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Abstract

This paper is concerned with the self-triggered filtering problem for a class of Markovian jumping nonlinear

stochastic systems. The event-triggered mechanism (ETM) is employed between the sensor and the filter to reduce

unnecessary measurement transmission. Governed by the ETM, the measurement is transmitted to the filter as long

as a predefined condition is satisfied. The purpose of the addressed problem is to synthesize a filter such that the

dynamics of the filtering error is bounded in probability (BIP). A sufficient condition is first given to ensure the

boundedness in probability of the filtering error dynamics,and the characterization of the desired filter gains is

then realized by means of the feasibility of certain matrix inequalities. Furthermore, a self-triggered mechanism

is designed to guarantee the filtering error dynamics to be BSP with excluded Zeno phenomenon. In the end,

numerical simulation is carried out to illustrate the usefulness of the proposed self-triggered filtering algorithm.

Index Terms

Nonlinear stochastic systems, event-triggered mechanism, self-triggered mechanism, Markovian jumping pa-

rameters, boundedness in probability.

I. INTRODUCTION

Nonlinearity and stochasticity are commonly known as two inherent yet ubiquitous features of almost

all real-world systems that constitute a large degree of thesystem complexities [1], [2], [38]. In the past

few decades, both analysis and synthesis issues for nonlinear stochastic systems (NSSs) have received an

ever-increasing research interest from various communities and a great number of excellent results have

been published in the literature, see e.g. [8], [12], [21], [24], [32], [36], [42].
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On the other hand, in industrial systems, the true states of the underlying plants are often unavailable

and it makes practical sense to reconstruct the system states based on available but possibly contaminated

measurements, which gives rise to the so-called filtering problem. In fact, the filtering problem has long

been serving as a fundamental research topic in both areas ofsignal processing and control engineering

[5], [11], [13], [19], [20], [44]. Recently, due to its practical significance in engineering, the nonlinear

filtering problem for stochastic systems has gained particular research attention and a great many methods

have been developed according to the performance specifications of the filtering error dynamics [3], [4],

[15], [27], [30].

Recently, Markovian jumping systems (MJSs) have received considerable research attention since many

practical systems, whose structures are subject to random yet unpredictable changes, can be modeled as

MJSs. In MJSs, the parameters of the system switch between a few prescribed modes, and such a switching

phenomenon obeys a Markov process [45]. So far, a surge of research attention has been devoted to the

filtering problems for NSSs with Markovian jumping parameters, and some representative results can

be seen in [18], [29], [46]. For example, theH∞ filtering problem has been studied in [46] for NSSs

with both time-delays and Markovian jumping parameters, where sufficient conditions have been given to

ensure the existence of the desiredH∞ filters by solving a set of Hamilton-Jacobi inequalities. The state

estimation problem has been investigated in [18] for NSSs with Markovian jumping parameters, and the

almost sure asymptotic stability has been examined on the estimation error dynamics.

In filtering problems for networked systems, the traditional time-triggered mechanism (TTM) has been

widely considered under which the data transmission between the sensor and the filter is executed at

predetermined time instants. Nevertheless, in the case of limited communication resources, the TTM will

lead to unnecessary data transmissions which, in turn, would result in the so-called network-induced

phenomena such as time-delays and packet dropouts [26], [47]. Therefore, the event-triggered mechanism

(ETM) has been introduced with hope to reduce unnecessary data transmissions. Under the ETM, the

data transmission is executed only when a certain prescribed condition is satisfied [39].Recently, the

event-triggered filtering problem has attracted considerable research attention [7], [10], [16], [22], [25],

[33], [34], [41], [43], [48]. The event-triggeredH∞ filtering issue has been examined in [48] with packet

dropouts, and the filter gain and the triggering condition have been co-designed by resorting to the solution

to certain matrix inequalities. In [22], the correlated noises have been taken into account with respect to the

event-triggered filtering problem for nonlinear systems, and efforts have been made to acquire sufficient

conditions that guarantee the convergence of the filtering error dynamics.

Note that, in filtering problem with ETM, the measurement of the sensor is transmitted to the filter

only if the prescribed condition is met and therefore triggered. In order to check whether the triggering

condition is satisfied or not, the ETM needs to continuously monitor certain information of the system

which still brings terrible burden on the limited communication resource. To overcome this shortcoming,

the self-triggered mechanism (STM) has been proposed in [35] under which the next triggering instant is

pre-computed at the current triggering instant by exploiting the received information and the knowledge of

the plant dynamics. Therefore, such a communication mechanism can avoid the continuously monitoring
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of the concerned information and further reduce the consumption of the limited communication resource.

Until now, the STM has stirred some initial research interests [9], [14], [31], [39], [40]. Nonetheless, the

filtering problem for NSSs under STM has not been looked into yet, not to mention the more complicated

case where the Markovian jumping parameters are involved aswell. Naturally, we are motivated to shorten

such a gap in this paper.

The main aim of this paper is to deal with the filter design problem for NSSs with Markovian jumping

parameters under the STM. The primary contributions of the current investigation can be outlined below.1)

The self-triggered filtering problem is, as the first-ever research attempt, tackled for nonlinear stochastic

systems with Markovian jumping parameters. 2) Sufficient condition is given for the boundedness in

probability of the filtering error dynamics under the ETM, and the filter gains are computed by solving

certain matrix inequalities. 3) A STM is proposed that ensures the boundedness in probability of the

filtering error dynamics while excluding the Zeno phenomenon. Finally, a numerical example is given to

verify the usefulness of the developed self-triggered filtering algorithm.

Notation The notation adopted in this paper is quite standard except.(Ω,F , {Ft}t≥0, P ) denotes a

complete probability space under a filtration{F}t≥0 meeting the usual conditions (i.e. the filtration

is right continuous while containing allP -null sets).E{·} represents the mathematical expectation of

the stochastic variable“ · ”. P{·} means the probability of the event“ · ”. For a real vectorx, the

symbol |x| is its Euclidean norm.AT denotes the transpose of a matrixA. For a matrixA, λM(A)

stands for the maximum eigenvalue ofA, andTr(A) denotes the trace ofA. The block-diagonal matrix

diag{A1, A2, · · · , An} consists of the square matricesAi being its corresponding main diagonal blocks.

K denotes a class of continuous (strictly) increasing functions µ from R+ to R+ with µ(0) = 0. KL

denotes a class of functionsβ(s, t) : R+ ×R+ → R+, which are ofK-class for each fixedt and decrease

to zero ast → ∞ for each fixeds.

II. PROBLEM FORMULATION

On the probability space(Ω,F , {Ft}t≥0, P ), let {r(t), t ≥ 0} be a right-continuous Markov process

taking values in the finite state spaceS = {1, 2, · · · , N} with generatorΓ = {γij}N×N given by

P{r(t+∆) = j|r(t) = i} =







γij∆+ o(∆) if i 6= j,

1 + γii∆+ o(∆) if i = j

whereγij ≥ 0 is the transition rate from modei to modej if i 6= j, γii = −
∑

j 6=i γij, and△ > 0.

Consider the following NSS with Markovian jumping parameters:
{

dx(t) = f(x(t), r(t))dt+ g(t, r(t))dw(t)

y(t) = h(x(t), r(t))
(1)

wherex(t) ∈ R
n is the state vector,y(t) ∈ R

q is the measurement output,f(·, ·), h(·, ·) and g(·, ·) =
[

g1(·, ·) g2(·, ·) · · · gn(·, ·)
]T

are measurable nonlinear functions, andw(t) is a scalar Wiener process

defined on the probability space(Ω,F , {Ft}t≥0, P ) that is independent ofr(t) and satisfiesE{dw(t)} = 0

andE{dw2(t)} = t.
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For convenience of presentation, for each possible moder(t) = i (i ∈ S), we denote the matrixM(r(t))

asMi, the scalarm(r(t)) asmi, and the functionΦ(·, r(t)) asΦ(·, i).

Assumption 1:For moder(t) = i (i ∈ S), the measurable nonlinear functionsf(·, ·) andh(·, ·) satisfy

f(0, i) = 0, xT (t)f(x(t), i) ≤ qi|x(t)|
2,

|f(x(t), i)|2 ≤ bfi(1 + |x(t)|2),

|f(x(t) + δ, i)− f(x(t), i)− Aiδ| ≤ ai|δ|, ∀δ ∈ R
n (2)

and

h(0, i) = 0, dMi |δ| ≥ |h(x(t) + δ, i)− h(x(t), i)| ≥ dmi |δ| ,

|h(x(t) + δ, i)− h(x(t), i)− Ciδ| ≤ ci |δ| , ∀δ ∈ R
n (3)

whereai, bfi, ci, dMi, dmi, qi are known positive scalars andAi, Ci are known constant matrices with

appropriate dimensions.

Assumption 2:For moder(t) = i (i ∈ S), the componentsgk(t, i) (k = 1, 2, . . . , n) of the measurable

nonlinear functiong(t, i) satisfy the following inequalities:

−ḡki ≤ gk(t, i) ≤ ḡki, k = 1, 2, . . . , n (4)

whereḡki (k = 1, 2, . . . , n) are known positive scalars.

In this paper, in order to reduce unnecessary data transmission, the ETM is employed in the channel

between the sensor and the filter. The measurement from the sensor will be transmitted to the filter only

if the predefined condition is satisfied. The sequence of triggering time instants of the ETM is denoted

as{tk}k∈N and can be determined iteratively by the following rule:

tk+1 = inf{t|t > tk, |v(t)|2 − de ≥ 0} (5)

wherev(t) is denoted as

v(t) , y(tk)− y(t)

for t ∈ [tk, tk+1) andde is a given positive scalar.

Remark 1:From the event-triggered condition|v(t)|2 − de ≥ 0, it can be seen that the triggering

frequency of the ETM is determined by the thresholdde. A smaller thresholdde leads to more frequent

data transmission. Moreover, the ETM (5) will reduce to a traditional time-triggered one whende = 0.

Based on the ETM, the actual measurementȳ(t) received by the filter (with a zero-order holder) from

the sensor can be written as

ȳ(t) = y(tk), ∀t ∈ [tk, tk+1).

In this paper, for modei ∈ S, the filter of the following structure is adopted:

dx̂(t) =f(x̂(t), i)dt+Ki

(

ȳ(t)− h(x̂(t), i)
)

dt (6)

wherex̂(t) is the estimate of the statex(t) andKi is the filter gain to be designed.
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By noting y(tk) = v(t) + y(t), we have

dx̂(t) = f(x̂(t), i)dt+Ki

(

y(t) + v(t)− h(x̂(t), i)
)

dt. (7)

Denote the filtering error ase(t) , x(t)− x̂(t). Then, combining (1) and (7), we have

de(t) =(Ai −KiCi)e(t)dt−Kini(t)dt+ li(t)dt

−Kiv(t)dt+ g(t, i)dw(t)
(8)

where
li(t) = f(x(t), i)− f(x̂(t), i)−Aie(t),

ni(t) = h(x(t), i)− h(x̂(t), i)− Cie(t).
(9)

Definition 1: [28] The filtering error dynamics (8) is said to be bounded in probability (BIP) if, for any

given scalarε > 0, there exist a functionβ ∈ KL, a functionγ ∈ K, and a nonnegative scalard such that

the solutione(t) = e(t; e0, r0) satisfies

P{|e(t)| < β(|e0|, t) + γ(d)} ≥ 1− ε, ∀t ≥ 0

for any initial conditionse(0) = e0 andr(0) = r0.

The purpose of this paper is to: 1) design a filter in the form of(6) such that the filtering error dynamics

(8) is BIP; and 2) design a STM that ensures the boundedness inprobability of the filtering error dynamics

and excludes the Zeno phenomenon.

III. F ILTER DESIGN

In this section, the boundedness in probability is first analyzed for system (8) and the filter design

problem is then investigated. Before presenting our results, the following infinitesimal generator is first

introduced.

Let C2,1(Rn ×R+ × S;R+) denote the family of all nonnegative functions that are twice continuously

differentiable ine and once int. For V (e, t, i) ∈ C2,1(Rn × R+ × S;R+), an infinitesimal generatorL

(Rn × R+ × S → R) of (8) is defined as

LV (e, t, i)

= Vt(e, t, i) + Ve(e, t, i)f̄(e, t, i)

+
1

2
Tr

{

gT (t, i)Vee(e, t, i)g(t, i)
}

+
N
∑

j=1

γijV (e, t, j) (10)

where

Vt(e, t, i) =
∂V (e, t, i)

∂t
, Vee(e, t, i) =

(

∂2V (e, t, i)

∂ej∂ek

)

n×n

,

Ve(e, t, i) =

(

∂V (e, t, i)

∂e1
, · · · ,

∂V (e, t, i)

∂en

)

,
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f̄(e, t, i) = (Ai −KiCi)e(t)−Kiv(t) + li(t)−Kini(t).

Lemma 1:[28] Consider the following system:

dx = f(x, t)dt+ g(x, t)dw(t),

wherex(t) ∈ R
n is the state,w is an r-dimensional standard Brownian (Wiener) process,f(·, ·) andg(·, ·)

are measurable nonlinear functions.

If there exists a positive-definite, radially unbounded, twice continuously differentiable functionV :

R
n → R, a constantc ≥ 0, and a positive-definite and radially unbounded functionW (x) such that

LV ≤ −W (x) + c,

then the solution process is BIP.

In the following theorem, a sufficient condition is given under which the filtering error dynamics (8)

is BIP.

Theorem 1:Let the filter gainsKi (i ∈ S) be given. Under the ETM (5), the filtering error dynamics

(8) is BIP if there exist positive definite matricesPi (i ∈ S) and positive scalarsε1i, ε2i andε3i (i ∈ S)

such that

Πi =(Ai −KiCi)
TPi + Pi(Ai −KiCi) +

N
∑

j=1

γijPj

+ Pi

[

(ε1i + ε3i)KiK
T
i + ε2iI

]

Pi

+ (ε−1
2i a

2
i + ε−1

3i c
2
i )I < 0. (11)

Proof: Choose the Lyapunov function for system (8) as

V (e(t), i) = eT (t)Pie(t). (12)

Then, the infinitesimal generatorLV (e(t), i) for system (8) can be obtained as

LV (e(t), i)

=eT (t)
[

(Ai −KiCi)
TPi + Pi(Ai −KiCi)

]

e(t)

− eT (t)PiKiv(t)− vT (t)KT
i Pie(t) + gT (t, i)Pig(t, i)

+ eT (t)Pi [li(t)−Kini(t)] + [li(t)−Kini(t)]
T
Pie(t)

+ eT (t)
N
∑

j=1

γijPje(t).

It is easily known from2ηT ξ ≤ ηTη + ξT ξ (whereη andξ are vectors of appropriate dimensions) that

−eT (t)PiKiv(t)− vT (t)KT
i Pie(t)

≤ε1ie
T (t)PiKiK

T
i Pie(t) + ε−1

1i v
T (t)v(t).



REVISED 7

Moreover, from (2) and (3), we havelTi (t)li(t) ≤ a2i e
T (t)e(t) andnT

i (t)ni(t) ≤ c2i e
T (t)e(t), which derive

eT (t)Pili(t) + lTi (t)Pie(t)

≤ eT (t)
(

ε2iP
2
i + ε−1

2i a
2
i I
)

e(t),

−eT (t)PiKini(t)− nT
i (t)K

T
i Pie(t)

≤ eT (t)
(

ε3iPiKiK
T
i Pi + ε−1

3i c
2
i I
)

e(t).

Then, it can be obtained that

LV (e(t), i) ≤eT (t)Πie(t) + ε−1
1i v

T (t)v(t) + gT (t, i)Pig(t, i)

≤− eT (t)(−Πi)e(t) + ε−1
1i de + λM(Pi)ḡi

=− eT (t)(−Πi)e(t) + hi (13)

whereḡi ,
∑n

k=1 ḡ
2
ki, hi , ε−1

1i de + λM(Pi)ḡi.

From the definition ofV (e(t), i) in (12) and the condition of (11), we know thatV (e(t), i) is a positive-

definite, radially unbounded, twice continuously differentiable function andeT (t)(−Πi)e(t) is a positive-

definite and radially unbounded function. Thus, according to Lemma 1, we know that the filtering error

dynamics (8) is BIP. The proof is complete.

Now, we are ready to derive the solution to the event-triggered filtering problem for nonlinear stochastic

systems with Markovian jumping parameters.

Theorem 2:For nonlinear stochastic system (1) with the filter (6) underthe ETM (5), the filtering error

dynamics (8) is BIP if there exist positive definite matricesPi (i ∈ S), matricesYi (i ∈ S) and positive

scalarsε1i, ε2i andε3i (i ∈ S) such that
[

Υi Ωi

∗ −Ξi

]

< 0, i ∈ S (14)

where

Υi = AT
i Pi + PiAi − CT

i Y
T
i − YiCi +

N
∑

j=1

γijPj,

Ωi =
[

Yi Yi Pi ε−1
2i aiI ε−1

3i ciI

]

,

Ξi = diag{ε−1
1i I, ε

−1
3i I, ε

−1
2i I, ε

−1
2i I, ε

−1
3i I}.

Furthermore, if the inequalities (14) are feasible, the desired filter gains are given as

Ki = P−1
i Yi, i ∈ S. (15)

Proof: For i ∈ S, pre- and post-multiplying the inequality (14) bydiag{I, ε1/21i I, ε
1/2
3i I, ε

1/2
2i I, ε

1/2
2i I, ε

1/2
3i I}

and lettingYi = PiKi, the inequality (11) can be easily obtained from (14) by using the Schur Complement

Lemma. Therefore, the rest of the proof follows immediatelyfrom Theorem 1.

Remark 2:It is obvious that the conditions in Theorem 2 are in the form of certain LMIs. As is well

known, the computation complexity of the standard LMI system is bounded byO(XY3), whereX is the
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total row size of the LMIs andY is the total number of the scalar decision variables. From (14), we know

thatX = 6Nn andY = Nn2 +Nnq + 3N . Obviously, the computation complexity of the conditions in

Theorem 2 depends polynomially on the size of the system.

Until now, the event-triggered filter has been designed suchthat the filtering error dynamics is BIP. In

the following section, a STM is proposed based on the obtained event-triggered filter.

IV. SELF-TRIGGERED MECHANISM

As discussed in the introduction, to reduce the consumptionof the communication resource in contin-

uously monitoring the measurement output, a STM is proposedunder which the filtering error dynamics

(8) is BIP and the Zeno phenomenon is excluded.

Lemma 2:Suppose that the condition of Theorem 1 is satisfied and the STM is triggered att = tk.

Then, fort ∈ [tk, tk+1) and eachi ∈ S, |v(t)|2 satisfies

E{|v(t)|2} ≤ ϕ (|y(tk)|, t− tk, i) (16)

where

ϕ
(

|y(tk)|, t− tk, i
)

,
s3i|y(tk)|

2 + s4i

s2i

(

es2i(t−tk) − 1
)

,

s1i , d2Mia
2bfi, s2i ,

d2Mi + s1ia
2 (1 + b2)

a2d2mi

s3i ,
s1i (1 + b2)

b2d2mi

with a > 0, b > 0.

Proof: For t ∈ [tk, tk+1), we know from (3) that there exists a positive scalardki ∈ [dmi, dMi] such

that

|v(t)|2 = d2ki |ex(t)|
2 (17)

whereex(t) , x(tk)− x(t).

Moreover, according to Assumption 1, the differential ofE{|v(t)|2} can be calculated as

d

dt
E
{

|v(t)|2
}

=d2ki
d

dt
E
{

|ex(t)|
2}

=d2ki
d

dt
E
{

|x(tk)− x(t)|2
}

=− 2d2kiE
{

eTx (t)f(x(t), i)
}

+ d2kiE
{

|g(t, i)|2
}

≤
d2ki
a2

E
{

|ex(t)|
2} + d2kia

2
E
{

|f(x(t), i)|2
}

+ d2kiḡi

≤
d2ki
a2

E
{

|ex(t)|
2} + d2kia

2bfi(1 + E
{

|(x(t)|2
}

) + d2kiḡi
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≤
d2Mi

a2
E
{

|ex(t)|
2}+ d2Mia

2bfi + d2Miḡi

+ d2Mia
2bfiE

{

|x(tk)− ex(t)|
2}

≤

(

d2Mi

a2
+ s1i

(

1 + b2
)

)

E
{

|ex(t)|
2}+ s4i

+ s1i

(

1 +
1

b2

)

|x (tk)|
2

≤s2iE
{

|v(t)|2
}

+ s3i|y(tk)|
2 + s4i.

Applying the Comparison Lemma, along with the fact thatv(tk) = 0, we have

E
{

|v(t)|2
}

≤
s3i|y(tk)|

2 + s4i

s2i

(

es2i(t−tk) − 1
)

. (18)

The proof is thus completed.

Theorem 3:Suppose that the condition of Theorem 1 is satisfied and the filter (6) updated at time

t = tk with y(tk). If the time intervalςk between two consecutive execution time instantstk andtk+1, i.e.

ςk = tk+1 − tk, satisfies

ϕ (|y(tk)|, ςk, i) ≤ de (19)

where

ϕ (|y(tk)|, ςk, i) ,
s3i|y(tk)|

2 + s4i

s2i
(es2iςk − 1) ,

then the filtering error dynamics (8) is BIP. Furthermore, for all initial value e0, the inter-execution times

will not reach an accumulation point, that is, there exists apositive constantτ ∗k such thatτ ∗k ≤ ςk with

τ ∗k , mini∈Sτk(i) (20)

whereτk(i) can be obtained by

τk(i) =
1

s2i
ln

z1i

z2i
(21)

with

z1i , des2i + s3i|y(tk)|
2 + s4i,

z2i , s3i|y(tk)|
2 + s4i.

Proof: As the proof of Theorem 1, it is easily known from (19) that thefiltering error dynamics is

BIP. The first part of the proof is thus completed.

On the other hand, based on Lemma 2, we have that for anyt ∈ [tk, tk+1) and eachi ∈ S

ϕ (|y(tk)|, t− tk, i) =
s3i|y(tk)|

2 + s4i

s2i

(

es2i(t−tk) − 1
)

(22)

with ϕ(|y(tk)|, 0, i) = 0.

Let φ(t) = ϕ(|y(tk)|, t− tk, i), it is easy to see thatφ(t) is an increasing function withφ(0) = 0. Owing

to the monotonicity of functionφ(t) andde > 0, we see that the following equation

ϕ (|y(tk)|, ςk, i) ≥ de (23)
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has a unique positive solutionτk(i) being given by (21) such thatςk ≥ τ ∗k = mini∈Sτk(i). The proof is

completed.

Remark 3: In this paper, we aim to design a self-triggered filter for nonlinear stochastic systems

with Markovian jumping parameters. In Theorem 1, sufficientcondition is presented that ensures the

boundedness in probability of the filtering error dynamics.Furthermore, in Theorem 2, the filter gains

are characterized by means of solving certain linear matrixinequalities. Finally, in Theorem 3, a STM is

designed such that the filtering error dynamics is BIP and theZeno phenomenon is excluded.

Remark 4:Until now, a self-triggered filtering scheme has been proposed for nonlinear stochastic

systems with Markovian jumping parameters. The advantagesof the proposed self-triggered filtering

scheme can be summarized as follows: 1) the system model under consideration is quite general that

takes the nonlinearity, the stochasticity and the Markovian jumping parameters into account; and 2) a

STM is proposed which no longer needs to continuously monitor the information of the system and

reduces the communication resource consumption.

V. NUMERICAL EXAMPLE

In this section, a numerical example is presented to illustrate the validity of the developed self-triggered

filtering scheme.

Consider stochastic nonlinear system (1) with two modes andthe generatorΓ being

Γ = {γij}2×2 =

[

−3 3

1.5 −1.5

]

.

The nonlinear functionsf(x(t), r(t)), g(t, r(t)) andh(x(t), r(t)) are given as

f(x(t), 1) =

[

−x1(t)− 0.2x2(t) + 0.2 sin(x1(t) + x2(t))

1.3x1(t)− 1.1x2(t) + 0.3 sin x1(t)

]

,

f(x(t), 2) =

[

−0.5x1(t)− 1.1x2(t) + 0.3 sinx2(t)

0.2x1(t)− 0.4x2(t) + 0.4 sin x1(t)

]

,

g(t, 1) =

[

0.2 sin(t)

0.2 cos(t)

]

, g(t, 2) =

[

0.1 sin(t)

0.1 cos(t)

]

,

h(x(t), 1) =

[

0.7x1(t) + 0.2 sin x2(t)

0.7x2(t) + 0.1 sin x1(t)

]

,

h(x(t), 2) =

[

0.8x1(t) + 0.1 sin x1(t)

0.8x2(t) + 0.2 sin x2(t)

]

.

Then, the parametersAi, Ci, ai, bfi, ci, dMi, dmi andqi can be obtained as

A1 =

[

−1 −0.2

1.3 −1.1

]

, A2 =

[

−0.5 −1.1

0.2 −0.4

]

,

C1 =

[

0.7 0

0 0.7

]

, C2 =

[

0.8 0

0 0.8

]

,
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Fig. 1: The trajectory of the statex(t) and its estimate

a1 = 0.4123, a2 = 0.5, bf1 = 4.13, bf2 = 2.26,

c1 = 0.2449, c2 = 0.2236, dM1 = 0.0.96, dM2 = 1.29,

dm1 = 0.5, dm2 = 0.65, q1 = 0.2, q2 = 0.6.

Moreover, the thresholdde is chosen asde = 1.1.

With the above parameters, by using the MATLAB LMI toolbox, the filter gains are obtained as

K1 =

[

0.4230 −0.0890

−0.0868 0.2669

]

,

K2 =

[

0.2602 0.0134

0.0107 0.1207

]

.

The simulation results are given in Figs. 1-3. Fig. 1 depictsthe trajectory of the statex(t) and its

estimate. Fig. 2 shows the filtering errore(t). Fig. 3 plots the triggering time instants of the STM and

the corresponding|y(tk)|2. The simulation results have verified that the proposed self-triggered filtering

scheme is indeed effective for the NSSs with Markovian jumping parameters.

Remark 5:It can be seen from Fig. 3 that the data transmission rate under the STM is62%. Compared

with the TTM, the STM is able to significantly reduce the data transmissions and save the network resource.

On the other hand, as discussed in the introduction, the STM can avoid the continuously monitoring of

the concerned information and further save the network resource. Therefore, the STM is indeed effective

in reducing the resource consumption.

VI. CONCLUSION

In this paper, the self-triggered filtering problem has beenstudied for nonlinear stochastic systems

with Markovian jumping parameters. The ETM has been implemented in the sensor-to-filter channel to



REVISED 12

0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time t/s

 

 
e1(t)
e2(t)
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Fig. 3: The triggering time instants and the corresponding|y(tk)|
2

reduce unnecessary data transmission. Sufficient condition has been first given such that the filtering

error dynamics of the event-triggered filter is BIP. Then, the filter gains have been acquired by solving

certain linear matrix inequalities. Furthermore, a STM hasbeen proposed under which the filtering error

dynamics of the obtained filter is BIP with excluded Zeno phenomenon. Finally, a numerical example

has been presented to demonstrate the effectiveness of the proposed self-triggered filtering scheme.In our

further research, we will study the self-triggered filtering problem for systems with Markovian jumping

parameters where the transition probabilities are uncertain or unknown [17]. On the other hand, the

sampled-data-based event-triggered mechanism is an interesting topic [6] and the corresponding filtering

problem is worth investigating.
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[3] R. Caballero-́Aguila, A. Hermoso-Carazo and J. Linares-Pérez, Distributed fusion filters from uncertain measured outputs in sensor

networks with random packet losses,Information Fusion, vol. 34, pp. 70–79, Mar. 2017.
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