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Secure Particle Filtering for Cyber-Physical Systems
with Binary Sensors under Multiple Attacks

Weihao Song, Zidong Wang, Jianan Wang, Fuad E. Alsaadi and Jiayuan Shan

_ Abstract—This paper is concerned with the secure particle filtering algorithms which include, but are not limited to,
filtering problem for a class of discrete-time nonlinear cyber- Kalman filtering [3], [16], extended Kalman filtering [13],
physical systems with binary sensors in the presence of non-[22]’ [35], unscented Kalman filtering [27]H.. filtering

Gaussian noises and multiple malicious attacks. The multiple - . . ;
attacks launched by the adversaries, which take place in a [2], [18], [28], [34], moving-horizon estimation [26], [51],

random manner, include the denial-of-service attacks, the de- €nvelope-constrained filtering [29],,-L, filtering [32], and
ception attacks and the flipping attacks. Three sequences of particle filtering [1], [20], [21] techniques. In particular, the
Bernoulli-distributed random variables with known probability  particle filtering is one of the powerful tools in dealing with
distributions are employed to describe the characteristics of the non-Gaussian noises in the filtering problems.

random occurrence of the multiple attacks. The raw or corrupted The CPS K to b | ble t iscell
measurements are transmitted to sensors whose outputs are e S aré known (o be vuinerable 1o miscellaneous

binary according to engineering practice. A modified likelinood Security threats in both physical layers and cyber layers due

function is constructed to compensate for the influence of the primarily to their massive components and the demanding

randomly occurring multiple attacks by introducing the ran-  communications among different components [15]. Generally

dom occurrence probability |r)form§tlon into the design process. speaking, it is not an easy work to model the attacks in a

Subsequently, a secure particle filter is proposed based on the .. . L .

constructed likelihood function. Finally, a moving target tracking unified and a_ccurate way owing to the cunning/intelligence O_f

application is elaborated to verify the viability of the proposed the adversaries. Therefore, a great deal of research attention
secure particle filtering algorithm. has been focused on the filtering/control problem of the
Index Terms—Secure particle filtering, cyber-physical systems, CPS; subject to specific malicious atta(_:ks including denial-of-
binary sensors, randomly occurring attacks, target tracking. service attacks [24], [25], [46], deception attacks [12], [39],
[47], replay attacks [41] and many more. It should be noted

that the malicious attacks initiated by the adversaries cannot

|. INTRODUCTION be always successful on account of the deployment of the

As an integrated system composed of cyber networks, ph§§.curity software and protection equipment. As a result, the
ical components (e.g., sensors, controllers and monitors) dRalicious attacks in most of the existing literature are actually
computation resources, the cyber-physical system (CPS) Fakerred to as randomly occurred/succeed attacks. For exam-
become an emerging research frontier in the past few decad¥8, in [42], the event-triggered active disturbance rejection
Due to its significant advantages in reliability, autonomy arfgPntrol problem has been addressed for systems suffering from
adaptability [7], the CPS has shown tremendous potential B@th denial-of-service attacks and physical attacks, where the
practical applications of various public infrastructures sudigndomly occurring denial-of-service attacks are characterized
as smart grids [17] and transportation systems [37]. In [4Y the Gilbert-Elliott model. In [36], the security-guaranteed
the CPS has been generally abstracted into the combinafii§ring scheme has been developed for delayed systems in
of a physical system and a controller, where the controlle presence of randomly occurring sensor saturations and
generates a control command based on the current estinfi@geption attacks, where the occurrence characteristics of the
of the system state. In this sense, the proper functioning @ception attacks are described by the Bernoulli process.
the CPS is closely related to the performance of the choserfiPart from the security threats, the scarce resources
state estimation scheme. In fact, due to the importance (§f9. limited energy capacity and network bandwidth) con-
the state estimation problems, the last two decades h&Wute another critical issue of the CPSs due to the massive

seen the development of a large quantity of estimation akormation exchange among the components [10], [14], [44].
In order to utilize the limited resources in an efficient way,
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etc. In this case, only the binary values need to be transmittidrly normative.R™ stands for the:-dimensional Euclidean
to the fusion center and the network traffic is much reducedector space. The superscript means the transpose oper-
Owing to their merits of low cost and simple installationation. diag{ai, as,...,a,} denotes a diagonal matrix with
binary sensors have been welcomed in industry and havgas,...,a, being its diagonal elementg,.(-) stands for
also been paid a great deal of research attention from atlze probability density function of a stochastic variable.e.,
demic communities, see e.g., [48] and the references therein- p.(-), andcdf,(-) denotes the corresponding cumulative
The typical binary sensors include the industrial sensors fdistribution functionPr{ X} represents the occurrence proba-
pressure/gas/liquid monitoring, and the medical sensors withity of a discrete evenX . E(x|z) denotes the mathematical
binary outcomes, to name just a few [45]. So far, in thexpectation ofz conditional onz. N (z;u,) denotes the
context of filter/estimation, two kinds of particle filteringGaussian probability density function of stochastic variable
algorithms have been developed in [9] based on the data framvith mean and covariance beingand:, respectivelyzy.;
a group of binary sensors to track a target. In [45], the fusias the path ofz from time instantk to time instantl. Other
estimation scheme has been presented for a class of linearations will be introduced when needed.
time-varying systems subject to bounded noises by exploiting
the information at the sign switching instant of the binary || ProsLEM FORMULATION AND PRELIMINARIES
signal. It should be pointed out that the binary decisions
are prone to be overheard and deliberately flipped by the SyStem setup
adversaries during the data transmission. Such kind of cyberConsider a class of discrete-time nonlinear systems charac-
attacks, if not addressed well, may deteriorate the estimati@mized by the following model:
performance and even paralyze the whole CPS.
Summarizing the above discussions, there appears to be a i1 = flae) +w @)

lack of systematic investigation on the secure particle filteringhere ;,, ¢ R” denotes the system state at time instant
problem for a class of nonlinear/non-Gaussian CPSs wiffyq f() : R" — R™ represents the nonlinear state evolution
binary sensors subject to randomly occurring multiple attack§inction. ., € R” is the process noise satisfyipg, (-). The

. L ()

As such, the primary aim of this paper is to narrow such geasurement model of thgh sensor is given by
gap by means of designing a secure patrticle filtering algorithm

with certain robustness to the multiple attacks in both physical gp = h*(og) +vp, s=1,2,...,8 (2
layers and cyber layers. It is worth noticing that the addresse .
ayer yberay icing . wﬂere 9; € R represents the measurement output of the
filtering problem is by no means straightforward due mamlg/ . ) :
. : o i th sensor at time instart and h%(-) : R™ — R is the

to the technical challenges identified as follows: 1) how . . .

. - . measurement function;; € R is the measurement noise on
to establish a unified framework to take into account t % th sensor satisfyingys ()
simultaneous presence of denial-of-service attacks, decepti 5 9u; ().

attacks and flipping attacks in the measurement model? 2) how'" this paper, we assume that the measurement process is

to deal with the analytical complexity induced by the randofrone to attacks launched by the malicious attackers. Thf_;lt_ is to
nature of the multiple attacks and the binary (hence spar , the actual measurements of the sensors may be falsified by

signal from binary sensors? and 3) how to attenuate the eff randomly occurring denial-of-service attacks or deception

from the multiple attacks on the filtering performance in th@ tacks, which are characterized by

fier design? | o 7 = (L= #0)(@i + @hoh) ©)
The main contributions of this paper can be highlighted as

threefold: 1) the secure filtering problem is investigated fokherey; is the falsified measurement of thth compromised

a class of general nonlinear/non-Gaussian CPSs with binagnsor ancy;, denotes the deception attack launched by the

sensors; 2) a comprehensive yet realistic measurement modékcker given by

is presented to simultaneously take into account the random- pL = —Ui + uj (4)

ly occurring denial-of-service attacks, deception attacks ar\]/vdhere s represents a random decention sianal satisfvin
flipping attacks; and 3) a secure particle filtering algorithm Hi, TEP . ) P 9 fying
(-). The stochastic variables; andy; are assumed to be

is developed by establishing a modified likelihood function to . b .
compensate for the effect of the multiple malicious attacks.mu_tually independent Berno_ulll-dlstrlbute_d white sequences,
The remainder of this paper is structured as follows. seWhich take values oft and1 with the following mathematical

tion Il formulates the secure filtering problem with binary serErObab'“t'eS'

sors and gives some preliminaries about the particle filtering { Pr{¢; = 1} = ¢*
scheme. In Section IlIl, the secure particle filtering algorithm Pr{¢; =0} =1—¢°
which deals with the randomly occurring multiple attacks is

developed by establishing a modified likelihood function. AN Prig: =1} = ¢°
two-dimensional moving target tracking problem is considered { Pr{gg — 0} = f_ 7*

in Section IV to demonstrate the effectiveness and practicality

of our proposed secure filtering algorithm. Eventually, somehere* € [0,1) and@* € [0,1) are both known constants

conclusions are presented in Section V. referred to as the success rates of the initiated denial-of-service
Notation. Throughout this paper, the notation exploited iattacks and deception attacks, respectively.
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Next, the sth sensor processes its measurement according

© 1, if yi > T,
s , | g}g > s
0 = { 0, otherwise ®)

where Ty is a known threshold, and sends only binary value
63 to the fusion center via the wireless transmission channels
where the cyber-attacker is able to flip the binary information.

By introducing another Bernoulli-distributed stochastic vari- ‘
ableag, the eventually received signal contributed by thie \
sensor at the fusion center is of the following form [9]: ’

“==~Malicious attack

- Wireless transmission

‘ Binary sensor

where7? is the channel gain coefficient corresponding to the
sth sensorg; is the channel noise satisfying: (-) and Fig. 1: Block diagram of the CPS with binary sensors

- . s s subject to malicious attacks. (The purple means that the

O = (1 — ap)b + g (1 - 67) (@) sensors/wireless transmission channels are successfully
where attaCked.)

Pr{aj =1} =a°
{ Pr{aj=0}=1-a°

v =B+ = (6)  Tarse

with @® € [0,1) being the probability that the cyber-attackel’he sensors [30]. In this case, the threshold depends on the
successfully flips the binary information. physical constraints of the sensors and the sensors can simply
For notational brevity, all the received signals at the fusm%mpUt the binary values to imply whether they detect the target
center up to time instarit are denoted as r not. On the other hand, if the measurement output serves a
speC|f|c task (e.g. camera-based surveillance within campus),
the threshold is determined as a reasonable similarity of the

S 1 2 S
Y1k = [ylzk Yie 0 Yik R L. . . d
_ , ) gedestrlan activity to the predefined suspicious behaviors.
Remark 1:For the addressed nonlinear/non-Gaussian CP SThroughout this paper, we make the following two assump-

the measurement signals may be intentionally compromis&%S
by the adversaries in both physical layers and cyber IayersASsumptlon 1The process noisey, the measurement noise
Note that the malicious attacks launched by the adversarles N 4he random deception signaf and the channel noise}
both layers are less likely to wo.rk at all times due probabxe mutually independent and also independent of the initial
to the complicated network environment and the defendegt@(,;ltex0 that has the prior probability density functign, (- ).
security protection. Therefore, it is reasonable to consider
Assumptlon 2:The nonlinear functiong(-) and h*(-) a

that the attacks occur in a random way [5], [33]. To model Il as the probability density functions, (-), pv: (), p s(.)
the randomness of the successful attacks in the phys%%qd ) are all known. k Vie M /1 El
layers, Bernoulli-distributed stochastic variablgs and ¢, pei
are introduced in (3). To be more specific,df = 0 and
¢y = 0, the measurement process of #ik sensor is normal; g preliminaries
if o7 =0 andy] =1, the sth sensor is successfully attacked ) ) ) o )
in the form of deception attack; i; = 1, the sth sensor The key issue in sequential Bayesian filtering problem is to
is hijacked by the adversary and the measurement servic&@culate the posterior probability density functiefy|yi’y)),
unavailable, i.e., only the reading “0” can be output. S,m"arbl;)ased on which we can obtain the minimum mean-square error
the Bernoulli distributed stochastic variabi¢ is adopted in (MMSE) estimate for the state; as
the cyber layers. It is evident from (7) that the binary signal is
free from the malicious attacks during the transmission when @3 “°F = E{ax|y{i} = /ffkp(ffﬂy%f/f)dffk- (8)
aj = 0, and the binary signal is deliberately flipped by the
adversary whemy; = 1. It should be mentioned that the The posterior probability density functiop(xﬂy%flf) can
considered model in [9] can be regarded as a special c@agerecursively derived as follows:
of our work when¢; =0, ¢ =0 andaj = 0.

Remark 2:It should be noted that the selection of threshold LSy 1:8
Ts is of practical importance. After the threshold is set, the Peklyii) /p<xk|xk_l)p(xk_l|yhk71)dwk_1’
output of the binary sensor will be determined accordingly, and 1S p(yi®ler)plerlyiin )
a slight change of the threshold might cause a huge change df p(zilyrii) = [ p(ylS|ap)plarlyls | )dey
the measurement output. In practical applications, the selection
of the threshold is closely related to the sensing principléowever, the closed-form expression pfz|yiiy) is gen-
or specific task. For example, in the sensor networks wigrally unavailable except for some special cases, e.g., the
limited sensing range, the target of interest can be detecterar and Gaussian systems. Fortunately, the sequential Monte
and observed only when it moves into the sensing region ©arlo method (i.e., particle filtering) [1] can provide an

1:5 ]T

)
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approximation ofp(zy|yiy) by a set of weighted particleswhere

ot wit i @ p(uR1% = 0,01 = 0,27)
M =pe: (yi — T){ @ cdfy; (Ts — hi(x}"))
plaxlyiid) = > witd(a, — ), (10) + (1 —a*)[1 — cdfy (Ts — by (x)]} (14)
m=1 s —~ s S (MM
_ + Des (i) {a[1 - cdfy: (Ts — hy(z3"))]
and then we obtain + (1 —a®)edfy: (Ts — hi (@)},
M
5 m,.m .S Szovszlv'rm
FMMSE _ Z Wi (11) P(Uk|fk . 901@8 ")
m=1 =Des, (yp—7 ){a Cdfuz (T5)
where M is the number of particlesg(-) is the Dirac +( _(: )[}S_ edfu; (T5)]} (15)
delta function,z}" is sampled from a proposal distribution + peg (Y@ [1 — cdfyu; (Ts)]
q(zi|z |, yi), and the corresponding weight is com- + (1 = &)edf s (Ty)},
puted by
and
1:5|,,.m m|,.m
wpt — g POITOPERIEE ) o plyler = 1af) = a%pe (i — ) + (1 6)pey (57)- (16)

M| m , 1:S
9@ i vi) Proof: Based on Assumption 1, we have

The purpose of this paper is to design a secure particle s
filtering algorithm for a class of nonlinear/non-Gaussian CPSs p(yllc:slle) = Hp(y,ﬂx}f). @a7)
with binary sensors under multiple attacks such that the s—1
MMSE estimate of the state, is obtained at the fusion center
using the compromised measurement signals up to time inst
k, Ie,y%,f

On the other hand, it is clear from (3)-(7) that the actually
Alteived signaly; from the sth sensor at the fusion center
depends on the Bernoulli-distributed stochastic variabigs
7 andag, as well as the threshold parameigr To proceed
with the proof, we will derive the expression of the likelihood
function in the following three cases.

In this section, we investigate the secure particle filter design_Case 1:¢; = 0 and ;] = 0.
problem for a class of CPSs formulated in Section II-A. In In this case, we have
fact, if we only consider the systems described by (1) and s s 18
(2) in a safe environment, the estimation objective can be Yk = Yo (18)
directly achieved by virtue of the standard particle filteringnd it is straightforward to obtain from the law of total
algorithm (e.g. the sampling importance resampling particfgobability that
filter). However, the vulnerability of the CPSs (to the malicious

IIl. SECUREPARTICLE FILTERING ALGORITHM DESIGN

attacks in both physical layers and cyber layers) renders the p(y’“@’“ = 0,9k =0,27)

standard particle filtering scheme inapplicable, and there is an =p(yzl0r = 1,05, = 0,95 = 0,z;")

urgent need to develop a dedicated filter algorithm that can x Pr{0; = 1|¢; = 0,5 = 0,27} (19)
resist the cyber-attacks with satisfactory filtering accuracy. T p(yilf; = 0,65 = 0,05 = 0,27

The following theorem provides a solution to the secure « Pr{B; = 0|6} = 0,5} — 0, 2"}
particle filter design problem by giving an explicit expression k k=P Pk = U T g
of the modified likelihood function to assist in updating the In the sequel, we discuss each term on the right-hand side
importance weights. of the above equation. According to (7), we have

Theorem 1:Consider the measurement model descrlbed_by Pr{0; = 1|6 = 0,0} = 0,27"}
(2), the randomly occurring denial-of-service attack/deception .y i s < m
attack model characterized by (3)-(4) and the binary trans— Tk = L ag = 1]df = 0,¢% = 0,27}
mission scheme given by (5)-(7). The modified likelihood —+ Pr{0; =1,a} = 0[¢} = 0,9} = 0, 2"}
function evaluated at}*, which is employed to update the =Pr{f; = 1|aj =1,¢; =0, ¢} = 0,2}"}Pr{aj = 1}
corresponding importance weight at the fusion center, is given +Pr{f; = 1|as = 0,6 =0, ¢} = 0,27 }Pr{al = 0}

> =Pr{0; = 0|¢}. =0, ¢} = 0,z }a°
p(yi® |23 +Pr{6s = 1|6} = 0,45 = 0,27} (1 — &)
s (20)
= H {(1 —¢*)[(1 - &*)p(yilos = 0,95 = 0,27 and, similarly, we obtain
e HRIor = 0.6 = 1,41 W m- e =0t =0l
P PIRIOR =Pk = o =Pr{0 = 1|6} = 0,0} = 0,27"}a° (21)
+ &°p(yilor =1, x?)} +Pr{f; = 0]¢; = 0,05 = 0,27} (1 — a°),
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where , . . . the phenomenon of particle degeneracy during the iterative
Pr{0; = 1[¢} = 0,5, = 0,z;"} update of particles, the resampling strategy is added at each
=p(y;, > Ts|z}") 22) iteration by removing the particles with negligible weights

=p(hi(z") + v > Ty) and duplicating the particles with significant_weights [1].
1= cdfye (T — b2 (27) It should_ be_ noted that, even though we design the secure
k particle filtering algorithm in the framework of the sampling
and importance resampling particle filter, extensions to other types
of particle filters (e.g. auxiliary particle filter [31]) are fairly
Pr{6} = 0l¢} = 0, ¢} = 0,25} = edfy; (Ts — hi(2}"))- straightforward.
(23) In summary, the pseudo-code of the secure particle filtering
algorithm for the CPSs with binary sensors subject to multiple
p(yil0; = 1,05 = 0,05 =0,27") = Pe; (Y — 7°) o4 attacks is provided in Algorithm 1.
p(yi|0; = 0,05 = 0,05 =0,27) = Pes (y3). (24) Remark 3:So far, we have addressed the secure filtering
) o ) problem for a class of nonlinear/non-Gaussian CPSs with
Then, we arrive at (14) by substituting (20)-(24) into (19). hinary sensors in the framework of sequential Bayesian es-
_Case 2:¢} =0 andpp = 1. _ timation. The available informatiop,™ at the fusion center
In this case, the deception attack is successfully launchggs peen employed in the proposed filter. To compensate for
by the adversary and we know that the effect of the malicious attacks on the filtering perfor-
(25) Mmance, the probability information of the randomly occurring
attacks has been taken into account in the process of filter
After some similar manipulations as thoseGase 1itis easy design. A modified likelihood function has been explicitly
to obtain (15). constructed in (13) to update the importance weights. In this
Case 3:¢7 = 1. sense, the developed particle filtering algorithm has certain
In this case, thesth sensor is hijacked by the adversaryobustness against the randomly occurring denial-of-service
and only the reading of “0” can be output. Without loss céttacks, deception attacks and flipping attacks. Note that, if
generality, we assume thé&} is a positive scalar. Then, similarthe probability information of the randomly occurring attacks
to the previous cases, we can have (16). is not available, one could employ an online detector to detect
According to the law of total probability, we write thethe random attacks at each time instant, which, however, might
likelihood function p(y;|x}*) associated with theth sensor be time- and cost-consuming. In fact, it is an interesting yet
as follows: challenging task to design an efficient secure filtering scheme
pilal) =p(ys, ¢5 = 0|z™) + p(ys, ¢ = 1|2™) und.er. the re_mdom occurring multiple at.ta.\cks without pripr
Cp(yi |65 = 0,27 Pr{o = 0} statistics, which wom_JId pe one of the promising research topics.
p(yiler =0,z k Remark 4:The filtering problem for CPSs under cyber-

Furthermore, it can be observed from (6) that

U = M-

+ p(yjc|¢i = 1,27")Pr{¢}, :71} attacks has been extensively studied in the literature. Our main
=(1-¢°)ply;le; = 0,27") + ¢°p(yi|o; = 1,27")  results distinguish from existing ones in the following three
=(1—¢% [(1 — @&*)plyilos = 0,05 = 0,27") aspects: 1) the secure filtering problem addressed is new in the

P p(yilet = 0,08 = 1 xm)} sense that the CPS is nonlinear, the underlying noises are al-
(fsp y,: B 9071; R lowed to be non-Gaussian and the sensor outputs are binary; 2)
+ ¢°pyilon = 1,27") (26) the model for malicious attacks is new as it takes three kinds of
. LN random occurring attacks (denial-of-service attacks, deception
It foll_ows from_(l?)mand (26) t_hat the modified likelihood ttacks and flipping attacks) into simultaneous consideration;
function of particlez}* at the fusion center can be calculate(ind 3) the developed secure particle filtering algorithm with

by (13), which cqmpletes _t_he proof. _ . a modified likelihood function is able to compensate for the
Now, we are in a position to design the secure partic Stact of the multiple malicious attacks

filtering algorithm, whose main purpose is to get the particle-
based representation of the posterior probability density func-
tion sequentially. In other words, we aim to obtain the particle-

based representation pfzy |y1i¥) as shown in (10) given that IV. SIMULATION RESULTS
of p(zr—1ly1iy_1)- . . . I .
Let a set of weighted particlgg:? |, w ,}M_, toapprox- N this section, a practical application to the moving target

imate p(z,_1|y1S_,) be already obtained. If we choose thdracking is presented to demonstrate the usefulness of our
state transition probability density functiqiz;|z,_,) as a Proposed secure particle filtering algorithm.

proposal density;(xzy|zx—1,y;), then the particles at time

instant & are sampled as}"’ ~ p(zx|z}’ ) [1]. As such,

when we obtain the measurement signals contaminated QY Mmoving target tracking scenario

the randomly occurring multiple attacks, we can update the

importance weightv}* associated with particle;* according Consider the moving target tracking problem in a two-
to wi = wi ,p(yo|2). Meanwhile, in order to mitigate dimensional (2-D) Cartesian coordinate system. The mathe-
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Algorithm 1 Secure particle filtering algorithm for the CPSs

with binary sensors subject to multiple attacks

matical model for the target movement, adopted from [6], is
expressed as:

Thy1 = T + Wi (27)

o O O =
O O = o
o= OO
_ s+ O O

1: Initialization: Draw M particles from the prior density, \wherez,, specified by

i.e., zf" ~ pg(-),m = 1,2,...,M and set the corre-
sponding importance weightsj* as ﬁ The maximum
recursive time instant is chosen &s

2. for k=1,2,...,K do

3 form=1,2,...,M do

4: Step 1: Importance sampling

5 Sample particler}” from the transition probability
density functionp(zy|z}* ).

6: Step 2: Measurement update

7 Collect all the compromised sensor signg}s’ at

the fusion center.

Step 3: Importance weight calculation

9: Calculate the unnormalized importance weights
{wm}M_ according to

m=1
S —

ap =wit, [T {0 -0 -
s=1

X p(yiléi = 0,5} = 0,77")

+@°p(yildi = 0,95 = 1, 77")]

+&'pliloi = L) |

wherep(y;|o; = 0, ¢f, = 0,27"),
p(ypldy, = 0,95 = L 2") andp(y; oy = 1,2
are defined in (14)-(16), respectively.

10: end for
11: form=1,2,...,M do
12: Step 4: Weight normalization
13: Normalizenghe importance weights according to
wy' = 1.7‘2}]6 @] "
14: Step 5: State estimate extraction
15: Update the MMSE estimate of statg and the
corresponding estimation error covariance as
M
Br= Y wpzy,
m=1
R M
Py = wit (@ — ) (@ — )"
m=1
16: Step 6: Resampling
17: Resample new particle;" from the distribution
3 et WS (g — T
18: end for
19: end for

tar ltar

[ltar
x, ko Yy, k>

tar1T
x, k> ]

v y,k

v

is the state vector of the moving target at time instant
which determines the target positigif®;,//*;) and velocity
(v, vy in the 2-D planet stands for the sampling period
andwy, Is the zero-mean Gaussian white noise with covariance
matrix Cov;. defined as follows:

Covy, == (28)

o O e
o O =T
[T © O
+ T o O

where= denotes the acceleration variance.

For the purpose of target tracking, binary sensors are
deployed in the surveillance areas to detect and receive the
energy produced by the moving target of interest. At time
instantk, the measurement at th#¢h sensor is described by
(2), where the measurement function is written as [9]

do

ks ] = 5%

AS
29
lsen,S]T”> ( )

Vyk

hs(Ik) =7 <

where T denotes the produced energy by the target at a
reference distancé, (177, 1,%"") represents the location of
the sth sensor (we assume that the information of the sensor
locations is available to the fusion center) axdis a known
environment-dependent propagation loss parameter oftthe
Sensor.

The measurement noisg on thesth sensor is represented
by a two-component Gaussian mixture model, i.e.,

p(vi) = (L= BN (visul, B7) + BN (v u3, X3)

where* is the glint probability. In addition, the channel noise
%, associated with theth sensor is assumed to be zero-mean
Gaussian white noise with varian¢e?)? and the deception
signaly; satisfies a uniform distribution over the interalb].

Once the measurement process is completed, each sensor
compares the obtained measurements with the predefined
threshold parameter and only a single binary digit is trans-
mitted to the fusion center. The above-mentioned processes
are, of course, prone to be attacked by the adversaries and the
corresponding parameters are given in Section IV-C.

B. Performance metric

The root mean-square error (RMSE) on the position and
velocity estimates averaged ové&f Monte Carlo trials are
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selected as the performance metrics in our work to assess f

tracking performance, which are respectively defined by or

True Target Trajectory

80 = Estimated Target Trajectory
N
1 tari  Stari tari  tar |
RMSE, . = | = 2 (057 = L2 + (@ = 1)), o ¢ ¢ ¢ ¢
i=1 60
1 N %50 '3 ¢ ¢
tar,i ~tar,i tar,i ~tar,i 5
RMSE,. = | = 3 (005 = )2 + (o = ol)?) - i
i=1 3]
>
30 L4 ¢ ¢ ¢

where the subscripts, & and v, k& indicate, respectively, the

position and velocity(Z,,",1:""") and (v, v';"") respec- 20|

tively represent the realization @}, ') and (v, vl%) in

: . T g . LI 4 ¢ ¢ ¢
the ith Monte Carlo trial, and their estimates are respectivel
: jtar,i jtar,t ~tar,i ~tar,t | | I I I | | )
given by (lz-,k ’ly-,k ) and (Ur,k ' Uy k )- 0o 10 20 30 40 50 60 70 80
X-coordinate
C. Common simulation parameters Fig. 2: One realization of the target trajectory and its
In the simulation, the moving target is observed$y- 16 estimate obtained from our proposed Sec-PF. The blue

binary sensors, whose positions are depicted in Fig. 2. The diamonds denote the positions of the binary sensors.
target trajectories are simulated by setting initial staie=
[15,0.4,20,0.3]7, sampling periodt = 1, and acceleration
variance= = 0.0452. To sample the particles in the initializa-
tion step, a procedure adopted from [6] is employed. To t
more specific, the position components are directly sample
from a Gaussian prior distribution with medn5, 20]7 and
covariance matrixdiag{100,100}, and the velocity compo-
nents are indirectly sampled from a Gaussian prior distr
bution with mean[0.5, arctan(3/4)]7 and covariance matrix
diag{0.252, (7/6)?} by noting that the prior knowledge of the 15[
resultant velocity and the azimuth is more common in practic * 0
The number of particles id/ = 500 and N = 50 different
realizations are conducted for the Monte Carlo simulation:
Other parameter setups related to the binary sensors and
randomly occurring attacks are presented in TABLE 1.

Measurements before transmitted

Binary values

Time, k

TABLE [: Parameter setups

Fig. 3: The measurements of the sensor locating at (10, 10)

Parameters Values Parameters Values before transmitted and the corresponding binary values.
T 4000 ®* 0.1

do 1 N 0.1

gs 5'185 CZ ?'31 In the next simulations, we aim to compare the tracking
u? 0 b 3 performance under the following three scenarios: (i) tracking
X 0-(())1 s 8-3 with Sec-PF; (ii) tracking with the standard particle filtering
%25 0.25 ZS o:i algorithm but neglecting the effect of the randomly occurring

attacks (abbreviated as Sta-PF-Neg); and (iii) tracking with
the standard particle filtering algorithm using the uncorrupted
measurement signals (abbreviated as Sta-PF and used as a
) ) ) ) benchmark). The behaviors of the RMSEs on position and
D. Simulation results and discussions velocity estimates obtained from the above-mentioned three
One realization of the target trajectory and the estimatedgorithms are compared in Figs. 4-5, respectively. We observe
trajectory obtained from the proposed secure particle filterirtigat the Sec-PF is able to provide the estimates that are close to
algorithm (abbreviated as Sec-PF) are presented in Fig.tle Sta-PF, while the Sta-PF-Neg performs the worst with the
from which we can see that the trajectory estimated by théghest estimation errors. As expected, our proposed Sec-PF
Sec-PF is close to the true trajectory of the moving targgtossesses certain robustness against the randomly occurring
For the binary sensor locating at (10, 10), Fig. 3 displays itsultiple attacks.
measurements corrupted by the randomly occurring denial-of4dn order to investigate the impact of the randomly occurring
service attacks/deception attacks and the corresponding birnamytiple attacks on the tracking performance, three groups of
values subject to the randomly occurring flipping attacks. simulations are further conducted with different occurrence
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Fig. 5: RMSEs on velocity estimates of Sec-PF, Sta-PF-N
and Sta-PF.

probabilities of attacks. In each group, only one parametr*
varies and the others remain unchanged. The correspond
simulation results are plotted in Figs. 6-11, which indicate
that the occurrence probabilities of attacks (i, @° and
a@®) do have a significant effect on the tracking performanct
We figure out that, as the occurrence probabilities of attacl
increase, the tracking performance will gradually degrade.
In addition, we conduct further simulations to compare
the average running time for Steps 1-6 at each time instai
average RMSEs on position estimates, and average RMS
on velocity estimates with different numbers of particles
The corresponding simulation results (obtained on a PC wi
2.50 GHz CPU) are summarized in TABLE II. It is clear
that, the increase of the number of particles will usuall
improve the filtering performance at the cost of higher averac
running time. As such, the designers/operators should consic
the real-world engineering specifications (e.g. the sampli
period) and choose a proper number of particles to attain

balance between the computational burden and the filtering

0 | | |

0 20 40 60
Time, k

¢°.

RMSEv,k
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Sta-PF-Nggy 6: RMSEs on position estimates with different values of
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performance.
03r
s TABLE II: Performance comparisons with different numbers
Ay of particles.
M 200 400 600

. Average running time (s) 0.0196 0.0387 0.0584
W Average RMSEs on position estimates  3.7008 3.5354  3.3978
2 Average RMSESs on velocity estimates  0.1741  0.1699 0.1643
@

V. CONCLUSIONS

In this paper, we have addressed the secure particle filter
design problem for a class of nonlinear/non-Gaussian CPSs
with binary sensors subject to the randomly occurring mul-
Fig. 9: RMSEs on velocity estimates with different values diple attacks. Three Bernoulli-distributed random variables
with known probabilities have been introduced to describe
the randomly occurring denial-of-service attacks, deception
attacks and flipping attacks, respectively. In order to mitigate
the impact of the malicious attacks launched by adversaries on
the filtering performance, we have made an effort to establish
a modified likelihood function in which the occurrence proba-
bilities of the multiple attacks have been fully exploited. Based
on the theoretical analysis, a secure particle filtering algorithm
has been developed and applied for the moving target tracking.
The Monte Carlo simulation results have been presented
to elucidate the usefulness of the developed secure particle
filtering algorithm. In the future, our research topics would
focus on the secure filtering problem for more complicated
2 scenarios, such as the distributed denial-of-service attacks [40],
redundant channels [49], and the conic-type nonlinear Markov
jump systems [43].
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