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H∞ State Estimation for Coupled Stochastic

Complex Networks with Periodical Communication

Protocol and Intermittent Nonlinearity Switching
Yuqiang Luo, Zidong Wang, Yun Chen, and Xiaojian Yi

Abstract—In this paper, an H∞ estimation approach is given
for an array of coupled stochastic complex networks with inter-
mittent nonlinearity switching. A set of binary random variables
are adopted to characterize the intermittent switching behavior of
the involved nonlinearities. To effectively alleviate data collisions
and save energy, the Round-Robin protocol is utilized to curb
network congestions in data communication. For the coupled
stochastic complex networks, we design a protocol-based H∞

estimator that not only resists stochastic disturbances, but also
ensures the exponential mean square stability of the desired error
system under a given disturbance attenuation level. With the
help of the Lyapunov stability and convex optimization theories,
sufficient conditions are provided for the expected estimator.
Simulations are provided to illustrate the reasonability of our
H∞ approach.

Index Terms—Stochastic complex networks, H∞ performance,
intermittent nonlinearity switching, Round-Robin protocol.

I. INTRODUCTION

Inspired by real-world scenarios including brain networks

and computer networks, the complex networks have attracted a

persistence research attention recently owing to their potential

applications in domains such as sociology, computer science,

biology, physics and epidemiology, see e.g. [1], [14], [30],

[41], [49], [51]. As two key network features, the dynamical

behavior and network topology have long been the research

hotspots within the field of complex networks, and associated

achievements have been widely reported in [1], [3], [15], [40].

To be more specific, effective models and analytical tools

including evolving networks and the random graphs have been

presented in [1] to study the statistical mechanics of network

dynamics and topology. In [40], the temporal correlations

of complex networks coupled with delayed oscillators have

been analyzed in a simple way that is conducive to the

understanding of the relation between network topology and
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dynamics. In addition, unified analysis frameworks have been

established in [9] and [5] to look into dynamical behaviors of

chemical networks and social networks, respectively.

Apart from the network dynamics and topology, the network

stability and synchronization have also played important roles

in the analysis/synthesis of complex networks. For instances,

the Hurwitz stability has been discussed in [11] for nonlinear

complex dynamical networks where a special controller has

been devised and implemented in a decentralized manner. With

the help of a reference state and the Lyapunov stability theory,

a set of conditions have been acquired in [22] to obtain the

asymptotic stability of concerned complex networks. In [50],

the global synchronization issue has been studied for coupled

stochastic delayed complex networks susceptible to proba-

bilistic nonlinearities. Additionally, synchronization control of

complex networks has been considered in [23] in the presence

of time-varying but bounded delays. On the other hand, state

estimation for complex networks has been proven to be a

particular important task since states of network nodes might

have no access to end-users but the access to measurement

outputs. Thus, state estimation problems of many kinds of

complex networks have aroused a lot of attention, see [2], [8],

[16], [20], [24], [31], [52] .

In practice, the implementation of complex networks often

faces huge consumptions of resources (e.g. communication,

processing and storage), giving rise to network congestions,

unstable connections, high latency, and even link breaks [7],

[47]. To reduce unnecessary resource consumption, it is sig-

nificant to use communication protocols in data transmission

[10], [19], [27], [43]. As such, the Round-Robin protocol

(RRP), acting as a particularly attractive scheduling strategy in

allocating network resources, has been adopted in this paper to

regulate data transmission in the sensor-to-estimator channel.

The RRP has the advantage of simple execution procedure

where data transmission is implemented via a fixed circular

order, see [13], [18], [21], [25], [34], [37], [38], [42], [44],

[46].

It has been well recognized that nonlinearities are ubiquitous

that occur in almost all sorts of networks in physical reality,

and the investigation on nonlinearities has played a vital role in

network synthesis/analysis. Basically, certain rigorous condi-

tions (e.g. smoothness, Lipschitz continuity, differentiability,

monotonicity and boundedness) are widely imposed on the

nonlinearities to be tackled for the convenience of subsequent

mathematical analysis, and thereby leading to considerable

conservatism on the analysis results, [4], [35]. Intermittent
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behaviors of the nonlinearities may be unavoidable in complex

networks due probably to stochastic component failures and

repairs, sudden ambient noises and intermittent switchings

among subsystems [12], [17]. In this regard, the intermittent

nonlinearity switching would become inevitable and, if not

properly settled, they might give rise to severe deterioration

of network performance. Accordingly, filtering problems of

complex networks (with such nonlinearities) have attracted

a great many research attention. Nevertheless, little attention

has been paid to filtering problems for coupled stochastic

complex networks with the RRP and intermittent nonlinearity

switching.

In this paper, a protocol-based H∞ estimator is devised

for coupled stochastic complex networks with the intermittent

nonlinearity switching and RRP. The contributions are 1) the

RRP is presented to manage data transmission in the sensor-

to-estimator channel, which curbs communication frequency

and saves communication resources; 2) a unified H∞ esti-

mation scheme is given to resolve complexities induced by

the intermittent nonlinearity switching and RRP; and 3) a

protocol-dependent index is built to achieve that the resulting

estimation error system is exponentially mean-square stable

(EMSS) under guaranteed H∞ performance constraint.

Notation A > B (or A ≥ B) implies A − B is positive-

definite (or semi-positive-definite). AT represents the trans-

pose of A. diag{. . .} is a block-diagonal matrix. δ(·) ∈ {0, 1}
is the Dirac delta function. (Ω,F ,Prob) stands for a complete

probability space and Prob is the probability measure. βs is

the n-dimensional column vector with 1 on the sth row and 0
elsewhere. Z+ denotes the set of all non-negative integers.

II. PROBLEM FORMULATION

Consider the following coupled stochastic complex network:




xi(k + 1) =Aixi(k) +̟(k)Big
(
xi(k)

)
+ (1 −̟(k))

× Sih
(
xi(k)

)
+

N∑

j=1

λijΓxj(k)

+ ρi
(
k, xi(k)

)
ω(k) + ϑi(k),

yi(k) =Cixi(k) +Diνi(k)

(1)

where

xi(k) , [xi1(k), xi2(k), . . . , xin(k)]
T
,

g
(
xi(k)

)
,
[
g1
(
xi1(k)

)
, g2

(
xi2(k)

)
, . . . , gn

(
xin(k)

)]T
,

h
(
xi(k)

)
,
[
h1

(
xi1(k)

)
, h2

(
xi2(k)

)
, . . . , hn

(
xin(k)

)]T

are the ith node’s state vector and nonlinear vector-valued

functions, respectively. ρi
(
k, xi(k)

)
: R × Rn → Rn is

the diffusion coefficient satisfying ρi(k, 0) ≡ 0. ω(k) is the

Wiener process defined on (Ω,F ,Prob) where

E{ω(k)} =0,

E{ω(k)ω(k)} =1,

E{ω(k)ω(l)} =0, k 6= l.

yi(k) ∈ Rm is the measurement output. νi(k) is the distur-

bance input which belongs to l2([0,+∞) ;Rnν ). Bi ∈ Rn×n

and Si ∈ Rn×n are the connection weight matrices.

ϑi(k) , [ϑi1(k), ϑi2(k), . . . ϑin(k)]
T

is the energy-bounded external input which could be distur-

bance or control input. Ai, Ci and Di are known matrices.

N ∈ R is the total number of coupling nodes. Γ ∈ Rn×n is the

inner-coupling matrix [39] and λij ∈ R (i, j = 1, 2, . . . , N)
are the outer-coupling strength indicating that if a connection

exists between subnetworks i and j (j 6= i), λij > 0;

otherwise, λij = 0 (j 6= i) [23], [45], [48]. To describe

the intermittent switching behavior of the nonlinearities, the

following random events are introduced:
{

Event 1: (1) experiences the nonlinear function g(·),

Event 2: (1) experiences the nonlinear function h(·)

where ̟(k) is a random variable defined as ̟(k) = 1 if Event

1 occurs and ̟(k) = 0 if Event 2 occurs with

Prob{̟(k) = 1} =̟,

Prob{̟(k) = 0} =1−̟,

and ̟ ∈ R is a constant.

Assumption 1: There exists a non-negative matrix ̺ such

that

ρTi
(
k, xi(k)

)
ρi
(
k, xi(k)

)
≤ xT

i (k)̺xi(k)

holds for all diffusion coefficient vectors ρi
(
k, xi(k)

)
.

Assumption 2: [29] There exist constants r−j , r+j (j =
1, 2, . . . , n) such that

r−j ≤
gj(a(k))− gj(b(k))

a(k)− b(k)
≤ r+j

holds for all a(k), b(k) ∈ R (a(k) 6= b(k)) with gj(0) = 0.

Assumption 3: The sector-bounded condition

[h
(
a(k)

)
− h
(
b(k)

)
− Ξ1

(
a(k)− b(k)

)
]T

×[h
(
a(k)

)
− h
(
b(k)

)
− Ξ2

(
a(k)− b(k)

)
] ≤ 0 (2)

holds for ∀ a(k), b(k) ∈ Rn and h(0) = 0, where Ξ1 and Ξ2

are given constant matrices satisfying Ξ2 − Ξ1 ≥ 0.

Assumption 4: The switching sequence ̟(k) is independent

of ̟(l) (∀ k 6= l) and ω(k) (∀ k ∈ Z+).
Remark 1: Model (1) is quite general as it includes a set

of well-known networks (e.g. neural networks) as its special

cases. Moreover, the random variable ̟(k) is introduced

to regulate the intermittent switching between nonlinearities

g(xi(k)) and h(xi(k)). At each time k, either g(xi(k)) or

h(xi(k)) is capable of exerting its influence on the network,

thereby better reflecting the engineering practice.

To handle the network communication of large-scale data,

the RRP is adopted to manage the transmission in the sensor-

to-estimator channel, and the zero-order holder strategy is

selected for the compensation of the measurement which is

not received by remote estimators. Under the RRP schedul-

ing mechanism, all the network nodes are prearranged in a

predetermined order to gain the access token of the limited

communication resource one by one. At each time, only one

network node can access the channel for data transmission. De-

note the update matrix as Ψ~(k) , diag{δ(~(k)−1), δ(~(k)−
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2), . . . , δ(~(k) − m)} and ~(k) , mod(k − 1,m) + 1 as

the node number that obtains the access token. Then, the

measurement is eventually updated as [36]:

~yi(k) = Ψ~(k)yi(k) + (Im − Ψ~(k))~yi(k − 1)

= C
~(k)
i φi(k) + Ψ~(k)Diνi(k) (3)

where

C
~(k)
i ,

[
Ψ~(k)Ci Im −Ψ~(k)

]
, φi(k) ,

[
xi(k)

~yi(k − 1)

]
.

Based on (3), (1) can be augmented as:

φi(k + 1) =Aa
i (k)φi(k) +Ba

i g
(
Eaφi(k)

)

+ Sa
i h
(
Eaφi(k)

)
+
(
̟(k)−̟

)( 1

̟
Ba

i

× g
(
Eaφi(k)

)
−

1

1−̟
Sa
i h
(
Eaφi(k)

))

+

N∑

j=1

λijΓaφj(k) + Faρi
(
k,Eaφi(k)

)

× ω(k) +Da
i (k)νi(k) + Θi(k) (4)

where

Aa
i (k) ,

[
Ai 0

Ψ~(k)Ci Im −Ψ~(k)

]
, Ba

i ,̟

[
Bi

0m×n

]
,

Sa
i ,(1−̟)

[
Si

0m×n

]
, Ea ,

[
In 0n×m

]
,

Γa ,

[
Γ 0

0m×n 0m×m

]
, Fa ,

[
In

0m×n

]
,

Da
i (k) ,

[
0n×nν

Ψ~(k)Di

]
, Θi(k) ,

[
ϑi(k)
0m×1

]
.

For the network model (1), construct the following improved

full-order state estimator:

φ̂i(k + 1) =Aa
i (k)φ̂i(k) +Ba

i g
(
Eaφ̂i(k)

)

+ Sa
i h
(
Eaφi(k)

)
+Θi(k)

+Ki

[
~yi(k)− C

~(k)
i φ̂i(k)

] (5)

where φ̂i(k) ,
[
x̂T
i (k) q̂Ti (k − 1)

]T
, and x̂i(k) and q̂i(k)

are the estimator states. Ki ∈ R(n+m)×m is the to-be-designed

parameter.

Remark 2: The update matrix Ψ~(k) in (3) is modeled from

the combined effects of the RRP and the ZOHs. With help

of such a update matrix, the updated measurement can be

established straightforward. From the scheduling mechanism

of RRP, we know that Ψ~(k) is time-varying but periodic.

In the state estimator (5), only the measurement output of

single node but are not the coupling information is used, which

obviously results in a simple but effective structure. Although

x̂i(k) and q̂i(k) in (5) are the estimator state variables. x̂i(k)
is clear in physics meaning of the estimation of xi(k). While

q̂i(k) is an auxiliary variable of the special estimator structure,

which is introduced to facilitate analysis and design of the

estimation system. In the algorithm development under RRP,

it can be found that the resultant difficulties are conspicuous:

1) The measurement at the receiving end should be remodeled,

see i.e. (3). 2) Structure of the estimator is of more specificity

due to the measurement update model induced by the RRP

and ZOHs. 3) Analysis and synthesis of the estimation system

will be of more complexities.

Let Λ , (λij)N×N be the linear outer-coupling configura-

tion matrix. Consequently, the coupled complex network (4)

can be reformulated as

φ(k + 1) =(A(k) + Λ ⊗ Γa)φ(k)

+ B(k)G(φ(k)) + S(k)H(φ(k))

+
(
̟(k)−̟

)( 1

̟
B(k)G(φ(k))

−
1

1−̟
S(k)H(φ(k))

)
+ (IN ⊗ Fa)

× ρ(k)ω(k) +D1(k)ν(k) + V (k)

(6)

where

φ(k) ,
[
φT
1 (k), φT

2 (k), . . . , φT
N (k)

]T
,

G(φ(k)) ,
[
gT
(
Eaφ1(k)

)
, gT

(
Eaφ2(k)

)
, . . . ,

gT
(
EaφN (k)

)]T
,

H(φ(k)) ,
[
hT
(
Eaφ1(k)

)
, hT

(
Eaφ2(k)

)
, . . . ,

hT
(
EaφN (k)

)]T
,

ρ(k) ,
[
ρT1
(
k,Eaφ1(k)

)
, ρT2

(
k,Eaφ2(k)

)
, . . . ,

ρTN
(
k,EaφN (k)

)]T
,

A(k) ,diag
{
Aa

1(k), A
a
2(k), . . . , A

a
N (k)

}
,

B(k) ,diag
{
Ba

1 (k), B
a
2 (k), . . . , B

a
N (k)

}
,

S(k) ,diag
{
Sa
1 (k), S

a
2 (k), . . . , S

a
N(k)

}
,

ν(k) ,
[
νT1 (k), ν

T
2 (k), . . . , ν

T
N (k)

]T
,

D1(k) ,diag
{
Da

1(k), D
a
2(k), . . . , D

a
N (k)

}
,

V (k) ,
[
ΘT

1 (k), ΘT
2 (k), . . . , ΘT

N(k)
]T

.

Similarly, estimator (5) is rewritten as

φ̂(k + 1) =A(k)φ̂(k) + B(k)G(φ̂(k)) + S(k)H(φ̂(k))

+ V (k) +K(k)(φ(k)− φ̂(k)) +D2(k)ν(k) (7)

where

φ̂(k) ,
[
φ̂T
1 (k), φ̂T

2 (k), . . . , φ̂T
N (k)

]T
,

D2(k) ,diag
{
K1Ψ~(k)D1, K2Ψ~(k)D2, . . . ,KNΨ~(k)DN},

K(k) ,diag{K1C
~(k)
1 , K2C

~(k)
2 , . . . , KNC

~(k)
N }.

Defining φ̃(k) , φ(k) − φ̂(k) and e(k) ,[
φT (k), φ̃T (k)

]T
, we have

e(k + 1) = Ā(k)e(k) + B̄Ḡ(k) + S̄H̄(k) +
(
̟(k)−̟

)

×

(
1

̟
B̃Ḡ(k)−

1

1−̟
S̃H̄(k)

)

+F̄ ρ(k)ω(k) + D̄(k)υ(k) (8)

where υ(k) ,
[
νT (k) V T (k)

]T
,

Ā(k) ,

[
A(k) + Λ⊗ Γa 0

Λ⊗ Γa A(k) −K(k)

]
,
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Ḡ(k) ,

[
G(φ(k))

G(φ(k)) −G(φ̂(k))

]
,

H̄(k) ,

[
H(φ(k))

H(φ(k)) −H(φ̂(k))

]
,

B̄ ,

[
B(k) 0
0 B(k)

]
, S̄ ,

[
S(k) 0
0 S(k)

]
,

B̃ ,

[
B(k) 0N(n+m)×Nn

B(k) 0N(n+m)×Nn

]
,

S̃ ,

[
S(k) 0N(n+m)×Nn

S(k) 0N(n+m)×Nn

]
,

F̄ ,

[
IN ⊗ Fa

IN ⊗ Fa

]
, D̄(k) ,

[
D1(k) I(n+m)N

D1(k)−D2(k) 0

]
.

Definition 1: For all possible delays τ~ (−m+1 ≤ τ~ ≤ 0)
induced by the RRP, the error dynamics (8) with υ(k) ≡ 0 is

EMSS if there exist constants α > 0 and ǫ ∈ (0, 1) such that

E
{
‖e(k)‖2

}
≤ αǫk sup

−m+1≤i≤0
E
{
‖e(i)‖2

}
, k ∈ Z+. (9)

Our aim is to design estimator (5) such that the following

design indexes are simultaneously achieved:

1) (8) is EMSS;

2) For given constant γ > 0 and zero initial condition, the

disturbance attenuation constraint
∞∑

k=0

E
{
eT (k)e(k)

}
≤ γ2

∞∑

k=0

υT (k)υ(k) (10)

holds for any υ(k) 6= 0.

Remark 3: Due to its remarkable advantages to alleviate

communication burden, the RRP has been adopted exten-

sively in network communications and therefore gain much

research attention in recent years, see e.g. [13], [34], [38],

[46]. It has been noticed that the state estimation problem

of complex networks subject to the RRP has been studied

in [53]. However, differentia between the literature and this

paper are severalfold. By comparison, the peculiarities of this

paper fall into but are not limited to the following points.

Firstly, to better characterize the engineering practice, the

intermittent switching between two kinds of nonlinearities

g(xi(k)) and h(xi(k)) is considered. Secondly, a simple but

effective structure of the estimator is constructed without the

coupling information. Thirdly, the stability concern of the

estimation error system is exponential mean-square stability

but not the exponential ultimate boundedness in mean square.

Fourthly, the H∞ index indicating the disturbance attenuation

level is discussed.

III. MAIN RESULTS

Lemma 1: (Schur Complement) [6] Given matrices Σ1, Σ2

and Σ3 where Σ1 = ΣT
1 and 0 < Σ2 = ΣT

2 , Σ1−ΣT
3 Σ

−1
2 Σ3 >

0 iff [
Σ1 ΣT

3

Σ3 Σ2

]
> 0 or

[
Σ2 Σ3

ΣT
3 Σ1

]
> 0.

To carry out the exponential stability analysis for the

error dynamics (8), we give the following notations for the

presentation convenience:

R , diag{r−1 r
+
1 , r

−
2 r

+
2 , . . . , r

−
n r

+
n },

R , diag{−
r−1 + r+1

2
,−

r−2 + r+2
2

, . . . ,−
r−n + r+n

2
},

Y1 ,

[
In 0n×m 0
0 0 In

]
,

Y2 ,

[
0 I(n+m)N 0 0

0nN×(n+m)N 0 0nN×nN InN

]
,

Y3 ,

[
I(n+m)N 0 0 0

0 0nN×(n+m)N InN 0nN×nN

]
,

Y4 ,
[
I(n+m)N 0(n+m)N×(n+m)N 0(n+m)N×nN

0(n+m)N×nN

]
,

̟ , ̟(1−̟), G̃(k) ,

[
e(k)
Ḡ(k)

]
, H̃(k) ,

[
e(k)
H̄(k)

]
,

Ξ2 , IN ⊗ (Ξ2Ea) , Ξ1 , IN ⊗
(
ET

a Ξ
T
1

)
,

Ξ12 , IN ⊗
(
ET

a Ξ
T
1 Ξ2Ea

)
,

Ξ̃1 ,

[
Ξ1 0

0 Ξ1

]
, Ξ̃2 ,

[
Ξ2 0

0 Ξ2

]
, Ξ̃12 ,

[
Ξ12 0

0 Ξ12

]
,

Ξ̂12 ,




Ξ̃12 ∗

−
Ξ̃2 + Ξ̃T

1

2
I


 ,

Â(k) ,
[
Ā(k) B̄

]
, Ŝ1 ,

[
02N(n+m)×2N(n+m) S̄

]
,

Ŝ2 ,

[
02N(n+m)×2N(n+m) S̃

]
,

B̂ ,

[
02N(n+m)×2N(n+m) B̃

]
,

Q̂(~(k)) ,

[
Q(~(k)) 0

0 02nN×2nN

]
,

i ,

[
tij
]
(2n+m)N×(2n+m)N

,

tij ,





In+m if j = 2i− 1 and i ≤ N

In if j = 2(i−N) and N < i ≤ 2N

0 else.

Theorem 1: Let the parameters Ki (i = 1, 2, . . . , N) be

given. Under Assumptions 1-4 if there exist matrices Zl =
diag{Zl1, Zl2, . . . , Zln} > 0 (l = 1, 2) and Q(~(k)) > 0 such

that matrix inequalities

Π(k) =



Π11(k) ∗ ∗

0 Π22(k) ∗
Π31(k) 0 Π33(k)


 < 0 (11)

hold, where

Z̃l ,

[
ZlR ZlR

ZlR Zl

]
,

Π11(k) ,ÂT (k)Q(~(k + 1))Â(k)− Q̂(~(k))

+ Y T
4 (IN ⊗ Ea)

T
(IN ⊗ ̺) (IN ⊗ Ea) Y4

−

(
Y T
2 iT

(
IN ⊗ Y T

1 Z̃1Y1

)
iY2 + Y T

3 iT

×
(
IN ⊗ Y T

1 Z̃2Y1

)
iY3

)

+
̟

̟2
B̂TQ(~(k + 1))B̂,

Π22(k) ,F̄TQ(~(k + 1))F̄ − I,

Π31(k) ,ŜT
1 Q(~(k + 1))Â(k)− ŜT

2 Q(~(k + 1))B̂,
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Π33(k) ,− Ξ̂12 + ŜT
1 Q(~(k + 1))Ŝ1

+
̟

(1−̟)2
ŜT
2 Q(~(k + 1))Ŝ2,

then the error dynamics (8) with intermittent nonlinearity

switching is EMSS.

Proof: Define

V(k) , eT (k)Q(~(k))e(k). (12)

Consider an index I(k) = E
{
V(k + 1)− V(k)

∣∣e(k)
}

, where

υ(k) = 0.

For any s = 1, 2, . . . , n and i = 1, 2, . . . , N , one knows

from Assumptions 1–2 that

− ρT (k)ρ(k) + [(IN ⊗ Ea)φ(k)]
T
(IN ⊗ ̺)

× [(IN ⊗ Ea)φ(k)] ≥ 0, (13)

−
[
gs
(
xis(k)

)
− gs

(
x̂is(k)

)
− r+s

(
xis(k)− x̂is(k)

)]

×
[
gs
(
xis(k)

)
− gs

(
x̂is(k)

)

−r−s
(
xis(k)− x̂is(k)

)]
≥ 0, (14)

−
[
gs
(
xis(k)

)
− r+s xis(k)

]

×
[
gs
(
xis(k)

)
− r−s xis(k)

]
≥ 0 (15)

hold. (14) and (15) can be, respectively, rewritten as

−

[
xis(k)− x̂is(k)

gs
(
xis(k)

)
− gs

(
x̂is(k)

)
]T

×



r−s r

+
s βsβ

T
s −

r−s + r+s
2

βsβ
T
s

−
r−s + r+s

2
βsβ

T
s βsβ

T
s




×

[
xis(k)− x̂is(k)

)

gs
(
xis(k)

)
− gs

(
x̂is(k)

]
≥ 0, (16)

−

[
xis(k)

gs
(
xis(k)

)
]T


r−s r

+
s βsβ

T
s −

r−s + r+s
2

βsβ
T
s

−
r−s + r+s

2
βsβ

T
s βsβ

T
s




×

[
xis(k)

gs
(
xis(k)

)
]
≥ 0. (17)

Pre- and post-multiplying (16) and (17) by Zls and summing

up both sides of the resulting inequalities for s = 1, 2, . . . , n
generate





−

[
xi(k)− x̂i(k)

g
(
xi(k)

)
− g
(
x̂i(k)

)
]T

Z̃1

×

[
xi(k)− x̂i(k)

)

g
(
xi(k)

)
− g
(
x̂i(k)

]
≥ 0,

−

[
xi(k)

g
(
xi(k)

)
]T

Z̃2

[
xi(k)

g
(
xi(k)

)
]
≥ 0,

⇔





−




xi(k)− x̂i(k)

~yi(k − 1)− q̂i(k − 1)

g
(
Eaφi(k)

)
− g
(
Eaφ̂i(k)

)




T

Y T
1 Z̃1Y1

×




xi(k)− x̂i(k)

~yi(k − 1)− q̂i(k − 1)

g
(
Eaφi(k)

)
− g
(
Eaφ̂i(k)

)


 ≥ 0,

−




xi(k)

~yi(k − 1)

g
(
Eaφi(k)

)




T

Y T
1 Z̃2Y1




xi(k)

~yi(k − 1)

g
(
Eaφi(k)

)


 ≥ 0,

⇔





−

[
φ̃i(k)

g
(
Eaφi(k)

)
− g
(
Eaφ̂i(k)

)
]T

Y T
1 Z̃1Y1

×

[
φ̃i(k)

g
(
Eaφi(k)

)
− g
(
Eaφ̂i(k)

)
]
≥ 0,

−

[
φi(k)

g
(
Eaφi(k)

)
]T

Y T
1 Z̃2Y1

[
φi(k)

g
(
Eaφi(k)

)
]
≥ 0.

Consequently,





−

[
φ̃(k)

G(φ(k)) −G(φ̂(k))

]T
iT
(
IN ⊗ (Y T

1 Z̃1Y1)
)

×i

[
φ̃(k)

G(φ(k)) −G(φ̂(k))

]
≥ 0,

−

[
φ(k)

G(φ(k))

]T
iT
(
IN ⊗ (Y T

1 Z̃2Y1)
)
i

[
φ(k)

G(φ(k))

]
≥ 0,

which is equivalent to





−

[
e(k)

Ḡ(k)

]T
Y T
2 iT

(
IN ⊗ (Y T

1 Z̃1Y1)
)
iY2

×

[
e(k)

Ḡ(k)

]
≥ 0,

−

[
e(k)

Ḡ(k)

]T
Y T
3 iT

(
IN ⊗ (Y T

1 Z̃2Y1)
)
iY3

×

[
e(k)

Ḡ(k)

]
≥ 0.

(18)

Moreover, Assumption 3 tells





−[h
(
Eaφi(k)

)
− Ξ1Eaφi(k)]

T

×[h
(
Eaφi(k)

)
− Ξ2Eaφi(k)] ≥ 0,

−[h
(
Eaφi(k))− h

(
Eaφ̂i(k)

)

−Ξ1

(
Eaφi(k)− Eaφ̂i(k)

)
]T

×[h
(
Eaφi(k))− h

(
Eaφ̂i(k)

)

−Ξ2

(
Eaφi(k)− Eaφ̂i(k)

)
] ≥ 0,

⇔





−[h
(
Eaφi(k)

)
− Ξ1Eaφi(k)]

T

×[h
(
Eaφi(k)

)
− Ξ2Eaφi(k)] ≥ 0,

−[h
(
Eaφi(k))− h

(
Eaφ̂i(k)

)
− Ξ1Eaφ̃i(k)]

T

×[h
(
Eaφi(k))− h

(
Eaφ̂i(k)

)
− Ξ2Eaφ̃i(k)] ≥ 0,
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⇔





−hT
(
Eaφi(k)

)
h
(
Eaφi(k)

)
+ hT

(
Eaφi(k)

)

×Ξ2Eaφi(k) + φT
i (k)E

T
a Ξ

T
1 h
(
Eaφi(k)

)

−φT
i (k)E

T
a Ξ

T
1 Ξ2Eaφi ≥ 0,

−
(
h
(
Eaφi(k))− h

(
Eaφ̂i(k)

))T(
h
(
Eaφi(k))

−h
(
Eaφ̂i(k)

))
+
(
h
(
Eaφi(k))− h

(
Eaφ̂i(k)

))T

×Ξ2Eaφ̃i(k) + φ̃T
i (k)E

T
a Ξ

T
1

(
h
(
Eaφi(k))

−h
(
Eaφ̂i(k)

))
− φ̃T

i (k)E
T
a Ξ

T
1 Ξ2Eaφ̃i(k) ≥ 0,

⇒





−HT (φ(k))H(φ(k)) +HT (φ(k))Ξ2φ(k)

+φT (k)Ξ1H(φ(k)) − φT (k)Ξ12φ(k) ≥ 0,

−
(
H(φ(k))−H(φ̂(k))

)T(
H(φ(k)) −H(φ̂(k))

)

+
(
H(φ(k))−HT (φ̂(k))

)T
Ξ2φ̃(k)

+φ̃T (k)Ξ1

(
H(φ(k))−H(φ̂(k))

)

−φ̃T (k)Ξ12φ̃(k) ≥ 0,

⇒





−

[
H(φ(k))

H(φ(k)) −H(φ̂(k))

]T [
H(φ(k))

H(φ(k)) −H(φ̂(k))

]

+

[
H(φ(k))

H(φ(k))−H(φ̂(k))

]T
Ξ̃2

[
φ(k)

φ̃(k)

]

+

[
φ(k)

φ̃(k)

]T
Ξ̃1

[
H(φ(k))

H(φ(k))−H(φ̂(k))

]

−

[
φ(k)

φ̃(k)

]T
Ξ̃12

[
φ(k)

φ̃(k)

]
≥ 0

⇔

{
−H̄T (k)H̄(k) + H̄T (k)Ξ̃2e(k) + eT (k)Ξ̃1H̄(k)

−eT (k)Ξ̃12e(k) ≥ 0

⇔− H̃T (k)Ξ̂12H̃(k) ≥ 0. (19)

In view of (8), (18) and (19), one easily knows

I(k)

= E

{[
Ā(k)e(k) + B̄Ḡ(k) + S̄H̄(k) +

(
̟(k)−̟

)

×

(
1

̟
B̃Ḡ(k)−

1

1−̟
S̃H̄(k)

)
+ F̄ ρ(k)ω(k)

]T

×Q(~(k + 1))

[
Ā(k)e(k) + B̄Ḡ(k) + S̄H̄(k)

+
(
̟(k)−̟

)( 1

̟
B̃Ḡ(k)−

1

1−̟
S̃H̄(k)

)

+F̄ ρ(k)ω(k)

]
− eT (k)Q(~(k))e(k)

}∣∣∣∣∣e(k)
}

≤ E

{[
Ā(k)e(k) + B̄Ḡ(k) + S̄H̄(k)

]T
Q(~(k + 1))

×
[
Ā(k)e(k) + B̄Ḡ(k) + S̄H̄(k)

]

+̟

(
1

̟
B̃Ḡ(k)−

1

1−̟
S̃H̄(k)

)T

Q(~(k + 1))

×

(
1

̟
B̃Ḡ(k)−

1

1−̟
S̃H̄(k)

)

+ρT (k)F̄TQ(~(k + 1))F̄ ρ(k)− eT (k)Q(~(k))e(k)

−ρT (k)ρ(k) + [(IN ⊗ Ea)φ(k)]
T
(IN ⊗ ̺)

× [(IN ⊗ Ea)φ(k)]

−G̃T (k)
(
Y T
2 iT

(
IN ⊗ (Y T

1 Z̃1Y1)
)
iY2

+Y T
3 iT

(
IN ⊗ (Y T

1 Z̃2Y1)
)
iY3

)
G̃(k)

−H̃T (k)Ξ̂12H̃(k)

∣∣∣∣∣e(k)
}

= E

{
[
Â(k)G̃(k) + Ŝ1H̃(k)

]T
Q(~(k + 1))

×
[
Â(k)G̃(k) + Ŝ1H̃(k)

]

+̟

(
1

̟
B̂G̃(k)−

1

1−̟
Ŝ2H̃(k)

)T

Q(~(k + 1))

×

(
1

̟
B̂G̃(k)−

1

1−̟
Ŝ2H̃(k)

)

+ρT (k)F̄TQ(~(k + 1))F̄ ρ(k)− G̃T (k)Q̂(~(k))G̃(k)

−ρT (k)ρ(k) + G̃T (k)Y T
4 (IN ⊗ Ea)

T
(IN ⊗ ̺)

× (IN ⊗ Ea)Y4G̃(k)

−G̃T (k)

(
Y T
2 iT

(
IN ⊗ (Y T

1 Z̃1Y1)
)
iY2

+Y T
3 iT

(
IN ⊗ (Y T

1 Z̃2Y1)
)
iY3

)
G̃(k)

−H̃T (k)Ξ̂12H̃(k)

∣∣∣∣∣e(k)
}

= E

{[
G̃T (k) ρT (k) H̃T (k)

]
Π(k)

×
[
G̃T (k) ρT (k) H̃T (k)

]T ∣∣∣e(k)
}
.

Accordingly, Π(k) < 0 in Theorem 1 refers to E{∆V(k)} =

E{V(k + 1)− V(k)} ≤ λmax

(
Π(k)

)
E
{∥∥e(k)

∥∥2}.

Letting k be sufficiently large, we know E
{
µkV(k)

}
=

E

{
V(0)+

k−1∑
i=0

µi
(
µ∆V(i)+(µ−1)V(i)

)}
holds for any scalar

µ > 1. In addition, it is not difficult to know that E
{
V(k)

}
≤

λmax(Q(~(k)))E
{∥∥e(k)

∥∥2}. Consequently, one arrives at

E
{
µkV(k)

}

≤λmax(Q(~(0)))E
{∥∥e(0)

∥∥2}+
k−1∑

i=0

(
µλmax(Π(i))

+ (µ− 1)λmax(Q(~(i)))
)
µiE

{∥∥e(i)
∥∥2}

≤a(µ) sup
−m+1≤i≤0

E
{
‖e(i)‖2

}
+ b(µ)

k∑

j=0

µjE
{∥∥e(j)

∥∥2}

where a(µ) = λmax(Q(~(0))) and b(µ) =
max

0≤i≤m−1
[µλmax(Π(i)) + (µ− 1)λmax(Q(~(i)))]. Noticing

a(1) > 0 and b(1) < 0, we conclude that there must be a
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scalar z > 1 such that a(z) > 0 and b(z) < 0, which implies

E
{∥∥e(k)

∥∥2} ≤

k∑

j=0

µj−kE
{∥∥e(j)

∥∥2}

≤ µ−k a(z)

−b(z)

(
sup

−m+1≤i≤0
E
{
‖e(i)‖2

}

−
1

a(z)
E
{
zkV (k)

})

≤
a(z)

−b(z)
µ−k sup

−m+1≤i≤0
E
{
‖e(i)‖2

}
.

Therefore, the error dynamics (8) is EMSS according to

Definition 1.

In the following, we analyze the H∞ performance of the

error system (8).

Theorem 2: Let the parameters Ki (i = 1, 2, . . . , N)
be given. Under Assumptions 1-4 and the zero initial con-

dition, the error dynamics (8) satisfies the H∞ constraint

(10) for all υ(k) 6= 0 if there exist matrices Zl =
diag{Zl1, Zl2, . . . , Zln} > 0 (l = 1, 2) and Q(~(k)) > 0
such that

J (k) =




J11(k) ∗ ∗ ∗
0 Π22(k) ∗ ∗

Π31(k) 0 Π33(k) ∗
J41(k) 0 J43(k) J44(k)


 < 0 (20)

where

Î ,

[
I2N(n+m) 0

0 02nN×2nN

]
,

J11(k) ,Π11(k) + Î , J41(k) , D̄T (k)Q(~(k + 1))Â(k),

J43(k) ,D̄T (k)Q(~(k + 1))Ŝ1,

J44(k) ,D̄T (k)Q(~(k + 1))D̄(k)− γ2Inν+nN
.

Proof: Firstly, define an index

J(k) ,

∞∑

k=0

E
{
eT (k)e(k)− γ2υT (k)υ(k)

}
.

Based on υ(k) 6= 0 and V(k) ≥ 0 (∀ k 6= 0), we have

J(k) ≤
∞∑

k=0

E
{
I(k) + eT (k)e(k)− γ2υT (k)υ(k)

}
.

The review of the above stability analysis leads to

J(k) ≤

∞∑

k=0

E

{
[
Â(k)G̃(k) + Ŝ1H̃(k) + D̄(k)υ(k)

]T

×Q(~(k + 1))
[
Â(k)G̃(k) + Ŝ1H̃(k) + D̄(k)υ(k)

]

+̟

(
1

̟
B̂G̃(k)−

1

1−̟
Ŝ2H̃(k)

)T

Q(~(k + 1))

×

(
1

̟
B̂G̃(k)−

1

1−̟
Ŝ2H̃(k)

)
+ ρT (k)F̄T

×Q(~(k + 1))F̄ ρ(k)− G̃T (k)Q̂(~(k))G̃(k)

− ρT (k)ρ(k) + G̃T (k)Y T
4 (IN ⊗ Ea)

T (IN ⊗ ̺)

× (IN ⊗ Ea)Y4G̃(k)

− G̃T (k)

(
Y T
2 iT

(
IN ⊗ Y T

1 Z̃1Y1

)
iY2

+ Y T
3 iT

(
IN ⊗ Y T

1 Z̃2Y1

)
iY3

)
G̃(k)− H̃T (k)Ξ̂12

× H̃(k) + G̃T (k)ÎG̃(k)− γ2υT (k)υ(k)

∣∣∣∣∣e(k)
}

=E

{ [
G̃T (k) ρT (k) H̃T (k) υT (k)

]
J (k)

×
[
G̃T (k) ρT (k) H̃T (k) υT (k)

]T ∣∣∣e(k)
}
.

Therefore, J (k) < 0 in Theorem 2 indicates
∞∑
k=0

E
{
eT (k)e(k)

}
≤ γ2

∞∑
k=0

E
{
υT (k)υ(k)

}
.

Remark 4: By constructing a simple yet practical Lyapunov

function, the exponential stability and the H∞ performance

analysis are carried out in Theorems 1-2 via the same proof

lines. It is apparent that conditions given by both theorems

are access-token-dependent that contain the scheduling infor-

mation of the adopted RRP, therefore greatly reducing the

conservatism of our results.

Based on the above exponential stability and H∞ perfor-

mance analysis, we are now ready to provide an operable

program of the solution to the estimation problem of the

complex network (6). To gain an explicit expression of the

parameter matrix for estimator (5), matrix Q(~(k)) in Theorem

1 is supposed to have a special structure. Details of the design

procedure are illustrated as follows.

Theorem 3: Under the RRP scheduling scheme, the expo-

nential mean-square stability of the error dynamics (8) and the

H∞ performance constraint (10) can be simultaneously guar-

anteed for all υ(k) 6= 0 if there exist positive-definite matrices

Zl = diag{Zl1, Zl2, . . . , Zln} (l = 1, 2), Q2r−1(j) ∈ Rn×n

and Q2r(j) ∈ Rm×m (r = 1, 2, . . . , 2N, j = 1, 2, . . . ,m),
and the matrices Ki (i = 1, 2, . . . , N) such that

J (j, t) < 0 (21)

where

t = j + 1 when j ∈ {1, 2, . . . ,m− 1} , t = 1 when j = m,

Q(j) , diag{Q1(j), Q2(j), . . . , Q4N(j)},

J (j, t) ,




J11(j, t) ∗ ∗
0 Π22(t) ∗

J31(t) 0 J33(t)
0 0 0

Â (j, t) 0 Q(t)Ŝ1

∗ ∗
∗ ∗
∗ ∗

J44 ∗
Q(t)D̄(j) −Q(t)



,

J11(j, t) , −Q̂(j) + Y T
4 (IN ⊗ Ea)

T
(IN ⊗ ̺) (IN ⊗ Ea)

× Y4 −

(
Y T
2 iT

(
IN ⊗ (Y T

1 Z̃1Y1)
)
iY2

+ Y T
3 iT

(
IN ⊗ (Y T

1 Z̃2Y1)
)
iY3

)
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+
̟

̟2
B̂TQ(t)B̂,

Π22(t) , F̄TQ(t)F̄ − I, J31(t) , −ŜT
2 Q(t)B̂,

J33(t) , −Ξ̂12 +
̟

(1−̟)2
ŜT
2 Q(t)Ŝ2,

J44 , −γ2Inν+N(n+m)
, Ct

i ,
[
ΨtCi Im −Ψt

]
,

Aa
i (j) ,

[
A 0

ΨjCi Im −Ψj

]
,

Ā1(j, t) , diag{Q2N+1(t), Q4N (t)}
(
IN ⊗Aa

i (j)
)

− K (j, t),

Ā (j, t) ,



diag{Q1(t), . . . , Q2N (t)}

(
IN ⊗Aa

i (j)

+Λ⊗ Γa

)

diag{Q2N+1(t), Q4N (t)}
(
Λ⊗ Γa

)

0
Ā1(j, t)

]
,

K (j, t) , diag{K1(t)C
j
i , K2(t)C

j
i , . . . ,KN (t)Cj

i },

Â (j, t) ,
[
Ā (j, t) Q(t)B̄

]
, Da

i (j) ,

[
0n×nν

ΨjDi

]
,

D1(j) , diag
{
Da

1(j), D
a
2(j), . . . , D

a
N (j)

}
,

D2(j) , diag
{
KiΨjD1, KiΨjD2, . . . ,KiΨjDN},

D̄(j) ,

[
D1(j) I(n+m)N

D1(j)−D2(j) 0

]
.

Furthermore, the estimator gain is calculated by

Ki = diag{Q−1
2(N+i)−1(t), . . . , Q

−1
2(N+i)(t)}Ki(t). (22)

Proof: Firstly, one knows from condition (22) that Ki =
diag{Q2N+1(t), . . . , Q4N(t)}Ki. Secondly, it can be verified

from the scheduling mechanism of RRP that
{

~(k + 1) = 1+~(k), if ~(k) ∈ {1, 2, . . . ,m− 1}

~(k + 1) = 1, if ~(k) = m.

Now, letting j = ~(k) and t = ~(k + 1) and taking notice of

J (j, t) < 0 in Theorem 3 result in



J̄11(k) ∗ ∗
0 Π22(k) ∗

J̄31(k) 0 J̄33(k)
0 0 0

Q(~(k + 1))Â(k) 0 Q(~(k + 1))Ŝ1

∗ ∗
∗ ∗
∗ ∗

J44 ∗
Q(~(k + 1))D̄(k) Q(~(k + 1))



< 0 (23)

where

J̄11(k) ,− Q̂(~(k)) + ̺
(
Y T
4 (IN ⊗ Ea)

T
(IN ⊗ Ea) Y4

)

−

(
Y T
2 iT

(
IN ⊗ Y T

1 Z̃1Y1

)
iY2 + Y T

3 iT (IN

⊗Y T
1 Z̃2Y1

)
iY3

)
+

̟

̟2
B̂TQ(~(k + 1))B̂,

J̄31(k) ,− ŜT
2 Q(~(k + 1))B̂,

J̄33(k) ,− Ξ̂12 +
̟

(1−̟)2
ŜT
2 Q(~(k + 1))Ŝ2.

Applying a congruence transformation

̥ = diag
{
I4N(n+m), IN(n+m), I4N(n+m),

Inν+N(n+m)
, Q−1(~(k + 1))

}

to (23) yields



J̄11(k) ∗ ∗ ∗ ∗
0 Π22(k) ∗ ∗ ∗

J̄31(k) 0 J̄33(k) ∗ ∗
0 0 0 J̄44 ∗

Â(k) 0 Ŝ1 D̄(k) −Q−1(~(k + 1))



< 0.

It follows readily from Lemma 1 that J (k) < 0 in Theorem

2. Furthermore, Π(k) < 0 in Theorem 1 is guaranteed by

J (j, t) < 0 since Π(k) is a principal submatrix of J (k).
More specifically, the LMIs in Theorem 3 simultaneously

ensure J (j, t) < 0 and the sufficient conditions in Theorems

1–2.

Remark 5: Until now, the estimation problem has been

successfully solved for the concerned complex networks with

intermittent nonlinearity switching. Actually, Theorem 3 pro-

vides a practical method to seek for the explicit solutions to the

expected estimator, where the time-varying LMIs in Theorem

1 are replaced by a set of time-invariant LMIs. It should be no-

ticed that matrix Q(~(k)) in Theorem 1 is assumed to be of a

block-diagonal form in Theorem 3 with the Q2r−1(j) ∈ Rn×n

and Q2r(j) ∈ Rm×m. Such an assumption is used to reduce

the derivation difficulty embedded in the pursuit of parameter

Ki that mainly comes from the augmentation operation in (4)

and (8). By solving the LMIs J (j, t) < 0 in Theorem 1, the

proposed H∞ estimation algorithm can be easily executed.

Remark 6: In the past decade, state estimation tasks have

been extensively studied for various stochastic complex net-

works with network-induced phenomena, and excellent re-

sults are available in literature. Compared to the existing

literature, our main results exhibit the following distinctive

novelties: 1) the introduced RRP is embedded to manage

data transmission in the sensor-to-estimator communication

with aim to reduce the transmission frequency of the data

and get rid of the network-induced phenomena; 2) a new yet

unified H∞ estimation framework is established to handle

the mathematical complexities resulting from the RRP and

intermittent nonlinearity switching; and 3) a new protocol-

dependent condition is derived to ensure the exponentially

mean-square stability of the estimation error dynamics.

IV. ILLUSTRATIVE EXAMPLE

Consider the stochastic nonlinear complex network (1) with

three nodes. The parameters of the nodes are listed as follows:

A1 = A2 = A3 =

[
−0.62 0.42
0.22 −0.11

]
,

B1 = B2 = B3 =

[
0.52 −0.32
0.34 −0.23

]
,

S1 = S2 = S3 =

[
0.32 0.32
0.13 −0.25

]
,
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C1 = C2 = C3 =

[
−0.51 −0.22
−0.13 −0.14

]
,

D1 = D2 = D3 =

[
−0.34
0.22

]
, Γ =

[
0.47 −0.23
0.12 0.13

]
.

Set the linear outer-coupling configuration matrix as

Λ =




0.1 −0.12 0.02
−0.12 0.09 0.03
0.02 0.03 −0.05


 ,

and the switching probability of the random variable ̟(k) as

0.64. Let the nonlinear vector-valued functions g(·) and h(·)
be

g

([
a1(k)
a2(k)

])
= tanh

([
0.16 0
0 −0.34

] [
a1(k)
a2(k)

])

−0.22sin

([
1 0
0 −2

] [
a1(k)
a2(k)

])
,

h

([
a1(k)
a2(k)

])
= −tanh

([
0.21 0.03
0 0.75

] [
a1(k)
a2(k)

])

+

[
0.54 0.25
0 0.96

] [
a1(k)
a2(k)

]
.

Subsequently, it is verified that nonlinear functions g(·) and

h(·) satisfy Assumption 2 and Assumption 3, respectively, with

r−1 = −0.22, r+1 =0.38,

r−2 = −0.34, r+2 =0.44,

Ξ1 =

[
0.33 0.22
0 0.21

]
, Ξ2 =

[
0.54 0.25
0 0.96

]
.

Choose the diffusion coefficient vector as

ρi

(
k,

[
xi1(k)
xi2(k)

])
=

[
1 0
0 0

]
sin

([
xi1(k)
xi2(k)

])

+

[
0 0
0 −0.3

] [
xi1(k)
xi2(k)

]
.

Then, one knows that there exists a non-negative matrix ̺ =
diag{1, 0.09} such that Assumption 1 is valid.

Letting m = 2 and γ = 1.09, the solutions to the LMIs in

Theorem 3 can be readily obtained via Matlab LMI toolbox,

which are given as

Q1(1) =

[
29.64 0.40
0.40 43.72

]
, Q1(2) =

[
29.53 0.29
0.29 43.64

]
,

Q2(1) =

[
31.07 −.0164
−0.01 2.49

]
, Q2(2) =

[
1.19 0.08
0.08 33.75

]
,

Q3(1) =

[
1.19 0.08
0.08 33.75

]
, Q3(2) =

[
35.49 0.27
0.27 35.31

]
,

Q4(1) =

[
40.45 0.05
0.05 3.56

]
, Q4(2) =

[
1.70 0.06
0.06 37.24

]
,

Q5(1) =

[
59.13 0.57
0.57 67.48

]
, Q5(2) =

[
68.45 0.59
0.59 59.11

]
,

Q6(1) =

[
35.29 0.05
0.05 10.26

]
, Q6(2) =

[
6.62 0.05
0.05 35.29

]
,

Q7(1) =

[
33.90 0.08
0.08 2.79

]
, Q7(2) =

[
34.87 0.54
0.54 38.74

]
,

Q8(1) =

[
35.29 0.01
0.01 2.37

]
, Q8(2) =

[
1.16 0.01
0.01 35.29

]
,

Q9(1) =

[
37.03 −0.55
−0.55 36.02

]
, Q9(2) =

[
37.38 −0.38
−0.38 35.98

]
,

Q10(1) =

[
35.30 0.00
0.00 3.30

]
, Q10(2) =

[
1.58 0.00
0.00 35.31

]
,

Q11(1) =

[
35.38 0.05
0.05 35.33

]
, Q11(2) =

[
35.36 0.07
0.07 35.35

]
,

Q12(1) =

[
35.48 0.012
0.01 3.34

]
, Q12(2) =

[
1.60 −0.00
−0.00 35.38

]
.

Z1 =

[
479.70 0

0 265.56

]
, Z2 =

[
825.27 0

0 144.57

]
,

and the gain matrices are

K1 =




0.0001 −0.0001
−0.0004 −0.0030
−0.0117 −0.0003
0.0001 −0.0028


 , K2 =




0.0251 0.0027
−0.0012 0.0065
52.6765 −0.0342
−0.0090 −1.5537


 ,

K3 =




−0.0304 −0.0006
−0.0004 −0.0001
−0.0733 0.0006
0.0001 0.0186


 .

Assume the external and disturbance inputs to be ϑi(k) =

e
−k

2 [sin(k) cos(k)]
T

and νi(k) = 0.02cos(k) (i = 1, 2, 3). It

can be checked that

φ(k) =




x1,1(k)
x1,2(k)

~y1,1(k − 1)
~y1,2(k − 1)
x2,1(k)
x2,2(k)

~y2,1(k − 1)
~y2,2(k − 1)
x3,1(k)
x3,2(k)

~y3,1(k − 1)
~y3,2(k − 1)




, φ̂(k) =




x̂1,2(k)
x̂1,1(k)

q̂1,1(k − 1)
q̂1,2(k − 1)
x̂2,1(k)
x̂2,2(k)

q̂2,1(k − 1)
q̂2,2(k − 1)
x̂3,1(k)
x̂3,2(k)

q̂3,1(k − 1)
q̂3,2(k − 1)




.

So one knows x1,1(k)−x̂1,1(k) = φ̃1(k), x1,2(k)−x̂1,2(k) =
φ̃2(k), x2,1(k)− x̂2,1(k) = φ̃5(k), x2,2(k)− x̂2,2(k) = φ̃6(k),
x3,1(k) − x̂3,1(k) = φ̃9(k) and x3,2(k) − x̂3,2(k) = φ̃10(k).
The trajectories of the estimation error dynamics are shown

in Fig. 1, from which one see that estimation errors converge

quickly to zero.

V. CONCLUSIONS

The paper has concerned with the H∞ estimation problem

for coupled complex networks with intermittent nonlinearity

switching. Apart from the boundedness, no other restrictions

(e.g. Lipschitz, differentiability and continuity) have been

imposed on the introduced nonlinearities and the switching

of the nonlinearities has been regulated by a set of binary

sequences. In large-scare complex networks, the combination

use of RRP scheduling scheme and the zero-order holder

strategy facilitates the communication efficiency between the

network nodes and remote state estimators. The effectiveness
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Fig. 1: Trajectory of error xi(k)− x̂i(k) (i = 1, 2, 3)

of our H∞ approach has been verified by simulations. In the

further research, we would extent the main results to more

topics such as the moving horizon estimation problem [26],

[55], the state estimation problem with dynamic quantization

effects [28], [54], and the improvement of the state estimation

performance by using some latest optimization algorithms

[32], [33].
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worked distributed fusion estimation under uncertain outputs with ran-
dom transmission delays, packet losses and multi-packet processing,
Signal Processing, Vol. 156, pp. 71-83, 2019.

[8] Y. Chen, Z. Wang, L. Wang and W. Sheng, Mixed H2/H∞ state
estimation for discrete-time switched complex networks with random
coupling strengths through redundant channels, IEEE Transactions on
Neural Networks and Learning Systems, Vol 31, No. 10, pp. 4130-4142,
2020.

[9] C. Conradi, D. Flockerzi, J. Raisch, and J. Stelling, Subnetwork anal-
ysis reveals dynamic features of complex (bio) chemical networks, in
Proceedings of the National Academy of Sciences, Vol. 104, No. 49,
pp. 19175-19180, 2007.

[10] D. Ding, Z. Wang, Q.-L. Han and G. Wei, Neural-network-based
output-feedback control under Round-Robin scheduling protocols, IEEE

Transactions on Cybernetics, Vol. 49, No. 6, pp. 2372-2384, 2019.
[11] Z. Duan, J. Wang, G. Chen, and L. Huang, Stability analysis and decen-

tralized control of a class of complex dynamical networks, Automatica,
Vol. 44, No. 4, pp. 1028-1035, 2008.

[12] S. He and F. Liu, Finite-time fuzzy control of nonlinear jump systems
with time delays via dynamic observer-based state feedback, IEEE

Transactions on Fuzzy Systems, Vol. 20, No. 4, pp. 605-614, 2012.
[13] W. Heemels, M. Donkers, and A. Teel, Periodic event-triggered control

for linear systems, IEEE Transactions on Automatic Control, Vol. 58,
No. 4, pp. 847-861, 2013.

[14] N. Hou, H. Dong, Z. Wang and H. Liu, A partial-nodes-based approach
to state estimation for complex networks with sensor saturations under
random access protocol, IEEE Transactions on Neural Networks and

Learning Systems, in press, DOI: 10.1109/TNNLS.2020.3027252.
[15] J. Hu, Z. Wang, G. P. Liu, and H. Zhang, Variance-constrained recursive

state estimation for time-varying complex networks with quantized
measurements and uncertain inner coupling, IEEE Transactions on

Neural Networks and Learning Systems, Vol. 31, No. 6, pp. 1955-1967,
2019.

[16] J. Hu, Z. Wang, G.-P. Liu, C. Jia and J. Williams, Event-triggered recur-
sive state estimation for dynamical networks under randomly switching
topologies and multiple missing measurements, Automatica, vol. 115,
art. no. 108908, 2020.

[17] Y. Ji and H. J. Chizeck, Controllability, stabilizability, and continuous-
time Markovian jump linear quadratic control, IEEE Transactions on

Automatic Control, Vol. 35, No. 7, pp. 777-788, 1990.
[18] D. Li, J. Liang and F. Wang, H∞ state estimation for two-dimensional

systems with randomly occurring uncertainties and Round-Robin proto-
col, Neurocomputing, vol. 349, pp. 248-260, 2019.

[19] J. Li, Z. Wang, H. Dong and F. Han, Delay-distribution-dependent state
estimation for neural networks under stochastic communication proto-
col with uncertain transition probabilities, Neural Networks, vol. 130,
pp. 143–151, 2020.

[20] Q. Li, Z. Wang, N. Li, and W. Sheng, A dynamic event-triggered
approach to recursive filtering for complex networks with switching
topologies subject to random sensor failures, IEEE Transactions on
Neural Networks and Learning Systems, Vol. 31, No. 10, pp. 4381-4388,
2020.

[21] X. Li, F. Han, N. Hou, H. Dong and H. Liu, Set-membership filtering
for piecewise linear systems with censored measurements under Round-
Robin protocol, International Journal of Systems Science, in press, DOI:
10.1080/00207721.2020.1768453.

[22] Z. Li and G. Chen, Global synchronization and asymptotic stability
of complex dynamical networks, IEEE Transactions on Circuits and
Systems II: Express Briefs, Vol. 53, No. 1, pp. 28-33, 2006.

[23] J. Liang, Z. Wang, Y. Liu, and X. Liu, Global synchronization control
of general delayed discrete-time networks with stochastic coupling and
disturbances, IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics, Vol. 38, No. 4, pp. 1073-1083, 2008.
[24] J. Liang, Z. Wang, Y. Liu, and X. Liu, State estimation for two-

dimensional complex networks with randomly occurring nonlinearities
and randomly varying sensor delays, International Journal of Robust

and Nonlinear Control, Vol. 24, No. 1, pp. 18-38, 2014.
[25] H. Liu, Z. Wang, W. Fei and J. Li, H∞ and l2-l∞ state estimation for

discrete-time delayed memristive neural networks on finite horizon: The
Round-Robin protocol, Neural Networks, vol. 132, pp. 121–130, 2020.

[26] Q. Liu and Z. Wang, Moving-horizon estimation for linear dynamic net-
works with binary encoding schemes, IEEE Transactions on Automatic
Control, in press, DOI: 10.1109/TAC.2020.2996579.

[27] S. Liu, Z. Wang, Y. Chen and G. Wei, Protocol-based unscented Kalman
filtering in the presence of stochastic uncertainties, IEEE Transactions
on Automatic Control, vol. 65, no. 3, pp. 1303–1309, 2020.

[28] S. Liu, Z. Wang, L. Wang and G. Wei, H∞ pinning control of complex
dynamical networks under dynamic quantization effects: A coupled
backward Riccati equation approach, IEEE Transactions on Cybernetics,
in press, DOI: 10.1109/TCYB.2020.3021982.

[29] Y. Liu, Z. Wang, and X. Liu, Global exponential stability of generalized
recurrent neural networks with discrete and distributed delays, Neural

Networks, Vol. 19, No. 5, pp. 667-675, 2006.
[30] Y. Liu, Z. Wang, Y. Yuan and W. Liu, Event-triggered partial-nodes-

based state estimation for delayed complex networks with bounded dis-
tributed delays, IEEE Transactions on Systems, Man, and Cybernetics:
Systems, Vol. 49, No. 6, pp. 1088-1098, 2019.

[31] Y. Liu, Z. Wang, L. Ma and F. E. Alsaadi, A partial-nodes-based
information fusion approach to state estimation for discrete-time delayed
stochastic complex networks, Information Fusion, Vol. 49, pp. 240-248,
2019.

[32] Y. Liu, Q. Cheng, Y. Gan, Y. Wang, Z. Li and J. Zhao, Multi-objective
optimization of energy consumption in crude oil pipeline transporta-
tion system operation based on exergy loss analysis, Neurocomputing,
Vol. 332, pp. 100-110, 2019.



FINAL VERSION 11

[33] Y. Liu, S. Chen, B. Guan and P. Xu, Layout optimization of large-
scale oil-gas gathering system based on combined optimization strategy,
Neurocomputing, Vol. 332, pp. 159-183, 2019.

[34] Y. Luo, Z. Wang, G. Wei, and F. E. Alsaadi, H∞ fuzzy fault detection
for uncertain 2-D systems under Round-Robin scheduling protocol,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol.
47, No. 8, pp. 2172-2184, 2017.

[35] Y. Luo, Z. Wang, G. Wei, and F. E. Alsaadi, Non-fragile l2 − l∞
fault estimation for Markovian jump 2-D systems with specified power
bounds, IEEE Transactions on Systems, Man, and Cybernetics: Systems,
Vol. 50, No. 5, pp. 1964-1975, 2020.

[36] Y. Luo, Z. Wang, G. Wei, F. E. Alsaadi, and T. Hayat, State estimation
for a class of artificial neural networks with stochastically corrupted
measurements under Round-Robin protocol, Neural Networks, Vol. 77,
pp. 70-79, 2016.

[37] J. Mao, D. Ding, G. Wei and H. Liu, Networked recursive filtering
for time-delayed nonlinear stochastic systems with uniform quantisation
under Round-Robin protocol, International Journal of Systems Science,
Vol. 50, No. 4, pp. 871-884, 2019.

[38] J. Nilsson, Real-time control systems with delays, Doctoral dissertation,
Lund institute of Technology, 1998.

[39] M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, and E. J. Cha, Robust
synchronization criterion for coupled stochastic discrete-time neural
networks with interval time-varying delays, leakage delay, and parameter
uncertainties, Abstract and Applied Analysis, Vol. 2013, Article ID
814692, 2013.
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