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AbstractWe consider a fractional order viscoelasticity problem modelled by a power-law type stress relax-
ation function. This viscoelastic problem is a Volterra integral equation of the second kind with a weakly
singular kernel where the convolution integral corresponds to fractional order differentiation/integration.
We use a spatial finite element method and a finite difference scheme in time. Due to the weak singularity,
fractional order integration in time is managed approximately by linear interpolation so that we can formu-
late a fully discrete problem. In this paper, we present a stability bound as well as a priori error estimates.
Furthermore, we carry out numerical experiments with varying regularity of exact solutions at the end.
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1 Introduction

Materials that exhibit elastic and viscous response are called viscoelastic materials such as soft tissues,
metals at high temperature, and polymers, e.g. see [1]. Deformation of a material follows a momentum
equation. It is defined by

ρü−∇ · σ = f on Ω × (0, T ], (1.1)

where ü is acceleration, ∇ · σ is the divergence of stress, f is an external body force (e.g. see [2,3]), Ω is
a spatial domain in Rd for d = 1, 2, 3 and (0, T ] is a time interval domain for T > 0. Here we denote first
and second time derivative by single and double overdot, respectively, for example, u̇ is velocity where we
have displacement u. A constitutive equation of linear viscoelasticity is formulated as an integro-differential
equation which is characterised with a stress relaxation function [1,2,4,5] such that

σ(t) = Dϕ(t)ε(0) +

∫ t

0

Dϕ(t− s)ε̇(s)ds, (1.2)

where D is a fourth order symmetric positive definite tensor, for example

Dijkl = Djikl = Dijlk = Dklij ,
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2 PRELIMINARY

ε is the strain, and the form of ϕ depends on which viscoelastic model is invoked. A rheological models
such as the Maxwell, Voigt and Zener models exhibit exponentially decaying stress relaxation [2]. For more
details, see [4–6] and references therein. In the case of generalised Maxwell model, quasi-static and dynamic
linear viscoelastic problems have been dealt with by finite element approximation in [3,7–10].

Another choice of a stress relaxation function, namely power-law, was employed by Nutting [11], e.g.
see also [12,13]. The power-law type kernel has been naturally introduced in an intermediate sense between
elasticity and viscosity [2]. To be specific, classical continuum mechanics provides that σ ∝ ε in elastic
solid and σ ∝ ε̇ in viscous liquid so that the constitutive relation of viscoelasticity could exhibit σ ∝ ∂αt ε,
where ∂αt is the fractional α order differential operator such that

∂αt ε(t) =
1

Γ (1− α)

∂

∂t

∫ t

0

(t− s)−αε(s)ds,

for α ∈ (0, 1) and Γ is the Gamma function. For example, it is argued that σ ∝ ∂0.56t ε in elastomer 3M-467
in [12]. In this manner, the power-law type stress relaxation kernel for viscoelasticity [2] is introduced by

ϕ(t) = ϕ0 + ϕ1t
−α, (1.3)

where ϕ0 is non-negative, ϕ1 is positive and α ∈ (0, 1). Consequently, the power-law type kernel leads us
to derive a fractional order viscoelastic model.

Due to the weakly singular kernel in the fractional order viscoelasticity model, the standard quadrature
rules such as the trapezoidal rule, are unable to work. For instance, the typical quadrature rules require
function values of the integrand for all nodes but ϕ(0) is unbounded. Hence we need to find alternative
methods which resolve the singularity at t = 0. In [14], some numerical approach for fractional calculus
was introduced based on interpolation techniques with various accuracy orders. McLean and Thomée [15–
17] developed numerical analysis of a fractional order evolution equation which is a scalar analogue of
a fractional order viscoelasticity problem of power-law type, and they presented error analysis with the
homogeneous Dirichlet boundary condition.

In this article, we study the fractional order viscoelastic model problem with mixed boundary conditions.
We consider finite element approximation for the fractional order viscoelastic model given by power-law
type stress relaxation. On account of the weak singularity, we may encounter some difficulty in a priori
analysis. To resolve this issue, we introduce the linear interpolation technique [14,18] while we employ spatial
finite element method and Crank-Nicolson finite difference method in time. We show stability bounds as
well as spatially optimal error bounds but without Grönwall inequality for time integral not to produce
exponentially increasing bounds in time. In terms of the weak singularity, we will discuss regularity of
solutions to obtain suboptimal and optimal convergence orders with respect to time.

Here, we would like to highlight that the well-posedness for the fractional order integro-differential
equation with the mixed boundary condition can be shown by introducing Markov’s inequality but without
Grönwall’s inequality. Despite the weak singularity in the power-law type kernel and limitations for higher
regularity of solutions in time, the fully discrete solutions have better order of accuracy than first order
schemes. We can prove it by means of duality arguments and L∞ approach in time rather than by the use
of Grönwall’s inequality and spectral method.

This article is arranged as follows. In Section 2, we introduce fundamental definitions of fractional
calculus, the finite element method and our notation. In Section 3, we give more suppositions to derive the
reduced model of (1.1) and define discrete formulations. In Section 4, we state and prove stability bounds
as well as error estimates. By using the fully discrete formula, numerical experiments are carried out in
FEniCS Project (https://fenicsproject.org/) in Section 5. At the end, we conclude with Section 6.

2 Preliminary

According to [19–21], we define Riemann-Liouville fractional integral as follows. If f ∈ L1[a, b], the α order
integral of f is given by

aI
α
t f(t) =

1

Γ (α)

∫ t

a

f(s)(t− s)α−1ds, t > a,

2



2 PRELIMINARY

where α is positive. We can also rewrite the fractional integral in convolution form as

aI
α
t f(t) = βα ∗ f(t),

where βα(t) = tα−1/Γ (α) and ∗ denotes Laplace convolution such that

f1 ∗ f2(t) =

∫ t

0

f1(t− s)f2(s)ds.

Note that βα(t) is a weakly singular kernel for 0 < α < 1.
We introduce and use some standard notations so that the usual Lp(Ω), Hs(Ω) and W s

p (Ω) denote
Lebesgue, Hilbert and Sobolev space, respectively, where s and p are non-negative. For any Banach space
X, ‖·‖X is the X norm, for example, ‖·‖L2(Ω) is the L2(Ω) norm induced by the L2(Ω) inner product

which we denote for brevity by (·, ·), but for S ⊂ Ω̄, (·, ·)L2(S) is the L2(S) inner product. In case of time
dependent functions, we expand this notation such that if f ∈ Lp(0, T ;X) for some Banach space X, we
define

‖f‖Lp(0,t0;X) =

(∫ t0

0

‖f(t)‖pXdt
)1/p

for t0 ≤ T and 1 ≤ p <∞. When p =∞, we shall use essential supremum norm where

‖f‖L∞(0,t0;X) = ess sup
0≤t≤t0

‖f(t)‖X .

Also, we define Hölder norm for f ∈ Cs(0, T ;X) by

‖f‖Cs(0,T ;X) = max
0≤k≤s

sup
0≤t≤T

∥∥∥∥ ∂k∂tk f(t)

∥∥∥∥
X

.

Let us define a framework for our finite element method. We assume that Ω is an open bounded convex
polytopic domain, ΓD is the positive measured Dirichlet boundary, and the Neumann boundary ΓN is given
by ΓN = ∂Ω\ΓD. For use later we recall the trace inequality,

‖v‖L2(∂Ω) ≤ C ‖v‖H1(Ω) , for any v ∈ H1(Ω), (2.1)

where C is a positive constant depending only on Ω and its boundary.
Let V be a subspace of H1(Ω) such that

V =
{
v ∈ H1(Ω) | v = 0 on ΓD

}
,

and V h be a finite element space of polynomial of degree k in V . In particular, we consider conforming
meshes and Lagrange finite elements for the construction of the finite element space [22,23]. For the sake
of our model problem, we will use similar notations for vector-valued functions. Let us define

V = [V ]d =
{
v ∈ [H1(Ω)]d | v = 0 on ΓD

}
,

and V h = [V h]d. Also, we use inner products of vector-valued (tensor-valued) functions with same notations
as scalar cases. For instance, we have

(v,w) =

∫
Ω

v ·w dΩ,
(
ψ, ζ

)
=

∫
Ω

ψ : ζ dΩ,

for vector-valued functions v and w, and second order tensors ψ and ζ.

3



3 MODEL PROBLEM

3 Model Problem

Consider the viscoelasticity model problem with the power-law type constitutive relation. Then we have

ρü(t)−∇ ·
(
D(ϕ0 + ϕ1t

−α)ε(u(0)) +

∫ t

0

D(ϕ0 + ϕ1(t− s)−α)ε̇(u(s))ds

)
= f(t), (3.1)

where t ∈ (0, T ], α ∈ (0, 1) and ε is Cauchy infinitesimal tensor defined by, for any v ∈ [H1(Ω)]d,

εi,j(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, for i, j = 1, . . . , d.

Note that the strain tensor ε is a symmetric second order tensor. Hence we have

σ : ε(v) = σ : ∇v, ∀v ∈ [H1(Ω)]d, (3.2)

since the stress and strain are symmetric. Using the fundamental theorem of calculus, we can observe that

Dϕ0ε(u(0)) +

∫ t

0

Dϕ0ε̇(u(s))ds = Dϕ0ε(u(t)),

and this is purely elastic response. To simplify (3.1), we assume that u(0) = 0 and ϕ0 = 0. For convenience
of notation, we also define D̂ such that

D̂ = ϕ1Γ (1− α)D.

Once we denote the velocity vector by w = u̇, we can reduce (3.1) to a lower order differential problem by
using fractional integral notation. Thus, we will consider the following model problem: find w such that

ρẇ(t)−∇ · 0I1−αt (D̂ε(w(t))) = f(t), on (0, T ]×Ω, (3.3)

0I
1−α
t (D̂ε(w(t))) · n = gN (t), on [0, T ]× ΓN , (3.4)

w(t) = 0, on [0, T ]× ΓD, (3.5)

w(0) = w0, on Ω, (3.6)

where α ∈ (0, 1), D̂ is a symmetric positive definite piecewise constant fourth order tensor and n is an
outward unit normal vector. In continuum mechanics, gN is called traction, which is equivalent to σ · n.

3.1 Weak Formulation

As taking into account multiplying v ∈ V by (3.3) and integrating it over Ω, we are able to obtain the
following weak problem: find a mapping w : [0, T ] 7→ V such that

(ρẇ(t),v) + a
(
0I

1−α
t w(t),v

)
= F (t;v), ∀t ∈ (0, T ], (3.7)

a (w(0),v) = a (w0,v) , (3.8)

for any v ∈ V where a (·, ·) and F are defined by

a (w,v) =

∫
Ω

D̂ε(w) : ε(v)dΩ

and
F (t;v) = (f(t),v) + (gN (t),v)L2(ΓN ) .

It is easily to show that (3.7) is a weak form of (3.3) by (3.2) and integration by parts. Straightforwardly,
(3.6) gives (3.8), since the bilinear form is well-defined.
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3 MODEL PROBLEM 3.1 Weak Formulation

Remark 3.1. As is usual in variational problems, we may want to show continuity and coercivity of the
bilinear form, and continuity of the linear form. According to Korn’s inequality [22,24–26],

C ‖v‖2H1(Ω) ≤ λmin ‖ε(v)‖2L2(Ω) ≤ a (v,v) ≤ λmax ‖ε(v)‖2L2(Ω) ≤ λmax ‖v‖2H1(Ω)

for any v ∈ V where C is a positive constant independent of v and (λmin, λmax) is a pair of the minimum
and maximum eigenvalues of D̂. Also, we can observe that

|a (v,w) | ≤ λmax ‖ε(v)‖L2(Ω) ‖ε(w)‖L2(Ω) ≤ λmax ‖v‖H1(Ω) ‖w‖H1(Ω) ,

for any v,w ∈ V . Therefore, the bilinear form is coercive and continuous. Furthermore, when we define
the energy norm ‖·‖V on V by

‖v‖V =
√
a (v,v),

we can observe norm equivalence between the H1 and energy norms on V and we have

|a (v,w) | ≤ ‖v‖V ‖w‖V , (3.9)

for any v,w ∈ V . On the other hand, the use of Cauchy-Schwarz inequality and trace inequality allows us
to show the continuity of the linear form.

Remark 3.2. According to [27], t−α for 0 < α < 1 is a positive definite kernel such that for T > 0∫ T

0

φ(t)

∫ t

0

(t− s)−αφ(s)dsdt =

∫ T

0

∫ t

0

(t− s)−αφ(s)φ(t)dsdt ≥ 0, ∀φ ∈ C[0, T ], (3.10)

and hence ∫ T

0
0I

1−α
t φ(t)φ(t)dt =

1

Γ (1− α)

∫ T

0

∫ t

0

(t− s)−αφ(s)φ(t)dsdt ≥ 0. (3.11)

In order to carry out stability analysis, we shall use (3.11).

Theorem 3.1 Suppose that w ∈ L∞(0, T ;V ) ∩ H1(0, T ; [L2(Ω)]d), f ∈ L2(0, T ; [L2(Ω)]d) and w0 ∈ V .
In addition, we assume gN = 0. Then there exists a positive constant C such that

ρ ‖w‖2L∞(0,T ;L2(Ω)) ≤CT
(
ρ ‖w0‖2V + ‖f‖2L2(0,T ;L2(Ω))

)
.

Proof. Let v = w(t) in (3.7) to get

ρ

2

d

dt
‖w(t)‖2L2(Ω) + a

(
0I

1−α
t w(t),w(t)

)
= F (w(t)). (3.12)

Taking into account the second term of the left hand side of (3.12), the definition of the fractional integral
gives

a
(
0I

1−α
t w(t),w(t)

)
=

1

Γ (1− α)

∫ t

0

(t− t′)−αa
(
w(t′),w(t)

)
dt′, (3.13)

by Leibniz integral rule. By substitution of (3.13) into (3.12), integrating over time yields

ρ

2
(‖w(τ)‖2L2(Ω) − ‖w(0)‖2L2(Ω)) +

1

Γ (1− α)

∫ τ

0

∫ t

0

(t− t′)−αa
(
w(t′),w(t)

)
dt′dt

=

∫ τ

0

F (w(t))dt, (3.14)

for 0 < τ ≤ T . In the double integral, we can expand the bilinear form and take spatial integration outside
so that (3.10) gives∫ τ

0

∫ t

0

(t− t′)−αa
(
w(t′),w(t)

)
dt′dt =

∫
Ω

∫ τ

0

∫ t

0

(t− t′)−αD̂
1/2
ε(w(t′)) : D̂

1/2
ε(w(t))dt′dtdΩ ≥ 0,

5



3.2 Fully Discrete Formulation 3 MODEL PROBLEM

where D̂
1/2

is a symmetric positive definite fourth order tensor satisfying D̂
1/2
D̂

1/2
= D̂ by the use of

spectral decomposition. As a consequence (3.14) yields

ρ

2
‖w(τ)‖2L2(Ω) ≤

ρ

2
‖w(0)‖2L2(Ω) +

∫ τ

0

F (w(t))dt. (3.15)

We can observe a bound of the last term in (3.15) such that∫ τ

0

F (w(t))dt ≤
∫ τ

0

‖f(t)‖L2(Ω) ‖w(t)‖L2(Ω) dt

≤ εa
2
‖w‖2L∞(0,T ;L2(Ω)) +

T

2εa
‖f‖2L2(0,T ;L2(Ω))

by Cauchy-Schwarz and Young’s inequalities for any positive εa. Since τ is arbitrary, we can complete the
proof by choice of εa = ρ/2 and therefore we have

ρ

4
‖w‖2L∞(0,T ;L2(Ω)) ≤CT

(
ρ ‖w(0)‖2L2(Ω) + ‖f‖2L2(0,T ;L2(Ω))

)
, (3.16)

where C is a positive constant. Moreover, it is seen that ‖w(0)‖2L2(Ω) ≤ C ‖w0‖2V by coercivity and norm

equivalence in (3.8), hence the theorem is proved.

Since V h ⊂ V is a finite dimensional subspace, Theorem 3.1 holds for V h. It means we can find a semidis-
crete solution [0, T ] 7→ V h which fulfils (3.7)-(3.8) with the stability bound in Theorem 3.1.

3.2 Fully Discrete Formulation

Next, we are going to formulate a fully discrete problem. We use the Crank-Nicolson finite difference scheme
for time discretization but it is also necessary to introduce numerical methods for fractional order integral.

Let ∆t = T/N for some N ∈ N. Define tn = n∆t for n = 0, . . . , N and denote our fully discrete
solution by W n

h ∈ V h for n = 0, . . . , N . In the way of the Crank-Nicolson finite difference method, we will
approximate first time derivatives by

ẇ(tn+1) + ẇ(tn)

2
≈ W

n+1
h −W n

h

∆t
for n = 0, . . . , N − 1.

Due to the weak singularity in the fractional integral, we should be cautious when using numerical integra-
tion. We will use linear interpolation technique from [14], and define the piecewise linear interpolation of
w such that for n = 1, . . . , N ,

w̄n(t) = − t− tn
∆t

w(tn−1) +
t− tn−1
∆t

w(tn) where t ∈ [tn−1, tn].

If w is of C2 in time, we have for t ∈ [tn−1, tn],

En(t) := w(t)− w̄n(t) =
1

2
ẅ(ξt)(t− tn−1)(t− tn) for some ξt ∈ [tn−1, tn],

by Rolle’s theorem. If w(t) ∈ [Hs(Ω)]d for any t ∈ [tn−1, tn], it holds that

‖En(t)‖Hs(Ω) ≤
∆t2

2
‖ẅ‖C0(tn−1,tn;Hs(Ω)) (3.17)

Then we can obtain the following numerical approximation

0I
1−α
t w(tn) =

1

Γ (1− α)

n∑
i=1

∫ ti

ti−1

(
w̄i(t

′) +Ei(t
′)
)

(tn − t′)−αdt′

6



4 STABILITY AND ERROR ANALYSIS

=
∆t1−α

Γ (3− α)

n∑
i=0

Bn,iw(ti) +
1

Γ (1− α)

n∑
i=1

∫ ti

ti−1

Ei(t
′)(tn − t′)−αdt′

:=qn(w) +
1

Γ (1− α)

n∑
i=1

∫ ti

ti−1

Ei(t
′)(tn − t′)−αdt′, (3.18)

where

Bn,i =


n1−α(2− α− n) + (n− 1)2−α, i = 0,

(n− i− 1)2−α + (n− i+ 1)2−α − 2(n− i)2−α, i = 1, . . . , n− 1,
1, i = n.

Note that 0 < Bn,i < 2 for any n and i = 0, . . . , n. By using Cauchy-Schwarz inequality, if w ∈
C2(0, T ; [Hs(Ω)]d), we can derive the numerical error such that by (3.17),

‖0I1−αt w(tn)− qn(w)‖Hs(Ω) ≤
∆t2

2Γ (1− α)
‖ẅ‖C0(0,tn;Hs(Ω))

∫ tn

0

(tn − t′)−αdt′

≤ T 1−α

2Γ (2− α)
‖ẅ‖C0(0,T ;Hs(Ω))∆t

2. (3.19)

Consequently, the use of Crank-Nicolson method and the numerical integration leads us to obtain the
fully discrete formulation as follows: find W n

h ∈ V h for n = 0, . . . , N such that for any v ∈ V h,(
ρ
W n+1

h −W n
h

∆t
,v

)
+ a

(
qn+1(W h) + qn(W h)

2
,v

)
=

1

2
(F (tn+1;v) + F (tn;v)), (3.20)

∀n = 0, . . . , N − 1, and

a
(
W 0

h,v
)

= a (w0,v) . (3.21)

4 Stability and Error Analysis

As shown in Theorem 3.1, we will carry out stability analysis in a fully discrete sense. One can show a
stable bound then the existence and uniqueness of the discrete solution is possessed simultaneously. In a
similar way with the stability analysis, we can derive error estimates by introducing the elliptic projection.

4.1 A Stability Bound

Let us present the following inverse polynomial trace theorem and Markov inequality.

Theorem 4.1 Inverse Polynomial Trace Theorem [28]
Let E be a triangle in 2D or a tetrahedron in 3D and e be an edge in 2D or a face in 3D of E. Suppose
Pk(E) is a set of polynomials of degree k on E. Then there exists a trace inequality such that

∀v ∈ Pk(E), ∀e ⊂ ∂E, ‖v‖L2(e)
≤ Ch−1/2E ‖v‖L2(E) ,

where hE is a diameter of E and C is a positive constant and is independent of hE but depending on the
degree of polynomial k and the dimension d.

Theorem 4.2 Inverse Inequality(or Markov Inequality) [29,30]
For any element E, there is a positive constant C such that for any 0 ≤ j ≤ k,

∀v ∈ Pk(E),
∥∥∥∇jv∥∥∥

L2(E)
≤ Ch−jE ‖v‖L2(E) , where ∇j =

{
∇(∇j−1), if j odd,

∇ · (∇j−1), if j even.

7



4.1 A Stability Bound 4 STABILITY AND ERROR ANALYSIS

If we assume a quasi-uniform mesh, then we can derive

‖v‖2L2(ΓN ) ≤ Ch
−1 ‖v‖2L2(Ω) , ∀v ∈ V h, (4.1)

and

‖ε(v)‖L2(Ω) ≤ Ch
−1 ‖v‖L2(Ω) , ∀v ∈ V h. (4.2)

Usually to estimate trace terms, trace inequalities, e.g. (2.1), are used rather than the inverse polynomial
trace theorem [22]. The typical trace inequality contains the H1(Ω) norm, however our problem has a
difficulty in dealing with H1(Ω) norm due to numerical integration of fractional order integral qn. To be
specific, since we can only derive the energy norm of the fractional integrals in stability analysis, we are
unable to manage the trace norm of the discrete solution, whereas (4.1) allows us to analyse the trace terms
in L2(Ω) norm sense. Moreover, we note that the inverse polynomial trace theorem can be employed only
in polynomial spaces, which means that (4.1) does not hold in V so we supposed gN = 0 in Theorem 3.1.
Hereafter, we assume V h is constructed with a quasi-uniform mesh and hence we can deal with non-zero g
as well.

Theorem 4.3 Suppose f ∈ L2(0, T ; [L2(Ω)]d), gN ∈ L2(0, T ; [L2(ΓN )]d), and w0 ∈ V . Then there exists
a unique discrete solution of (3.20) and (3.21) such that

max
0≤n≤N

‖W n
h‖

2
L2(Ω) +

∆t2−α

Γ (3− α)

N−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V

≤ CT
(
‖w0‖2V +∆t

N∑
n=0

‖f(tn)‖2L2(Ω) +∆t
N∑
n=0

h−1 ‖gN (tn)‖2L2(ΓN )

)
,

where C is independent of the solution, ∆t and h.

Proof. Let m ∈ {1, . . . , N}. A choice of v = 2∆t(W n+1
h + W n

h) in (3.20) and summation from n = 0 to
n = m− 1 yields

2ρ

(
‖Wm

h ‖
2
L2(Ω) −

∥∥∥W 0
h

∥∥∥2
L2(Ω)

)
+∆t

m−1∑
n=0

a
(
qn+1(W h) + qn(W h),W n+1

h +W n
h

)
=∆t

m−1∑
n=0

(
f(tn+1) + f(tn),W n+1

h +W n
h

)
+∆t

m−1∑
n=0

(
gN (tn+1) + gN (tn),W n+1

h +W n
h

)
L2(ΓN )

. (4.3)

Expanding qn allows us to rewrite (4.3) as

2ρ ‖Wm
h ‖

2
L2(Ω) +

∆t2−α

Γ (3− α)

m−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V

=2ρ
∥∥∥W 0

h

∥∥∥2
L2(Ω)

+∆t

m−1∑
n=0

(
f(tn+1) + f(tn),W n+1

h +W n
h

)
+∆t

m−1∑
n=0

(
gN (tn+1) + gN (tn),W n+1

h +W n
h

)
L2(ΓN )

− ∆t2−α

Γ (3− α)

m−1∑
n=0

a

(
n∑
i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)
. (4.4)

We shall find the bounds of the right hand side of (4.4).

8



4 STABILITY AND ERROR ANALYSIS 4.1 A Stability Bound

•
∥∥W 0

h

∥∥2
L2(Ω)

Since (3.21) holds, we have ∥∥∥W 0
h

∥∥∥2
V
≤
∥∥∥W 0

h

∥∥∥
V
‖w0‖V

by Cauchy-Schwarz inequality and so∥∥∥W 0
h

∥∥∥
L2(Ω)

≤
∥∥∥W 0

h

∥∥∥
H1(Ω)

≤ C
∥∥∥W 0

h

∥∥∥
V
≤ C ‖w0‖V

for some positive C by norm equivalence between H1 norm and energy norm.

•∆t
m−1∑
n=0

(
f(tn+1) + f(tn),W n+1

h +W n
h

)
Use of Cauchy-Schwarz and Young’s inequalities gives

∆t
m−1∑
n=0

(
f(tn+1) + f(tn),W n+1

h +W n
h

)
≤∆t

N∑
n=0

2εa ‖f(tn)‖2L2(Ω) +
2(T +∆t)

εa
max

0≤n≤N
‖W n

h‖
2
L2(Ω)

for any positive εa.

•∆t
m−1∑
n=0

(
gN (tn+1) + gN (tn),W n+1

h +W n
h

)
L2(ΓN )

While using the same approach as the above, we can also derive

∆t
m−1∑
n=0

(
gN (tn+1) + gN (tn),W n+1

h +W n
h

)
L2(ΓN )

≤∆t
N∑
n=0

2εb ‖gN (tn)‖2L2(ΓN ) + Ch−1
2(T +∆t)

εb
max

0≤n≤N
‖W n

h‖
2
L2(Ω)

by (4.1), for any positive εb.

From the above bounds, (4.4) can be written as

2ρ ‖Wm
h ‖

2
L2(Ω) +

∆t2−α

Γ (3− α)

m−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V

≤ρC ‖w0‖2V +∆t
N∑
n=0

2εa ‖f(tn)‖2L2(Ω) +
2(T +∆t)

εa
max

0≤n≤N
‖W n

h‖
2
L2(Ω)

+∆t
N∑
n=0

2εb ‖gN (tn)‖2L2(ΓN ) +
Ch−12(T +∆t)

εb
max

0≤n≤N
‖W n

h‖
2
L2(Ω)

− ∆t2−α

Γ (3− α)

m−1∑
n=0

a

(
n∑
i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)

:=R− ∆t2−α

Γ (3− α)

m−1∑
n=0

a

(
n∑
i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)
. (4.5)

Now, it remains to show the boundedness of (4.5). Note that R in (4.5) is independent of m. Hereafter,
we would like to use mathematical induction to derive the upper bound of the last term. Our claim to be
shown by induction is

2ρ ‖Wm
h ‖

2
L2(Ω) +

∆t2−α

2Γ (3− α)

m−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V
≤ C

(
R+∆t2−α

∥∥∥W 0
h

∥∥∥2
V

)
, (4.6)

9



4.1 A Stability Bound 4 STABILITY AND ERROR ANALYSIS

for some positive C, ∀m. For m = 1 in the last term of (4.5), we have

|a
(
B1,0W

0
h,W

1
h +W 0

h

)
| ≤

B2
1,0ε

2

∥∥∥W 0
h

∥∥∥2
V

+
1

2ε

∥∥∥W 1
h +W 0

h

∥∥∥2
V

by Cauchy-Schwarz and Young’s inequalities with any positive ε. Hence, taking ε = 1 allows us to have

2ρ
∥∥∥W 1

h

∥∥∥2
L2(Ω)

+
∆t2−α

2Γ (3− α)

∥∥∥W 1
h +W 0

h

∥∥∥2
V
≤ R+

B2
1,0

2

∆t2−α

Γ (3− α)

∥∥∥W 0
h

∥∥∥2
V
. (4.7)

When m = 2, (4.5) gives

2ρ
∥∥∥W 2

h

∥∥∥2
L2(Ω)

+
∆t2−α

Γ (3− α)
(
∥∥∥W 2

h +W 1
h

∥∥∥2
V

+
∥∥∥W 1

h +W 0
h

∥∥∥2
V

)

≤R− ∆t2−α

Γ (3− α)
a
(
B2,1W

1
h +B2,0W

0
h +B1,0W

0
h,W

2
h +W 1

h

)
− ∆t2−α

Γ (3− α)
a
(
B1,0W

0
h,W

1
h +W 0

h

)
.

Using Cauchy-Schwarz and Young’s inequalities, we can have∣∣a(B2,1W
1
h +B2,0W

0
h +B1,0W

0
h,W

2
h +W 1

h

) ∣∣
≤ (max(B2,1, B2,0 +B1,0))2

2ε

∥∥∥W 1
h +W 0

h

∥∥∥2
V

+
ε

2

∥∥∥W 2
h +W 1

h

∥∥∥2
V
,

and ∣∣a(B1,0W
0
h,W

1
h +W 0

h

) ∣∣ ≤ B2
1,0

2ε

∥∥∥W 0
h

∥∥∥2
V

+
ε

2

∥∥∥W 1
h +W 0

h

∥∥∥2
V

for any positive ε. Hence coupling with (4.7) which provides the bound for
∥∥W 1

h +W 0
h

∥∥2
V

, and choosing
ε = 1, we can write (4.5) for m = 2 as

2ρ
∥∥∥W 2

h

∥∥∥2
L2(Ω)

+
∆t2−α

2Γ (3− α)

1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V
≤ C

(
R+∆t2−α

∥∥∥W 0
h

∥∥∥2
V

)
,

for some positive C. Let us assume that (4.6) holds for m = j < N so that

2ρ
∥∥∥W j

h

∥∥∥2
L2(Ω)

+
∆t2−α

2Γ (3− α)

j−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V
≤C

(
R+∆t2−α

∥∥∥W 0
h

∥∥∥2
V

)
,

and then for m = j + 1, we have, from (4.5),

j∑
n=0

a

(
n∑
i=0

Bn+1,iW
i
h +

n−1∑
i=0

Bn,iW
i
h,W

n+1
h +W n

h

)

≤
j∑

n=0

n−1∑
i=1

(
G2ε

2

∥∥∥W i+1
h +W i

h

∥∥∥2
V

+
1

2ε

∥∥∥W n+1
h +W n

h

∥∥∥2
V

)

+

j∑
n=0

(
(3G)2ε̃

2

∥∥∥W 0
h

∥∥∥2
V

+
1

2ε̃

∥∥∥W n+1
h +W n

h

∥∥∥2
V

)

+

j∑
n=0

(
G2ε̌

2

∥∥∥W 1
h +W 0

h

∥∥∥2
V

+
1

2ε̌

∥∥∥W n+1
h +W n

h

∥∥∥2
V

)

10



4 STABILITY AND ERROR ANALYSIS 4.1 A Stability Bound

where 0 < G = max
0≤i≤n≤N

Bn,i < 2, for any positive ε, ε̃, and ε̌. Since
n−1∑
i=1

∥∥W i+1
h +W i

h

∥∥2
V is bounded

for 0 ≤ n ≤ j by the induction assumption, we can obtain the boundedness of
j∑

n=0

n−1∑
i=1

∥∥W i+1
h +W i

h

∥∥2
V

.

Consequently, setting ε = ε̃ = ε̌ = 1/3 yields

2ρ
∥∥∥W j+1

h

∥∥∥2
L2(Ω)

+
∆t2−α

2Γ (3− α)

j∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V
≤ C

(
R+∆t2−α

∥∥∥W 0
h

∥∥∥2
V

)
.

Thus we can complete the induction and hence (4.6) holds. Turning to our main goal, when we consider
maximum in (4.6) with the argument

an + bn ≤ C ⇒ max
n

an + max
n

bn ≤ 2C, for any positive an, bn,∀n,

then (4.6) can be written as

2ρ max
0≤n≤N

‖W n
h‖

2
L2(Ω) +

∆t2−α

2Γ (3− α)

N−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V

≤2C

(
‖w0‖2V +∆t

N∑
n=0

2εa ‖f(tn)‖2L2(Ω) +
2(T +∆t)

εa
max

0≤n≤N
‖W n

h‖
2
L2(Ω)

+∆t
N∑
n=0

2εb ‖gN (tn)‖2L2(ΓN ) +
h−12(T +∆t)

εb
max

0≤n≤N
‖W n

h‖
2
L2(Ω)

)
,

since
∥∥W 0

h

∥∥
V
≤ ‖w0‖V . Therefore, choosing εa = 8C(T + ∆t)/ρ and εb = 8Ch−1(T + ∆t)/ρ leads us to

have

ρ max
0≤n≤N

‖W n
h‖

2
L2(Ω) +

∆t2−α

2Γ (3− α)

N−1∑
n=0

∥∥∥W n+1
h +W n

h

∥∥∥2
V

≤CT
(
‖w0‖2V +∆t

N∑
n=0

‖f(tn)‖2L2(Ω) +∆t
N∑
n=0

h−1 ‖gN (tn)‖2L2(ΓN )

)
.

Furthermore, this bound also implies the existence and uniqueness of the discrete solution.

Remark 4.1. In Theorem 4.3, h−1 term appears on the traction. However, in practice, it has nothing to
do because of fixed h for the finite element spaces. It comes from the fact that the boundary condition is
imposed weakly [3,29] on account of inverse polynomial trace theorem.

Remark 4.2. If we use Grönwall’s inequality to show the boundedness rather than taking the maximum,
we have an exponentially increasing bound in the final time T , e.g. see [27,31]. That is, instead of T , we
have exp(T ) on the stability bound.

Remark 4.3. In Theorem 3.1, the stability bound has been proved by the positive definiteness of the kernel
(fractional integral). On the other hand, our discrete kernel is no longer positive definite but weak positive
definite. We refer [15,32,33] for more details. Moreover, in order to use the positive definiteness for the
stability analysis, zero traction or pure Dirichlet boundary condition should be further assumed. However,
we employ inverse trace polynomial theorem for mixed boundary conditions in the proof of Theorem 4.3
with by means of induction rather than the use of positive definiteness.
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4.2 Error Estimates 4 STABILITY AND ERROR ANALYSIS

4.2 Error Estimates

In terms of errors analysis in time, the Crank-Nicolson method requires at least H3 smoothness of a solution
with respect to time to get second order accuracy. However, due to the weak singularity, we may encounter
restrictions on high regularity of solutions. Hence we will remark on the regularity of solutions.

Remark 4.4. (Regularity of solutions) Let us recall the primal equation (3.3). We can rewrite it in
convolution form so that

ρẇ(t) =∇ · 0I1−αt (D̂ε(w(t))) + f(t)

=β1−α ∗ Dw(t) + f(t)

where D = ∇ · D̂ε is a linear differential operator on the spatial domain and β1−α = t−α/Γ (1 − α) for
α ∈ (0, 1). By Young’s inequality for the convolution, we can observe that

‖ρẇ‖Lq(0,T ) ≤‖β1−α‖L1(0,T )‖Dw‖Lq(0,T ) + ‖f‖Lq(0,T ) for q ≥ 1.

Since β1−α is L1 integrable, if Dw and f are L2 integrable in time, so is ẇ. Differentiating (3.3) with
respect to time gives

ρẅ(t) =β1−α(t)Dw(0) + β1−α ∗ Dẇ(t) + ḟ(t).

We assume that w(0) ∈ [H2(Ω)]d then ẅ is L1 integrable with L1 integrable ḟ and Dẇ with respect to
time. In this manner, we can observe L2 integrable ẅ if ḟ and Dẇ are in L2, and Dw(0) = 0. Repeatedly,
we can consider the third time derivative of w. Then we have

ρw(3)(t) =β̇1−α(t)Dw(0) + β1−α(t)Dẇ(0) + β1−α ∗ Dẅ(t) + f̈(t). (4.8)

Note that β̇1−α(t) is non-integrable in L1 and L2 so it is not obviously seen that the third time derivative
of w is integrable. In a second order finite difference scheme, the third derivative and its boundedness are
required to take a full advantage of the second order schemes. For example, we can observe that if w is
three-times differentiable,

ẇ(tn+1) + ẇ(tn)

2
− w(tn+1)−w(tn)

∆t
=

1

2∆t

∫ tn+1

tn

w(3)(t)(tn+1 − t)(t− tn)dt. (4.9)

Moreover, the boundedness of w(3) leads that (4.9) is of order ∆t2. For example, when we suppose w(3) ∈
L2(tn, tn+1;L2(Ω)), the use of Cauchy-Schwarz inequality gives∥∥∥∥ẇ(tn+1) + ẇ(tn)

2
− w(tn+1)−w(tn)

∆t

∥∥∥∥2
L2(Ω)

≤ ∆t3

4
‖w(3)‖2L2(tn,tn+1;L2(Ω)). (4.10)

By substitution of (4.8) into (4.9), we can also observe that

ẇ(tn+1) + ẇ(tn)

2
− w(tn+1)−w(tn)

∆t

=
1

2ρ∆t

∫ tn+1

tn

(
β̇1−α(t)Dw(0) + β1−α(t)Dẇ(0) + β1−α ∗ Dẅ(t) + f̈(t)

)
(tn+1 − t)(t− tn)dt. (4.11)

Note that we assume w(0) ∈ [H2(Ω)]d and ẇ(0) ∈ [H2(Ω)]d. Thus, if f̈ ∈ L2(tn, tn+1; [L2(Ω)]d) and
ẅ ∈ L2(tn, tn+1; [H2(Ω)]d), we have w(3) ∈ L2(tn, tn+1; [L2(Ω)]d) for n ≥ 1. However, the singularity
appears for n = 0. So, we need to introduce the following lemma.
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4 STABILITY AND ERROR ANALYSIS 4.2 Error Estimates

Lemma 4.1 Suppose f ∈W 3
1 (0, T ; [L2(Ω)]d)∩H2(0, T ; [H2(Ω)]d), w(0) ∈ [H2(Ω)]d and ẇ(0) ∈ [H2(Ω)]d.

If w(0) = 0, we have ∥∥∥∥w(t1)−w(t0)

∆t
− ẇ(t1) + ẇ(t0)

2

∥∥∥∥
L2(Ω)

≤ C∆t2−α, (4.12)

for some positive constant C independent of ∆t. Furthermore, we can also obtain∥∥∥∥w(t1)−w(t0)

∆t
− ẇ(t1) + ẇ(t0)

2

∥∥∥∥
L2(Ω)

≤ C∆t2, (4.13)

when w(0) = ẇ(0) = 0.

Proof. Let us recall (4.11)

ẇ(tn+1) + ẇ(tn)

2
− w(tn+1)−w(tn)

∆t

=
1

2ρ∆t

∫ tn+1

tn

(
β̇1−α(t)Dw(0) + β1−α(t)Dẇ(0) + β1−α ∗ Dẅ(t) + f̈(t)

)
(tn+1 − t)(t− tn)dt.

We can expand it by

ẇ(tn+1) + ẇ(tn)

2
− w(tn+1)−w(tn)

∆t
=

1

2ρ∆t

(∫ tn+1

tn

−αt−α−1

Γ (1− α)
Dw(0)(tn+1 − t)(t− tn)dt

+

∫ tn+1

tn

t−α

Γ (1− α)
Dẇ(0)(tn+1 − t)(t− tn)dt

+

∫ tn+1

tn

(
β1−α ∗ Dẅ(t) + f̈(t)

)
(tn+1 − t)(t− tn)dt

)
.

Consider the first and second terms of the right hand side for n = 0. Then we have∫ ∆t

0

−αt−α−1

Γ (1− α)
Dw(0)(∆t− t)tdt =

−α∆t2−α

Γ (3− α)
Dw(0),

and ∫ ∆t

0

t−α

Γ (1− α)
Dẇ(0)(∆t− t)tdt =

(1− α)∆t3−α

Γ (4− α)
Dẇ(0).

Thus, Cauchy-Schwarz inequality and Young’s inequality for convolution lead us to have∥∥∥∥ẇ(t1) + ẇ(t0)

2
− w(t1)−w(t0)

∆t

∥∥∥∥
L2(Ω)

≤ α∆t1−α

2ρΓ (3− α)
‖Dw(0)‖L2(Ω) +

(1− α)∆t2−α

2ρΓ (4− α)
‖Dẇ(0)‖L2(Ω)

+ C∆t2,

where C depends on f but is independent of ∆t, e.g. see [15] for more details. We can conclude that if
w(0) = 0, (4.12) holds. Moreover, when we additionally assume ẇ(0) = 0, we obtain∥∥∥∥w(t1)−w(t0)

∆t
− ẇ(t1) + ẇ(t0)

2

∥∥∥∥
L2(Ω)

≤ C∆t2.

Remark 4.5. We refer to [15] for the assumption f ∈W 3
1 (0, T ; [L2(Ω)]d)∩H2(0, T ; [H2(Ω)]d). In addition,

once w ∈ ker(D) where ker(D) is a kernel set of the differential operator D, the strong form becomes a
simple first order ODE problem so that the singularity will also disappear.
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4.2 Error Estimates 4 STABILITY AND ERROR ANALYSIS

In order to consider spatial error estimates, we want to introduce the following elliptic error estimates.
We define an elliptic projection R : V 7→ V h by

a (Rw,v) = a (w,v) , for w ∈ V and any v ∈ V h,

then we have Galerkin orthogonality such that for w ∈ V ,

a (Rw −w,v) = 0, for any v ∈ V h.

According to [22,23], we can obtain elliptic error estimates such that

‖w −Rw‖V ≤ C|w|Hr(Ω)h
r−1, (4.14)

where V h ⊂ V is a subspace of polynomials of degree k, w ∈ [Hs(Ω)]d, and r = min(k + 1, s). Moreover,
the use of elliptic regularity estimates [22,34,35] in a standard duality argument enables us to get

‖w −Rw‖L2(Ω) ≤ C|w|Hr(Ω)h
r. (4.15)

Next, we state and prove a priori error estimates by recalling elliptic approximations (4.14) and (4.15).
Hence we use the elliptic projection operator R and define

θ(t) := w(t)−Rw(t), for t ∈ [0, T ], χn := W n
h −Rw(tn) for n = 0, . . . , N.

Lemma 4.2 Suppose f and w0 are given to hold (4.12),

w ∈ C2(0, T ; [Hs(Ω)]d) ∩W 1
∞(0, T ;V ) for s ≥ 2,

and (W n
h)
N
n=0 satisfies the fully discrete formulae (3.20) and (3.21). Then we have

max
0≤n≤N

‖χn‖L2(Ω) +

(
∆t2−α

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

)1/2

≤ CT 2−α(hr +∆t2−α),

where positive C is independent of h and ∆t, and r = min(k + 1, s). Moreover, if w(0) = ẇ(0) = 0 or
w ∈ ker(D), then we have

max
0≤n≤N

‖χn‖L2(Ω) +

(
∆t2−α

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

)1/2

= CT 2−α(hr +∆t2).

Proof. For m ∈ {1, . . . , N}, subtracting the average of (3.7) over t = tn+1 and t = tn from (3.20) where
0 ≤ n ≤ m− 1 gives

ρ

(
W n+1

h −W n
h

∆t
− ẇ

n+1 + ẇn

2
,v

)
+ a

(
qn+1(W h) + qn(W h)

2
−

0I
1−α
tn+1

w + 0I
1−α
tn w

2
,v

)
= 0

for any v ∈ V h. By definitions of θ and χ, we can rewrite this as

ρ

∆t

(
χn+1 − χn,v

)
+

1

2
a
(
qn+1(χ) + qn(χ),v

)
=
ρ

∆t

(
θn+1 − θn,v

)
+

1

2
a
(
qn+1(θ) + qn(θ),v

)
+

1

2
a
(
en+1 + en,v

)
+ ρ (En,v) , (4.16)

where en := qn(w) − 0I
1−α
t w(tn) and E(t) := ẇ(t+∆t)+ẇ(t)

2 − w(t+∆t)−w(t)
∆t for t ∈ [0, T − ∆t]. Galerkin

orthogonality reduces (4.16) to

ρ

∆t

(
χn+1 − χn,v

)
+

1

2
a
(
qn+1(χ) + qn(χ),v

)
=

ρ

∆t

(
θn+1 − θn,v

)
+

1

2
a
(
en+1 + en,v

)
+ ρ (En,v) .

(4.17)

14



4 STABILITY AND ERROR ANALYSIS 4.2 Error Estimates

Once we put v = 2∆t(χn+1 + χn) in (4.17), summing from n = 0 to n = m− 1 produces

2ρ ‖χm‖2L2(Ω) +
∆t2−α

Γ (3− α)

m−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

=2ρ
∥∥∥χ0

∥∥∥2
L2(Ω)

+ 2ρ
m−1∑
n=0

(
θn+1 − θn,χn+1 + χn

)
+∆t

m−1∑
n=0

a
(
en+1 + en,χn+1 + χn

)
+ 2ρ∆t

m−1∑
n=0

(
En,χn+1 + χn

)
− ∆t2−α

Γ (3− α)

m−1∑
n=0

a

(
n∑
i=0

Bn+1,iχ
i +

n−1∑
i=0

Bn,iχ
i,χn+1 + χn

)
. (4.18)

For the sake of error estimation, we shall show the bounds of (4.18) as following.

•
∥∥χ0

∥∥2
L2(Ω)

(3.21) and Galerkin orthogonality lead us to have

a
(
χ0,v

)
=a
(
W 0

h + (w0 −w0)−Rw0,v
)

= a
(
W 0

h −w0,v
)

+ a (w0 −Rw0,v) = 0

for any v ∈ V h and hence
∥∥χ0

∥∥2
L2(Ω)

= 0.

•
m−1∑
n=0

(
θn+1 − θn,χn+1 + χn

)
Since w belongs to H1 in time, we can write

m−1∑
n=0

(
θn+1 − θn,χn+1 + χn

)
=

m−1∑
n=0

∫ tn+1

tn

(
θ̇(t′),χn+1 + χn

)
dt′

≤ εa
2

∫ tm

0

∥∥∥θ̇(t′)
∥∥∥2
L2(Ω)

dt′ +
∆t

2εa

m−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
L2(Ω)

≤ εa
2

∥∥∥θ̇∥∥∥2
L2(0,T ;L2(Ω))

+
∆t

2εa
4N max

0≤n≤N
‖χn‖2L2(Ω)

≤C εa
2
h2r +

2T

εa
max

0≤n≤N
‖χn‖2L2(Ω)

by Cauchy-Schwarz inequalities, Young’s inequality and (4.15) for any positive εa, where C depends on
‖ẇ‖L2(0,T ;Hr(Ω)).

•∆t
m−1∑
n=0

a
(
en+1 + en,χn+1 + χn

)
We follows the simple fact:

a
(
en+1 + en,v

)
=
(
−∇ · D̂ε(en+1 + en),v

)
by integration by parts. Hence using Cauchy-Schwarz inequalities and Young’s inequality, we can obtain

∆t
m−1∑
n=0

(
−∇ · D̂ε(en+1 + en),χn+1 + χn

)
≤∆t

N−1∑
n=0

εb
2

∥∥∥∇ · D̂ε(en+1 + en)
∥∥∥2
L2(Ω)

+
2T

εb
max

0≤n≤N
‖χn‖2L2(Ω)

for any positive εb, since m∆t ≤ N∆t = T . Recall (3.19) then we have∥∥∥∇ · D̂ε(en+1 + en)
∥∥∥
L2(Ω)

≤ CT 1−α∆t2,

for some positive C depending on ‖w‖C2(0,T ;H2(Ω)). Therefore, we can obtain

∆t
m−1∑
n=0

(
−∇ · D̂ε(en+1 + en),χn+1 + χn

)
≤CT 3−2αεb∆t

4 +
2T

εb
max

0≤n≤N
‖χn‖2L2(Ω) .
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4.2 Error Estimates 4 STABILITY AND ERROR ANALYSIS

•∆t
m−1∑
n=0

(
En,χn+1 + χn

)
Recalling (4.10) and (4.12), Cauchy-Schwarz inequalities and Young’s inequality yield

∆t
m−1∑
n=0

(
En,χn+1 + χn

)
≤∆t

N−1∑
n=0

εc
2
‖En‖2L2(Ω) +∆t

N−1∑
n=0

2

εc
max

0≤n≤N
‖χn‖2L2(Ω)

≤ εc∆t
4

8
‖w(3)‖2L2(t1,T ;L2(Ω)) + CTεc∆t

4−2α +∆t
N−1∑
n=0

2

εc
max

0≤n≤N
‖χn‖2L2(Ω)

≤CTεc∆t4−2α +
2T

εc
max

0≤n≤N
‖χn‖2L2(Ω)

for any positive εc and some positive C depending on ‖w(3)‖L2(t1,T ;L2(Ω)) and (4.12).

Combining the above results then (4.18) has a bound as

2ρ ‖χm‖2L2(Ω) +
∆t2−α

Γ (3− α)

m−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

≤C
(
ρεah

2r + Tεb∆t
4 + Tεc∆t

4−2α
)

+
4ρT

εa
max

0≤n≤N
‖χn‖2L2(Ω)

+
2T

εb
max

0≤n≤N
‖χn‖2L2(Ω) +

4ρT

εc
max

0≤n≤N
‖χn‖2L2(Ω)

− ∆t2−α

Γ (3− α)

m−1∑
n=0

a

(
n∑
i=0

Bn+1,iχ
i +

n−1∑
i=0

Bn,iχ
i,χn+1 + χn

)
. (4.19)

As seen in the proof of Theorem 4.3, using mathematical induction we can show the bound of the last term
of (4.19). As proved before, coupling with

∥∥χ0
∥∥
V

= 0, we can obtain

2ρ ‖χm‖2L2(Ω) +
∆t2−α

2Γ (3− α)

m−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

≤C
(
ρεah

2r + T 3−2αεb∆t
4 + Tεc∆t

4−2α +

(
4ρT

εa
+

2T

εb
+

4ρT

εc

)
max

0≤n≤N
‖χn‖2L2(Ω)

)
(4.20)

for some positive C. Whence we consider maximum on (4.20), we have

2ρ max
0≤n≤N

‖χn‖2L2(Ω) +
∆t2−α

2Γ (3− α)

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

≤2C

(
ρεah

2r + T 3−2αεb∆t
4 + Tεc∆t

4−2α +

(
4ρT

εa
+

2T

εb
+

4ρT

εc

)
max

0≤n≤N
‖χn‖2L2(Ω)

)
,

therefore choosing εa = εc = 32CT and εb = 8CT/ρ implies

ρ max
0≤n≤N

‖χn‖2L2(Ω) +
∆t2−α

2Γ (3− α)

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V
≤ CT 4−2α

(
h2r +∆t4 +∆t4−2α

)
.

As a consequence, we can conclude that

max
0≤n≤N

‖χn‖L2(Ω) +

(
∆t2−α

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

)1/2

≤ CT 2−α(hr +∆t2−α).
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4 STABILITY AND ERROR ANALYSIS 4.2 Error Estimates

Besides, with higher regularity of the solution in time and no singularity at t = 0, we could obtain
second order accuracy in time. To be specific, when we suppose w(0) = ẇ(0) = 0 or w ∈ ker(D), we have
H3 regularity in time. Therefore, instead of use of (4.12), we can apply (4.13) so that we have

max
0≤n≤N

‖χn‖L2(Ω) +

(
∆t2−α

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

)1/2

≤ CT 2−α(hr +∆t2).

Remark 4.6. Note that once the solution has higher regularity such that

w ∈ C2(0, T ; [Hs(Ω)]d) ∩W 1
∞(0, T ;V ) ∩H3(0, T ; [Hs(Ω)]d),

elliptic error estimates and (4.10) yield

max
0≤n≤N

‖χn‖L2(Ω) +

(
∆t2−α

N−1∑
n=0

∥∥∥χn+1 + χn
∥∥∥2
V

)1/2

≤ CT 2−α‖w‖H3(0,T ;Hs(Ω))(h
r +∆t2),

for some positive C depending on constants of continuity and coercivity, Ω and ∂Ω but independent of the
numerical solution, mesh sizes, and time.

In the end, we can complete the error analysis as follows.

Theorem 4.4 Assume that f and w0 are sufficiently smooth satisfying Lemma 4.2, that

w ∈ C2(0, T ; [Hs(Ω)]d) ∩W 1
∞(0, T ;V ) for s ≥ 2,

and (W n
h)
N
n=0 is the fully discrete solution. Then we can observe optimal L2 error as well as energy error

estimates with 2− α order accuracy in time. Therefore,

max
0≤n≤N

‖wn −W n
h‖L2(Ω) ≤ CT

2−α(hr +∆t2−α), and max
0≤n≤N

‖wn −W n
h‖V ≤ CT

2−α(hr−1 +∆t2−α),

where r = min(k + 1, s), for some positive C independent of h and ∆t.

Proof. For any n = 0, . . . , N , using triangular inequality, we have

‖wn −W n
h‖L2(Ω) = ‖θn − χn‖L2(Ω) ≤ ‖θ

n‖L2(Ω) + ‖χn‖L2(Ω) .

By (4.15) and Lemma 4.2, it is concluded that

‖wn −W n
h‖L2(Ω) ≤CT

2−α(hr +∆t2−α),

where C is from (4.15) and Lemma 4.2, and so on account of arbitrary n,

max
0≤n≤N

‖wn −W n
h‖L2(Ω) ≤CT

2−α(hr +∆t2−α).

In this manner, we can obtain

‖wn −W n
h‖V ≤‖θ

n‖V + ‖χn‖V ,

so that (4.14) and (4.2) lead us to have

‖wn −W n
h‖V ≤‖θ

n‖V + Ch−1 ‖χn‖L2(Ω) ≤ CT
2−α(hr−1 +∆t2−α).

Thus, we have
max

0≤n≤N
‖wn −W n

h‖V ≤ CT
2−α(hr−1 +∆t2−α).
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5 NUMERICAL EXPERIMENTS

Corollary 4.1 Under the same conditions in Theorem 4.4, we suppose higher regularity in time such that
w ∈ H3(0, T ; [Hs(Ω)]d) or we further assume that (4.13) is satisfied. Then we can obtain optimal results
of Crank-Nicolson scheme i.e.,

max
0≤n≤N

‖wn −W n
h‖L2(Ω) ≤ CT

2−α‖w‖H3(0,T ;Hr(Ω))(h
r +∆t2),

max
0≤n≤N

‖wn −W n
h‖V ≤ CT

2−α‖w‖H3(0,T ;Hr(Ω))(h
r−1 +∆t2),

where C is a positive constant such that is independent of solutions, mesh sizes, T but depends on the
domain, its boundary and coefficients of coercivity and continuity.

Proof. As shown in Theorem 4.4, triangular inequalities combined with (4.14), (4.15) and Lemma 4.2
complete the proof.

5 Numerical Experiments

We have carried out numerical experiments using FEniCS (https://fenicsproject.org/). In this sec-
tion, we present tables of numerical errors, as well as convergence rates for some evidence of the above
error estimates theorem in practice. Codes are available at the author’s Github (https://github.com/
Yongseok7717/Visco_Frac_CG) written as python scripts to reproduce the tabulated results and figures
that are given below. In addition, using Docker container, we can also run the codes at a bash prompt, e.g.
the commands to run are

docker pull variationalform/fem:yjcg2

docker run -ti variationalform/fem:yjcg2

cd; cd .codesVisco Frac CG-master; .main.sh

Consider two cases; one is an example that is not of class H3 in time but the other is a smoother case. We
set our spatial domain as the unit square, T = 1 and α = 1/2.

Example 5.1. Let us define

w(x, y, t) = (t+ t1.5)

[
sin(πx) sin(πy)
xy(1− x)(1− y)

]
.

Then w ∈ C2(0, T ; [C∞(Ω)]2)∩W 2
1 (0, T ; [C∞(Ω)]2) with homogeneous Dirichlet boundary condition. Also,

we can derive data terms which satisfy (3.3). Note that w(3)(t) is not bounded and not integrable in time
so that we cannot fully take an advantage of second order schemes. However, we can observe suboptimal
results but higher than first order schemes.

Let us define en = w(tn) −W n
h for n = 0, . . . , N . By error estimates theorems for both solutions, we

have
‖en‖V = O(hk +∆t1.5), and ‖en‖L2(Ω) = O(hk+1 +∆t1.5),

since s =∞. In other words, the orders of convergence depend only on the degree of polynomial k for the
spatial mesh. On the other hand, regardless of types of the norm, convergence rates of time are suboptimally
fixed by 1.5.

In Tables 5.1 and 5.2, we can observe H1 norm and L2 norm errors for linear and quadratic polynomial
bases, respectively. Also, we can observe the numerical convergent order with respect to the polynomial
degrees of k when ∆t is sufficiently small in Table 5.3. In a similar way, we could compute the rate of
convergence with respect to time for small h. However, in a practical sense, it is difficult to computationally
solve it for fine meshes if the machine is not sufficiently good enough. In other words, we may encounter
some memory issues. For example, when h = 1/512, ‖e‖NH1(Ω) are given by 1.442e-2 and 1.368e-2, for

∆t = 1/4 and ∆t = 1/8, respectively. It implies that h = 1/512 is not small enough to see the convergent
order of time but smaller spatial meshes enforce us to have large systems of matrix and memory issues.
Alternatively, while we consider ∆t ≈ h, the numerical convergent rate dc can be computed by dc =
[log(error of h1)− log(error of h2)]/[log(h1)− log(h2)]. Here, dc can represent the convergent order of time
if we consider k ≥ 2 or L2 norm errors. For example, when we take diagonals of Tables 5.1 and 5.2, the
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convergent rates are illustrated as the gradients of line in Figure 5.1. For the linear polynomial basis, the
numerical rate of the energy norm (equivalent to H1 norm) is dc ≈ 1, otherwise dc ≈ 1.5 for higher degree
of polynomial or L2 norm. Interestingly, in Figure 5.1, the slope of line for L2 errors of k = 2 looks steeper
than 1.5. Theoretically, we can rewrite the L2 norm of error for this case as ‖en‖L2(Ω) ≈ C1h

3 + C2h
1.5.

Hence if h is not small enough, dc could be greater than 1.5. However, as h decreasing, dc will approach
to 1.5. For instance, the setting of h = ∆t and k = 2 leads us to obtain Table 5.4 which exhibits that the
convergent orders of

∥∥eN∥∥
L2(Ω)

is higher than 1.5 but they are decreasing while h becomes smaller.

H1 error
HH

HHh
∆t

1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 3.072 3.072 3.073 3.073 3.073 3.073 3.073
1/4 1.694 1.694 1.694 1.694 1.694 1.694 1.694
1/8 8.677e-01 8.677e-01 8.677e-01 8.677e-01 8.677e-01 8.677e-01 8.677e-01
1/16 4.364e-01 4.364e-01 4.364e-01 4.364e-01 4.364e-01 4.364e-01 4.364e-01
1/32 2.185e-01 2.185e-01 2.185e-01 2.185e-01 2.185e-01 2.185e-01 2.185e-01
1/64 1.093e-01 1.093e-01 1.093e-01 1.093e-01 1.093e-01 1.093e-01 1.093e-01
1/128 5.466e-02 5.465e-02 5.465e-02 5.465e-02 5.465e-02 5.465e-02 5.465e-02

L2 error
HHHHh

∆t
1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 4.827e-01 4.824e-01 4.823e-01 4.823e-01 4.823e-01 4.823e-01 4.823e-01
1/4 1.519e-01 1.515e-01 1.513e-01 1.513e-01 1.513e-01 1.513e-01 1.513e-01
1/8 4.103e-02 4.087e-02 4.080e-02 4.079e-02 4.078e-02 4.078e-02 4.078e-02
1/16 1.057e-02 1.049e-02 1.045e-02 1.043e-02 1.043e-02 1.043e-02 1.043e-02
1/32 2.744e-03 2.679e-03 2.640e-03 2.627e-03 2.624e-03 2.622e-03 2.622e-03
1/64 7.745e-04 7.125e-04 6.738e-04 6.616e-04 6.581e-04 6.570e-04 6.567e-04
1/128 2.864e-04 2.215e-04 1.815e-04 1.693e-04 1.657e-04 1.647e-04 1.643e-04

Table 5.1 Numerical errors; Example 5.1; k = 1, n = N

H1 error
HHHHh

∆t
1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 9.417e-01 9.417e-01 9.417e-01 9.417e-01 9.417e-01 9.417e-01 9.417e-01
1/4 2.604e-01 2.604e-01 2.604e-01 2.604e-01 2.604e-01 2.604e-01 2.604e-01
1/8 6.700e-02 6.700e-02 6.700e-02 6.700e-02 6.700e-02 6.700e-02 6.700e-02
1/16 1.689e-02 1.688e-02 1.688e-02 1.688e-02 1.688e-02 1.688e-02 1.688e-02
1/32 4.276e-03 4.238e-03 4.229e-03 4.228e-03 4.228e-03 4.228e-03 4.228e-03
1/64 1.236e-03 1.098e-03 1.061e-03 1.058e-03 1.058e-03 1.057e-03 1.057e-03
1/128 6.922e-04 3.954e-04 2.796e-04 2.658e-04 2.645e-04 2.644e-04 2.644e-04

L2 error
HHHHh

∆t
1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 6.394e-02 6.382e-02 6.377e-02 6.375e-02 6.375e-02 6.375e-02 6.375e-02
1/4 8.718e-03 8.688e-03 8.671e-03 8.665e-03 8.664e-03 8.663e-03 8.663e-03
1/8 1.133e-03 1.114e-03 1.104e-03 1.101e-03 1.100e-03 1.100e-03 1.100e-03
1/16 2.013e-04 1.577e-04 1.412e-04 1.385e-04 1.380e-04 1.379e-04 1.378e-04
1/32 1.358e-04 6.726e-05 2.699e-05 1.851e-05 1.742e-05 1.727e-05 1.724e-05
1/64 1.339e-04 6.424e-05 2.008e-05 6.376e-06 2.844e-06 2.240e-06 2.166e-06
1/128 1.338e-04 6.416e-05 1.992e-05 5.956e-06 1.826e-06 6.248e-07 3.251e-07

Table 5.2 Numerical errors; Example 5.1; k = 2, n = N

h
k = 1 k = 1∥∥eN∥∥

H1(Ω)
Rate

∥∥eN∥∥
L2(Ω)

Rate
∥∥eN∥∥

H1(Ω)
Rate

∥∥eN∥∥
L2(Ω)

Rate

1/2 3.073 4.823e-01 9.417e-01 6.375e-02
1/4 1.694 0.86 1.513e-01 1.67 2.604e-01 1.85 8.663e-03 2.88
1/8 8.677e-01 0.97 4.078e-02 1.89 6.700e-02 1.96 1.100e-03 2.98
1/16 4.364e-01 0.99 1.043e-02 1.97 1.688e-02 1.99 1.378e-04 3.00
1/32 2.185e-01 1.00 2.622e-03 1.99 4.228e-03 2.00 1.724e-05 3.00

Table 5.3 Convergent rates; Example 5.1; ∆t = 1/512
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Fig. 5.1 Numerical convergent orders of Example 5.1: linear (dash line) and quadratic (solid line) polynomial basis

h 1/8 1/16 1/32 1/64 1/128 1/256
Error(rate) 1.133e-03 1.577e-04(2.85) 2.699e-05(2.55) 6.376e-06(2.08) 1.826e-06(1.80) 5.616e-07(1.70)

Table 5.4 L2 norm errors of Example 5.1 for ∆t = h and k = 2

Due to loss of H3 regularity in time, Example 5.1 cannot take fully the advantage of second order
scheme. However, once we give further assumptions for higher regularity such as w(0) = ẇ(0) = 0, our
fully discrete formulation will guarantee spatially optimal error estimates as well as second order accuracy
in time.

Example 5.2. Let

w(x, y, t) = t3.5
[

sin(πx) sin(πy)
xy(1− x)(1− y)

]
.

The exact solution is of class C3 in time, i.e. Example 5.2 has higher regularity than Example 5.1 with
respect to time. Therefore, according to Corollary 4.1, we have

‖en‖V = O(hk +∆t2), and ‖en‖L2(Ω) = O(hk+1 +∆t2).

Tables 5.5 and 5.6 indicate that the orders of spatial convergence are optimal not only in H1 norm
but also in L2 norm. More precisely, we can observe the convergent order in Table 5.7. Furthermore, when
∆t ≈ h, we can observe numerical convergent rates in Figure 5.2. The energy error estimates show first
order for the linear polynomial basis. On the other hand, regardless of a degree of polynomials, L2 norm
errors have second order accuracy, i.e. dc ≈ 2.

Comparing Example 5.1 and Example 5.2, we can observe optimal error estimates with respect to space
but not enough regularity in time restricts the convergence order of time. Nevertheless, sufficiently smooth
data terms enable our numerical scheme to have better accuracy than first order finite difference methods,
e.g. it is of order 2 − α. In addition, once we assume H3 regularity in time, we get the second order of
convergence in time.
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H1 errorPPPPPPh
∆t

1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 1.551 1.553 1.553 1.553 1.553 1.553 1.553
1/4 8.492e-01 8.505e-01 8.509e-01 8.510e-01 8.510e-01 8.510e-01 8.510e-01
1/8 4.337e-01 4.341e-01 4.343e-01 4.343e-01 4.343e-01 4.344e-01 4.344e-01
1/16 2.185e-01 2.182e-01 2.182e-01 2.183e-01 2.183e-01 2.183e-01 2.183e-01
1/32 1.105e-01 1.093e-01 1.093e-01 1.093e-01 1.093e-01 1.093e-01 1.093e-01
1/64 5.755e-02 5.483e-02 5.465e-02 5.465e-02 5.465e-02 5.465e-02 5.465e-02
1/128 3.291e-02 2.773e-02 2.735e-02 2.733e-02 2.733e-02 2.733e-02 2.733e-02

L2 error
PPPPPPh

∆t
1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 2.224e-01 2.212e-01 2.208e-01 2.208e-01 2.207e-01 2.207e-01 2.207e-01
1/4 6.496e-02 6.286e-02 6.232e-02 6.218e-02 6.214e-02 6.213e-02 6.213e-02
1/8 1.923e-02 1.681e-02 1.620e-02 1.604e-02 1.600e-02 1.599e-02 1.599e-02
1/16 7.605e-03 4.898e-03 4.245e-03 4.083e-03 4.043e-03 4.033e-03 4.030e-03
1/32 4.875e-03 1.953e-03 1.235e-03 1.065e-03 1.023e-03 1.013e-03 1.010e-03
1/64 4.249e-03 1.268e-03 4.963e-04 3.101e-04 2.665e-04 2.560e-04 2.534e-04
1/128 4.099e-03 1.111e-03 3.250e-04 1.254e-04 7.774e-05 6.668e-05 6.401e-05

Table 5.5 Numerical errors; Example 5.2; k = 1, n = N

H1 errorPPPPPPh
∆t

1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 4.707e-01 4.712e-01 4.714e-01 4.715e-01 4.715e-01 4.715e-01 4.715e-01
1/4 1.312e-01 1.302e-01 1.302e-01 1.302e-01 1.302e-01 1.302e-01 1.302e-01
1/8 3.817e-02 3.383e-02 3.352e-02 3.350e-02 3.350e-02 3.350e-02 3.350e-02
1/16 2.028e-02 9.720e-03 8.529e-03 8.445e-03 8.439e-03 8.439e-03 8.439e-03
1/32 1.857e-02 5.275e-03 2.453e-03 2.138e-03 2.115e-03 2.114e-03 2.114e-03
1/64 1.846e-02 4.862e-03 1.353e-03 6.168e-04 5.348e-04 5.291e-04 5.288e-04
1/128 1.845e-02 4.835e-03 1.252e-03 3.441e-04 1.548e-04 1.338e-04 1.323e-04

L2 error
PPPPPPh

∆t
1/8 1/16 1/32 1/64 1/128 1/256 1/512

1/2 3.095e-02 2.940e-02 2.902e-02 2.893e-02 2.891e-02 2.890e-02 2.890e-02
1/4 6.520e-03 4.552e-03 4.236e-03 4.174e-03 4.160e-03 4.157e-03 4.156e-03
1/8 4.160e-03 1.257e-03 6.408e-04 5.569e-04 5.456e-04 5.435e-04 5.430e-04
1/16 4.055e-03 1.068e-03 2.865e-04 1.013e-04 7.210e-05 6.912e-05 6.875e-05
1/32 4.050e-03 1.061e-03 2.738e-04 7.056e-05 1.994e-05 9.837e-06 8.721e-06
1/64 4.050e-03 1.061e-03 2.733e-04 6.976e-05 1.773e-05 4.610e-06 1.570e-06
1/128 4.050e-03 1.061e-03 2.733e-04 6.973e-05 1.768e-05 4.466e-06 1.133e-06

Table 5.6 Numerical errors; Example 5.2; k = 2 n = N

h
k = 1 k = 1∥∥eN∥∥

H1(Ω)
Rate

∥∥eN∥∥
L2(Ω)

Rate
∥∥eN∥∥

H1(Ω)
Rate

∥∥eN∥∥
L2(Ω)

Rate

1/2 1.553 2.207e-01 4.715e-01 2.890e-02
1/4 8.510e-01 0.87 6.213e-02 1.83 1.302e-01 1.86 4.156e-03 2.80
1/8 4.344e-01 0.97 1.599e-02 1.96 3.350e-02 1.96 5.430e-04 2.94
1/16 2.183e-01 0.99 4.030e-03 1.99 8.439e-03 1.99 6.875e-05 2.98
1/32 1.093e-01 1.00 1.010e-03 2.00 2.114e-03 2.00 8.721e-06 2.98

Table 5.7 Convergent rates; Example 5.1; ∆t = 1/512
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Fig. 5.2 Numerical convergent orders of Example 5.2: linear (dash line) and quadratic (solid line) polynomial basis

6 Conclusion

In conclusion, the numerical scheme of the fractional order viscoelasticity problem has been formulated.
Without Grönwall’s inequality, we can show stability bounds for semi-discrete and fully discrete schemes
which are non-exponentially increasing with respect to the final time. A priori error estimates have been
derived for the fully discrete formulation. We gives a remark regarding regularity of solution in time, which
restricts H3 smoothness in time due to weak singularity. However, we can take some advantage of second
order schemes in time where we assume smooth data, and higher regularity enables the order of convergence
optimal in time. In the end, we have illustrated numerical examples of suboptimal and optimal cases.
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