/10.1109/ICCES.2014.7030977
http://doi.org/10.1109/ICCES.2014.7030977
https://doi.org/10.1109/TSE.2016.2543223
https://doi.org/10.1109/TSE.2016.2543223
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1007/s10664-020-09818-7

Chapter 7 Bibliography

International Conference on Web Information Systems and Technologies,

pages 307–316. Scitepress, April 2016. URL https://doi.org/10.5220/

0005862103070316.

Clément Escoffier and Philippe Lalanda. Managing the heterogeneity and

dynamism in hybrid mobile applications. In 2015 IEEE International

Conference on Services Computing, pages 74–81. IEEE, June 2015. URL

http://doi.org/10.1109/SCC.2015.20.

Clément Escoffier, Philippe Lalanda, and Ozan Gunalp. A component

model to manage the heterogeneity and dynamism in mobile applica-

tions. In Proceedings of the 18th International ACM SIGSOFT Symposium

on Component-Based Software Engineering, CBSE ’15, pages 85–90, New

York, NY, USA, May 2015. ACM. URL http://doi.org/10.1145/2737

166.2737178.

El Hassane Ettifouri, Abdelkader Rhouati, Jamal Berrich, and Toumi

Bouchentouf. Toward a merged approach for cross-platform applications

(web, mobile and desktop). In Proceedings of the 2017 International Con-

ference on Smart Digital Environment, ICSDE ’17, pages 207–213, New

York, NY, USA, July 2017. ACM. URL http://doi.org/10.1145/3128

128.3128160.

Facebook. JavaScript environment, 7 June 2017. URL https://facebo

ok.github.io/react-native/docs/javascript-environment.html.

Accessed: 2017-8-3.

November 2020 221 Biørn-Hansen, A.

https://doi.org/10.5220/0005862103070316
https://doi.org/10.5220/0005862103070316
http://doi.org/10.1109/SCC.2015.20
http://doi.org/10.1145/2737166.2737178
http://doi.org/10.1145/2737166.2737178
http://doi.org/10.1145/3128128.3128160
http://doi.org/10.1145/3128128.3128160
https://facebook.github.io/react-native/docs/javascript-environment.html
https://facebook.github.io/react-native/docs/javascript-environment.html

Chapter 7 Bibliography

Facebook. React native, 2018. URL https://facebook.github.io/react

-native/. Accessed: 2018-NA-NA.

Norman E Fenton and James Bieman. Software Metrics: A Rigorous and

Practical Approach, Third Edition. Taylor & Francis Group, 2015.

Andy Field and Graham J Hole. How to Design and Report Experiments.

SAGE Publications Ltd, 1 edition, February 2003.

Maximiliano Firtman. High Performance Mobile Web. O’Reilly Media, 2016.

ISBN 9781491912553. URL http://shop.oreilly.com/product/06369

20035060.do.

Maximiliano Firtman. Hacking Web Performance. O’Reilly Media, May

2018a. ISBN 9781492039396.

Maximiliano Firtman. Progressive web apps on iOS are here.

https://medium.com/@firt/progressive-web-apps-on-ios-are-here-

d00430dee3a7, March 2018b. URL https://medium.com/@firt/

progressive-web-apps-on-ios-are-here-d00430dee3a7. Accessed:

2018-6-21.

Rita Francese, Carmine Gravino, Michele Risi, Giuseppe Scanniello, and

Genoveffa Tortora. Mobile app development and management: Results

from a qualitative investigation. In 2017 IEEE/ACM 4th International

Conference on Mobile Software Engineering and Systems (MOBILESoft),

pages 133–143. IEEE/ACM, May 2017. URL https://doi.org/10.110

9/MOBILESoft.2017.33.

November 2020 222 Biørn-Hansen, A.

https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
http://shop.oreilly.com/product/0636920035060.do
http://shop.oreilly.com/product/0636920035060.do
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://doi.org/10.1109/MOBILESoft.2017.33
https://doi.org/10.1109/MOBILESoft.2017.33

Chapter 7 Bibliography

GadgetVersus. Apple A13 bionic specs. https://gadgetversus.com/pro

cessor/apple-a13-bionic-specs/. Accessed: 2020-5-28.

Lamia Gaouar, Abdelkrim Benamar, and Fethi Tarik Bendimerad. Model

driven approaches to cross platform mobile development. In Proceedings of

the International Conference on Intelligent Information Processing, Secu-

rity and Advanced Communication, IPAC ’15, pages 19:1–19:5, New York,

NY, USA, November 2015. ACM. URL http://doi.org/10.1145/2816

839.2816882.

Gartner. Gartner says by 2016, more than 50 percent of mobile apps deployed

will be hybrid. http://www.gartner.com/newsroom/id/2324917,

February 2013. Accessed: 2016-1-12.

Matt Gaunt. Service workers: an introduction, January 2018. URL https:

//developers.google.com/web/fundamentals/primers/service-wor

kers/. Accessed: 2018-1-22.

Bruno Góis Mateus and Matias Martinez. An empirical study on quality

of android applications written in kotlin language. Empirical Software

Engineering, (24):3356–3393, June 2019. URL https://doi.org/10.100

7/s10664-019-09727-4.

Nizamettin Gok and Nitin Khanna. Building Hybrid Android Apps with Java

and JavaScript. O’Reilly Media, Incorporated, 2013. ISBN 9781449361914.

URL http://shop.oreilly.com/product/0636920028994.do.

Google. Ola drives mobility for a billion indians with progressive web app.

November 2020 223 Biørn-Hansen, A.

https://gadgetversus.com/processor/apple-a13-bionic-specs/
https://gadgetversus.com/processor/apple-a13-bionic-specs/
http://doi.org/10.1145/2816839.2816882
http://doi.org/10.1145/2816839.2816882
http://www.gartner.com/newsroom/id/2324917
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://doi.org/10.1007/s10664-019-09727-4
https://doi.org/10.1007/s10664-019-09727-4
http://shop.oreilly.com/product/0636920028994.do

Chapter 7 Bibliography

https://developers.google.com/web/showcase/2017/ola, November

2017. Accessed: 2020-4-24.

Google. FAQ about google trends data. https://support.google.com/t

rends/answer/4365533?hl=en, n.d. Accessed: 2020-4-29.

Google LLC. Profile and debug pre-build APKs, 2019a. URL https://deve

loper.android.com/studio/debug/apk-debugger. Accessed: 2019-5-2.

Google LLC. DateTime class - dart:core library - Dart API, 2019b. URL

https://api.dartlang.org/stable/2.3.0/dart-core/DateTime-cla

ss.html. Accessed: 2019-5-21.

Google LLC. Benchmark app code, 2019c. URL https://developer.andr

oid.com/studio/profile/benchmark. Accessed: 2019-5-21.

Tony Gorschek, Ewan Tempero, and Lefteris Angelis. On the use of software

design models in software development practice: An empirical investiga-

tion. Journal of Systems and Software, 95:176–193, September 2014. URL

http://doi.org/10.1016/j.jss.2014.03.082.

Shirley Gregor and Alan R Hevner. Positioning and presenting design science

research for maximum impact. MIS Quarterly, 37(2):337–356, June 2013.

URL https://doi.org/10.25300/MISQ/2013/37.2.01.

Sacha Greif, Raphaël Benitte, and Michael Rambeau. Mobile & desktop -

overview. https://2018.stateofjs.com/mobile-and-desktop/overvi

ew/, November 2018. Accessed: 2019-9-18.

November 2020 224 Biørn-Hansen, A.

https://developers.google.com/web/showcase/2017/ola
https://support.google.com/trends/answer/4365533?hl=en
https://support.google.com/trends/answer/4365533?hl=en
https://developer.android.com/studio/debug/apk-debugger
https://developer.android.com/studio/debug/apk-debugger
https://api.dartlang.org/stable/2.3.0/dart-core/DateTime-class.html
https://api.dartlang.org/stable/2.3.0/dart-core/DateTime-class.html
https://developer.android.com/studio/profile/benchmark
https://developer.android.com/studio/profile/benchmark
http://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.25300/MISQ/2013/37.2.01
https://2018.stateofjs.com/mobile-and-desktop/overview/
https://2018.stateofjs.com/mobile-and-desktop/overview/

Chapter 7 Bibliography

Chris Griffith. Mobile App Development with Ionic2: Cross-Platform Apps

with Ionic 2, Angular 2, and Cordova. O’Reilly Media, April 2017. ISBN

9781491937785. URL http://shop.oreilly.com/product/06369200447

10.do.

Tor-Morten Grønli and Gheorghita Ghinea. Meeting quality standards for

mobile application development in businesses: A framework for Cross-

Platform testing. In 2016 49th Hawaii International Conference on System

Sciences (HICSS), pages 5711–5720, January 2016. URL http://doi.or

g/10.1109/HICSS.2016.706.

Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muhammad

Younas. Mobile application platform heterogeneity: Android vs windows

phone vs iOS vs firefox OS. In 2014 IEEE 28th International Conference

on Advanced Information Networking and Applications, pages 635–641.

IEEE, May 2014. URL https://doi.org/10.1109/AINA.2014.78.

Sarra Habchi, Geoffrey Hecht, Romain Rouvoy, and Naouel Moha. Code

smells in iOS apps: How do they compare to android? In Proceedings of

the 2017 IEEE/ACM 4th International Conference on Mobile Software En-

gineering and Systems (MOBILESoft), pages 110–121. IEEE/ACM, May

2017. URL https://doi.org/10.1109/MOBILESoft.2017.11.

Henning Heitkötter and Tim A Majchrzak. Cross-Platform development of

business apps with MD2. In Design Science at the Intersection of Physical

and Virtual Design, Lecture Notes in Computer Science, pages 405–411.

Springer, Berlin, Heidelberg, June 2013. URL http://doi.org/10.100

7/978-3-642-38827-9 29.

November 2020 225 Biørn-Hansen, A.

http://shop.oreilly.com/product/0636920044710.do
http://shop.oreilly.com/product/0636920044710.do
http://doi.org/10.1109/HICSS.2016.706
http://doi.org/10.1109/HICSS.2016.706
https://doi.org/10.1109/AINA.2014.78
https://doi.org/10.1109/MOBILESoft.2017.11
http://doi.org/10.1007/978-3-642-38827-9_29
http://doi.org/10.1007/978-3-642-38827-9_29

Chapter 7 Bibliography

Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. Comparing

cross-platform development approaches for mobile applications. In Proceed-

ings of the 8th International Conference on Web Information Systems and

Technologies (WEBIST), pages 299–311. SciTePress, April 2012a. URL

https://doi.org/10.5220/0003904502990311.

Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. Evaluating

Cross-Platform development approaches for mobile applications. In Web

Information Systems and Technologies, Lecture Notes in Business Informa-

tion Processing, pages 120–138. Springer Berlin Heidelberg, April 2012b.

URL https://doi.org/10.1007/978-3-642-36608-6 8.

Henning Heitkötter, Tim A Majchrzak, and Herbert Kuchen. Cross-platform

model-driven development of mobile applications with md2. In Proceedings

of the 28th Annual ACM Symposium on Applied Computing, SAC ’13,

pages 526–533, New York, NY, USA, March 2013. ACM. URL https:

//doi.org/10.1145/2480362.2480464.

Alan R Hevner. A three cycle view of design science research. Scandinavian

Journal of Information Systems, 19(2):4, January 2007. URL http://ai

sel.aisnet.org/sjis/vol19/iss2/4.

Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design

science in information systems research. MIS Quarterly, 28:75–105, March

2004. URL https://doi.org/10.2307/25148625.

Dennis E Hinkle, William Wiersma, Stephen G Jurs, and Others. Applied

November 2020 226 Biørn-Hansen, A.

https://doi.org/10.5220/0003904502990311
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1145/2480362.2480464
https://doi.org/10.1145/2480362.2480464
http://aisel.aisnet.org/sjis/vol19/iss2/4
http://aisel.aisnet.org/sjis/vol19/iss2/4
https://doi.org/10.2307/25148625

Chapter 7 Bibliography

statistics for the behavioral sciences, volume 5. Houghton Mifflin Boston,

1988. URL https://doi.org/10.2307/1164825.

Leonard Hoon, Rajesh Vasa, Jean-Guy Schneider, John Grundy, and Others.

An analysis of the mobile app review landscape: trends and implications.

Technical report, Swinburne University of Technology, July 2013.

Stefan Huber and Lukas Demetz. Performance analysis of mobile cross-

platform development approaches based on typical ui interactions. In Pro-

ceedings of the 14th International Conference on Software Technologies,

pages 40–48. INSTICC, SciTePress, July 2019. ISBN 978-989-758-379-7.

URL https://doi.org/10.5220/0007838000400048.

Stefan Huber, Lukas Demetz, and Michael Felderer. Analysing the perfor-

mance of mobile cross-platform development approaches using UI inter-

action scenarios. In Communications in Computer and Information Sci-

ence, pages 40–57. Springer International Publishing, July 2020. URL

https://doi.org/10.1007/978-3-030-52991-8 3.

Jussi Huhtala, Ari-Heikki Sarjanoja, Jani Mäntyjärvi, Minna Isomursu, and

Jonna Häkkilä. Animated UI transitions and perception of time: A user

study on animated effects on a mobile screen. In Proceedings of the 28th

SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,

pages 1339–1342, New York, NY, USA, April 2010. ACM. URL http:

//doi.org/10.1145/1753326.1753527.

Ngu Phuc Huy and Do vanThanh. Evaluation of mobile app paradigms. In

Proceedings of the 10th International Conference on Advances in Mobile

November 2020 227 Biørn-Hansen, A.

https://doi.org/10.2307/1164825
https://doi.org/10.5220/0007838000400048
https://doi.org/10.1007/978-3-030-52991-8_3
http://doi.org/10.1145/1753326.1753527
http://doi.org/10.1145/1753326.1753527

Chapter 7 Bibliography

Computing & Multimedia, pages 25–30. ACM, December 2012. URL http:

//doi.org/10.1145/2428955.2428968.

Sami Hyrynsalmi, Arho Suominen, and Matti Mäntymäki. The influence

of developer multi-homing on competition between software ecosystems.

Journal of Systems and Software, 111:119–127, January 2016. URL https:

//doi.org/10.1016/j.jss.2015.08.053.

Juhani Iivari. A paradigmatic analysis of information systems as a design

science. Scandinavian journal of information systems, January 2007. URL

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1018&con

text=sjis.

Andreas Itzchak Rehberg. F-Droid main repository. https://apt.izzyso

ft.de/fdroid/?repo=main, February 2020. Accessed: 2020-2-25.

Xiaoping Jia and Christopher Jones. Design of adaptive domain-specific

modeling languages for model-driven mobile application development. In

2015 10th International Joint Conference on Software Technologies (IC-

SOFT), volume 1, pages 413–418. IEEE/ScitePress, July 2015. URL

https://doi.org/10.5220/0005557404130418.

Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real challenges

in mobile app development. In 2013 ACM / IEEE International Sympo-

sium on Empirical Software Engineering and Measurement, pages 15–24.

CPS, October 2013. URL http://doi.org/10.1109/ESEM.2013.9.

Georgios Kambourakis, Asaf Shabtai, Constantinos Kolias, and Dimitrios

November 2020 228 Biørn-Hansen, A.

http://doi.org/10.1145/2428955.2428968
http://doi.org/10.1145/2428955.2428968
https://doi.org/10.1016/j.jss.2015.08.053
https://doi.org/10.1016/j.jss.2015.08.053
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1018&context=sjis
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1018&context=sjis
https://apt.izzysoft.de/fdroid/?repo=main
https://apt.izzysoft.de/fdroid/?repo=main
https://doi.org/10.5220/0005557404130418
http://doi.org/10.1109/ESEM.2013.9

Chapter 7 Bibliography

Damopoulos. Intrusion Detection and Prevention for Mobile Ecosystems.

CRC Press, September 2017. ISBN 9781138033573.

Kleomenis Katevas, Hamed Haddadi, and Laurissa Tokarchuk. Sensing kit:

Evaluating the sensor power consumption in iOS devices. Proceedings -

12th International Conference on Intelligent Environments, IE 2016, pages

222–225, September 2016. URL https://doi.org/10.1109/IE.2016.50.

Roger E Kirk. Practical significance: A concept whose time has come. Ed-

ucational and Psychological Measurement, 56(5):746–759, October 1996.

URL https://doi.org/10.1177/0013164496056005002.

Elmar Krainz, Johannes Feiner, and Martin Fruhmann. Accelerated devel-

opment for accessible apps – model driven development of transportation

apps for visually impaired people. In Human-Centered and Error-Resilient

Systems Development, Lecture Notes in Computer Science, pages 374–381.

Springer, Cham, August 2016. URL http://doi.org/10.1007/978-3-

319-44902-9.

Dean Kramer, Tony Clark, and Samia Oussena. MobDSL: A domain spe-

cific language for multiple mobile platform deployment. In 2010 IEEE

International Conference on Networked Embedded Systems for Enterprise

Applications, pages 1–7. IEEE, November 2010. URL http://doi.org/

10.1109/NESEA.2010.5678062.

Mohamed Lachgar and Abdelmounäım Abdali. Decision framework for mo-

bile development methods. International Journal of Advanced Computer

November 2020 229 Biørn-Hansen, A.

https://doi.org/10.1109/IE.2016.50
https://doi.org/10.1177/0013164496056005002
http://doi.org/10.1007/978-3-319-44902-9
http://doi.org/10.1007/978-3-319-44902-9
http://doi.org/10.1109/NESEA.2010.5678062
http://doi.org/10.1109/NESEA.2010.5678062

Chapter 7 Bibliography

Science and Applications, 8(2):110–118, 2017. URL http://doi.org/10

.14569/IJACSA.2017.080215.

Mounaim Latif, Younes Lakhrissi, El Habib Nfaoui, and Najia Es-Sbai.

Cross platform approach for mobile application development: A survey.

In 2016 International Conference on Information Technology for Orga-

nizations Development (IT4OD), pages 1–5. IEEE, March 2016. URL

http://doi.org/10.1109/IT4OD.2016.7479278.

Olivier Le Goaer and Sacha Waltham. Yet another DSL for cross-platforms

mobile development. In Proceedings of the First Workshop on the Global-

ization of Domain Specific Languages, GlobalDSL ’13, pages 28–33, New

York, NY, USA, July 2013. ACM. URL https://doi.org/10.1145/24

89812.2489819.

Paul Lewis. Rendering performance, September 2017. URL https://deve

lopers.google.com/web/fundamentals/performance/rendering/.

Accessed: 2017-11-3.

Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An in-

vestigation into the use of common libraries in android apps. In 2016

IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), volume 1, pages 403–414. IEEE, March 2016.

URL https://doi.org/10.1109/SANER.2016.52.

Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé,

Alexandre Bartel, Jacques Klein, and Yves Le Traon. AndroZoo++: Col-

lecting millions of android apps and their metadata for the research com-

November 2020 230 Biørn-Hansen, A.

http://doi.org/10.14569/IJACSA.2017.080215
http://doi.org/10.14569/IJACSA.2017.080215
http://doi.org/10.1109/IT4OD.2016.7479278
https://doi.org/10.1145/2489812.2489819
https://doi.org/10.1145/2489812.2489819
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rendering/
https://doi.org/10.1109/SANER.2016.52

Chapter 7 Bibliography

munity. arXiv [cs. SE], September 2017. URL https://arxiv.org/abs/

1709.05281.

Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks on

WebView in the android system. In Proceedings of the 27th Annual Com-

puter Security Applications Conference, pages 343–352. ACM, December

2011. URL http://doi.org/10.1145/2076732.2076781.

Max Lynch. Testing geolocation on Android, January 2018. URL https:

//blog.ionicframework.com/testing-geolocation-on-android/.

Accessed: 2018-8-23.

Tim A Majchrzak and Jan Ernsting. Achieving business practicability of

model-driven cross-platform apps. Open Journal of Information Systems,

2(2):3–14, 2015. URL http://hdl.handle.net/11250/2392249.

Tim A Majchrzak and Henning Heitkötter. Status Quo and Best Practices

of App Development in Regional Companies. In Karl-Heinz Krempels

and Alexander Stocker, editors, Revised Selected Papers Web Information

Systems and Technologies (WEBIST) 2013, volume 189 of Lecture Notes in

Business Information Processing (LNBIP), pages 189–206. Springer, July

2014. URL https://doi.org/10.1007/978-3-662-44300-2 12.

Tim A Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. Com-

prehensive analysis of innovative Cross-Platform app development frame-

works. In Proceedings of the 50th Hawaii International Conference on

System Sciences, pages 6162–6171. ScholarSpace, January 2017. URL

https://doi.org/10.24251/HICSS.2017.745.

November 2020 231 Biørn-Hansen, A.

https://arxiv.org/abs/1709.05281
https://arxiv.org/abs/1709.05281
http://doi.org/10.1145/2076732.2076781
https://blog.ionicframework.com/testing-geolocation-on-android/
https://blog.ionicframework.com/testing-geolocation-on-android/
http://hdl.handle.net/11250/2392249
https://doi.org/10.1007/978-3-662-44300-2_12
https://doi.org/10.24251/HICSS.2017.745

Chapter 7 Bibliography

Tim A Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. Pro-

gressive web apps: the definite approach to Cross-Platform develop-

ment? In Proceedings of the 51st Hawaii International Conference on

System Sciences, pages 5735–5745. ScholarSpace, January 2018. URL

https://doi.org/10.24251/HICSS.2018.718.

Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and Valerio Terragni. Hy-

brid mobile apps in the google play store: An exploratory investigation. In

Proceedings of the Second ACM International Conference on Mobile Soft-

ware Engineering and Systems, MOBILESoft ’15, pages 56–59, Piscataway,

NJ, USA, May 2015a. IEEE. URL https://doi.org/10.1109/MobileSo

ft.2015.15.

Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and Valerio Terragni. End

users’ perception of hybrid mobile apps in the google play store. In 2015

IEEE International Conference on Mobile Services, pages 25–32. IEEE,

June 2015b. URL https://doi.org/10.1109/MobServ.2015.14.

Ivano Malavolta, Giuseppe Procaccianti, Paul Noorland, and Petar Vuk-

mirović. Assessing the impact of service workers on the energy efficiency

of progressive web apps. In Proceedings of the 4th International Con-

ference on Mobile Software Engineering and Systems, MOBILESoft ’17,

pages 35–45, Piscataway, NJ, USA, May 2017. IEEE. URL https:

//doi.org/10.1109/MOBILESoft.2017.7.

Ivano Malavolta, Katerina Chinnappan, Lukas Jasmontas, Sarthak Gupta,

and Kaveh Ali Karam Soltany. Evaluating the Impact of Caching on the

Energy Consumption and Performance of Progressive Web Apps. In 7th

November 2020 232 Biørn-Hansen, A.

https://doi.org/10.24251/HICSS.2018.718
https://doi.org/10.1109/MobileSoft.2015.15
https://doi.org/10.1109/MobileSoft.2015.15
https://doi.org/10.1109/MobServ.2015.14
https://doi.org/10.1109/MOBILESoft.2017.7
https://doi.org/10.1109/MOBILESoft.2017.7

Chapter 7 Bibliography

IEEE/ACM International Conference on Mobile Software Engineering and

Systems 2020, MOBILESoft ’20, pages 109–119, July 2020. URL https:

//doi.org/10.1145/3387905.3388593.

Salvatore T March and Gerald F Smith. Design and natural science research

on information technology. Decision Support Systems, 15(4):251–266, De-

cember 1995. URL https://doi.org/10.1016/0167-9236(94)00041-2.

William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Har-

man. A survey of app store analysis for software engineering. IEEE Trans-

action on Software Engineering, 43(9):817–847, December 2017. URL

https://doi.org/10.1109/TSE.2016.2630689.

Shawn Maust. What the jank?, August 2015. URL https://afasterweb.c

om/2015/08/29/what-the-jank/. Accessed: 2018-2-27.

Iván Tactuk Mercado, Nuthan Munaiah, and Andrew Meneely. The impact

of cross-platform development approaches for mobile applications from

the user’s perspective. In Proceedings of the International Workshop on

App Market Analytics, WAMA 2016, pages 43–49, New York, NY, USA,

November 2016. ACM. URL https://doi.org/10.1145/2993259.2993

268.

Maria Moloney and Liam Church. Engaged scholarship: Action design re-

search for new software product development. In Thirty Third Interna-

tional Conference on Information Systems. AIS, December 2012. URL

https://doi.org/10.2139/ssrn.2227590.

MoSync AB. MoSync, 2015. URL https://github.com/MoSync/MoSync.

November 2020 233 Biørn-Hansen, A.

https://doi.org/10.1145/3387905.3388593
https://doi.org/10.1145/3387905.3388593
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.1109/TSE.2016.2630689
https://afasterweb.com/2015/08/29/what-the-jank/
https://afasterweb.com/2015/08/29/what-the-jank/
https://doi.org/10.1145/2993259.2993268
https://doi.org/10.1145/2993259.2993268
https://doi.org/10.2139/ssrn.2227590
https://github.com/MoSync/MoSync

Chapter 7 Bibliography

Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo

Corbetta, Dhilung Kirat, Christopher Kruegel, and Giovanni Vigna. Bare-

droid: Large-scale analysis of android apps on real devices. In Proceedings

of the 31st Annual Computer Security Applications Conference, ACSAC

2015, pages 71–80. ACM, December 2015. ISBN 978-1-4503-3682-6. URL

https://doi.org/10.1145/2818000.2818036.

Ehsan Noei, Mark D Syer, Ying Zou, Ahmed E Hassan, and Iman Keivanloo.

A study of the relation of mobile device attributes with the user-perceived

quality of android apps. Empirical Software Engineering, 22(6):3088–3116,

December 2017. URL https://doi.org/10.1007/s10664-017-9507-3.

Jay F Nunamaker, Minder Chen, and Titus D M Purdin. Systems develop-

ment in information systems research. Journal of Management Information

Systems, 7(3):89–106, December 1990. URL https://doi.org/10.1109/

HICSS.1990.205401.

Robin Nunkesser. Beyond Web/Native/Hybrid: A new taxonomy for mobile

app development. In 2018 IEEE/ACM 5th International Conference on

Mobile Software Engineering and Systems (MOBILESoft), pages 214–218.

IEEE/ACM, May 2018. URL https://doi.org/10.1145/3197231.3197

260.

OpenSignal. Android fragmentation visualized. Technical report, August

2015. URL https://opensignal.com/legacy-assets/pdf/reports/2

015 08 fragmentation report.pdf.

Chris O’Sullivan. A tale of two platforms: Designing for both android and

November 2020 234 Biørn-Hansen, A.

https://doi.org/10.1145/2818000.2818036
https://doi.org/10.1007/s10664-017-9507-3
https://doi.org/10.1109/HICSS.1990.205401
https://doi.org/10.1109/HICSS.1990.205401
https://doi.org/10.1145/3197231.3197260
https://doi.org/10.1145/3197231.3197260
https://opensignal.com/legacy-assets/pdf/reports/2015_08_fragmentation_report.pdf
https://opensignal.com/legacy-assets/pdf/reports/2015_08_fragmentation_report.pdf

Chapter 7 Bibliography

iOS. https://webdesign.tutsplus.com/articles/a-tale-of-two-pl

atforms-designing-for-both-android-and-ios--cms-23616, April

2015. Accessed: 2020-7-15.

Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti. Comparison of

cross-platform mobile development tools. In 2012 16th International Con-

ference on Intelligence in Next Generation Networks, pages 179–186. IEEE,

October 2012. URL http://doi.org/10.1109/ICIN.2012.6376023.

Nitish Patkar, Mohammad Ghafari, Oscar Nierstrasz, and Sofija Hotomski.

Caveats in eliciting mobile app requirements. In Proceedings of the Evalu-

ation and Assessment in Software Engineering, EASE ’20, pages 180–189,

New York, NY, USA, April 2020. ACM. URL https://doi.org/10.114

5/3383219.3383238.

Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatter-

jee. A design science research methodology for information systems re-

search. Journal of Management Information Systems, 24(3):45–77, De-

cember 2007. URL http://doi.org/10.2753/MIS0742-1222240302.

Joachim Perchat, Mikael Desertot, and Sylvain Lecomte. Component based

framework to create mobile cross-platform applications. In Procedia Com-

puter Science, volume 19, pages 1004–1011. ScienceDirect, June 2013. URL

https://doi.org/10.1016/j.procs.2013.06.140.

Andreas Pirchner. gsvi. https://pypi.org/project/gsvi/, January 2020.

Accessed: 2020-4-29.

November 2020 235 Biørn-Hansen, A.

https://webdesign.tutsplus.com/articles/a-tale-of-two-platforms-designing-for-both-android-and-ios--cms-23616
https://webdesign.tutsplus.com/articles/a-tale-of-two-platforms-designing-for-both-android-and-ios--cms-23616
http://doi.org/10.1109/ICIN.2012.6376023
https://doi.org/10.1145/3383219.3383238
https://doi.org/10.1145/3383219.3383238
http://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1016/j.procs.2013.06.140
https://pypi.org/project/gsvi/

Chapter 7 Bibliography

Arno Puder, Nikolai Tillmann, and Micha l Moskal. Exposing native device

APIs to web apps. In Proceedings of the 1st International Conference on

Mobile Software Engineering and Systems, MOBILESOFT ’14, pages 18–

26. ACM, June 2014. URL http://doi.org/10.1145/2593902.2593908.

Peixin Que, Xiao Guo, and Maokun Zhu. A comprehensive comparison be-

tween hybrid and native app paradigms. Proceedings - 2016 8th Inter-

national Conference on Computational Intelligence and Communication

Networks, CICN 2016, pages 611–614, December 2016. URL https:

//doi.org/10.1109/CICN.2016.125.

Héctor Ramos and Bruno Lemos. React native performance, December 2017.

URL https://facebook.github.io/react-native/docs/performance

.html. Accessed: 2018-1-23.

Vijay Janapa Reddi, Hongil Yoon, and Allan Knies. Two billion devices and

counting. IEEE Micro, 38(1):6–21, January 2018. URL https://doi.or

g/10.1109/MM.2018.011441560.

André Ribeiro and Alberto Rodrigues da Silva. Survey on Cross-Platforms

and languages for mobile apps. In 2012 Eighth International Conference on

the Quality of Information and Communications Technology, pages 255–

260. IEEE, September 2012. URL http://doi.org/10.1109/QUATIC.2

012.56.

António Nestor Ribeiro and Costa Rogério Araújo. An automated model

based approach to mobile UI specification and development. In Human-

Computer Interaction. Theory, Design, Development and Practice, Lecture

November 2020 236 Biørn-Hansen, A.

http://doi.org/10.1145/2593902.2593908
https://doi.org/10.1109/CICN.2016.125
https://doi.org/10.1109/CICN.2016.125
https://facebook.github.io/react-native/docs/performance.html
https://facebook.github.io/react-native/docs/performance.html
https://doi.org/10.1109/MM.2018.011441560
https://doi.org/10.1109/MM.2018.011441560
http://doi.org/10.1109/QUATIC.2012.56
http://doi.org/10.1109/QUATIC.2012.56

Chapter 7 Bibliography

Notes in Computer Science, pages 523–534. Springer, Cham, July 2016.

URL http://doi.org/10.1007/978-3-319-39510-4.

Christoph Rieger. Evaluating a graphical Model-Driven approach to codeless

business app development. In Proceedings of the 51st Hawaii International

Conference on System Sciences, pages 5725–5735. ScholarSpace, January

2018. URL https://doi.org/10.24251/HICSS.2018.717.

Christoph Rieger and Tim A Majchrzak. Weighted evaluation framework for

Cross-Platform app development approaches. In Stanislaw Wrycza, editor,

Information Systems: Development, Research, Applications, Education,

Lecture Notes in Business Information Processing, pages 18–39. Springer

International Publishing, September 2016. URL https://doi.org/10.1

007/978-3-319-46642-2 2.

Christoph Rieger and Tim A Majchrzak. A taxonomy for App-Enabled de-

vices: Mastering the mobile device jungle. In Lecture Notes in Business

Information Processing: Web Information Systems and Technologies, vol-

ume 322, pages 202–220. Springer International Publishing, June 2018.

URL http://doi.org/10.1007/978-3-319-93527-0 10.

Gregorio Robles. Replicating MSR: A study of the potential replicability of

papers published in the mining software repositories proceedings. In 2010

7th IEEE Working Conference on Mining Software Repositories (MSR

2010), pages 171–180. IEEE, May 2010. URL https://doi.org/10.1

109/MSR.2010.5463348.

Ira Sager. Before IPhone and android came simon, the first smartphone.

November 2020 237 Biørn-Hansen, A.

http://doi.org/10.1007/978-3-319-39510-4
https://doi.org/10.24251/HICSS.2018.717
https://doi.org/10.1007/978-3-319-46642-2_2
https://doi.org/10.1007/978-3-319-46642-2_2
http://doi.org/10.1007/978-3-319-93527-0_10
https://doi.org/10.1109/MSR.2010.5463348
https://doi.org/10.1109/MSR.2010.5463348

Chapter 7 Bibliography

https://www.bloomberg.com/news/articles/2012-06-29/before-ip

hone-and-android-came-simon-the-first-smartphone, June 2012.

Accessed: 2020-5-29.

Julian Schütte, Rafael Fedler, and Dennis Titze. ConDroid: Targeted dy-

namic analysis of android applications. In 2015 IEEE 29th International

Conference on Advanced Information Networking and Applications, pages

571–578. IEEE, March 2015. URL https://doi.org/10.1109/AINA.201

5.238.

Kewal Shah, Harsh Sinha, and Payal Mishra. Analysis of Cross-Platform

mobile app development tools. In 2019 IEEE 5th International Conference

for Convergence in Technology (I2CT), pages 1–7. IEEE, March 2019. URL

https://doi.org/10.1109/I2CT45611.2019.9033872.

Herbert A Simon. The science of design: Creating the artificial. In The Sci-

ences of the Artificial, pages 111–138. MITP, 1996. ISBN 9780262257008.

Ashok Kumar Singh. Science & Technology For Civil Service Examination.

Tata McGraw-Hill Education, July 2007. ISBN 9789352605705.

Garima Singh. Android app performance optimization, 2017. URL https:

//medium.com/mindorks/android-app-performance-optimization-c

dccb422e38e. Accessed: 2019-5-21.

Bartosz Skuza, Agnieszka Mroczkowska, and Damian W lodarczyk. Flutter

vs react native – what to choose in 2019? https://www.thedroidsonr

oids.com/blog/flutter-vs-react-native-what-to-choose-in-2019,

September 2019. Accessed: 2019-9-27.

November 2020 238 Biørn-Hansen, A.

https://www.bloomberg.com/news/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
https://www.bloomberg.com/news/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
https://doi.org/10.1109/AINA.2015.238
https://doi.org/10.1109/AINA.2015.238
https://doi.org/10.1109/I2CT45611.2019.9033872
https://medium.com/mindorks/android-app-performance-optimization-cdccb422e38e
https://medium.com/mindorks/android-app-performance-optimization-cdccb422e38e
https://medium.com/mindorks/android-app-performance-optimization-cdccb422e38e
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2019
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2019

Chapter 7 Bibliography

Pavel Smutný. Mobile development tools and cross-platform solutions.

In Proceedings of the 13th International Carpathian Control Conference

(ICCC), pages 653–656. IEEE, May 2012. URL http://doi.org/10.110

9/CarpathianCC.2012.6228727.

Stack Overflow. What is resident and dirty memory of iOS?, October 2013.

URL https://stackoverflow.com/a/19238896/1028722. Accessed:

2017-11-17.

Stack Overflow. Developer survey 2017. https://insights.stackoverfl

ow.com/survey/2017, 2017. Accessed: 2021-3-13.

Stack Overflow. Developer survey 2018. https://insights.stackoverfl

ow.com/survey/2018, 2018. Accessed: 2021-3-13.

StatCounter. Mobile operating system market share worldwide. https:

//gs.statcounter.com/os-market-share/mobile/worldwide/2019,

April 2020. Accessed: 2020-5-18.

StatCounter Global Stats. Mobile & tablet android version market share

worldwide (june 2019 - june 2020). https://gs.statcounter.com/and

roid-version-market-share/mobile-tablet/worldwide, June 2020.

Accessed: 2020-7-15.

Statista. Smartphone users worldwide 2020. https://www.statista.c

om/statistics/330695/number-of-smartphone-users-worldwide/,

September 2019. Accessed: 2020-5-18.

Statista. App stores: number of apps in leading app stores 2019. https:

November 2020 239 Biørn-Hansen, A.

http://doi.org/10.1109/CarpathianCC.2012.6228727
http://doi.org/10.1109/CarpathianCC.2012.6228727
https://stackoverflow.com/a/19238896/1028722
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://gs.statcounter.com/os-market-share/mobile/worldwide/2019
https://gs.statcounter.com/os-market-share/mobile/worldwide/2019
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

Chapter 7 Bibliography

//www.statista.com/statistics/276623/number-of-apps-availabl

e-in-leading-app-stores/, January 2020. Accessed: 2020-2-26.

Statista. Global app economy size 2021. https://www.statista.com/s

tatistics/267209/global-app-economy/, November 2021. Accessed:

2021-3-11.

Ole Tange. Gnu Parallel 2018. Zenodo, 2018. URL http://doi.org/10.5

281/zenodo.1146014.

Telerik. NativeScript, n.d. URL https://www.nativescript.org/. Ac-

cessed: 2015-10-21.

Sam Tolomei. Shrinking APKs, growing installs. https://medium.com/g

oogleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2,

November 2017. Accessed: 2020-9-1.

Marcus Trapp and René Yasmin. Addressing animated transitions already in

mobile app storyboards. In Design, User Experience, and Usability. Web,

Mobile, and Product Design, Lecture Notes in Computer Science, pages

723–732. Springer, Berlin, Heidelberg, July 2013. URL http://doi.org/

10.1007/978-3-642-39253-5 81.

Eric Umuhoza and Marco Brambilla. Model driven development approaches

for mobile applications: A survey. In Mobile Web and Intelligent Informa-

tion Systems, Lecture Notes in Computer Science, pages 93–107. Springer,

Cham, August 2016. URL https://doi.org/10.1007/978-3-319-4421

5-0 8.

November 2020 240 Biørn-Hansen, A.

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/267209/global-app-economy/
https://www.statista.com/statistics/267209/global-app-economy/
http://doi.org/10.5281/zenodo.1146014
http://doi.org/10.5281/zenodo.1146014
https://www.nativescript.org/
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
http://doi.org/10.1007/978-3-642-39253-5_81
http://doi.org/10.1007/978-3-642-39253-5_81
https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1007/978-3-319-44215-0_8

Chapter 7 Bibliography

Eric Umuhoza, Hamza Ed-douibi, Marco Brambilla, Jordi Cabot, and Aldo

Bongio. Automatic code generation for cross-platform, multi-device mobile

apps: Some reflections from an industrial experience. In Proceedings of the

3rd International Workshop on Mobile Development Lifecycle, MobileDeLi

2015, pages 37–44, New York, NY, USA, October 2015. ACM. URL http:

//doi.org/10.1145/2846661.2846666.

Unity. Unity - manual: iOS hardware guide, n.d. URL https://docs.uni

ty3d.com/Manual/iphone-Hardware.html. Accessed: 2017-11-17.

Usability.gov. System usability scale (SUS), 6 September 2013. URL https:

//www.usability.gov/how-to-and-tools/methods/system-usabilit

y-scale.html. Accessed: 2017-8-17.

Muhammad Usman, Muhammad Zohaib Iqbal, and Muhammad Uzair Khan.

A product-line model-driven engineering approach for generating feature-

based mobile applications. Journal of Systems and Software, 123:1–32,

January 2017. URL http://doi.org/10.1016/j.jss.2016.09.049.

Vijay K Vaishnavi and William Kuechler. Design Science Research Methods

and Patterns: Innovating Information and Communication Technology,

2nd Edition. CRC Press, Florida, 6 May 2015. ISBN 9781498715256.

URL https://www.crcpress.com/Design-Science-Research-Methods

-and-Patterns-Innovating-Information-and/Vaishnavi-Vaishnavi

-Kuechler/9781498715256.

Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of

google play. In The 2014 ACM international conference on Measurement

November 2020 241 Biørn-Hansen, A.

http://doi.org/10.1145/2846661.2846666
http://doi.org/10.1145/2846661.2846666
https://docs.unity3d.com/Manual/iphone-Hardware.html
https://docs.unity3d.com/Manual/iphone-Hardware.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://doi.org/10.1016/j.jss.2016.09.049
https://www.crcpress.com/Design-Science-Research-Methods-and-Patterns-Innovating-Information-and/Vaishnavi-Vaishnavi-Kuechler/9781498715256
https://www.crcpress.com/Design-Science-Research-Methods-and-Patterns-Innovating-Information-and/Vaishnavi-Vaishnavi-Kuechler/9781498715256
https://www.crcpress.com/Design-Science-Research-Methods-and-Patterns-Innovating-Information-and/Vaishnavi-Vaishnavi-Kuechler/9781498715256

Chapter 7 Bibliography

and modeling of computer systems, volume 42, pages 221–233, New York,

NY, USA, June 2014. ACM. URL http://doi.org/10.1145/2637364.

2592003.

Paul Vorbach. Cordova download statistics. https://npm-stat.com/c

harts.html?package=cordova&from=2014-01-01&to=2019-09-12,

September 2019. Accessed: 2019-9-13.

W3C. High resolution time level 2, 2018. URL https://www.w3.org/TR/

hr-time-2/. Accessed: 2019-5-21.

Haoyu Wang, Hao Li, and Yao Guo. Understanding the evolution of mobile

app ecosystems: A longitudinal measurement study of google play. In

WWW ’19: The World Wide Web Conference, WWW ’19, pages 1988–

1999, New York, NY, USA, May 2019. ACM. URL https://doi.org/10

.1145/3308558.3313611.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming android fragmenta-

tion: characterizing and detecting compatibility issues for android apps.

In Proceedings of the 31st IEEE/ACM International Conference on Au-

tomated Software Engineering, ASE 2016, pages 226–237, New York,

NY, USA, August 2016. Association for Computing Machinery. URL

https://doi.org/10.1145/2970276.2970312.

Mark Weiser. The computer for the 21st century. Scientific American, 265

(3):94–104, September 1991. URL https://doi.org/10.1145/329124.3

29126.

November 2020 242 Biørn-Hansen, A.

http://doi.org/10.1145/2637364.2592003
http://doi.org/10.1145/2637364.2592003
https://npm-stat.com/charts.html?package=cordova&from=2014-01-01&to=2019-09-12
https://npm-stat.com/charts.html?package=cordova&from=2014-01-01&to=2019-09-12
https://www.w3.org/TR/hr-time-2/
https://www.w3.org/TR/hr-time-2/
https://doi.org/10.1145/3308558.3313611
https://doi.org/10.1145/3308558.3313611
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/329124.329126

Chapter 7 Bibliography

Roel J Wieringa. Design Science Methodology for Information Systems

and Software Engineering. Springer, Berlin, Heidelberg, 2014. ISBN

9783662438381. URL https://doi.org/10.1007/978-3-662-43839-8.

Michiel Willocx, Jan Vossaert, and Vincent Naessens. A quantitative assess-

ment of performance in mobile app development tools. In Mobile Services

(MS), 2015 IEEE International Conference on, pages 454–461. IEEE, June

2015. URL http://doi.org/10.1109/MobServ.2015.68.

Michiel Willocx, Jan Vossaert, and Vincent Naessens. Comparing per-

formance parameters of mobile app development strategies. In 2016

IEEE/ACM International Conference on Mobile Software Engineering

and Systems (MOBILESoft ’16), pages 38–47. IEEE, May 2016. URL

http://doi.org/10.1109/MobileSoft.2016.028.

Xamarin. How does xamarin work?, March 2017. URL https://develo

per.xamarin.com/guides/cross-platform/getting started/intro

duction to mobile development/#How Does Xamarin Work. Accessed:

2018-2-13.

Xamarin. Mobile application development to build apps in c#, n.d. URL

https://www.xamarin.com/platform. Accessed: 2017-10-20.

Spyros Xanthopoulos and Stelios Xinogalos. A comparative analysis of cross-

platform development approaches for mobile applications. In Proceedings of

the 6th Balkan Conference in Informatics, BCI ’13, pages 213–220. ACM,

September 2013. URL https://doi.org/10.1145/2490257.2490292.

November 2020 243 Biørn-Hansen, A.

https://doi.org/10.1007/978-3-662-43839-8
http://doi.org/10.1109/MobServ.2015.68
http://doi.org/10.1109/MobileSoft.2016.028
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/#How_Does_Xamarin_Work
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/#How_Does_Xamarin_Work
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/#How_Does_Xamarin_Work
https://www.xamarin.com/platform
https://doi.org/10.1145/2490257.2490292

Chapter 7 Bibliography

Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun (peter) Chen. Studying

the characteristics of logging practices in mobile apps: a case study on F-

Droid. Empirical Software Engineering, 24(6):3394–3434, December 2019.

URL https://doi.org/10.1007/s10664-019-09687-9.

November 2020 244 Biørn-Hansen, A.

https://doi.org/10.1007/s10664-019-09687-9

Appendices

245

Appendix A

Retrieving Google Play Store

Metadata

Appendix type: Computer Program

Purpose: Retrieve Google Play Store metadata for apps based on their

package name (pkg name). The API allows for a list of 100 pkg names

to be retrieved simultaneously. The list of pkg names are exported from

a MySQL table into a .txt file, which is then consumed by the script

below.

Language and Environment: JavaScript (TypeScript), Node.js

Dependencies: Lodash, Axios, Async, TypeORM, Reflect-Metadata

Retrieved metadata properties: Play Store availability, author, cate-

246

Chapter 1

gory, changelog, content rating, date published, date published ISO,

description, editors choice, file size, icon, name, number of downloads,

operating systems, physical address, package name, price, store cate-

gory, support email, support URL, top developer, version name, screen-

shots, rating.

[import statements removed for brevity]

async function run() {

try {

const connection: Connection = await createConnection

↩→ ({...});

// Read all pkg_names from file

const filelistPath = (’<PATH>’);

fs.readFile(filelistPath, async function (err, data) {

if (err) throw err;

const pkgnamesArray = data.toString().split("\n");

// Split pkg_names array into sub-arrays of 100

↩→ elements

const subPkgnamesArray = _.chunk(pkgnamesArray, 100);

// For each sub-array, create a POST request containing

↩→ the 100 pkg_names

asyncModule.eachLimit(subPkgnamesArray, 1, async

↩→ function (listOf100PackageNames, callback) {

November 2020 247 Biørn-Hansen, A.

Chapter 1

const response = await axios({

"method": "POST",

"url": "https://gplaystore.p.rapidapi.com/

↩→ applicationDetails",

"headers": {

"content-type": "application/json",

"x-rapidapi-host": "gplaystore.p.rapidapi.com

↩→ ",

"x-rapidapi-key": "<API_KEY>",

"accept": "application/json"

}, "data": {

"lang": "en",

"ids": listOf100PackageNames

}

});

// Extract response data and map each entity (app

↩→ metadata) to Marketplace entity

let marketplaceData = [];

for (let app in response.data) {

if (response.data[app] === "Sorry, I cannot find

↩→ that!") {

let entity = new Marketplace();

entity.pkg_name = app;

entity.scraped_timestamp = new Date();

entity.gplay_available = false;

November 2020 248 Biørn-Hansen, A.

Chapter 1

marketplaceData.push(entity);

} else {

let metadata = response.data[app] as

↩→ Marketplace;

let entity = new Marketplace();

entity.scraped_timestamp = new Date();

entity.gplay_available = true;

[Mapping of metadata properties to ORM entity

↩→ model

removed for brevity]

marketplaceData.push(entity);

}

}

// run createQueryBuilder

const insertResults = await connection.

↩→ createQueryBuilder().insert().into(

↩→ Marketplace).values(marketplaceData).execute

↩→ ();

callback();

}, function (err) { ... Error handling ... });

});

} catch (e) { ... Error handling ... }

}

November 2020 249 Biørn-Hansen, A.

Appendix B

Replication Package for

Experiment “Bridge

Performance”

Appendix type: Computer Programs / Mobile Apps

Purpose: Replication package for software (source code and binaries) for

Chapter 4.

Language and Environment: Android, Flutter, Ionic, MAML/MD2,

NativeScript, React Native.

Source code and binaries: https://github.com/mobiletechlab/EMS

E-D-19-00180-replication-package

250

https://github.com/mobiletechlab/EMSE-D-19-00180-replication-package
https://github.com/mobiletechlab/EMSE-D-19-00180-replication-package

Appendix C

Replication Package for

Experiment “Animation

Performance”

Appendix type: Computer Programs / Mobile Apps

Purpose: Replication package for software (source code and binaries) for

Chapter 5.

Language and Environment: Android, iOS, Ionic, Xamarin, React Na-

tive.

Source code and binaries: https://github.com/andreasbhansen/se

nsors journal animations performance

251

https://github.com/andreasbhansen/sensors_journal_animations_performance
https://github.com/andreasbhansen/sensors_journal_animations_performance

Appendix D

Replication Package for

Experiment “Presence of

Frameworks”

Appendix type: Computer Program

Purpose: Replication package for software (source code and binaries) for

Chapter 6.

Language and Environment: JavaScript (TypeScript), Node.js

Source code and binaries: https://github.com/andreasbhansen/ph

d-thesis-contributions/tree/master/apk-framework-identifie

r-software

252

https://github.com/andreasbhansen/phd-thesis-contributions/tree/master/apk-framework-identifier-software
https://github.com/andreasbhansen/phd-thesis-contributions/tree/master/apk-framework-identifier-software
https://github.com/andreasbhansen/phd-thesis-contributions/tree/master/apk-framework-identifier-software

Appendix E

Brunel University Ethical

Approval

Appendix type: Document

253

Chapter 7

College of Engineering, Design and Physical Sciences Research Ethics Committee
Brunel University London

Kingston Lane
Uxbridge
UB8 3PH

United Kingdom

www.brunel.ac.uk

24 June 2020

LETTER OF CONFIRMATION

Applicant:

Project Title: Presence and performance of cross-platform apps

Reference: 23490-NER-Jun/2020- 25967-1

Dear

The Research Ethics Committee has considered the above application recently submitted by you.

The Chair, acting under delegated authority has confirmed that on the basis of the information provided in your application, your project does not require
ethical review.

Please note that:

Approval to proceed with the study is granted providing that you do not carry out any research which concerns a human participant, their tissue and/or
their data.
The Research Ethics Committee reserves the right to sample and review documentation relevant to the study.
If during the course of the study, you would like to carry out research activities that concern a human participant, their tissue and/or their data, you
must inform the Committee by submitting an appropriate Research Ethics Application. Research activity includes the recruitment of participants,
undertaking consent procedures and collection of data. Breach of this requirement constitutes research misconduct and is a disciplinary offence.

Good luck with your research!

Kind regards,

Professor Hua Zhao

Chair of the College of Engineering, Design and Physical Sciences Research Ethics Committee

Brunel University London

Page 1 of 1

November 2020 254 Biørn-Hansen, A.

	Abbreviations
	Introduction
	Background
	Mobile Development
	Motivation
	Aim, Research Questions & Objectives
	Contributions
	Thesis Structure

	Literature Review
	Development Approaches
	The Research Foundation
	User Experience
	Software Platform Features
	Performance & Hardware Utilisation
	App Store Analysis
	Taxonomy & State of Research

	Research Methods
	Philosophical Perspective
	Design Science Research
	Experiments

	Bridge Performance of Mobile Development Approaches
	Awareness of Problem: A Potential Performance Overhead
	Suggestion: Measure Performance Output
	Development of Artefacts & Methods
	Evaluation of Bridge Performance
	Discussion
	Conclusion

	Animation Performance of Mobile Development Approaches
	Awareness of Problem: Performance of Cross-Platform User Interfaces
	Suggestion: Measure Animation Performance
	Development of Artefacts
	Evaluation of Animation Performance
	Discussion
	Conclusion

	Presence of Mobile Development Approaches
	Awareness of Problem: Cross-Platform Framework Usage in Published Apps
	Suggestion: Analyse Harvested Apps & Metadata
	Development of Harvesting Mechanism & Identification Algorithm
	Evaluation and Discussion
	Conclusion

	Conclusions & Future Work
	Performance of Cross-Platform Frameworks
	Presence of Cross-Platform Frameworks in the Google Play Store
	Empirically Validated Principles for Mobile Development
	Implications for Industry & Practitioners
	Implications for Research
	Limitations & Validity
	Summary of Contributions
	Suggestions for Future Work

	Bibliography
	Appendices
	Retrieving Google Play Store Metadata
	Replication Package for Experiment ``Bridge Performance''
	Replication Package for Experiment ``Animation Performance''
	Replication Package for Experiment ``Presence of Frameworks''
	Brunel University Ethical Approval

