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Abstract—With the increasing penetration of wind power in 
renewable energy systems, it is important to improve the 
accuracy of wind speed prediction. However, wind power 
generation has great uncertainties which make high-quality 
interval prediction a challenge. Existing multi-objective 
optimization interval prediction methods do not consider the 
robustness of the model. Thus, trained models for wind speed 
interval prediction may not be optimal for future predictions. 
In this paper, the prediction interval coverage probability, the 
prediction interval average width, and the robustness of the 
model are used as three objective functions for determining the 
optimal model of short-term wind speed interval prediction 
using multi-objective optimization. Furthermore, a new 
Stochastic Sensitivity for Prediction Intervals (SS_PIs) is 
proposed in this work to measure the stability and robustness 
of the model for interval prediction. Using wind farm data from 
countries on two different continents as case studies, 
experimental results show that the proposed method yields 
better prediction intervals in terms of all metrics including 
prediction interval coverage probability (PICP), prediction 
interval normalized average width (PINAW) and SS_PIs. For 
example, at the prediction interval nominal confidence (PINC) 
of 85%, 90% and 95%, the proposed method has the best 
performance in all metrics of the USA wind farm dataset. 
 

Index Terms—Wind Speed, Prediction Intervals, Multi-
Objective Optimization, Stochastic Sensitivity, Neural Network. 

 

LIST OF ABBREVIATIONS 
AI Artificial intelligence 

ANN Artificial neural network 
ARIMA Autoregressive integrated moving average model 
ARMA Autoregressive moving average model 

BP Back propagation 
EEMD Electromagnetic mode decomposition 
EMD Empirical mode decomposition 
GRU Gated recurrent unit 

ICEEMDAN Improved ceemdan 
LSTM Long short-term memory 
LUBE Lower upper bound estimation 
MLP Multilayer perceptron 

MOGA Multi-objective genetic algorithm 

MSE Mean square error 
NSGA-III Non-dominated sorting genetic algorithm-III 

NWP Numerical weather prediction 
PICP Prediction interval coverage probability 

PINAW Prediction interval normalized average width 
PINC Prediction interval nominal confidence 

PIs Prediction intervals 
RNN Recurrent neural network 

SS_PIs Stochastic sensitivity for prediction intervals 
SSMOO Stochastic sensitivity-based multi-objective optimization 
WNN-

PICEA-g 
Wavelet neural network – preference inspired co-

evolutionary algorithm - goal vectors 
  

I. INTRODUCTION 
raditionally, electricity is produced by burning fossil fuels 
such as coal, natural gas, and oil. However, burning fossil 

fuels release a large number of toxic substances to the 
environment, which is not conducive to the sustainable 
development of mankind [1]. With the development of 
advanced technology, energy consumers pay increasing 
attention to the use of renewable energy in recent years. At 
present, wind energy has the characteristics of large reserves, 
wide distribution and inexhaustible supply. Wind energy can 
provide abundant of clean electricity to decarbonize the society 
[2]. For example in the UK, wind energy is the most common 
form of renewable energy [3]. Although wind power has many 
advantages, it has intermittent and random fluctuations. 
Meteorological conditions affect the operation of wind farms, 
making wind energy changes in a very short time. This also 
makes wind energy prediction a challenge and brings great 
difficulties to the stability and safety of a wind power system 
[4]. Accurate wind power forecasting reduces the impact of 
wind energy uncertainty on the power system and helps to 
formulate corresponding plans to ensure stable operation of the 
power system [5]. 

Many wind power forecasting techniques are proposed in 
the existing research [6], [7]. They are usually divided into 
physical, statistical and artificial intelligence (AI) methods [8], 
[9]. Physical methods need to collect meteorological data, 
including humidity, temperature, pressure, wind speed, wind 
direction and terrain data, which are usually called numerical 
weather prediction (NWP) model [10]. The advantages of 
these methods are high prediction accuracy and strong 
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interpretability. The disadvantage is that it is difficult to collect 
data and need lots of computation and detailed description of 
atmosphere [11], [12]. Statistical methods are data-driven by 
using historical time series data collected from wind farms to 
predict future value, for example, there are autoregressive 
moving average model (ARMA) [13] and autoregressive 
integrated moving average model (ARIMA) [14]. However, 
these time series models are linear and cannot accurately 
predict the nonlinear and non-stationary fluctuations of wind 
speed time series [12]. In recent years, many machine learning 
technologies have been applied. Among them, artificial neural 
network (ANN) has become a common method for wind speed 
prediction because it can capture the nonlinear relationship 
between historical data [15]. Many of the studies use shallow 
ANNs, and some use deep learning (DL) to capture complex 
nonlinear characteristics [16], [17]. In recent years, wind speed 
data preprocessing is also considered to filter noise, such as 
empirical mode decomposition (EMD) [18], electromagnetic 
mode decomposition (EEMD) [19] and improved ceemdan 
(ICEEMDAN) [20]. The wind speed is periodic and the peak 
point changes rapidly, so [21] uses sinusoidal activation 
function to replace sigmoid activation function. Some studies 
combine ANN with statistical methods to capture both linear 
and nonlinear characteristics of wind speed [20], [22].These 
methods improve the accuracy of short-term wind speed 
prediction. However, there are some shortcomings in 
traditional point prediction methods, such as large prediction 
errors and large changes in prediction accuracy, and only a 
certain prediction value can be generated within a certain time 
step, without the related uncertainties [23], [24]. Therefore, in 
recent years, the focus of wind speed prediction research is 
mainly on interval prediction. Interval prediction can estimate 
the potential uncertainty and risk level more reasonably and 
provide a more comprehensive reference for the planning and 
operation of power systems [25]. 

Traditional interval prediction methods for wind speed first 
train the model by minimizing the loss function based on point 
prediction, and then construct the prediction intervals (PIs) 
according to the training result [2]. However, the PIs 
constructed in this way will be accompanied by some 
problems. Firstly, there is a need to assume the distribution of 
parameters [26] for the methods such as Gaussian process [27] 
and kernel density forecast method [28]. However, the actual 
data distribution often does not satisfy the hypothetical 
distribution, therefore this could bring unacceptable errors. 
Secondly, the main strategy of this traditional PIs construction 
method is to minimize the prediction error rather than 
improving the quality of the PIs [29]. To overcome these 
problems, Khosravi proposed a lower upper bound estimation 
(LUBE) method based on a neural network for PIs in [29]. 
Compared with other traditional PIs construction methods 
based on neural network, the LUBE does not need to assume 
the distribution of prediction errors, and the computation speed 
is greatly accelerated. More importantly, the LUBE directly 
optimizes the quality of the PIs. In addition, the existing 
research also studies PIs from many aspects. The methods for 
wind speed interval prediction based on a single objective 
framework (e.g. LUBE) may need to combine multiple 
objectives into one objective, but whether it is a weighted or 
exponential combination, it needs some prior knowledge and 

will introduce too many hyper-parameters. There are also some 
works regarding it as a constrained single objective 
optimization problem [30]. Some literatures have proposed 
multi-objective frameworks for PIs [1], [31], [32]. Reference 
[33] reported a fuzzy-based cost function, which makes the 
adjustment of neural network parameters with more freedom 
and flexibility. In addition to the prediction interval coverage 
probability (PICP) and the prediction interval normalized 
average width (PINAW), the cost function can also include 
coverage dependent and width dependent components [34], 
[35]. To improve the stability of the optimization model, [36] 
proposed a method based on optimal aggregation. To avoid an 
exponential cost function, [37] proposed a deviation 
information-based criterion. Some works focus on the 
structure of neural networks, such as RNN [23], LSTM [11] 
and GRU network [38]. Although these studies improve the 
quality of PIs from various aspects, as far as we know, there is 
no work to directly optimize the robustness and stability of PIs. 

Most of the existing wind speed interval prediction methods 
based on multi-objective optimization take the coverage 
probability and the width of the PIs or the variants of them as 
two objectives. Although this can directly optimize the two 
most important indices of the PIs, the model for wind speed 
interval prediction may lack of stability. That is to say, 
although the trained model performs well in the training set, 
the performance may be greatly reduced for unknown samples 
similar to training samples. In this paper, a stochastic 
sensitivity-based multi-objective optimization method for 
short-term wind speed interval prediction is proposed, and the 
neural network is chosen as the model for interval prediction. 
Specifically, an optimal solution (i.e., weights of the neural 
network) is obtained by simultaneously considering the PICP, 
PINAW, and stochastic sensitivity which is the measurement 
of the robustness and the stability of neural networks [39]. The 
latest multi-objective optimization algorithm: Non-dominated 
Sorting Genetic Algorithm-III (NSGA-III) [40], [41] is used as 
the tool for finding the optimal solution. In this paper, the 
actual wind farm data are used to carry out the experiments.  

Major contributions of this work are: 
1) The traditional stochastic sensitivity for point prediction is 

extended to the interval prediction. The stochastic 
sensitivity is introduced to the modeling of short-term wind 
speed interval prediction. Such that, prediction intervals of 
the trained model are expected to be accurate and narrow 
with high robustness. By improving the stability of the 
model via a minimization of the stochastic sensitivity, the 
generalization capability of the model for future unknown 
samples can also be improved.  

2)  Multi-objective optimization is introduced. Compared 
with the traditional single-objective-based optimization, the 
multi-objective optimization does not require the selection 
of regularization parameter beforehand and the final 
solution is selected from the Pareto front at the end of 
optimization. In addition to the relief of hyper-parameter 
selection, multi-objective optimization usually finds better 
solutions by treating multiple objectives in a vector form 
instead of a linear combination of them. This prevents 
anyone of the objectives from dominating the linear 
combination of objectives. 

3) For the case studies of two countries on different continents, 



experimental results show that the proposed method 
outperforms existing methods for wind speed interval 
predictions. 
The rest of this paper is organized as follows. The 

terminologies for neural network-based interval prediction and 
the NSGA-III are introduced in Section II. Section III 
introduces the proposed method for short-term wind speed 
interval prediction. Experimental setup and results are 
discussed in Section IV. Section V concludes this work. 

II. TERMINOLOGIES

II-A. Neural Network Structure for Prediction Intervals

To directly optimize the quality of PIs by using neural 
network, Fig 1 presents a neural network structure with two 
outputs. The number of input neurons and hidden layer 
neurons can be arbitrary. Among the two outputs of the neural 
network, the first one corresponds to the upper bound of the 
PIs and the second one corresponds to the lower bound of the 
PIs. This kind of neural network structure can make the neural 
network optimizes the PIs directly. 

II-B. Evaluation Indices of PIs
There are two most important indices for evaluating PIs in

traditional methods, namely the predicted interval coverage 
probability (PICP) and the predicted interval normalized 
average width (PINAW) [42]. 

In general, PICP is considered as a very important index of 
PIs, which represents the accuracy of PIs, that is, the 
probability that the target value is covered by the upper and 
lower bounds of PIs. A larger PICP means that there are more 
target values within the built PIs. The definition of the PICP is 
as follows [42]: 

PICP = !
"
∑ 𝑐#"
#$!  (1) 

where N is the number of samples, ci is a boolean variable, 
representing the coverage behavior of the ith PIs. If the target 
value yi is between the upper bound Ui and the lower bound Li 
of the ith PI, then ci = 1; otherwise, ci = 0. Mathematically, ci 
can be defined as: 

𝑐# 	= 	 (
1,			𝑦# ∉ [𝐿(𝑥#), 𝑈(𝑥#)]
0,			𝑦# ∈ [𝐿(𝑥#), 𝑈(𝑥#)]

 (2) 

It is not necessarily better with a higher PICP because this 
may be accompanied by a wider PIs. Assuming that the width 
of PIs is infinite, the PICP must be 100%, but this is not the 
high-quality PIs that we want. So besides considering the PICP, 
the width of PIs should also be considered. In previous work, 

the width of PIs is defined as the predicted interval normalized 
average width (PINAW), which is defined as follows [42]: 

         PINAW = !
"%
∑ (𝑈# − 𝐿#)"
#$!  (3) 

where R is the range of underlying targets (maximum minus 
minimum). R can normalize the average width of PIs (%) so 
that it can be compared objectively for different scenarios. 

In practice, it is important to have large PICP and narrow 
PINAW. In theory, these two goals conflict with each other. 
Reducing the width of PIs usually leads to the decrease of 
PICP, which is due to the loss of some PIs observations [29]. 
If the PICP is much smaller than the PINC, the constructed PIs 
is completely unreliable [29]. Therefore, excellent PIs should 
have the PICP as close as possible to the PINC with level (1-
α)%, where α indicates the probability of error, and PINAW 
should be as small as possible at the same time. 

II-C. Multi-Objective Optimization by NSGA-III
NSGA-III [40], [41] is a multi-objective optimization

algorithm based on a genetic algorithm, which is inspired by 
the principles of genetics and natural selection. It is widely 
used in various practical optimization problems, and is also 
one of the latest multi-objective optimization algorithms. 

Before the multi-objective optimization, the multi-objective 
problem must be modeled first. A multi-objective optimization 
problem can be considered as consisting of M optimization 
objectives, K equality constraints, J inequality constraints and 
upper and lower bounds of I decision variables. 
Mathematically, the problem can be expressed as follows [43]: 

Minimize/Maximize:  fm(x),	 	 	 m	=	1,	2,	...,	M	    (4)

subject to:       	 hk(x)	=	0,	 	 	 k	=	1,	2,	...,	K	    (5)

	 	 	 gj(x)	≥	 0,	 	 j	=	1,	2,	...	,	J	     (6) 

 xi(l)	≤	 xi	≤	 xi(u),	 	 i	=	1,	2,	...,	I	     (7) 

where, x = {x1, x2,..., xI} is a vector of I-dimensional decision 
variables in solution space RI, and Equation (7) restricts the 
upper and lower bounds of decision variables. Equations (5) 
and (6) give constraints that decision variables must satisfy, 
where (5) represent equality constraints and (6) represent 
inequality constraints. The objective of the optimization is to 
minimize/maximize M objective functions. 

The search process is to optimize x according to the 
objective functions, and the comparison of solutions is carried 
out through the concept of dominance [43]. In the 
minimization problem, for solution xa and xb, if the 
performance of xa is not lost to xb for all objective functions, 
and there exists an objective function xa outperforms xb, then 
the solution xa dominates xb. Mathematically, it can be 
expressed as follows: 

fi(xa)	≤	fi(xb),	∀i	∈	{1,	2,...,	M}	∩	
	 	 	 	 	 	 	 fj(xa)	<	fj(xb),	∃j	∈	{1,2,...,	M} (8) 

If the above conditions are not fully satisfied, xa does not 
dominate xb, or xb is not dominated by xa. Ultimately, the goal 
of NSGA-III algorithm is to determine a set of optimal 

Fig. 1 ANN model developed for PIs. 



solutions, that do not dominate each other and are superior to 
any other solution in search space as compared to all objective 
functions. This set of optimal solutions is called Pareto optimal 
set, and the values of the corresponding objective functions 
constitute the Pareto optimal front. 

 

III. SSMOO FOR WIND SPEED INTERVAL PREDICTION 
The proposed Stochastic Sensitivity-based Multi-Objective 

Optimization (SSMOO) method is a multi-objective 
optimization problem with three objectives, namely the PICP, 
PINAW, and proposed stochastic sensitivity for PIs (SS_PIs). 
We aim to improve stability and robustness of the model to 
yield better prediction intervals by adding SS_PIs to the 
opimization. NSGA-III is used to optimize our multi-objective 
optimization problem. The SSMOO uses the Multilayer 
Perceptron (MLP) neural network for prediction and can be 
extended to other neural network models. 

The rest of this section will be divided into two parts. The 
first part introduces the proposed SS_PIs, and the second part 
introduces the SSMOO. They will be introduced in Sections 
III-A and III-B, respectively.  

III-A. SS for Prediction Intervals 
Stochastic sensitivity (SS) is calculated by the average 

output deviations of the model by a small disturbance to 
features [39]. If the output of the model is strongly disturbed 
by small perturbations, then stability and robustness of the 
model are weak and this usually leads to a weak generalization 
capability to future unknown samples. The model is more 
likely to fail to predict future unseen samples. 

SS is defined as the average difference of the predicted 
values of the random perturbed samples to the label which is 
formulated as follows: 

𝑆𝑆(𝑥, ℎ) =
∑ |()*(,!)|
"
!#$

.
             (9) 

where x, xp, y, β, and h(⋅) denote a given training sample, 
the pth perturbed samples around x, the label of x, the number 
of perturbed samples, and the predicted value by the model h, 
respectively. Disturbance samples are created by adding small 
perturbations to the input of training samples, which are 
located in the same domain, i.e. Q-neighborhood. The Q-
neighborhood of x is defined as follows: 

SQ	(𝑥)	=	{𝑥p|𝑥p	=	𝑥	+	Δ𝑥,	|Δ𝑥i|	≤	 𝑄,	𝑖	=	1,	2,…,	𝑛}	(10) 

where Δ𝑥, Δ𝑥i, Q, 𝑛 denote the degree of perturbations to the 
training sample, the degree of perturbation to the ith dimension 
of the training sample, the maximum degree of perturbation, 
and the dimension of sample x, respectively. 

For a dataset normalized to [0, 1], Q = 0.1 means that the 
maximum perturbation can deviate from the training sample is 
by 10%. The samples in the Q-neighborhood of training 
samples should have the same labels as the training samples, 
because the model with good generalization ability is robust to 
small disturbances. 

The above-mentioned SS only applies to the traditional 
point prediction. To apply SS to interval prediction, we need to 

extend SS to make it naturally applied to the PIs. Thus, the SS 
for PIs (SS_PIs) is proposed in this paper and defined as 
follows: 

          SS_PIs(𝑥) = 	
∑ /(,,,!)
"
!#$

.
               (11) 

where x represents a training sample, the definitions of xp 
and β are the same as above, and the definitions of s(x,xp) are 
as follows: 

𝑠[𝑥, 𝑥1\ = 	 ]
1,			𝑐(𝑥) ≠ 𝑐[𝑥1\
0,			𝑐(𝑥) = 𝑐[𝑥1\

            (12) 

 

   𝑐(𝑥) = 	 (1,			𝑦 ∈
[𝐿(𝑥), 𝑈(𝑥)]

0,			𝑦 ∉ [𝐿(𝑥), 𝑈(𝑥)]             (13) 

where y denotes the label of sample x, L (x) and U (x) denote 
the lower and upper bounds of the PI of sample x, respectively. 
The perturbed sample xp shares the same label y as sample 
x.When c(x) is equal to c(xp), s(x, xp) = 0, otherwise s(x, xp) = 
1. c is defined in Equation (13). When y falls in the PI, c (x) = 
1, otherwise c (x) = 0.  

For a training sample x, SS_PIs generates β perturbed 
samples xp (p ∈	[1, β]). By comparing the coverage behavior 
of x and xp, the stochastic sensitivity of the model in sample x 
is the number of perturbed samples whose coverage behavior 
is inconsistent with x divided by the total number of perturbed 
samples β. SS_PIs measures the stability and robustness of the 
model in the interval prediction problem. The larger the SS_PIs 
(x) is, the worse the robustness of the model to small 
disturbances will be. 

SS_PIs is used to evaluate the robustness and stability of 
wind speed interval prediction model. The detailed flow of 
SS_PIs for a training sample x is shown in Algorithm 1 below:  

 
Algorithm 1 SS_PIs  
Given: A training sample x, label of training sample y, the dimension of 
training sample n, disturbance degree Q, the number of perturbed samples 
β, neural network model M 
Output: SS_PIs of training sample x 
1. SS_PIs(x) = 0 
2. For p = 1 to β do 

a) An n-dimensional perturbation vector Δ𝑥 is generated 
randomly, in which each component is in the range of [-Q, Q]. 

b) 𝑥p = 𝑥 +Δ𝑥 
c) Using xp as the input of M, the upper bound U (xp) and lower 

bound L (xp) of PIs are obtained. 
d) If y ∈ [L (x), U (x)], y ∈ [L (xp), U (xp)] or y ∉ [L (x), U (x)], y 

∉ [L (xp), U (xp)], s(x,xp) = 0, otherwise s (x,xp) = 1. 
e) SS_PIs(x) = SS_PIs(x) + s (x,xp) 
End for 

3. SS_PIs(x) = SS_PIs(x) / β 

III-B. Stochastic Sensitivity-based Multi-Objective 
Optimization Method (SSMOO) 

In the previous studies, the PICP and PINAW have been 
used as two objectives in the multi-objective optimization of 
interval prediction problems. The optimization equation can be 
expressed as follows: 

Objectives:	 	 Finding	optimal	weights	ω*	 	



Minimize:	 	 PINAW	(ω)                  (14) 

1	-	PICP	(ω)	

where ω is the weights of the model (i.e., the neural network 
model in this paper) for wind speed interval prediction. The 
PICP and PINAW are the two most important metrics for 
evaluating the quality of PIs. Therefore, this method can 
construct a PI that performs the best in the training set, but for 
unknown samples, the performance is not necessarily the best. 
That is to say, this method may appear to have overfitting 
phenomenon, and have little generalization ability to unknown 
samples. Therefore, the Stochastic Sensitivity-based Multi-
Objective Optimization Method (SSMOO) is proposed in this 
paper. It considers not only the PICP and PINAW, but also the 
SS_PIs as the third optimization objective, aiming for an 
optimal solution with both PIs quality and generalization 
ability. The optimization equation can be expressed as follows: 

Objectives:	 	 Finding	optimal	weights	ω*	 	
Minimize:	 	 PINAW	(ω)                    

1	-	PICP	(ω)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (15)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 SS_PIs	(ω)	

In addition to the optimization equation, an initial solution, 
i.e. the initial parameters of the neural network, need to be 
determined. Because the multi-objective optimization 
algorithm such as NSGA-III is based on the initial solution for 
exploratory iteration update, and gradually finds a better 
solution. Therefore, an excellent initial solution is helpful to 
find a better final solution. The algorithm for determining the 
initial solution of the SSMOO is as follows: 

 
Algorithm 2 Determine the initial solution of the SSMOO 
Given: Training dataset 𝒟train, neural network model M 
Output: Initial solution ω0 of the SSMOO 
1. Initialize the parameters of M randomly. 
2. Set both target outputs of M to label of Dtrain 
3. M is trained by Dtrain with traditional optimization algorithms (such 

as back propagation). The obtained parameter set is called ω0. 

  With the multi-objective optimization equation and initial 
solution, the optimization objective can be optimized by 
NSGA-III. It should be noted that NSGA-III does not directly 
optimize ω0, but the coefficient of w. The advantage of this 
method is that the optimization variables of NSGA-III can be 
controlled in a fixed range, such as [-1, 1], without considering 
the size of ω0 itself. At the same time, it can reduce the search 
space of the solution and facilitate the algorithm to find the 
optimal solution. As shown in the following equation: 

             𝜔 =	𝜔2𝑤                  (16) 

where w represents the coefficient of the initial solution ω0, it 
is also the optimization variable of NSGA-III.  

After NSGA-III optimization, a set of Pareto optimal 
solutions Ω can be obtained. The last thing the SSMOO needs 
to do is to select a solution from Ω that best meets the current 
requirements. SS_PIs is used to improve the robustness and 
stability of the model in the training phase, but for the testing 
phase, the PICP and PINAW are directly related to the quality 

of PIs. Therefore, when choosing the optimal solution from Ω, 
we mainly consider the PICP and PINAW. Ω is applied to the 
validation set to obtain the average PICP and PINAW, and then 
the two values are used to obtain the optimal solution. To avoid 
introducing parameters, this method does not use the method 
of combining the PICP and PINAW into a single objective and 
then selecting the optimal solution from Ω according to the 
single objective. A more direct and effective approach is 
adopted, as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝜔 ∈ 𝛺 					PINAW(𝜔)	

	 	 	 	 	 	 	 	 	 	 	 	 s.t.	 	 	 	 PICP(ω)	>=	PINC	 	 	        (17) 

PICP (ω) and PINAW (ω) represent the average PICP and 
PINAW on the validation set with parameter ω. The high-
quality PI is based on satisfying the PINC as far as possible, 
and the interval width reaches the minimum. The final optimal 
solution is w*. The best parameters of MLP obtained by the 
SSMOO method can be obtained by multiplying the w* with 
ω0. 

The detailed flow of the SSMOO is shown in Algorithm 3 
below: 

 
Algorithm 3 SSMOO  
Given: Preprocessed dataset 𝒟, neural network model M 
Output: Optimal parameters ω* of neural network model M 
1. Dataset D is divided into a training set Dtrain, validation set Dval and 

testing set Dtest. 
2. Obtain the initial solution ω0 of the SSMOO using Algorithm 2 with 

Dtrain). 
3. Take 1 - PICP, PINAW and SS_PIs (Algorithm 1) as optimization 

objectives and use NSGA-III to optimize Equation (15), where the 
decision variable is w (w ∈	[-1, 1]) and ω = ω0 w. The set of solutions 
obtained is called Pareto optimal set Ω. 

4. Use Equation (17) and Dval to select the most suitable solution w* from 
Ω. 

5. The optimal parameter set of M is ω* = ω0 w*. 
6. Using M and ω* to construct PIs for Dtest. 

 

IV. EXPERIMENTAL STUDIES 
In this experiment, we tested our method on wind speed 

datasets from two different countries. The first dataset is the 
wind speed data of wind farm in Colorado, USA in 2004 [44] 
and the second dataset is the wind speed data of Sotavento 
wind farm in Galicia, Spain in 2016 [45]. These two datasets 
are selected to demonstrate that our proposed methods are 
applicable in different countries, even in different continents. 
Table I shows details of these two datasets. 

TABLE I 
Details of Datasets 

 Dataset 1 Dataset 2 
Location Colorado, USA Sotavento, Spain 

Coordinates 39.76° N, 105.23° W 43.35° N, 7.88° W 
Data Recorded Wind Speed 
Sampling Rate 10 minutes per sample 

Unit m/s 
Sampling Period Jan 1 to Dec 31, 2004 Jan 1 to Dec 31, 2016 

Fig. 2 shows the wind speed data of two datasets in January. 
The wind speed fluctuates from 0 to 30 m / s with the unstable 
behavior. 



Data pre-processing: The sampling rate of these two datasets 
is 1 sample/10 min. The original data contains two columns, 
one is time (s), the other is current wind speed (m/s). In the 
actual acquisition process, some data points may be lost. In 
order to improve the prediction accuracy, these missing data 
need to be removed. Wind speed prediction is a time series 
prediction problem. The current wind speed is highly 
correlated with the recent wind speed. Referring to [32], we 
use the data of the last one hour (six wind speed values) as 
input features to predict the current wind speed. To further 
improve the prediction accuracy, some statistical features (i.e., 
the mean, variance, median, maximum and minimum values) 
of the last one hour wind speed values are also utilized. 
Therefore, each sample has 11 input features. After the data 
processing, there are N-6 samples. N is the number of data 
points in the original data. According to the wind speed time 
series, the proportion of training set, validation set and testing 
set is 6:2:2. We use the training set to train the model, use the 
validation set to select the hyper-parameters of the wind speed 
prediction interval model, and use the testing set to validate the 
performance of models. 

Network structure and pre-training: The proposed 
method can be easily applied to other network structures. In 
order to facilitate the experimental comparison, we select the 
most widely used multi-layer perceptron (MLP). The network 

structure is shown in Fig.1. In order to improve the prediction 
effect, we pre-train the model. The process is shown in 
Algorithm 2. The label corresponding to the sample is set as 
the ground truth of the two output neurons, and then the mean 
square error (MSE) loss function of the two output neurons is 
optimized by back propagation (BP) algorithm. It should be 
noted that the hyper-parameters of the MLP structure and the 
number of pre-training iterations are determined by the MSE 
loss on the validation set. The hyper-parameters of the SS_PIs 
and the NSGA-III are determined according to references [39] 
and [41], respectively. After the pre-training, different methods 
are used to optimize the network parameters. 

Experimental hyper-parameters are shown in Table II 
below: 

TABLE II 
Parameters for simulation 

 Parameter Value 

MLP 

Number of neurons in 
the hidden layer 30 

Number of hidden layers 1 
Activation function tanh 

Number of neurons in 
the input layer 11 

Number of neurons in 
the output layer 2 

Maximum number of 
pre-training iterations 500 

SS_PIs 
Disturbance degree Q 0.1 
Number of perturbed 

samples β 10 

NSGA-III 

Maximum number of 
iterations 500 

Population size 100 
Lower bound of 

variables -1 

Upper bound of 
variables 1 

  To meet the different needs of practical application, five 
different PINCs were set up in the experiment, which were 
80%, 85%, 90%, 95%, and 98% respectively. The criterion for 
evaluating the quality of different methods is that when the 
PICP is as close to or even more than the PINC as possible, the 
interval is as small as possible. Because the simulated 
annealing algorithm and genetic algorithm have certain 
randomness, to eliminate the impact of randomness on the 
experimental results, we repeated the same experiment ten 
times, and the results were averaged. 

The proposed SSMOO is compared with three other 
methods. The LUBE [29] combines the PICP and PINAW into 
a single objective and then optimize it using simulated 
annealing algorithm. The Multi-Objective Genetic Algorithm 
(MOGA) [32] is a multi-objective optimization method using 
the PICP and PINAW as two objectives and optimizes them 
using NSGA-II. NSGA-III algorithm is an improved version 
of NSGA-II algorithm, so we replace NSGA-II by NSGA-III 
for the MOGA in our experiments to facilitate comparisons 
between the MOGA and the proposed method. The Wavelet 
Neural Network – Preference Inspired Co-Evolutionary 
Algorithm - Goal vectors (WNN-PICEA-g) [46] is proposed 
based on a wavelet neural network (WNN) using the PICP and 
PINAW as two objectives and then PICEA-g is used to  
optimize the two objectives.  

Fig. 2 Wind speed data from a) USA and b) Spain in January. 



Fig. 3 shows the difference between the PIs constructed by 
SSMOO and the three existing methods at two different PINCs 
on the USA wind speed dataset. The PINCs of the first and 
second rows are 80% and 95%, respectively. The figure shows 
only the first 500 samples on the testing set. Obviously, with 
the increase of PINC, the coverage probability of PIs 
constructed by the four methods also increases, but the interval 
width becomes larger. At 80% PINC, the intervals of the four 
methods are very narrow, but the target often appears near one 
of the boundaries; and at 95% PINC, the intervals of the four 
methods are obviously widened, and the target is basically 
perfectly included in the interval. Comparing the four different 
methods, we can find that the coverage probability of these 
methods can reach the corresponding PINCs, but in most cases 
the SSMOO produces the narrowest intervals. That is, the PIs 
constructed by SSMOO is usually included in the PIs 
constructed by other methods. It shows that SSMOO using 
stochastic sensitivity as one of the optimization objectives can 
effectively improve the stability and robustness of the model, 
and then improve the generalization ability of the model to 
unknown samples. Obviously, the wind speed values cannot be 
negative in a fixed direction. So we smooth the PIs, that is, the 
minimum lower bound of the PIs is set to 0.  

Fig. 4 shows the solutions of the three methods on the USA 
wind speed testing dataset. There are 100 solutions to each 
method in our experiment. The solutions found by the MOGA 
and WNN-PICEA-g construct their corresponding Pareto 
fronts. Because SSMOO has three optimization objectives, it 
is not necessary that the solution found by the SSMOO is the 
Pareto optimal solution when only the PICP and PINAW are 
considered. It can be seen that the PINAW of SSMOO is 
obviously smaller than other methods in the interval of high 
PICP that we mainly focus on. It shows that the proposed 

method can effectively improve the generalization ability to 
obtain higher quality PIs. 
  Experimental results of the four methods on the USA wind 
speed dataset are shown in Table III. The primary analysis 
shows that the single target method is the worst. At five 
different PINCs, the PICPs of the LUBE are not as good as the 
MOGA, and the PINAWs are larger than the MOGA, which 
shows that it is effective to transform the problem of short-term 
wind speed interval prediction into the problem of multi-
objective optimization. It is further found that the PICPs of the 
WNN-PICEA-g are similar to the MOGA, but in most cases, 
the PINAWs are smaller than the MOGA. Finally, it can be 
found that the proposed method has the best performance, and 
the PICPs and PINAWs are optimal in almost all cases. For 
example, at 95% PINC, the prediction intervals constructed by 

Fig. 3 PIs of the front 500 samples of the USA wind speed dataset (the PINC of the first row and second row are 80% and 95%, respectively). 
 

Fig. 4 Testing solutions of the USA wind speed dataset. 



the proposed method are 31.5% ((24.24-16.6) / 24.24), 23.6%, 
38.8% narrower than the WNN-PICEA-g, MOGA, and LUBE, 
respectively. Therefore, the proposed method can construct PIs 
with the optimal PICP and PINAW. It shows that the way to 
improve the generalization ability of the model to unknown 
samples by using SS_PIs is effective. 

Table III also contains the experimental results of the four 
methods on the USA wind speed dataset with respect to the 
stochastic sensitivity, i.e. SS_PIs. The stochastic sensitivity 
represents the stability of the model. In all cases, the SSMOO 
has the smallest SS_PIs, which shows that taking SS_PIs as 
one of the optimization objectives can effectively reduce the 
stochastic sensitivity of the model. The LUBE has the largest 
SS_PIs, which shows that it is not a stable algorithm and thus 
it yields lower PICP and higher PINAW at different PINCs. 
The only difference between the proposed SSMOO and the 
MOGA is that the MOGA does not take the SS_PIs into 
account and thus it yields higher SS_PIs than the SSMOO. The 
SSMOO yields higher PICP and lower PINAW than the 
MOGA in most cases, which proves that the higher quality of 
PIs can be obatined by reducing the SS_PIs. The SS_PIs of 
MOGA is far lower than that of the LUBE, which shows that 
the model trained with a multi-objective optimization method 
has better stability. In addition, it can be found that for multi-
objective optimization methods, with the increase of the PINC, 
the SS_PIs decreases gradually. This is because when the PINC 

increases, the width of the PIs will become wider, so the points 
around the sample are more easily covered by PIs. But the 
single objective method LUBE does not satisfy this property, 
which also shows that LUBE cannot produce stable model. 

The experimental results of the four methods on Spanish 
wind speed dataset are shown in Table IV. Because the PINAW 
of the LUBE is much larger than that of other methods, and in 
some cases, even more than twice that of other methods, the 
effect of the LUBE is still the worst. Further analysis shows 
that the proposed method is still optimal on this dataset. At five 
different PINCs, the PICPs of the SSMOO are almost the best. 
Although the WNN-PICEA-g produces the minimum 
PINAWs at 80% and 85% PINCs, in fact, the PICPs of the 
WNN-PICEA-g are far lower than those of the SSMOO. 
Therefore, in most cases, the SSMOO can produce the highest 
quality PIs. 

Table IV also contains the experimental results of four 
methods on the Spanish wind speed dataset with respect to the 
stochastic sensitivity. It can be seen that in most cases, 
SSMOO still has the smallest SS_PIs. Although the SS_PIs of 
WNN-PICEA-g is the smallest when the PINC is 95% and 
98%, it can be found that the quality of the PIs constructed by 
WNN-PICEA-g is much worse than that constructed by 
SSMOO. When PINC is 80%, 85% and 90%, the quality of the 
PIs and SS_PIs constructed by WNN-PICEA-g are not as good 
as SSMOO. In all cases, the quality of PIs constructed by  

TABLE III  
PICP, PINAW and Stochastic Sensitivity of Four Different Methods on Wind Speed Dataset for USA at Five Different PINCs 

Performance Metrics PICP (%) / PINAW (%) / SS_PIs 
 
 
 
 

             PINC 
Methods 80% 85% 90% 95% 98% 

SSMOO 85.53 / 10.97 / 0.21 90.03 / 12.47 / 0.20 93.12 / 13.81 / 0.18 96.84 / 16.60 / 0.16 98.91 / 21.00 / 0.13 

WNN-PICEA-g 85.30 / 10.28 / 0.36 88.73 / 12.63 / 0.33 92.58 / 15.48 / 0.31 96.13 / 24.24 / 0.24 97.32 / 29.03 / 0.23 

MOGA 84.03 / 12.69 / 0.44 88.83 / 14.60 / 0.42 92.94 / 17.14 / 0.40 96.83 / 21.73 / 0.34 98.99 / 28.26 / 0.27 

LUBE 82.26 / 13.53 / 0.68 88.01 / 26.52 / 0.63 92.23 / 21.69 / 0.67 96.55 / 27.15 / 0.62 98.90 / 39.21 / 0.64 

TABLE IV 
PICP, PINAW and Stochastic Sensitivity of Four Different Methods on Wind Speed Dataset for Spain at Five Different PINCs 

Performance Metrics PICP (%) / PINAW (%) / SS_PIs 
 
 
 
 

             PINC 
Methods 80% 85% 90% 95% 98% 

SSMOO 83.03 / 10.93 / 0.11 87.32 / 12.13 / 0.11 89.35 / 12.70 / 0.10 93.60 / 15.12 / 0.09 96.49 / 18.71 / 0.07 

WNN-PICEA-g 79.58 / 9.21 / 0.16 83.36 / 10.76 / 0.13 87.23 / 12.82 / 0.11 91.40 / 16.42 / 0.08 93.46 / 22.35 / 0.04 

MOGA 79.29 / 14.80 / 0.29 84.06 / 16.62 / 0.28 88.27 / 18.57 / 0.27 93.25 / 21.81 / 0.24 95.53 / 27.24 / 0.16 

LUBE 80.06 / 35.65 / 0.51 84.67 / 26.34 / 0.49 90.49 / 25.05 / 0.46 93.65 / 30.07 / 0.48 94.33 / 40.70 / 0.53 

SSMOO is better than that of MOGA and LUBE. It shows that 
SSMOO based on three optimization objectives can reduce the 
stochastic sensitivity of the model and construct the best 
quality PIs.The LUBE still has the largest SS_PIs and is much 
higher than the MOGA. It shows that the multi-objective 
optimization method is still better than the single objective 
method. 

From the above experimental results, it can be concluded 
that SSMOO is the best in both the quality and the stochastic 
sensitivity of PIs. It shows that the performance and stability 
of the model can be effectively improved by adding stochastic 
sensitivity as the optimization objective into the optimization 

equation. Reducing the stochastic sensitivity can enhance the 
stability and robustness of the model and improve the 
generalization ability of unknown samples. In addition, the 
single objective optimization method LUBE has the worst 
performance among all methods, and manual combination of 
multiple objectives may introduce too many hyper-parameters. 
Therefore, the proposed method can effectively improve the 
quality of PI by constructing the short-term wind speed interval 
prediction problem as a multi-objective optimization problem 
and adding stochastic sensitivity as one of the optimization 
objectives. 

In addition to the quality of PIs, we try to compare these four 



methods from other aspects. Compared with other methods, 
the LUBE has the advantage that the training speed of the 
model is faster, while other methods need a long time to train 
the model because of the use of multi-objective optimization 
algorithm. The advantage of a multi-objective optimization 
algorithm is that the final result is a set of Pareto optimal 
solutions, which can be selected according to actual needs in 
practical use. For example, after model training, no matter how 
much the PINC is taken, there is no need to retrain the model, 
only to select the appropriate solution from the set of solutions, 
and as long as the PINC is modified, the LUBE needs to retrain 
the model. Also, the LUBE needs to combine the objectives 
into a single objective, and needs to specify the combination 
mode artificially. Therefore, it involves a large number of 
hyper-parameters, and multi-objective optimization does not 
need to give each objective weight in advance, nor need to 
consider how to combine multiple objectives. In practical 
application, this is a better choice. Considering that the training 
data of short-term wind speed interval prediction is variable, 
SSMOO adds additional optimization objective SS_ PIs to 
improve the robustness and generalization of solutions to deal 
with such data environment. 

V. CONCLUSION AND FUTURE WORKS 
This paper presents a novel multi-objective optimization 

method, the Stochastic Sensitivity-based Multi-Objective 
Optimization Method (SSMOO), for short-term wind speed 
interval prediction. The proposed SSMOO not only reasonably 
optimizes the prediction interval coverage probability (PICP) 
and the prediction interval average width (PINAW) without 
adding too many hyper-parameters as single-objective 
optimization method, but also takes the proposed stochastic 
sensitivity of prediction intervals (SS_PIs) into account to 
improve the generalization ability of the model for unknown 
samples. To our best knowledge, the proposed SSMOO is the 
first work to put forward the concept of stability in short-term 
wind speed interval prediction and give the solution. In 
addition, this paper improves the traditional stochastic 
sensitivity, so that it can be well applied to the problem of 
prediction intervals. 

Experiments are carried out on wind speed datasets of two 
countries on different continents. The results show that at 
different PINCs, the PICP obtained by the SSMOO can 
basically exceed the PINC, and the PINAW and stochastic 
sensitivity are smaller than other methods. It means the quality 
of short-term wind speed prediction intervals obtained by the 
SSMOO is highly better than the ones obtained by other 
benchmarks. The performance of single objective optimization 
method LUBE is the worst, which shows that it is reasonable 
to build short-term wind speed interval prediction problem into 
multi-objective optimization problem.  The results show that 
the multi-objective optimization can be applied to the short-
term wind speed interval prediction, and SS_PIs can 
effectively improve the stability and robustness of the model, 
and then improve the generalization ability of the model to 
unknown samples. 

In the future work, we consider using dynamic optimization 
method instead of NSGA-III to solve the dynamic optimization 
problem of short-term wind speed interval prediction. In 

addition, we aim to further explore a residential short-term 
load prediction method based on the proposed SSMOO. It is 
also worth applying the SSMOO to solve the interval 
prediction problem of other renewable energy such as solar 
energy.  
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