
Coalesced communication: a design pattern for complex

parallel scientific software

Hywel B. Carvera,b, Derek Groenb, James Hetheringtonb, Rupert W.
Nashb, Miguel O. Bernabeub,a, Peter V. Coveneyb

aCoMPLEX, University College London, London, United Kingdom
bCentre for Computational Science, University College London, London, United Kingdom

Abstract

We present a new design pattern for high-performance parallel scientific
software, named coalesced communication. This pattern allows for a struc-
tured way to improve the communication performance through coalescence of
multiple communication needs using two communication management com-
ponents. We apply the design pattern to several simulations of a lattice-
Boltzmann blood flow solver with streaming visualisation which engenders a
reduction in the communication overhead of approximately 40%.

Keywords: parallel computing, parallel programming, high-performance
computing, message passing

1. Introduction

High-performance parallel scientific software often consists of complex,
multi-functional, multi-physics software components, run on infrastructures
which are increasingly large and frequently hybrid in nature (e.g., featur-
ing many-core architectures or distributed systems). Orchestrating the work
of these components requires advanced software engineering and design ap-
proaches to manage the attendant complexity. The result is that the struc-
ture of high-performance computing codes is moving towards the use of
higher-level design abstractions. One way to capture these design abstrac-
tions is through the definition of design patterns. Design patterns are com-

1E-mail: hywel.carver.09@ucl.ac.uk (Hywel B. Carver), p.v.coveney@ucl.ac.uk (Peter
V. Coveney)

Preprint submitted to Parallel Computing October 30, 2018

ar
X

iv
:1

21
0.

44
00

v1
 [

cs
.D

C
]

 1
6

O
ct

 2
01

2

monly applied in software engineering [1]. They are formal definitions which
describe a specific solution to a design problem, and can be found in a range
of scientific and engineering disciplines. With high performance computing
(HPC) codes growing in complexity, existing design patterns are more com-
monly applied in HPC and numerous new design patterns have emerged [2, 3].

Here we present a new design pattern: coalesced communication. In this
pattern, each component registers the communication tasks it will require
during the different stages, or steps, of execution with a central registry. We
refer to each component which wishes to register communication requests as
a Client. This registry analyses the required communications and combines
requests from each Client at appropriate steps of the execution. This allows
work of one Client (such as a scientific kernel) to overlap with the communi-
cation of another Client (such as streaming visualisation or error correction),
and results in a single synchronization point between processes during each
step.

Several groups have experimented with the coalescence of communica-
tion, although none of these have developed this into a generalised design
pattern. Bae et al. [4] benchmark the coalescence of communication as a
factor influencing code complexity and efficiency within two algorithms. Bell
et al. [5] investigate the performance benefit of overlapping communication
with communication, which is an alternative method to reduce the number
of synchronisation points. Chavarria et al. [6] implement a form of coales-
cence in a High-Performance Fortran compiler for situations where one code
location has multiple communication events, and find a reduction of up to
55% in communication volume. Chen et al. [7] find similar performance im-
provement when applying coalescing in programs written in Unified Parallel
C, and Koop et al. [8] report significant improvements in throughput when
using low-level coalescence for sending small MPI messages.

2. Coalesced communication

The coalesced communication pattern is applicable to any parallel soft-
ware which carries out multiple tasks, and therefore has a range of com-
munication needs. These communication needs may, for example, include
exchanges required for one or more scientific kernels, visualisation, steer-
ing, dynamic domain decomposition, coupling with one or more external
programs, introspection or error recovery. Of course, each of these Clients
could do its own communication internally, but this can be highly inefficient

2

from a performance perspective due to the large number of synchronisation
points with other processes. The coalesced communication pattern allows
us to improve the communication performance by reducing the number of
synchronisation points in an organised way.

Within the coalesced communication pattern, each Client registers with
an administrative object called the StepManager, and all communication is
indirected through a central store of communication requirements called the
CommunicationsManager object. The relations of these objects are shown in
Figure 1. In each of several Steps, a call back is made to each Client to carry
out those computations that are safe to perform during that step, while the
CommunicationsManager object makes the appropriate MPI calls to initiate
non-blocking message passing for each requested piece of communications.
In this way, the communications of all Clients can be overlapped with their
calculation, potentially providing substantial performance gains. In addition,
the bundling of all the non-blocking communications reduces the number of
synchonisation points here to one.

We present the sequence of events for an application with two Clients in
Figure 2. Here we see computation callbacks preceding and following each of
the MPI send, receive, and wait calls. For example, computation callbacks
are made to each Client after the CommunicationsManager makes the MPI
send calls, while it waits to receive the incoming data. The incoming data
are placed into buffers registered with the CommunicationsManager at the
beginning of each step, but the data is only safe to use following completion
of the Wait call made by CommunicationsManager.

3. Implementation

We have implemented the coalesced communication design pattern within
the HemeLB lattice-Boltzmann simulation environment, which is intended
to accurately model cerebrovascular blood flow. HemeLB is written in C++
and aims to provide timely and clinically relevant assistance to neurosur-
geons [9]. HemeLB contains a range of functionalities, including the core
lattice-Boltzmann kernel, visualisation modules and a steering component
which allows for interactive use of the application. HemeLB has been shown
to efficiently model sparse geometries using up to at least 32,768 compute
cores [10]; inter alia, has been used for a variety of scenarios [11, 9].

The primary Clients registered with the StepManager within HemeLB
are those raised by the core lattice-Boltzmann kernel, an in situ visualisa-

3

Registers with

TriggersCalls back to

Provides
Communications

Requests
Communications

Triggers
Communications

Registers
with

StepManagerStepClient

Communications
Manager1

1

1

1

1

1

N
N

N

N

N

M

Figure 1: Entity relationship diagram of the coalesced communication design pattern.

tion module and an module for introspective monitoring. However, HemeLB
will frequently run with additional Clients as there are a number of optional
modules, such as the computational steering server. Within this article we fo-
cus on only the core lattice-Boltzmann communications and the visualisation
communications.

4. Performance Tests

We have run HemeLB on 1024 cores on the HECToR Cray XE6 machine
in Edinburgh, United Kingdom, using a sparse cerebrovascular bifurcation
simulation domain which contains 19,808,107 fluid sites. Our simulations
run for 2000 steps with three different settings, rendering respectively 10,
100 and 200 images using the visualisation module. We repeated each run
both with and without coalesced communication enabled, using a compile-
time parameter to toggle this functionality. We measured the total time spent
on the simulation, on all communications, and on local operations required
for constructing the images.

We present the results of our performance tests in Table 1. Based on our
measurements we find that the communication overhead in our coalesced runs
amounts to between 57 and 63% of the overhead in the non-coalesced runs.
When we render more images per timestep, the absolute performance bene-
fit increases while relative performance benefit slightly decreases. However,
the frame rate we obtain for the runs with 200 images generated is already
sufficient for real-time visual inspection of the data. The time spent on vi-

4

Client 1 Client 2 StepMgr CommsMgr

RegisterAsClient

RegisterAsCommsMgr

ShareCommRequirements

Comm Requirement Data

Receive
ComputeSendData

Send

Data from Send Buffer

ComputeLocal

Wait

Data into Receive Buffer

ProcessReceivedData

Clients do work which requires received data

After Wait, the data is guaranteed to be in the
Clients' defined buffers

Clients do work which does not need received
 data, overlapping communications

CommunicationsManager takes data from
stored locations

Clients do computations needed to fill the send
buffers

Initialisation complete, begin zero or more steps

Each Client component defines its
communication requirements

Clients and CommunicationsManager
register with the StepManager

M
essag

e seq
u

en
ce fo

r each
 step

Figure 2: Message sequence chart of the coalesced communication pattern, generalized for
an application with two Client components which require communications. Function calls
and data movements are indicated respectively with solid and dashed arrows. The Step-
Manager and CommunicationsManager objects are abbreviated respectively as StepMgr
and CommsMgr. Time proceeds vertically downwards.

sualisation is 0.0034 second per image, and scales linearly with the number
of images rendered.

5. Discussion and conclusions

We have presented the coalesced communication design pattern, which
allows the coalescence of the interprocess communications of multiple Client
components within complex parallel scientific software. We have demon-
strated the benefit of adopting the design pattern based on an implementa-
tion in a blood flow application. Here the use of coalesced communication
reduces the total communication overhead of the simulations, which have two
primary Clients, by approximately 40%. This improvement results in the ap-
plication taking about 7% less time overall, making it more responsive when

5

Table 1: Performance results of our HemeLB simulations, run with and without the coa-
lesced communication strategy. Each simulation ran for 2000 time steps, using 1024 cores
and modelling blood flow in a bifurcation simulation domain. We ran our simulations
rendering respectively 10 images (first two rows), 100 images (middle two rows), and 200
images (last two rows) at evenly spaced time intervals during execution.

of images Coalesced Comm. Total time Comm. time Vis. time
[s] [s] [s]

10 enabled 27.6 2.36 0.03
10 disabled 29.3 4.07 0.03
100 enabled 30.0 3.13 0.34
100 disabled 31.9 5.15 0.33
200 enabled 32.7 3.82 0.68
200 disabled 34.8 6.07 0.66

applied for clinical or scientific purposes. The design pattern can be directly
applied in other parallel scientific software projects, allowing for a structured
way to improve the communication performance through coalescence.

6. Acknowledgements

This work has received funding from the CRESTA and MAPPER projects
within the EC-FP7 (ICT-2011.9.13) under Grant Agreements nos. 287703
and 261507, the British Heart Foundation, and from EPSRC Grants EP/I017909/1
(www.2020science.net) and EP/I034602/1. This work made use of the HEC-
ToR supercomputer at EPCC in Edinburgh, funded by the Office of Science
and Technology through EPSRC’s High End Computing Programme.

References

[1] G. Erich, H. Richard, J. Ralph, V. John, Design patterns: elements of
reusable object-oriented software, Addison Wesley Publishing Company,
Reading, United Kingdom, 1995.

[2] J. L. Ortega-Arjona, Patterns for Parallel Software Design, John Wiley
and Sons Ltd., Chichester, United Kingdom, 2010.

[3] T. Mattson, B. Sanders, B. Massingill, Patterns for parallel program-
ming, 1st Edition, Addison-Wesley Professional, 2004.

6

[4] S. Bae, S. Ranka, A comparison of different message-passing paradigms
for the parallelization of two irregular applications, The Journal of Su-
percomputing 10 (1) (1996) 55–85.

[5] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands,
C. Iancu, M. Welcome, K. Yelick, An evaluation of current high-
performance networks, in: Parallel and Distributed Processing Sym-
posium, 2003, 2003, p. 10 pp.

[6] D. Chavarŕıa-Miranda, J. Mellor-Crummey, Effective communication co-
alescing for data-parallel applications, in: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, ACM, New York, NY, USA, 2005, pp. 14–25.

[7] W.-y. Chen, C. Iancu, K. Yelick, Communication optimizations for fine-
grained UPC applications, in: In Proceedings of the International Con-
ference on Parallel Architecture and Compilation Techniques, 2005, pp.
267–278.

[8] M. J. Koop, T. Jones, D. K. Panda, Reducing connection memory re-
quirements of MPI for infiniband clusters: A message coalescing ap-
proach, Cluster Computing and the Grid, IEEE International Sympo-
sium on (2007) 495–504.

[9] M. D. Mazzeo, P. V. Coveney, HemeLB: A high performance parallel
lattice-Boltzmann code for large scale fluid flow in complex geometries,
Computer Physics Communications 178 (12) (2008) 894–914. doi:10.

1016/j.cpc.2008.02.013.

[10] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bernabeu,
P. V. Coveney, Analyzing and Modeling the Performance of the HemeLB
Lattice-Boltzmann Simulation Environment, submitted to the Journal
of Computational SciencearXiv:1209.3972.

[11] H. B. Carver, R. W. Nash, M. Bernabeu, J. Hetherington, D. Groen,
T. Krueger, P. V. Coveney, Choice of boundary condition and colli-
sion operator for lattice-Boltzmann simulation of intermediate Reynolds
number flow in complex domains, submitted to Phys Rev. E.

7

http://dx.doi.org/10.1016/j.cpc.2008.02.013
http://dx.doi.org/10.1016/j.cpc.2008.02.013
http://arxiv.org/abs/1209.3972

	1 Introduction
	2 Coalesced communication
	3 Implementation
	4 Performance Tests
	5 Discussion and conclusions
	6 Acknowledgements

