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Secure Particle Filtering for Cyber-Physical Systems
with Binary Sensors under Multiple Attacks

Weihao Song, Zidong Wang, Jianan Wang, Fuad E. Alsaadi and Jiayuan Shan

Abstract—This paper is concerned with the secure particle
filtering problem for a class of discrete-time nonlinear cyber-
physical systems with binary sensors in the presence of non-
Gaussian noises and multiple malicious attacks. The multiple
attacks launched by the adversaries, which take place in a
random manner, include the denial-of-service attacks, the de-
ception attacks and the flipping attacks. Three sequences of
Bernoulli-distributed random variables with known probability
distributions are employed to describe the characteristics of the
random occurrence of the multiple attacks. The raw or corrupted
measurements are transmitted to sensors whose outputs are
binary according to engineering practice. A modified likelihood
function is constructed to compensate for the influence of the
randomly occurring multiple attacks by introducing the ran-
dom occurrence probability information into the design process.
Subsequently, a secure particle filter is proposed based on the
constructed likelihood function. Finally, a moving target tracking
application is elaborated to verify the viability of the proposed
secure particle filtering algorithm.

Index Terms—Secure particle filtering, cyber-physical systems,
binary sensors, randomly occurring attacks, target tracking.

I. I NTRODUCTION

As an integrated system composed of cyber networks, phys-
ical components (e.g., sensors, controllers and monitors) and
computation resources, the cyber-physical system (CPS) has
become an emerging research frontier in the past few decades.
Due to its significant advantages in reliability, autonomy and
adaptability [7], the CPS has shown tremendous potential in
practical applications of various public infrastructures such
as smart grids [17] and transportation systems [37]. In [4],
the CPS has been generally abstracted into the combination
of a physical system and a controller, where the controller
generates a control command based on the current estimate
of the system state. In this sense, the proper functioning of
the CPS is closely related to the performance of the chosen
state estimation scheme. In fact, due to the importance of
the state estimation problems, the last two decades have
seen the development of a large quantity of estimation and
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filtering algorithms which include, but are not limited to,
Kalman filtering [3], [16], extended Kalman filtering [13],
[22], [35], unscented Kalman filtering [27],H∞ filtering
[2], [18], [28], [34], moving-horizon estimation [26], [51],
envelope-constrained filtering [29],L2-L∞ filtering [32], and
particle filtering [1], [20], [21] techniques. In particular, the
particle filtering is one of the powerful tools in dealing with
non-Gaussian noises in the filtering problems.

The CPSs are known to be vulnerable to miscellaneous
security threats in both physical layers and cyber layers due
primarily to their massive components and the demanding
communications among different components [15]. Generally
speaking, it is not an easy work to model the attacks in a
unified and accurate way owing to the cunning/intelligence of
the adversaries. Therefore, a great deal of research attention
has been focused on the filtering/control problem of the
CPSs subject to specific malicious attacks including denial-of-
service attacks [24], [25], [46], deception attacks [12], [39],
[47], replay attacks [41] and many more. It should be noted
that the malicious attacks initiated by the adversaries cannot
be always successful on account of the deployment of the
security software and protection equipment. As a result, the
malicious attacks in most of the existing literature are actually
referred to as randomly occurred/succeed attacks. For exam-
ple, in [42], the event-triggered active disturbance rejection
control problem has been addressed for systems suffering from
both denial-of-service attacks and physical attacks, where the
randomly occurring denial-of-service attacks are characterized
by the Gilbert-Elliott model. In [36], the security-guaranteed
filtering scheme has been developed for delayed systems in
the presence of randomly occurring sensor saturations and
deception attacks, where the occurrence characteristics of the
deception attacks are described by the Bernoulli process.

Apart from the security threats, the scarce resources
(e.g. limited energy capacity and network bandwidth) con-
stitute another critical issue of the CPSs due to the massive
information exchange among the components [10], [14], [44].
In order to utilize the limited resources in an efficient way,
considerable research effort has recently been devoted to
the so-called event-triggered communication mechanism [8],
[19], [38], [50], under which the data exchange is executed
only when a predefined event occurs, thereby reducing the
frequency of data transmissions and mitigating the network
burden [11], [23]. Nevertheless, the data to be transmitted
(if triggered) may still exceed the packet length restriction in
some cases. An alternative approach to dealing with the data-
intensive problem is to use the binary sensor whose outputs are
simply binary values representing switches, contacts, and pins
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etc. In this case, only the binary values need to be transmitted
to the fusion center and the network traffic is much reduced.

Owing to their merits of low cost and simple installation,
binary sensors have been welcomed in industry and have
also been paid a great deal of research attention from aca-
demic communities, see e.g., [48] and the references therein.
The typical binary sensors include the industrial sensors for
pressure/gas/liquid monitoring, and the medical sensors with
binary outcomes, to name just a few [45]. So far, in the
context of filter/estimation, two kinds of particle filtering
algorithms have been developed in [9] based on the data from
a group of binary sensors to track a target. In [45], the fusion
estimation scheme has been presented for a class of linear
time-varying systems subject to bounded noises by exploiting
the information at the sign switching instant of the binary
signal. It should be pointed out that the binary decisions
are prone to be overheard and deliberately flipped by the
adversaries during the data transmission. Such kind of cyber-
attacks, if not addressed well, may deteriorate the estimation
performance and even paralyze the whole CPS.

Summarizing the above discussions, there appears to be a
lack of systematic investigation on the secure particle filtering
problem for a class of nonlinear/non-Gaussian CPSs with
binary sensors subject to randomly occurring multiple attacks.
As such, the primary aim of this paper is to narrow such a
gap by means of designing a secure particle filtering algorithm
with certain robustness to the multiple attacks in both physical
layers and cyber layers. It is worth noticing that the addressed
filtering problem is by no means straightforward due mainly
to the technical challenges identified as follows: 1) how
to establish a unified framework to take into account the
simultaneous presence of denial-of-service attacks, deception
attacks and flipping attacks in the measurement model? 2) how
to deal with the analytical complexity induced by the random
nature of the multiple attacks and the binary (hence sparse)
signal from binary sensors? and 3) how to attenuate the effect
from the multiple attacks on the filtering performance in the
filter design?

The main contributions of this paper can be highlighted as
threefold: 1) the secure filtering problem is investigated for
a class of general nonlinear/non-Gaussian CPSs with binary
sensors; 2) a comprehensive yet realistic measurement model
is presented to simultaneously take into account the random-
ly occurring denial-of-service attacks, deception attacks and
flipping attacks; and 3) a secure particle filtering algorithm
is developed by establishing a modified likelihood function to
compensate for the effect of the multiple malicious attacks.

The remainder of this paper is structured as follows. Sec-
tion II formulates the secure filtering problem with binary sen-
sors and gives some preliminaries about the particle filtering
scheme. In Section III, the secure particle filtering algorithm
which deals with the randomly occurring multiple attacks is
developed by establishing a modified likelihood function. A
two-dimensional moving target tracking problem is considered
in Section IV to demonstrate the effectiveness and practicality
of our proposed secure filtering algorithm. Eventually, some
conclusions are presented in Section V.
Notation. Throughout this paper, the notation exploited is

fairly normative.Rn stands for then-dimensional Euclidean
vector space. The superscriptT means the transpose oper-
ation. diag{a1, a2, . . . , an} denotes a diagonal matrix with
a1, a2, . . . , an being its diagonal elements.px(·) stands for
the probability density function of a stochastic variablex, i.e.,
x ∼ px(·), andcdfx(·) denotes the corresponding cumulative
distribution function.Pr{X} represents the occurrence proba-
bility of a discrete eventX . E(x|z) denotes the mathematical
expectation ofx conditional onz. N (x;u,Σ) denotes the
Gaussian probability density function of stochastic variable
x with mean and covariance beingu andΣ, respectively.xk:l

is the path ofx from time instantk to time instantl. Other
notations will be introduced when needed.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System setup

Consider a class of discrete-time nonlinear systems charac-
terized by the following model:

xk+1 = f(xk) + ωk (1)

wherexk ∈ R
n denotes the system state at time instantk

and f(·) : Rn 7→ R
n represents the nonlinear state evolution

function.ωk ∈ R
n is the process noise satisfyingpωk

(·). The
measurement model of thesth sensor is given by

ŷsk = hs(xk) + νsk, s = 1, 2, . . . , S (2)

where ŷsk ∈ R represents the measurement output of the
sth sensor at time instantk and hs(·) : R

n 7→ R is the
measurement function.νsk ∈ R is the measurement noise on
the sth sensor satisfyingpνs

k
(·).

In this paper, we assume that the measurement process is
prone to attacks launched by the malicious attackers. That is to
say, the actual measurements of the sensors may be falsified by
the randomly occurring denial-of-service attacks or deception
attacks, which are characterized by

ȳsk = (1− φs
k)(ŷ

s
k + ϕs

kρ
s
k) (3)

whereȳsk is the falsified measurement of thesth compromised
sensor andρsk denotes the deception attack launched by the
attacker given by

ρsk = −ŷsk + µs
k (4)

where µs
k represents a random deception signal satisfying

pµs
k
(·). The stochastic variablesφs

k andϕs
k are assumed to be

mutually independent Bernoulli-distributed white sequences,
which take values on0 and1 with the following mathematical
probabilities:

{

Pr{φs
k = 1} = φ̄s

Pr{φs
k = 0} = 1− φ̄s

and
{

Pr{ϕs
k = 1} = ϕ̄s

Pr{ϕs
k = 0} = 1− ϕ̄s

where φ̄s ∈ [0, 1) and ϕ̄s ∈ [0, 1) are both known constants
referred to as the success rates of the initiated denial-of-service
attacks and deception attacks, respectively.
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Next, thesth sensor processes its measurement according
to

θsk =

{

1, if ȳsk > Tδ

0, otherwise
(5)

whereTδ is a known threshold, and sends only binary value
θsk to the fusion center via the wireless transmission channels
where the cyber-attacker is able to flip the binary information.

By introducing another Bernoulli-distributed stochastic vari-
ableαs

k, the eventually received signal contributed by thesth
sensor at the fusion center is of the following form [9]:

ysk = τsθ̄sk + εsk (6)

whereτs is the channel gain coefficient corresponding to the
sth sensor,εsk is the channel noise satisfyingpεs

k
(·) and

θ̄sk = (1 − αs
k)θ

s
k + αs

k(1− θsk) (7)

where
{

Pr{αs
k = 1} = ᾱs

Pr{αs
k = 0} = 1− ᾱs

with ᾱs ∈ [0, 1) being the probability that the cyber-attacker
successfully flips the binary information.

For notational brevity, all the received signals at the fusion
center up to time instantk are denoted as

y1:S1:k =
[

y1
1:k y2

1:k · · · yS
1:k

]T
.

Remark 1:For the addressed nonlinear/non-Gaussian CPSs,
the measurement signals may be intentionally compromised
by the adversaries in both physical layers and cyber layers.
Note that the malicious attacks launched by the adversaries in
both layers are less likely to work at all times due probably
to the complicated network environment and the defender’s
security protection. Therefore, it is reasonable to consider
that the attacks occur in a random way [5], [33]. To model
the randomness of the successful attacks in the physical
layers, Bernoulli-distributed stochastic variablesφs

k and ϕs
k

are introduced in (3). To be more specific, ifφs
k = 0 and

ϕs
k = 0, the measurement process of thesth sensor is normal;

if φs
k = 0 andϕs

k = 1, the sth sensor is successfully attacked
in the form of deception attack; ifφs

k = 1, the sth sensor
is hijacked by the adversary and the measurement service is
unavailable, i.e., only the reading “0” can be output. Similarly,
the Bernoulli distributed stochastic variableαs

k is adopted in
the cyber layers. It is evident from (7) that the binary signal is
free from the malicious attacks during the transmission when
αs
k = 0, and the binary signal is deliberately flipped by the

adversary whenαs
k = 1. It should be mentioned that the

considered model in [9] can be regarded as a special case
of our work whenφs

k = 0, ϕs
k = 0 andαs

k = 0.
Remark 2:It should be noted that the selection of threshold

Tδ is of practical importance. After the threshold is set, the
output of the binary sensor will be determined accordingly, and
a slight change of the threshold might cause a huge change of
the measurement output. In practical applications, the selection
of the threshold is closely related to the sensing principle
or specific task. For example, in the sensor networks with
limited sensing range, the target of interest can be detected
and observed only when it moves into the sensing region of

Malicious attack

Wireless transmission

Binary sensor

Fusion 

center

Attackers

Target

Fig. 1: Block diagram of the CPS with binary sensors
subject to malicious attacks. (The purple means that the
sensors/wireless transmission channels are successfully

attacked.)

the sensors [30]. In this case, the threshold depends on the
physical constraints of the sensors and the sensors can simply
output the binary values to imply whether they detect the target
or not. On the other hand, if the measurement output serves a
specific task (e.g. camera-based surveillance within campus),
the threshold is determined as a reasonable similarity of the
pedestrian activity to the predefined suspicious behaviors.

Throughout this paper, we make the following two assump-
tions.

Assumption 1:The process noiseωk, the measurement noise
νsk, the random deception signalµs

k and the channel noiseεsk
are mutually independent and also independent of the initial
statex0 that has the prior probability density functionpx0

(·).
Assumption 2:The nonlinear functionsf(·) and hs(·) as

well as the probability density functionspωk
(·), pνs

k
(·), pµs

k
(·)

andpεs
k
(·) are all known.

B. Preliminaries

The key issue in sequential Bayesian filtering problem is to
calculate the posterior probability density functionp(xk|y1:S1:k ),
based on which we can obtain the minimum mean-square error
(MMSE) estimate for the statexk as

x̂MMSE
k = E{xk|y

1:S
1:k } =

∫

xkp(xk|y
1:S
1:k )dxk. (8)

The posterior probability density functionp(xk|y
1:S
1:k ) can

be recursively derived as follows:















p(xk|y
1:S
1:k−1) =

∫

p(xk|xk−1)p(xk−1|y
1:S
1:k−1)dxk−1,

p(xk|y
1:S
1:k ) =

p(y1:Sk |xk)p(xk|y1:S1:k−1)
∫

p(y1:Sk |xk)p(xk|y1:S1:k−1
)dxk

.

(9)

However, the closed-form expression ofp(xk|y1:S1:k ) is gen-
erally unavailable except for some special cases, e.g., the
linear and Gaussian systems. Fortunately, the sequential Monte
Carlo method (i.e., particle filtering) [1] can provide an
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approximation ofp(xk|y1:S1:k ) by a set of weighted particles
{xm

k , wm
k }Mm=1 as

p(xk|y
1:S
1:k ) =

M
∑

m=1

wm
k δ(xk − xm

k ), (10)

and then we obtain

x̂MMSE
k =

M
∑

m=1

wm
k xm

k (11)

where M is the number of particles,δ(·) is the Dirac
delta function,xm

k is sampled from a proposal distribution
q(xk|xm

k−1, y
1:S
k ), and the corresponding weightwm

k is com-
puted by

wm
k = wm

k−1

p(y1:Sk |xm
k )p(xm

k |xm
k−1

)

q(xm
k |xm

k−1
, y1:Sk )

. (12)

The purpose of this paper is to design a secure particle
filtering algorithm for a class of nonlinear/non-Gaussian CPSs
with binary sensors under multiple attacks such that the
MMSE estimate of the statexk is obtained at the fusion center
using the compromised measurement signals up to time instant
k, i.e., y1:S

1:k .

III. SECURE PARTICLE FILTERING ALGORITHM DESIGN

In this section, we investigate the secure particle filter design
problem for a class of CPSs formulated in Section II-A. In
fact, if we only consider the systems described by (1) and
(2) in a safe environment, the estimation objective can be
directly achieved by virtue of the standard particle filtering
algorithm (e.g. the sampling importance resampling particle
filter). However, the vulnerability of the CPSs (to the malicious
attacks in both physical layers and cyber layers) renders the
standard particle filtering scheme inapplicable, and there is an
urgent need to develop a dedicated filter algorithm that can
resist the cyber-attacks with satisfactory filtering accuracy.

The following theorem provides a solution to the secure
particle filter design problem by giving an explicit expression
of the modified likelihood function to assist in updating the
importance weights.

Theorem 1:Consider the measurement model described by
(2), the randomly occurring denial-of-service attack/deception
attack model characterized by (3)-(4) and the binary trans-
mission scheme given by (5)-(7). The modified likelihood
function evaluated atxm

k , which is employed to update the
corresponding importance weight at the fusion center, is given
by

p(y1:Sk |xm
k )

=

S
∏

s=1

{

(1− φ̄s)
[

(1− ϕ̄s)p(ysk|φ
s
k = 0, ϕs

k = 0, xm
k )

+ ϕ̄sp(ysk|φ
s
k = 0, ϕs

k = 1, xm
k )
]

+ φ̄sp(ysk|φ
s
k = 1, xm

k )
}

(13)

where

p(ysk|φ
s
k = 0, ϕs

k = 0, xm
k )

=pεs
k
(ysk − τs)

{

ᾱscdfνs
k
(Tδ − hs

k(x
m
k ))

+ (1− ᾱs)[1− cdfνs
k
(Tδ − hs

k(x
m
k ))]

}

+ pεs
k
(ysk)

{

ᾱs[1− cdfνs
k
(Tδ − hs

k(x
m
k ))]

+ (1− ᾱs)cdfνs
k
(Tδ − hs

k(x
m
k ))
}

,

(14)

p(ysk|φ
s
k = 0, ϕs

k = 1, xm
k )

=pεs
k
(ysk − τs)

{

ᾱscdfµs
k
(Tδ)

+ (1− ᾱs)[1− cdfµs
k
(Tδ)]

}

+ pεs
k
(ysk)

{

ᾱs[1− cdfµs
k
(Tδ)]

+ (1− ᾱs)cdfµs
k
(Tδ)

}

,

(15)

and

p(ysk|φ
s
k = 1, xm

k ) = ᾱspεs
k
(ysk−τs)+(1− ᾱs)pεs

k
(ysk). (16)

Proof: Based on Assumption 1, we have

p(y1:Sk |xm
k ) =

S
∏

s=1

p(ysk|x
m
k ). (17)

On the other hand, it is clear from (3)-(7) that the actually
received signalysk from the sth sensor at the fusion center
depends on the Bernoulli-distributed stochastic variablesφs

k,
ϕs
k andαs

k, as well as the threshold parameterTδ. To proceed
with the proof, we will derive the expression of the likelihood
function in the following three cases.

Case 1:φs
k = 0 andϕs

k = 0.
In this case, we have

ȳsk = ŷsk, (18)

and it is straightforward to obtain from the law of total
probability that

p(ysk|φ
s
k = 0, ϕs

k = 0, xm
k )

=p(ysk|θ̄
s
k = 1, φs

k = 0, ϕs
k = 0, xm

k )

× Pr{θ̄sk = 1|φs
k = 0, ϕs

k = 0, xm
k }

+ p(ysk|θ̄
s
k = 0, φs

k = 0, ϕs
k = 0, xm

k )

× Pr{θ̄sk = 0|φs
k = 0, ϕs

k = 0, xm
k }.

(19)

In the sequel, we discuss each term on the right-hand side
of the above equation. According to (7), we have

Pr{θ̄sk = 1|φs
k = 0, ϕs

k = 0, xm
k }

=Pr{θ̄sk = 1, αs
k = 1|φs

k = 0, ϕs
k = 0, xm

k }

+ Pr{θ̄sk = 1, αs
k = 0|φs

k = 0, ϕs
k = 0, xm

k }

=Pr{θ̄sk = 1|αs
k = 1, φs

k = 0, ϕs
k = 0, xm

k }Pr{αs
k = 1}

+ Pr{θ̄sk = 1|αs
k = 0, φs

k = 0, ϕs
k = 0, xm

k }Pr{αs
k = 0}

=Pr{θsk = 0|φs
k = 0, ϕs

k = 0, xm
k }ᾱs

+ Pr{θsk = 1|φs
k = 0, ϕs

k = 0, xm
k }(1− ᾱs)

(20)
and, similarly, we obtain

Pr{θ̄sk = 0|φs
k = 0, ϕs

k = 0, xm
k }

=Pr{θsk = 1|φs
k = 0, ϕs

k = 0, xm
k }ᾱs

+ Pr{θsk = 0|φs
k = 0, ϕs

k = 0, xm
k }(1− ᾱs),

(21)
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where
Pr{θsk = 1|φs

k = 0, ϕs
k = 0, xm

k }

=p(ŷsk > Tδ|x
m
k )

=p(hs
k(x

m
k ) + νsk > Tδ)

=1− cdfνs
k
(Tδ − hs

k(x
m
k ))

(22)

and

Pr{θsk = 0|φs
k = 0, ϕs

k = 0, xm
k } = cdfνs

k
(Tδ − hs

k(x
m
k )).

(23)
Furthermore, it can be observed from (6) that

p(ysk|θ̄
s
k = 1, φs

k = 0, ϕs
k = 0, xm

k ) = pεs
k
(ysk − τs)

p(ysk|θ̄
s
k = 0, φs

k = 0, ϕs
k = 0, xm

k ) = pεs
k
(ysk).

(24)

Then, we arrive at (14) by substituting (20)-(24) into (19).
Case 2:φs

k = 0 andϕs
k = 1.

In this case, the deception attack is successfully launched
by the adversary and we know that

ȳsk = µs
k. (25)

After some similar manipulations as those inCase 1, it is easy
to obtain (15).

Case 3:φs
k = 1.

In this case, thesth sensor is hijacked by the adversary
and only the reading of “0” can be output. Without loss of
generality, we assume thatTδ is a positive scalar. Then, similar
to the previous cases, we can have (16).

According to the law of total probability, we write the
likelihood functionp(ysk|x

m
k ) associated with thesth sensor

as follows:

p(ysk|x
m
k ) =p(ysk, φ

s
k = 0|xm

k ) + p(ysk, φ
s
k = 1|xm

k )

=p(ysk|φ
s
k = 0, xm

k )Pr{φs
k = 0}

+ p(ysk|φ
s
k = 1, xm

k )Pr{φs
k = 1}

=(1− φ̄s)p(ysk|φ
s
k = 0, xm

k ) + φ̄sp(ysk|φ
s
k = 1, xm

k )

=(1− φ̄s)
[

(1− ϕ̄s)p(ysk|φ
s
k = 0, ϕs

k = 0, xm
k )

+ ϕ̄sp(ysk|φ
s
k = 0, ϕs

k = 1, xm
k )
]

+ φ̄sp(ysk|φ
s
k = 1, xm

k )
(26)

It follows from (17) and (26) that the modified likelihood
function of particlexm

k at the fusion center can be calculated
by (13), which completes the proof.

Now, we are in a position to design the secure particle
filtering algorithm, whose main purpose is to get the particle-
based representation of the posterior probability density func-
tion sequentially. In other words, we aim to obtain the particle-
based representation ofp(xk|y1:S1:k ) as shown in (10) given that
of p(xk−1|y1:S1:k−1

).
Let a set of weighted particles{xm

k−1
, wm

k−1
}Mm=1 to approx-

imate p(xk−1|y1:S1:k−1
) be already obtained. If we choose the

state transition probability density functionp(xk|xk−1) as a
proposal densityq(xk|xk−1, y

1:S
k ), then the particles at time

instant k are sampled asxm
k ∼ p(xk|xm

k−1
) [1]. As such,

when we obtain the measurement signals contaminated by
the randomly occurring multiple attacks, we can update the
importance weightwm

k associated with particlexm
k according

to wm
k = wm

k−1p(y
1:S
k |xm

k ). Meanwhile, in order to mitigate

the phenomenon of particle degeneracy during the iterative
update of particles, the resampling strategy is added at each
iteration by removing the particles with negligible weights
and duplicating the particles with significant weights [1].
It should be noted that, even though we design the secure
particle filtering algorithm in the framework of the sampling
importance resampling particle filter, extensions to other types
of particle filters (e.g. auxiliary particle filter [31]) are fairly
straightforward.

In summary, the pseudo-code of the secure particle filtering
algorithm for the CPSs with binary sensors subject to multiple
attacks is provided in Algorithm 1.

Remark 3:So far, we have addressed the secure filtering
problem for a class of nonlinear/non-Gaussian CPSs with
binary sensors in the framework of sequential Bayesian es-
timation. The available informationy1:Sk at the fusion center
has been employed in the proposed filter. To compensate for
the effect of the malicious attacks on the filtering perfor-
mance, the probability information of the randomly occurring
attacks has been taken into account in the process of filter
design. A modified likelihood function has been explicitly
constructed in (13) to update the importance weights. In this
sense, the developed particle filtering algorithm has certain
robustness against the randomly occurring denial-of-service
attacks, deception attacks and flipping attacks. Note that, if
the probability information of the randomly occurring attacks
is not available, one could employ an online detector to detect
the random attacks at each time instant, which, however, might
be time- and cost-consuming. In fact, it is an interesting yet
challenging task to design an efficient secure filtering scheme
under the random occurring multiple attacks without prior
statistics, which would be one of the promising research topics.

Remark 4:The filtering problem for CPSs under cyber-
attacks has been extensively studied in the literature. Our main
results distinguish from existing ones in the following three
aspects: 1) the secure filtering problem addressed is new in the
sense that the CPS is nonlinear, the underlying noises are al-
lowed to be non-Gaussian and the sensor outputs are binary; 2)
the model for malicious attacks is new as it takes three kinds of
random occurring attacks (denial-of-service attacks, deception
attacks and flipping attacks) into simultaneous consideration;
and 3) the developed secure particle filtering algorithm with
a modified likelihood function is able to compensate for the
effect of the multiple malicious attacks.

IV. SIMULATION RESULTS

In this section, a practical application to the moving target
tracking is presented to demonstrate the usefulness of our
proposed secure particle filtering algorithm.

A. Moving target tracking scenario

Consider the moving target tracking problem in a two-
dimensional (2-D) Cartesian coordinate system. The mathe-
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Algorithm 1 Secure particle filtering algorithm for the CPSs
with binary sensors subject to multiple attacks

1: Initialization : Draw M particles from the prior density,
i.e., xm

0 ∼ px0
(·),m = 1, 2, . . . ,M and set the corre-

sponding importance weightswm
0 as 1

M
. The maximum

recursive time instant is chosen asK.
2: for k = 1, 2, . . . ,K do
3: for m = 1, 2, . . . ,M do
4: Step 1: Importance sampling
5: Sample particlēxm

k from the transition probability
density functionp(xk|xm

k−1).
6: Step 2: Measurement update
7: Collect all the compromised sensor signalsy1:Sk at

the fusion center.
8: Step 3: Importance weight calculation
9: Calculate the unnormalized importance weights

{w̄m
k }Mm=1 according to

w̄m
k = wm

k−1

S
∏

s=1

{

(1− φ̄s)
[

(1− ϕ̄s)

× p(ysk|φ
s
k = 0, ϕs

k = 0, x̄m
k )

+ ϕ̄sp(ysk|φ
s
k = 0, ϕs

k = 1, x̄m
k )
]

+ φ̄sp(ysk|φ
s
k = 1, x̄m

k )
}

,

wherep(ysk|φ
s
k = 0, ϕs

k = 0, x̄m
k ),

p(ysk|φ
s
k = 0, ϕs

k = 1, x̄m
k ) andp(ysk|φ

s
k = 1, x̄m

k )
are defined in (14)-(16), respectively.

10: end for
11: for m = 1, 2, . . . ,M do
12: Step 4: Weight normalization
13: Normalize the importance weights according to

wm
k =

w̄m
k∑

M
j=1

w̄
j

k

.

14: Step 5: State estimate extraction
15: Update the MMSE estimate of statexk and the

corresponding estimation error covariance as

x̂k =

M
∑

m=1

wm
k x̄m

k ,

P̂k =
M
∑

m=1

wm
k (x̄m

k − x̂k)(x̄
m
k − x̂k)

T .

16: Step 6: Resampling
17: Resample new particlexm

k from the distribution
∑M

m=1
wm

k δ(xk − x̄m
k ).

18: end for
19: end for

matical model for the target movement, adopted from [6], is
expressed as:

xk+1 =









1 t 0 0
0 1 0 0
0 0 1 t
0 0 0 1









xk + ωk (27)

wherexk specified by

[ltarx,k, v
tar
x,k , l

tar
y,k , v

tar
y,k ]

T

is the state vector of the moving target at time instantk,
which determines the target position(ltarx,k, l

tar
y,k) and velocity

(vtarx,k , v
tar
y,k ) in the 2-D plane.t stands for the sampling period

andωk is the zero-mean Gaussian white noise with covariance
matrix Covk defined as follows:

Covk = Ξ











t3

3

t2

2
0 0

t2

2
t 0 0

0 0 t3

3

t2

2

0 0 t2

2
t











(28)

whereΞ denotes the acceleration variance.
For the purpose of target tracking,S binary sensors are

deployed in the surveillance areas to detect and receive the
energy produced by the moving target of interest. At time
instantk, the measurement at thesth sensor is described by
(2), where the measurement function is written as [9]

hs(xk) = Υ

(

d0
‖[ltarx,k, l

tar
y,k ]

T − [lsen,sx,k , lsen,sy,k ]T ‖

)λs

(29)

where Υ denotes the produced energy by the target at a
reference distanced0, (lsen,sx,k , lsen,sy,k ) represents the location of
the sth sensor (we assume that the information of the sensor
locations is available to the fusion center) andλs is a known
environment-dependent propagation loss parameter of thesth
sensor.

The measurement noiseνsk on thesth sensor is represented
by a two-component Gaussian mixture model, i.e.,

p(νsk) = (1 − βs)N (νsk;u
s
1,Σ

s
1) + βsN (νsk;u

s
2,Σ

s
2)

whereβs is the glint probability. In addition, the channel noise
εsk associated with thesth sensor is assumed to be zero-mean
Gaussian white noise with variance(σs

ε)
2 and the deception

signalµs
k satisfies a uniform distribution over the interval[a, b].

Once the measurement process is completed, each sensor
compares the obtained measurements with the predefined
threshold parameter and only a single binary digit is trans-
mitted to the fusion center. The above-mentioned processes
are, of course, prone to be attacked by the adversaries and the
corresponding parameters are given in Section IV-C.

B. Performance metric

The root mean-square error (RMSE) on the position and
velocity estimates averaged overN Monte Carlo trials are
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selected as the performance metrics in our work to assess the
tracking performance, which are respectively defined by

RMSEp,k =

√

√

√

√

1

N

N
∑

i=1

(

(ltar,ix,k − l̂tar,ix,k )2 + (ltar,iy,k − l̂tar,iy,k )2
)

,

RMSEv,k =

√

√

√

√

1

N

N
∑

i=1

(

(vtar,ix,k − v̂tar,ix,k )2 + (vtar,iy,k − v̂tar,iy,k )2
)

where the subscriptsp, k and v, k indicate, respectively, the
position and velocity.(ltar,ix,k , ltar,iy,k ) and(vtar,ix,k , vtar,iy,k ) respec-
tively represent the realization of(ltarx,k, l

tar
y,k) and(vtarx,k , v

tar
y,k ) in

the ith Monte Carlo trial, and their estimates are respectively
given by (l̂tar,ix,k , l̂tar,iy,k ) and (v̂tar,ix,k , v̂tar,iy,k ).

C. Common simulation parameters

In the simulation, the moving target is observed byS = 16
binary sensors, whose positions are depicted in Fig. 2. The
target trajectories are simulated by setting initial statex0 =
[15, 0.4, 20, 0.3]T , sampling periodt = 1, and acceleration
varianceΞ = 0.0452. To sample the particles in the initializa-
tion step, a procedure adopted from [6] is employed. To be
more specific, the position components are directly sampled
from a Gaussian prior distribution with mean[15, 20]T and
covariance matrixdiag{100, 100}, and the velocity compo-
nents are indirectly sampled from a Gaussian prior distri-
bution with mean[0.5, arctan(3/4)]T and covariance matrix
diag{0.252, (π/6)2} by noting that the prior knowledge of the
resultant velocity and the azimuth is more common in practice.
The number of particles isM = 500 andN = 50 different
realizations are conducted for the Monte Carlo simulations.
Other parameter setups related to the binary sensors and the
randomly occurring attacks are presented in TABLE I.

TABLE I: Parameter setups

Parameters Values Parameters Values

Υ 4000 φ̄s 0.1
d0 1 ϕ̄s 0.1
λs 2.8 ᾱs 0.1
βs 0.15 a -3
us
1

0 b 3
Σs

1
0.01 Tδ 0.3

us
2

0 τs 0.5
Σ

s
2

0.25 σs
ε 0.1

D. Simulation results and discussions

One realization of the target trajectory and the estimated
trajectory obtained from the proposed secure particle filtering
algorithm (abbreviated as Sec-PF) are presented in Fig. 2,
from which we can see that the trajectory estimated by the
Sec-PF is close to the true trajectory of the moving target.
For the binary sensor locating at (10, 10), Fig. 3 displays its
measurements corrupted by the randomly occurring denial-of-
service attacks/deception attacks and the corresponding binary
values subject to the randomly occurring flipping attacks.
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Fig. 2: One realization of the target trajectory and its
estimate obtained from our proposed Sec-PF. The blue
diamonds denote the positions of the binary sensors.
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Fig. 3: The measurements of the sensor locating at (10, 10)
before transmitted and the corresponding binary values.

In the next simulations, we aim to compare the tracking
performance under the following three scenarios: (i) tracking
with Sec-PF; (ii) tracking with the standard particle filtering
algorithm but neglecting the effect of the randomly occurring
attacks (abbreviated as Sta-PF-Neg); and (iii) tracking with
the standard particle filtering algorithm using the uncorrupted
measurement signals (abbreviated as Sta-PF and used as a
benchmark). The behaviors of the RMSEs on position and
velocity estimates obtained from the above-mentioned three
algorithms are compared in Figs. 4-5, respectively. We observe
that the Sec-PF is able to provide the estimates that are close to
the Sta-PF, while the Sta-PF-Neg performs the worst with the
highest estimation errors. As expected, our proposed Sec-PF
possesses certain robustness against the randomly occurring
multiple attacks.

In order to investigate the impact of the randomly occurring
multiple attacks on the tracking performance, three groups of
simulations are further conducted with different occurrence
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Fig. 4: RMSEs on position estimates of Sec-PF, Sta-PF-Neg
and Sta-PF.
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Fig. 5: RMSEs on velocity estimates of Sec-PF, Sta-PF-Neg
and Sta-PF.

probabilities of attacks. In each group, only one parameter
varies and the others remain unchanged. The corresponding
simulation results are plotted in Figs. 6-11, which indicates
that the occurrence probabilities of attacks (i.e.,φ̄s, ϕ̄s and
ᾱs) do have a significant effect on the tracking performance.
We figure out that, as the occurrence probabilities of attacks
increase, the tracking performance will gradually degrade.

In addition, we conduct further simulations to compare
the average running time for Steps 1-6 at each time instant,
average RMSEs on position estimates, and average RMSEs
on velocity estimates with different numbers of particles.
The corresponding simulation results (obtained on a PC with
2.50 GHz CPU) are summarized in TABLE II. It is clear
that, the increase of the number of particles will usually
improve the filtering performance at the cost of higher average
running time. As such, the designers/operators should consider
the real-world engineering specifications (e.g. the sampling
period) and choose a proper number of particles to attain a
balance between the computational burden and the filtering
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Fig. 6: RMSEs on position estimates with different values of
φ̄s.
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Fig. 7: RMSEs on velocity estimates with different values of
φ̄s.
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Fig. 8: RMSEs on position estimates with different values of
ϕ̄s.
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Fig. 9: RMSEs on velocity estimates with different values of
ϕ̄s.

0 20 40 60 80 100 120

Time, k

0

1

2

3

4

5

6

7

8

R
M

S
E

p,
k

Fig. 10: RMSEs on position estimates with different values
of ᾱs.
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Fig. 11: RMSEs on velocity estimates with different values
of ᾱs.

performance.

TABLE II: Performance comparisons with different numbers
of particles.

M 200 400 600

Average running time (s) 0.0196 0.0387 0.0584
Average RMSEs on position estimates 3.7008 3.5354 3.3978
Average RMSEs on velocity estimates 0.1741 0.1699 0.1643

V. CONCLUSIONS

In this paper, we have addressed the secure particle filter
design problem for a class of nonlinear/non-Gaussian CPSs
with binary sensors subject to the randomly occurring mul-
tiple attacks. Three Bernoulli-distributed random variables
with known probabilities have been introduced to describe
the randomly occurring denial-of-service attacks, deception
attacks and flipping attacks, respectively. In order to mitigate
the impact of the malicious attacks launched by adversaries on
the filtering performance, we have made an effort to establish
a modified likelihood function in which the occurrence proba-
bilities of the multiple attacks have been fully exploited. Based
on the theoretical analysis, a secure particle filtering algorithm
has been developed and applied for the moving target tracking.
The Monte Carlo simulation results have been presented
to elucidate the usefulness of the developed secure particle
filtering algorithm. In the future, our research topics would
focus on the secure filtering problem for more complicated
scenarios, such as the distributed denial-of-service attacks [40],
redundant channels [49], and the conic-type nonlinear Markov
jump systems [43].
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