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Abstract: Effective network partitioning becomes an essential step to realise self-sustained smart grid, which serves as a

prerequisite for ‘self-healing’ enabled decentralised control. Splitting the power network (PN) into areas is the last resort to

avoid the spread of disruption and to maintain as many network survivals as possible. This study aims to resolve the issue

of multi-objective PN partitioning by deploying a newly proposed hybrid approach concerning both real power balance

and voltage profile. The proposed approach combines the Laplacian spectrum and self-organising map, which

adaptively attains self-sustained network partitions on different operating conditions. The resultant partitions are

characterised by the minimal intra-area real power imbalance with a healthy voltage profile. The authors

experimentally evaluate the partitioning effectiveness and computational efficiency in several case studies including on

the New England 39-bus, IEEE 118-bus, and Polish 2383-bus transmission systems.

1 Introduction As distinguished from existing partitioning works with sole
objective, our study simultaneously takes into account of network
connectivity, intra-area real power balance and voltage profile,
which extensively addresses the prerequisites of self-healing
capability. In particular, real and reactive power imbalances are
jointly considered to formulate a multi-objective PN partitioning
problem, of which the optimal partitions is the result of
minimising real and reactive power exchange between adjacent
areas. In a static sense of power system operation, minimising the
intra-area real power imbalance (i.e. intra-area generation-load
imbalance) can greatly assists in regulating frequency stability in
each islands. In addition, sufficient reactive power supply within
islands can avoid voltage instability and prevents the occurrence of
undesirable electric components tripping events. Solely
considering real or reactive power only may result in ineffective
partitioning solutions for practical applications. For example, an
optimal partitioning solution reflecting minimal generation-load
imbalance do not necessarily guarantee healthy voltage profiles
within each island. Nevertheless, solving multi-objective network
partitioning problem is challenging and generally NP-hard. In
view of the points discussed above, the major contributions of this
paper can be summarised as follow:

† A hybrid approach combining specific PN Laplacians and
self-organising map (SOM) algorithm is developed to capture
eigenstructures directly with respect to multiple objectives.
† Pareto optimality can be achieved, in which multiple partitioning
solutions are collectively provided. This can greatly facilitate
decision-making of system operators.
† It is efficient to handle large-scale PNs by using the proposed
partitioning approach, which is particularly tested on a Polish
2383-bus system.
† The partitions obtained in this paper are mainly based on steady
state characteristics (i.e. real and reactive power flows). It is worth
noting that the proposed method can be easily extended to
fast-time-scale applications by incorporating specific weighted
Laplacians with system dynamics.

The rest of this paper is organised as follows. In Section 2, we first
review the existing methods of network partitioning for power

Power system security is a major concern at the present day due to 
the increasing complexities and uncertainties involved in system 
operation and control. The smart grid vision aims at developing 
the power system towards a ‘self-healing’ grid that is well 
integrated with advanced metering technologies, wide-area 
communication and automated controls. The benefits include fast 
decision-making, high controllability and system reliability. In 
general, a self-healing process comprises three phases [1]. First, 
system faults are timely and accurately monitored. Second, specific 
control actions are promptly taken to counteract system 
disturbance and isolate faulty parts of the network to avoid further 
spread of disruption. Finally, network reconfiguration and 
restoration will be in place and tune the entire system towards a 
stable and secure state. It is obvious that a suitable control scheme 
governing the whole system is of fundamental importance for 
achieving self-healing capability to cope with abnormal situations.

Admittedly, hierarchical centralised supervisory controls can be 
effective in a global perspective to achieve self-healing in 
small-scale power networks (PNs) but may be less efficient for 
large-scale systems [2], in which several profound complexities 
with respect to generation mix, load diversity and interconnected 
network topologies are involved. In some recent works, 
decentralised controls have been exploited and proven to be more 
tangible and manageable for practical applications in smart grids. 
In [3, 4], it is investigated that system data could be handled by 
the local agents without the need of centralised data acquisition 
and processing to achieve system monitoring and distributed 
control. However, the feasibility of controlling and recovering the 
network functionalities of large-scale PNs in a distributed manner 
is critically dependent on effective network partitioning, which 
still remains an open problem especially for large inter-connected 
PNs. In light of the above, it is mainly concerned in this paper to 
pursue self-sustained partitions with multiple optimisation 
objectives under different operating conditions. This work aims at 
laying a useful groundwork for smart grid planning and operation 
control with enabled self-healing capability. The detailed 
mechanisms of decentralised control and reconfigurations are 
beyond the scope of this paper.
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system applications. In Sections 3 and 4, Laplacian spectrum with
different attributes and detailed mechanism of SOM are introduced,
respectively. Furthermore, the proposed heuristic algorithm to
achieve Pareto optimality is presented in details. Experimental
results are shown in Section 5. Section 6 concludes this paper.

2 Network partitioning of power grids

A power grid is generally composed of several synchronous
interconnected sub-systems, which are referred as ‘control areas’.
Each of them is normally governed by the respective control entity
(e.g. regional transmission organisation). These areas are
traditionally formulated by only considering asset ownerships,
local policies and regulations. Directly implementing such control
areas is unable to fit with the time-varying operating conditions
and diverse control requirements in modern power systems. In this
regard, smart grid operation and control necessitate adaptive and
efficient PN partitions considering specific engineering constraints.

Network partitioning deployed in power engineering is not novel
and many research efforts have been made to handle different
applications associated with big data and complex topological
structures, such as resource adequacy assessments [5], area-based
voltage stability assessment and control [6], zonal pricing in
electricity market [7], etc. Partitioning methods are also employed
in system planning and operational security analysis. For example,
Donde et al. [8] address generation-load imbalance problems
based on steady or quasi-steady state analysis; several studies
investigate the synchronisation of complex PNs (e.g. [9]) or slow
coherency (e.g. [10]) to identify the dynamic coherent
sub-networks based on dynamic analysis. Moreover, Xie et al.
[11] proposed a useful graph theory based approach to find out the
optimal network partitions for the PMU placement. From the
perspective of the network topology, this approach is effective to
provide the structural information to the system operators. In
general, two broad categories of partitioning methods have been
reported in power system literature – mathematical modelling
based optimisation methods and network Laplacians based spectral
methods. The first class of methods typically formulate the
network partitioning as a mix-integer linear/non-linear optimisation
problem and have it solved through well-established commercial
software packages (e.g. AMPL, CPLEX, etc.) or intelligent
optimisation algorithms. With advanced global optimisation
algorithms involved, this type of methods can normally provide
guarantees regarding the optimality. However, the convergence
speed is essentially dependent on the modelling complexity. In the
existing literature, most of such works were proposed with
different levels of modelling simplification to make the problem be
tractable. For example, Sun et al. [12] proposed a two-step
partitioning method for system restoration, in which the network
topology is simplified to reduce the computational burden. Ding
et al. [13] proposed an efficient mix-integer linear programming
based partitioning approach for controlled islanding operation,
whereas only DC power flow is formulated and voltage constraints
are neglected. In considering multiple attributes/partitioning
objectives, Cotilla-Sanchez et al. [14] proposed an efficient
method by combining all attributes into one objective. Partitioning
solutions can be easily obtained by employing evolutionary
algorithms, but the performance of this kind of methods can be
sensitive to single objective formulation and the compatibilities of
all attributes remain questionable. Instead of complex modelling of
network topologies and engineering constraints, weighted
Laplacians based spectral methods (e.g. [15]) can directly yield
partitions from eigenstructures of Laplacian matrices. Even though
multi-objectives can be effortlessly incorporated into this type of
methods by taking into account, e.g. combined weights on each
branch [16], partitioning solutions obtained by normal spectral
clustering might be semi-optimal and no Pareto sets can be
provided. Therefore, it is noted that not every partitioning method
is equally good or suitable for a specific engineering application.
Moreover, to the authors’ best knowledge, most of the existing
methods are less effective to target multi-objective partitioning.

In our proposed approach, weighted Laplacians represented by
real and reactive power distribution are collectively considered to
measure self-sustainability of each partitioning area. SOM with an
advanced visualisation technique is used as a tool to produce
partitions from different eigenstructures. In order to achieve Pareto
optimality, a heurist algorithm to manage and tune the combined
eigenspace of weighted Laplacians is proposed in this paper.
Detailed mechanisms of the proposed partitioning approach will be
illustrated in the forthcoming sections.

3 Laplacian spectrum of PNs

3.1 Preliminaries of spectral representation

The topological properties of a PN can be extracted from the network
Laplacian spectrum. Unnormalised Laplacian matrix is expressed as

L = D−W (1)

where W = (vij)i,j=1,2,...,N is the weighted power flow matrix, which

can be formulated in terms of the real and reactive power [17, 18].
According to the well-established power flow equations, the
weights of the transmission lines are assigned as the real and
reactive power flows through them.

vMW
ij = Pij = UiUj(Gij cos uij + Bij sin uij) (2)

vMVar
ij = Qij = UiUj(Gij sin uij − Bij cos uij) (3)

where Pij andQij represent the real and reactive power flow on line (i,
j). Ui is the bus voltage of bus i. uij is the phase-angle difference
between bus i and j. Yij = Gij + jBij , Yij is the admittance of line
(i, j). D is a diagonal matrix and each of the diagonal element
indicates the contribution of the corresponding bus in handling
power traffic in the PN [17], which is formulated as

D(G) = diag{d1, d2, . . . , d|N|}, di =
∑

N

j=1

vij (4)

There are two forms of normalised Laplacian matrix. Both are
closely related to each other.

Lsym = D−1/2LD−1/2 = I − D−1/2WD−1/2 (5)

Lrw = D−1L = I − D−1W (6)

where Lsym is a symmetric matrix, and Lrw is closely related to a
random walk. Lsym and Lrw are positive semi-definite and have N
non-negative real-valued eigenvalues. The multiplicity of zero
eigenvalue is equal to the number of connected sub-graphs [19].

Mathematically speaking, the clustering information on the
loosely coupled connected components in a graph is spanned over
the eigenvectors of Laplacian matrix. Davis–Kahan theorem [20]
introduced below reveals the relationship between clustering
performance and the eigengap, which is defined as the largest gap
between two neighbouring eigenvalues.

Theorem (Davis–Kahan): Given that symmetrical matrices

A, H [ RN×N . Let S , R be an interval. The set of eigenvalues of
A which fall into the interval S is denoted by LS(A). V is the
corresponding eigenspace of LS(A). Consider perturbed
Ã = A+ H , and Ṽ is the analogous quantity for Ã. The distance
between S and the spectrum of A outside of S is

d = min {|l− s|; l � S, s [ S} (7)

Thus the distance d(V , Ṽ ) = || sinQ(V , Ṽ )|| is bounded by

d(V , Ṽ ) ≤ ||H ||/d (8)



where sinQ denotes a diagonal matrix with the canonical angles on
the diagonal.

Given that L̃ = L+ H , where L is the Laplacian matrix of a
disconnected graph, if both LS(L) and LS(L̃) are within S, the
eigenspace of L and L̃ are approximately close to each other.
Since their distance is bounded by ||H ||/d according to the Davis–
Kahan theory, hence the degree of such ‘approximation’ is
strongly related to the perturbation ||H ||. Given that S is set by
[0, lk ], then d is consistent with the eigengap |lk+1 − lk |.

Based on the Davis–Kahan theorem, one can safely draw the
conclusion that the larger the eigengap |lk+1 − lk | is, the more
clustering information can be extracted from the first k
eigenvectors. This conclusion is widely used in classical spectral
clustering and forms the theoretical basis in our study for the
construction of combined eigenspace, which will be introduced in
the forthcoming subsection.

3.2 Spectral properties of a PN

By recalling the partitioning objective as mentioned in Section 2, we
aim at approaching the optimal cut which minimises both real and
reactive power exchanges among all clusters. It is obvious that less
power exchange among different clusters reflects a better
‘self-sufficient’ condition. However, it should be noted that an
optimal partition considering only real power flows may lead to an
unsatisfactory voltage profile within sufficient reactive power
support. Likewise, network partition with respect to reactive power
is unable to guarantee a small real power generation-load imbalance.

In this paper, we mathematically formulate the concerning PN
partitioning problem as a multi-objective minimal Ncut to
minimise the inter-cluster similarities and maximise the
intra-cluster affinities. Ncut (first introduced in [21]) is defined as

Ncut(C1, . . . , Ck ) =
∑

k

i=1

cut(Ci,
�Ci)

vol(Ci)
(9)

where �Ci is the complement of Ci

cut(Ci,
�Ci) =

∑

i[Ci ,j[
�Ci

vij , vol(Ci) =
∑

i[Ci

∑

|N |

j=1

vij (10)

In particular, the formulated Min-Ncut minimises the inter-cluster
real and reactive power flow exchanges and maximises the

intra-cluster self-contained capacities. Such formulation effectively
avoids ‘one-single-node cluster’ phenomena, in which normalised
Laplacian matrix is selected as the topological representation.
Between Lsym and Lrw, the proposed approach is in favour of Lrw

due to its better experimental performance than that of Lsym. This
may be because eigenvectors of Lsym are additionally multiplied
by D1/2 and this undesirably influences its eigenstructure. In
addition, there is no computational advantage when using Lsym.
Hence Lrw is selected in our approach.

Normalised Laplacian matrices LMW and LMVar are constructed, in
which the weights of branches are assigned by the absolute value of
real and reactive power flows, respectively. According to the
discussion in Section 3.1, eigengaps exist in both LMW and LMVar

expose the clustering information contained in the first few
eigenvectors. The clustering boundaries could be easily identified
with a large eigengap. On the contrary, the existing clusters are
overlapping and boundaries are ambiguous.

In considering both real and reactive power flows, a combined
eigenspace comprising eigenvectors of LMW and LMVar is
constructed

Vcomb := [VMW|VMVar] (11)

where VMW and VMVAr consist of selective number of eigenvectors of
LMW and LMVAr, respectively. The combined eigenspace can be
adjusted in a heuristic way by containing different clustering
information of real and reactive power. k is termed as a heuristic
indicator in this paper and formulated as

kMW = argmax {|lk+1 − lk |; l [ LS(LMW)} (12)

kMVar = argmax {|lk+1 − lk |; l [ LS(LMVar)} (13)

where S is a predefined interval. Algorithm 1 illustrates (see Fig. 1)
the procedure of constructing Vcomb

Clustering the points (yi)i=1,...|N | := [xi1, . . . , x
i
kMW+kMVar

] obtained

from the eigenspace is an essential step to identify the partitioning
boundaries. Instead of using k-means algorithm directly, which has
been found to be inaccurate and suffer from local minima for large
networks, SOM algorithm with advanced visualisation technique is
used in our approach to adaptively handle massive network data.
Full details of SOM based partitioning algorithm are discussed in
Section 4.

Fig. 1 Construction of combined eigenspace



4 Proposed methodology of adaptive K-way
network partitioning

Multi-objective partitioning problem is known to be NP-complete.
Traditional spectral clustering fails to tackle such problems while
some of its variations have been proposed to handle
multi-objectives, e.g. [22] by using collective weights integrating
all concerned aspects. However, this kind of approaches is highly
sensitive to predetermined preference factors when forming
integrated weights.

The proposed method consists of two parts including automated
clustering based on SOM and multi-objective optimisation. The
flowchart shown in Fig. 2 illustrates the basic procedures of the
proposed approach.

4.1 Automated clustering based on SOM

SOM (also called as Kohonen Map) [23] is a widely used tool for
cluster extraction, visualisation and data mining. SOM is an
unsupervised, competitive artificial neural network that produces
topology-preserving mappings of data spaces utilising a
self-organising learning algorithm. This algorithm can project
high-dimensional data Y , R

d onto a low-dimensional (typically
one or two-dimensional) fixed lattice of weighted neurons denoted
as K. The classical SOM algorithm is briefly explained as follows.

The weights (denoted as W neu
i := [w1, . . . , w|W neu|]) of each

neural unit in the Kohonen Map K are trained through a
competitive learning process. The best matching unit is determined
by the minimal Euclidean norms for a given data sample y [ Y,

such that

||y−W neu
best|| ≤ ||y−W neu

i || ∀i [ K (14)

The weights of each neuron are updated based on the following rule

W neu(t + 1) = W neu(t)+ h(t)Q[s(t)](y−W neu) (15)

where h(t) is learning rate which exponentially decreases with t.Q(·)
is the neighbourhood function and s(t) represents the neighbourhood
size. The weight vector of each neuron is the centroid of its receptive
field (RF).

SOM has high capability of extracting data structures on the
condition of cluster-overlaps. In our work, a hierarchical
agglomerative clustering algorithm based on SOM is applied to
the multi-objective partitioning problem. Geometric representations
(provided by Laplacian spectrum) of PNs serve as the inputs for
SOM training. An effective visualisation technique (i.e. CONNvis
[24]) is utilised to achieve automated clustering for large dataset
and diverse cluster sizes. CONNvis is advantageous over other
visualisation methods (e.g. Euclidean distance between
quantisation neurons [25], neighbourhood of SOM [26], etc.) to
handle overlapping clusters. This automated clustering algorithm is
summarised in (see Fig. 3).

(i) Construct combined eigenspace Vcomb. Each row of Vcomb

serves as an input for SOM training.
(ii) A t × t Kohonen map is constructed and trained through a
competitive training process. Selecting the number of neurons in
Kohonen map follows the rule that t2 should be significantly less
than the number of data samples whilst greater than the expected
number of clusters [24].
(iii) Connectivity matrix contains two important clustering
information, namely neighbourhood relations in datasets and
detailed data distribution [27]. It can be expressed as

CONN(i, j) = |RFij| + |RF ji| (16)

where RFij = {y [ RFi:||y−Wj|| ≤ ||y−Wl|| ∀l = i}, and |RFij|
indicates the number of data vectors in RFij.
(iv) Similarities between neurons are determined by the local data
distribution. Mathematically speaking, similarity matrix is
initialised as connectivity matrix. S=CONN.
(v) In each iterative step, the most similar pair of clusters Ci and Cj

(which may include one or more neurons) is merged into a new one
which is referred as cluster p. S(p, q) is formulated as

S(p, q) = [|Ci|/(|Ci| + |Cj|)]S(i, q)+ [|Cj|/(|Ci| + |Cj|)]S(j, q)
(17)

The corresponding rows and columns of the most similar pair in S
are omitted accordingly. After t2− 1 iterations, all neurons are
merged into one cluster. CONN linkage is calculated in each step,
which is formulated as

conn index = intra conn× (1− inter conn) (18)

where

intra conn = 1

R

∑

R

r=1

∑

i,j[Cr
|RFij|

∑

i[Cr
|RFi|

inter conn = 1

R

∑

R

r=1

max

∑

i[Cr ,j[Cl
|RFij|

∑

i[Brl
CONN(i, j)

R is the number of clusters. Brl is the set of neurons in cluster r that
are directly connecting to the neurons in cluster l.Fig. 2 Flowchart of the proposed partitioning approach



(vi) The maximum value of conn_index is 1, which indicates that all
clusters are clearly separated. Based on the analysis in [24], higher
conn_index value reflects better clustering results. In the proposed
study, the number of clusters is determined according to the
maximum conn_index value. Since R = 1 is meaningless for the
proposed partitioning problem, R is bounded within [2, Rmax],
where Rmax is the maximum number of acceptable clusters in a
specific PN.

This algorithm has merits that no prior knowledge of cardinality of
clusters is needed and obtained clusters can be of unequal sizes [28].
Since training set of SOM can be adjusted by kMW and kMVar, this
algorithm is capable of approaching a trade-off partitioning by
considering both real and reactive power flows.

4.2 Pareto optimality

As discussed in previous sections, combined eigenspace constructed
by different pairs of kMW and kMVAr can significantly influence the
clustering results. Therefore, kMW and kMVAr can be used to adjust
the clustering results regarding real and reactive power. For
example, if more effective clustering information based on reactive
power flow is contained in Vcomb, clustering boundaries would be
‘dragged’ towards optimal reactive power partition. As a result of
continuous adjustments of kMW and kMVAr, one enclosing with
more clustering information would ‘prevail’ over another.

Based on the analysis above, a heuristic method is proposed to
solve the following bi-objective optimisation problem

min f1:
∑

R

r=1

|gr − lr|, f2:
∑

R

r=1

|Dvr|
{ }

(19)

where gr and lr are the total real power generation and load in cluster
r, respectively. △vr denotes the voltage violation in cluster r. In
practice, voltage of each bus should be maintained within
tolerance (i.e. ±0.05 pu). In this paper, the voltage issue is
simplified based on the assumption that only limited reactive
power compensation is locally available on each bus.

The proposed approach aims to find out solutions of
Pareto-optimal front and maintain a good spread of solutions on
this front. Inspired by NSGA-II framework [29], a tailor-made
algorithm for network partitioning is developed based on fast
non-dominated sorting and crowding distance [29], which is
illustrated in Fig. 4.

(i) U(†) represents a string of m individuals. Each individual is a
pair of heuristic indicators.

U (·) = [u1, u2, . . . , um], where u = kMW

kMVar

[ ]

(20)

Fig. 3 Automated clustering based on SOM

Fig. 4 Heuristic partitioning algorithm



The heuristic indicator is randomly initialised in a given acceptable
range [1, kmax], which can be formulated as

k = 1+ kmax · g
⌊ ⌋

(21)

where g is a random number within [0,1]. U(0) and U(1) are
randomly initialised without duplicate individuals. Z(1) is a
combination of U(0) and U(1).

(ii) In this step, all individuals in Z(1) are evaluated through the
partitioning algorithm proposed in Section 4.1. Each partitioning
solution is associated with a pair of heuristic indicators. Z(1) is first
sorted by fast non-dominated sorting algorithm with total complexity
of O(2m2). Crowding distance is calculated between neighbouring
non-dominated solutions. All of such solutions are subsequently
re-sorted and re-arranged according to crowding distance ranking.
High-ranking ones will lead to update the offspring populations.
(iii) In our approach, the termination criterion is
i ≤ (kMWkMVar)max/2m. F(i) is obtained by sorting Z(i). F(i) is
truncated into two parts with equal size. The first part consists of
best individuals, which is denoted as Fbest(i). The rest is denoted
as Frest(i). In the present application, it is defined that the heuristic
algorithm converges as long as the rate of change of fitness values
reaches a predefined tolerance (e.g. 2% in case studies in Section 5).
iv. The schematic diagram of updating process is shown in Fig. 5.

The updating operator is formulated as

kj = krestm+j + (kbestj − krestm+j + 2) · g
⌊ ⌋

, kbestj ≥ krestm+j

kj = krestm+j + (kbestj − krestm+j − 2) · g
⌊ ⌋

, kbestj , krestm+j

(22)

where g is a random number ranged within [0,1).

kj is allowed to be assigned with a random value ranged within

[krestm+j, k
best
j + 1] or [krestm+j − 1, kbestj ]. This enables the proposed

algorithm to explore and exploit the search space in an efficient
way. Z(i) incorporates U(i) and Fbest(i− 1) to strengthen the
elitism throughout the whole process. F(i) is obtained by
rearranging Z(i) according to crowding distance and fast
non-dominated sorting.

4.3 Fuzzy decision-making

Given no prior knowledge for the selection of candidate partitions in
Pareto set, un-weighted fuzzy logic decision-making strategy [30] is
employed to yield the best trade-off solution. It is worth noting that
other decision-making criterions can also be considered with
particular preferences.

In this paper, we assume that the preferences of minimising
voltage violation and generation-load imbalance are unbiased.
Fuzzy logic decision-making is formulated as follows.

Given a Pareto set Spareto for pair-wise objectives, the fuzzy
membership is defined as

mi =
f max
i − fi

f max
i − f min

i

, i = 1, 2 (23)

The normalised membership for each solution is expressed as

m(j) =
∑2

i=1 mi(j)
∑|Spareto|

j=1

∑2
i=1 mi(j)

(24)

According to the fuzzy logic principle [30], the trade-off (most
satisfactory) solution is selected with the maximum fuzzy
membership value.

Fig. 5 Schematic diagram of updating process

Fig. 6 Comparative experiment results

a Clustering results based on SOM (kMW = 1, kMVAr = 2) and k-means in normal operating condition

b Clustering results based on SOM (kMW = 3, kMVAr = 2) and k-means in normal operating condition



4.4 Computational efficiency analysis

As compared with global search partitioning methods, our proposed
approach turns out to be more efficient by significantly decreasing

the problem dimension. With the employment of network
Laplacian spectrum, the search space of full network dataset is
converted into pair-wise heuristic indicator (associated with a
semi-optimal partition) including (kMWkMVar)max/2 times of
evaluations. In order to achieve Pareto optimality, the typical
procedure for k-means clustering approach is repeatedly evaluating
the partitioning solutions by using cluster validity indices (e.g.
Davies–Bouldin index (DBI) based on Davies–Bouldin criterion
[31]). The optimal clustering is determined through constantly
testing predefined cardinalities from 2 to

��

n
√⌊ ⌋

, where n is the
number of data samples. Distinguished from k-means algorithm, a
well-trained SOM can efficiently produce network partitions with
specific visualisation techniques.

Overall, the major computational task of the proposed approach
includes construction of eigenspace, SOM based clustering and
heuristic optimisation. For the first part, computing eigenvectors of
LMW and LMVar normally takes O(|N|3) time. The time complexity
can still be reduced by utilising sparse techniques for Laplacian
matrix. Second, the total time complexity of training SOM is
nearly O((T+1)I ), where T is the number of neurons and I is the
number of iterations. In addition, automated clustering takes O(T )
time. Thus, the time complexity for the second part is O((T + 2)I).
In conjunction with heuristic optimisation, the total time
complexity is O((T + 2)IkMWkMVar)max/2). Such degree of time
complexity makes the proposed partitioning method promising and
competitive for practical applications.

5 Experiments and performance

In this section, the proposed approach is tested on three different
systems i.e. New England 39-bus, IEEE 118-bus and Polish
2383-bus transmission systems. Comparative experiments are
carried out with classical k-means algorithm. MATLAB SOM
toolbox is used for SOM training.

5.1 New England 39-bus system

This test system consists of 39 buses, 10 generators and 46 branches.
In this case, two operating conditions are considered including
normal-loading and heavy-loading.

5.1.1 Parameter setting: In normal operating condition, the
total generation is 6297.87 MW and 1274.94 MVAr, and the total
load is 6254.23 MW and 1387.1 MVAr. In heavy loading
condition, the system is operated under a total generation of
7044.46 MW and 2020.11 MVAr, and a total load of 7004.23 MW
and 2136.10 MVAr. Power flow solution is calculated based on
the typical New England 39-bus system datasets [32].

Table 1 Clustering performance based on SOM and K-means (New
England 39-bus System)

Real power
imbalance, MW

Voltage
violation, p.u

Buses
(abnormal
voltage)

SOM kMW = 1
kMVAr = 2

147.259 0.0036 36

kMW = 3
kMVAr = 2

4.2 0.0212 4,7,8,36

k-means kMW = 1
kMVAr = 2

170.759 0.0288 4,15,24,36

kMW = 3
kMVAr = 2

195.1 0.0246 4,7,8,24,36

Table 2 Partitioning results (New England 39-bus system)

Heuristic
partitioning

Partitioning
alternatives (with

cluster sizes)

MW
imbalance,

MW

Voltage
violation,

p.u

µ

Normal operating condition
SOM Cluster 1:14

Cluster 2:25
0 0.0036 0.9241*

Cluster 1:7
Cluster 2:32

46.6 0.003 0.0759

k-means Cluster 1:15
Cluser2:24

4.2 0.02117 0.5044

Cluster 1:6
Cluster 2:13
Cluster 3:14
Cluster 4:6

420 0.007012 0.4063

Cluster 1:7
Cluster 2:13
Cluster 3:14
Cluster 4:5

543.6 0.0036 0.0894

Heavy load operating condition
SOM Cluster 1:13

Cluster 2 : 26
309.5 0.0036 0.8926*

Cluster 1:12
Cluster 2:27

353.5 0.0027 0.1074

k-means Cluster 1:19
Cluser2:20

378.3 0.2777 0.4195

Cluster 1:13
Cluster 2:13
Cluster 3:13

587.1 0.1877 0.3608

Cluster 1:9
Cluster 2:16
Cluster 3:14

1081 0.0036 0.2198

Fig. 7 Partitioning candidates
a Heuristic partitioning results based on SOM and k-means in normal operating condition
b Heuristic partitioning results based on SOM and k-means in heavy load operating condition



In this case, one trains a 3 × 3 hexagonal Kohonen map by using
MATLAB SOM toolbox (with a Gaussian neighbourhood function).
As a comparative experiment, k-means algorithm (in MATLAB
Statistics Toolbox) is used to cluster combined eigenspace. The
clustering performance is evaluated by DBI. The optimal
cardinality is selected with minimum DBI.

5.1.2 Network partitioning: According to the methodology
presented in Section 4, different SOMs are first trained under two
operating conditions. To demonstrate the automated clustering of
SOM neurons, two given SOMs, which are trained, respectively,
by eigenspace with (kMW = 1, kMVAr = 2) and (kMW = 3, kMVAr = 2)
in normal operating condition, are clustered based on CONN
linkage. Comparative experiment results are shown in Fig. 6 and
Table 1.

Each point plotted in Figs. 6a and b represents the corresponding
bus in this system, whose coordinates are determined by the first
three eigenvectors in the combined eigenspace. Apparently,
clustering results of SOM and k-means are fairly different. As for
the k-means algorithm, the number of clusters is determined by
DBI, which has a preference of four in this case. Based on the

proposed approach, two clusters with the highest CONN_index are
found.

As reported in Table 1, clusters obtained by the proposed
approach have less real power imbalance and total voltage
violation. Moreover, when more clustering information of real
power are considered (i.e. kMW = 3, kMVAr = 2), the resultant
clustering has a bias for less real power imbalance based on the
proposed approach. In contrast, the k-means based clustering fails
to capture such data features since larger MW imbalance is
undesirably obtained under the condition of kMW = 3, kMVAr = 2.
Obviously, SOM based clustering outperforms k-means because
SOM can find an optimal distribution of the neuron vectors in the
combined eigenspace (which is an adaptive vector quantisation
process) such that the density distribution of the clustering
information for real and reactive power can be best approximated.
Therefore, SOM is more suitable for the proposed heuristic
partitioning approach.

Based on the proposed heuristic algorithm, experimental
comparisons of SOM based automated clustering and k-means are
reported in Table 2. Partitioning candidates are shown in Fig. 7,
where the obtained Pareto fronts are marked by dash lines.

As shown in Figs. 7a and b, SOM based heuristic partitioning is
more effective than k-means because less partitioning trials are
exploited and the obtained Pareto front dominates the one
obtained by k-means. This is reasonable since k-means based
clustering fails to capture the data topology which combines
information of real and reactive power (this has been proven
through the whole experiment and an example is shown in
Table 1). Among all partitioning alternatives (reported in Table 2),
optimal partitions are selected with maximum fuzzy membership
values, which are marked by asterisks. Partitioning boundaries are
marked in Fig. 8.

5.2 IEEE 118-bus system

The IEEE 118-bus test system is extracted from the Midwestern US
power grid in 1962, which consists of 54 generators and 186
branches. In this case, three operating conditions with different
loading levels are considered.

5.2.1 Parameter setting: Three operating conditions with total
load (4242 MW, 1438 MVAr), (5302.5 MW, 1840.6 MVAr), and
(6151 MW, 2157 MVAr) are taken into account. Power flow
solutions are produced based on typical IEEE 118-bus system
datasets [24].

In this case, a 4 × 4 hexagonal Kohonen map is trained by using
MATLAB SOM toolbox (with a Gaussian neighbourhood
function), the k-means algorithm (in MATLAB Statistics Toolbox)
is applied to compare the clustering results with the proposed
approach.

Fig. 8 New England 39-bus system partitioning boundaries on normal

(solid line) and heavy load (dash line) operating conditions

Fig. 9 Heuristic partitioning results based on SOM and k-means with total load

a 4242 MW, 1438 MVAr

b 5302.5 MW, 1840.6 MVAr

c 6151 MW, 2157 MVAr



5.2.2 Network partitioning: In this case, along with the
increasing of network size, the complexity of data topology (i.e.
combined eigenspace) is significantly increased. Experimental
results are shown in Fig. 9 and Table 3.

As shown in Fig. 9 and Table 3, the proposed approach
outperforms k-means based clustering. Obviously, more
partitioning trials are needed for k-means based clustering. With
the increasing size of PN, the proposed approach still performs
well with less partitioning trials and better obtained Pareto front.

5.3 Polish 2383-bus transmission system

To provide further testing of the proposed approach, a realistic and
relatively large transmission system, the 2383-bus transmission
network data from Poland grid is used and two realistic loading
profiles are considered in this case. This transmission network
consists of 327 generators and 2896 branches.

5.3.1 Parameter setting: Two operating conditions with
different load profiles are considered, i.e. (i) total generation of
25,280.97 MW, 8810.45 MVAr, and total load of 24,558.38 MW,
8143.92 MVAr; and (ii) total generation of 18,961 MW, 6607.8
MVAr, and total load of 18,419 MW, 6108 MVAr.

A 6 × 6 hexagonal Kohonen map is trained by using MATLAB
SOM toolbox (with a Gaussian neighbourhood function), k-means
algorithm (in MATLAB Statistics Toolbox) is also applied on this
transmission network to compare the clustering results.

5.3.2 Network partitioning: As shown in Fig. 10, with the
complexity of data topology considerably increased, the proposed
approach incorporating SOM based automated clustering is
substantially more effective than k-means. As reported in Table 4,
it is obvious that k-means based clustering with employment of
DBI is incapable of achieving satisfactory clustering boundaries
that meet the objectives of minimising real power imbalance and
voltage violation. As shown in Figs. 10a and b, also reported
in Table 4, the Pareto optimal solutions produced by the
proposed approach have completely dominated the ones obtained
by k-means.

5.4 Elapsed time: All case studies were repeated for 50 times on
the workstation (Dell Precision T7600, Intel Xeon CPU E5-2667 0
@2.90 GHz, 2 processors). The average computing time for each
case is reported in Table 5. Such level of elapsed time is
competitive, which shows high potential for practical applications.

Table 3 Partitioning results (IEEE 118-bus system)

Heuristic
partitioning

Partitioning
alternatives (with

cluster sizes)

MW
imbalance,

MW

Voltage
violation, p.

u

µ

Total load (4242 MW, 1438 MVAr)
SOM Cluster 1:62

Cluster 2:56
0 0.005653 0.3312

Cluster 1:65
Cluster 2:53

7 0.001025 0.3399*

Cluster 1:29
Cluster 2:89

17 0 0.3290

k-means Cluster 1:35
Cluster 2:36
Cluster 3:18
Cluster 4:29

19 0.01284 1

Total load (5302.5 MW, 1840.6 MVAr)
SOM Cluster 1:15

Cluster 2:46
Cluster 3:57

0 0.005658 0.3522*

Cluster 1:12
Cluster 2:46
Cluster 3:60

19.85 0.004657 0.3449

Cluster 1:12
Cluster 2:37
Cluster 3:69

74.02 0.004478 0.3029

k-means Cluster 1:45
Cluster 2:40
Cluster 3:33

28.46 0.0118 0.3443

Cluster 1:27
Cluster 2:38
Cluster 3:43
Cluster 4:10

87.43 0.009168 0.3320

Cluster 1:47
Cluster 2:33
Cluster 3:15
Cluster 4:23

122.9 0.008321 0.3236

Total load (6151 MW, 2157 MVAr)
SOM Cluster 1:27

Cluster 2:15
Cluster 3:46
Cluster 4:30

39.76 0.04368 0.2598

Cluster 1:34
Cluster 2:47
Cluster 3:37

46.2 0.02394 0.2675*

Cluster 1:35
Cluster 2:46
Cluster 3:37

63.31 0.0206 0.2557

Cluster 1:5
Cluster 2:33
Cluster 3:43
Cluster 4:37

111.2 0.01978 0.2170

k-means Cluster 1:40
Cluster 2:45
Cluster 3:33

47.73 0.02142 1

Fig. 10 Heuristic partitioning results based on SOM and k-means with total load
a 24558.38 MW, 8143.92 MVAr

b 18,419 MW, 6108 MVAr



6 Conclusions

An adaptive hybrid partitioning approach is proposed in this paper,
which combines Laplacian spectrum of PNs and SOM based
automated clustering. A tailored heuristic optimisation algorithm is
also developed to solve the bi-objective partitioning problem. Case
studies are carried out based on the New England 39-bus, IEEE
118-bus and Polish 2383-bus transmission systems, which
demonstrate the effectiveness and computational efficiency of the
proposed approach, in producing optimal self-sufficient network
partitions with small real power imbalance and satisfactory voltage
profiles.

This hybrid partitioning approach can layout a useful groundwork
for the development of self-healing smart grid. With the advantages
of SOM, the approach can be easily extended by taking other
operating factors (e.g. generator coherency and voltage angle) in to
considerations. The promising partitioning results obtained in this
paper have demonstrate the effectiveness of SOM and other
relevant learning algorithms for applications in smart grid planning
and operation control.
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Table 4 Partitioning results (Polish 2383-bus system)

Heuristic
partitioning

Partitioning
alternatives (with

cluster sizes)

MW
imbalance,

MW

Voltage
violation, p.

u

µ

Total load (24558.38 MW, 8143.92 MVAr)
SOM Cluster 1:24

Cluster 2:1894
Cluster 3:465

65.21 32.89 0.2146

Cluster 1:82
Cluster 2:464
Cluster 3:1153
Cluster 4:684

70.73 5.315 0.2595

Cluster 1:465
Cluster 2:1153
Cluster 3:765

72.31 4.56 0.2607

Cluster 1:466
Cluster 2:1917

91.09 1.237 0.2653*

k-means Cluster 1:521
Cluster 2:70
Cluster 3:723
Cluster 4:1069

619 3.795 1

Total load (18,419 MW, 6108 MVAr)
SOM Cluster 1:58

Cluster 2:2325
30.62 0.479 0.2521*

Cluster 1:347
Cluster 2:2036

48.72 0.4427 0.2513

Cluster 1:350
Cluster 2:2033

70.94 0.4352 0.2488

Cluster 1:429
Cluster 2:1944

78.37 0.4348 0.2478

k-means Cluster 1:852
Cluster 2:1277
Cluster 3:254

86.11 1.032 0.5183

Cluster 1:395
Cluster 2:960
Cluster 3:1028

295.9 0.5156 0.4817

Table 5 Elapsed time in different cases

Test case Load profiles Averaging elapsed
time, s

IEEE 39-bus system 6254.23 MW 1387.1
MVAr

6.241

7044.46 MW 2020.11
MVAr

6.140

IEEE 118-bus system 4242 MW, 1438 MVAr 8.126
5302.5 MW, 1840.6 MVAr 8.233
6151 MW, 2157 MVAr 8.569

Polish 2383-bus
system

24,558.38 MW, 8143.92
MVAr

89.324

18,419 MW, 6108 MVAr 93.605
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