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Abstract—Uncontrolled network separation (system island forma-
tion) is one of the most critical contingencies in power systems. The
integrity of the whole power transmission network is a prerequisite
for reliable system operation. Therefore, in order to safeguard the
system operation and control, it is imperative to quickly identify
the topological changes, especially the formation of system islands.
In this paper, we developed a spectral clustering-based approach to
efficiently detect the existing or the potential network islands. The
core of this approach is a graph-algebraic model, which combines
the real-power deliverability and topological information of a power
transmission network. Based on an improved spectral clustering
algorithm, the proposed approach can efficiently identify the critical
situations of the network splitting under multiple line outages. This
approach has been successfully tested by using the New England
39-bus and 118-bus systems under different scenarios.

1. INTRODUCTION

Being a critical infrastructure in the modern society, the power
system is considered as a “lifeline system” in the present day.
Its operation security and reliability have significant influ-
ences on all aspects of human life. In many countries, it has
been noted that the power grids are driven to stressful oper-
ating points, which are near to their intrinsic limits. This can
be due to the fact that the existing power transmission sys-
tems fail to fully accommodate the increasing load demands.
Moreover, the power system operation is continuously subject
to various internal or external disturbances, such as malfunc-
tions of protection devices (e.g., hidden failures of relays),
faulty manipulations of operators, incidents caused by human
or animals, and environmental disasters. Such disturbances
can cause transmission line outages that would deteriorate the
connectivity of the entire network. In the worst case, multiple
outages can split the network into isolated components and
the system ceases to operate as a whole. Generally, the loss
of system integrity would result in serious active and reactive
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issues, such as voltage collapse, frequency instability [1], and
so forth.

The benefits of timely identifying the formation of network
separations are twofold for the power system operation. First,
it provides indispensable information for off-line simulations.
If a network splits, all the steady-state analysis programs
(e.g., state estimation) that use Newton power flow methods
would suffer from the singularity of Jacobian matrix [2].
The inefficient modification of Jacobian matrix would lead
to a great discrepancy between the actual power flows and
the off-line results. Second, the effective islanding detection
allows suitable control strategies to be employed to counteract
the extreme events. For example, with a prior knowledge of
network separations, an effective dispatching scheme can
be deployed in a timely manner to manage the sources in
different areas, so that the generation–load balance can be
maintained to a great extent.

In a large interconnected power transmission network,
frequency stability would be of concern following a severe
system disturbance, resulting in unexpected cascading out-
ages leading to splitting of the network into two or more
islands (i.e., sub-networks). Frequently, such unexpected
splitting would lead the system to an escalation phase of
cascading failures followed by widespread blackouts. In this
regard, North American reliability standards now require
that “Each transmission operator shall operate to protect
against instability, uncontrolled separation, or cascading
outages resulting from multiple outages.” The motivation
in the present work is to timely identify the existing and
potential uncontrolled network separations. In general, such
an identification is not visually straightforward for system
operators due to the high complexity of the network structure.
Network-splitting patterns are usually “hidden” in the sense
that they do not manifest at the early stage until some severe
contingencies expose their existence.

Based on the steady-state analysis, the network separa-
tion problems are generally resolved by using a numerical
analysis or graph-theoretic methods. Refs. [3, 4] present the
pioneering works on islanding detections in power systems
based on the monitoring data and linked list tables. In Refs.
[1, 2, 5], some numerical approaches are reported based
on network nodal connectivity matrix, LU decomposition,
and eigenevaluation of susceptance matrix, respectively.
Graph-theoretic methods are stemmed from graph theory and
focus on the relations of nodes and edges. In Ref. [6], node
fusion is applied to an outage analysis in the infrastructure
network. A breadth-first search algorithm utilized in the
electric networks is developed in Ref. [7]. In Ref. [8], an
effective approach based on the path search is proposed. In
general, numerical approaches are computationally efficient

but fail to address the topological properties of the practical
networks. In contrast, existing graph-theoretic methods based
on a global search take into account the topological properties
while entailing high computation costs.

In this paper, the network separation patterns are revealed
and analyzed in a spectral domain through the proposed
approach, which turns out to be effective and efficient in
medium-scale transmission networks. It should be noted that
the real-power imbalance-induced cascading outages and
the topological changes of power transmission network are
the main concerns in the present work. Although the system
dynamics, voltage stability, and other causal factors of the
network separation (e.g., environmental disasters) are of
interest in their own right, they require much more compre-
hensive modeling and some of them still remain qualitative
or conceptual at this stage. Hence, they will be considered in
our future work and not discussed further in this paper.

The remainder of the paper is organized as follows.
Section 2 briefly reviews the existing research on complex
network modeling employed in the power system analysis and
graph-partitioning algorithms. Section 3 introduces the pro-
posed approach for the identification of network separations
in a static sense. Case studies are carried out and simulation
results shown in Section 4 demonstrate the effectiveness of
the proposed approach. Section 5 concludes this paper.

2. RELATED STUDY

Incorporating complex network theories into the power sys-
tem analysis has provided novel and useful solutions to many
practical issues [9]. Initially, physicists developed complex
network theories such as Erdos–Renyi random networks to
mathematically analyze the structure and linkage of networks
for their research on abstract networks [10–12]. Due to the
abstract nature, the classical complex network is unable
to fully address the physical properties of many practical
networks. Motter et al. studied the Internet and power sys-
tem networks and discovered the robust-but-fragile feature
under cascade-based attacks [13, 14]. Simultaneously, some
complex network models were reported to investigate the
structural vulnerability of the power grids [9, 15]. These
works mainly focus on the physical topologies and structural
connection of the networks, while mostly neglect the specific
structural properties and interactions between the network
components governed by engineering principles.

The power transmission network design aims at transfer-
ring the electrical power from the generation to the demand
side. The functionalities of power transmission network are
significantly dependent on the topological structure, which
is greatly affected by their organizational complexities and



interplays among all electrical components [16]. In Ref.  [17], 
Barabasi-Albert discovered that the scale-free network, which
is characterized by heterogeneous structures and non-uniform 
degree distributions, possesses some important features such 
as the robustness against random failures as well as vulnera-
bility to the attacks on their hubs, i.e., nodes with high degree 
and high connectivity. Once the network is changed by, for 
example, component outages, the network functionality may 
be significantly weakened. Recently, specific features and 
interplays of electric components in the power transmission 
networks have been studied in Refs. [18–20] from a com-
plex network perspective, which deserves further research 
efforts.

To the authors’ best knowledge, there have been few appli-
cations of complex networks to tackle the challenging issues 
of uncontrolled network separation in power systems. Previ-
ously, some research works revealed that the large and highly 
interconnected power systems contain small-world features, 
where different parts are highly interdependent on each other 
and interact directly or indirectly. One particular property of
a small-world network is that the network distance or connec-
tivity can be greatly affected by the topological changes [21]. 
One failure in a part may notably propagate to other parts, 
followed by splitting or even causing the whole network to 
collapse. Preceding research works are fairly valuable for the 
system islanding detection, while those works are principally 
based on the qualitative analysis.

Naturally, detecting system separation in the power trans-
mission networks is closely related to the graph-partitioning 
research, where many relevant algorithms and approaches 
have been developed thus far. As a pioneering work, Gir-
van and Newman proposed an iterative method based on 
the concept of betweenness [22–24], which can well rec-
ognize the network-splitting patterns by recursively remov-
ing edges with the largest betweenness. This approach yields 
very good partitioning results but is computationally heavy 
and time-consuming. In Ref. [25], a divisive algorithm is 
reported that can well handle triangular or higher order arcs,
i.e., loops exposed in networks. As proposed in Ref. [26], 
the Wu–Huberman algorithm is based on the idea of volt-
age drop, which has a short computational time but still 
involves iterative computing. Based on the q-state Potts 
Hamiltonian, the Reichard–Bornholdt method is reported in 
Ref. [27], which is a pioneering approach for identifying 
fuzzy communities. In Ref. [28], the Capocci–Servedio–
Colaiori–Caldarelli method combines spectral properties of 
networks with correlation measurements to detect the close-
ness of communities. For further reading of aforemen-
tioned methods, a comprehensive review is presented in 
Ref. [24]

By applying the graph-partitioning algorithm to islanding
detection in power transmission networks, we accentuate the
need of computing efficiency and accuracy. For this reason,
a tailor-made improved spectral clustering algorithm is pro-
posed in this paper to capture the insight into emerging topo-
logical separation.

3. THE PROPOSED METHODOLOGY

3.1. Complex Network Modeling of Power Transmission
Networks

A power transmission network consists of generation
buses, load buses (i.e., demand sides), electrical facilities
(e.g., transformers, relays, breakers, etc.), and physical links
(i.e., transmission lines). A secure and reliable operation of
power transmission networks aims to transfer electric power
from generators to different loads. Based on the concept of
complex network, the power transmission networks can be
abstracted into directed or non-directed graphs with n vertices
and m edges in different research cases. In order to obtain a
general solution of islanding detection, a power transmission
network is regarded as a non-directed graph in this paper,
where generators are considered as source vertices, loads
are considered as sink vertices, and transmission lines and
transformers are considered as weighted edges. This is rea-
sonable as bi-directional power flows exist in most equipment
of power transmission networks such as transmission lines.
Mathematically, a power transmission network can be denoted
by G(N, E), where N = {n1, n2 , . . . , n|N|} is the set of all
vertices and E = {e1, e2 , . . . , e|E|} is the set of all edges.
Each edge corresponds to a vertex pair (ni, nj).

In power system, the nodal injection power is calculated as
follows:

Pi = Vi
∑
j∈i

Vj(Gi j cos θi j + Bi j sin θi j )

Qi = Vi
∑
j∈i

Vj(Gi j sin θi j − Bi j cos θi j )

⎫⎪⎬
⎪⎭ (1)

where Pi and Qi represent the active and reactive injection
powers of node i, respectively, and Vi is the bus voltage of
node i.

The incremental active and reactive powers can be formu-
lated as follows [29]:

[
�P
�Q

]
=

[
H N
J L

] [
�θ

�V/V

]
(2)

In a high-voltage power system (i.e., transmission system),
real-power flow is mainly subjected to the bus angle, while



reactive power is mainly subjected to the bus voltage. There-
fore, Eq. (2) can be simplified as follows:

�P = H · �θ

�Q = L · �V/V

}
(3)

H and L can be specified as follows:

H = L =

⎡
⎢⎢⎢⎣

V1 0
V2

. . .

0 Vn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n

B21 B22 B2n
...

...
. . .

...
Bn1 Bn2 . . . Bnn

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

V1 0
V2

. . .

0 Vn

⎤
⎥⎥⎥⎦

where Bij is the entry of susceptance matrix of power system.
According to H matrix, hi,j (i �= j) not only indicates the

topological connection of power system, but also reflects the
power transmission capability of each edge. Based on the
classical concept of adjacency matrix, a new and symmetric
matrix, termed as the power adjacency matrix (denoted asAp),
is proposed to generalize the topological and electrical fea-
tures of power transmission networks.

Definition 1: The set of real numbers is denoted by R. Ap �
|N| × |N| consists of off-diagonal elements of H obtained by the
Newton–Raphson power flow solution. Each entry of Ap is
expressed as follows:

ai, j =
{

hi, j i �= j
0 i = j

Based on Definition 1, the degree matrix D is redefined as
follows:

D(G) = diag{d1, d2, . . . , d|N|}, and di =
∑
j∈N

ai, j, i ∈ N

Based on the graph theory, the Laplacian matrix is viewed
as a matrix representation of a graph. In the sense of classical
definition of Laplacian matrix and special features of power
transmission networks, the electric-Laplacian matrix (denoted
as Le) is proposed, which contains the topological and electri-
cal information of power transmission networks.

Definition 2: Given a power transmission network, which con-
sists of n buses and m transmission lines, Leis defined as fol-
lows:

Le = D − Ap

where the diagonal element of Le is given by the degree
of associated vertex in the power transmission network, and
the off-diagonal element indicates the electrical attribute of
each corresponding edge. According to the basic definition of
Laplacian matrix [30], Le is symmetric, singular, and positive
semidefinite.

3.2. Spectral Properties of Le

Various disturbing events (e.g., multiple transmission line
outages) would deteriorate the connectivity of a power trans-
mission network and lead the power system to an escalation
phase of cascading failures, which would ultimately cause
widespread blackout. Based on some global search algo-
rithms, identifying the network separation is an NP-hard
problem. In addition, such algorithms are less computation-
ally efficient and are difficult to identify the arisen islanding
situations in terms of topological changes. In the graph
theory, spectral partitioning algorithms provide an efficient
and systematic solution to study the connection patterns of
a graph. Some previous studies on spectral properties of a
graph are reported in Refs. [28, 31]. Inspired by these works,
we proposed a useful method based on normalized spectral
clustering with a proper extension to fit with specific cases
of power system uncontrolled separation. In this subsection,
spectral properties of electrical Laplacian are investigated in
detail. Some relevant theorems and proposition are introduced
to address the relationship between the network topological
changes and the Laplacian spectrum.

Notation: The first k eigenvectors of Le are denoted by v1,
v2 , . . . , vk. The eigenvalues of Le are denoted by λi,i = 1, 2,
. . . , |N|. We write λ1 � λ2 � λ3 … � λ|N| to be the ascend-
ing order of eigenvalues of Le. S∈ |N|×kcontains the first k
eigenvectors as columns. xi is denoted as the ith entry of a
eigenvector vi.

Theorem 1: [32–34]: If G is a given weighted graph with all
weights non-negative, the following statements are true:

(i) The Laplacian matrix of G has only real eigenvalues.
(ii) The smallest eigenvalue λ1 is equal to 0 and its cor-

responding eigenvector is constant, i.e., (1, 1, . . . 1)T.
The multiplicity of zero eigenvalues is determined by
the number of splitting sub-graphs of G.

(iii) λ1 = 0 and λ2 > 0 if G is connected.

This theorem is derived from the Perron–Frobenius theo-
rem, and the proof can be found in Refs. [33–35].

The second smallest Laplacian eigenvalueλ2 is generally
termed as algebraic connectivity of G, which reflects sig-
nificant topological information of the network. Based on



FIGURE 1. Improved k-means algorithm.

Courant–Fischer’s theorem [30], the second smallest eigen-
value (non-vanishing) can be formulated as follows:

λ2 = min vi
T · Le · vi, i = 1, 2, . . . , |N| (4)

To address how the Laplacian spectrum changes along with
subjoining or subtracting an edge in the network, the Courant–
Weyl inequality [35] is introduced as follows:

Theorem 2: Let G∗ = G + ebe a graph reformed by inserting
a new edge e into G. G∗ and G have the same set of vertices.
The following inequality is true:

0 = λ1(G) = λ1(G∗) ≤ λ2(G) ≤ λ2(G∗) ≤ λ3(G) ≤ · · ·
≤ λ|N |(G) ≤ λ|N |(G∗) (5)

The following proposition is introduced, which can be
derived from Refs. [28, 30] to further explain the relations of
the network-splitting patterns and the changes of the Lapla-
cian spectrum.

Proposition 1: A connected graph G consists of n sub-graphs
G1, G2 . . . Gn. Each of them is relatively close-connected. For
each sub-graph, its corresponding elements of an eigenvec-
tor associated with a near-vanishing eigenvalue are approxi-
mately identical.

According to Eq. (4), the quadratic form of λ2 can be
rewritten as follows:

λ2 = min
|N |∑

i, j=1

li, jxix j = min
|N |∑

i, j=1

(xi − x j )
2 · |li, j| (6)

where li,j is the element of Le.
Based on the aforementioned theorems and proposition,

it is obvious that a well-connected network has a large alge-
braic connectivity and significant differences exist among all
elements in the eigenstructure. Conversely, a splitting part of
the network can be spectrally mapped into the eigenstructure
with small differences among the corresponding elements.
In this paper, this numerical pattern is termed as spectrum
segmentation.

In the context of the power systems, the spectrum segmen-
tation of Le would change along with the transmission line

FIGURE 2. Spectral analysis.



FIGURE 3. The test system based on the IEEE New England 39-bus system.

outages. Clustering vertices into groups depend on the con-
nectivity of the whole network. Based on Theorem 2, any
removal of edges in a cluster would weaken the global connec-
tivity while simultaneously increase the dependency between
the cluster and the rest of the network. On the other hand, out-
ages of the tie-lines would deteriorate the inter-dependencies
of all connected areas. All these conjectures are reflected by
the phenomena of spectrum segmentation (e.g., as shown in
Figures 2 and 3).

In general, λ2 globally reflects the connectivity of all ver-
tices in a network. Based on the aforementioned analysis, we
can safely draw the conclusion that the changes of spectral
segmentation in the eigenstructure can naturally reveal the
splitting patterns of the network topology. In other words, the
coupling level between connected sub-networks can be rep-
resented by the level of spectrum segmentation in a spectral
domain. For example, in a power transmission network, if the
coupling between an area and the rest of the whole network
becomes weak, a “spectrum segmentation” would be associ-
ated with this area to indicate the topological changes. In the
forthcoming subsection, the level of spectrum segmentation is
quantified by a newly proposed entropy-based metric.

3.3. An Improved Spectral Clustering Algorithm

In this subsection, two proposed metrics (i.e., spectrum
closeness (SC) and entropy) are incorporated into a basic-
normalized spectral clustering algorithm, which plays an
essential role in detecting the topological changes. The two
metrics can effectively quantify the process of the integrated
power transmission network transiting to separation status.

The basic algorithm of normalized spectral clustering con-
sists of six steps [36]:

(i) Input power adjacency matrix Ap and the number k of
clusters.

(ii) Compute the normalized electric-Laplacian matrix
Le

∗: = D−1 Le.
(iii) Compute the first m eigenvectors v1, . . . , vm of Le

∗

(in this paper, we use m = 2 for the simplicity of
application).

(iv) Construct S � |N| × mcontaining the first m eigenvectors
as columns.

(v) For i = 1,2, . . . , |N|, let ti � m be the vector correspond-
ing to the ith row of S.

(vi) Group the points (ti)i = 1, . . . , |N| with the k-means
algorithm into clusters C1, . . . , Ck.



The core of this application is step (vi); a reasonable clus-
tering can well reveal the connection status of power trans-
mission networks. In Refs. [28, 37], the Euclidean or angular 
distance (i.e., the angle difference between two vectors stem-
ming from the same origin in a d-dimensional space) has been 
introduced as a metric to quantitatively measure eye-inspected 
clusters (i.e., all points ti mentioned in step (vi)). Some use-
ful conclusions inspired by empirical observations indicate 
that the points associated with two closely connected nodes 
belonging to the same cluster may not be Euclideanly close, 
while they are well aligned in the similar direction [37]. There-
fore, we use an angular distance in step (vi) as a metric for the
k-means algorithm.

With the classical k-means algorithm [38], the clustering
results based on angular differences can be very much sub-
ject to the selected preference. Furthermore, the classical k-
means also suffers from frequent algorithm failures due to the
random initialization of cluster centroids [38]. To overcome
these drawbacks, an advanced k-means method is developed
in the paper, which features the following two aspects: (i) the
original set of centroids is initialized by practical control areas
in the power transmission network, and (ii) different angular
references are selected in different occasions. The main pro-
cedure of this algorithm is shown in Figure 1.

SC is proposed to measure the coupling levels of all clus-
ters. Spectrum entropy (SE) is proposed to measure the uncer-
tainty and complexity of Laplacian spectrum and reveals
the trend of network evolution. Two definitions are given
below:

Definition 3: Let Ci be the set of all vertices in a cluster i.
angi

j is the angular distance associated with vertex j. ci is the
centroid of cluster i, which is obtained by the k-means cluster-
ing algorithm. Denoted by σ i, SC of a cluster i indicates the
average deviation of all internal spectra points:

σi = 1

ni

∑
j∈Ci

||angi
j − ci||2 (7)

where ni is the number of vertices in cluster i.
SC reflects the degree of independence of a cluster. If σ i is

getting smaller, it means that the connection between cluster
i and remaining parts of the graph is being weakened. Other-
wise, the coupling of cluster i and the remaining network is
being strengthened.

Definition 4: Assume that a graph G is partitioned into k sub-
graphs (i.e., clusters). The two-dimensional eigenvector space
is equally divided into b angular intervals. SE is defined as

follows:

En =
k∑
i

b∑
j

z j
i

ni
ln

z j

ni
(8)

where z j
i is the number of points associated with cluster i lying

in the interval j.
SE globally reflects the level of spectrum segmentation in

the eigenspace, which is an important metric for evaluating
the clustering performance with different partitioning cardi-
nalities. To examine the effectiveness of a cardinality k, a high
SE value represents a large difference among all the spectrum
points in the spectral domain, which also means that k is less
effective to reveal the network-splitting pattern. Otherwise, a
small value of SE represents a high level of spectrum segmen-
tation and therefore suggests an emerging network-separating
pattern in the topology domain.

Figure 2 illustrates the main procedure of spectral analysis
in a given power transmission network.

In the present approach, SC and SE play a key role in
evaluating the clustering performance. Given multiple line
outages, there are various choices to form the clustering
boundaries and address the different potential separations.
In our work, the weights of the branches are assigned as
the power deliverability. The proposed spectral method aims
to find out the partitions with the minimal cutset, which
produces the clusters that are the most susceptible to line out-
ages. With different inputs of k, SE quantitatively measures
the uncertainties involved in the identification of network
separation.

FIGURE 4. Spectrum plot of Le in the original state (New
England 39-bus system).



FIGURE 5. Spectrum plot of Le in the post-contingency state
(New England 39-bus system).

4. CASE STUDIES

In this section, the simulations of islanding detection
under two given scenarios are presented. The sequence of
cascading failures is determined by the well-established hid-
den failure model [39] in which the transmission line overload
is the main concern. MATLAB serves as the simulation plat-
form. The IEEE New England 39- and 118-bus test systems
are used in our case studies.

Normally, an interconnected power system consists of
some sub-systems, which are controlled by their respective
control entities. Each sub-system is usually termed as a
control area. It should be noted that the “control areas”
concerned in the case studies are considered as a specific
type of network clusters for easy understanding. The pro-
posed approach is feasible to identify the potential network
separations with a prior setting of clustering cardinality by
which a corresponding SE can be obtained.

4.1. Case Study on New England 39-Bus System

Scenario 1 : There are three control areas in this test system,
which are shown in Figure 1. The tie-lines are e1,2, e3,4, e14,15,

and e17,18which are used for connecting different areas. A
single line outage of e14,15 connecting areas 1 and 3 is
considered in this scenario.

Figures 4 and 5 show the spectrum plots of the test system
under the initial and post-contingency states, respectively.

As observed in Figures 4 and 5, the spectrum point distri-
bution changes along with the outage of e14,15 and the points
of cluster 3 are getting closer, which is also reflected by the
decrease in SC from 0.2141 to 0.0878 according to Table 1.
Based on the topology in Figure 3 in the pre-contingency
state, cluster 3 lost the significant connection to cluster 1.
Accordingly, SE of the whole network is decreased from
0.3442 to 0.3375 in Table 1. On the other hand, SC of cluster
2 is accordingly increased from 0.4996 to 0.5961, which
indicates that the coupling of cluster 2 to the whole network is
strengthened. From Table 1, it is obvious that SC of a cluster
is significantly decreased if the connection between this
cluster and the remainder of the network is getting weaker.
In other words, such a cluster is highly vulnerable to separate
from the rest of the whole network.

4.2. Case Study on IEEE 118-Bus Testing System

Scenario 2: The IEEE 118-bus system is divided into three
control areas according to Figure 6. In this scenario, the
islanding detection scheme is to be tested for a cascading fail-
ure event consisting of five different states, which is based on
the mechanism of hidden failure model [40]. In state 1, tie-line
e37,40 connecting areas 1 and 3 fails due to some unexpected
reasons. According to power flow results, this leads to the
overload of e37,39 and the protection system trips e37,39 in state
2, which is a tie-line of clusters 1 and 3. Due to the outages
of e37,40 and e37,39, the rest of the tie-lines connecting areas 1
and 3 including e38,65, e34,43, and e24,70 are getting burdened
and eventually suffer from overloading. As such, these lines
undergo cascading outages resulting in system states 3–5.

Figures 7–9 show the spectrum plots of the test system
in different states. Due to the transmission line outages, the
connectivity of the whole network deteriorates progressively.
As compared with the initial state, the spectrum points of

State Cluster No. and its Vertices SC SE

original 1 1 4 5 6 7 8 9 10 11 12 13 14 31 32 39 0.2379 0.3442
2 2 3 18 25 26 27 28 29 30 37 38 0.4996
3 15 16 17 19 20 21 22 23 24 33 34 35 36 0.2141

Post-contingency 1 1 4 5 6 7 8 9 10 11 12 13 14 31 32 39 0.2438 0.3375
2 2 3 17 18 25 26 27 28 29 30 37 38 0.5961
3 15 16 19 20 21 22 23 24 33 34 35 36 0.0874

TABLE 1. Comparison of different states (IEEE 39-bus system).



FIGURE 6. IEEE 118-bus test system.

cluster 1 in state 2 are distributed closely under the outages
of e37,40 and e37,39, which are shown in Figures 7 and 8.
After the outages of e38,65, e34,43, and e24,70, the spectrum
points of cluster 1 are visually aligned into approximately
one straight line in Figure 7, indicating that the islanding
formation of cluster 1 is imminent and accordingly, a warning
signal can be issued. At the same time, it is also observed

FIGURE 7. Spectrum plot of Le in the original state (IEEE
118-bus system).

in Figure 7 that the spectrum points of clusters 2 and 3
disperse significantly. From Table 2, SC of cluster 1 in state
2 as compared to the original state is decreased from 0.3124
to 0.1418, which indicates that the independence of cluster
1 is notably increased. Along with further failures, SC of
cluster 1 is consequently decreased to 0.0882 in state 5,
which echoes the visual observation in Figure 7 and reflects

FIGURE 8. Spectrum plot of Le in state 2 (IEEE 118-bus sys-
tem).



State Cluster No. and corresponding Vertices SC
b∑
j

z j
i

ni
In

z j

ni
SE

original 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 72

113 114 115 117

0.3124 0.1149 0.3592

2 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

111 112

0.3520 0.1269

3 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 73 74 75
76 81 116 118

0.3203 0.1174

1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 72

113 114 115 117

0.2936 0.1080 0.3360

2 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112

0.1789 0.0623

3 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 73 74 75
76 77 78 79 80 81 97 116 118

0.4508 0.1657

2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 72

113 114 115 117

0.1418 0.0521 0.2631

2 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112

0.2536 0.0914

3 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 73 74 75
76 81 116 118

0.3261 0.1196

3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 43 72

113 114 115 117

0.1540 0.0567 0.2661

2 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

111 112

0.3025 0.1090

3 39 40 41 42 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 73 74 75
76 81 116 118

0.2745 0.1004

4 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 72

113 114 115 117

0.1027 0.0378 0.2414

2 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104
105 106 107 108 109 110 111 112

0.2799 0.1009

3 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 73 74 75
76 81 116 118

0.2801 0.1027

5 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 72

113 114 115 117

0.0882 0.0325 0.2441

2 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

111 112

0.2880 0.1038

3 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 73 74 75

76 81 116 118

0.2941 0.1079

TABLE 2. Comparison of different states (IEEE 118-bus system).



FIGURE 9. Spectrum plot of Le in state 5 (IEEE 118-bus
system).

imminent network splitting. In state 5, the minimal cutset of
cluster 1 only consists of one edge i.e., e71,72. The situation
is being critical because the failure of e71,72 will eventu-
ally cause power system islanding. This analytical situation is
consistent with the simulation results as shown in Figure 9 and
Table 2.

5. CONCLUSIONS

In this paper, it is aimed to broach the idea that the topological
information of the existing or potential network separations
in the power systems can be efficiently captured in a spectral
domain. A spectral clustering-based approach associated with
two evaluation metrics (i.e., SC and SE) is recently proposed
to identify the emerging network separations. Distinguished
from the previous methods in this field, the present work
has the following two contributions: (i) exhaustive/heuristic
search in a whole network is avoided. An NP-hard problem in
the topological domain is handled by the proposed approach
in the spectral domain, which is computationally efficient;
and (ii) the proposed spectral method can be effortlessly
extended by considering other electrical features in the con-
struction of the network Laplacians. Case studies on New
England 39-bus and IEEE 118-bus systems are carried out.
The simulation results demonstrate the effectiveness of the
proposed approach.

Admittedly, there are many other factors (e.g., system un-
damped oscillations, voltage collapse, cascading outages due
to transmission line thermal overloads, etc.) that can result
in the uncontrolled system separation. The construction of
a comprehensive framework that addresses all the necessary
factors needs a complex modeling of the power system gov-
erning laws and features (e.g., Ohm’s law, power flow, line
thermal limits, etc.), which will be investigated in our future
work.
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