Downloaded from https://royal societypublishing.org/ on 23 April 2021

PHILOSOPHICAL
TRANSACTIONS A

royalsocietypublishing.org/journal/rsta

()

Research

updates

Cite this article: Daub EG, Arabnejad H,
Mahmood I, Groen D. 2021 Uncertainty
quantification of dynamic earthquake rupture
simulations. Phil. Trans. R. Soc. A 379:
20200076.
https://doi.org/10.1098/rsta.2020.0076

Accepted: 14 October 2020

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’

Subject Areas:
computer modelling and simulation,
geophysics

Keywords:

uncertainty quantification, earthquake
mechanics, model calibration, simulation
management

Author for correspondence:
Eric G. Daub
e-mail: edaub@turing.ac.uk

THE ROYAL SOCIETY

PUBLISHING

Uncertainty quantification of
dynamic earthquake rupture
simulations

Eric G. Daub', Hamid Arabnejad?, Imran Mahmood?

and Derek Groen?

'Research Engineering Group, Alan Turing Institute, London, UK
2Department of Computer Science, Brunel University London,
London, UK

EGD, 0000-0002-8499-0720; HA, 0000-0002-0789-1825

We present a tutorial demonstration using a
surrogate-model based uncertainty quantification
(UQ) approach to study dynamic earthquake rupture
on a rough fault surface. The UQ approach performs
model calibration where we choose simulation points,
fit and validate an approximate surrogate model or
emulator, and then examine the input space to see
which inputs can be ruled out from the data. Our
approach relies on the nogp_enul at or package
to perform model calibration, and the FabSim3
component from the VECMA toolkit to streamline the
workflow, enabling users to manage the workflow
using the command line to curate reproducible
simulations on local and remote resources. The tools
in this tutorial provide an example template that
allows domain researchers that are not necessarily
experts in the underlying methods to apply them
to complex problems. We illustrate the use of the
package by applying the methods to dynamic
earthquake rupture, which solves the elastic wave
equation for the size of an earthquake and the
resulting ground shaking based on the stress tensor in
the Earth. We show through the tutorial results that
the method is able to rule out large portions of the
input parameter space, which could lead to new ways
to constrain the stress tensor in the Earth based on
earthquake observations.

This article is part of the theme issue ‘Reliability
and reproducibility in computational science:
implementing verification, validation and uncertainty
quantification in silico’.

© 2021 The Authors. Published by the Royal Society under the terms of the
(reative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2020.0076&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1098/rsta/379/2197
mailto:edaub@turing.ac.uk
http://orcid.org/0000-0002-8499-0720
http://orcid.org/0000-0002-0789-1825
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Downloaded from https://royal societypublishing.org/ on 23 April 2021

1. Introduction

Scientists frequently use computer simulations to study complex phenomena that are poorly
constrained by observational data such as climate [1], earthquakes [2], tsunamis [3] and
other physical systems. These computer simulations usually involve solving complex partial
differential equations, and due to the computational cost such simulations can rarely be run at
the resolution needed to capture all of the relevant physics.

Because of this, simulations have to capture missing physics in an often ad hoc way, and it is
difficult to calibrate and estimate parameters for these models directly [4]. This poses a challenge,
as there is a high-dimensional input space from which only a small subset of parameter choices
can plausibly reproduce the observational data, while only a limited number of model evaluations
are computationally feasible.

A common approach to interrogate the real world using these models is to run a limited
ensemble of simulations and fit a surrogate model (also referred to in some contexts as an emulator)
that is able to approximate the expensive simulation [5]. This is frequently done using Gaussian
process (GP) regression to approximate the simulations [6], as GPs can be flexibly specified, are
straightforward to fit using standard linear algebra procedures and provide robust error estimates
of their predictions. The GP emulator is then used to query densely from the input space to carry
out model calibration and choose plausible inputs for the simulation.

This work explores use of a software library designed to carry out surrogate model calibration,
nogp_enul at or (Multi-Output Gaussian Process Emulator, the core surrogate model in this
workflow), which implements the procedures described in this work in addition to a number of
other techniques. While we focus on this approach in this paper, other uncertainty quantification
(UQ) approaches can be used to examine the outputs of the simulations shown here. For instance,
the VECMA toolkit [7] also has a UQ library EasyVVUQ [8], which can draw samples and
collate experimental runs in addition to carrying out a number of UQ approaches, which are
complementary to the focus in this study on model calibration. For instance, another approach
to UQ would be to conduct a sensitivity analysis of the simulation outputs [9], which aims
at determining how the output variability is related to the various simulation inputs. This
information is complementary to the calibration results, and could provide additional information
on how to further explore the parameter space with additional simulation runs.

However, while surrogate modelling approaches are common among statistics researchers,
they are less frequently used by the domain experts that develop and run the physical models.
Because of this, simulation studies often do not conduct rigorous UQ on their outputs, and
parameter selection is often performed by hand-tuning or trial-and-error approaches due to the
high computational expense of the underlying simulation. A major goal of the software libraries
used in this paper is to facilitate domain experts performing UQ on simulation outputs without
needing an in-depth understanding of the underlying statistical methods.

This problem additionally presents a significant computational challenge, as it requires
generating samples and collating the results of a potentially large number of high-performance
computer simulations. Researchers may need to carry out simulations on a number of different
computational resources at different resolutions, which poses a problem for reproducibility.
To manage this problem, we use FabSim3 [10] to generate templates for the various pieces
of this work, from drawing samples and carrying out the simulations to analysing the
results.

In this paper, we implement a comprehensive UQ calibration workflow and manage an
ensemble of simulations of a dynamic earthquake rupture. Dynamic earthquake rupture is a
challenging, multi-scale simulation problem, and due to the fact that earthquakes typically occur
at around 10 km depth, seismologists can usually only rely on seismic waves at the surface to
constrain the rupture process. Because of this, we do not completely understand the relevant
physics for modelling frictional failure [11]. However, while simulations have increasingly been
used to understand ground motions and seismic hazard [12,13], a full calibration approach like
the one described in this paper has not to our knowledge been previously conducted.

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

In the following sections, we describe the UQ approach, provide details on the earthquake
simulation model, and finally discuss our approach for automating the workflow. We then show
the results of the experimental design, surrogate modelling and calibration of an earthquake
model. The work presented here was originally conceived as a tutorial for participants at the
‘Reliability and reproducibility in computational science: Implementing verification, validation
and uncertainty quantification in silico’ workshop held at the Alan Turing Institute on 24 January
2020. The FabSim3 plugin was used in a tutorial and we provided a pre-packaged computational
environment to allow users to re-create the workflows here during a 90 min session. We found
that most users were able to complete the exercises within the session and reproduce our results,
illustrating the effectiveness of our approach for capturing a full complex UQ workflow in a
reliable and reproducible manner. Based on this experience, we view this work as a tutorial
demonstration that highlights some of the computational issues involved with UQ, and have
simplified the simulation complexity and cost, as well as some details of the calibration workflow,
in order to make this more accessible to a wider audience. We have also noted several places
where we have made some simplifications and a more careful consideration would be warranted
when applying this workflow in a research setting. We feel this work illustrates ways that existing
software libraries can help address these problems, while simultaneously highlighting some of
the challenges by applying it to a real problem in earthquake science.

2. Uncertainty quantification approach

In UQ workflows, we would like to learn about a complex simulator that describes a physical
system, in nearly every case imperfectly [4,5]. These simulations are usually computationally
intensive, high dimensional and the outputs are very sensitive to the inputs, making it hard to
use them directly to compare with observations.

To overcome these challenges, we use a surrogate model approach based on a GP emulator
[6]. We run a limited sample of points based on an experimental design over the input space, and
fit the GP to the simulation outputs. The GP is then queried for a large number of input points
from the experimental design and an approach known as history matching is used to compare
with the observations to calibrate the model. The result from this is a set of input points that are
plausible given the observations and all uncertainties. In the following, we describe the steps in
this workflow in more detail.

(a) Experimental design

Based on the input parameters, we first need to specify a way to choose points at which to run
the simulator. This is done via an experimental design, which is specified based on a probability
distribution from which each individual input parameter is drawn independently. Based on these
distributions, the simplest approach is to use Monte Carlo sampling to pick random input points
to run. However, for expensive computational models the number of inputs is often limited, so
in practice a more common approach is to choose the design in a way that attempts to maximize
the accuracy of the underlying approximation. This can be further split into two approaches: one-
shot designs, that choose all simulation points at once [14], or sequential designs that iteratively
choose the next best point to simulate based on the existing information [15].

In this study, we use a one-shot design based on a Latin hypercube sampling approach [14]. In
a Latin hypercube, we guarantee that we draw from all quantiles of each underlying parameter. In
other words, for a design with 4 points, a Latin hypercube will ensure that the four chosen points
are each from a different quartile of each underlying parameter. The exact choice of values is done
randomly within this constraint, so Latin hypercube designs do have some variability associated
with them.

For small designs, Latin Hypercubes have been shown to perform better than Monte Carlo
sampling under certain circumstances [14], though they are usually not as effective as sequential

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

designs. However, because of their simplicity, we use them in this example as a straightforward
way to draw samples for building a surrogate model of the underlying simulator.

(b) Gaussian process emulator

To fit our surrogate model, we use a GP emulator to approximate the simulation. A GP is
a non-parametric model for regression that approximates the complex simulator function as
a multivariate normal distribution. Because the simulator is deterministic, a GP interpolates
between the known simulation points in a robust way and provides uncertainty estimates for
any predictions that it makes. Because it has an uncertainty estimate, it is commonly used in UQ
workflows [4,15,16].

A GP is specified by a mean function and a covariance function. We use a zero mean GP with
a Squared Exponential Kernel in this example, though more complicated mean functions and
covariance kernels are common, particularly if we have some underlying knowledge of the shape
of the simulator output. The squared exponential kernel is defined as

(x; —x))
K@x,x)=c%exp |- ) (2.1)
P2 )
where x; is the ith input parameter, o is an overall covariance scale, and 6; is a correlation length
associated with the ith input. These hyperparameters 6;, o are estimated based on the data.
To predict the function and its uncertainty at unknown points, the covariance matrix must be
inverted. The posterior mean and variance (i.e. once hyperparameter values are chosen) at the

unknown point x* given a set of n inputs x and simulator outputs y are computed via

m(x*) = K(x*, x)K(x, x) "1y 22)
and V(x*) = K(x*, x*) — K(x*, x)K(x, x) " K(x, x*), .

where K(x, x) is the n x n matrix of the covariance kernel evaluated at all pairs of points. Because
the kernel is positive definite, this inversion is done by Cholesky decomposition, requiring O(13)
operations. Once the covariance matrix is inverted and cached, mean predictions require O(n)
operations while variance predictions require O(?) operations.

In order to make predictions, we need to fit the hyperparameter values for 6; and 0. A common
approach is to use the maximum marginal likelihood, which is easy to compute for a GP once the
covariance matrix has been factorized

1 n
log p(ylx) = —EyTK(x, x) "y — Z log L;; — 2 log 27, (2.3)
i

where L is the factorized covariance matrix using Cholesky decomposition. This finds a set of
correlations lengths and the overall covariance scale, and these parameters can be used to predict
the value of the function at unknown points.

While the simulator is deterministic and we thus should theoretically be able to use
equation (2.1) directly, in practice numerical round-off errors can cause the Cholesky factorization
to be unstable. To mitigate this, a ‘nugget’ term is added to the diagonal that adds a small amount
of noise to stabilize the matrix inversion [17]. There are several ways to estimate the nugget: it
can be fixed (known noise level), it can be fit as an additional hyperparameter, or it can be found
adaptively by factorizing the matrix with increasing noise levels until the algorithm succeeds. In
this example, we use the adaptive approach as we find it tends to be a very robust way to fit an
emulator with a small nugget.

In this example, we focus on a computer simulation with a single output for the sake of
simplifying the presentation. However, real UQ problems typically involve multiple observations
and simulation codes that produce multiple outputs as well. These could include multiple
observable fields, as well as spatially- or time-varying fields. In this case, the overall UQ
procedure is the same, but multiple surrogate models must be fit that predict all of the output

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos H



Downloaded from https://royal societypublishing.org/ on 23 April 2021

quantities of interest. The simplest way to handle multiple outputs is to fit an independent
emulator to each quantity of interest (which can be done in parallel using mogp_emnul at or).
However, this approach will fail to capture the correlation structure present in the outputs. One
way to mitigate this problem is to perform a dimension reduction on the outputs and emulate the
reduced set of outputs [18] which simultaneously reduces the computational cost of fitting and
ensures that samples drawn from the emulators more closely resemble the simulation output.
However, the overall procedure for fitting an individual emulator remains identical regardless of
the total number of outputs.

(c) History matching

Once we have predictions for a large number of query points, it is straightforward to compare
with observations. History matching is one way to perform this comparison [16]—in history
matching, we compute an implausibility metric I for each query point by determining the number
of standard deviations between the observation and the predicted mean from the approximate

model
|z — m(x*))]

JoZ + V(xx) + oj

where z is the observed quantity and o; is its observational error (as a standard deviation) and oy
is the model discrepancy, described below. We can then ‘rule out” points that are many standard
deviations from the mean as being implausible given the observation and all sources of error.

I(x*) = (2.4)

As noted above, there are three types of uncertainty that we need to account for when
computing implausibility:

(i) Observational error, which is uncertainty in the observed value itself;
(ii) Uncertainty in the approximate model, which reflects the fact that we cannot query the
full computational model at all points; and
(iii) Model discrepancy, which is uncertainty about the model itself, and measures how well
the computational model represents reality.

In practice, (i) and (ii) are straightforward to determine, while (iii) is much trickier [19].
However, studies have shown that not accounting for model discrepancy leads to overconfident
predictions, so this is essential to consider to give a thorough UQ treatment to a computational
model. However, estimating model uncertainty is in itself a difficult (and often subjective) task,
and is beyond the scope of this tutorial, as it requires knowledge about the approximations
made in the simulation. Thus, we will restrict ourselves to only accounting for uncertainty in the
approximate model in this tutorial, but note that realistic UQ assessments require careful scrutiny
and awareness of the limitations of computational models.

An alternative approach to history matching for model calibration is to perform a full Bayesian
model calibration [4], which aims to compute the posterior distribution of the simulator inputs
conditioned on the observational data and the points at which the simulator was evaluated. As
with history matching, this approach uses a fast surrogate model to approximate the simulator
and accounts for all errors including observational error and model discrepancy. It has the
advantage of generating a probability distribution (or samples drawn from one in most practical
cases) for the parameter values, while history matching is only able to determine if points can
be ruled out or not. However, full Bayesian calibration requires that the emulator has a low
uncertainty over the entire input space to prevent emulator uncertainty from dominating the
calibration results. This condition is frequently not met given the high-dimensional parameter
space and computational costs of running many simulations in most practical applications.
History matching can still produce useful output with an imperfect emulator, as it simply will
be unable to rule out points in regions of space where the emulator uncertainty is too large, while
still giving useful information in other parts of parameter space. Thus, because of its robustness
to emulator uncertainties, we focus on history matching in this example.

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

In situations where the simulation has multiple outputs, history matching requires a method
for combining the implausibility measure for multiple outputs into a single implausibility metric
for the given simulator input. This is usually done by taking the second or third highest individual
implausibility metric value to avoid a situation where poor performance of the emulator for a
particular output causes a point that is otherwise a good fit to the data from being ruled out [20].
Otherwise, the history matching procedure is the same regardless of the number of simulation
outputs.

(d) Implementation with mogp_emulator

The above components are implemented in the mogp_enul at or software library, which
is written in Python and builds on the Numpy and Scipy libraries [21,22] to handle the
array operations and linear algebra, and probability distributions and optimization libraries,
respectively. The library is released under an MIT license and is under continued development.
The package includes a number of features not used in this example, including flexible mean
function specification, prior distributions for maximum a posteriori estimation for the GP
emulators, and additional experimental design procedures.

3. Earthquake model

As a concrete example of a complex physical simulator, we examine an earthquake rupture
simulation [2,11]. In seismology, the most basic quantity that we can measure about an earthquake
is its size, quantified by the seismic moment. The seismic moment is proportional to the relative
displacement across the two sides of the fault (known as the slip) multiplied by the area of the
fault plane that experienced this slip and a modulus of rigidity. Larger earthquakes occur when
either more slip occurs or the area that slipped increases (in nature, these two quantities are
correlated so earthquakes get bigger by both increasing the slip and the area simultaneously).

(a) Dynamic earthquake rupture

Earthquake slip can be computed by solving the elastic wave equation coupled to a frictional
failure model on the fault [2]. The simulation calculates the size of an earthquake (which can be
measured from seismic data) [23] given an initial stress tensor in the material (a quantity that is
poorly constrained from seismic data). The simulation computes the earthquake size based on the
stress tensor combined with the fault geometry and frictional failure properties, both of which are
taken to be known here for the sake of simplicity.

Physically, slip occurs when the shear stress on the fault exceeds the fault strength.
Fault strength is determined by a friction law that compares the shear force on a patch of the
fault to the normal force acting on that patch of the fault [24]. When this condition is met, the
fault slips on this local patch, which changes the forces acting on the other fault patches based on
the elastic wave equation. Thus, to make a physical model of an earthquake, we need to specify
the initial forces on the fault, the strength of the fault and the elastic medium surrounding the
fault. In general, the initial forces on the fault cannot be determined in the earth [25], and we will
use a UQ workflow to try and estimate these quantities. A snapshot of the ground shaking from
one of the simulations is shown in figure 1—the bumpy line is the rough fault surface, and the
colour scale shows the propagation of elastic waves away from the fault due to the slip on the
fault.

Complicating matters is the fact that earthquake faults are not smooth planes, but instead
rough bumpy surfaces with a fractal geometry [26]. An important consequence of this is that
the smallest wavelength bumps have the largest effect on the resulting forces [27]. This is what
makes earthquake problems challenging to model: at a given model resolution, the simulation
is omitting details that play an important role. This small scale roughness that is left out of the
model must instead be accounted for when setting the strength of the fault. However, for this

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

—~
S
=
—~

S
~

2 5
£
e P 10
< 20+ g 4l
E ICEEE!
E 15 A - =
z 03 £ 6
£ 10 £ =
< [=¥ g 4 A
= 5 = =
S
= -1 g
.g T T T ;g 2 1
=0 10 20 30 = 0
position along strike (km) 2 & T T T T

0 10 20 30
position along strike (km)

Figure 1. (a) Snapshot of an earthquake simulation. The bumpy dark line is the fault surface. The colour scale represents the
ground motions from the resulting earthquake as the elastic waves carry the stress changes from the slip propagation through
the medium. (b) Final slip at the end of a simulation. We compute the seismic moment by integrating the final slip as a function
of space. (Online version in colour.)

demonstration, we will assume that both the rough geometry of the fault and the fault strength
are known in advance, and it is just the initial stress (forces) that must be inferred.

(b) Simulation details

The simulation requires that we specify the initial stress tensor acting on the earthquake fault in
order to run a simulation. For this case, we run a two-dimensional plane strain simulation of a
fault that is 32 km in length to reduce the problem to a reasonable computational level such that
it only takes a short amount of time to run. In a plane strain model, the elastic wave equation can
be written in velocity/stress form as

dvy  doxy doxy

P T Tox oy
Bﬂ_éhxy doyy

Pt = Tox oy

00y dvy  Jvy vy
=A—+ == 2G— 1
ot ( ax + ay + ax G
aayy =\ aﬂ + 3& + ZG%
ot 0x ay oy
el d a
and gL + 2y
ot ay ox

where vy and vy are the particle velocity components, oxy, oy and oy are the three stress tensor
components (two compressive and one shear), p is material density, A is the first Lamé parameter
and G is the shear modulus.

Frictional failure follows the slip weakening friction law [24], where the friction coefficient u
depends on the fault slip U as

(D= {(1 — U/De)(us = ma) +ma (U <De) 62)

Kd (U= D).

Here, us is the static friction coefficient, uy is the dynamic friction coefficient and D, is the slip
scale over which friction transitions from static to dynamic. The simulation is initiated at a fixed

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos !



Downloaded from https://royal societypublishing.org/ on 23 April 2021

Table 1. Base earthquake model parameter values.

parameter value

) 268 x 10°kgm ™
___________________________________________________ T T
___________________________________________________ T
R
B
___________________________________________________ L

point at the centre of the fault by increasing the shear stress to the failure level over a patch of
width 4 km. Strong barriers arrest rupture 2 km from the ends of the simulation, which caps the
maximum size of the earthquake. All simulation parameters are specified in table 1.

The fault profile is generated following a fractal geometry by creating a self-similar power
spectrum in Fourier space with random phase and taking the real part of the fast Fourier
transform and removing the linear trend. The RMS deviation from planarity is fixed to be smaller
than the fault length by a factor of 1072, which is typical for natural faults [28]. Roughness is cut
off at wavelengths shorter than 20 times the grid spacing. We have run the analysis on several
realizations of the rough fault profile and find that the general conclusions are not sensitive
to the exact choice of fault geometry. Changing the profile does influence the exact values of
the simulator output, but the results of the UQ analysis are largely the same in that the history
matching procedure is able to rule out much of the parameter space.

ayy describes the normal force on the fault, and oy describes the normal force in the orthogonal
direction. The shear component oy, sets the shear force acting on the fault. Note, however, that all
three components matter because the fault is not a perfect plane, and we must project the tensor
into the local shear and normal components for a given patch on the fault to determine the actual
forces on the fault. While we do not know the exact values of the stresses on earthquake faults,
we do know a few general things that we should incorporate into our simulations:

(i) Pressure increases linearly with depth due to the weight of the rocks. This can be
mediated by fluid pressure counterbalancing some of the overburden pressure, and
earthquakes start at different depths, so we are not sure of the exact value. However,
at typical depths where earthquakes start (5-10km), this pressure is expected to be
somewhere in the range of —80MPa to —120 MPa (stress is assumed to be negative in
compression). Therefore, we can use this range to choose values for one component, and
then assume that the other component is similar (say £10% of that value).

(ii) Shear stresses are below the failure level on the fault. This can be understood as simply
reflecting that earthquakes tend to start in one place and then grow from there, and do
not start in many places at once. Thus, we will assume that since the frictional strength of
the fault in our simulation is 0.7 times the normal stress, the initial shear stress is between
0.1 and 0.4 of the normal stress.

Thus, we parametrize the simulations with three inputs: a normal stress that is uniformly
distributed from —120 MPa to —80 MPa, a shear to normal ratio uniformly distributed from 0.1 to
0.4, and a ratio between the two normal stress components uniformly distributed from 0.9 to 1.1.
These three parameters can be sampled via any experimental design approach described in §2a.

To run the earthquake simulations, we use the f df aul t application. fdf aul t is a high
performance, parallelized finite difference code for simulation of frictional failure and wave
propagation in elastic-plastic media. It features high order finite difference methods and is able
to handle complex geometries through coordinate transformations and implements a provably
stable method [29].

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

- local processing environment HPC processing environment >

HPC processing
POCIE fifault

mogp
(local)

EasyVVUQ ' _‘______._-J———-—h.

(alternative)

HPC user
App

2] fabmogp other tutorials

Figure 2. Illustration of the workflow used in our simulations. Local resources are shown on the left in light grey, and remote
HPC resources on the right in darker grey. The HPC user (orange circle in the lower left corner) uses a local machine running
nmogp_emnul at or to set up the UQ workflow. This connects with FabSim3 on the local machine, which is running
the f abnogp plugin. The plugin connects via SSH to the cluster, where it runs the f df aul t simulations (though
in practice, these are actually run locally in our tutorial). FabSim3 collects the results back on the local machine, where
nmogp_emnul at or performs the surrogate modelling and history matching. Other workflows enabled by the VECMA
toolkit are shown in grey boxes on the local and HPC machines. (Online version in colour.)

Our simulations use a 401 by 302 point computational grid, with co-located points along the
rough fault interface representing the displacement discontinuity across the fault surface. The
time step is chosen based on a Courant-Friedrichs-Lewy ratio of 0.3 based on the minimum grid
spacing and the shear wave speed in the material. Our simulations use 800 time steps to ensure
that all ruptures have sufficient time to rupture until they arrest, either due to encountering an
unfavourable fault orientation or reaching the edge of the fault. On a 4 core MacBook, these
simulations take about 20s each using four processors. These parameters were chosen within
the constraints of the tutorial time slot to make the problem practical.

4. Simulation management

The UQ workflow described above can be run via nogp_emnul at or, while the parallel
earthquake simulations would need to be run manually. However, in practice, this is challenging
and makes simulations difficult to reproduce. Thus, in our implementation, we have written a
plugin for FabSim3 which we call f abrmogp to automate the various steps in the workflow. A
map illustrating where the different software components reside on local and remote resources is
shown in figure 2, which also shows where additional components not used here would reside.
In this illustration, the local resources are shown to the left, while the remote HPC resources are
shown to the right, and the connections used in our workflow are shown in orange. Our workflow
involves the user (lower left corner) running nogp_emnul at or on the local machine and using
FabSim3 (via the f abrmogp plugin) to run the ensemble on the remote resource. However, in
practice, our simulations are small enough that this can also be run on the local machine. FabSim3
then collects the results back onto the local machine, where the UQ analysis is performed. Other
workflows supported by the VECMA toolkit are shown in the other grey boxes throughout the
diagram.

FabSim3 is a toolkit for user-developers to help automate computational workflows involving
many simulations and remote resources. It has been used in a variety of disciplines, for instance
to facilitate coupled atomistic/coarse-grained materials simulations and to perform large-scale

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

sensitivity analysis of agent-based migration models [10]. The tool is open-source (BSD 3-clause
license) and one of the main components of the VECMA toolkit.

We conduct our simulations using two FabSim3 simulation tasks: npgp_ensenbl e
and nogp_anal ysi s. The nogp_ensenbl e workflow will automatically sample the Latin
hypercube to create the desired number of points, set up all of the necessary earthquake
simulations, and run them. The advantage of using this approach over the manual approach
described above is that the runs are each performed in individual directories, with input,
output and environment curated accordingly. This makes it very easy to reproduce individual
runs, and also helps with the diagnostics in case some of the simulations exhibit unexpected
behaviours.

Additionally, our choice of earthquake simulation has made a number of compromises in
order to ensure that the simulations run in a reasonable amount of time given the constraints
of the workshop format where it was initially presented. However, to make the simulations more
realistic will require additional computational resources. A typical three-dimensional dynamic
rupture simulation of a similarly sized earthquake will usually require tens of hours on 64+
cores, depending on the exact model set-up and simulation approach used. By implementing this
workflow using FabSim3, we are able to test and debug the simulations locally, yet we can easily
scale the simulations up to larger problems in three dimensions on a cluster without needing to
change any of our execution scripts. This illustrates the utility of using a simulation management
tool like FabSim3.

Once the ensemble has run, FabSim3 can automatically fetch the simulation results for analysis.
The analysis to fit the GP emulator and perform history matching is implemented in a FabSim3
task to collect the simulation results and perform the UQ workflow.

5. Results

(@) Simulator runs

A sample output from the Latin hypercube design with 20 sample points is shown in table 2.
The input parameters take on a range of values spread out through the entire space, which are
converted into the raw stress values for execution in the f df aul t simulation.

The simulator output is calculated by integrating the final slip at the end of the simulation
over the entire fault plane using Simpson’s rule. Because all simulations have the same shear
modulus and our simulations are two dimensional, we simply use this integrated slip as the
simulator output as it is proportional to the seismic moment. Values range from 35mkm to
around 300 m km.

(b) Surrogate model

From these simulator runs, we fit a GP emulator to the outputs using the default mogp_enul at or
parameters. We use the SciPy implementation of L-BFGS-B [22,30] to minimize the negative
marginal log-likelihood, and use gradient information as the log-likelihood gradient can be
computed in closed form and requires little computational overhead beyond performing the
Cholesky decomposition that is cached from the log-likelihood computation [6].

Because the hyperparameters are constrained to be positive, we fit the logarithm of the
correlation lengths and overall covariance to convert the problem into an unconstrained
optimization, which tends to be more stable. The resulting correlation lengths on a linear scale
are 43.755, 0.109 and 0.599, for the normal stress, shear to normal, and normal stress ratios,
respectively. The overall covariance is 131.994, which has also been converted to a linear scale.
The covariance scale matches the range of simulations output noted in table 2, and the correlation
lengths are of a similar scale to the actual input values, suggesting that our emulator does a
reasonable job of capturing the information in the simulation outputs.

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

Table 2. Latin hypercube experimental design samples used for building the surrogate model and the corresponding integrated
slip

normal stress shear/normal stress normal stress ratio simulator output
—89.31MPa 0.365 1.090 213.37 mkm

(c) Validation

We validate the surrogate model by drawing a separate Latin hypercube sample with 10 design
points (table 3). We note that while in many other statistical techniques it is common to withhold a
subset of the training data for validation purposes, the space-filling nature of the Latin hypercube
suggests it is best to draw two separate samples to ensure that both the training and validation
data aim to cover the input space as uniformly as possible. Once we have run the additional
simulations, we validate the emulator by computing the predicted means and variances and
comparing with the actual simulated values by computing the standard error (difference between
the predicted mean and the actual value normalized by the prediction standard deviation). For a
valid emulator, we expect most of the standard error values to lie within 43 standard deviations
from the mean. Other metrics can be used to validate emulators [31] that produce a single
validation metric for the entire validation set rather than an individual metric for each validation
point.

The values of the standard error for the 10 validation points are illustrated in figure 32. We find
that 8 of the 10 validation points lie within the 3 s.d. window, while the remaining 2 points are
outside of this range and indicate that the emulator is not perfectly reproducing the underlying
function. There are several potential causes for these types of failures, which can be illustrated
by looking at the spatial distribution of the training and validation points in figure 3b. Figure 3b
shows the input space projected into the normal stress-shear to normal stress plane, which are
the two inputs to which the simulator output is most sensitive. The background colour scale

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

Table 3. Latin hypercube experimental design samples used for validating the surrogate model and the corresponding
integrated slip

normal stress shear/normal stress normal stress ratio simulator output
—116.47 MPa 0.160 1.001 62.21m km
—82.40 MPa 0.200 1.035 51.63m km
—101.98 MPa 031 0.931 197.19 m km
—88.25MPa 0.104 0.942 31.59 mkm
—94.82 MPa 0.274 0.910 149.74 m km
—114.32 MPa 0.299 0.968 212.81m km
—97.04 MPa 0.384 1.058 247.63 m km
—106.13 MPa 0.227 1.000 12231 m km
—108.90 MPa 0.353 1.092 253.26 m km
—86.82 MPa 0.149 1.063 39.38 mkm
(@) )

. 0.40 202
= 44 ° -éé
£ & 0.35 200 =
[ » E
o 2 5 Q

° £ 0.30 £
"§ ° o9 > 57 150 g
$ 09 ° £ 0251 2
= ° 5 100 &
:é »y ° ° 5 020+ 5 3
E 5 0.15 - 50 8
S 4 G ‘ 3
. . . 0107, . Jlo E

0 5 10 -120 -100 -80

validation point number normal stress (MPa)

Figure 3. (a) Emulator validation results for the 10 validation points drawn using a Latin hypercube experimental design. We
find that the emulator provides valid predictions for 8/10 validation points. (b) Spatial distribution of the training and validation
points, projected into the normal stress and shear to normal stress ratio plane (the simulator output is not highly sensitive to the
additional normal stress ratio). The background colour scale shows the predicted emulator mean and illustrates the approximate
behaviour of the underlying simulator. The output is most strongly dependent on the shear to normal stress ratio. White points
are the training samples, black points are validation points where the emulator performance is valid, and red points are the
two points where a validation failure occurs. We note that the failure points are near the transitions between regions where
the dependence of the output to the underlying input is strongly varying. This suggests that the underlying function is non-
stationary, and the resulting emulator is overconfident in the predictions. However, we find that despite these validation failures
the emulator is still providing enough useful information to proceed with the analysis due to its accuracy over the majority of
the input space. (Online version in colour.)

shows the emulator predictions for a much larger set of 10000 sample points. The simulation is
most sensitive to the shear to normal stress ratio, with low values indicating rupture arrest and
high values indicating rupture propagation. The white points are the 20 training points, the black
points are the eight validation points where the emulator predictions are valid, and the two red
points are the validation failures.

For this problem, the emulator validation failures occur because in some portions of parameter
space the simulator output is very sensitive to the inputs, while simultaneously there are other

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

parts of the parameter space where the output is not very sensitive to the inputs. Our emulator
uses a squared exponential covariance kernel, which is an example of a stationary covariance
kernel in that it assumes a uniform correlation length should apply throughout the entire
parameter space. For many nonlinear simulators, this assumption does not hold, and the resulting
emulator will have some regions of the input space where it does not provide good predictions. In
this case, the emulator is overconfident in the regions where the validation failures have occurred,
but results in good performance for most of the input space.

To correct this validation failure, we would first consider building an emulator with a
more informative mean function, as in many cases a mean function that better captures prior
information about the shape of the output will alleviate problems of a non-stationary underlying
simulator. Prior distributions on the hyperparameters can also provide additional constraints
if the experimental design does not sample the input space well enough to robustly estimate
the hyperparameter values. Drawing additional input samples can also help if there are a few
problem areas where the emulator performs poorly and can be improved by constraining the
value of the underlying simulator. We have experimented with training sets with 50 points
and find that the emulator performs better in the sense that we observe a decrease in the
prediction uncertainties. However, validating the emulator shows there are still regions where
the predictions are overconfident due to non-stationarity of the underlying function, suggesting
that an approach using a mean function is required to overcome this problem. However, we feel
that a careful exploration of this issue is beyond the scope of this work, and thus we proceed with
the original emulator as fit in the tutorial to perform history matching.

(d) History matching

With the fit GP emulator, we can now make predictions using a dense sampling of points drawn
from the experimental design and compare with an observed value using history matching. We
use 10000 samples in the analysis that follows. For the sake of this demonstration, we simply
choose an arbitrary value from within the range of simulation outputs to serve as our ‘observed’
value to illustrate how the procedure works, though in practice the observed seismic moment
would be the size of a particular earthquake on the fault that is being studied. We assume
that there is no error in the true value and the only uncertainty is the emulator prediction
uncertainty to simplify the demonstration, though in practice the additional uncertainty from
the observational error and model discrepancy will simply expand the size of the space that has
not been ruled out.

An example of the samples that have been not ruled out yet (NROY) for the observed value of
58 m km is shown in figure 4 projected into the normal and shear /normal ratio plane of parameter
space. We use a plausibility threshold of 3 s.d. from the mean to rule out points. We note that the
NROY space is fairly clustered along a specific curve in this space. At high compressive normal
stresses, this seismic moment is produced for shear/normal stress ratios of around 0.16, while
at lower normal stresses the shear/normal stress must be slightly higher near 0.2 to produce the
known value. At very low shear to normal stresses, there is a region that cannot be ruled out,
though the fact that this occurs near the boundary of the space suggests this may be an artefact
of our original sampling. Designs with 50 sample points do not exhibit this feature. We note that
the projection shown in figure 4 was found to capture most of the structure in the space, and
suggests that the additional normal stress component is less important for predicting the final
seismic moment in our simulations.

The implausibility metric used to determine the NROY space (equation (2.4)) is shown in
figure 5. As we can see, most values that are ruled out have implausibility metrics much greater
than 6, indicating that we have a high degree of confidence that they can be ruled out. This
knowledge allows us to focus further simulation effort and analysis on a much narrower part
of parameter space, so that future computational effort is focussed on the most likely parameter
values to improve our understanding of the problem and make predictions.

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos



Downloaded from https://royal societypublishing.org/ on 23 April 2021

0.40

0.35 -

0.30 -

0.25 1

0.20 1

shear to normal stress ratio

0.15

0.10
-120 -110 -100 -90 -80
normal stress (MPa)

Figure 4. Points that have not been ruled out yet (NROY) projected into the normal and shear/normal plane of the parameter
space. Note that the points are fairly tightly clustered along a line, showing that the earthquake size is very sensitive to the stress
tensor components. (Online version in colour.)

0.40 6
2 y
50351 18 >
£ 0301 42
T 025 | 3%
= g
o —
= 0.20 2 £
g 0.15 1 1
=

0.10 1 . . 0

-120 -110 -100  -90 -80
normal stress (MPa)

Figure 5. Implausibility metric (number of standard deviations between the observation and the predictions of the surrogate
model, equation (2.4)) in the parameter space projected into the normal and shear/normal plane. As with the NROY plot, this
illustrates the high sensitivity of the output to the stress components. (Online version in colour.)

6. Conclusion

This paper and the associated tutorial demonstrate the use of a variety of computational tools to
implement and execute a UQ calibration workflow on a computationally intensive earthquake
model. Our implementation can automate the entire workflow with a few simple command
line instructions, and the FabSim3 plugin facilitates scaling our simulations to more intense
problems requiring execution on a computer cluster. Our implementation also makes the UQ
and earthquake simulation methods accessible to new users and facilitates reproducibility by
providing the computational environment required to run them. Our results also illustrate how
the nogp_enul at or package allows implementation of robust model calibration approaches
on problems that have not previously considered such an approach. The library allows flexible
specification of all components of the calibration workflow and is easily adaptable to other
physical systems.

There are numerous challenges in applying these methods to more complex research problems,
some of which we have highlighted in this paper. In particular, the computational effort required

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos H



Downloaded from https://royal societypublishing.org/ on 23 April 2021

to carry out the training and validation simulations will typically be much larger and require
a high-performance computing cluster. One advantage of our approach is that if the workflows
have been appropriately defined using FabSim3 for simulation management, the same scripts
can be used to run the ensemble on the cluster that were used here, only requiring a larger
computational expense. The exact number of simulator samples that should be run will depend
on the computational expense and resources available, but will also depend on the number of
input parameters in the problem due to the well-known ‘curse of dimensionality” in that the
size of the input space grows exponentially with the number of parameters. Thus, more realistic
problems may require a larger number of simulator runs to obtain emulators with sufficiently
good performance.

Once the sample points are drawn from the simulator, more realistic problems will require
more computational effort to fit the surrogate emulators to the data. This can be due to multiple
outputs and observations, which require multiple emulators be fit to the simulator outputs and
thus increase the computational cost. However, dimension reduction techniques [18] for handling
multiple outputs can reduce the cost of fitting the emulator by only fitting a few principal
components to ensure that the emulators capture the correlation structure in the simulators.
Additionally, more input parameters can increase the fitting costs due to the additional correlation
lengths that must be estimated, as minimization algorithms tend to be slower to converge for
high-dimensional search spaces. Once the emulators are fit, prediction costs will also scale with
the number of emulators, and high-dimensional input spaces will also require more query points
to sample the input space at a high enough density to be able to rule out parts of the space.
These factors will tend to increase the cost of fitting the surrogate models relative to this example,
though in general for most applications the cost of running the simulator remains the largest
computational expense.

The UQ results demonstrate that given the seismic moment of an event, we can rule out
much of the input stress parameter space, as the earthquake size is highly sensitive to the
stress. This can potentially overcome one of the main challenges of using dynamic earthquake
modelling for seismic hazard analysis. In probabilistic seismic hazard analysis [32], the standard
approach for estimating risk due to strong ground motions, analysts must first determine the
distribution of earthquake sizes expected to occur over a given time period. This is usually
done empirically based on very limited observations, and does not attempt to determine if such
earthquake sizes are consistent with physical models. Our UQ approach could enable use of
dynamic simulations in this approach by providing a set of NROY points that are consistent
with the limited observations, and use those points to simulate a much more comprehensive
set of ruptures consistent with the historical data to supplement the limited existing strong
motion records [33]. These physical simulations can thus capture the natural variability of
events in a region, something that current empirical approaches cannot do in a physical way.
This will enable physics-based seismic hazard analysis that exploits simulations in a way not
previously possible, and give more robust estimates of future earthquake sizes and ground
motions in order to better constrain uncertainties in both the physical models and the predicted
hazard.

Data accessibility. All simulation codes used in this work are publicly available on Github under free and open
source software licenses:

— mogp_enul at or https://github.com/alan-turing-institute/ mogp-emulator
— FabsSi n8 https://github.com/djgroen/fabsim3
— fdf aul t https://github.com/edaub/fdfault

The FabSim3 plugin that implements all of the simulations and analysis described in this work is also available
under a free and open source license on Github:

— fabrogp https:/ /github.com/alan-turing-institute /fabmogp

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos


https://github.com/alan-turing-institute/mogp-emulator
https://github.com/djgroen/fabsim3
https://github.com/edaub/fdfault
https://github.com/alan-turing-institute/fabmogp

Downloaded from https://royal societypublishing.org/ on 23 April 2021

The original tutorial that describes this workflow, the underlying nogp_enul at or code and the
FabSim3 commands can be found at https://github.com/alan-turing-institute/vecma_workshop_tutorial.
The computational environment and associated scripts and build instructions used to produce the
simulations, figures and the typeset manuscript is available as a Docker image in a Github repository. The
repository contains detailed instructions on building and running the simulations and is available at https://
github.com/alan-turing-institute/fabmogp_paper. The reproducibility of our work can be confirmed by
running the simulations as described in this repository and then computing cryptographic hash functions
using the r epr o- cat al ogue tool (https://github.com/alan-turing-institute/repro-catalogue). We include
our hash values in the repository, and the r epr o- cat al ogue tool can compare the obtained hash values
with our results.

Authors’ contributions. E.G.D. designed and implemented the UQ workflow and earthquake simulations. H.A.,
IM. and D.G. implemented the FabSim3 plugin to carry out this workflow. All authors contributed to writing
the associated tutorial and this manuscript.

Competing interests. We declare we have no competing interests.

Funding. E.G.D. received support from EPSRC grant no. EP/N510129/1HA to the Alan Turing Institute. LM.
and D.G. have received funding from the European Union Horizon 2020 research and innovation programme
under grant agreement no. 800925 (VECMA) and 824115 (HiDALGO).

Acknowledgements. The figures in this paper were generated using Matplotlib [34]. We thank Diana Suleimenova
for comments on the tutorial text.

References

1. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb M], Collins M, Stainforth DA. 2004
Quantification of modelling uncertainties in a large ensemble of climate change simulations.
Nature 430, 768-772. (d0i:10.1038 /nature02771)

2. Madariaga R, Olsen KB. 2001 Earthquake dynamics. In Infernational Handbook of Earthquake and
Engineering Seismology (eds WHK Lee, H Kanamori, PC Jennings, C Kisslinger), pp. 175-194.
New York, NY: Academic Press.

3. Dutykh D, Poncet R, Dias F. 2011 The VOLNA code for the numerical modeling of
tsunami waves: generation, propagation and inundation. Eur. J. Mech. B Fluids 30, 598-615.
(doi:10.1016/j.euromechflu.2011.05.005)

4. Kennedy MC, O’'Hagan A. 2001 Bayesian calibration of computer models. J. R. Stat. Soc. B
(Stat. Methodol.) 63, 425-464. (doi:10.1111/1467-9868.00294)

5. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. 1989 Design and analysis of computer experiments.
Stat. Sci. 4, 409-423. (doi:10.1214/ss/1177012413)

6. Rasmussen CE, Williams CKI. 2006 Gaussian processes for machine learning. Cambridge, MA:
MIT Press.

7. Groen D et al. 2019 Introducing VECMAtk - verification, validation and uncertainty
quantification for multiscale and HPC simulations. In Computational Science — ICCS 2019
(eds JMF Rodrigues, PJS Cardoso, ] Monteiro, R Lam, VV Krzhizhanovskaya, MH Lees, JJ
Dongarra, PM Sloot), pp. 479-492. Cham: Springer International Publishing.

8. Wright DW et al. 2020 Building confidence in simulation: applications of EasyVVUQ. Adv.
Theory Simul. 3, 1900246. (d0i:10.1002 /adts.201900246)

9. Sobol IM. 2001 Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Math. Comput. Simul. 55, 271-280. The Second IMACS Seminar on Monte
Carlo Methods. (doi:10.1016/50378-4754(00)00270-6)

10. Groen D, Bhati AP, Suter ], Hetherington J, Zasada SJ, Coveney PV. 2016 FabSim: facilitating
computational research through automation on large-scale and distributed e-infrastructures.
Comput. Phys. Commun. 207, 375-385. (d0i:10.1016/j.cpc.2016.05.020)

11. Daub EG, Carlson JM. 2010 Friction, fracture, and earthquakes. Annu. Rev. Condens. Matter
Phys. 1, 397-418. (doi:10.1146 /annurev-conmatphys-070909-104025)

12. Y YC, Olsen K, Chourasia A, Moore R, Maechling P, Jordan T. 2009 The TeraShake
computational platform for large-scale earthquake simulations. In Advances in Geocomputing.
Lecture Notes in Earth Sciences, vol. 119. Berlin: Springer.

13. Cui Y et al. 2010 Scalable earthquake simulation on petascale supercomputers. In SC "10:
Proc. of the 2010 ACM/IEEE Int. Conf. for High Performance Computing, Networking, Storage and
Analysis, pp. 1-20. Piscataway, NJ: IEEE.

0/000207 6LE 1 205 Subi] J14qeisy/jeunol/Buobuystigndizanosiedos


https://github.com/alan-turing-institute/vecma_workshop_tutorial
https://github.com/alan-turing-institute/fabmogp_paper
https://github.com/alan-turing-institute/fabmogp_paper
https://github.com/alan-turing-institute/repro-catalogue
https://doi.org/doi:10.1038/nature02771
https://doi.org/doi:10.1016/j.euromechflu.2011.05.005
https://doi.org/doi:10.1111/1467-9868.00294
https://doi.org/doi:10.1214/ss/1177012413
https://doi.org/doi:10.1002/adts.201900246
https://doi.org/doi:10.1016/S0378-4754(00)00270-6
https://doi.org/doi:10.1016/j.cpc.2016.05.020
https://doi.org/doi:10.1146/annurev-conmatphys-070909-104025

Downloaded from https://royal societypublishing.org/ on 23 April 2021

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

McKay MD, Beckman R], Conover WJ. 1979 A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics 21,
239-245. (d0i:10.1080/00401706.1979.10489755)

Beck J, Guillas S. 2016 Sequential design with Mutual Information for Computer Experiments
(MICE): emulation of a tsunami model. SIAM/ASA ]. Uncertain. Quantif. 4, 739-766.
(doi:10.1137/140989613)

Williamson D, Goldstein M, Allison L, Blaker A, Challenor P, Jackson L, Yamazaki
K. 2013 History matching for exploring and reducing climate model parameter space
using observations and a large perturbed physics ensemble. Clim. Dyn. 41, 1703-1729.
(doi:10.1007 /s00382-013-1896-4)

Andrianakis I, Challenor PG. 2012 The effect of the nugget on Gaussian process emulators of
computer models. Comput. Stat. Data Anal. 56, 4215-4228. (doi:10.1016/j.csda.2012.04.020)
Salter JM, Williamson DB, Scinocca ], Kharin V. 2019 Uncertainty quantification for computer
models with spatial output using calibration-optimal bases. J. Am. Stat. Assoc. 114, 1800-1814.
(doi:10.1080/01621459.2018.1514306)

Brynjarsdoéttir J, O'Hagan A. 2014 Learning about physical parameters: the importance of
model discrepancy. Inverse Prob. 30, 114007. (d0i:10.1088 /0266-5611/30/11/114007)

Vernon I, Goldstein M, Bower R. 2014 Galaxy formation: Bayesian history matching for the
observable universe. Stat. Sci. 29, 81-90. (doi:10.1214/12-STS412)

Harris CR et al. 2020 Array programming with NumPy. Nature 585, 357-362.
(doi:10.1038 /s41586-020-2649-2)

Virtanen P et al. 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261-272. (d0i:10.1038 /541592-019-0686-2)

Aki K, Richards PG. 1980 Quantitative seismology: theory and methods. New York, NY: W. H.
Freeman & Co.

Ida Y. 1972 Cohesive force across the tip of a longitudinal-shearcrack and Griffth’s specific
surface energy. J. Geophys. Res. 77, 3796-3805. (doi:10.1029 /]JB077i020p03796)

Kanamori H, Heaton TH. 2000 Microscopic and macroscopic physics of earthquakes, pp. 147-163.
Washington, DC: American Geophysical Union (AGU).

Okubo PG, Aki K. 1987 Fractal geometry in the San Andreas fault system. J. Geophys. Res.:
Solid Earth 92, 345-355. (doi:10.1029/JB092iB01p00345)

Chester FM, Chester JS. 2000 Stress and deformation along wavy frictional faults. J. Geophys.
Res.: Solid Earth 105, 23421-23430. (doi:10.1029/2000]B900241)

Dunham EM, Belanger D, Cong L, Kozdon JE. 2011 Earthquake ruptures with strongly rate-
weakening friction and off-fault plasticity, part 2: nonplanar faults. Bull. Seismol. Soc. Am. 101,
2308-2322. (d0i:10.1785/0120100076)

Kozdon JE, Dunham EM, Nordstrom J. 2012 Interaction of waves with frictional interfaces
using summation-by-parts difference operators: weak enforcement of nonlinear boundary
conditions. J. Sci. Comput. 50, 341-367. (d0i:10.1007 /s10915-011-9485-3)

Byrd RH, Lu P, Nocedal J, Zhu C. 1995 A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16, 1190-1208. (d0i:10.1137/0916069)

Bastos LS, O’'Hagan A. 2009 Diagnostics for Gaussian process emulators. Technometrics 51,
425-438. (d0i:10.1198/TECH.2009.08019)

McGuire RK. 1995 Probabilistic seismic hazard analysis and design earthquakes: closing the
loop. Bull. Seismol. Soc. Am. 85, 1275-1284.

Boore DM. 2011 Ground-Motion Prediction Equations (GMPEs) from a global dataset: the
PEER NGA equations. In Earthquake Data in Engineering Seismology: Predictive Models, Data
Management, and Networks. Dordrecht, NY: Springer.

Hunter JD. 2007 Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90-95.
(doi:10.1109/MCSE.2007.55)

9/00020 ‘6LE ¥ 205§ Subi] 1i4q eisy/jeuinol/BioBuysiigndisanosiedos H


https://doi.org/doi:10.1080/00401706.1979.10489755
https://doi.org/doi:10.1137/140989613
https://doi.org/doi:10.1007/s00382-013-1896-4
https://doi.org/doi:10.1016/j.csda.2012.04.020
https://doi.org/doi:10.1080/01621459.2018.1514306
https://doi.org/doi:10.1088/0266-5611/30/11/114007
https://doi.org/doi:10.1214/12-STS412
https://doi.org/doi:10.1038/s41586-020-2649-2
https://doi.org/doi:10.1038/s41592-019-0686-2
https://doi.org/doi:10.1029/JB077i020p03796
https://doi.org/doi:10.1029/JB092iB01p00345
https://doi.org/doi:10.1029/2000JB900241
https://doi.org/doi:10.1785/0120100076
https://doi.org/doi:10.1007/s10915-011-9485-3
https://doi.org/doi:10.1137/0916069
https://doi.org/doi:10.1198/TECH.2009.08019
https://doi.org/doi:10.1109/MCSE.2007.55

	Introduction
	Uncertainty quantification approach
	Experimental design
	Gaussian process emulator
	History matching
	Implementation with mogp_emulator

	Earthquake model
	Dynamic earthquake rupture
	Simulation details

	Simulation management
	Results
	Simulator runs
	Surrogate model
	Validation
	History matching

	Conclusion
	References

