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ABSTRACT 

Chicken litter is commonly used as bio fertilizer or soil ameliorant due to its high content of 

nutritional components such as nitrogen (N), phosphorus (P) and potassium (K). Oversupply 

of chicken litter to land, however, may cause problems due to the built-up of excessive nitrogen 

which oxidises, forming nitrates and ammonia compounds. The highly concentrated nitrates 

can contaminate both surface water and groundwater, which are sources of drinking water. 

Evaporation of ammonia also causes odour problems in the surrounding areas. With fast 

increasing chicken production, and limits on the use of chicken litter as fertilizer on local farms 

an alternative utilisation approach is the use of chicken litter for energy production. Energy 

production from chicken litter is of particular interest in developing countries where electricity 

supply from the grid may not be existent or is highly unreliable. 

 

Possible technologies for the conversion of chicken litter to energy are combustion, anaerobic 

digestion, gasification and pyrolysis. Literature review of these methods has indicated that 

considering energy conversion efficiency, economic and environmental factors, pyrolysis can 

be a suitable method for application in developing countries such as Indonesia. For this reason, 

this thesis focuses on pyrolysis and its potential to produce char, syngas and bio oil yield. 

  

Three types of pyrolysis have been studied. These include: slow pyrolysis in the temperature 

range  350°C - 450°C, intermediate pyrolysis at the temperature range 500°C -700°C and fast 

pyrolysis in the temperature range 400oC – 600oC. The types of chicken litter used as the 

feedstock in slow pyrolysis were hay mix (chicken manure + hay), straw mix (chicken manure 

+ straw), rice husk mix (chicken manure + rice husk), wood shavings mix (chicken manure + 

wood shavings). For the intermediate pyrolysis, fresh chicken litter (FCL) from Ireland and 

pelletized chicken litter (PCL) from Finland were used. For the fast pyrolysis experiments, only 

PCL was used.  

 

The result of the chicken litter pyrolysis experiments showed that the dominant product was 

char in the slow pyrolysis, liquid (bio-oil) in the intermediate pyrolysis and gas (syngas) in the 

fast pyrolysis. In addition to the experiments, simulations were performed using Aspen plus, 

to determine the maximum amount of electric energy that can be generated from the pyrolysis 

of chicken litter. The simulations were based on chicken litter from a farm with a production 

of 400,000 birds/batch. Liquid yield was determined from the experiments to have the highest 

calorific value, and thus, the simulations were performed using the parameters and results from  

the experiment that generated the highest level of liquid yield-this was the FCL pyrolysis at 

temperature of 500 °C.  

 

The simulation revealed that the heat from the combustion (burning) of all gas yield plus 35% 

of char yield would be sufficient to serve as the heat input for pyrolysis process. The heat from 

combustion of the liquid yield was then used as the energy input to an ORC system to generate 

electrical power. The results showed that the system with could produce electrical output of 

around 150 kW with an overall conversion efficiency of 6.5%.  Economic analysis using the 

Net Present Value (NPV) methodology and investment conditions in Indonesia has shown that, 

assuming all the electrical energy generated and 65% of the char yield is sold, the system would 

produce a return on investment of 9 years. Improvements in ORC efficiency and reduction of 

capital cost as well as reduction in interest rates (currently 12% in Indonesia) is expected to 

lead to increased return on investment and improved viability of these systems for both energy 

security and reduction of environmental impacts in developing countries.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

Based on resource availability, energy can be categorised as renewable and non-renewable. 

Fossil fuel as an energy resource belongs to the category of non-renewable energy, which, up 

to present time, is still dominating as the most used energy resource in a large number of 

countries. Oxidation process or combustion is a conversion process that is often used for fossil 

fuel. This type of process results in carbon dioxide gas emissions that makes up the majority 

of emissions from the process. Along with other emission gases such as Nitrogen Oxides (NOx) 

and Sulphur Oxides (SOx), carbon dioxide will accumulate and form greenhouse gasses in the 

atmosphere. The United Nations’ Food and Agriculture Organization (FAO) reported that 

14.5% of the total greenhouse gases come from the farming sector, with chicken farming 

contributing 8% of this figure [1].  

Climate change and the increasing temperature of the earth will continue as the greenhouse 

gases keep accumulating. It is of high importance, therefore, to take action to reduce the 

production of greenhouse gasses, in order to reduce global warming and its effects.  Converting 

farming waste or litter to an alternative energy resource can make a contribution to this as well 

as improve the economic competitiveness of the farming industry itself. This chapter outlines 

the importance of energy generation from chicken litter and summarises the aims and 

objectives of this thesis.  

1.2 Energy consumption 

According to the international statistics bureau, the world heavily relies on fossil fuel. As 

shown in Figure 1.1, the use of fossil fuels reached 79.7% in 2017. On the contrary, the use of 

modern renewable energy was only 10.6%, the rest used nuclear energy, and the renewable 

energy consumption was decrease from 19.1% in 2013 to 18.1% in 2017. Another source of 

renewable energy that has been widely used is biomass. Biomass is biological material derived 

from living, or recently living organisms [2]. 
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Figure 1. 1 Renewable Energy Share of Global Final Energy Consumption, 2017 [2]. 

Supporting the data from the international statistics bureau, energy outlook from British 

Petroleum (BP) reported that energy consumption from 2017 to 2040 is predicted to rise by 

32%. Among the sources of energy used in 2017, fossil fuel is still the one that is dominantly 

used. Fossil fuels satisfy around 85% of the growth in energy demand and globally they are 

expected to account for almost 73% of total energy demand in 2040 (down from 85% in 2017). 

The use of renewable energy is also rising rapidly at 12.3% p.a. and their contribution is 

expected to rise from 4% presently to 15% by 2040 [3]. 

The increase in energy demand leads to increase in greenhouse gas emissions and accelerates 

climate change. To address this, the EU has revised the climate and energy framework, and 

committed to reduce greenhouse gas emissions by 40% compared to 1990 level, increasing the 

share of renewable energy to 32% of total EU energy consumption and make energy efficiency 

improvements of  32.5% for the period from 2021 to 2030 [4].  

Compare to the chart from REN (figure 1.1), in Indonesia, as shown in Figure 1.2, even though 

fossil fuel consumption is more than 76%, the renewable energy supply can reached 24% of 

the total energy demand. The share of renewable energy consumption is dominating by the 

biomass section. From the total energy consumption, biomass consumption reaches 19%, 

whereas hydropower consumption is 3%, and biofuel (biodiesel and bioethanol) and 

geothermal is only 1% each of them [5].   
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Figure 1. 3 Rice husk utilisation, (left) stove using dry rice husk [11] 

and (right) rice husk briquette [12]. 

 

 

 

 

  

 

 

1.3 Biomass use 

Biomass is categorised as a fuel derived from organic material and it includes firewood 

(woodened base material and the waste, and charcoal), agriculture waste, urban and industrial 

waste [5]. The largest source of biomass production in Indonesia comes from rice plant residue 

(husk, bran, stalk and straw), with the production that reaches up to 65.5 million tons per year 

[6]. In general, after harvesting time, the collected rice straws and stalks are dried and directly 

burned on the field or brought for the cattle feeding [7], [8]. Meanwhile, rice husks obtained 

from rice mills are collected. Using the method of combustion or direct burning, the dry or 

briquetting rice husks are burned and used as heat source in household stoves (Figure 1.3) [6], 

[9], [10].   

 

 

 

 

 

Besides the use as energy source, rice farm residue such as rice husks can also be used as 

bedding materials in animal farming. Some experiment had been done in order to examine the 

Coal
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Natural Gas
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Figure 1. 2 Indonesian Primary Energy Supply by Sources, 2017 [5]. 
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effect of using several type of bedding materials into the chicken farming production. By using 

several biomass types or agricultural waste, such as sawdust, sugarcane bagasse, straw and rice 

husk as bedding material for chicken farming, the experiments delivered a conclusion that there 

were statistically no adverse effect or alteration in quality of chicken farming production [13]–

[15].  The farming production quality is including chicken weight gain, food consumption and 

liveability number [15]. 

In chicken farming, bedding materials will blend with chicken manure, spilled feed and water 

for animal, and some feathers become chicken litter. To maximize the animal health and 

productivity, beddings have to be renewed regularly. To add the economic value of chicken 

farming, use of bedding materials as well as chicken manure (chicken litter), which is rich in 

micro nutrients such as nitrogen (N),  phosphorus (P) and potassium (K), can be utilized as 

natural fertilizer or soil amendments [16]–[18]. In addition, since the chicken litter contains 

biomass, surplus litter can be converted into useful energy resources. There are several methods 

that are widely used in biomass conversion, namely combustion, anaerobic digestion, pyrolysis 

and gasification [19]–[21]. The selection of conversion method for the present experiment is 

based on the highest caloric value, and it was found that the bio-oil yield product from pyrolysis 

of chicken litter has the highest caloric value, 28-29.6 MJ/kg [21], [22].   

Pyrolysis is a heating or decomposition process with the working temperature between 300-

700°C set within an environment with limited or no oxygen [23]. The pyrolysis of chicken litter 

generates three yield products namely bio-oil, synthesis gas and char. Each yield has different 

percentage of composition, depending on the type of pyrolysis process. In general, the process 

of pyrolysis is categorised into slow and fast pyrolysis. The dominant product of the slow 

pyrolysis process is char, while the process of fast pyrolysis generates more liquid and synthesis 

gas [19], [24], [25]. 

 

1.4 Research gap 

According to the Organisation for Economic Co-operation and Development (OECD), the 

consumption of chicken in some countries, including Indonesia, rose significantly. In 2018, it 

was reported that chicken consumption in Indonesia was 7.06 kg/capita/year, which is one 
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percent higher compared to the previous year [26]. As the demand for poultry meat increases, 

so does the production and waste. 

If not treated accordingly, the chicken litter accumulation may bring a negative impact for the 

environment. Pathogens or harmful microorganism such as Escherichia Coli and Salmonella 

would easily grow and cause diseases [27]–[29]. Not only promoting the growth of bacteria, 

long-term accumulation of chicken litter may promote the formation of gases such as ammonia, 

nitrite, and sulphide gases that cause bad odour issues [29]–[31]. The conventional practice in 

Indonesia is to use chicken litter as fertilizer. When the demand for fertilizer in the farm or 

local area is met, the surplus is incinerated.  Besides direct burning (combustion), as mentioned 

previously, there are several methods to convert chicken litter (as biomass) into useful 

resources, for example gasification and pyrolysis. Pyrolysis method is selected because the 

yield product generates the high caloric value content.  

Presently, several modifications of reactor models as well as a variety of variables, such as 

temperature, residence time and additional materials, have been developed, aiming to 

maximize the result of pyrolysis process [32]. Pyrolysis plants that are using biomass as 

feedstock are available and are being continually developed in several countries [32]–[34].  

Despite the rapid development of pyrolysis technology in some countries, chicken litter 

pyrolysis has not been developed at commercial scale [20]. This provides a reason to perform 

this study, which focuses on chicken litter pyrolysis and its application within the context of 

chicken farming conditions in Indonesia.  

 

1.5 Research Aim and Objectives 

Related to the research gap, the overall research aims to investigate ways to maximise the 

conversion of chicken litter into useful resources such as energy and biofertilizer. Specifically, 

the use of biomass may also help to overcome the negative effect of chicken litter that has been 

increasing due to the growing consumption of chicken meat.  
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The objectives of the research are to: 

- Investigate the characteristics of chicken litter from different localities by its proximate and 

ultimate analysis, including the thermal decomposition by Thermogravimetric analysis 

(TGA).    

- Consider advantages, disadvantages and economics of using different methods of 

conversion of chicken litter to useful resources, such as anaerobic digestion, combustion, 

gasification and pyrolysis. 

- Select the most appropriate method of conversion of chicken litter to energy. 

- Undertake detailed analysis of the selected method in terms of efficiency of conversion and 

resulting products of pyrolysis. 

- Using process modelling determine the feasibility of the use of chicken litter for power 

generation in Indonesia.  

 

1.6 Thesis structure 

• Chapter 1: Introduction 

This chapter provides the background of the research related to the situation in Indonesia 

and the research gap identified from the methods of chicken litter conversion into useful 

resources. To address the research gap, the aim and objectives of the project were 

established. 

 

• Chapter 2: Literature Review  

Chapter 2 provides a general review related with the research and the selection of the most 

appropriate technology for the conversion of chicken litter to energy and other resources. 

 

• Chapter 3: Materials and Methods 

This chapter details the research methods used in the experimental investigations and the 

materials selected for the analysis. Four different chicken litter and bedding materials were 

selected to represent the characteristics in different areas of Europe and Indonesia.  
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• Chapter 4: Pyrolysis Experiments 

This chapter provides information on the pyrolysis conversion process and the design of a 

test system in the laboratory for slow pyrolysis tests based on information published in the 

literature.  

 

• Chapter 5: Data Analysis   

Findings from the experiments and modelling investigations are discussed in this chapter. 

The analysis includes mass and energy balances for the chicken litter and bedding materials 

investigated, and energy conversion efficiencies for different power generation systems.  

 

• Chapter 6: Modelling and economic analysis 

Aspen PlusTM software was used to model the process of converting chicken litter including 

bedding materials through pyrolysis and energy production through the Organic Ranking 

Cycle (ORC) system. 

 

• Chapter 7: Conclusions and recommendations for further work. 

This chapter summarises the main conclusions from the work and provides 

recommendations for further work in the area.  
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CHAPTER 2 Literature Review 

 

2.1 Overview  

The feedstock for the experiments was litter from chicken farming. Based on the type of 

production, chicken farming is categorized into layer chicken farming and broiler chicken 

farming. Broiler chickens are used for meat production due to their rapid growth. It takes 

between six and eight weeks for broiler chickens to be ready for harvesting. It takes longer for 

layer chickens to be productive. Female chickens start laying eggs when they are 18 weeks old 

and they will continue to be productive until the age of two years [35].  

Different types of chicken require different types of feed. The reason is because the feed plays 

an important role in the production of high-quality chickens. For example, in order to rapidly 

form chicken muscle and meat, broiler chickens need feed of higher nutritional value compared 

to that of layer chickens [36]. This chapter provides a review of the literature of chicken litter 

production and the use of waste for energy generation.  

2.2 Chicken feed 

Although all female chickens are able to lay eggs, broiler chickens are domesticated with the 

goal to produce meat in a relatively short period of time. In order to support the maximum 

growth, the type as well as the quantity of chicken feed need to be carefully selected. In order 

to form muscle and meat, broiler chickens have to be fed with feed of high protein and calorie. 

For additional supplements such as vitamin and mineral, the amount given can be the same as 

the amount given to layer chickens [35], [36].   

By taking age into consideration, the percentage of nutrition composition given to broiler 

chickens can be categorized into two phases, namely starter phase (1-4 weeks) and finisher 

phase (4-8 weeks). The composition may consist of 22-24% protein, 2.5% fat, crude fibre 4% 

crude fibre, 1% calcium (Ca) and 0.7-0.9% phosphor (P). Meanwhile, the composition for the 

finisher phase may consist of 18.1-21.2 % protein, 2.5% fat, 4.5% crude fibre, 1% calcium (Ca) 

and 0.7-0.9% phosphor (P) [37]. The percentage of ingredient balance that can be used as 

reference is displayed in Tabled 2.1.  
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Table 2. 1 Food balance for the Broiler Chicken, in mass percentage [35]. 

Feed Ingredients 
Different Aged Broiler 

Starter (1-4 weeks) Finisher (4-8 weeks) 

Broken Wheat 47 52 

Rice Bran 20 18 

Sesame Cake 13 12 

Kipper Fish Powder 18 15 

Bone Powder 1.25 1 

Oyster Shell Powder – 1.25 

Salt 0.5 0.5 

Vitamin and mineral 0.25 0.25 

 

Different from broiler chickens that are domesticated for their meat, layer chickens are 

domesticated for their eggs. Therefore, the feed given will be converted for the maximum 

growth of egg. In the early growing phase, the nutrition percentage for layer chicks is the same 

as broiler chicks. Approaching the period of sexual maturity, the percentage of protein and fat 

needs to be reduced in order to avoid obesity. Entering the laying period, it is necessary to 

increase calcium up to 4% of the total intake in order to increase the egg production. Table 2.2 

is an example of layer chicken diet [38], [39]. 

In addition to the nutrition contained in the feed, the amount of water fed to chickens also 

requires attention. Lack of water supply could inhibit growth. For layer chicken in particular, 

lack of water could result in rapid moulting and decreasing egg production. To balance the high 

protein content and the forming of fat layer, broiler chickens need more water than layer 

chickens [35], [40], [41]. Higher water consumption as well as higher protein and fat content 

results in broiler chickens’ manure that is wetter compared to layer chickens’ manure. The 

same reason explains why broiler chickens’ manure has higher protein content. The high 

protein found in the manure of broiler chickens has an additional value as it can be processed 

to produce another sort of feed for other types of livestock, for example shrimp and fish feed 

[42], [43].  
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Table 2. 2 Food balance for the Layer Chicken, in mass percentage [39]. 

Feed Ingredients 

Different Aged Layer Poultry 

Starter 

(1-4 weeks) 

Growing 

(4-18 weeks) 

Egg Laying 

(18-72 weeks) 

Broken Wheat 36 34 32 

Wheat Chaff 10 10 10 

Broken Rice 10 10 10 

Rice Bran 8 15 10 

Sesame Cake 12 12 12 

Kipper Fish Dust 14 10 12 

Dried Molasses 2 2 2 

Oyster Dust 2 3 8 

Boiled Triticum Aestivum 5 3 3 

Salt 0.5 0.5 0.5 

Vitamin and mineral 0.5 0.5 0.5 

 

2.3 Chicken bedding material 

Bedding materials are normally used in chicken farming. They are useful to cover the bottom 

part of chicken cage. Covering the cage floor will help chickens to more easily adapt to the 

environment as the materials resemble natural conditions. Bedding materials help to absorb 

water vapor that causes the cage to be humid. They also help to absorb the water content of 

manures. To prevent excessive growth of mould and production of ammonia, damp bedding 

materials need to be changed regularly [13], [15], [44].  

On covered floor type cage, layer chickens require more bedding materials. In addition to 

serving as the cage floor cover, bedding materials are used to lay eggs. As a result, layer 

chickens will produce litter containing more organic matters. The most frequently used organic 

bedding materials are those that come from farming practices such as rice husk, straw and wood 

shavings [15], [16], [45]. As the composition of chicken litter consists of these organic matters, 

it can be considered as biomass and can be used as fuel [10], [19], [32]. 
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2.4 Biomass  

In the context of energy, biomass refers to carbon-based materials that can be used to produce 

fuels and/or thermal energy using different conversion methods. These materials include: 

arable crop residues such as straw or husks, animal manures and slurries and animal bedding 

materials including poultry litter, grass silage etc. [46], [47].  

As there is a wide diversity in the characteristics and properties of these materials, and their 

various sub-groups, there is also a wide range of conversion technologies to make optimum 

use of them, which include both biochemical and thermochemical conversion technologies. 

Anaerobic digestion and microbial fermentation belong to the category of biochemical 

conversion, while combustion, gasification, and pyrolysis belong to the category of 

thermochemical conversion [44], [47]. 

Anaerobic digestion is a breakdown of organic materials. It produces methane (CH4) and 

carbon dioxide (CO2) gas and waste, which can be used as fertilizer. The process is normally 

performed in an anaerobic digester. Typically, the anaerobic digester is a sealed vessel, where 

the bacteria for the decomposition of biomass act without oxygen [46], [48]. 

Combustion is a process of oxidation or burning of flammable materials in the presence of air 

or oxygen with the release of heat. During the burning of biomass, oxidation is that of 

predominantly the carbon (C) and hydrogen (H) in the cellulose, hemicellulose, lignin, and 

other molecules present, to form carbon dioxide (CO2) and water (H2O) [49], [50]. 

Gasification is a partial oxidation process whereby the carbon source such as biomass, is broken 

down into carbon monoxide (CO) and hydrogen (H2), plus carbon dioxide (CO2) and possibly 

hydrocarbon molecules such as methane (CH4). This mix of gases is known as synthesis gas 

(syngas), and the characteristics of the gas will be influenced by the gasification parameters, 

such as temperature and the oxidizer used. The oxidizer may be air, steam or oxygen [23], 

[51]–[54]. 

Pyrolysis is the combination of gasification and combustion without the presence of oxygen. It 

is essentially based on a long-established process, being the basis of charcoal burning. The 

products of pyrolysis are syngas, biofuel liquid and char with the proportions of each depending 

upon the parameters of the process [20], [32], [34], [55]. 
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2.5 Biomass from Chicken Litter 

From the four types of meat that is bought by the British public, chicken meat purchase 

gradually increased by 60% from 1974 through to 2014 (Figure 2.1). In contrast, household 

purchases of fresh cuts of meat, such as lamb, mutton, pork, beef and veal reduced significantly 

over the same period. A contributing factor was also the impact of the Bovine Spongiform 

Encephalopathy (BSE / mad cow disease) crisis, when the public boycotted British beef after 

a link was established between BSE carried by infected cattle and the human form of the 

disease, Creutzfeldt-Jakob disease (CJD) [56], [57]. 

 

 

Figure 2. 1 Meat Purchased for UK households, 1974 - 2014 [57]. 

 

This trend continued and Defra's Family Food report figures show that the number of poultry 

slaughtered increased by 4% from 2012 in 2015 reaching 18.4 million per week or around 90 

million per year [57]. 
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Figure 2. 2 Meat Consumption Indicator for EU countries [58]. 

 

The Organization for Economic Co-operation and Development (OECD) projected poultry 

meat consumption in Europe to remain fairly constant between 2018 and 2026 at approximately 

25 kg/capita/year (Figure 2.2). However, in the same period, the projected consumption of 

poultry meat in Indonesia is expected to keep increasing at around 1% every year compared to 

other types of meat, which are expected to remain fairly constant (Figure 2.3) [58].  

 

 

Figure 2. 3 Meat Consumption Indicator for Indonesia [58]. 
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The American Society of Agricultural Engineers (ASAE) standard indicates that manure 

production by a broiler of approximate weight of 2.36 kg/bird is approximately 4.9 kg during 

the breeding period (47.7 days) [59]. This means that a single broiler will produce 

approximately 103.2 gram of manure per day. For the UK, the total annual manure production 

is approximately 9.2 Ton. Chicken manure can be used as fertilizer on land, but excessive 

application is restricted to prevent nitrate pollution. This then increases the issues of and cost 

of waste management [60].  

 

2.5.1 Chicken Litter Utilization 

As the world’s food production is growing, the demand for fertilizers is also increasing. After 

World War II, between 1950 and 1980, the use of fertilizer increased from 14 million to 144 

million tonnes annually. Presently, China, India, and the United States (US), which are the 

world’s leading grain producers, use more than half the world’s consumption of fertilizer (180 

million tonness/year). In 2011, the consumption of fertilizer in China reached 50 million tons 

per year, followed by India (28 million tons/year), and the US (20 million tons/year). On the 

other hand, the United Kingdom uses less than 2 million tons of fertilizer per year [61]. The 

world’s demand for fertilizer is predicted to reach 203.5 million tons in 2024 [62]. The highest 

growth rates are found in Africa (4.4% p.a.), especially in Sub-Saharan Africa, not including 

South Africa, with (6.3% p.a.) [63]. 

The most common fertilizer employed is chemical. It contains Nitrogen (N), Phosphate (P), 

and Potash (K). These nutrition elements can actually be found in poultry manure as well, 

which additionally contains calcium (Ca), magnesium (Mg), and sulphur (S). However, poultry 

manure also contains ammonia and microbial pathogens, and therefore right treatments must 

be applied before it can be spread on land to replace chemical fertilizers. Through composting, 

the issue of pathogens contained in the manure can be addressed, while odours can be prevented 

by adding 50–55% water vapor [64].   

Poultry litter mainly consists of bedding material, feather, and manure. The most common type 

of bedding used in chicken farming is the biomass type such as hay, straw, wood shavings and 

rice husk [65]. Since biomass is used as bedding, chicken litter can be converted into useful 

energy resources. The chicken litter's moisture content significantly affects the conversion 
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method of chicken litter to energy. The moisture content in the combustion method, for 

example, will inhibit the initial firing and drop the combustion temperature [66], [67]. 

The characteristics of poultry litter differ depending on the amount of bedding material used. 

Estimates suggest that for the typical of bedding material use, the volatile solids (VS) content 

of the poultry litter is derived from the bedding material by approximately 50 per cent by weight 

and the manure by 50 per cent. Manure and bedding materials have very different properties 

for energy generation purposes which need to be taken into consideration. For example, the 

degradability of the VS in the manure fraction in an anaerobic digestion process will be greater 

than in the bedding fraction (especially for wood-based bedding materials). This is a vital factor 

to consider when comparing energy generation technologies and bedding materials to match a 

particular technology [21]. 

On the dry basis sample, the caloric value of chicken litter is greatly affected by the ratio of 

ash to volatile solids (VS), and it is expected that the caloric value will be around 17-18 MJ/kg. 

The chicken litter caloric value is close to the other biomass fuel, such as firewood (dried) has 

16 MJ/kg caloric value, lignite has around 10-17 MJ/kg but lower than hard black coal that has 

caloric value around 23-25 MJ/kg [21]. 

Fresh chicken manure with high moisture content (70-80%) is not suitable for thermal energy 

conversion process, particularly combustion process. In addition to adding more bedding 

materials, a good ventilation control of the chicken sheds also plays a role in decreasing the 

chicken litter moisture content. With low moisture content (approximately 20%), the caloric 

value of chicken litter could reach 15 MJ/kg [21].  

Currently, poultry litter is primarily used as a replacement for fertiliser and soil ameliorant by 

a wide range of end users. The over-supply of organic fertiliser is triggering an urgent need for 

alternative manure treatments. The litter of poultry is either sold as raw (straight from the shed), 

aged (stockpiled), composted or grinded. However, since the poultry litter has high heating 

value, it can also be used as an energy generator [68].  The key technologies that can be used 

to generate energy from poultry litters are anaerobic digestion, combustion and gasification / 

pyrolysis. Although promising, some of those innovations have not yet been implemented on 

a commercial scale. By using the waste from chicken farms, costs could not only be managed 

more economically, but also negative environmental impacts could be reduced [69]. 
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2.5.2 Anaerobic Digestion (Biogas Method) 

Countries or areas without hydro or wind resources could consider biomass as a potential 

source of renewable energy, particularly in areas with significant agricultural and animal 

wastes [70]. The conversion of biomass into fuel can be classified into two main groups: 

biochemical conversion and thermochemical conversion. The example of biochemical 

conversion is anaerobic digestion and microbial fermentation, whereas thermochemical 

conversion is combustion, gasification and pyrolysis. Both biochemical and thermochemical 

conversion processes can be used to convert chicken litter into an energy source. However, 

there are several challenges with both conversion routes [71], [72]. 

Anaerobic digestion is a way to break down and transform biomass into gas in the absence of 

oxygen through a biological process. The product is biogas, which is a mixture of carbon 

dioxide (CO2) and methane (CH4). This gas can be used for heating or for generating electricity. 

Anaerobic digestion is best suited for high moisture content (wet) biomass products [21], [73]. 

Chicken manure is quite a dry organic waste, and thus a considerable amount of water is needed 

to convert it into the slurry for anaerobic digestion. In addition, chicken manure has a high 

content of nitrogen, sulphur and ammonia among other substances that require additional 

processes for their removal in order for the gas to become suitable for use as a fuel [74], [75]. 

 

Accumulation of these substances may cause reactor upset, as indicated by reduced biogas 

production or possible reactor failure. The composition of the various substances in chicken 

manure can vary widely depending on the feed and bedding materials and so a detailed 

characterization of poultry waste is necessary for successful application of anaerobic digestion. 

It has been suggested that co-digestion with other waste and incorporation of methods to 

remove or counteract toxicants before anaerobic digestion can significantly improve the waste 

treatment efficiency [76]. 

Although ammonia is an essential nutrient for bacterial growth, if present in high 

concentrations, it can inhibit methanogenesis during the anaerobic digestion process. Ammonia 

is therefore considered a potential inhibitor during anaerobic digestion, especially when dealing 

with complex types of substrates like manure or the organic fraction of municipal solid waste 

[77].  
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Ammonia is created by biological degradation of nitrogenous substances. Ammonium ion 

(NH4 +) and free ammonia (NH3) are the two principal forms of inorganic ammonia nitrogen. 

Both forms can cause inhibition in an anaerobic digestion system, directly and indirectly. Free 

ammonia (FAN) in particular is a potent inhibitor in an anaerobic digester above threshold 

concentrations. Process inhibition is related to the specific characteristics of the anaerobic 

digested substrate, pH, process temperature (mesophilic or thermophilic), seed sludge type 

(inoculum), reactor configuration, and ammonium and ammonia concentrations. This paper 

addresses the inhibition of ammonia in anaerobic digestion systems and the recovery efforts 

after inhibition. In addition, the impacts of ammonia inhibition on the microbial population of 

anaerobic digesters, namely bacteria and archaea, are also assessed in detail [78]. The literature 

has reported a number of ways of inhibiting the formation of ammonia during anaerobic 

digestion of poultry litter [79]–[81]. 

 

2.5.3 Combustion Method 

The simplest method of thermochemical conversion is combustion. Direct biomass combustion 

has been used to provide heat and power for many centuries, but the overall efficiency of the 

process is not very high and combustion can also be a source of gaseous pollutants [81]. Basic 

information is needed to characterize the combustion of agricultural waste including chicken 

litter, such as the composition, including the moisture content of the substance [67]. 

Combustion is the process of burning a material with the help of oxygen. The heat generated 

from the combustion process is used for electricity generation. Coal and a wide range of waste 

streams have been used to generate electricity by using the combustion method. In Europe and 

the United States, several commercial plants have used chicken litter as feedstock. A 

combustion process involves several steps that include [21]: 

1. Drying process. The process occurs at the temperature of 100°C with the purpose to 

evaporate the water contained in chicken litter. 

2. Torrefaction process. The process starts at the temperature of 300°C, marked by the 

devolatilization of chicken litter when the organic volatile compounds start to 

evaporate. The temperature elevation in this process also causes cellulose and lignin to 

be separated.  
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3. When the temperature reaches 800°C, the gasification process takes place. This process 

generates gases of carbon monoxide (CO) and hydrogen (H2) (from solid char). 

4. Char combustion process. This process occurs when char has been oxidized and 

transformed into gases of carbon dioxide (CO2) and CO. 

5. Oxidation process. This process takes place at the temperature above 800°C, where 

volatile gas and tar transform into heat energy.  

 

Compared to the other types of litters, chicken litter contains low moisture and ash. The low 

moisture and ash content makes chicken litter a suitable feedstock in a combustion process. In 

order to increase the efficiency, chicken litter can also be mixed with coal that has a higher 

caloric value. However, chicken litter combustion also poses challenges that include fouling 

and hazardous gases formation. Moreover, chicken litter combustion also requires a drying 

process to avoid the initial firing failure. The ash generated from chicken litter burning can be 

processed into fertilizer because it contains nutrition such as phosphorus (P) and potassium (K) 

that are useful for plants. However, research regarding the potential of ash have not yet existed. 

Processing ash into fertilizer can deliver an added economic feasibility for chicken litter. 

Nevertheless, the feasibility of chicken litter combustion is limited in several ways [21]: 

- The large scale of the project facility. 

- The amount of chicken litter supply and the transportation from the chicken farming to 

the facility. 

- The cost of chicken litter drying process, affected by moisture content. 

 

A study performed in the US shows that the caloric value of fresh chicken litter (wet) ranged 

between 7.9 – 14.6 MJ/kg, which would approximately be 15 MJ/kg when it is dry. Meanwhile, 

the result of another study performed in Australia shows that the caloric value of the studied 

chicken litter was 17-18 MJ/kg. The difference in the caloric value is caused by the ash content. 

The chicken litter in the US study had higher ash content and as a result, it had lower caloric 

value. Both studies reveal that fresh chicken litter combustion delivered electrical energy 

potential between 0.5 – 1.2 kWh/kg. Electricity generation plants using chicken litter 

combustion method are highly successful in the UK and US. The plants have the medium 

capacity between 8 - 60 MW, with the most recent plant that has even a bigger capacity, which 

is between 35 – 60 MW. The chicken litter combustion is an advanced technology, with 
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numerous facilities that are running as well as being constructed. Therefore, further research 

and development of this method could be considered unnecessary [21]. 

In large scale applications, the basic cost and performance of steam plants using co-combustion 

of biomass and coal is of concern. Co-combustion of biomass with coal is promising, since it 

combines high efficiency with fair biomass transport distances. Nonetheless, the combustion 

of biomass is associated with significant emissions, and therefore needs to be improved [82].  

Specific fuel properties need to be addressed in order to develop emission reduction steps. 

Pollutant formation has been shown to occur for two reasons: (1) Incomplete combustion will 

result in high emissions of unburnt pollutants. Although changes have been made to reduce 

these emissions by improved furnace design, scope for further optimisation remains. (2) 

Pollutants and particles originate from constituents of fuel such as N, K, Cl, Ca, Na, Mg, P and 

S. Biomass furnaces therefore exhibit relatively high nitrogen oxide (NOX) and submicron 

emissions. Air staging and fuel staging were developed as the primary NOX reduction measures 

offering a reduction potential of 50 to 80 per cent. Key particle reduction steps are not yet 

established for safe use [83]. 

Research on combustion properties and thermal kinetics of poultry litter are also relevant to 

this study. One of the solutions for wet manure is mixing the litter with peat [35]. This mixing 

can be called a co-combustion. Co-combustion of poultry litter with low quality Turkish lignite 

has also been studied. Experiments were performed in a thermogravimetric analyser (TGA) 

under uncontrolled temperature condition. The Ozawa Flynne Walle approach has been used 

to obtain the activation energy. From the TGA analysis, the activation energy of chicken litter 

was between 104.4 kJ/ mol and 130.1 kJ/ mol [84].  

Different properties of thermal decomposition for poultry litter / coal blends were observed as 

compared to coal. The thermal properties of the prepared blends showed correlation to the 

percentage of the sampled poultry litter. In addition, the average activation energies of the 

blends decreased as the weight percentage (wt%) of coal increased; The lowest activation 

energy was obtained with 70 wt% litter in the mix. During their co-combustion there was also 

a synergistic effect between poultry litter and coal samples [84]. Biomass combustion work is 

limited. This can be due to lack of information regarding the physical and chemical properties 

of different types of biomass. Research is needed to establish accurate kinetic models to 

investigate the combustion and emission of biomass [85]. 
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2.5.4 Gasification and Pyrolysis Method 

Gasification is a thermal decomposition process that transforms biomass or organic materials 

into synthesis gas (syngas). Syngas consists mainly of hydrogen (H2), carbon monoxide (CO), 

carbon dioxide (CO2) and methane (CH4). Syngas can be used as fuel in electric generator or 

combined and heat power unit (CHP). Compared to combustion, syngas produces lower carbon 

emission. Gasification may be an effective technology for chicken litter energy generation, but 

there are currently few commercial installations worldwide [21]. 

The steps in a gasification process include [21]: 

1. Drying process. This process occurs at the temperature around 100-150°C with the 

purpose to initiate the evaporation of water that is contained in the chicken litter. 

2. Torrefaction process and pyrolysis. This process occurs in the absence or limited 

oxygen (O2), at the temperature between 150 - 700°C. It is marked by the chicken litter 

devolatilization when the organic volatile compounds evaporate. The result of the 

process is a mixture of anatar gas, tar and char.  

3. At the temperature between 700 - 1200°C, the gasification process takes place. With 

the help of oxygen (O2), the product of the pyrolysis reacts to char and volatile gases 

and produces carbon dioxide (CO2) and water (H2O). 

4. Reduction process. This is the final endothermic reaction where all oxygen (O2) has 

been used up to convert water (H2O), carbon dioxide (CO2) and the remaining char 

(carbon, C) into hydrogen (H2), water (H2O), methane (CH4) and carbon monoxide 

(CO). 

5. Oxidation process. This process occurs at temperatures above 800°C where volatile gas 

and tar transform into heat energy. 

The char yield may be used for the heating and drying process of the biomass. The viability of 

using gasification for chicken litter energy generation is limited by the expense of scrubbing 

the impurities in the syngas and the processing of ash and potassium, leading to the fusion of 

tar, which results in increased operating costs for the plant. Nonetheless, there is currently 

substantial research and development in this field, and further technological advances are likely 

to occur in the near future [21]. 
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Figure 2. 4 Pyrolysis flow chart showing the major inputs and 

outputs of the process [21]. 

Gasification studies in the US showed that the energy content could be in the order of 

6.75MJ/kg litter (with 25 % moisture). In addition, for the output of gas yields of 1.15 Nm3/kg 

litter, the caloric value is 4.72 MJ / Nm3 (equal to 5.4 MJ / kg)[54].  The value of generation 

of electricity from poultry litter may be of the order of 0.5 kWh / kg. Chicken litter is rich in 

value nutrients. While little research investigates the value of char from the processing of 

gasification, this is an option when using chicken litter as a feedstock. This would however 

reduce the gasification process's energy efficiency because char would not be available as a 

feedstock. Further research is still needed in order to investigate the char properties from 

chicken litter and the economic feasibility of char production. Worldwide, there are very few 

industrial gaseous schemes that use chicken litter as a fuel source. While the method seems 

promising, it will take commercial case studies to give the industry confidence to invest in this 

technology [21]. 

 

 

 

 

 

 

 

 

 

 

 

Pyrolysis is similar to gasification, which results in the decomposition of a material by heat 

(below the gasification temperature) in the absence of oxygen (O2). During the pyrolysis 

process three primary by-products are produced: Bio-oil, gases (such as methane, ethane and 

acetylene) and biochar. The main difference from gasification is an absence or lack of oxygen 

in the process, and oil production in addition to gas. The process of pyrolysis is shown in Figure 

2.4. Bio-oil (liquid yield) and gas are the principal energy sources of pyrolysis. The bio-oil 

properties vary according to the feedstock used and the technology for refining this product is 

not well advanced [21]. 

From several studies [21] it is known that gas yield from pyrolysis of biomass may have a 

calorific value of 15–20 MJ/m3 and this gas can be used as a fuel of engines and gas turbines 
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Figure 2. 5 Schematic diagram of a typical plant set-up [20]. 

directly without any changing. Some studies also reveal that bio-oil from pyrolysis of chicken 

litter has heating value of 28–29.6 MJ/kg. Pyrolysis feasibility for generating energy from 

chicken litter is constrained by the state of the technology, the process's relatively lower energy 

generation capacity, and the biochar's need for a strong revenue stream. Biochar would need to 

sell for more than $500/ton as an indicator to be feasible, in 2013 the price was $2,580/ton in 

the US. Also, economic feasibility often requires a stream of revenue to treat the feedstock 

material (i.e. gate fees). Since chicken litter is a saleable product, feedstock will be a process 

cost, rather than a source of income [20]. A typical schematic of the pyrolysis process can be 

seen in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Pyrolysis can be generally divided into two types: slow and fast pyrolysis. Slow pyrolysis 

produces more biochar and less energy, while fast pyrolysis produces more fluid and gas from 

the same substance, and less biochar. At high temperature and rapid contact time during the 

process, fast pyrolysis requires small sizes feedstock (< 2mm). Pyrolysis has been the subject 

of much work, but few commercial-scale facilities actually use this technology. The possibility 

of using slow pyrolysis to turn chicken litter to energy was studied, and the main product 

sources were quantified and characterised.  

The production of liquid condensates is optimum at 550 °C, which is the fraction that can be 

converted to liquid fuels. The main component of liquid fraction from this work was identified 

as fatty acids, N-compounds, phenols and sterols, while water also appears. The fraction of the 

char has a high energy content but retains most of the sulphur originally present in the substrate 

and the ashes. Pyrolysis is also associated with a low HHV gas and is considered to be 
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energetically ideal for the process's self-sufficient process. The key potential and vital elements 

are the use of slow pyrolysis for sanitation and waste-to-energy processing of waste from 

poultry litters [24]. 

The poultry litter includes relatively large amounts of ash, which are high in potassium, 

phosphorus, calcium and magnesium but can be pyrolyzed between 350 and 8000C and produce 

a viscous brown biocrude oil with pH about 6 [86]. Fast pyrolysis poultry litter biocrude oils 

have a much higher calorific value but also a higher nitrogen content than the corresponding 

biocrude oils from hardwoods. The higher calorific value of the poultry litter biocrude oils 

appears to be in direct correlation with the raw litter protein content [87].  

Also studied are processes of catalytic cracking, hydrodeoxygenation, esterification, 

supercritical extraction, and vapour reforming. Each upgrade technique has both benefits and 

drawbacks. Hydrodeoxygenation represents an important phase in the upgrading of bio-oil. 

While the chemical process is uncertain and requires different unfavourable conditions, this 

process helps to reduce the oxygen content of raw bio-oil [88]. Different types of catalysts are 

presented, their limitations and benefits, the use of novel catalysts and the deactivation of 

catalysts due to char formation under specified conditions for different upgrade techniques. 

From this study, the researchers conclude that there is no common catalyst for upgrading 

particular compounds. No particular reaction pathway is established for bio-oil processing. All 

the reviews and research carried out so far are limited to the individual compounds of bio-oil 

rather than the whole [88].  

There are key points that could be discussed in bio-oil upgrading process study. These include 

developing multifunctional catalysts that can upgrade the bio-oil properties, becoming able to 

blend with existing fossil fuels or be used directly as transportation fuels. Bio-oil's potential is 

increasingly recognised, with rapid growth in research to improve bio-oil properties, especially 

for dedicated applications and the production of biofuels. Some of the most interesting and 

potentially useful works on more complex and sophisticated catalytic systems would require 

more comprehensive development in order to demonstrate feasibility and viability [87]. 
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2.5.5 Relevant Consideration for Choosing Chicken Litter Conversion Technology 

Converting chicken litter to energy contributes to the creation of an alternative energy 

generation as part of the continuing effort to reduce the use of fossil fuels. In addition, using 

chicken litter delivers the added value of reducing waste from the poultry farming sector. 

However, there are several factors that need to be considered when generating energy from 

chicken litter, for example the economic and environment aspects. 

 

2.5.5.1 Economy Issues  

Converting chicken litter to energy not only offers a solution for agricultural waste from 

chicken farming, but also provides an economic added value for farmers and organizations. In 

general, the use of chicken litter in several models needs an initial capital and running cost that 

will be used as the foundation for analysing feasibility. The following is an illustration of the 

economic analysis for using chicken litter through anaerobic digestion, combustion, 

gasification and pyrolysis process. 

Economic Issues with Anaerobic Digestion  

Calculating the investment value of the anaerobic digestion model identifies whether the model 

is profitable or not. One example is taken from a project conducted by Nijhuis Water 

Technology BV, who built an anaerobic digester for chicken litter in the Ukraine. The digester 

tank used has the volume of 2000 m3 that can contain 17 tons of chicken litter per day. If each 

kilogram of organic chicken litter can produce 0.5 m3 biogas, then the daily biogas production 

would be 3400 m3 per tank. Biogas has the heating value of 23–25 MJ/m3 or 11.5–12.5 MJ/kg 

chicken litter. Using a biogas engine, 1 m3 biogas would produce approximately 2.1 kWh of 

electricity and 2.5 kWh heat [89]. 

In this project, the reactor has 10 tanks and chicken litter is not the only material used. Mixed 

with sorghum, sludge, and waste streams from the chicken slaughterhouse and wastewater for 

dilution, it can produce 2200 m3 of biogas in 30 days. The investment value of this project is 

€13 million with the revenue of €3.6 million/year (3.6 year payback period). The heat value 

produced by the biogas engine as well as fertilizer produced as the end result of the anaerobic 

digestion have not been added to the revenue value [89].  
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In 2017, an anaerobic plant was built in the United Kingdom, with the expectation of 

overcoming the environmental problem caused by 40,000 tonnes of chicken litter produced 

each year by poultry sector. The plant has the investment value of £23.3 million and it is 

expected to generate 3 MW of electrical power that is sufficient to supply 4000 households and 

to generate high quality organic fertilizer. This plant is the first plant in the world that uses 

100% poultry litter with the anaerobic digestion system [90].  

Economic Issues with Combustion 

The combustion system with boilers using coal as their fuel and poultry litter as the biomass 

source can be used directly to replace coal. The poultry litter is put into the furnace and it is 

ignited at high temperature. In the boiler, the high temperature and combustion are used to heat 

the water into steam. The steam is then used to generate an alternative energy, electrical energy 

for instance [91]. However, as poultry litter is high in chloride, the combustion process will 

cause corrosion to the boiler. Maintenance costs for existing boilers, therefore, which are not 

specially designed for poultry litter, will be extremely high [92].  

To install new facilities for poultry litter combustion, the capital cost is estimated to be 

$10,500/kW with the system capacity of 700 kW (including boiler plant). The annual operating 

and maintenance cost would be $1,800/kW. The combustion process also has an added value, 

since the remains of the poultry litter combustion can still be used as fertilizer. All costs are 

modified into $/kWh to simplify economic measurement. By taking into account the cost of 

production and the average electricity retail price per kWh is $0.0674 (2006), the payback 

period is more than 100 years [93]. 

Economic Issues with Gasification and Pyrolysis 

In 2001, a gasification system for poultry litter was already being used with the Biomax 

Modular Power System. The capital cost used was $1,520/kW for a system with 0.5 MW 

capacity and $1,121/kW for a system with 1 MW capacity [94]. In 2005, using the Biomax 

system for forest residues, the capital cost was $2000/kW for a 100 kW system and $1500/kW 

for a 1 MW system [95]. The payback period of 7.4 to 8.2 years for this gasification system is 

longer than the anaerobic digestion system but shorter than combustion systems [93]. 
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The conversion of energy using the pyrolysis method requires relatively high heat. Several 

options are used for this, one of which integrates waste heat using the Organic Rankin Cycle 

(ORC) [96]. Huang, et al., have performed an economic analysis for pyrolysis using ECLIPSE 

software to obtain the optimum value of the break-even electricity selling price (BESP). The 

pyrolysis system used has the chicken litter capacity of 1500 kg/h. If the electrical energy of 

the ORC system and waste heat are not used, the BESP value would be £218/tonne, while if 

the electrical energy and waste heat were integrated, the BESP value would decrease to 

£178/tonne [96]. 

 

2.5.5.2 Environmental Issues 

Using chicken litter contributes towards alternative energy generation as part of the continuing 

effort to reduce the use of fossil fuels. In addition, using chicken litter delivers an added value 

of reducing waste that comes from the poultry farming sector. However, there are several 

factors that need to be taken into account when generating energy from chicken litter. Besides 

the economic factors, environmental factors should also be considered. Chicken litter has 

several characteristics that may deliver a negative impact on the environment. As an example, 

compare to the cow litter, chicken litter is low in moisture content (15–30%), which means a 

relatively high volume of water is needed during the process. There is also the issue of high 

levels of ammonia that can cause an unpleasant odour. The following are several more specific 

matters that reveal a more comprehensive picture when considering each system for generating 

energy from chicken litter, namely anaerobic digestion, combustion, gasification and pyrolysis 

[93].  

Environmental Issues with Anaerobic Digestion 

Anaerobic digestion is the most natural process to generate biogas. However, there are several 

matters that need to be considered for anaerobic digestion. Firstly, whether anaerobic digestion 

is appropriate needs to be considered. Significant amounts of water are needed for poultry litter 

anaerobic digestion; anaerobic digestion is better suited for layer manure wastes that are high 

in moisture content. Secondly, the resulting liquid stream, which is rich in phosphate and wet 

sludge needs to be disposed of. Where land use of poultry litter is not permitted, anaerobic 

digestion will not alleviate phosphate nutrient disposal requirements. Another aspect that needs 
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to be considered is that anaerobic digestion is a biological process that is time consuming. It 

includes a longer start-up time (in comparison with combustion and gasification) and reliable, 

regular maintenance, which will make it more difficult to introduce on a small (on-site) scale 

[93].  

 

Environmental Issues with Combustion 

It is possible for poultry litter to be directly combusted. However, since poultry litter is high in 

moisture (for combustion process), it needs to be dried to reach below 15% moisture content. 

Low moisture will result in an optimum combustion process [c]. Following the drying process, 

the combustion process is performed. This process generates heat, gases such as carbon 

monoxide (CO), carbon dioxide (CO2), nitrogen oxide (NOx) and sulphur dioxide (SO2), ashes 

and fine particles dispersed in the air, and an unpleasant odour [20], [97].   

In performing the combustion process, there are some disadvantages that need to be considered. 

Gases generated through the process of combustion are known to have a negative impact on 

the environment. Gases such as NOx and SO2 may cause acid rain, while gases such as CO and 

CO2 contribute to the greenhouse effect in the atmosphere. In addition to issues caused by 

gases, the small particles dispersed in the air, as well as the odour, may cause air pollution 

within the surrounding environment. These environmental issues are highly likely to affect 

humans negatively [98]. In order to decrease the level of air pollution, air pollution control 

should be considered, using devices like a particulate control system, wet flue gas system or 

CO2 capture system [99]. On the other hand, there is also an advantage of the combustion 

process. Ashes resulting from the process can be used as fertilizer, as they still contain the 

elements of phosphorus (P) and phosphate (K) [84], [98]. 

Environmental Issues with Pyrolysis dan Gasification 

The pyrolysis process or gasification shares the same negative impact as the combustion 

process in terms of contributing to air pollution. Pyrolysis generates synthetic gas (syngas) in 

the form of preliminary carbon monoxide (CO) and hydrogen (H), plus hydrocarbon oil, char 

and ash. In the combustion process, less syngas results because the oxidation process enables 

it to be completely combusted into carbon dioxides and water vapor. Pyrolysis generates more 
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syngas because it misses this oxidation process. However, the amount of syngas can be reduced 

by opting to burn it, which reduces the contribution to air pollution [20], [100].  

An advantage of the pyrolysis process comes in the form of bio-oil as its by-product. Bio-oil is 

generated by using water to condense the syngas produced during pyrolysis. However, a water 

recycling system is required in areas where water supply is limited [20], [23], [101].  

  

2.5.6 Conclusion: Chicken litter pyrolysis 

All countries have agreed to reduce their carbon footprints and the production of greenhouse 

gasses. One of the ways of reducing the carbon footprint is by switching from fossil fuel 

consumption to renewable fuel or green energy. Since mad cow disease emerged, meat 

consumption habits have changed. People have started to eat more chicken meat and the 

volume of chicken meat consumed has grown enormously. The waste from chickens has now 

created a new problem, for example the ammonia pollution from chicken manure. 

Conventionally, to reduce pollution, chicken litter is burned directly. 

Based on the literature review, there are three existing methods to generate power from farming 

waste, particularly from chicken litter. The simplest method is by burning the litter, a method 

known as combustion. Combustion involves the direct burning of chicken litter and the 

generated heat can be used for various purposes directly. Another method is anaerobic 

digestion; bacteria are used to decompose the litter into fertilizers. Methane gas (biogas) is 

formed during the decomposition process and the biogas can be used as a source of energy. 

The third method is pyrolysis and involves heating chicken litter in the absence of oxygen. 

With this method, chicken litter is transformed into biochar and bio-oil. Biochar can be used to 

improve the soil condition in farms, by enriching the soil with necessary nutrients. Meanwhile, 

bio-oil can be used as fuel for certain types of engines such as diesel engines, boilers and 

electric generators. 

Of the three mentioned methods, bio-oil, which is the end product of pyrolysis, has the highest 

value of energy potential, 28–29.6 MJ/kg. Furthermore, in terms of payback period, pyrolysis 

has the shortest period. Regarding the environmental impacts, pyrolysis may contribute to high 
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air pollution, but this can be reduced by burning the syngas. Based on these findings, this 

research will focus on the pyrolysis process.  

For research purposes, pyrolysis of the chicken litter can be divided mainly into two types: 

slow and fast pyrolysis. Slow pyrolysis occurs as the main product at low temperature and long 

residence time (30 min), with char. Fast pyrolysis takes place at high temperatures and very 

short periods of residence time (0.5–5 s)[102]. The main product of this pyrolysis process is 

produced in the liquid and gas phases. The liquid phase (bio-oil) holds most of the energy or 

HHV and is more versatile for storage, upgrading and transportation [23]. Because slow 

pyrolysis produces high char yields, it is generally more acceptable to process agricultural 

waste into a char [19]. In addition, inorganic compounds were concentrated in the char. Hence, 

a slow pyrolysis of chicken litter may produce a soil improver of high quality. It was also 

estimated that the calorific value of evolved pyrolysis syngas could sustain the energy 

requirement for the continuous operation of the process [24], [103].  

In addition to slow and fast pyrolysis, a third type is intermediate pyrolysis. Intermediate 

pyrolysis can occur at the same temperatures as slow and fast pyrolysis. The difference lies in 

the heating rate and residence time, which are 25°C/min and 15–30 min respectively [23]. Due 

to the longer residence time, the yield from intermediate pyrolysis is more even and it is also 

recognized to yield higher quality liquid [104].  

A comparative analysis of poultry litter pyrolysis in slow, intermediate and fast processes is 

presented in Table 2.3, from which it can be seen that the yields of biochar and liquids are 

comparable and in reasonable agreement with previous work. However, a significant difference 

is evident in the gas yield. Some experiments calculate the gas yield by subtracting the total 

mass of feedstock with biochar and liquid yield, while in this study (fast pyrolysis), the gas 

yield is obtained from the gravimetric calculation method [18], [102], [105].  

To understand conversion energy in the pyrolysis process requires knowledge of the calorific 

value of each yield product. Energy produced from the yield product (energy output) can be 

calculated using the calorific value and the mass of each yield product. Since the char is the 

majority of yielded product for several pyrolysis cases, the energy from feedstock mainly 

remains in char [104], [106]. However, overall energy including energy input (energy for 

running the pyrolysis process), needs to be analysed to justify the pyrolysis process for each 

application.  
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Table 2. 3 The comparison of product yield distribution from Chicken Litter Feedstock. 

Feed-stock 

Pyrolysis 

type 

Temperature 

(°C) 

Biochar 

(wt%) 

Liquid 

(wt%) 

Gas 

(wt%) 

Heating 

rate 

(K/min) 

Ref. 

Poultry litter Slow 450 42.6 32.4 25.0 23 [16]* 

Poultry litter Slow 500 45.0 35.0 20.0 10 [24]* 

Poultry litter Intermediate 800 32.6 36.8 30.6 25 [107]* 

Poultry litter Fast 600 39.8 23.2 9.9 36000 [17]* 

Poultry litter Fast 550 39.98 26.98 33.04 6600 [102]** 

Poultry litter Fast 530 31.5 27.6 21.9 - [18]** 

*fixed batch reactor, **fluidised bed reactor 

 

2.6 Summary  

Among various energy conversion processes known to have been used to convert chicken litter 

into energy, pyrolysis process is known to be the best as it generates maximum(?) energy 

output. The caloric value from pyrolysis of chicken litter is higher as compared to the caloric 

value from other methods of conversion. Pyrolysis is an endothermic process. Consequently, 

it requires a lot of energy in order to remove the water vapor contained in chicken litter. 

Chicken litter has low moisture content, and therefore it delivers an advantage as the energy 

required during the pyrolysis process is lower. The pyrolysis result can be found in chapter 4 

and discussed in chapter 5. 
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CHAPTER 3 Materials and Research Methods 

 

3.1 Introduction 

Because of its nutritious contents, chicken litter is widely used as fertilizer for soil 

improvement. However, when oversupply occurs, chicken litter will accumulate and form 

nitrates. This issue needs a solution that will enable chicken litter to be processed into another 

form. The chicken litter originated from chicken farming generally consists of chicken manure, 

feather, waste feed and bedding materials. The bedding materials commonly used are hay, 

straw, wood shavings and rice husk. With the purpose of finding a solution for chicken litter 

processing, a series of experimental tests have been performed [108].  

The experiments include slow, intermediate and fast pyrolysis, producing three main yield 

products: char, synthesis gas (syngas) and liquid (bio-oil). In order to obtain the essential 

qualities of each pyrolysis process, the elements or compounds present in the yield product 

need to be determined, alongside the characteristics of the feedstock. With the results of the 

element/compound analysis, the utilisation of the pyrolysis yield product is simulated with 

Aspen Plus software. 

 

3.2 Feedstock 

The chicken litter feedstock (Figure 3.1) was obtained from several sources including local 

Irish chicken farms, which is referred to as fresh chicken litter (FCL), and Finnish chicken 

farms. For research purposes, chicken litter from Finland was supplied and pelletized by Biolan 

into pellets of 0.5 cm diameter and 1.0 cm length [18], [109], which is referred to as pelletized 

chicken litter (PCL). Besides chicken litter obtained from chicken farming, a chicken litter 

model with the composition of 50% (in weight basis) bedding materials and 50% chicken 

manure was built in order to represent chicken litter of Indonesian origin. Four types of bedding 

materials: hay, straw, risk husks and wood shavings were used for the research. 
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(a)                                  (b)                                 (c)                               (d) 

(e)                                               (f)                                               (g)   

Figure 3. 1 Bedding material and chicken litter, (a) hay, (b) straw, (c) rice husk, (d) wood 

shavings, (e) chicken manure, (f) pelleted chicken litter, (g) fresh chicken litter. 

 

 

 

 

 

 

 

 

 

3.3 Feedstock characterisation 

A preliminary test was performed to obtain the characteristics of the chicken litter to be used 

in the pyrolysis experiment. The test included a proximate analysis test, ultimate analysis test, 

caloric value test and thermal gravimetric analysis (TGA). The same test was also performed 

on the solid sample of char that was the product of the pyrolysis process. 

 

3.3.1 Proximate test 

The purpose of the proximate test is to obtain the moisture content, volatile matter content, ash 

content and fixed carbon content of the sample. The proximate test was performed according 

to either the ASTM D1762-84 standard or BS EN 14774-3, which includes the procedures 

outlined in the following subsections. 
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3.3.1.1 Moisture content test 

A crucible without the lid is placed in a furnace and heated to 105 °C until it reaches a constant 

mass. The heated crucible is taken out of the furnace and allowed to cool on a heat-resistant 

plate before being transferred into a desiccator. The weight of the crucible is noted, before it is 

loaded with 1.0 g of sample, without the lid, and returned to the furnace at 105 °C for 12 hours 

or overnight. Duplicates of each sample are made to minimise measurement uncertainty. 

Moisture content is calculated using Equation 3.1: 

𝑀𝐶 =  (
𝑀2–𝑀3

𝑀2−𝑀1
) × 100%   ……………………………………………………………... (3.1) 

Where, 

MC is the moisture content (% basis); 

M1 is the weight of the empty dry crucible without the lid (grams); 

M2 is the weight of the wet sample with the crucible and without the lid (grams); and 

M3 is the weight of the dry sample with the crucible and without the lid (grams). 

 

3.3.1.2 Volatile matter content test 

A crucible with its lid is placed in a furnace and heated to 900 ± 10 °C (filled with a noble gas 

like He/Ar to avoid any oxidation) for 7 minutes. The heated crucible is taken out of the furnace 

oven and allowed to cool on a ceramic plate or a heat-resistant plate before being transferred 

into the desiccator. The weight of the crucible is noted, and it is loaded with 1.0 g of sample 

before the lid is added and the crucible and lid are returned to the furnace oven at 900 ± 10 °C 

for 7 minutes and the furnace heating rate was not set. Duplicates of each sample are made to 

minimise measurement uncertainty. 

Volatile matter content is calculated using Equation 3.2: 

𝑉𝑀 =  (
𝑀2−𝑀3

(𝑀2−𝑀1)×(1−
𝑀𝐶

100
)
) × 100%   …………………………………………………… (3.2) 
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Where, 

VM is the volatile matter content (% basis); 

M1 is the weight of the empty dry crucible with the lid (grams); 

M2 is the weight of sample along with the crucible and lid before volatilisation (grams); and 

M3 is the weight of sample along with the crucible and lid after volatilisation (grams). 

 

3.3.1.3 Ash content test 

An empty crucible without a lid is placed in a furnace and heated to 550 °C for an hour. The 

crucible is taken out and placed on a heat-resistant plate for cooling for about 10 minutes before 

continuing cooling to ambient temperature in a desiccator. The weight of the empty crucible is 

noted and thereafter the crucible is loaded with 1.0 g of dry sample and put in the cold furnace. 

The furnace is programmed to reach 250 °C from ambient temperature with a heating rate of 5 

°C/minute and is maintained for a further two hours to drive off the volatile matter. After that, 

the temperature of the furnace is set to 550 °C and the heating rate is increased to 10 °C/minute 

before it is held at that temperature for another two hours. The sample is taken out and 

undergoes the same cooling and weighing procedure as that used for an empty crucible. The 

samples are duplicated to provide better accuracy in results. If the combustion is incomplete – 

indicated by the appearance of some carbon – then the sample has to be returned to the furnace 

for another 30 minutes at 550 °C and this process has to be repeated until the mass change is 

less than 200 mg. 

Ash content is calculated using Equation 3.3: 

𝐴 =  (
𝑀3−𝑀1

(𝑀2−𝑀1)×(1−
𝑀𝐶

100
)
) × 100%  ……………………………………………………… (3.3) 

Where, 

A is the ash content (% basis); 

M1 is the weight of the empty dry crucible without the lid (grams); 

M2 is the weight of sample with the crucible and without the lid before ash generation (grams); 

M3 is the weight of sample with the crucible and without the lid after ash generation (grams). 
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3.3.1.4 Fixed carbon content test 

Fixed carbon represents the remaining carbon after the complete volatilisation and without the 

ash content. It was calculated by the difference according to the Equation 3.4: 

𝐹𝐶 =  100 − (𝑀𝐶 + 𝑉𝑀 + 𝐴)  ……………………………………………………….. (3.4) 

Where, 

FC is the fixed carbon content (% basis); 

M1 is the moisture content (% basis); 

M2 is the volatile matter content (% basis); and 

M3 is the ash content (% basis). 

 

3.3.2 Ultimate test 

The purpose of this test is to obtain the chemical elements of the sample such as carbon, 

hydrogen, nitrogen and sulphur (C, H, N and S). All solid sample elements of the feedstock, 

including char, were identified using a vario EL cube as an elemental analyser. The schematic 
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diagram of the analyser is shown in Figure 3.2. Prior to the sample test, the equipment was 

calibrated using sulphanilic acid to obtain the standard element composition. 

 

Figure 3. 2 Vario EL cube elemental analyser schematic diagram. 

An 8 mg sample was put into the aluminium boats, sealed and squeezed into a small ball before 

being put in the ball valve above the combustion cylinder and flushed with helium carrier gas. 

The sample went into the combustion cylinder and was burned with the help of oxygen gas. 

The emission gas produced was detected by a thermal conductivity detector (TCD) and was 

used to identify the amount of carbon, hydrogen, nitrogen and sulphur. Meanwhile, oxygen 

obtained was identified by a difference calculation. The test was done three times for each 

sample and reported as an average on an as-received basis, dry basis, and a dry and ash-free 

basis. 

 

3.3.3 Caloric value test 

A bomb calorimeter, as shown in Figure 3.3, was used to determine the higher heating value 

(HHV) of the solid samples. An adiabatic oxygen 6200 isoperibol calorimeter from Parr 

Instrument Company was used as the bomb calorimeter. Prior to usage, the equipment had been 

calibrated using a standard sample of benzoic acid. A 1 g sample mass (pressed into a tablet if 

the sample is in powder form) was put into the sample holder and then into the bomb vessel. It 
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was then sealed and pressurised with oxygen. The bomb vessel was immersed into 2000 ml of 

water (with temperature maintained at 25 °C). The top cover was closed before an electrical 

charge was given through the ignition wire to combust the sample. The water temperature was 

increasing due to the combustion and the increase was recorded to calculate the HHV of the 

sample. 

 

Figure 3. 3 (a) Parr 6200 isoperibol bomb calorimeter, (b) bomb calorimeter schematic. 

After the process was finished, the excess pressure of the bomb vessel was released, the bomb 

vessel was opened and the inner part was cleaned using distilled water. The distilled water that 

was used for washing was collected into a 50 ml flask and stored for chlorine testing in 

accordance with the CEN/TS 15408 (2006) standard. Duplicate samples were measured to 

ensure the precision of the result. 

 

Not all samples had their caloric value measured due to time limitations; however, the caloric 

value can also be obtained by using an empirical equation such as Equation 3.5 [110]: 

HHV [
MJ

kg
] = (33.5 × C) + (142.3 × H) − (15.4 × O) − (14.5 × N)  ………………... (3.5) 

Where the numerical value of C, H, O, N is represent the weight percentage of Carbon, 

Hydrogen, Oxygen and Nitrogen respectively from the sample. 
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3.3.4 Thermal Gravimetric test 

To study the devolatilisation or weight loss of the feedstock due to the temperature elevation, 

a preliminary test was performed using a thermogravimetric analyser (TGAr) prior to the 

pyrolysis test (Figure 3.4). A sample was ground to less than 100 μm in particle size, and 10 

mg was loaded into the TGA crucible. Using Nitrogen as an inert gas, the sample was heated, 

ramping up 10°C/minute from room temperature up to 1200°C and was combusted using 

oxygen gas for the last 15 minutes at a constant 1200°C. All data, including temperature and 

mass reduction, was recorded in separate computer software, which was transferred into a 

spreadsheet and used for analysis. 

 

Figure 3. 4 Equipment for thermal gravimetric analysis (TGA). 

3.4 Pyrolysis yield analysis  

Three main yield products of pyrolysis were analysed using three different methods. The char, 

as a solid product, was analysed by proximate and ultimate analysis. The procedure methods 

were similar to those used for the feedstock analysis. For the gas yield, identification and 

quantification was done using a micro gas chromatograph (Micro GC), while liquid yield was 

determined using a gas chromatograph mass selective detector (GC MSD). 

 

3.4.1 Gas yield analysis 

Evolved gas from the pyrolysis process was condensed and collected into a gas sample bag or 

syringe prior to the gas analysis. After the pyrolysis process was complete, the gas container 
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was removed and connected to the inlet of the Micro GC directly (no drying process). Micro 

GC Agilent 3000 (Figure 3.5. (a)) was used to identify and quantify the non-condensable gas 

from the slow and intermediate pyrolysis (at University of Limerick) and the Varian CP-4900 

(Figure 3.5. (b)) was used in a fast pyrolysis process (at TU Delft). 

 

 

 

 

 

 

 

Both Micro GC detectors are able to identify hydrogen (H2), nitrogen (N2), carbon monoxide 

(CO), carbon dioxide (CO2) and methane (CH4). The Agilent 3000 has an additional feature to 

detect lighter hydrocarbon and gas compounds such as ethane (C2H6), ethylene (C2H4), 

acetylene (C2H2) and hydrogen sulphide (H2S). All detected chromatograph compounds were 

calculated using the software from the Micro GC to obtain the quantities. 

 

3.4.2 Liquid yield analysis 

The compounds of the liquid yield products from the slow and intermediate pyrolysis were 

identified using an Agilent 7890A GC. When coupled with a triple-axis MSD 5975C, this two-

equipment combination is called a gas chromatography mass selective detector (GC MSD) 

(Figure 3.6). In GC, helium was used as a carrier gas with 1.2 ml/minute constant flow and is 

mixed with a liquid sample passed through a non-polar HP-5MS capillary column (30 m × 

0.25 mm, 0.25 μm film thickness). The injection port in the capillary column operated at 

300 °C and the oven temperature program was started at 30°C in 7 minutes, before heating to 

180°C at 5°C/minute and finally from 180°C/minute to 270°C at 8°C/minute. The MSD 

(a)                                                                      (b)          

Figure 3. 5 Micro GC (a) Agilent 3000, (b)Varian CP-4900. 
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operated in electron ionisation mode at ionisation energy of 70 eV and the full scan mode with 

the mass range 50–550 m/z. The transfer part between the MSD ion source and the mass 

analyser of MSD quadrupole was maintained at temperature 300°C [108]. 

 

Figure 3. 6 Gas chromatography mass selective detector (GC MSD). 

Before the injection of the bio-oil into GC-MSD, it was diluted by using isopropanol. It was 

divided into several dilution series (5x dilution to 60x dilution), as shown in figure 3.7. To 

made the 5x dilution, 1 ml oil was added into 4 ml isopropanol, and then for the 10x dilution, 

2 ml from 5x dilution was added into 2 ml isopropanol. The steps of making dilution was 

continued until the 60x dilution. The purpose of the division was to obtain sufficient 

concentration values and to use the equipment accordingly. For the first measurement, the most 

diluted oil was used (60x dilution), followed by a less diluted oil, in order to obtain the best 

result. For the next measurement, the best dilution from the first measurement was used (20 

dilution).  

Prior to its injection to the GC MSD, liquid yield (bio-oil) was diluted by using isopropanol. 

As displayed in figure 3.7, the dilution was made into several series, starting from the thickest 

(5 × dilution) to the lightest (60 × dilution). The first sample that was tested was the liquid yield 

from the PCL pyrolysis at the temperature of 500°C. For the first measurement, the most-

diluted oil was used (60 × dilution), followed by the less-diluted oil. The chromatogram of the 

GC MSD showed that the bio-oil of 20x dilution delivered the best peak separation. Therefore, 

the oil yield sample used for the rest of the tests was the one with 20 × dilution. 
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     (a)                      (b)                                                (c) 

Figure 3. 7 (a) Bio-oil, (b) isopropanol, (c) dilution. 

 

  

 

 

 

The result from the GC MSD enables detection of about 100 species in the liquid yield; 

however, only 15 of the most-abundant liquid compounds were identified and quantified in this 

study using the NIST 08 MS library within MSD ChemStation®[108]. 

3.5 Simulation 

Aspen plus software (AspenTech 2019) was used to simulate the pyrolysis process, including 

the production of the yield at the temperature variation. In Aspen Plus, the simulation is based 

on mass and energy balance, and is made by unit blocks for reactors, heat exchangers, 

separators, pumps and compressors. The unit blocks that were used were connected with the 

stream line, which represents the mass flow, heat flow or work. 

The mass stream as mass flow is divided into three classifications: mixed stream, solid stream 

and non-conventional stream. The solid stream has only solid phase components, while the 

mixed stream can be a mixture of gases, liquids or solids. The thermodynamic and chemical 

properties of the solid and mixed streams are provided in the Aspen Plus library. While the 

thermodynamic properties from non-conventional stream were calculated by Aspen Plus using 

its proximate, ultimate and sulphate analysis. The details and results of the chicken litter 

pyrolysis simulation by using Aspen plus software can be found in Chapter 6.  

3.6 Summary 

The ultimate and proximate analyses, along with the heating value of the poultry litter, were 

obtained to understand the behaviour of chicken litter for energy conversion. The determination 

of the devolatilisation behaviour of poultry litter during the heating process was performed by 

the means of a thermal gravimetric analysis (TGA). The yield of the pyrolysis process was 

identified and quantified using the appropriate method and equipment. The results from the 

three pyrolysis methods employed for chicken litter are discussed in Chapter 4. 
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CHAPTER 4 Pyrolysis experiments 

 

4.1 Introduction  

A pyrolysis experiment has been performed using chicken litter as the feedstock employing 

three types of pyrolysis: slow, intermediate and fast. The slow pyrolysis has been conducted in 

Brunel University London by utilising the facilities available at the CSEF Research Centre of 

Mechanical Engineering Department. All experiment results from Brunel University, including 

intermediate pyrolysis, were tested and evaluated in the University of Limerick, Ireland, using 

the equipment in the Chemical Science Department, Bernal Institute. Further pyrolysis 

experiments, used for fast pyrolysis, were performed at the Delft University of Technology 

(TU Delft), in the Large-Scale Energy Storage Laboratory at the Department of Process & 

Energy (faculty 3mE). 

4.2 Slow pyrolysis 

The slow pyrolysis experiment performed at the Institute of Energy Futures, Brunel University, 

London, lasted for six months. The experimental activities included the design, procurement 

and installation of all equipment to be used. Based on previously conducted testing, the 

equipment was divided into two categories: proximate test equipment and pyrolysis test 

equipment. The proximate test equipment is shown in Figure 4.1. 

 

Figure 4. 1 Experimental equipment in CSEF, Brunel University, London. 

Pyrolysis 

High Temperature 
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A high-temperature oven with a maximum temperature of 1100°C was used in the proximate 

test. The test was performed in order to find out the condition or characteristics of the chicken 

litter (feedstock) that was going to be pyrolysed. Tests were performed to enable the 

determination of moisture content (MC), volatile matter content (VM), ash content (A) and 

fixed carbon content (FC), in weight percentage. The type of feedstock that was tested was 

chicken litter, with composition of 50% chicken manure and 50% bedding material. 

 

4.2.1 Slow pyrolysis apparatus 

The schematic diagram of the pyrolysis apparatus is shown in Figure 4.2. The pyrolysis reactor 

was manufactured by H. Baumbach & Co. Ltd. [111], UK. It consists of a quartz glass tube 

reactor and borosilicate glass condensation unit. The diameter of the reactor is 46 mm, while 

the length is 500 mm. In the condensation unit, raw syngas from the cyclone was cooled 

through heat exchangers using cold water (5–15 °C) as a heat-transfer liquid. The pyrolysis 

condensate was collected in two 500 ml flasks and the syngas was collected in the gas-sampling 

bags (multi-layer aluminium-foil bags). Gas bags were stored in a cold, dry place and it is 

assumed that no gas compounds leaked in or out during storage. 

 

Figure 4. 2 Schematic of the pyrolysis apparatus: (1) stopper, (2) reactor tube, (3) reducer, (4) 

cyclone, (5) & (6) 90° elbow, (7) condenser, (8a) & (8b) 500 ml flask, (9) heating tape, (10) 

voltage regulator, (11) thermostat, (12) gas-sampling bag. 
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The set temperature is achieved and maintained by Samox® heavy insulated heating tape with 

maximum power output of 1,254 W (Omegalux, USA). The temperature regime in the reactor 

was measured and controlled by a digital thermostat and voltage regulator (SCR 4,000 W). The 

control device and electric wiring diagram for the slow pyrolysis experiment is shown in Figure 

4.3. 
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Figure 4. 3 Electric wiring diagram. 

4.2.2 Heat required 

The slow pyrolysis process for the chicken litter produced three main yields: gas (synthesis 

gas), char (bio-char) and tar (bio-oil). The energy balance schematic for the pyrolysis system 

is shown in Figure 4.3. This is used to help the process analysis of the yield produced. 

 

 

 

 

 

Figure 4.4 Heat balance. 
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The heat balance in Figure 4.4 shows that the total energy input equals to the total energy 

output. It can be expressed by Equations 4.1 and 4.2: 

∑ Specific Energy Input =  ∑ Specific Energy Output   ……………………………. (4.1) 

If the analysis of pyrolysis process is assumed in adiabatic process (no in/out heat) and has 

reached the steady state condition, then the equation 4.2 can be expressed as follow: 

ℎ𝐶𝐻𝐼𝐶𝐾𝐸𝑁 𝐿𝐼𝑇𝑇𝐸𝑅   +  𝑞𝐻𝐸𝐴𝑇𝐸𝑅   =  ℎ𝐺𝐴𝑆   +  ℎ𝐶𝐻𝐴𝑅   + ℎ𝑇𝐴𝑅  ………………………….. (4.2) 

In this case, hCHICKEN LITTER, hGAS, hCHAR, and hTAR are assumed to be equal to the enthalpy of 

formation (ℎ̅𝑜
𝑓) of chicken litter, gas, char and tar (bio-oil) respectively. qHEATER is the energy 

needed to heat the chicken litter (transferred through the wall of reactor tube) during the 

pyrolysis process; an electric tape heater is used in this case. The reactor tube was covered by 

the tape heater and the tape heater was insulated. The process to find all enthalpy formations 

in Equation 4.2 uses the steps outlined in the following subsections. 

4.2.2.1 Chemical formula generation 

The chemical formula is derived based on the properties obtained from proximate and ultimate 

analysis of all substances (Table 4.1). 

Table 4. 1 Properties of the Substance [101]. 

Parameter 
Chicken 

Litter 
gas Char Tar 

Relative atomic 

mass, Ar 

moisture (%) 35 
 

4.8 5.3 
 

pH 
   

2.7 
 

C (%) 39.5 58.1 47.2 55.3 12 

H(%) 4.3 7.2 4.2 6.5 1 

N(%) 3.9 8.3 5.5 0.5 14 

S(%) 0.8 1.37 0.7 0.05 32 

O(%) 27.3 22.7 13.6 37.6 16 

Ash(%) 22.9 
 

30.3 0.1 
 

HHV (MJ/kg) 15.3 27.5 19.9 22.6 
 

Yield  
 

27% 23% 50% 
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The following data in Table 4.2 are the chemical formulae generated from the properties of all 

substances in Table 4.1. 

Table 4. 2 Chemical formula generation. 

Substance  
Caloric value, HHV 

Chemical formulae 
MJ/kg kJ/mol 

Chicken litter 15.3 1231.4 C3.3 H5.6 O2.2 

Gas 27.9 2452.4 C4.9 H7.3 O1.4 

Char 19.9 1855.8 C1.2 H6.0 O1.2 

Tar 22.64 2251.5 C4.6 H6.5 O2.4 

 

4.2.2.2 Enthalpy balance 

The combustion reaction process and enthalpy balance are used to obtain the enthalpy 

substance according to Equation 4.3. 

CaHbOc + xO2 → yCO2 + zH2O (combustion)  ………………………………………… (4.3) 

 

The enthalpy balance for the combustion process is derived by enthalpy formation in Equation 

4.4: 

hc = hproduct – hreactant (enthalpy of combustion), 

hc = [ y(ℎ̅𝑜
𝑓,𝐶𝑂2

) + z(ℎ̅𝑜
𝑓,𝐻2𝑂

)] – [(ℎ̅𝑜
𝑓,𝐶𝑎𝐻𝑏𝑂𝑐

)+ x(ℎ̅𝑜
𝑓,𝑂2

)]    ……………………. (4.4) 

 

If, 

ℎ̅𝑜
𝑓,𝑂2

= 0 

hc = HHV substance, 

ℎ̅𝑜
𝑓,𝐶𝑂2

 = -393 kJ/mol, 

ℎ̅𝑜
𝑓,𝐻2𝑂 = -285 kJ/mol (liquid) 

 

Thus, enthalpy of formation of each substance is shown in the following Table 4.3  

Reactant Product 
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Table 4. 3 Enthalpy of formation. 

Substance  Chemical formula 
Enthalpy formation, ℎ̅𝑜

𝑓 

kJ/mol kJ/kg 

Chicken litter C3.3 H5.6 O2.2 -860.8 -10695.3 

Gas C4.9 H7.3 O1.4 -693.7 -7776.3 

Char C1.2 H6.0 O1.2 -1225.9 -13145.3 

Tar C4.6 H6.5 O2.4 -496.9 -4997.2 

By using Equation 4.2 and the percentage of yield production of the pyrolysis process (in 

Table 4.1), the qHEATER value is given by: 

qHEATER = - 1(-10,695.3) + 0.27(-7776.3) + 0.23(-13,145.3) + 0.5(-4997.2) = 3073.7 kJ/kg 

If the mass of chicken litter feedstock for the pyrolysis process, m, is 100 grams (0.1 kg) and 

the handling time for the process is 15 minutes (900 s), then the power input for the electric 

heater (PHEATER) is found as follows, assuming power factor, pf = 0.8: 

PHEATER = qHEATER × m / (time × pf) = 3073.1 × 0.1 / (900 × 0.8) = 0.427 kW = 427 W. 

This calculation was used to select the appropriate electric heater. 

 

4.2.3 Experimental results 

The slow pyrolysis tests were carried out at three temperatures: 350, 400, and 450°C. For each 

pyrolysis test, a batch of 100 g of chicken litter feedstock was placed into the reactor before all 

parts of the pyrolysis apparatus were assembled. The test was terminated when gas was no 

longer produced. The duration of the test depended on the setting temperature: approximately 

36 minutes at 350°C, 24 minutes at 400°C and 18 minutes at 450°C. The collected liquid and 

char fractions were weighed and the weight fraction of the gas was calculated by mass balance. 

The complete combustion process for the feedstock tested would have required around 436 to 

496 litres of air, while there are only 0.8 litres of air in the reactor. Therefore, despite the 

presence of a small amount of air in the reactor at the start of the test, the tests are considered 

to be conducted in an inert atmosphere, ideally inert gas must be added during the process. The 
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mass percentage of yield production from slow pyrolysis is shown in Table 4.4 and the data is 

the average from the two sets of experiments. 

Table 4. 4 Pyrolysis Test from Brunel University London. 

Sample* 
Gas (wt%) Liquid (wt%) Char (wt%) 

350°C 400°C 450°C 350°C 400°C 450°C 350°C 400°C 450°C 

Hay Mix 20.5 29.4 31.6 27.8 28.7 28.9 51.8 42.0 39.6 

Straw Mix 23.3 26.5 31.6 26.0 30.8 29.7 50.7 42.8 38.8 

Rice Husk Mix 18.0 22.1 24.8 21.8 30.7 29.2 60.3 47.3 46.1 

Wood Shavings Mix 14.1 19.9 23.1 33.1 41.2 39.7 52.9 39.0 37.3 

* Samples were made of 50 % bedding material and 50% chicken manure 

 

4.3 Intermediate pyrolysis 

In order to compare several types of feedstock, a pyrolysis experiment was also performed at 

the Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland. Two 

types of feedstock were used: fresh chicken litter (FCL) that was obtained from a local Irish 

chicken farmer and pelletised chicken litter (PCL) that was collected from a Finnish chicken 

farm. 

 

4.3.1 Intermediate pyrolysis apparatus 

The pyrolysis equipment that was used in the experiment is shown in Figure 4.5. The pyrolysis 

apparatus includes a cylindrical glass reactor of 45/50 mm, ID/OD and 600 mm in length. The 

reactor is made of quartz produced by H. Baumbach & Co. Ltd. [111], UK, and is wrapped 

using Samox® heating tape (940 W maximum power input) to achieve and maintain the 

pyrolysis temperature [112]. The heating tape was insulated with high-temperature woven 

fabric and secured with aluminium-foil tape. This experiment used a variety of temperatures: 

500°C, 600°C and 700°C, which were controlled by an electro-thermal power regulator type 

MC227 (Cole-Parmer, UK). 
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Figure 4. 5 Pyrolysis reactor apparatus and liquid cooler at the University of Limerick. 

During the pyrolysis process, in the condensation unit, raw pyrolysis gas from the reactor was 

cooled down while passing through a condenser cooler with liquid glycol used as a heat-

transfer medium. A 500 ml twin-neck flask was used to collect the pyrolysis condensate. The 

syngas was collected in gas-sampling bags and stored in a cold and dry place prior to gas 

analysis. It was assumed that no gas compounds leaked during the storage. 

The schematic of the pyrolysis is shown in Figure 4.6 and the process was completed according 

the following procedure: 

1. The pyrolyser reactor tube was heated to the required temperature in about an hour. 

Meanwhile, a metal basket was filled with 50 g of feedstock and inserted into the 

reactor tube, which was closed by a rubber stopper. 

2. Before and during the pyrolysis process, the condenser liquid cooler was maintained 

at -5 °C. 

3. The pyrolysis process was terminated when no visual vapours were observed in the 

reactor tube. This occurred after 10–12 minutes. 

4. The electrothermal regulator was then switched off, the reactor cooled down, and the 

metal basket with the remaining char was weighed. 

 

 

Pyrolysis Apparatus   

Liquid Cooler   
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4.3.2 Experimental results 

The tests were repeated five times for each temperature regime. Once complete, the apparatus 

was disconnected and the flask, 90° elbow, reducer, condenser cooler and reactor tube were 

weighed. To obtain the mass of char and bio-oil yields, all glass components were weighed 

before and after the experiment and the amount of char was determined from the difference 

between the weight of the metal basket before and after the experiment and ash that left in the 

basket was considered as char. The gas yield was calculated by the difference between the 

initial mass of feedstock and the mass of bio-oil and char. Moisture from wet sample was 

condensed and add up the bio-oil fraction. 

The char yield was weighed after each experiment while the yield of liquid was collected in a 

flask and weighed after the five experimental repetitions. The experiment was done in 5-time 

repetition. During the 5-time experiments,  only 2 times experiment that the gas yield was 

collected in gas sampling bags. Meanwhile, in the other 3 experiments, the gas yield was not 

collected but only passed through a paper-filled plastic bottle in order to trap the remaining 

bio-oil aerosols in gas. The gas was then released through the exhaust duct. The aerosol weight 

was added to the liquid yield. The mass percentage of yield production from intermediate 

pyrolysis is shown in Table 4.5. 
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2. Reactor tube 

3. Tape heater and insulation 

4. Electrothermal regulator 

5. Reducer 
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9. Gas sampling bag 

10. Twin neck flask 
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Figure 4. 6 Schematic view of the pyrolyser. 
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Table 4. 5 Pyrolysis test from the University of Limerick. 

Sample* 
Gas (wt%) Liquid (wt%) Char (wt%) 

500 °C 600 °C 700 °C 500 °C 600 °C 700 °C 500 °C 600 °C 700 °C 

PCL 21.4 31.4 39.3 42.8 34.1 30.7 35.8 34.5 30.0 

FCL 6.4 33.2 45.2 57.8 42.3 31.8 35.8 24.5 23.0 

* PCL: pelletised chicken litter; FCL: fresh chicken litter. 

 

4.4 Fast pyrolysis 

In order to understand the effect of a fast heating rate for pyrolysis, the feedstock was pyrolysed 

with a rapid ramping temperature – known as fast pyrolysis. Fast pyrolysis was performed in 

TU Delft using the facility in their Large-Scale Energy Storage section and was funded by EU 

Horizon 2020 through the BRISK2 programme. For this short-term research (three-weeks long) 

only one type of chicken litter was used as the feedstock for all of the TU Delft-based 

experiments, this was PCL. 

 

4.4.1 Fast pyrolysis apparatus 

The fast pyrolysis heating process was performed using a Pyroprobe 5000 series 

(Figure 4.7 (b)). The heating rate was set at 600°C/second and the regime temperature 

(pyrolysis temperature) was divided into three setting temperatures: 400, 500, and 600°C. As 

shown in the schematic diagram in Figure 4.7 (a), 30 mg of ground PCL (< 100 μm) was used 

as the feedstock and put into a 2.1 mm quartz tube, including quartz wool used as the sample 

holder, and was then inserted into the tip of the probe rod. 
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Figure 4. 7 (a) Schematic diagram, (b) and equipment for fast pyrolysis process. 

 

4.4.2 Experimental Result 

During the pyrolysis process, vapour yield product was condensed, with the non-condensable 

gas collected into the syringe prior to the gas analysis. The scale reading on the syringe showed 

the volume of the gas. After the pyrolysis process was complete, the syringe was removed and 

connected to the inlet of a micro gas chromatogram (Micro GC). A Varian CP-4900 Micro GC 

was used to identify and quantify the non-condensable gas from the pyrolysis process [113]. 

The Micro GC gives the quantification data of pyrolysis gas in volume base and, by applying 

the ideal gas law, the mass fraction of the gas can be obtained. The other yield products, char 

and liquid, were weighed by using scale to obtain the mass. The percentage of each yield 

product from the fast pyrolysis can be seen in Table 4.6. 

Table 4.6 Pyrolysis test from TU Delft. 

* Sample is PCL: pelletised chicken litter. 

Temperature (°C)* Gas  

(wt%) 

Liquid  

(wt%) 

Char  

(wt%) 

Mass closure  

(wt%) 

400 4.4 7.1 62.2 26.3 

500 7.2 22.3 48.5 22.0 

600 10 23.2 39.8 27.1 

(a)                                                                          (b)          



53 

 

4.5 Summary 

Pyrolysis tests of chicken litter with varying temperature and type of chicken litter feedstock 

have been conducted successfully. For each experiment, the pyrolysis yield products such as 

char and liquid were collected and weighed by a scale. During the slow and intermediate 

pyrolysis, the mass of the gas yield product was obtained by taking the difference between the 

feedstock and the other yields. Since it was possible to know the gas volume of the yield, the 

gas from fast pyrolysis was able to be quantified by using micro GC. 

The feedstock characteristics and behaviour during the heating process (using a 

thermogravimetric analyser), including the mass balance of the yield of the char, liquid and 

syngas, are compared and analysed in Chapter 5. The product yield was analysed using 

standard equipment to give reliable data. The chemical analysis of the pyrolysis products 

included gas chromatography, Karl Fisher titration, bomb calorimetry and ultimate analysis. 
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CHAPTER 5 Results and analysis 

 

5.1 Introduction 

During the experiment, chicken litter as feedstock was converted using the thermochemical 

process of pyrolysis. Based on heating rate, pyrolysis is categorised into three types: slow, 

intermediate and fast pyrolysis. Using several types of chicken litter, the process of pyrolysis 

delivered three main product yields: synthesis gas (syngas), pyrolytic liquid and char. The 

percentage of these yield products varied between pyrolysis processes, depending on the 

temperature setting. Different temperature settings were applied to obtain the yield product 

suitable for a certain application. 

 

5.2 Feedstock characterisation  

In order to obtain the pyrolysis result that is optimum as well as suitable for the desired 

application, it is necessary to know the characteristics of the feedstock that is going to be used. 

Chicken litter proximate analysis is conducted to obtain the characteristics, by using the 

parameters that include moisture content (M), volatile matter (VM), ash content (A) and fixed 

carbon (FC). Meanwhile, to obtain the basic element composition such as carbon (C), hydrogen 

(H), Nitrogen (N), sulphur (S) and oxygen (O), the ultimate analysis is used. The following is 

the characterisation of the chicken litter used as the feedstock during the pyrolysis experiment. 

 

5.2.1 Proximate and ultimate analyses 

The results of both proximate and ultimate analyses of the chicken litter used in the pyrolysis 

experiment are shown in Tables 5.1 and 5.2. Among the modelled chicken litter types (mixture 

of bedding and chicken manure), rice husk mix has the highest ash content, which is 30.41%. 

This indicates that this type of litter will produce more char in a pyrolysis process. Wood 

shaving mix, on the other hand, is low in ash and high in volatile compounds (23.35% and 
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64.81% respectively). Consequently, this type of litter will produce more syngas and pyrolytic 

liquid.  

In addition to the modelled chicken litter, two types of chicken litter from farmers were used 

in the pyrolysis experiment: fresh chicken litter (FCL) and pelletised chicken litter (PCL). After 

the mechanical process, the moisture content of the PCL was shown to decrease significantly 

compared to the FCL which had been directly collected from chicken farming: 22.7% versus 

4.8%. Similar to rice husk mix, PCL has high ash content and will therefore produce more char 

than FC L[108], [114]. If syngas were expected to be the end result of a pyrolysis process, then 

PCL would be more suitable for use than FCL, as it has a relatively high volatile percentage, 

which is 67.09%. 

Table 5. 1 Proximate Analysis of Feedstock. (HHV, Higher Heating Value; MC, Moisture 

Content; VM, Volatile Matter; A, Ash; FC, Fixed Carbon; FCL, Fresh Chicken Litter; PLC, 

Pelletised Chicken Litter.) 

Sample HHV 

(MJ/kg)* 

MC 

(wt%)* 

VM 

(wt%)** 

A 

(wt%)** 

FC 

(wt%)** 

Hay Mix 14.34 12.98 60.59 24.18 15.23 

Straw Mix 12.77 14.55 60.89 26.26 12.85 

Rice Husk Mix 12.99 9.09 60.16 30.41 9.43 

Wood shavings 

Mix 
14.81 13.05 64.81 23.35 11.84 

Chicken Manure 12.51 11.14 57.51 39.01 3.48 

FCL 13.75 22.67 56.51 12.70 30.79 

PCL 16.28 4.84 67.09 17.92 15.00 

*Data are expressed on as received basis, **Data are expressed on a dry basis 

Table 5.2 shows that the nitrogen (N) content of chicken manure has the potential to produce 

higher volumes of ammonia, compared to the other litters analysed. It confirms that adding 

bedding materials in chicken farming will reduce the effect of air pollution caused by chicken 

litter. The use of peat for PCL resulted in a higher amount of carbon (C) and hydrogen (H). 

This explains why the caloric value of the PCL, which is HHV in this case, is higher than that 

of the FCL. The caloric value of blended chicken litter and chicken manure is obtained using 

equation 5.1 [110]. The caloric value of FCL and PCL is obtained using bomb calorimetry. 
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HHV [
MJ

kg
] = (33.5 × C) + (142.3 × H) − (15.4 × O) − (14.5 × N) …………………. (5.1) 

Table 5. 2 Ultimate Analysis of Feedstock. (C, carbon; H, hydrogen; N, nitrogen; S, sulphur; 

O, oxygen; FCL, Fresh Chicken Litter; PCL, Pelletized Chicken Litter.) 

Sample 

C  

(wt%) 

H  

(wt%) 

N  

(wt%) 

S  

(wt%) 

O*  

(wt%) 

Hay Mix 52.15 6.09 6.06 0.48 35.21 

Straw Mix 51.41 5.97 5.21 0.52 36.88 

Rice husk Mix 51.10 6.12 5.15 0.54 37.09 

Wood shavings Mix 53.74 6.34 5.07 0.49 34.36 

Chicken manure 54.18 6.34 9.64 0.91 28.93 

FCL 43.61 3.92 8.28 0.7 0.96 

PCL 51.34 6.56 5.42 0.71 0.59 

Data are expressed on dry and ash free basis, *Calculated by difference. 

 

5.2.2 Thermogravimetric analysis 

Chicken litter can be classified as biomass because it contains the lignocellulose components 

such as cellulose, hemicellulose and lignin, water, protein and mineral [19], [49], [115]. 

Thermogravimetric analysis, also known as TGA, was performed to discover the feedstock’s 

behaviour when heated. The feedstock used for the TGA was PCL, which was ground to 

particles with a size smaller than 100 μm. The given temperature was started from the room 

temperature up to 1200°C, with a heating rate of 10°C/min. To finish the process, oxygen was 

added for the combustion process of the sample.  

The mass loss percentage during heating can be seen in Figure 5.1. The rapid decrease in mass 

started between 200°C and 600°C, which suggests that torrefaction and the pyrolysis process 

of the feedstock occurs within this temperature range. As seen from the reduction in mass 

shown in Figure 5.1, pyrolysis seems to occur in two phases, a fast phase and a slow phase. In 
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the slow phase, starting at around 200 °C, hemicellulose is decomposed, followed by cellulose. 

Lignin starts to decompose in the slower phase, which occurs at around 300 °C [116], [117].  

 

 

Figure 5. 1 Reduction in Chicken Litter Mass during TGA (wt%). 

To identify the speed of feedstock’s weight loss against the temperature elevation, the graph in 

Figure 5.1 has been modified into a differential form and is presented in Figure 5.2. Y-axis in 

Figure 5.2 is the devolatilization rate, that represented the rate of volatilization process during 

the elevation temperature where the solid or liquid phase change into vapor because of the high 

temperature. Figure 5.2 shows two peaks and shoulders, labelled 1–4. Peak 1 shows the drying 

process where water evaporation is at a maximum, at the temperature of 120°C. Of the 

lignocellulose components, hemicellulose is the most unstable component thermally, compared 

to cellulose and lignin [118], [119], causing it to decompose at a low temperature.  

Lignin is the most stable component and is decomposed at a high temperature [55], [120], 

[121]. Shoulder 2 represents the decomposition process of hemicellulose, followed by the 

decomposition of the hemicellulose components until the maximum condition is reached at 

peak 3. The decrease in the decomposition rate after peak 3 indicates that the lignin 

decomposition process is taking place (including protein), which continues to 600°C [122]–

[124].; this latter process is shown in shoulder 4. The decomposition process still continues 

above 600°C, as indicated by small peaks in Figure 5.2. This continuing process indicates that 

inorganic compounds such as metal carbonates exist to be decomposed until the end of the 

TGA process [52], [125], [126].  
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Figure 5. 2 Devolatilization rate of chicken litter in TGA (1/s). 

 

5.3 Slow Pyrolysis Experiment 

The slow pyrolysis experiment was performed in an uncontrolled outdoor atmospheric 

temperature environment. The water used as the heat transfer fluid in the condenser was also 

uncontrolled and from a supply ranging from 5 to 15°C. The duration of each slow pyrolysis 

experiment ranged between 18 and 36 minutes, at 350, 400 and 450°C. Several researchers 

point out that the yield production of slow pyrolysis is char. Details of the percentage of the 

yield product can be found in the following section. 

 

5.3.1 Yield production 

The bar chart in Figure 5.3 shows the distribution of the slow pyrolysis yield production of 

blended chicken litter (hay mix, straw mix, rice husk mix and wood shaving mix). Each bar 

represents the mass percentage of each yield product. Temperature and residence time are the 
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parameters that determine the distribution patterns. Figure 5.3 shows that char yield has an 

identical pattern in each chicken litter type: as the temperature setting rises, the char yield drops 

[127], [128]. As the temperature increased from 350 °C to 450 °C, the char yield decreased 

within the range of 14% to 19%. In contrast, syngas yield increased as the pyrolysis temperature 

rose. At the highest temperature, the maximum syngas production from straw mix was 26.3%. 

The liquid yield distribution pattern is different. In the experiment using hay mix and straw 

mix as feedstock, the liquid yield increased as the temperature rose. In contrast, rice husk mix 

and wood shavings reached a maximum liquid yield of 33.2% and 44.4% respectively, at 

400°C. 

Chicken litter made up of rice husk has a high ash content and this produces the highest char 

yields. The char production from the rice husk mix was over 67 wt%, whilst the char yield from 

wood shavings mix reached around 58 wt% at 350°C. Low char yields from wood shavings 

mix are correlated to the lowest ash and lower FC content. The highest VM of wood shavings 

mix resulted in 44.4 wt% liquid yield compared to the other feedstock that produced around 30 

wt%. Consistent with the proximate analysis data of the ash component, chicken litter 

containing rice husk has the highest ash compared to the other types of feedstock used and the 

high liquid yield generated by wood shavings mix, which reached 44.4% at 40°C, is in line 

with the higher volatile matter that wood shavings mix contains. 
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Figure 5. 3 Product yield distribution of four chicken litter feedstocks pyrolyzed at 350, 400, 

and 450° C. (Rice Hs Mix, Rice Husk Mix: Wood Sv Mix, Wood Shaving Mix.) 

5.3.2 Char Yield production 

Shown in figure 5.3, The production of char during the slow pyrolysis is affected by the 

pyrolysis temperature, the char yield is increasing when the pyrolysis temperature decrease. 

This is because more elements are evaporated at high temperature and resulting the gas and 

liquid yield. The char yield of rice husk mix in the slow pyrolysis experiment was the highest, 

reaching 67.2% at 350°C. The lowest char yield of 39.1% resulted from wood shavings 

pyrolysis at 450°C. This low char yield is to be expected based on the low ash and fixed carbon 

content.   

The changing of char yield in each temperature is followed by the changing char elements 

composition. The result of measuring CHN (Carbon, Hydrogen, Nitrogen) of char by using 

ultimate analysis is shown in table 5.3.  Because of the increasing pyrolysis temperature, the 

element of CHN for all char yield from each chicken litter are gradually decline in mass 

fraction. The highest carbon fraction is 50.89 wt % from char of wood shavings mix at 350°C 

and the lowest is 35.38 wt% from char of rice husk mix at 450°C. The reduction of CHN 

elements imply the reduction of caloric value [110]. 
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Table 5. 3 Char yield element from slow pyrolysis (as received basis). 

  C H O N S Moisture Ash 

  
(wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) 

H
ay

 M
ix

   350°C 46.62 3.55 12.62 3.52 1.49 2.72 29.47 

 400°C 49.33 1.5 5.42 1.65 0.25 3.45 38.54 

 450°C 42.37 1.97 14.96 2.5 0.27 1.57 36.36 

  
       

S
tr

aw
 M

ix
  

 350°C 50.53 1.58 6.55 1.44 0.2 3.54 37.59 

 400°C 49.54 2.73 12.22 2.73 0.41 3.1 29.27 

 450°C 46.05 2.18 6.09 1.91 0.48 4.08 39.22 

  
       

R
cH

u
sk

 M
ix

  

 350°C 46.66 2.34 11.27 1.96 0.35 2.98 34.45 

 400°C 44.93 1.46 5.82 1.21 0.14 3.59 42.85 

 450°C 35.38 1.81 13.02 1.59 0.27 3.78 44.15 

  
       

W
o

o
d

sv
 M

ix
  

 350°C 50.89 3.3 15.65 2.52 0.83 2.2 24.61 

 400°C 48.68 1.43 10.09 1.26 0.17 3.8 34.58 

 450°C 45.85 1.96 10.98 1.95 0.29 2 36.97 

5.3.3 Gas Yield Production 

Initial identification of gases showed the existence of oxygen and nitrogen compounds. 

Measurement using the Micro GC showed the amount of nitrogen as between 11 and 25 vol% 

and oxygen as between 3 and 9 vol%. The nitrogen and oxygen components indicate that some 

gas entered the reactor during the pyrolysis process. To identify the quantity of the syngas 

component and directly compare values between each experiment, syngas was quantified in 

terms of N2 and O2 free. This method also avoids the air dilution effect that may cause the small 

volume percentage of the syngas compound to become unreadable.  

The quantification of the gas yield is shown in the bar chart in Figures 5.4 and 5.5, using the 

unit of volumetric fraction (%). Figure 5.4 shows the dominant yield and Figure 5.5 the less 

abundant yield. The dominant yield compounds include carbon monoxide (CO), carbon 

dioxide (CO2), methane (CH4) and hydrogen (H2), while the less abundant yield compounds 

include ethylene (C2H4), ethane (C2H6), acetylene (C2H2) and hydrogen sulphide (H2S). The 

less abundant compounds are those with a percentage of less than 1% [129], [130]. 
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Figure 5. 4 Yields of dominant syngas compounds (vol%). (Rice Hs Mix, Rice Husk Mix: 

Wood Sv Mix, Wood Shaving Mix; H2, Hydrogen; CO, Carbon monoxide; CO2, carbon 

dioxide; CH4, Methane; H, Hydrogen.) 

 

Figure 5.5 Yields of less abundant syngas compounds (vol%). (Rice Hs Mix, Rice Husk Mix; 

Wood Sv Mix, Wood Shaving Mix; C2H4, ethylene; C2H6, ethane; C2H2, acetylene; H2S 

hydrogen sulphide.) 

Figure 5.4 shows that the major constituents of the gas produced in chicken litter pyrolysis are 

carbon monoxide (CO) and carbon dioxide (CO2). The association trend between the amount 

of CO and CO2 produced and temperature increase is not clear. However, in these experiments, 

the highest carbon monoxide (CO) production was from the straw mix. At the pyrolysis 

temperature of 400°C, straw mix resulted in 47% of carbon monoxide (CO) production. 
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Meanwhile, hydrocarbon gases such as CH4 and the other gases shown in Figure 5.3 reached a 

maximum production of 8% at 450°C. 

 

5.3.4 Liquid Yield Identification 

The proximate analysis results show that each feedstock type contains water, identified through 

moisture content. During the pyrolysis process, moisture content and volatile matter form 

vapour, which is later condensed to obtain the pyrolytic yield, when the non-condensable gas 

becomes syngas (gas yield). The water content in the liquid yield originates not only from wet 

chicken litter, but also from the thermochemical reaction that occurs during the pyrolysis 

process. This is confirmed by the high level of water content in the liquid fraction. Using the 

method of Karl Fisher titration, the water content of the liquid yield was measured to be within 

the range of 65–72% of the total liquid yield mass.  
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Figure 5. 6 Total ion current (TIC) chromatogram of bio-oil from 400°C pyrolysis of wood 

shavings mixed with chicken manure. 
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The identification result of the liquid yield by GC-MSD is shown in chromatogram as displayed 

in Figure 5.6. The chromatogram shows the total ion current (TIC) of the liquid yield, which 

resulted from the pyrolysis process of wood shavings mix at 400°C. There are more than 100 

species or compounds that can be detected by GC-MSD. However, to represent the liquid yield, 

the 19 most abundant compounds are chosen. Determining the name of the identified 

compounds was conducted with the assistance of NIST 08 MS software which is connected to 

MSD ChemStation® software (the software used by GC-MSD to produce the chromatogram). 

Table 5.3 shows the names of the identified compounds. The numbering references are 

indicated in the chromatogram in Figure 5.6. The production of several species or compounds 

that form the liquid yield during the pyrolysis process is highly affected by the pyrolysis 

temperature [131]. Nevertheless, some most abundant compounds such as propanoic acid and 

phenol family compounds are formed in several liquid yields at various pyrolysis temperatures 

(350, 400 and 450°C), which shows that the temperature difference in slow pyrolysis does not 

significantly change the composition of the liquid yield. However, due to long period of storing, 

oxidation was occurred in all liquid sample. The oxidation possibly had altered the 

mass/volume fraction of the liquid yield and made the quantification of the liquid yield become 

inappropriate. 

Table 5. 4 Identified bio-oil compounds from 400°C pyrolysis of wood shavings mixed. 

 

Compounds Name Compounds Name 

1. Furan, 2,5-dimethyl- (C6H8O) 11. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

2. Propanoic acid (C3H6O2) 12. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

3. Pyridine (C5H5N) 13. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

4. Butanoic acid (C4H8O2) 14. 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- (C10H12O3) 

5. 2-Furanmethanol (C5H6O2) 15. n-Hexadecanoic acid (C16H32O2) 

6. Pyrazine, 2,6-dimethyl- (C6H8N2) 16. 10-Octadecenoic acid, methyl ester (C19H36O2) 

7. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 17. Oleic Acid (C18H34O2) 

8. Cyclopentanol (C5H10O) 18. Dronabinol (C21H30O2) 

9. Phenol, 2-methoxy-4-methyl- (C8H10O2) 19. Retinoic acid (C20H28O2) 

10. Phenol, 4-ethyl-2-methoxy- (C9H12O2)  
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Several most abundant compounds as shown in Table 5.3, are consistent with the growth or 

maturity sequence proposed by Elliot in 1988 [132]. Elliot’s observations explain that at the 

maturity sequence between 400 and 500°C, pyrolytic oil contains mixed oxygenates and 

phenolic ethers such as acids, aldehydes, ketones, furans, alcohol, phenols, guaiacols and 

syringols. The liquid yield obtained from the slow pyrolysis in this study contains acids 

(propanoic acid and butanoic acid), fatty acid (oleic acid) and heterocyclic compounds: 

pyridines, phenol and its derivative [132], [133]. 

 

5.4 Intermediate Pyrolysis Experiment 

The intermediate pyrolysis experiment was performed in a benchtop hood without air 

temperature controller. The range of the face velocity in the benchtop was 3 m/s (60 fpm) and 

0.5 m/s (100 fpm), in order to extract gas leaks during the pyrolysis experiment. Using a 

thermal electro power regulator, the temperature for the pyrolysis experiment was varied, being 

set at 500, 600 and 700°C. For each pyrolysis temperature setting, polyethylene glycol was 

used to serve as a cooling medium in the condenser at -5°C. Similar to slow pyrolysis, 

intermediate pyrolysis resulted in three yield products: gas, liquid and char, and the percentages 

of each yield are reported in the following sections. 

 

5.4.1 Yield Production 

Two types of chicken litter, FCL and PCL were used as the feedstock for the intermediate 

pyrolysis experiment. The distribution of the resulting yields is shown in Figure 5.7 based on 

the mass percentage. This is calculated using the feedstock mass as the initial mass reference. 

The masses of the liquid and char were measured using a weight scale. The gas yield mass was 

obtained by subtracting the liquid and char yield masses from the total feedstock mass. Yield 

product difference varied with pyrolysis temperature. However, as shown in Figure 5.7, there 

is a similar pattern for the yield product of both feedstock types, with liquid and gas being the 

more dominant yields [65]. 

Researchers [65], [108], [122] point out that pyrolysis temperature affects the percentage of the 

yield product. Figure 5.7 shows that as the pyrolysis temperature rises, the liquid and char 
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yields drop. The char yield of FCL drops from 35% at 500°C to 25% at 700°C. The char yield 

of PCL also drops from 35% at 500°C to 30% at the temperature of 700°C. At pyrolysis 

temperatures of 500 and 600°C the liquid yield of both chicken litter types is more dominant 

compared to the other pyrolysis yields (except for PCL at 600°C. In comparison to PCL, the 

greater production of FCL’s liquid yield may be caused by the moisture content, which is 22% 

of the feedstock mass. Meanwhile, at the highest pyrolysis temperature, which is 700°C, gas 

yield is dominant. This is because at a high temperature, steam plays an important role in 

forming volatile matter content of chicken litter. As the pyrolysis temperature rises, gas yield 

production increases [102], [134]. Figure 5.7 shows that FCL’s largest gas yield production is 

45.2% at 700°C. 

 

 

Figure 5. 7 Product yield distribution. (FCL, Fresh Chicken Litter; PCL, Pelletized Chicken 

Litter.) 

5.4.2 Char Yield Production  

Figure 5.7 shows that the char yield production drops as the pyrolysis temperature rises, which 

causes the elemental composition of char to change. The standard test conducted for char yield 

resulted in the elemental composition of ash in mass percentage and caloric value (‘as received’ 

basis) as displayed in Table 5.4. An increase in pyrolysis temperature causes changes in the 

mass percentage of each element that composes char, such as a decrease in carbon (C), 
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hydrogen (H) and nitrogen (N) elements. This confirms that during high temperature pyrolysis 

more elements are released from char yield in the form of gas. Similarly, high temperature 

pyrolysis results in a decrease of the caloric value of char yield, determined empirically from 

carbon and hydrogen mass.  

Observations of several other elements show that pyrolysis temperature variation causes the 

mass percentage to change. The release of carbon (C) and hydrogen (H) elements from char 

yield at high temperature shows that the mass percentage of Chlorine (Cl) increased from 

1.56% to 1.85% for FCL and from 0.84% to 0.97% for PCL. The char yield’s chlorine (Cl) 

increase shows that the Cl element is part inorganic in origin. It also indicates that high 

temperature pyrolysis is likely to increase the percentage of inorganic compounds, leading to 

high production of ash, as displayed in Table 5.4. 

Table 5. 4 Ultimate properties and calorific value of char. (FCL, Fresh Chicken Litter; PCL, 

Pelletized Chicken Litter; HHV, Higher Heating Value). 

Elements 
FCL char PCL char 

500 °C 600 °C  700 °C  500 °C 600 °C  700 °C  

Carbon, wt% (db) 58.33 56.12 50.57 52.53 53.37 52.20 

Hydrogen, wt% (db) 1.52 1.30 1.12 1.51 1.17 0.55 

Oxygen, wt% (db) 1.51 2.78 5.67 6.66 5.65 3.81 

Nitrogen, wt% (db) 4.05 2.93 2.45 2.64 2.35 1.96 

Sulphur, wt% (db) 0.37 0.60 0.86 0.96 0.98 1.15 

Chlorine, wt% (db) 1.56 1.66 1.85 0.84 0.91 0.97 

Ash, wt% (db) 32.66 34.61 37.48 34.86 35.57 39.98 

HHV [MJ/kg]* 19.31 18.98 18.48 19.30 19.12 18.19 

*as received, db – dry basis. 

 

5.4.3 Gas Yield Production 

The gas formed in the intermediate pyrolysis experiment was analysed by setting three different 

pyrolysis temperatures. During the experiment process, the action of changing and inserting 

the samples into the reactor tube may let some air enter, which becomes trapped in the reactor 

tube and along the test rig channel. The result of the gas analysis proves that some air did enter 
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the reactor tube, as the components of oxygen and nitrogen were identified by Micro-GC. 

Similar to the gas yield analysis from slow pyrolysis, the syngas quantification result was 

determined by normalisation of nitrogen and oxygen free. This decision was made in order to 

directly compare the syngas components obtained from each experiment, as well as to avoid 

the dilution effect.  

The syngas compounds resulting from the FCL and PCL pyrolysis were identified and then 

quantified using Micro GC. The quantification result, which can be seen in Figure 5.6, shows 

that carbon dioxide (CO2) has the highest volume of gases released during the FCL and PCL 

pyrolysis processes. The maximum production of carbon monoxide (CO) gas, methane (CH4) 

and hydrogen (H2) occurred at high pyrolysis temperature. This shows that the maximum 

decomposition of hemicellulose and cellulose occurred at a lower temperature. In contrast, the 

decomposition process of lignin and the secondary cracking of primary tars occurred at a high 

pyrolysis temperature. 

Several studies show that the formation of heavy hydrocarbon from tar/oil cracking is caused 

by elevated pyrolysis temperature [18], [118]. Figure 5.6 shows an elevation where the 

production of CH4 increases and reaches the maximum amount at the pyrolysis temperature of 

700°C. As the light gases volume rises, as shown in Figure 6.7, the production of ethylene 

(C2H4) and acetylene (C2H2) gases also significantly increases and reaches the maximum level 

at the pyrolysis temperature of 700°C. On the contrary, the production of ethane (C2H6) and 

hydrogen sulphide (H2S) gases decreases at high pyrolysis temperature [18], [135]. 
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Figure 5. 8 Yields of dominant gas compounds (vol%), carbon dioxide (CO2), carbon 

monoxide (CO), methane (CH4) and hydrogen (H2). 

 

 

Figure 5. 9 Yields of less abundant syngas compounds (vol%). 

The quantification result of the syngas compounds calculated using the Micro GC software is 

a volume percentage, which can be converted into a mass percentage using the molar weight 

of each compound. The mass percentage can be used to calculate the gas yield’s composition 

element. Additionally, the mass percentage of compounds can also be used to modify the 
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caloric value of syngas. Equation 5.2 is used to calculate the caloric value, where f is the volume 

percentage of the fraction of each compound in syngas [23]. 

𝐻𝐻𝑉 =  𝑓𝐶𝐻4
× 35.83 +  𝑓𝐶𝑂 × 12.633 +  𝑓𝐻2

× 10.783 +  𝑓𝐶2𝐻4
× 59.457 +  𝑓𝐶2𝐻6

× 63.79

 ………… (5.2) 

Table 5.5 shows the resulting caloric values, modified using mass percentage to obtain the 

caloric value in the form of mass basis. The results show an increase in caloric value with 

elevation in pyrolysis temperature. 

Table 5.5 Calorific value of gas. (FCL, Fresh Chicken Litter; PCL, Pelletized Chicken Litter; 

HHV, Higher Heating Value). 

 
FCL PCL 

500 °C 600 °C  700 °C  500 °C 600 °C  700 °C  

HHV [MJ/kg] 8.876 12.174 19.069 6.613 10.900 16.672 

 

5.4.4 Liquid Yield Production 

During the pyrolysis process, water and volatile water formed, which are then condensed into 

pyrolytic liquid. The pyrolytic liquid is later categorised into liquid yield production. The 

amount of water content in the liquid yield originated not only from the feedstock (wet chicken 

litter) but also from the reaction during the pyrolysis process. This is confirmed using a liquid 

yield’s water content test, Karl Fischer titration. The result of the test shows the percentage of 

water content in the liquid yield, which was 70.8 – 80.4 wt% for the FCL feedstock sample and 

73.5 – 78.2 wt% for the PCL feedstock sample.  

By using the same method to identify the oil compound in slow pyrolysis, GC-MSD was set to 

not identify water compound and dilution compound (isopropanol). It was performed this way 

to obtain an identification result that is water free compound, in other words, only compounds 

that are composed of oil. Figure 5.10 shows the chromatogram of the GC-MSD identification 

result for FCL sample at the pyrolysis temperature of 500°C and PCL sample at the pyrolysis 

temperature of 500 °C. 
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The names of the peaks formed at each retention time can be obtained by using NIST 08 MS 

and MSD ChemStation® softwares. Table 5.6 shows the names of the oil-composed 

compounds that can be chosen from the most abundant peaks in Figure 5.10. The quantification 

calculation for each compound in the oil yield is performed using the integral calculation of 

each peak area of a compound, and by calibrating it using the phenol calibration curve. The 

integral calculation of each peak equals the mass of each peak in mg units.   

Table 5.6 Most abundant liquid yield compounds from Fresh Chicken Litter (FCL) 500°C 

and Pelletised Chicken Litter (PCL) 500°C. 

Compounds Name 
Retention 

time (min) 

Molar mass 

(g/mol) 

Compound 

mass (mg) 

FCL 500°C 

2-Propanoic acid (C3H4O2)  1.7 72.1 683.1 

Pyridine (C5H5N) 1.9 79.1 288.1 

Cyclobutene, 2-propenylidene- (C7H8) 2.0 92.1 701.1 

Acetamide (C2H5NO) 2.2 59.0 891.6 

Pyrazine, methyl (C5H6N2) 2.8 94.1 251.2 

2-Furanmethanol (C5H6O2) 3.3 98.1 978.3 

                                   a                                                                       b             

Figure 5.10 Total ion current (TIC) chromatogram of liquid yield from: (a) Fresh Chicken 

Litter (FCL) 500 °C, (b) Pelletized Chicken Litter (PCL) 500 °C. 
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Pyrazine, 2,5-dimethyl- (C6H8N2) 4.6 108.1 297.2 

Phenol (C6H6O) 7.6 94.1 371.7 

Phenol, 3-methyl- (C7H8O) 12.4 108.1 489.6 

2/3-Trifluoroacetoxydodecane (C14H25F3O2) 18.0 282.3 254.5 

1,4:3,6-Dianhydro-α-d-glucopyranose (C6H8O4) 18.9 144.1 285.5 

Cyclohexasiloxane, dodecamethyl- (C12H36O6Si6) 24.9 444.9 358.5 

Cycloheptasiloxane, tetradecamethyl- 

(C14H42O7Si7) 

32.1 519.1 
362.8 

n-Hexadecanoic acid (C16H32O2) 48.4 256.4 717.4 

9,12-Octadecadienoic acid (Z,Z)- (C18H32O2) 53.2 280.4 497.1 

PCL 500°C 

Propanoic acid (C3H6O2) 1.7 74.1 773.4 

Pyridine (C5H5N) 1.9 79.1 130.4 

Cyclobutene, 2-propenylidene- (C7H8) 2.0 92.1 358.7 

Butanoic acid (C4H8O2) 2.8 88.1 2701.3 

2-Furanmethanol (C5H6O2) 3.3 98.1 579.0 

4-Methylene-5-methylthiomethylcyclohexene 

(C9H14S) 
3.5 154.3 258.5 

Pyrazine, 2,5-dimethyl- (C6H8N2) 4.6 108.1 150.9 

Phenol (C6H6O) 7.6 94.1 490.4 

2-Pyrrolidinone (C4H7NO) 11.9 85.1 220.4 

Phenol, 3-methyl- (C7H8O) 12.5 108.1 310.3 

Phenol, 3-ethyl- (C8H10O) 17.1 122.2 222.2 

2-Piperidinone (C5H9NO) 17.6 99.1 203.9 

Indolizine (C8H7N) 22.8 117.2 114.7 

n-Hexadecanoic acid (C16H32O2) 48.4 256.4 284.2 

9,12-Octadecadienoic acid (Z,Z)- (C18H32O2) 53.2 280.5 245.7 

The composition of the liquid yield, as shown in Table 5.6, depends strongly on the pyrolysis 

temperature [131]. Elliot has published a maturity sequence of pyrolytic oil at the pyrolysis 

temperatures of 400 to 800°C [132]. According to Elliot, at pyrolysis between 500 and 700°C, 

pyrolytic oil is composed of phenolic ethers, alkyl phenolics and heterocyclic ethers. In 

intermediate pyrolysis experiments at the pyrolysis temperature of 500°C, besides short acids 
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such as propanoic acid, liquid yield has heterocyclic aromatic compounds such as pyridines 

and phenols. At a higher pyrolysis temperature, between 600 and 700°C, several aromatic 

hydrocarbon compounds such as toluene, styrene, naphthalene and fluoranthene appear. Their 

production increases at higher temperatures, except for toluene, which did not increase at the 

temperature of 700°C. 

As the pyrolysis temperature increases, the char production decreases considerably. This shows 

that carbon in the solid phase is evaporated considerably at a high pyrolysis temperature. Most 

of the carbon element of the feedstock that is evaporated during the pyrolysis process will 

accumulate to form the compounds that compose the liquid yield [136], [137]. These elements 

are the primary factor that accounts for the caloric value of the liquid yield. In this study, the 

caloric value was calculated using the energy balance principle, where the feedstock energy is 

subtracted from the energy obtained from char and gas yield. The caloric value of the liquid 

yield is shown in Table 5.7. PCL’s liquid yield has a higher caloric value than that of FCL, 

with the highest value being 19.129 MJ/kg at the pyrolysis temperature of 700°C. 

Table 5.7 Caloric value of pyrolysis oil from Fresh Chicken Litter (FCL) and Pelletized 

Chicken Litter (PCL). (HHV, Higher Heating Volume). 

Caloric value 
FCL Pyrolysis PCL Pyrolysis 

500°C 600°C 700°C 500°C 600°C 700°C 

HHV [MJ/kg] 10.843 11.534 10.491 18.606 18.374 19.129 

 

5.5 Fast pyrolysis experiment  

The Pyroprobe 5000 series with an increment of 600°C/s was used during the fast pyrolysis 

process. Using PCL as the feedstock, the fast pyrolysis was performed at three temperature 

settings namely 400, 500 and 600°C, without conditioning the environment’s air temperature 

and pressure. The vapour formed was condensed using ice as the heat sink. The uncondensed 

gas or permanent gas from the pyrolysis process was collected in a syringe for later 

identification of the compounds and their mass percentages. 
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5.5.1 Yield production 

Figure 5.11 shows the calculated results of all yield productions with the fast pyrolysis method. 

Figure 5.11 also shows the mass percentage of each yield, compared to the initial mass of the 

chicken litter. The char mass and liquid yield were calculated gravimetrically using a scale 

weight. The mass of the gas yield was obtained by converting the volume of each gas yield 

compound using the ideal gas equation. The volume of the gas yield compound was obtained 

through quantification performed with Micro GC.  

 

Figure 5. 11 Product Yield Distribution for Pelletized Chicken Litter (PCL) Feedstock 

pyrolyzed at 400, 500, and 600°C. 

Yield production calculation of the mass percentage from the fast pyrolysis experiment at 

600°C shows similar results to published research. Table 5.8 shows the analysis comparisons 

of the yield productions. The amount of char and liquid yield from the three experiments are 

close, however, there is a significant difference in the gas yield production. The difference is 

caused by the use of a different method to obtain the amount of yield production.  The gas yield 

was obtained by subtracting the weight of the feedstock with the weight of the char and liquid 

yield [29]. Meanwhile, in another study [30] and this study, the calculation for each yield is 

done by using the gravimetric method, which is calculated based on the quantification data 

from Micro-GC equipment.  
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Table 5. 8 The comparison of product yield distribution for poultry litter feedstock. 

Temperature (°C) Char (wt%) Liquid (wt%) Gas (wt%) Source 

600 39.8 23.2 9.9 This study 

550 39.98 26.98 33.04 [29]* 

530 31.5 27.6 21.9 [30]* 

*fluidised bed reactor 

 

The total percentage of the weight of the yield production (char, liquid and gas) in this study 

does not reach 100%, approximately 72.9% in total, and the rest of 27.1% may be caused by 

the release of light gases during the dissembling process of the pyroprobe equipment at the end 

of each experiment. In addition, several gases such as hydrocarbon gas (C2H4, C2H6,), NH3, 

and gas species that contain sulphur were also not measured. Besides in gas yield, the loss in 

liquid yield may also be caused by loss of air during the experiment. Moreover, it was known 

that some oil was stuck on the inner walls of the pyroprobe oven. It could be seen during the 

process of deep cleaning the pyroprobe at the end of the experiment [113]. 

 

5.5.2 Char yield production 

Similar to the previously conducted pyrolysis process, the percentages of the yield production 

show a similar pattern. Different pyrolysis temperatures result in different yields; high char 

yield production occurs at lower pyrolysis temperature while more liquid and gas yields occur 

at higher pyrolysis temperature [127], [128]. A significant difference can be seen when the 

pyrolysis temperature increased from 400 to 500°C (figure 5.11). Char yield production 

decreased from 62.2% to 48.5% while liquid and gas yield production increased from 7.1% to 

22.3% for liquid and from 4.4% to 7.2% for gas yield. Due to the limited time provided as a 

visiting researcher at TU Delft, the Netherlands, only the yield product of gas has been 

analysed. 
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5.5.3 Gas yield production 

The gas yields of the fast pyrolysis process at three different temperature settings were analysed 

using Micro GC. In this study, the gas compounds of the yield product identified were only the 

major compounds such as (CO2), carbon monoxide (CO), hydrogen (H2), nitrogen (N2), and 

methane (CH4). Using the software from Micro GC, the volume of each gas yield fraction was 

identified. The volume was later used to calculate the weight percentage of each fraction. As 

Nitrogen was used as the inert gas in this pyrolysis process, the gas yield identification result 

was normalised by not including Nitrogen, in order to avoid reading error and dilution effects 

[18]. 

Similar to the slow and intermediate pyrolysis processes, the fast pyrolysis of biomass that 

contained lignocellulose material produced gas dominated by CO2 and CO. However, in 

contrast with the gas yield production from slow and intermediate pyrolysis processes, CO2 

and CO fractions increased as the pyrolysis temperature escalated. Since the char yield 

production decreased at the high temperature, it can be concluded that in fast pyrolysis, more 

of the feedstock’s carbon elements are converted into syngas [18], [102]. 

 

Figure 5.12 Fraction of pyrolysis gases in the pyroprobe, hydrogen (H2), methane (CH4) 

carbon monoxide (CO) and carbon dioxide (CO2). 

As in TGA analysis, hemicellulose and cellulose are decomposed at the beginning of the 

heating process. As the temperature elevated, lignin was decomposed. As seen in figure 5.12, 

at the pyrolysis temperature between 400 and 500°C, the decomposition of hemicellulose and 

cellulose occurred as only the fraction of CO2 and CO could be seen (very low H2). Meanwhile, 
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the decomposition of lignin was seen at the pyrolysis temperature of 600°C with the appearance 

of CH4 fraction and the higher production of CO and H2 [18]. 

The existence of methane and higher production of hydrogen at the pyrolysis temperature of 

600°C is caused by the lignin decomposition process. In addition, it may also be caused by 

some oil yield evaporating into syngas. According to some research, the heavy hydrocarbon in 

the liquid yield would start evaporating (oil cracking) at a high temperature. The indication of 

this process is when the number of carbon monoxide and hydrogen fractions start to increase 

[18], [112]. 

5.5.4 Liquid yield production 

The schematic diagram of fast pyrolysis equipment is shown in figure 5.13a. Vapour that 

produced during the fast pyrolysis process was condensed and trapped in a trap tube. The trap 

tube (figure 5.13b) was then measured using weight scale to obtain the mass of liquid yield (by 

subtracting the mass of trap tube after and before experiments). The pattern of the liquid yield 

fraction is shown in figure 5.11, which increased as a result of the escalating pyrolysis 

temperature. Prior to the identification analysis, oil (liquid yield) in trap tube was extracted and 

diluted using isopropanol. However, the similar case to the char yield analysis, the 

identification of liquid yield was not able due to the time limitation of the project in TU Delft. 

 

Figure 5.13 (a) Schematic diagram of the pyroprobe, (b) trap tube 

                                            a                                                                b             
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5.6 Mineral Content Analysis 

The ultimate analysis data show that chicken litter has a considerably high content of ash, which 

can reach 30% of the chicken litter’s dry weight. This indicates that chicken litter has a high 

non-volatile mineral content, which is advantageous, if the mineral content can be identified. 

The mineral content (per kg dry sample) of chicken litter can be identified using the Inductively 

Coupled Plasma (ICP) technique. Table 5.9 shows the identified mineral composition; the 

chicken litter contains a significant amount of phosphorus (P) and potassium (K). Therefore, 

chicken litter has high potential for use as fertiliser [18]. Base on the ICP data, the amount of 

P and K in PCL is higher than that of FCL. Consequently, PCL offers more value as a fertiliser.  

Table 5.9 Element composition from chicken litter: Fresh Chicken Litter (FCL) and 

Pelletized Chicken Litter (PCL). 

Element composition [mg/kg ash dry basis] 

Major element Minor element 

 FCL PCL  FCL PCL 

Aluminum (Al) 1009.09 7302.21 Arsenic (As) 14.35 4.91 

Calcium (Ca) 50765.18 110466.83 Barium (Ba) 210.43 226.04 

Iron (Fe) 3835.49 13267.81 Cadmium (Cd) 4.78 0.00 

Potassium (K) 258407.46 222142.51 Cobalt (Co) 9.56 4.91 

Magnesium (Mg) 45552.37 57886.98 Chromium (Cr) 19.13 108.11 

Sodium (Na) 32352.94 36555.28 Mercury (Hg) 4.78 14.74 

phosphorus (P) 107771.40 84437.35 Molybdenum (Mo) 100.43 34.40 

Sulfur (S) 31472.98 39739.56 Nickel (Ni) 47.82 142.51 

Silicon (Si) 50172.17 81621.62 Lead (Pb) 23.91 44.23 

Copper (Cu) 951.70 815.72 Antimony (Sb) 28.69 34.40 

Manganese (Mn) 4662.84 5110.57 Selenium (Se) 9.56 24.57 

Titanium (Ti) 124.34 766.58 Tin (Sn) 47.82 29.48 

 Zinc (Zn) 4414.16 3975.43 Vanadium (V) 33.48 29.48 

When chicken litter is pyrolyzed, the mineral elements are accumulated in the char yield. As 

seen in Table 5.10, the mineral composition of each char is different, depending on the 

pyrolysis temperature. Compared to chicken litter, the mineral content (per kg dry sample) of 

char increases remarkably with temperature. This is because the pyrolysis process has a 
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concentrated effect on char whereas in chicken litter, most of the volatile component is 

converted into liquid or gas yield [53][31]. The amount of P and K in char shows its potential 

for use as fertiliser. The Ni content in PCL is known to exceed the limit of 24 mg/kg dry sample, 

which prevents its use for fertiliser [53][138][139]. Therefore, only the char produced from the 

FCL pyrolysis process has potential to be used as fertiliser.  

Table 5. 10 Element composition from pyrolysis char generated from Fresh Chicken Litter 

(FCL) and Pelletized Chicken Litter (PCL) at 500, 600 and 700°C. 

Element 

FCL  

mg/kg dry matter char  

PCL  

mg/kg dry matter char  
Poultry 

Litter 

Protocol 500°C 600°C 700°C 500°C 600°C 700°C 

Al 520.02 497.36 678.18 2604.42 2832.20 3456.99  

Ca 17628.47 22420.44 30054.34 37830.49 40260.57 45147.91  

Fe 1379.33 1437.38 1704.46 3952.82 4834.84 4503.85  

K 79444.66 86130.19 93609.82 75577.02 76206.71 38136.27  

Mg 9430.18 12545.06 17908.51 19963.90 21749.05 24886.43  

Na 10316.44 11403.35 12872.70 12436.09 12338.72 14167.80  

P 34729.00 35729.48 40365.85 29002.98 29024.50 32733.99  

S 9078.21 9022.53 9169.79 11198.52 11287.59 12683.45  

Si 15640.33 16007.77 18651.62 27884.64 28315.16 34665.61  

Ag 1.59 10.25 5.41 1.68 1.72 0.00  

As 7.93 3.42 1.80 1.68 0.00 3.91 17 

Ba 57.08 73.49 88.38 78.92 85.88 113.28  

Cd 1.59 0.00 0.00 1.68 0.00 0.00 3 

Co 3.17 3.42 3.61 1.68 1.72 3.91 11 

Cr 7.93 8.55 9.02 41.98 39.50 46.87 31 

Cu 331.36 326.44 371.55 273.71 278.24 320.31 596 

Hg 3.17 1.71 3.61 0.00 1.72 1.95 0.5 

Mn 1544.22 1563.86 1771.19 1717.81 1727.83 1962.87 3500 

Mo 33.29 34.18 37.88 11.75 12.02 13.67 45 

Ni 17.44 17.09 21.64 48.70 49.81 58.59 24 

Pb 4.76 6.84 7.21 11.75 6.87 5.86 244 
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Sb 9.51 11.96 3.61 6.72 15.46 9.77  

Se 11.10 10.25 1.80 8.40 8.59 1.95 11 

Ti 41.22 44.44 45.09 250.20 250.76 341.79  

Sn 3.17 3.42 32.47 60.45 27.48 15.62  

V 9.51 10.25 12.63 10.08 10.31 11.72 20 

Zn 1407.87 1521.13 1585.41 1366.86 1367.15 1332.02 2063 

 

5.7 Summary 

A pyrolysis experiment using chicken litter as the feedstock was completed using slow, 

intermediate and fast pyrolysis. Before the pyrolysis process was conducted, the characteristics 

of the feedstock were identified. A significant amount of information can be obtained from the 

chicken litter characteristics and can be used to decide which pyrolysis method is most suitable 

to obtain the best result. As an example, for more liquid yield, feedstock that contains high 

volatile matter is ideal. For more char yield, feedstock with high fixed carbon is suitable.  

The three pyrolysis methods used resulted in various yield products. In slow pyrolysis, the 

dominant yield product was char yield, particularly when the pyrolysis was performed at a low 

temperature. The intermediate pyrolysis process at the temperature of 500°C (as used in this 

study) resulted in the highest liquid yield. To obtain a high production of syngas, however, fast 

pyrolysis is the best option, especially at a high pyrolysis temperature. Since liquid yield 

generates a high caloric value, the intermediate pyrolysis will be focused upon for the 

simulation study.  

Identification of the amount of mineral content in chicken litter and char demonstrates the high 

potential chicken litter has to be used as fertiliser. The mineral concentration in pyrolyzed char 

is even shown to increase with pyrolysis temperature. Therefore, it is reasonable to say that the 

pyrolysis process of chicken litter offers benefits. It can be used as an alternative energy source 

and the pyrolysis output can also be used for soil amelioration.  
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CHAPTER 6 Modelling and Economic Analysis of a 

Pyrolysis/ORC Power System 

 

6.1 Introduction 

The modelling reported in this chapter was developed using Aspen Plus™ software, to 

represent the pyrolysis process of chicken litter. This modelling technique allows the pyrolysis 

process to be simulated through the application of relevant parameters, from the completed 

experiments: working temperature, working pressure, feedstock characteristics and pyrolysis 

yield. The result of the simulation can be used to optimise the pyrolysis process of chicken 

litter to produce the maximum output. At these conditions the capacity of the system can be 

adjusted, to match the litter production of chicken farming in Indonesia.  

The results from the pyrolysis were then used to simulate the energy conversion system and 

using the energy production of the system an economic analysis was performed.   

 

6.2 Aspen PlusTM Modelling 

Chicken litter pyrolysis generates three product yields: gas, liquid and char [16], [114]. Each 

product yield resulting from pyrolysis has a calorific value that can be used as an alternative 

energy source [140]–[142]. Gas yield needs to go through a gas purification process before it 

can be used as fuel for gas turbines, because gas turbines comprise of components that are 

highly sensitive to corrosion [143]–[145]. Through a combustion process, the elements in char 

product can generate energy. Moreover, they can also be used as soil ameliorant [18], [146]. 

The liquid yield of pyrolysis, which can also be used as fuel, has the benefits of easy storage 

and distribution because of its density. Of the three product yields, liquid yield has the highest 

calorific value [147], [148]. 

Based on the known benefits of liquid yield (easy storage and distribution), and its high 

calorific value, the model used in this simulation is the chicken litter pyrolysis that 

generates the highest liquid yield, namely the FCL pyrolysis at the pyrolysis 
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temperature of 500°C. In general, the modelling is divided into two systems: the 

pyrolysis system modelling and the utilisation system modelling. Figure 6.1 shows that 

the liquid resulting from chicken litter pyrolysis is burned by combustion in an oil 

burner. The liquid yield can not be used for biodiesel engine (generator) because the 

liquid compounds have some acid molecules (corrosive). The heat of the oil burner is 

then used as the main energy source by the Organic Rankine Cycle (ORC) system, to 

generate electrical energy. 
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Figure 6. 1 Schematic diagram of utilisation of chicken litter pyrolysis, (1) gas yield, (2) 

liquid yield, (3) char yield. 

6.2.1 Pyrolysis Simulation 

The pyrolysis simulation with Aspen Plus™ is designed to use the equilibrium model approach, 

in which the data obtained from an experiment [149] is used for the working parameters and 

the result of the pyrolysis reaction. The experiment selected for the simulation model was the 

intermediate pyrolysis experiment at 500°C, using FCL as the feedstock. The selection of the 

model was based on the FCL pyrolysis experiment, which generated the highest liquid yield, 

at 500°C [150], [151]. Liquid yield can be more easily handled and transported, compared to 

gas and char yield. When liquid yield is used as an alternative energy source, even in a smaller 

volume, liquid yield generates a high energy value [152]. 
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The production of chicken litter is based on chicken farming in Indonesia. Large scale chicken 

farming can produce as many as 400,000 chickens per batch [153], and the production of one 

batch takes approximately 30 to 32 days [154]. The amount of litter production from each 

chicken varies between 0.843–5.7 kg/bird/batch [155], [156]. The average value used for the 

simulation is 3kg/bird/batch. Assuming that farm cleaning is conducted every sixth batch [157], 

[158] and that one batch takes 30 days to produce, then the production rate of the chicken litter 

would be 40,000 kg/day (0.463 kg/s). This amount of chicken litter production (0.463 kg/s) is 

used as the flow stream input to the Aspen Plus™ simulation.  

Since a chicken litter properties are not included in the list of Aspen Plus™ properties, it is 

categorized into the nonconventional type and identification is based on the proximate and 

ultimate analyses [159]. As displayed in Figure 6.2, chicken litter (CL) is decomposed into a 

conventional component in the block yield. The pyrolysis process in Figure 6.2 is represented 

by several blocks, namely H1 and PYRO. The PYRO block uses an RGIBBS equilibrium 

reactor, in which the pyrolysis reaction occurs at 500°C [149], [160]. The result of the reaction 

occurring in the PYRO block is based on the result of the FCL pyrolysis experiment at 500°C. 

The product resulting from the PYRO block is separated into hot vapour and char (CHAR-Y), 

based on the assumption that the char yield is solid carbon and ash element. The hot vapour is 

later cooled in the condenser (COND1) until the liquid product (LIQ-Y) and gas yield (GAS-

Y) are generated.  

 

Figure 6.2 Chicken Litter (CL) Pyrolysis in Aspen Plus™. 

Similar to the pyrolysis system proposed by Bridgewater and Yang, the chicken litter pyrolysis 

simulation uses the energy from char and syngas as the heat source [148], [161]. The energy 
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required for pyrolysis is generated from burning all the gas yield and 35% of the char yield in 

the combustor, this can be seen in figure 6.3 that all gas yield and some char yield goes to the 

combustion process (in C-BURN block). The heat generated from the combustor is then used 

to satisfy the heat demand of the pyrolysis system. 

Since all the gas yield is used in the combustion system, the end product generated from the 

chicken litter pyrolysis modelling is the 65% char yield (the 35% char yield was burned 

together with gas yield) and liquid yield. Char yield contains minerals with potential for soil 

amendment or fertilizer [65]. Liquid yield, with its high calorific value, can be used for 

conversion into electrical energy [142], [162], [163].  

Considering the possible outcomes for the conversing chicken litter into useful resources, some 

scenarios are done as follow:   

1. Mixture conversion. 

2. All electricity conversion. 

3. All fertilizer conversion. 

The first scenario (mixture conversion) is converting all liquid yield into electric energy and 

selling the rest char yield (65%) as a soil amendment (fertiliser). The second scenario is 

converting all liquid yield and 65% char yield into electric energy. The first and the second 

scenario use the energy from all gas yield and 35 % char yield to satisfy the energy required of 

pyrolysis proses. Different from the first and second scenario, in the third scenario, the energy 

required for pyrolysis is satisfied by using all gas and liquid yield, and the char yield will be 

sold as fertiliser. The first scenario then simulated as shown in sub-chapter 6.2.2 below. 

  

6.2.2 Utilisation Simulation 

As shown in the schematic diagram (Figure 6.1), the liquid yield from the chicken litter 

pyrolysis is processed for combustion in the oil burner [164]–[166]. The heat generated from 

the oil burner is then used as the main energy source for an electric power generator. The 

electric generator selected for this simulation is the ORC [161], [167], based on its reliability 

and because the system only requires low to medium temperature heat to operate. The working 

fluid ORC boils at a temperature below the boiling point of water. The heat from the oil burner 
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may reach 900°C. Therefore, a thermal oil cycle needs to be added to serve as the heat transfer 

fluid as well as the protector of fluid in the ORC, to prevent it from overheating [168]–[170]. 

Figure 6.3 shows the cycle of the chicken litter pyrolysis utilisation for power generation.
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Figure 6. 3 Chicken Litter Pyrolysis Utilisation in Aspen Plus™. 
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ORC is a simple Rankine cycle that uses organic compounds instead of steam for its working 

fluid [171]–[173]. Careful selection of working fluid is important for the ORC because it affects 

the ORC engine performance [171]–[173]. For this simulation, R1233ZD is selected as the 

ORC working fluid. Compared to R245fa, R1233ZD has better thermodynamic properties. 

Furthermore, it is also environmentally-friendly as it is non-flammable, has a zero ozone 

depletion potential (ODP) and a low global warming potential of 1.0 [174]–[176]. 

Several researchers of small scale ORCs point out that the isentropic efficiency of an ORC’s 

expander ranges from 50 to 80% with the expansion ratio between 5–10 [177]–[179]. For the 

ORC simulation, the turbine used as the expander was set to have an efficiency of 50%, with 

the pressure drop of 21 bar. Table 6.1 shows the data obtained from the simulation of the ORC 

system. The energy input used by the ORC system came from the thermal oil that was 

transferred from the oil burner. By comparing the energy input and the electrical energy (as the 

energy output), the overall efficiency of the ORC was determined to be 6.5%. 

Table 6. 1 ORC Property. 

Item Data  

(from simulation) 

Evaporator Temperature  151°C 

Evaporator Pressure  31 bar 

Condenser Temperature 30°C 

Condenser Pressure  1.48 bar 

Fuel rate (liquid yield) 0.21 kg/s 

Overall Efficiency  6.5 % 

Electric Power  151 kWe 

 

6.3 Economic evaluation 

An economic evaluation was performed to explore the feasibility of running the project. Two 

methods that can be used to perform an economic evaluation are the payback period and the 

net present value (NPV). The payback period (PP) method aims to identify how long it would 
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take for an investment to be reimbursed. The NPV method aims to determine the profit value 

within a certain period of time [180]–[183]. 

6.3.1 Pyrolysis Cost 

Bridgewater compiled an economic analysis of a number of pyrolysis and gasification system 

experiments. Using up-to-date data from the year 2000, Bridgewater developed an equation to 

obtain the value of the total pyrolysis plant. The equation was developed by making a 

regression of 14 data values for the pyrolysis cost module [148]. The study used the following 

equation to calculate the cost of constructing a pyrolysis system.  

TPCP = 40.8 × (Qh × 1000)0.619    ………………………………………………………….. 6.1 

Where, 

TPCP = Total plant cost of pyrolysis reactor system, k€ 

Qh = Mass flow rate of dry feedstock, tonne/h 

From the pyrolysis simulation, the mass flowrate of the used feedstock was 0.463 kg/s or 1.67 

tonnes/h. Assuming that the moisture content of the chicken litter used as feedstock was 

22.67%, then the mass flow rate of the dry feedstock would be 1.29 tonnes/h. Using equation 

6.1, the cost of developing a pyrolysis system would be €3,446.35k. 

The simulation of the chicken litter pyrolysis process aims to maximise the liquid yield product. 

When the pyrolysis process is not in operation, a buffer tank is required to store the liquid yield, 

to allow continuity of liquid yield supply. In addition to the buffer tank, a transfer pump is also 

required to ensure the circulation of the liquid in the system. Equation 6.2 calculates the total 

plant cost of the buffer tank system used in the pyrolysis process [148]. 

TPCS = 119 × (QLiq)
0.4045     ……….……………………………………………………….. 6.2 

 

Where,  

TPCS = Total plant cost of liquid storage system, k€ 

QLiq = Liquid yield flow rate, tonne/h 
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The chicken litter used in the simulation is the FCL with a pyrolysis temperature of 500°C. In 

the pyrolysis experiment using the FCL as feedstock, a liquid yield fraction of 57.8% was 

obtained. The mass flow of the feedstock used for the simulation was 0.463 kg/s, and therefore, 

a liquid yield of 0.268 kg/s or 0.96 tonnes/h was obtained. Using equation 6.2, the total plant 

cost for the liquid storage equalled €117.22k. Assuming that the pyrolysis process is performed 

within the locality of the source chicken farm, the transportation cost can be neglected. 

Therefore, the total cost for the pyrolysis system would be the total of the pyrolysis plant reactor 

and liquid storage, which amounts to €3,563.57k. However, this result was based on 

Bridgewater’s two equations (equations 6.1 and 6.2) which were valid for the year 2000. 

If the total plant cost (TPCP and TPCS) is equal to the component price, then the cost value 

needs to be corrected. To correct the cost for the year 2019, the inflation rate between 2000 and 

2019 was used. The statistical office of the European Union (Eurostat) reports that the 

European Union’s annual inflation in July 2019 was 1.4 % and 2.2% in the previous year [184]. 

Assuming that the average inflation rate is 1.8% annually (using the average from years 2018 

and 2019), then the total inflation between 2000 and 2019 can be estimated to be 34.2% (19 × 

1.8%). 

The total inflation between 2000 and 2019 (43.2%) was then used to revise the total cost of the 

pyrolysis system, which increased from €3,563.57k to €4,782.31k. The resulting value is in 

line with a calculation performed by Peacocke [162]. Peacocke compared two pyrolysis 

systems of two companies (Welman and BTG). The comparison shows that the capital cost of 

pyrolysis increases with the capacity (Figure 6.4).  

Alan McDonald and Leo Schrattenholzer introduce a learning curves for the cost of the 

improvement of technology in energy conversion. They suggested the learning rate is 0.15 for 

the use of electricity from biomass technology [195], which means, the capital cost will reduce 

by 15% after the first technology was initially applied. However, by considering the worst-case 

scenario, the learning rate is not used in the calculation of pyrolysis installation cost. 
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Figure 6.4 Capital cost for pyrolysis process installation for two companies, Wellman and 

BTG. [162]. 

6.3.2 ORC Investment 

Presently, the small-capacity ORC system (1–100 kW) is expensive and not widely available 

for purchase. For this reason, it is not competitive compared to the other established 

technologies that utilise renewable energy. Aiming to increase the competitiveness of the ORC 

cost, Tocci shows average costs from available technologies, which include solar photovoltaic, 

wind, hydro, gas turbine and the internal combustion engine (ICE). Tocci then approximated a 

trend line to estimate costs of the ORC. Figure 6.5 shows that ORC cost with a capacity of 10–

100 kW cannot exceed 2500 €/kW [162]. 
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Figure 6.5 Costs versus power output for energy technologies and estimate for ORC (Trend) 

[27]. (ICE, Internal Combustion Engine). 

Different from Tocci, Tchance performed an estimation by comparing ORC cost from a 

reference cost, using equation 6.3 [182]. The ORC system used as reference had a capacity of 

2 kW with a specific cost of 5,775 €/kW. 

CS = CS,ref × (Wnet/ Wnet,ref)
0.8   …………………………………………………………….. 6.3 

Where,  

CS = Specific ORC cost, €/kW 

CS,ref = ORC specific cost reference (5,775 €/kW)  

Wnet = ORC capacity to be installed, kW 

Wnet,ref = 2 kW (ORC capacity reference) 

Using equation 6.3, the specific ORC cost of the simulated ORC system is: 

 CS  = 5,775 × (151/ 2)0.8  

 = 18,3615.6 €/kW 

The estimated value of the specific ORC cost obtained using equation 6.3 is higher than the 

estimation performed by Tocci, which is 2,500 €/kW (for the year 2017), which is similar to 

the specific ORC cost published by Leme, whose calculation for an ORC capacity of 2230 kW, 

resulted in a specific cost of 3,516 $/kW (for the year 2018) [185]. Assuming that for 2018, the 

exchange rate for Euros to US dollars was 0.81 on average, then Leme’s specific cost would 

be 2,848 €/kW. 
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Acknowledging the slightly different specific ORC costs published by Leme and Tocci, this 

study selected Tocci’s estimation method of 2,500 €/kW. As a result, the installed cost of the 

ORC system used in this simulation is €377,500. If the installed cost of ORC is equal to the 

equipment price, then the inflation rate needs to be considered. The total inflation rate from 

year 2017 to 2019 is assumed to be 3.6% (from an average of 1.8% per year), then the ORC 

installed cost would be €391,090.  

The initial investment value is calculated from the total installation costs of the pyrolysis and 

ORC system, which is €4,782,310.00 + €391,090.00 = €5,173,400.00. If the Indonesian to 

Euros currency exchange rate is IDR14,989.9 for €1 (www.oanda.com, July 2019), the initial 

investment required would be 71,682,044,590.00 + 5,862,399,991.00 =IDR77,544,444,440.00 

 

6.3.3 Variable Cost  

The installation cost of the pyrolysis and ORC system is the initial cost that makes up the initial 

investment value of the project. The purpose of the pyrolysis and ORC system installation is 

for electricity generation. As a consequence, when the electric generation is running, a routine 

running cost will also be expended, for maintenance and utility costs, for example. Even when 

the electricity generation system is not working, there will be a cost, namely the labour cost. 

a. Labour Cost 

To obtain an optimum benefit, the system needs to operate 24 hours a day. For one 

operational day, the working hours are divided into 3 shifts. Each shift has 1 supervisor 

and 4 operators. For daily managerial duties, 1 general manager, 1 technical manager 

and 1 administrator are in charge [162], [186]. The total number of workers needed is 

18. The following is the labour cost calculation, obtained using the Indonesian standard 

monthly wage (using the Indonesian currency, IDR) in accordance with the regulation 

from the Ministry of Manpower [56]: 

 

http://www.oanda.com/
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General manager  : IDR 20,000,000.00 × 1 = IDR 20,000,000.00 

Technical manager : IDR 8,000,000.00 × 1 = IDR 8,000,000.00 

Administrator : IDR 4,000,000.00 × 1 = IDR 4,000,000.00 

Supervisor   : IDR 4,000,000.00 × 3 = IDR 12,000,000.00 

Operator   : IDR 2,500,000.00 × 12 = IDR 30,000,000.00 

Total        = IDR 74,000,000.00 (monthly) 

 

b. Utility Cost 

Utilities are necessary to support the operational plant and office/laboratory, which also 

consume electricity and water. For this study, the electricity and water are supplied by 

the state-owned enterprise. The purpose is to ensure the continuity of supply during the 

process of electricity generation. From the literature, daily electricity consumption is 

28 kWh for each wet feedstock, while the water consumption is 13 m3 (including the 

sewerage surcharge) for daily and each wet feedstock [187]. 

If the wet feedstock (FCL) is the one used in the simulation process, then the electricity 

consumption will be 46.76 kW and the water consumption will be 21.71.m3. The 

following are the utility costs obtained by assuming that the system operates 24 hours 

a day (720 hours/month), using the electricity and water tariff applied to Indonesian 

industrial sectors [188], [189]: 

 Electricity bill: 46.76 × 720 × IDR  1,112.00 = IDR   37,437,926.40 

Water bill :  21.71 × 720 × IDR12,550.00 = IDR 196,171,560.00 

Total       = IDR 233,609,486.40 (monthly) 

 

c. Maintenance and Overhead Cost 

The maintenance and overheads calculation is based on annual costs. This is calculated 

from a percentage of the pyrolysis and ORC system installation cost, which is assumed 

to be 2.5% for maintenance and 2% for overheads costs. As a result, the total for 

maintenance and overhead costs is [187]: 

 Maintenance cost : 2.5% × €5,173,400.00/12  = €10,777.92 

Overhead cost : 2% × €5,173,400.00/12   = €8,622.33 

Total = € 19,400.25 (monthly) 

  = IDR 290,808,000.00 (monthly) 
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The total for labour, utility, maintenance and overhead costs is the monthly operational cost for 

the electricity generation process, which is: 

74,000,000.00 + 233,609,486.40 + 290,808,000.00 = IDR 598,417,486.40 

 

6.3.4 Income   

To accelerate the development of renewable energy-based technology, the Indonesian 

Government provides an incentive in the form of a 30% tax income reduction for enterprises 

in the sector of renewable energy technology. Unfortunately, the incentive does not apply to 

technology that converts energy from biomass waste [190]. The same applies for the gate fee 

or tipping fee from local governments, which is given only to enterprises that process domestic 

waste / municipal solid waste (MSW), under a specific condition that the waste is processed 

into electric energy [191]. 

In 2020, through the Indonesian presidential regulation, a feed-in tariff was introduced to boost 

investment in the field of renewable energy. The feed-in tariff applies only for technologies 

based on hydro-, solar- and wind power [192]. In the absence of an incentive and an additional 

tariff from the government, an income from the chicken litter pyrolysis and ORC system can 

only be generated from the sale of the electricity generated. In order to gain an optimum 

advantage, the system needs to run 24 hours a day with 100% of the electrical energy produced 

sold to industry. 

If the unit price of electricity is IDR 1,112.00/kWh, then the amount of the monthly electrical 

energy sold will be as follows: 

Electric output from ORC : 151 kWe 

Electricity sale  : 151 × 720 × IDR 1,112.00 = IDR  120,896,640.00 

Indonesia has a tropical climate. As a result, the excess heat of the ORC condenser has no 

economic value. However, the 65% of the char left as a result of pyrolysis can be used as 

fertilizer. The char yield fraction of the FCL pyrolysis process is 35.8% of the wet feedstock’s 

weight. If the flow rate of the feedstock is 0.463 kg/s, the amount of char that could be 

generated in one month (30 days) is 279 tonnes. The average fertilizer price on the Indonesian 
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market is IDR 6,800.00/kg [193]. If the 65% of char yield is sold as fertilizer, the income 

generated would therefore be IDR 1,897,200,000.00. This would make the total income 

generated from the pyrolysis process amount to IDR 2,018,096,640.00. 

Comparing the total income (IDR 2,018,096,640.00) to the monthly total running costs (IDR 

598,417,486.4), a profit of IDR 1,419,679,153.60 could be gained. 

 

6.3.5 Carbon emission 

In Indonesia, the electricity is mainly supplied by a government enterprise. Some of the electric 

grid are powered by renewable energy such as wind turbine, water turbine and geothermal 

turbine. However, since the technology of renewable energy is for long term implementation, 

then the conventional electric generator is keep operating. The energy for generators are greatly 

provided by coal which has the average carbon emission 0.867 kg CO2/kWh [194]. 

Because chicken litter consists of natural bedding material, then chicken litter can be classified 

as biomass. The conversion of chicken litter into electric energy, then can be considered as 

carbon neutral process. Since the electric generation (151 kW) is carbon neutral, then the 

carbon emission that can be saved in a year is : 

151 kW × 8640 × 0.867 kg CO2/kWh = 1131122.8 kg CO2 = 1131 tonnes CO2 

 

6.3.6 The different scenario    

The second scenario is converting all liquid yield and the rest char yield (65%) into electric 

energy. The conversion of liquid yield into electric energy has been done in the simulation at 

sub-chapter 6.2.2, and the calculation of the conversion char yield into electric energy follows 

the steps below: 

- Char yield caloric value from table 5.4 is 19.31 MJ/kg 

- By using the yield fraction in figure 5.7 (char yield is 35.8%) and the feedstock flow 

rate in simulation, then the mass flow rate of char is: 65%×35.8% ×0.463= 0.11kg/s 

- Overall efficiency from table 6.1 is 6.5%. 
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- Then the electricity produced from char is: 19.31×1000 ×0.11×6.5%= 138 kW 

- The total of electric energy in scenario 2 is: 

PT = 151 + 138 = 289 kWe 

If the unit price of electricity is IDR 1,112.00/kWh, then the monthly electrical energy sold 

carbon emission emission saving will be as follows: 

Electricity sale: 289 × 720 × IDR 1,112.00 = IDR 231,384,960.00 

CO2 emission saving: 289×8640×0.867 = 2164864.3 kg CO2 = 2165 tonnes CO2 

The third scenario is using the char selling as the main income of the chicken litter conversion 

by pyrolysis process. If char yield fraction is 35.8% and the fertilizer price is IDR 6,800.00/kg, 

then the total char selling that can be generated in a month is: 

35.8%×0.463kg/s×2592000s×IDR 6,800.00/kg = IDR 2,921,513,702.00 

Since there is no pyrolysis product that converted into electric energy, the ORC cost 

(€391,090.00) can be eliminated. However, the variable cost is included for the pyrolysis 

process attribute. The result of the three scenarios is shown in table 6.2 

Table 6. 2 Scenario of Chicken Litter conversion 

 
Cost (in million IDR) Income (in million IDR) 

CO2 emission  

saving (tonnes/year) 

 Pyrolysis ORC Variable Electric Fertilizer  

Scenario 1 71682 5862 598.4 120 1897 1131 

Scenario 2 71682 5862 598.4 231 - 2165 

Scenario 3 71682 - 598.4 - 2922 - 

 

Table 6.2 shows the comparison among the three scenario of chicken litter conversion. By 

selling both electric and fertilizer, scenario 1 give more positive value not only a revenue but 

also saving in CO2 emission. The second scenario gives the highest saving of CO2 emission. 

However, the income from the electric selling is lower than monthly variable cost, which means 

the scenario 2 would not be able to give a positive revenue. The highest income is coming from 

the third scenario and three times higher than the variable cost. The third scenario will give 

faster return in capital investment. However, there is no saving carbon emission in this scenario 
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and would not any positive impact to the environment.  Since only scenario 1 gives positive 

impact for environment and a revenue, then the economic evaluation is done by using the 

scenario 1 

6.3.7 Economic evaluation   

The methods that can be used to perform an economic evaluation are PP and NPV. The 

equation 6.4 for PP can be used to discover how long it would take for an investment to reach 

its break-even point. The following is the monthly-based calculation [180]–[182]. 

PP = Initial investment/(Income-Operating cost)  .……………………………………….. 6.4 

Then: 

PP = 77,548,800,000.00/(2,018,096,640.00-598,417,486.40) 

= 54.62  

= 55 months (4 years and 7 months) 

The PP calculation shows that the investment will have a break even period of 4 years 7 months. 

However, if the initial investment is obtained through a bank loan, the economic analysis 

should also take into account interest and the inflation rate. The NPV method includes the 

interest of the loan and inflation rate. Equation 6.5 is then used [180], [182]. 

𝑁𝑃𝑉 = −𝐶𝑖 + ∑
𝐹𝑛

(1+𝐾)𝑛

𝑁

𝑛=1
  …………………………………………………………. 6.5 

Where, 

Ci = Initial investment 

n = time period 

Fn = yearly cash flow (income-operating cost) 

N = years of investment’s life 

K = discount rate (interest + inflation rate) 

If the investment is funded by a bank loan with an annual interest rate of 12% and the 

Indonesian inflation rate is 3%, the annual discount rate will be 12%+3% = 15%. Assuming 

that the lifetime investment of the pyrolysis is 9 years (the longest period that gives positive 

NPV value), the NPV value will be [180]: 
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𝑁𝑃𝑉 = −77,548,800,000.00 + ∑
1,419,679,153.60 × 12

(1 + 15%)𝑛

9

𝑛=1

 

NPV = 3,740,618,645.96 

The positive NPV value indicates the feasibility of the investment into the electricity generation 

system over a period of nine years. 

 

6.4 Summary 

A simulation for the pyrolysis process and electricity generation was performed using Aspen 

Plus™ software. The FCL pyrolysis process generates the liquid yield product which can be 

burned. The heat generated from the burning process can be used for the ORC system. With 

the overall efficiency of 6.5%, the ORC system from the simulation generates electric power 

output of 151 kW. 

An economic evaluation was performed for both the pyrolysis and ORC system, using the 

economic conditions in Indonesia for the parameters. The analysis shows that the pyrolysis and 

ORC system have an economic value from char sale, that can be used as fertilizer. The sale of 

electricity and char can generate a monthly profit that reaches IDR 1,419,679,153.60. Finally, 

the result of the economic analysis of the NPV indicates a return on investment for the pyrolysis 

and ORC system investment within a period of nine years. This long return period is primarily 

due to the high interest rate charged by the banks in Indonesia and the lack of investment 

incentives from the government of Indonesia. 
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Chapter 7.  Conclusions and Recommendations for 

Further Work 

 

The consumption of chicken meat is increasing annually. The increase has motivated the 

chicken farming industry to raise their production capacity. As a consequence, chicken farming 

produces more waste. Without proper treatment, litter arising from chicken farming may cause 

problems to the environment, one of which is pollution. The forming of nitrate compounds for 

example, may be absorbed by the soil and pollute the ground water. Another example is the 

formation of ammonia, which evaporates and causes odour issues. Another method of utilizing 

chicken litter as a resource is its use to generate energy.  

Several methods can be applied to convert chicken litter into useful energy, namely 

combustion, anaerobic digestion, pyrolysis and gasification. In this study, the method explored 

in detail is pyrolysis. Pyrolysis method is divided into three categories that include slow, 

intermediate and fast pyrolysis. The temperature of each of these pyrolysis methods was varied 

in an effort to investigate the effect of temperature on the bioproducts of the process.  

In addition to the literature studies, the data presented in this study was obtained from 

experiments, simulation and economic analysis. The experimental work was conducted in three 

different locations. The slow pyrolysis experiment was performed at the laboratory of the 

RCUK Centre for Sustainable Energy Use in Food chains (CSEF), Brunel University London. 

The intermediate pyrolysis experiment was performed at a facility of the Department of 

Chemical Sciences, Bernal Institute, University of Limerick and the fast pyrolysis experiments 

was performed at the Process and Energy Laboratory, Delft University of Technology. The 

details of each work are as follows. 

• Slow pyrolysis. The experiment work of slow pyrolysis was started by planning a 

pyrolysis experiment by using a pyrolysis test rig. Based on the literature study, a 

pyrolysis test rig was designed and developed. The construction of the test rig was 

started by a series of procuring processes including procuring the control equipment 

and the pyrolysis system components such as reactor, condenser and gas and liquid 

yield collector which was attached to the lab stand support. The control equipment was 



100 

 

installed in the control box and was then connected to the heater that cover the pyrolysis 

reactor.  

• Intermediate pyrolysis. Due to the limitation of facilities at Brunel University, such as 

elemental analyzer, bomb calorimeter, micro GC, GC MSD, the intermediate pyrolysis 

was performed at another facility that could support the experiment. The laboratory, 

which is part of the facility owned by the Department of Chemical Sciences, University 

of Limerick, had the required equipment to perform the experiments. All of the yield 

products of the slow and intermediate pyrolysis were also tested in this laboratory.  

• Fast pyrolysis. For fast pyrolysis, the experiments were performed by using the 

100yroprobe 5000 series, a required equipment that could be found at the Process and 

Energy Laboratory, Delft University of Technology. Access and funds to use the 

facility was obtained through the Transnational Access afforded through the BRISK2 

program.  

• Following the completion of the experiments, a simulation study using Aspen plus 

software was performed to investigate the feasibility of electrical energy generation 

using the heat from combustion of the products of pyrolysis. The simulation assumed 

that the Organic Rankine cycle (ORC) would be used for the power generation. 

• The final phase of the study was focused on the economic evaluation, which was 

performed to investigate the feasibility of the chicken litter conversion to usable energy 

and fertilizer. The evaluation was performed by using financial parameters for 

Indonesia.  

This chapter summarises the conclusions from the study and provides suggestions for further 

work.  
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7.1  Conclusions 

 In addition to its use as fertilizer or soil ameliorant, chicken litter can be converted 

into a useful energy source. The literature survey pointed to a number of methods for 

conversion of chicken litter to useful energy. 

1. The Combustion method, which is a method of chicken litter burning. The energy 

generated from chicken litter combustion can reach 14.6 MJ/kg. This energy can be 

used for the generation of steam or heat up other fluids in a closed cycle heat to power 

system to generate electrical power.  

2. Anaerobic digestion can be used for the degradation of chicken litter in the presence of 

bacteria. During the degradation process, methane gas, also known as biogas, will form. 

The calorific value of biogas ranges between 0.47-0.51 MJ/kg. This gas can then be 

combusted in a boiler to produced heat or in internal combustion engine based 

combined heat and power systems to generate electrical power.  

3. Pyrolysis is the process of heating chicken litter at the temperature between 300-800°C, 

in the absence of oxygen. The main product of the process is char, gas and liquid (bio-

oil). The calorific value of the liquid product could reach 29.6 MJ/kg. 

4. Gasification is a process that takes place at the temperature between 800-1200°C and 

in air is added during the process. The product of the process is gas, also known as 

synthesis gas (syngas), with the caloric value that could reach 5.4 MJ/kg. 

The combustion method for chicken litter is already mature with a number of commercial 

plants operating in some countries such as the US and UK. Meanwhile, the anaerobic digestion 

method is considered less effective due to the low level of moisture in chicken litter. In terms 

of the gasification process, since it takes place at a high temperature, high energy input is 

required in this method.  

Pyrolysis process generated yield products that include gas (syngas), liquid (bio-oil) and char. 

Among the three yield products, liquid yield has the highest calorific value and therefore, the 

liquid yield as the result of chicken litter pyrolysis process delivered a potential to become 

biofuel and serve as an alternative energy source to replace fossil fuel. This study focused on 

the pyrolysis method as it offers the highest potential for energy production. 

1 
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 Because it is heterogeneous in nature, the chicken litter used as feedstock cannot be 

represented by only one type of sample. The following are several types of chicken 

litter used as feedstock in the experiments.  

- Hay mix (chicken manure + hay),  

- Straw mix (chicken manure + straw),  

- Rice husk mix (chicken manure + rice husk),  

- Wood shavings mix (chicken manure + wood shavings),  

- Fresh chicken litter (FCL) and  

- Pelletized chicken litter (PCL).  

The characteristics of all types of chicken litter used for the experiments were investigated by 

applying the proximate analysis method (moisture, volatile matter, ash and fix carbon content) 

and ultimate analysis method (carbon, hydrogen, oxygen, nitrogen and sulphur content).  The 

result of the chicken litter analysis conducted can be summarised as follows.  

1. The high level of fix carbon found in rice husk mix means that it is likely that it would 

be the highest char producer in the pyrolysis process.  

2. Liquid yield was the highest from the wood shavings mix that also has the highest level 

of volatile compounds.  

3. The high carbon I element would indicate that PCL would have the highest caloric value 

in the combustion process.  

4. Fresh chicken litter (FCL) had the highest moisture content compared to the other types 

of feedstock. It would indicate that the energy conversion process by using FCL would 

require more energy.  

 The investigation of pyrolysis process in this study was conducted by performing a 

series of experiments that applied three different methods of pyrolysis. Each set of 

experiments involved a different temperature setting and different type of chicken litter. The 

following are key outputs from the investigations.  

1. The yield production from pyrolysis highly depends on the pyrolysis method as well as 

on the temperature setting of the pyrolysis reactor.  

2 
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2. The slow pyrolysis resulted in more chars, compared to the other methods. The char 

production decreased as the pyrolysis temperature increased.  

3. The liquid yield is the dominant product of intermediate pyrolysis, especially at low 

temperature.  

4. Gas production is high in fast pyrolysis, especially at the highest temperature levels.  

5. Fresh chicken litter (FCL) has a high level of moisture content (22.67 wt%) compared 

to PCL (4.84%). However, the liquid yield of both the FCL and PCL pyrolysis had high 

water content, which ranged between 70 – 80 wt%. This indicates that the chicken litter 

pyrolysis process will likely lead to liquid yields with high level of moisture content.  

 Aspen plus was used to simulate how the chicken litter pyrolysis process could 

generate electrical energy. In the simulation, the pyrolysis process was combined with 

an electric generator which was modelled by assuming that the heat to power systems would 

be based on the organic Rankine cycle (ORC) system. The simulation of the pyrolysis process 

used the data from the experiments that resulted in the highest liquid yield, which was from the 

FCL pyrolysis at the temperature of 500°C. The amount of chicken litter used in the simulation 

was taken based on the calculation of the chicken farming capacity in Indonesia, which was 

400,000 chicken per batch. With the overall efficiency of 6.5%, the ORC system was estimated 

to be able to produce electric power of the order of 150 kWe. 

 In order to improve the confidence of using chicken litter as a resource for electrical 

power generator, an economic analysis was performed, by carrying out an economic 

analysis based on the simplified Payback Period and the Net Present Value (NPV) of the 

investment. The results of the evaluation are as follows:   

1. The payback period was calculated as the time needed to return the initial investment, 

taking into account the initial investment, the operating cost of the system and the 

financial return from the sale or utilization of the energy produced and the sale of a 

biochar. Using financial parameters for Indonesia the basic payback period was 

estimated to be approximately 5 years.  

4 
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2. Assuming that the initial investment was a bank loan and the interest that will be 

incurred and the inflation rate over the period, calculation of the NPV showed that the 

investment will start generating positive net income in approximately 9 years.  

3. The above analysis only considers financial benefits. The system will also need to 

environmental as well as social benefits from the reduction of pollution and the 

generation of renewable electricity from waste which will displace fossil fuel generated 

electricity in central power stations. If the electricity generated is used on site, then the 

technology will be able to be used in remote areas with limited or no access to the 

electricity grid. 

 

7.2 Recommendations for further work   

The study focused on chicken litter conversion into usable energy using the pyrolysis method. 

The slow, intermediate and fast pyrolysis methods have been investigated through 

experimentation and modelling. Simulation results and economic analysis demonstrated that 

pyrolysis of chicken litter and the use of the products of pyrolysis as a fuel to drive Organic 

Rankine Systems can be feasible for distributed power generation. The biochar can be used as 

a biofertilizer and therefore it has an economic value. There is still considerable work to be 

done on the subject for the optimum design of energy production systems using chicken litter 

as the feedstock. Recommendations for further work include: 

1. Chicken litter consists of materials that are not homogenous. As a consequence, each 

type has different characteristics. Future studies should consider chicken litter from the 

locality where consideration is given to its use for electrical power production. The use 

of chicken litter from Indonesia was not possible in this thesis but this is something that 

new research with regards to Indonesia should aim to do.  

2. Due to a lack of appropriate energy measurement equipment, the energy input for 

chicken litter pyrolysis was not measured. The emphasis was more on the analysis of 

the characteristics of the outputs of the process. It would be ideal for future studies to 

measure the energy input during the pyrolysis process to ensure that more accurate 

inputs are included in the Aspen plus simulations.  
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3. To prevent errors during sample testing of the pyrolysis results, it is recommended to 

place the analysis equipment such as Micro GC and GC MSD in-line with the pyrolysis 

test rig so that the analysis is performed in real time. This would not only reduce the 

possibility of errors but would also make it more effective and time saving.  

4. The use of the fuel produced by chicken litter pyrolysis to generate heat to drive the 

ORC system was analysed using Aspen plus simulation. In order to understand in 

detailed the behaviour of the system and validate simulation results, it would be useful 

to develop a prototype pyrolysis and ORC system integration to enable experimentation 

on the whole integrated system. 
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APPENDICES 
 

Appendix A 

 

Photographs and pictures of the equipment pieces used during the chicken litter pyrolysis 

experiments, as well as the activities conducted during the experiments at TU Delft, the 

Netherlands.  

 

1. Pyrolysis equipment in CSEF, Brunel University London. 

 

Fig. A.1 is a muffle kiln which was used for the proximate analysis of all samples prepared at 

Brunel University that included hay mix, straw mix, wood shavings mix and rice husk mix 
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Fig. A.1 Muffle kiln 

 

Fig. A.2 is the assembly of the slow pyrolysis reactor covered by an electric heater. The electric 

heater was then attached to the control device as displayed in Figs. A.3 and A.4. The installation 

of the reactor and the control device can be seen in Fig. A.5.  
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 Fig. A.2 Reactor assembly 

         
             Fig. A.3 Control box cover                                    Fig.A.4 Control equipment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Fig. A.5 Experimental equipment in CSEF, Brunel University London 

2. Pyrolysis equipment at the University of Limerick. 

 

Figs. A.6 and A.7 show the pyrolysis reactor which was used for the PCL and FCL intermediate 

pyrolysis experiments at the University of Limerick. In Fig. A.7, the gas produced by the 

pyrolysis was not stored in a plastic bag but was passed through a paper-filled plastic bottle 

Pyrolysis 

Equipment   
High Temperature 

Oven  
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with the purpose to trap the aerosol in the gas yield. The liquid cooler seen in Fig. A.8 was used 

to condense the vapour of the pyrolysis process  

               
 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Fig. A.8 Experimental equipment at the University of Limerick 

3. Pictures of experimental work at TU Delft. 

 

Figs. A.9 to A.12 show activities conducted during the fast pyrolysis experiment at TU Delft, 

the Netherlands. Figure A.9 shows the grinding and sieving (< 100 μm) of the samples. The 

preparation of samples and the introduction to equipment was assisted by one of TU Delft’s 

Pyrolysis 

Apparatus   

Liquid Cooler   

Fig. A.6 Pyrolysis reactor with plastic 

bag collector 
Fig. A.7 Pyrolysis reactor with aerosol 

collector 



130 

 

PhD students, Christos Tsekos. The next work is to prepare the fast pyrolysis by using 

Pyroprobe 5000 series (Figure A.10). Upon the completion of the experiment, the pre-analysis 

was performed for oil yield (Fig. A.11). Gas analysis was performed by using Varian CP-4900 

Micro GC. (Fig A.12). 

 

                                      
     Fig. A.9 Sample preparation                                 Fig. A.10 Pyroprobe preparation 

 

       
     Fig. A.11 Oil yield pre-analysis                            Fig. A.12 Gas yield analysis  

 

 

 

 

 

 

4. Sample materials from pyrolysis. 

 

 

Figs. A.13 to A.18 are some examples of the feedstock and yield products from the pyrolysis 

process.  
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Fig.A.13 Ground feedstock                                                        Fig. A.14 Gas yield   

 

 

 

 

 

 

 

 

                                      
Fig.A.15 liquid yield from slow pyrolysis              Fig. A.16 liquid yield from fast pyrolysis   
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Fig.A.17 Char yield from slow pyrolysis                   Fig. A 18 Char yield from fast pyrolysis 
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Appendix B 

All liquid yields resulting from slow and intermediate pyrolysis were tested it the laboratory of the Chemical Department, Bernal Institute, 

University of Limerick. The Chromatogram of the GC MSD, along with the identification table can be seen in this Appendix. 

1. Oil yield Identification from slow pyrolysis (Sample from Brunel University London) 
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     Table Compounds Identification of Oil from Hay Mix 350°C. 

Compounds Name Compounds Name Compounds Name 

1. Acetic acid (C2H4O2) 9. Phenol (C6H6O) 17. Phenol, 3-ethyl- (C8H10O) 

2. Propanoic acid (C3H6O2) 10. 2-Furanmethanol, tetrahydro- (C5H10O2) 18. Phenol, 2-methoxy-4-methyl- (C8H10O2) 

3. 1-Hydroxy-2-butanone (C4H8O2) 11. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 19.  Phenol, 4-ethyl-2-methoxy- (C9H12O2) 

4. Butanoic acid (C4H8O2) 12. Phenol, 2-methoxy- (C7H8O2) 20.  Phenol, 2,6-dimethoxy- (C8H10O3) 

5. 2-Furanmethanol (C5H6O2) 13. 1-Heptanol, 2-propyl- (C10H22O) 21.  Phenol, 4-methoxy-3-(methoxymethyl)- (C9H12O3) 

6. 2-Propanone, 1-(acetyloxy)- (C5H8O3) 14. Maltol (C6H6O3) 22.  Trimethoxyamphetamine, 2,3,5- (C12H19NO3) 

7. Butyrolactone (C4H6O2) 15. 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- (C7H10O2) 23. Phenol, 2,6-dimethoxy-4-(2-propenyl)- (C11H14O3) 

8. Furo[3,4-b]furan-2,6(3H,4H)-dione (C9H10O4) 16. 4-Pyridinol (C5H5NO) 24. n-Hexadecanoic acid (C16H32O2) 
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   Table Compounds Identification of Oil from Hay Mix 400°C. 

Compounds Name Compounds Name Compounds Name 

1. Propanoic acid (C3H6O2) 9. Phenol (C6H6O) 17. Phenol, 2,6-dimethoxy- (C8H10O3) 

2. Pyridine (C5H5N) 10. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 18.  Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

3. 1-Hydroxy-2-butanone (C4H8O2) 11.  Phenol, 2-methoxy- (C7H8O2) 19.  Benzene, 1,2,3-trimethoxy-5-methyl- (C10H14O3) 

4. Hexanohydroxamic acid (C6H13NO2) 12.  2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- (C7H10O2) 20.  Phenol, 2,6-dimethoxy-4-(2-propenyl)- (C11H14O3) 

5. Butanoic acid (C4H8O2) 13. Phenol, 3-ethyl- (C8H10O) 21.  n-Hexadecanoic acid (C16H32O2) 

6. 2-Furanmethanol (C5H6O2) 14.  Phenol, 2-methoxy-4-methyl- (C8H10O2) 22.  9,12-Octadecadienoic acid (Z,Z)- (C18H32O2) 

7. Butyrolactone (C4H6O2) 15.  Phenol, 4-ethyl-2-methoxy- (C9H12O2)  

8. 2-Cyclopenten-1-one, 3-methyl- (C6H8O) 16.  2-Methoxy-4-vinylphenol (C9H10O2)  
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  Table Compounds Identification of Oil from Hay Mix 450°C. 

Compounds Name Compounds Name Compounds Name 

1. Acetic acid, methyl ester (C3H6O2) 8. 2-Cyclopenten-1-one, 3-methyl- (C6H8O) 15. Phenol, 2-methoxy-4-methyl- (C8H10O2) 

2. Propanoic acid (C3H6O2) 9. Phenol (C6H6O) 16. 1,4:3,6-Dianhydro-α-d-glucopyranose (C6H8O4) 

3. Pyrazine (C4H4N2) 10. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 17. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 

4.  Butanoic acid (C4H8O2) 11. Phenol, 2-methoxy- (C7H8O2) 18.  2-Methoxy-4-vinylphenol (C9H10O2) 

5.  2-Furanmethanol (C5H6O2) 12. Maltol (C6H6O3) 19.  Phenol, 2,6-dimethoxy- (C8H10O3) 

6. 2-Propanone, 1-(acetyloxy)- (C5H8O3) 13.  2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- (C7H10O2) 20. 1,2,3-Trimethoxybenzene (C9H12O3) 

7. Butyrolactone (C4H6O2) 14.  4-Pyridinol (C5H5NO)  
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 Table. Compounds Identification of Oil from Rice Husk Mix 350°C. 

Compounds Name Compounds Name Compounds Name 

1. Acetic acid (C2H4O2) 8. Butyrolactone (C4H6O2) 15. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 

2. Propanoic acid (C3H6O2) 9. Phenol (C6H6O) 16. Phenol, 2,6-dimethoxy- (C8H10O3) 

3. Pyridine (C5H5N) 10. 2-Furanmethanol, tetrahydro- (C5H10O2) 17. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

4. Butanoic acid (C4H8O2) 11. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 18. Hexadecanoic acid, methyl ester (C17H34O2) 

5. 5-Hexenoic acid (C6H10O2) 12. Phenol, 2-methoxy- (C7H8O2) 19. n-Hexadecanoic acid (C16H32O2) 

6. 2-Furanmethanol (C5H6O2) 13. Phenol, 4-ethyl- (C8H10O) 20. cis-Vaccenic acid (C18H34O2) 

7. 1,2-Ethanediol, diacetate (C6H10O4) 14. Phenol, 2-methoxy-4-methyl- (C8H10O2)  

 



137 

 

5 10 15 20 25 30 35 40 45 50 55 60 65

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

800000

20

19

18

17

16

1514

13

12

11

10

9

8

7

6

5

4

3

2

Time

 RICE HUSK MIX-400°C 

Abundance

1

 

 

 

    Table Compounds Identification of Oil from Rice Husk Mix 400°C. 

Compounds Name Compounds Name Compounds Name 

1. Propanoic acid (C3H6O2) 8. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 15. Phenol, 2,6-dimethoxy- (C8H10O3) 

2. Pyridine (C5H5N) 9. Phenol, 2-methoxy- (C7H8O2) 16. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

3. Butanoic acid (C4H8O2) 10. Phenol, 4-ethyl- (C8H10O) 17. Methyleugenol (C11H14O2) 

4. 2-Furanmethanol (C5H6O2) 11. Phenol, 2-methoxy-4-methyl- (C8H10O2) 18. 4-Ethenyl-2,6-dimethoxyphenol (C10H12O3) 

5. 3-(5-Methylfuryl)-N-furamidopropionamide (C13H14N2O4) 12. Benzofuran, 2,3-dihydro- (C8H8O) 19. n-Hexadecanoic acid (C16H32O2) 

6. 2-Cyclopenten-1-one, 2-methyl- (C6H8O) 13. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 20. Oleic Acid (C18H34O2) 

7. Phenol (C6H6O) 14. 2-Methoxy-4-vinylphenol (C9H10O2)  
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  Table Compounds Identification of Oil from Rice Husk Mix 450°C. 

Compounds Name Compounds Name Compounds Name 

1. Propanoic acid (C3H6O2) 8. Phenol, 2-methyl- (C7H8O) 15. Phenol, 2,6-dimethoxy- (C8H10O3) 

2. Toluene (C7H8) 9. Phenol, 2-methoxy- (C7H8O2) 16. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

3. Butanoic acid (C4H8O2) 10. Phenol, 4-ethyl- (C8H10O) 17. 4-(2,3-Dimethyl-2-butanyl)phenol (C12H18O) 

4. 2-Furanmethanol (C5H6O2) 11. Phenol, 2-methoxy-4-methyl- (C8H10O2) 18. 2-Propenoic acid, 3- (4-hydroxyphenyl)- (C9H8O3) 

5. Pyrazine, 2,5-dimethyl (C6H8N2) 12. Phenol, 4-ethyl- (C8H10O) 19. 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- (C10H12O3) 

6. Phenol (C6H6O) 13. Phenol, 2-methoxy-4-methyl- (C8H10O2) 20. n-Hexadecanoic acid (C16H32O2) 

7. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 14. Benzofuran, 2,3-dihydro- (C8H8O) 21. Oleic Acid (C18H34O2) 
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Table Compounds Identification of Oil from Straw Mix 350°C. 

Compounds Name Compounds Name Compounds Name 

1. Acetic acid (C2H4O2) 8. 2-Cyclopenten-1-one, 2-methyl- (C6H8O) 15. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 

2. Propanoic acid (C3H6O2) 9. Furan-2-carbonyl chloride, tetrahydro- (C5H7ClO2) 16. Phenol, 2,6-dimethoxy- (C8H10O3) 

3. 1-Hydroxy-2-butanone (C4H8O2) 10. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 17. Phenol, 4-methoxy-3-(methoxymethyl)- (C9H12O3) 

4. Butanoic acid (C4H8O2) 11. Phenol, 2-methoxy- (C7H8O2) 18. Benzene, 1,2,3-trimethoxy-5-methyl- (C10H14O3) 

5. 2-Furanmethanol (C5H6O2) 12. 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- (C7H10O2) 19. Phenol, 2,6-dimethoxy-4-(2-propenyl)- (C11H14O3) 

6. 2-Propanone, 1-(acetyloxy)- (C5H8O3) 13. Phenol, 2-methoxy-4-methyl- (C8H10O2) 20. 2-Pentanone, 1-(2,4,6-trihydroxyphenyl) (C11H14O4) 

7. Butyrolactone (C4H6O2) 14. 7-Octene-2,4-dione (C8H12O2)  
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     Table Compounds Identification of Oil from Straw Mix 400°C. 

Compounds Name Compounds Name Compounds Name 

1. Acetic acid (C2H4O2) 8. 2,4-Dimethyl-2-oxazoline-4-methanol (C6H11NO2) 15. 2-Methoxy-4-vinylphenol (C9H10O2) 

2. Propanoic acid (C3H6O2) 9. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 16. : Phenol, 2,6-dimethoxy- (C8H10O3) 

3. 1-Hydroxy-2-butanone (C4H8O2) 10. Phenol, 2-methoxy- (C7H8O2) 17. Phenol, 4-methoxy-3-(methoxymethyl)- (C9H12O3) 

4. Butanoic acid (Butanoic acid) 11. 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- (C7H10O2) 18. Benzene, 1,2,3-trimethoxy-5-methyl- (C10H14O3) 

5. 2-Furanmethanol (C5H6O2) 12. Phenol, 2-methoxy-4-methyl- (C8H10O2) 19. Phenol, 2,6-dimethoxy-4-(2-propenyl)- (C11H14O3) 

6. Butyrolactone (C4H6O2) 13. 1,4:3,6-Dianhydro-α-d-glucopyranose (C6H8O4) 20. Desaspidinol (C11H14O4) 

7. 2-Cyclopenten-1-one, 3-methyl- (C6H8O) 14. Phenol, 4-ethyl-2-methoxy- (C9H12O2)  
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  Table Compounds Identification of Oil from Straw Mix 450°C. 

Compounds Name Compounds Name Compounds Name 

1. Hexadecanamide (C16H33NO) 8. Butyrolactone (C4H6O2) 15. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 

2. Propanoic acid (C3H6O2) 9. 2-Cyclopenten-1-one, 3-methyl- (C6H8O) 16. Phenol, 2,6-dimethoxy- (C8H10O3) 

3. Propanoic acid (C3H6O2) 10. 2-(3-Methylbutyl)-3,5-dimethylpyrazine (C11H18N2) 17. Phenol, 4-methoxy-3-(methoxymethyl)- (C9H12O3) 

4. Propanoic acid (C3H6O2) 11. 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- (C6H8O2) 18. Benzene, 1,2,3-trimethoxy-5-methyl- (C10H14O3) 

5. 2-Furanmethanol (C5H6O2) 12. Phenol, 2-methoxy- (C7H8O2) 19. Phenol, 2,6-dimethoxy-4-(2-propenyl)- (C11H14O3) 

6. 1,2-Ethanediol, diacetate (C6H10O4) 13. 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- (C7H10O2) 20. Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- (C10H12O4) 

7. 2-Propanone, 1-(acetyloxy)- (C5H8O3) 14. Phenol, 2-methoxy-4-methyl- (C8H10O2) 21. 2-Pentanone, 1-(2,4,6-trihydroxyphenyl) (C11H14O4) 
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   Table Compounds Identification of Oil from Wood Savings Mix 350°C. 

Compounds Name Compounds Name Compounds Name 

1. 2-Propanone, 1-hydroxy- (C3H6O2) 8. Phenol, 2-methoxy- (C7H8O2) 15. Pentadecanoic acid, 14-methyl-, methyl ester (C17H34O2) 

2. Propanoic acid (C3H6O2) 9. Phenol, 2-methoxy-4-methyl- (C8H10O2) 16. n-Hexadecanoic acid (C16H32O2) 

3. Pyridine (C5H5N) 10. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 17. 10-Octadecenoic acid, methyl ester (C19H36O2) 

4. Butanoic acid (C4H8O2) 11. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 18. Oleic Acid (C18H34O2) 

5. 2-Furanmethanol (C5H6O2) 12. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 19. Dronabinol (C21H30O2) 

6. Cyclopentanone (C5H8O) 13. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 20. Retinoic acid (C20H28O2) 

7. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 14. 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- (C10H12O3) 21. Abietic acid (C20H30O2) 
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   Table Compounds Identification of Oil from Wood Savings Mix 400°C. 

Compounds Name Compounds Name Compounds Name 

1. Furan, 2,5-dimethyl- (C6H8O) 8. Cyclopentanol (C5H10O) 15. n-Hexadecanoic acid (C16H32O2) 

2. Propanoic acid (C3H6O2) 9. Phenol, 2-methoxy-4-methyl- (C8H10O2) 16. 10-Octadecenoic acid, methyl ester (C19H36O2) 

3. Pyridine (C5H5N) 10. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 17. Oleic Acid (C18H34O2) 

4. Butanoic acid (C4H8O2) 11. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 18. Dronabinol (C21H30O2) 

5. 2-Furanmethanol (C5H6O2) 12. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 19. Retinoic acid (C20H28O2) 

6. Pyrazine, 2,6-dimethyl- (C6H8N2) 13. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2)  

7. 1,2-Cyclopentanedione, 3-methyl- (C6H8O2) 14. 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- (C10H12O3)  
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   Table Compounds Identification of Oil from Wood Savings Mix 450°C. 

Compounds Name Compounds Name Compounds Name 

1. Acetic acid (C2H4O2) 8. 2-Cyclopenten-1-one, 2-methyl- (C6H8O) 15. Phenol, 2-methoxy-5-(1-propenyl)-, (E)- (C10H12O2) 

2. Propanoic acid (C3H6O2) 9. 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- (C6H8O2) 16. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 

3. Pyridine (C5H5N) 10. Phenol, 2-methoxy- (C7H8O2) 17. n-Hexadecanoic acid (C16H32O2) 

4. Butanoic acid (C4H8O2) 11. Phenol, 2-methoxy-4-methyl- (C8H10O2) 18. Oleic Acid (C18H34O2) 

5. 2-Furanmethanol (C5H6O2) 12. Phenol, 4-ethyl-2-methoxy- (C9H12O2) 19. Dronabinol (C21H30O2) 

6. 2-Propanone, 1-(acetyloxy)- (C5H8O3) 13. 2-Methoxy-4-vinylphenol (C9H10O2) 20. Retinoic acid (C20H28O2) 

7. 2-Cyclopenten-1-one, 2-methyl- (C6H8O) 14. Phenol, 2-methoxy-4-(1-propenyl)- (C10H12O2) 21. Pyrethrin 1 (C21H28O3) 
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2. Oil yield Identification from intermediate pyrolysis (Sample from University of Limerick) 
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Table Compounds Identification of Oil from FCL 500°C. 

Compounds Name Compounds Name Compounds Name 

1. 2-Propanoic acid (C3H4O2)   14. Cyclohexasiloxane, dodecamethyl- (C12H36O6Si6) 

 7. 2-Cyclopenten-1-one, 3-methyl- (C6H8O) 15. Piperazine-2,5-dione (C4H6N2O2) 

2. Pyridine (C5H5N) 8. Phenol (C6H6O) 16. Cycloheptasiloxane, tetradecamethyl- (C14H42O7Si7) 

 9. Phenol, 2-methyl- (C7H8O) 17. Cyclooctasiloxane, hexadecamethyl- (C16H48O8Si8) 

3. Acetamide (C2H5NO) 10. Phenol, 3-methyl- (C7H8O) 18. Cyclononasiloxane, octadecamethyl- (C18H54O9Si9) 

4. Pyrazine, methyl (C5H6N2) 11. 3-Pyridinol (C5H5NO) 19. n-Hexadecanoic acid (C16H32O2) 

5. 2-Furanmethanol (C5H6O2) 12. 2/3-Trifluoroacetoxydodecane (C4H25F3O2) 20. 9,12-Octadecadienoic acid (Z,Z)- (C18H32O2) 

 13. Indolizine (C8H7N)  
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Table Compounds Identification of Oil from FCL 600°C. 

Compounds Name Compounds Name Compounds Name 

1. Propanoic acid (C3H6O2) 8. Benzene, 1-ethynyl-4-methyl (C9H8) 15. 2,4-Imidazolidinedione, 5-ethyl-5-methyl- (C6H10N2O2) 

 9. Phenol, 2-methyl- (C7H8O) 16. N,N’-trimethylene-urea (C4H8N2O) 

2. Pyridine (C5H5N) 10. Phenol, 4-methyl- (C7H8O) 17. 6-Undecylamine (C11H25N) 

 11. Naphthalene (C10H8) 18. Octane (C8H18) 

3. Toluene (C7H8) 12. Indole (C8H7N) 19. Cycloheptasiloxane, tetradecamethyl- (C14H42O7Si7) 

4. Pyridine 2-Methyl- (C6H7N) 13. 2,4 -Imidazolidinedione,5,5-dimethyl- (C5H8N2O2)  

5. 2-Furanmethanol (C5H6O2) 14. 2,4 -Imidazolidinedione, 5-methyl- (C6H6N2O2)  

6. Styrene (C8H8)   
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   Table Compounds Identification of Oil from FCL 700°C. 

Compounds Name Compounds Name Compounds Name 

1. Benzene (C6H6) 8. Benzonitrile (C7H5N) 15. 2,4-Imidazolidinedione, 5,5-dimethyl- (C5H8N2O2) 

2. Pyridine (C5H5N) 9. Benzene, 1-propynyl- (C9H8) 16. Biphenyl (C12H10) 

3. Toluene (C7H8) 10. Naphthalene (C10H8) 17. Biphenyl (C12H10) 

4. Pyridine, 2-methyl-  (C6H7N) 11. Quinoline (C9H7N) 18. Biphenylene (C12H8) 

5. Pyridine (C5H5N) 12. Naphthalene, 2-methyl- (C11H10) 19. Cycloheptasiloxane, tetradecamethyl- (C14H42O7Si7) 

6. Styrene (C8H8) 13. Indole (C8H7N) 20. Fluorene (C13H10) 

7. Pyridine, 2,4-dimethyl- (C7H9N) 14. Naphthalene, 2-methyl- (C11H10) 21. Anthracene (C14H10) 
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  Table Compounds Identification of Oil from PCL 500°C. 

Compounds Name Compounds Name Compounds Name 

1. Propanoic acid (C3H6O2) 8. 2-Cyclopenten-1-one, 3-methyl- (C6H8O) 15. Indolizine (C8H7N) 

2. Pyridine (C5H5N) 9. Phenol (C6H6O) 16. 1-Piperidinoacetylindoline (C15H20N2O) 

3. Butanoic acid (C4H8O2) 10. 2-Cyclopenten-1-one, 2,3-dimethyl- (C7H10O) 17. Trichloroacetic acid, tridecyl ester (C15H27Cl3O2) 

4. 2-Furanmethanol (C5H6O2) 11. Phenol, 2-methyl- (C7H8O) 18. n-Hexadecanoic acid (C16H32O2) 

5. 4-Methylene-5-methylthiomethylcyclohexene (C9H14S) 12. Phenol, 3-methyl- (C7H8O) 19. Oleic Acid (C18H34O2) 

6. Styrene (C8H8) 13. 3-Hydroxypyridine-N-oxide (C5H5NO2)  

7. Pyrazine, 2,5-dimethyl- (C6H8N2) 14. Phenol, 3-ethyl- (C8H10O)  
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   Table Compounds Identification of Oil from PCL 600°C. 

Compounds Name Compounds Name Compounds Name 

1. Propanoic acid (C3H6O2) 8. Phenol (C6H6O) 15. 2,4-Imidazolidinedione, 5-methyl- (C4H6N2O2) 

2. Acetamide (C2H5NO) 9. Indene (C9H8) 16. Cycloheptasiloxane, tetradecamethyl- (C14H42O7Si7) 

3. Butanoic acid (C4H8O2) 10. Phenol, 2-methyl- (C7H8O) 17. Cyclooctasiloxane, hexadecamethyl- (C16H48O8Si8) 

4. Pyrimidine, 2-methyl- (C5H6N2) 11. Phenol, 4-methyl- (C7H8O) 18. Cyclononasiloxane, octadecamethyl- (C18H54O9Si9) 

5. Pyridine, 3-methyl- (C6H7N) 12. Phenol, 4-ethyl- (C8H10O) 19. n-Hexadecanoic acid (C16H32O2) 

6. Styrene (C8H8) 13. Benzofuran, 2,3-dihydro- (C8H8O)  

7. 3-(5-Methylfuryl)-N-furamidopropionamide (C13H14N2O4) 14. Indole (C8H7N)  
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   Table Compounds Identification of Oil from PCL 700°C. 

Compounds Name Compounds Name Compounds Name 

1. Benzene (C6H6) 8. Phenol (C6H6O) 15. Naphthalene, 2-methyl- (C11H10) 

2. Pyridine (C5H5N) 9. Benzofuran (C8H6O) 16. Indole (C8H7N) 

3. Toluene (C7H8) 10. Indene (C9H8) 17. Naphthalene, 1-methyl- (C11H10) 

4. Pyridine, 2-methyl- (C6H7N) 11. Phenol, 2-methyl- (C7H8O) 18. 2,4-Imidazolidinedione, 5,5-dimethyl- (C5H8N2O2) 

5. Pyridine, 3-methyl- (C6H7N) 12. Phenol, 4-methyl- (C7H8O) 19. 2,4-Imidazolidinedione, 5-methyl- (C4H6N2O2) 

6. Styrene (C8H8) 13. Naphthalene (C10H8) 20. Fluorene (C13H10) 

7. Pyridine, 3,5-dimethyl- (C7H9N) 14. Quinoline (C9H7N) 21. Phenanthrene (C14H10) 
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Appendix C  

 

The proximate and ultimate tables of all the solid samples (feedstock and char) can be seen in 

appendix C, Table C.1 and C2. The ultimate analysis table is presented in as received, dry and 

dry ash free basis. The table of the liquid yield’s water content, which was obtained by using 

the Karl fisher titration method can also be seen in appendix C (Table C.3). 

 

Table C.1 Proximate analysis  

Sample Moisture  
(wt%) 

 VM  
(wt%) 

Ash  
(wt%) 

FC 
(wt%) 

     
    

PCL 4.84  63.84 17.05 14.27 

PCL Char 500°C 0.57  16.20 34.66 48.57 

PCL Char 600°C 0.31  14.27 35.46 49.96 

PCL Char 700°C 0.25  7.29 39.28 53.17 

        
FCL 22.67  43.70 9.82 23.81 

FCL Char 500°C 0.84  17.48 32.39 49.30 

FCL Char 600°C 1.17  15.57 34.21 49.04 

FCL Char 700°C 0.28  11.47 37.38 50.87 

       
Hay Mix Char 350°C 2.72  43.07 29.47 24.74 

Hay Mix Char 400°C 3.45  31.36 38.54 26.65 

Hay Mix Char 450°C 1.57  31.18 36.36 30.89 

        
Straw Mix Char 350°C 3.10  43.80 29.27 23.83 

Straw Mix Char 400°C 3.54  32.62 37.59 26.25 

Straw Mix Char 450°C 4.08  31.06 39.22 25.64 

        
Rice husk Mix Char 350°C 2.98  44.65 34.45 17.93 

Rice husk Mix Char 400°C 3.59  32.48 42.85 21.08 

Rice husk Mix Char 450°C 3.78  30.07 44.15 22.00 

        
Wood chip Mix Char 350°C 2.20  46.23 24.61 26.97 

Wood chip Mix Char 400°C 3.80  34.22 34.58 27.40 

Wood chip Mix Char 450°C 2.00  31.92 36.97  29.11 
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Table C.2 Ultimate analysis. 

Sample As Received Basis Dry Basis Dry Ash Free 

  

C  
(wt%) 

H  
(wt%) 

O  
(wt%) 

N  
(wt%) 

S  
(wt%) 

Moisture  
(wt%) 

Ash  
(wt%) 

C  
(wt%) 

H  
(wt%) 

O  
(wt%) 

N  
(wt%) 

S  
(wt%) 

Ash  
(wt%) 

C  
(wt%) 

H  
(wt%) 

O  
(wt%) 

N  
(wt%) 

S  
(wt%) 

                         

PCL 40.11 5.66 27.56 4.23 0.55 4.84 17.05 42.15 5.38 29.52 4.45 0.58 17.92 51.34 6.56 35.97 5.42 0.71 

PCL Char 500°C 52.23 1.57 7.40 2.62 0.95 0.57 34.66 52.53 1.51 7.50 2.64 0.96 34.86 80.64 2.32 11.52 4.05 1.47 

PCL Char 600°C 53.20 1.20 6.50 2.35 0.98 0.31 35.46 53.37 1.17 6.56 2.35 0.98 35.57 82.83 1.82 10.18 3.65 1.52 

PCL Char 700°C 52.06 0.58 1.15 1.95 1.15 0.25 39.28 52.20 0.55 4.77 1.96 1.15 39.38 86.10 0.91 7.78 3.23 1.89 

                    
FCL 29.44 5.17 26.84 5.59 0.47 22.67 9.82 38.07 3.42 37.97 722 0.61 12.70 43.61 3.92 43.49 8.28 0.70 

FCL Char 500°C 57.84 1.60 2.95 4.01 0.37 0.84 32.39 58.33 1.52 3.07 4.05 0.37 32.66 86.62 2.25 4.57 6.01 0.55 

FCL Char 600°C 55.46 1.42 4.25 2.90 0.59 1.17 34.21 56.12 1.30 4.43 2.93 0.60 34.61 85.83 1.99 6.78 4.48 0.92 

FCL Char 700°C 50.43 1.14 7.47 2.44 0.85 0.28 37.38 50.57 1.12 7.52 2.45 0.86 37.48 80.90 1.79 12.04 3.92 1.37 

                    
Hay Mix 34.50 5.47 29.14 3.60 0.27 10.32 16.17 38.41 4.81 33.67 4.03 0.30 18.78 47.44 5.88 40.79 5.46 0.43 

Hay Mix Char 350°C 46.62 3.55 12.62 3.52 1.49 2.72 29.47 47.92 3.34 13.29 3.62 1.54 30.29 68.75 4.79 19.06 5.19 2.20 

Hay Mix Char 400°C 49.33 1.50 5.42 1.65 0.25 3.45 38.54 51.09 1.16 5.87 1.70 0.26 39.92 85.03 1.93 9.76 2.84 0.44 

Hay Mix Char 450°C 42.37 1.97 14.96 2.50 0.27 1.57 36.36 43.04 1.83 15.38 2.54 0.27 36.94 68.26 2.89 24.39 4.03 0.43 

                    
Straw Mix 32.15 5.35 33.71 2.89 0.30 9.81 15.80 35.61 4.70 38.36 3.25 0.33 17.75 44.03 5.71 45.18 4.63 0.46 

Straw Mix Char 350°C 49.54 2.73 12.22 2.73 0.41 3.10 29.27 51.13 2.46 12.97 2.81 0.42 30.21 73.26 3.53 18.58 4.03 0.60 

Straw Mix Char 400°C 50.53 1.58 6.55 1.44 0.20 3.54 37.59 52.38 1.23 5.72 1.49 0.21 38.97 85.83 2.02 9.37 2.44 0.35 

Straw Mix Char 450°C 46.05 2.18 6.09 1.91 0.48 4.08 39.22 48.01 1.80 6.82 1.99 0.50 40.89 81.22 3.04 11.54 3.36 0.84 

                    
Rice husk Mix 32.05 4.86 27.60 2.85 0.31 10.28 22.06 35.69 4.14 31.95 3.21 0.35 24.66 47.46 5.51 41.92 4.62 0.49 

Rice husk Mix Char 350°C 46.66 2.34 11.27 1.96 0.35 2.98 34.45 48.09 2.07 11.96 2.02 0.36 35.51 74.57 3.20 18.58 3.12 0.56 

Rice husk Mix Char 400°C 44.93 1.46 5.82 1.21 0.14 3.59 42.85 46.60 1.10 6.45 1.26 0.15 44.45 83.89 1.98 11.61 2.26 0.27 

Rice husk Mix Char 450°C 35.38 1.81 13.02 1.59 0.27 3.78 44.15 36.77 1.44 13.97 1.65 0.28 45.88 67.95 2.67 25.82 3.05 0.52 

                    
Wood chip Mix 35.77 5.68 31.43 2.81 0.27 9.95 14.09 39.62 5.06 35.96 3.17 0.31 15.89 47.31 5.95 41.78 4.53 0.43 

Wood chip Mix Char 350°C 50.89 3.30 15.65 2.52 0.83 2.20 24.61 52.03 3.13 16.25 2.58 0.85 25.16 69.53 4.18 21.71 3.44 1.14 

Wood chip Mix Char 400°C 48.68 1.43 10.09 1.26 0.17 3.80 34.58 50.60 1.05 10.93 1.31 0.17 35.95 78.99 1.64 17.06 2.04 0.27 

Wood chip Mix Char 450°C 45.85 1.96 10.98 1.95 0.29 2.00 36.97 46.79 1.77 11.43 1.99 0.30 37.72 75.13 2.85 18.35 3.20 0.47 
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 Table C.3 Water content (wt%) in pyrolytic oil from Karl fisher titration  

Sample Name Result 1(%) Result 2(%) Result 3(%) AVERAGE (%) SD 

FCL Oil-700°C 81.09 83.56 82.41 82.35 1.009169 

FCL Oil-600°C 69.14 72.15 71.39 70.89 1.278028 

FCL Oil-500°C 73.3 68.68 70.39 70.79 1.907197 

PCL Oil-700°C 77.65 78.6 78.24 78.16 0.391606 

PCL Oil-600°C 70.5 73.01 71.64 71.72 1.026136 

PCL Oil-500°C 71.69 73.64 75.2 73.51 1.435897 

HAY MX-SP 62.6 62.55 61.85 62.33 0.342377 

HAY MX-MP 63.53 62.76 63.1 63.13 0.315066 

HAY MX-FP 63.39 67.18 68.04 66.20 2.020072 

RICE HS MX-SP 71.53 71.7 71.24 71.49 0.189912 

RICE HS MX-MP 72.28 71.9 72.03 72.07 0.157692 

RICE HS MX-FP 76.42 76.37 75.81 76.20 0.276526 

STRAW MX-SP 69.15 69.58 70.03 69.59 0.359289 

STRAW MX-MP 73.94 71.99 72.56 72.83 0.818657 

STRAW MX-FP 75.31 74.52 74.84 74.89 0.324448 

WOOD SV MX-SP 65.12 65.94 66.28 65.78 0.486895 

WOOD SV MX-MP 59.67 60.32 60.08 60.02 0.26837 

WOOD SV MX-FP 55.44 56 55.23 55.56 0.324996 
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Appendix D 

 

Thermogravimetric Analysis  

Thermogravimetric analysis (TGA) by using two types of feedstock namely PCL and char generated from heated PCL at the temperature between 

400 – 600°C. The TGA process resulted in proximate data such as moisture content, ash content, fix carbon content and volatile matter content, 

whose table can be seen in the proximate test tables in appendix D (Table D.1). The graphic decomposition rate (dm/m0/dt (1/s)) towards the 

temperature elevation in the TGA process can also be seen in appendix D. The TGA for PCL was performed two times with samples that weighed 

5 mg dan 10 mg. Meanwhile for all char, the TGA was performed one time with a sample that weighed 10 mg. The whole TGA process was 

conducted at TU Delft, the Netherlands.  

Table D.1 Proximate Test from TGA 

Sample Moisture Content (%) Ash (%) Fix Carbon (%) Volatile (%) 

Poultry Litter (5 mg) 7.27 0.36 10.81 81.56 

Poultry Litter (10 mg) 8.38 3.52 11.84 76.26 

PL Char 400°C 3.41 14.99 32.93 48.68 

PL Char 450°C 3.32 15.57 31.01 50.10 

PL Char 500°C 3.25 17.62 28.86 50.27 

PL Char 550°C 3.60 18.39 23.70 54.32 

PL Char 600°C 2.92 25.06 16.39 55.64 
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Fig D.1 Decomposition rate of PCL (5mg) in TGA 
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Fig D.2 Decomposition rate of PCL (10mg) in TGA 
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Fig D.3 Decomposition rate of PCL Char 400°C in TGA 
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Fig D.4 Decomposition rate of PCL Char 450°C in TGA 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200

d
m

/m
0

/d
t 

(1
/s

)

Temperature (°C)

PCL Char 450°C



159 

 

 

Fig D.5 Decomposition rate of PCL Char 500°C in TGA 
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Fig D.6 Decomposition rate of PCL Char 550°C in TGA 
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Fig D.7 Decomposition rate of PCL Char 600°C in TGA 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

d
m

/m
0

/d
t 

(1
/s

)

Temperature (°C)

PL Char 600°C



162 

 

Appendix E 

 

The quantification of the oil yield was based on the chromatogram result that can be found in 

appendix B. The peaks of the chromatogram were then integrated in order to obtain the area 

width. The area width was then used to obtain the concentration percentage of each compound 

identified in appendix B. The picture of the chromatogram integration can be found in appendix 

E. Due to the long storage time, oxidation reaction might happen in the oil yield from slow 

pyrolysis, this reason made the quantification of the oil yield was conducted only for the FCL 

and PCL intermediate pyrolysis performed at the University of Limerick.  

- Quantification oil from pyrolysis FCL 500°C: 
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- Quantification oil from pyrolysis FCL 600°C: 

 
 

 

 

 

- Quantification oil from pyrolysis FCL 700°C: 
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- Quantification oil from pyrolysis PCL 500°C: 

 
 

 

 

 

 

 

- Quantification oil from pyrolysis PCL 600°C: 
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- Quantification oil from pyrolysis PCL 700°C: 

 

 


