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Abstract The   convergence   of    a  non-uniform    corner     cutting      process      is 

investigated.    It     is     shown     that     the     limit    curve    will     be    differentiable 

provided    the   proportions     of     the    corner     cuts    are    kept      within      appropriate 

constraints. 
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1.     Introduction 

In a recent paper [de Boor '87] it was shown that "cutting corners" of 

a control polygon "always works", in the sense that the limit curve will be 

Lipschitz continuous. In this paper we wish to show that the limit curve 

will be differentiable under some appropriate conditions on the corner 

cutting        process. The         key          to          the          analysis          is         the         choice         of        a 

parameterization which itself satisfies the corner cutting process (rather 

than using a uniform diadic point parameterization as in [Micchelli and 

Prautzsch '87] or [Dyn, Gregory, Levin '88] for uniform subdivision 

schemes). 
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2.     The   corner   cutting   process 
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Then     (2.1)     is    a    process    whereby    fk+1   is    created    by    corner    cutting    of    the 

polygon      fk   .   In     general,     this     process     is     non-uniform     since    the    proportions 
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process,    see   (2.1).      These    parametric    points    always    form    a    strictly    mono- 
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ifor satisfying    ( 2 . 2 ) .      The    control    polygon    fk      can    thus    be    identified 

unambiguously   as   the   piecewise   linear   interpolant 
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We    propose    to    analyse    the    convergence    properties    of    the    component      functions  

of    fk    and    hence    it    suffices    from    now    on    to    consider    the    scalar    case    N=1,  

see    Figure   1. 
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Figure   1 
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We   than   make   use   of   the   uniform   norm 
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on   the   interval    [a ,b] .  

 

3.     Cutting   corners   is   C0

Although   our   main   purpose   is   to   find    conditions    under    which    the    corner 

cutting    process   has   a  C1    limit,   we   begin   by   considering    a    C0    analysis.      We 

{ }k [ ] wethsiforandba,CnosequenceCauchyadefines0kfthatshowwill =∞
 

require   the   following   Lemma: 
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Lemma  3.1  suggests  an  analysis   of   the   difference  process  which  is 

obtained    from    (2.1)     as 
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Then   we   have   the   following: 
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Theorem  3.2     (C°   convergence)        The   corner   cutting   process   defined   by    (2.1) 

and    (2.2)    converges   to   a  C°    limit    if 

(3.9) α  >  0   ,  ß  >  0     and     1  -  α   -  β   >  0   . 
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is a sufficient condition for a C° limit- In [de Boor '87] a different 

argument is used to prove convergence for a more general corner cutting 

process. However, our purpose is to find conditions under which the 

process (2.1) has a C1 limit and hence we have found it appropriate to 

develop a separate C0 analysis here. The C1 analysis makes use of the 

following   observation: 
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4.       Cutting     corners     is     C1

To    analyse    C1    convergence,     consider    the    divided    difference    process 

defined  from   (3.7)   and   (3.13)   by 
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We   then   have: 

Theorem  4.1       If    the   divided   difference   scheme   converges   uniformly   to 
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Condition     (4.17)     is     then     btained    under      the     hypothesis     (4.15). 
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Condition   ( 4 . 2 5 )    is  not   strong  enough  for  our  purposes   and   we   wish   to   show 
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defines   a   Cauchy   sequence   on   C[a,b]    and   hence   has   limit   d   ε    C[a,b]    say. 
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strictly     within     the     region     Ω1   depicted     in    Figure    4.1    (cf.  Figure   3.1). 
 

Figure  4.1 
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will     not     converge     to     zero     if     2α +ß  > 1.     This     violates     a     necessary     C1  

convergence     condition.               Similarly,      by     symmetry,      α  +  2ß  >   1      is      not  

allowable. 

We   have    shown    that    the    corner    cutting  process   has   a   C1   limit,   under   the  

conditions       (4.15),     with      respect      to      a      parameterization        which      is      itself  

defined     by     the     corner     cutting     method.    We     conclude    by    showing    that    this  

parameterization    is    regular    in    the    case    RN,    N  >   1. 

Theorem       4.5      (Regular parameterization)     In     the     case     of     corner     cutting     in  

RN,      N > 1,         the      C1      limit      curve f      of      Theorem      4.3      is regular,       i.e.  

f'(t)    =    d(t)    ≠    0   t         [a ,b],      except     for     the     singular     cases,     where,      for ∀

some  i, 

0.θsomeforf
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Proof       Let 

(4.31)    { }b][a,t:NR(t)kdkJ ∈∈=

be   the   image   set    of    dk(t).       Then,    following    an    earlier    argument,     we    have 

Jk   c   J0      k,    for    a    process   of   the   form   (4.1) .        Thus    d(t)   =   0    for    some ∀

t   ∈   [a,b]   implies    that   d0(t)     =  O     for   some  t   ∈   [a,b]    and   this   can   only 

occur   if    (i)   for   some   i   or   (ii)   for  0d
0
i = d

0
1iθd

0
i −−=

   
some   i   and   θ  >  0. 

As    a    final    comment,     it    should    be     noted    that,     because    of     the    local 

nature    of    the    corner    cutting    process     (2.1),      the    convergence    arguments 

presented   here    also    apply   to    the    case  of   closed   polygons   in   RN,    N  >    1. 

.β
k
0β

k
nk2,α

k
0α

k

nk2
processthein

andf
0
1f

0
1nf

0
nwhere,dateperiodicastreatedbecancaseThis

==

=+=
 



13 

References 

de   Boor,   C.   (1987),   Cutting   corners    always    works.   Computer   Aided   Geometric 

Design  4,   125-131. 

Dyn,   N.,   Gregory,    J.A.    and    Levin,    D.     (1988),    Analysis    of    uniform   binary 

subdivision   schemes    for   curve   design,    preprint. 

Micchelli,    C.A.     and    Prautzsch,    H.     (1987),    Uniform    refinement     of     curves, 

        preprint. 



 


	Lemma  3.1 
	Theorem  4.1       If    the   divided   difference   scheme   converges   uniformly   to 
	Then 
	Thus 
	References 




