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Abstract. In the context of sensor data generated by Building Management Systems (BMS), early warning
signals are still an unexplored topic. The early detection of anomalies can help preventing malfunctions of key
parts of a heating, cooling and air conditioning (HVAC) system that may lead to a range of BMS problems, from
important energy waste to fatal errors in the worst case.We analyse early warning signals in BMS sensor data for
early failure detection. In this paper, the studied failure is a malfunction of one specific Air Handling Unit (AHU)
control system that causes temperature spikes of up to 30 degrees Celsius due to overreaction of the heating and
cooling valves in response to an anomalous temperature change caused by the pre-heat coil in winter period in a
specific area of a manufacturing facility. For such purpose, variance, lag-1 autocorrelation function (ACF1),
power spectrum (PS) and variational autoencoder (VAE) techniques are applied to both univariate and
multivariate scenarios. The univariate scenario considers the application of these techniques to the control
variable only (the one that displays the failure), whereas the multivariate analysis considers the variables
affecting the control variable for the same purpose. Results show that anomalies can be detected up to 32 hours
prior to failure, which gives sufficient time to BMS engineers to prevent a failure and therefore, an proactive
approach to BMS failures is adopted instead of a reactive one.
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1 Introduction

Digital transformation involves changes of key business
operations which affect products and processes [1], and
data analytics andmachine learning play a key role in these
processes [2]. In recent years, the development of
connectivity and flows of information between devices
and sensors provided abundant data. In order to extract
value from this data, Early Warning Signals (EWS) can be
used to reduce systems downtime, optimise capacity and
reduce operational costs.

Building Management Systems (BMS) present advan-
tages for energy control and comfort policy management
such as identifying locations of potential energy waste,
decreasing equipment operating cost, providing indoor
environmental safety and comfort through HVAC system
control, as well as controls of water consumption, elevators,
etc. This paper focuses on the early detection of failures in
the temperature control of zones, where a policy comfort
nding author: joaquinmesajimenez@gmail.com
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has been maintained. This temperature variable often
displays a failure in heating or cooling system. An example
could be a failure in a certain point of the system (fan coil
unit, ventilation, heating, etc.) that causes the temperature
of a zone to decrease well below its policy comfort.

1.1 Fault detection and diagnosis

As a part of this study, we consider that the EWS
methodologies applied could be relevant to diagnosis of
system errors. For AHU fault diagnosis some previous work
has been reported in the literature. Reference [3] describes
the application of Artificial Neural Networks (ANNs) to
fault diagnosis in an AHU by using residuals of system
variables to quantify the dominant symptoms of fault
modes of operation. Following the same approach,
reference [4] proposed AHU subsystem level fault detection
using a General Regression Neural-Network (GRNN),
residual generation and fault detection and diagnosis. A
novel feature extraction technique to extract temperature
and power associated features from high-dimensional and
unstructured terminal unit data is presented in [5], to
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diagnose faulty HVAC in an automatic and remote
manner. Reference [6] exercises the use of Air handling
unit Performance Assessment Rules (APAR). They use
control signals to determine the mode of operation of the
AHU. A subset of expert rules which correspond to that
mode is then evaluated to determine whether a fault
exists. In the review of fault detection and diagnosis
methodologies carried by [7], various Fault Detection and
Diagnosis (FDD) are described to illustrate the use of
evaluation standard parameters for improving the
performance of AHUs. This work divides FDDs in three
main categories, namely analytical-based methods,
knowledge-based methods, and data-driven methods. In
[8] an approach for clustering air conditioning zones of
influence together, shows how room areas, weather
conditions, and air conditioning settings affect the air
conditioning power consumption of rooms in real life. In
the context of building’s energy performance, reference [9]
proposes a hybrid and multilevel FDD tool for the
identification and prioritization of corrective maintenance
actions helping to ensure the energy performance of
buildings using dynamic Bayesian networks to monitor
energy consumption. Following a similar line of work in
the context of building energy performance, reference [10]
proposed to evaluate the uncertainty associated to the use
of a simplified model for the estimation of the energy
consumption of a given building. In a more recent study,
reference [11] proposes a method that employs sequential
two-state clustering to identify abnormal behaviour of the
fan coil unit. Some other recent studies on HVAC systems
fault detection and diagnosis can be seen in [5,12,13].

1.2 Early warning signals

The main problem in the state-of-the-art BMSs is that
they tend to use a reactive approach instead of a proactive
one. The system failure is detected once it has happened,
thus causing a disruption in services and forcing engineers
to temporarily shut down some of the equipment in order
to fix the failure. This paper proposes a proactive
approach to early detection of BMS failures, aiming at
both EWS and forecast of time series temperature
sensor data.

Prior publications prove that EWS have a wide range of
applications such as climate pattern change analysis
[14–17]. Also, a common application for EWS in
manufacturing is degradation assessment [18,19], and
early detection of failures for critical system components
in general as explained in [20]. Another popular area of
application is economics, such as the analysis of banking
system collapse in [21–23], credit risk diagnosis [24,25] and
studies for economic cycles for certain asset prices in
[26–28]. Also in biology, with a wide variety of applications
within the field such as [29–32].

There are several studies of EWS in dynamical systems
such as climatic variables that can be applied to our case
study due to its nature as dynamical system. An example
is [14], which uses lag-1 autocorrelation (ACF1), the
Detrended Fluctuation Analysis (DFA) exponent and
Power Spectrum (PS) in tropical cyclon data. For the
multiuvariate tropical cyclone data case, reference [15]
uses Empirical Orthogonal Functions (EOF) for
dimensionality reduction prior to applying ACF1, DFA
and PS. They also study the possibility of using the
Jacobian matrix eigenvalues of the system as tipping point
indicator. In the same area of application, references
[16,17] use ACF and DFA to detect climate tipping points.
In [33] a novel statistical method is applied, which is the
method of potentials [34], for EWS to analyse the
changing number of climate states during the last
60 kyr. The method detects the changes between states
by estimating the probability density of the recorded time
series. In the predictive maintenance field, reference [35]
uses DFA and ACF to detect anomalies in electronic
components commonly used in applications of the
automotive and aviation industries. A different approach
is shown in [36], which uses invariant-based identification
for Lithium-ion battery performance degradation. In [37],
they present data driven based models for air source heat
pumps performance evaluation and anomaly detection
based on real data collected over a water heating system.

Variational Autoencoders (VAE) are becoming
increasingly popular for failure detection. In [38] they
use an autoencoder residual vector error magnitude. This
method is tested on several images datasets, concluding
that it is a valid methodology for failure detection, as the
hidden layer representation is capable of characterising the
fundamental attributes of of the system within normal
conditions, therefore to measure the deviation from
“normal functioning”. Following a similar method in a
manufacturing field, in [18] uses VAE for degradation
assessment of the ball screw. The assessment is done using
the Variational Autoencoder Reconstruction Error
(VAERE) and it demonstrates the progressive degradation
of this component.

The paper is organised as follows. Section 2 describes
the data used in this study, both for the univariate and
multivariate cases. In Section 3, the methodologies used for
the purpose of this paper are explained and summarised.
Results are then outlined in Section 4. Finally, Section 5
outlines the conclusions.
2 Problem description & data

The goal of this paper is to apply EWS techniques for early
failure detection in Building Management Systems
(BMS). The building used in this case study is a large
manufacturing facility that consists of office spaces and
production spaces, separated in different plants. The
failure consists of a malfunction of the heating and cooling
valve control system that causes unnecessary temperature
spikes in the affected zone of the building. When the
Ouside Air Temperature (OAT) drops below 5 degrees
Celsius, the control system activates the frost coil valve,
which is designed to protect the HVAC equipment from
freezing but also may have an effect in the room
temperature (in this case it does). This causes the cooling
and heating valve to overreact in order to compensate de
influence in temperature and thus, causing the spikes.



Fig. 1. Plot of sensor variables affecting room temperature.
(a) Supply Air Temperature (SAT) andOutside Air Temperature
(OAT) in degrees Celsius. (b) Percentage of opening for each of
the heating and cooling valves. Plot window starts at 5:30AM of
the 25th of January 2019, 64 hours prior to the failure.
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This malfunction has been observed after a long period of
time with no failures.

Our variable of interest is the supply air temperature
(SAT) of a particular zone of the building in the
manufacturing plant. SAT is controlled by the average
room temperature measured by four sensors installed in
the zone using the control signal of pre-established fixed
setpoint. Average room temperature is then used by the
system to regulate the percentage of openness of heating
or cooling valves, according to the setpoint. Another
factor that influences the temperature of the room is the
OAT. These four variables are represented in Figure 1,
where the origin, 0, is taken to represent the start of the
failure.

Another variable that controls temperature of the room
is the frost coil valve (or pre-heat coil), which is worth
mentioning as it may have an influence in the room
temperature by increasing it, but we are not using it for the
purpose of early failure detection.

–
 Outside Air Temperature controls frost coil valve. Frost
coil valve protects the Air Handling Unit (AHU) from
very low temperatures (the pre-heat coil protects the
parts containing liquid elements, otherwise they would
contract due to the low temperatures and damage the
AHU as a consequence).
–
 Supply Air Temperature controls heating and cooling
valves. As data is registered in winter, the cooling
valve will be closed most of the time, but in periods of
anomaly it activates and provides with cooling to the
environment.

We first conduct univariate analysis on the SAT by
using different indicators explained in Section 3, and then
we take into account other variables, reducing their
dimensionality and applying the same techniques to
compare both approaches and identify which one provides
an EWS the earliest.
3 Methodology

3.1 Early warning signals

There are a number of techniques to detect Early Warning
Signals (EWS) as mentioned in Section 1. For the purpose
of early failure detection applied to BMS we use four:
variance, power spectrum, ACF1 and VAE. These early
warning indicators are used with a chosen sliding window
applied to the time series preceding the onset of a
transition. In this case, the choice of the length of the
sliding window is a trade-off between time-resolution (data
availability) and the clarity of the change of the signal prior
to transition. In order to identify trends before the
transition, we use Kendall t correlation coefficient [39] in
one of the indicators, PS, as this indicator presents a more
chaotic behavior prior to transition. A positive Kendall t
coefficient indicates increasing trends in the indicators
prior to transition, as applied in [16].

3.1.1 Variance

The first indicator we use is the variance of time series,
which is defined by:

s2 ¼
P ðxi � xÞ2

n� 1
; ð1Þ

where s2 is the sample variance, xi is the value of one
observation, x is the mean value of all observations and n is
the number of observations. The reason to use variance is
to compare a more simple approach with other EWS
indicators.

3.1.2 Power spectrum (PS)

Another EWS indicator is the power spectrum scaling
exponent b, which is calculated by estimating the slope of
the power spectrum S(f) of the data, plotted on logarithmic
axes [40] in short term range. Exponent b can be estimated
as:

SðfÞ∼ f�b; ð2Þ
where the power spectrum is approximated by the
periodogram, obtained from the absolute value of the fast
Fourier transform. Then we obtain b by measuring the
slope inside of the frequency range 10�2� f� 10�1.

3.1.3 Lag-1 auto-correlation function (ACF1)

Autocorrelation function is also used for the purpose of this
paper. This function measures correlation of the time series
within itself at different time lags. According to [41], the
definition of the lag-k autocorrelation function is:

rk ¼

Xn�k

i¼1

ðxi � xÞðxiþk � xÞ
Xn
i¼1

ðxi � xÞ2
ð3Þ
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We use lag-1 (k=1) autocorrelation function (ACF1), the
same as in previous studies. It is important to mention the
influence of the right choice of k. If k is too small, the
indicator would respond very quickly to changes in the time
series. If k is too large, the indicator would barely change
prior to a significant change in the series.

3.1.4 Variational auto-encoder (VAE)

This technique is a novel methodology for EWS. According
to [42], the VAE is a network which attempts to represent
the input with a PDF instead of several hidden nodes. This
is illustrated in [43], with a training setX= [x1, x2, ..., xA]

T

being x vectors from time t=1 to time t=A.
VAE uses a neural network for the probabilistic encoder

qu(z|x) to approximate the posterior of the generative
model pu(x, z). Let the prior over the latent variables
be the centered isotropic multivariate Gaussian
pu(z)= N (z ;0, I). The parameters of the distribution
are computed with a fully-connected neural network with a
single hidden layer that attempts to reduce the reconstruc-
tion error. According to [43], the posterior is approximated
with a multivariate Gaussian with a diagonal covariance
structure:

log quðzjxðiÞÞ ¼ logN ðz;mðiÞ; s2ðiÞIÞ ð4Þ
here, the mean and standard deviation, m(i) and s(i)

respectively, are the outputs of the encoding half of the
network. Concerning the decoder half of the network,
samples are computed from the posterior z(i,l)∼ qu(z|x

(i))
using z(i,l)= gf(x

(i), e(l))=m(i)+s(i)⊙e(l) where e(l)∼N (0, I),
with ⊙ being an element-wise multiplication. As both prior
(pu(z)) andposterior (qu(z|x)) are assumed tobeGaussian, the
resulting estimator for the model and datapoint x(i) is,
according to [43]:

Lðu;f; xðiÞÞ≃ 1

2

XJ
j¼1

ð1þ logððsðiÞ
j Þ2Þ � ðmðiÞ

j Þ2 � ðsðiÞ
j Þ2Þ

þ 1

L

XL
l¼1

log puðxðiÞjzði;zÞÞ;

where zði;lÞ ¼ mðiÞ þ sðiÞ⊙eðlÞ and eðlÞ∼N ð0; IÞ: ð5Þ
We first assume a normal functioning state in the
system and training the model parameters (m(i) and s(i))
with such data. As EWS indicator, we track the
reconstruction error, which we define with the root mean
square error (RMSE), described by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðbyi � yiÞ2

n

vuuut
; ð6Þ

where n denotes the number of sampled points in a
sequence, and by and y are the reconstructed output and the
actual, respectively. The VAE indicator is constructed,
therefore, by measuring the reconstruction error according
to the RMSE, defined as the variational autoencoder
reconstruction error (VAERE).
3.2 Principal component analysis

Principal Component Analysis (PCA) was first introduced
in [44]. It is a methodology that obtains an r-dimensional
basis that best captures the variance in the data. Given
input data D∈Rn�d and the desired threshold a, it selects
the smallest set of dimension r that captures at least an a
fraction of the total variance. The steps are shown in
Algorithm 1.

The trajectory with the largest projected variance is
called the first principal component, the orthogonal
trajectory to the first one which captures the second
largest projected variance is the second principal compo-
nent, and so on.

We select a number of dimensions which is fewer than
the one in the original dataset such as the subspace
extent of these r dimensions captures at least a fraction
of the variance. In the practice, a is set to a number
around 0.95 (as it is in this case), so that the reduced
dataset captures at lease 95% of the total variance. Also,
r=1 so the original three time series are reduced to one
that captures the features of the three with the minimum
possible error.



Fig. 2. Supply air temperature according to four indicators:
variance, auto-correlation function, power spectrum and varia-
tional autoencoder. The moment of the failure (when the supply
air temperature increases anomalously for the first time) is
9:30AM of the 27th of January 2019. Plot starts at 5:30AM of the
25th of January, 64 hours prior to the failure. Variance is shown in
logarithmic scale tomake the increase prior to failuremore visible.
Window sizes used: 22 hours for variance and ACF1, 8 hours for
PS and 4 hours for VAERE.
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4 Results

We now apply the methods in Section 3 to the observed
sensor data. For the purpose of this study we perform
univariate analysis only with SAT, then we perform
multivariate analysis with all variables controlling SAT by
reducing the dimensionality before applying these techni-
ques.

Although these techniques have not been implemented
in similar BMS-related failures so far, the techniques
proved successful for early failure detection/tipping point
analysis in similar dynamical systems such as manufactur-
ing, automotive industry, climatological events, etc.

The different values for the windows can be chosen for
each methodology according to the earliest they start to
peak prior to failure. Once the values are chosen, the
techniques can be extrapolated to similar problems (for
instance early detection of failures in different parts of the
HVAC system affecting room/area temperature).

4.1 Univariate analysis

Results for univariate analysis are presented in Figure 2,
where SAT is presented together with the EWS indicators.
The plot shows data from 64 hours prior to the failure at
moment 0, which is when the temperature increases
anomalously for the first time. We use different windows to
obtain every EWS: 22 hours for variance and ACF1,
8 hours for PS and 4 hours for VAERE. The window size
has been selected according to the clarity of the signal they
provided on each indicator. Y-axis of the variance has been
represented in logaritmic scale, for convenience.

As shown in Figure 2, ACF1 and variance are the
indicators presenting the most clear signals. It can be
observed that PS also increases before the failure occurs,
although it gives a signal with a shorter period. VAE has
been first trained with the system functioning under
normal conditions. The output displayed shows the
VAERE. This seems to show a drop right before the
tipping point, but less than 4 hours prior to event.

As can be seen in Figure 3, Kendalls show amore robust
positive trend than negative, as the majority of values are
greater than zero. However, some negative values can be
seen as oscillations occur.

4.2 Multivariate analysis

Multivariate analysis for EWS is shown in Figure 4. The
plot on the top corresponds to OAT, cooling valve and
heating valve reduced with PCA to their first principal
component or direction to the minimum projection
variance. The windows used for each indicator for
multivariate analysis are: 22 hours for variance and
ACF1, 16 hours for PS and 20 hours for VAERE.

Comparing this plot with the univariate one, we
observe that ACF1 and variance present clear EWS
signals, whereas the variance represents a more steady
slope in the multivariate case. PS shows a more prompt
signal in the multivariate case, 24 hours prior to failure in
comparison to 8 hours prior to the failure in the univariate
analysis. However, values of the Kendalls incline a bit more
towards negative values than in the univariate case,
although still positive values are predominant. This means
that PS indicator is less robust in the multivariate case. An
earlier signal is also given by the VAE, whose indicator for
the multivariate signal gives a clear EWS after 32 hours
before the event, in comparison to the 4 hours prior to
failure of the univariate case.

5 Discussion, conclusions and limitations

In this paper, we applied several early warning signals
techniques to analyse BMS temperature sensor data and
percentage of openness of heating and cooling valves to



Fig. 3. Histogram of the frequency distribution of the Kendall trend statistic for the PS indicator for the univariate case, for the
different windows across the indicator.

Fig. 4. Multivariate EWS analysis of the temperature failure
with PCA and four indicators: variance, auto-correlation
function, power spectrum and variational autoencoder. The
moment of the failure (when the supply air temperature increases
anomalously for the first time) is 9:30AM of the 27th of January
2019. Plot starts at 5:30AM of the 25th of January, 64 hours prior
to the failure. Variance is shown in logarithmic scale to make the
increase prior to failure more visible. Window sizes used: 22 hours
for variance and ACF1, 16 hours for PS and 20 hours for VAERE.
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activate heating and/or cooling systems, respectively, in an
area of a large industrial facility. The studied failure is a
malfunction of one specific AHU control system that causes
temperature spikes of up to 30 degrees celsius due to
overreaction of the heating and cooling valves in response
to an anomalous temperature change caused by the pre-
heat coil in winter period in a specific manufacturing
facility. Therefore the aim of the paper is to detect this
anomaly before it happens. The analysis has been divided
into univariate and multivariate EWS analysis, using for
each the same indicators: variance, ACF, PS and VAE.
PCA has been used for dimensionality reduction in the
multivariate case.

The analysis shows that, in general, the indicators
provide an earlier and more reliable signal in the
multivariate case. This improvement can be seen specially
in PS and VAE. In the case of PS, the difference is that the
indicator completely changes its range of movement
24 hours prior to failure. With the VAE, the reconstruction
error does not reproduce the gradual increase before the
failure in the univariate case despite of the abrupt
temperature change. In the multivariate case, the VAE
does show the expected behaviour, producing an early
signal almost 32 hours prior to failure. The reason that the
VAE does not provide a good signal in the univariate case
may lay in what is considered a normal functioning system
when training the model using only SAT. Such distribution
makes small changes due to external factors, which actually
control its non-stationary behaviour. In the multivariate
case, the behaviour of the system is defined mainly by the
heating valve, which steadily opens and closes to provided
heating to the environment within an established range or
set point. In both univariate and multivariate analysis,
ACF demonstrated to perform very well, starting to clearly
go above its 0.2 value almost 32 hours prior to failure, with
a very similar performance in both cases.

The SAT is controlled by average of the four
temperature sensors in the room. The choice of the SAT
instead of each the four temperature sensors is to avoid
false positives due to noise. Although there is a standard on
the locations on which the sensors should be installed, they
can be temporarily exposed to heat sources (if someone
places a desk with a computer next to it by mistake or



Fig. 5. Histogram of the frequency distribution of the Kendall trend statistic for the PS indicator for the multivariate case, for the
different windows accross the indicator.
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sunlight directly beaming at the sensor, for instance).
Therefore there could have been external factors that could
not have been controlled for the purpose of this study.

The indicators generally respond earlier in the
multivariate analysis, as the variables controlling SAT
are the ones considered for the dimensionality reduction
prior to applying the EWS techniques. This has been
possible due to a good knowledge of the system so the right
variables controlling SAT, out of hundreds of sensors, could
be selected. In other circumstances the lack of knowledge
about the system or sensors installed would not create the
conditions for multivariate analysis. In such case, a
technique for single variable EWS analysis can also deliver
satisfactory results.

In this work, lack of data and difficulty of automation
are the main limitations encountered. Here the problem lies
not only in the automation of the data acquisition
production, but also in the location of specific failures in
order to test the algorithms. Further work to improve these
results would imply an improvement of software solutions
for data extraction, as well as the location of new failures
and case studies to further improve and generalise these
results.

The early detection of such failures gives time to on-site
engineers tomake adjustments when necessary before these
failures actually happen. This not only reduces mainte-
nance and operational costs, but also produces energy
savings by advising when parts of the system should not be
activated in some given period, thus compensating the
“blind spots” from the BMS control system by extracting
real value from the data generated.
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Nomenclature

ACF
 Auto-Correlation Function

AHU
 Air Handling Unit
ANN
 Artificial Neural-Network

APAR
 Air handling unit Performance Assessment Rules

BMS
 Building Management Systems

DFA
 Detrended Fluctuation Analysis

EOF
 Empirical Orthogonal Functions

EWS
 Early Warning Signals

FDD
 Fault Detection and Diagnosis

GRNN
 General Regression Neural-Network

HVAC
 Heating, Cooling and Air Conditioning

OAT
 Outside Air Temperature

PCA
 Principal Component Analysis

PS
 Power Spectrum

SAT
 Supply Air Temperature

VAE
 Variational Auto Encoder

VAERE
 Variational Auto Encoder Reconstruction Error
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