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Abstract The convergence of a non-uniform corner cutting  process is
investigated. It is shown that  the limit curve will be differentiable
provided the proportions of the corner cuts are kept  within appropriate

constraints.

Keywords Subdivision,  corner  cutting

1. Introduction
In a recent paper [de Boor '87] it was shown that 'cutting corners" of
a control polygon "always works", in the sense that the limit curve will be

Lipschitz  continuous. In this paper we wish to show that the Ilimit curve

will be differentiable under some appropriate conditions on the corner
cutting process. The key to the analysis is the choice of a
parameterization which itself satisfies the corner cutting process (rather

than using a  uniform  diadic = point  parameterization as in  [Micchelli  and
Prautzsch '87] or [Dyn, Gregory, Levin '88] for uniform subdivision

schemes).



2. The corner cutting process

Let ¢ € RN, i =0,.,n+1, denote a given sequence of initial of initial control

points in RN, > 1, which are defined at the parameter values

t8 < t? < .. < tl(’)l-l-l' The corner cutting process is then defined by : For
k = 0,12,..; for i- O,...,,an;

h+1 ky k k k k+1 ky k k, k k

fi = (mep)fi ™ o fiyy 8 1y = U=o)y Foy Fajyy iy
(2.1)

k+1 k k ki k k+1 k k ki k

fais1 = Bify © (7B At oy = Big (7RG,
where

k k . k k

(2.2) (Ii>0’Bi>0 andJ—ai—Bi>O

k

£oi= 0, 2knyr.

Denote by f K the control polygonwith vertices ¢

Then (2.1) is a process whereby ' is created by corner cutting of the

polygon f . In general, this process is non-uniform since the proportions

k
a? . By of the corner cuts can depend both on i and k.

For the purposes of the analysis , the control points {f}(} aer

. . . k . . .
associated with parameter points {ti} which also satisfy the corner cutting

process, see (2.1). These parametric points always form a strictly mono-

tonic increasing set K < k <. < k since
tO tl e t k
28n+1

k k+1 k+1 k ) k
(2.3) <20 < Qi < il s 150,270,

k
for 0&(, B; satisfying (2.2). The control polygon f can thus be identified

unambiguously as the piecewise linear interpolant

k k
ko tiel | k -t |k k k . k
(24) f (t) = ﬁ fi + k—lk fi+1 > t e ti > ti+l , 120,...,2 n.
ti+1 "~ ti ti+l "t

We propose to analyse the convergence properties of the component functions
of f and hence it suffices from now on to consider the scalar case N=I,

see Figure 1.
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Figure 1

It follows from (2.3) that {tg} ©k=0 and {tlz(kk }Ook:O from monotonic increasign

and decerasing sequences bounded above and below by ¢ and tg rerspectiely.

Hence there exist

— Tim LK 0 — Tim LK 0
(2.5) a:= hlzn tg =t and b := hlzn bk, > tn -

We than make use of the uniform norm

2.7 fll = f(t , feClab] ,
(2.7) || £1] arélftébl (t)] [a,b]

on the interval [a,b].

3. Cutting corners is C°

Although our main purpose is to find conditions under which the corner

cutting process has a C' limit, we begin by considering a C° analysis. We
will show that {fk }wk=0 defines a Cauchy sequence no C[a,b] and for thsi we

require the following Lemma:

Lemma 3.1
(3.1) 5P ek <2 max|a K| v kp>0 .
1

where



k k+p k
(3.2) Afi = fi41 T fi
k+p  k+p
Proof Consider £5P(t) and fX(t) on |* = " . From (2.3) we haev
2Pi 2P+
k k+p k+p k

(3.3) ti < tHP; < tzp(i+l) < ti+2

and since the process (2.1) defines a convex combination we can obtain

(3.4) m, < fa.““p <M, v j=2"i 2 e
where

3.5) m., = min{f%{>f%{+1’f%{+2} , M, = max{f}(’f%{+l’f%{+2}
Hence

~m, < 8@ < M.

mo< 5P < M, - m, :

1

which  gives
k+ k k k k k
(3.6) PO - 1508 <M - my <lgyg - e gl

tk+p tk+p
V te ’ and the Lemma follows.
2Py 2P

Lemma 3.1 suggests an analysis of the difference process which is

obtained from (2.1) as

k+1 k ki k
3.7) AfZi = (l_ai - ﬁi)Afi )
: A kKL ko k
f2ie1 = BiBf7 F oy B iy
Let
o = lim max (x}( , a = lim mjn a%( ,
(3.8) - !
B = liqun m'ilx Bi( , E = lim m?x Bi(

Then we have the following:



Theorem 3.2 (C° convergence) The corner cutting process defined by (2.1)

and (2.2) converges to a C° limit if

oa>0,B8>0 and 1-a -8 >0 .

(3.9)

Proof It follows from the definition of the difference process (3.7) that

k+1 k
(3.10) miaX]Afi | < Bk miax|Afi| ,
where
k k k k
(3.11) B, = max {l_ai ~Bi -Bi +ai+1}
Moreover, it can be shown that
(3.12) Bk < B <1

for some constant B, independent of k, if (3.9) holds. Hence the differ-
o0
ences are contracting and from Lemma 3.1 it follows that {f k}k:O defines a

Cauchy sequenc e on C[a,b] which completes the proof.
Conditions (3.9) require (o,B) and (a,B) to lie strictly within the

region Qp depicted in Figure 3.1. In particular (0,0)<(a,B) s(&,§)<(%,%)

(C,1)

(3,4

(0,0) (1,0 ©

Figure 3.1



is a sufficient condition for a C° limit- In [de Boor '87] a different
argument is used to prove convergence for a more general corner cutting
process. However, our  purpose is to find conditions under which the
process (2.1) has a C' limit and hence we have found it appropriate to
develop a separate C° analysis here. The C' analysis makes use of the

following observation:

k
Remark 3.3The parameteric points{t%(} i:02 become dense in [a,b].

Proof Since the parameteric points satisfy the corner cutting process, it

follows that

k+1 kK koK
Aggi = (I—gj =B A4

(3.13)

k+1 k k k k
Apitl = Bi At * airld4 o
of. (3.7), and that

k+1 k
(3.14) miax]Ati | < Bk mfxmti

of. (3.10). Since (3.12) holds (under the conditions (3.9)) we have
k

lim max [A{| = 0.
k 1 1

4. Cutting corners is C'

To analyse C' convergence, consider the divided difference process

defined from (3.7) and (3.13) by

k+1 k k+1
d.. =di a {3
21
(4.1)
k+l k. k k k k+1
d2i+1 = (I=9ij)di + 0i di+1 3 2141 >
where

k k  k
(4.2) di = A /Ay
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k kK k k kK k  k
(4.3) 0i = ai+ldtit1’ B; At + oi+1Dti+1)

We then have:

Theorem 4.1 If the divided difference scheme converges uniformly to

d ¢ Cl[ab] (with respect to the parametric points {t%(}), then the corner

cutting scheme converges uniformly to f¢ C' [ab], where f = d.
Proof Let Hy denote the piecewise cubic Hermite interpolant such that
k k \ k k :
(4.4) He () = g and H () = ¢f» i=0..25n
Then for t e (t?’til) with 6 = (t_t%()/At%{ 4+ 02 (—26+3)f}<+1
k k
(4.5) H () = (1-0)% 0+ 1) g5 + 62 (-20+3)g53
k k k k
£ (1-0)20A g + 02 (0—-DAG giog -
and
(4.6) HY (1) = (=302 420+ 1) g + (302 -2004%

Also, let d be the divided difference control polygon (piecewise linear
interpolant) defined fort e [t%{’til) by

k k
4.7) di ) = (1-0)g; + Ogi11 >

where d° — d uniformly on C[ab] by hypothesis.  Then subtracting (4.6)

from (4.7) leads to

, 3 k k
(4.8) Ik —H | < 7 maxlgiy i
Thus
. . Ko ek
4.9 lim||d-H', || £ lim||[d-d™|| + lim||[d™ —H' || =0
(4.9) n | l n | | n | al

i.e.H’k — d uniformly. (The right hand side of (4.8) converges necessarily

to zero if lim dk =d ¢ C[a,b] and the parametric points become dense in



[a,b].) We now show that {Hk}ookzo converges on C1 [a,b]. Assume, without

loss of qenerality, that f8 = f? = f(z) =0. Then at the kth step fl(; = f% =

f12< = 0 and dlé = di( = 0. (This reflects the "local suppor" nature of the

corner cutting process.)  Thus, necessarily, f(a) = d(a) = 0 and Hy (a) = 0.

Define

(4.10) fiy = 1 dbdt

Then

(4.11) If-H, || = max | [} {d(f) - H (E)}dﬂ < (b-a)|[d-H', | .
k a<t<b 2 k k

Hence, Hx converges uniformly to f ¢ C! [a,b], where f = d. Finally, since

1 k "
@12)  IE=tR < E-Hy ) =R S E-H S maxa )2 I |

(using the Cauchy remainder for linear interpolation), it follows that the
control polygon fk of the corner cutting process converges uniformly to
f € C'[a,b], (where we again note that the parametric points become dense
in [ab], see Remark 3.3).

Theorem 4.1 indicates that, in order to prove C' convergence of the
corner cutting process, we should find conditions for which the divided
difference process (4.1) has a C° limit. Now the process (4.1) has the

property that the image set

(4.13) I = ((t,d*(t)) € R® : te [ab]}

lies on the initial image set I, Y k. It is thus tempting to conclude

that d* = d° € C[a,b] Y k. However, this is an incorrect argument since

d“(t) has been defined as the piecewise linear interpolant with respect to
the partition tl(; < ti( < . < tﬁ of the original corner cutting process.
Thus the analysis of C° convergence of the divided difference process must

be constructed with more care and, following the approach of section3, we

have:



Lemma 4.2

(4.14) 18P —dK | < 2 max|AgK| ¥ kp 0.
1

Theorem 4.3 (C' convergence) The divided difference process (4.1) con-
verges uniformly to a C° limit (and hence the corner cutting process con-

verges uniformly to a C' limit) if

(4.15) a>0,B>0,20+PB<1 and o +2B <1 .

The proof of Lemma 4.2 is identical to that of Lemma 3.1. The proof of
Theorem 4.3 requires the following additional lemma:

Lemma 4.4 Let

k k k
(4.16) s A /Ay

and assume that (4.15) holds. Then there exist r and R such that

4.17) 0<r< f<R<w voik .

Proof = From (3.13) we obtain the following non-linear relations:
k+1 [k k k - k k
r2i = [Bi Tt aitliri “ai B

el ok kJk[k Kk ok
2 = | ' Taitl T Bigr|ri /| By T ait+lri

k
i

(4.18)

Hence, if r < <R ¥V 1k, we have

k k kK k k+1 kK k kK k
{Bi + ai+1r} / {1—(11 - Bi} < = {ﬁi + ai+1R} {“ai - Bi} s

k k k k k+1 k k k k
{1 T iyl T Bi+1}/ [Bi r + ui+1} S il S {l_aiﬂ - Bi+l} / [Bi R+ ai+l}

Thus, we require r and R such that

kK K Kk ; K K K
[Bi + ai+1R} / [l_ai - Bi} <R, [l_aiﬂ - Bi+1} / [ﬁi /R + ai+1} < R,

and



k k k k k k k k
ro< [Bi + ai+lr} / {1_ai - Bi} , TS {l_aiﬂ - 3i+1} / [Bi r + ai+l}

Therefore

k k k k k k k k k
(4.19) mf‘x{ﬁi /{l_ai — B - ai+l} : [l_ai+l Bi+1 ~ Bi } lais] ~ “i+1} < R,

and

(4200 r < max {Bi(/ {1—05{ - B}{ - ail} ; [l_a}il - Bil - Bi( } / ail}
provided

(4.21) 1—0&( - B}{ - aﬁ-l > 0 and l_a}il - Bil - Bi( > 0.

Condition (4.17) is then btained under the hypothesis (4.15).

Proof of Theorem 4.3 From (4.1) and (4.3) we obtain
k+1 k, k
Agre = o Agi
(4.22) d2i 0i 2 di

k+1 k.. k
Adoit1 = U=g;)Ag; >

where 0 < 6}( < 1. Thus

(4.23) miax|Ad%(+1| < ¢, miaxmdﬁ ,
where

(4.24) Cl = miax{eii,l - 91(}

and hence

(4.25) 0 < C <1.

Condition (4.25) 1is not strong enough for our purposes and we wish to show

that
(4.26) Cc<C< 1

for some constant C, independent of k. Now, from (4.3),
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k 1 k 1
(4.27) 0 = & > l=gf = —=—
1+1/ri 1+ ri
where
A
k k k, k
(428) r1 = oj+l1ri /Bl

AN AN

Furthermore, by Lemma 4.4 (and the hypothesis (4.15)), there exist r and R

such that
VAN A k VAN
(4.29) 0<r <ri <R < .
Thus
k 1 k 1 )
4.30 o< and 1-po; <— V 1k
(4.30) % = TR % =1t

0O
and (4.26) holds. Finally, it now follows from Lemma 4.2 that{dk} k=0
defines a Cauchy sequence on C[a,b] and hence has limit d ¢ CJ[a,b] say.

Conditions (4.15) for C' convergence require (a,p) and (&,E to lie

strictly ~ within the region €; depicted in Figure 4.1 (cf. Figure 3.1).

B

A
(0,1)
(0,4}

(4,3)
$
-0
(0,0) {+,0) {1,0)
Figure 4.1

In particular, (0,0) < (a,8) < (a,B) < (%,%) is a sufficient condition for

a C' limit (i.e. corner cutting of proportions strictly less than one third
ensures a C' limit). If (o,B) lies strictly outside the region €, , then

convergence to a C' limit is no longer guaranteed. For example, with
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k
k = a and B = BV 1,k it can be shown that (see (4.22))

oi
k+1 k. k k k-l 0. 0
Ado = 00Ado = 0000 --- 002do

will not converge to zero if 20+B >1. This violates a necessary C'
convergence condition. Similarly, by symmetry, o + 28 > 1 is not
allowable.

We have shown that the corner cutting process has a C' limit, under the
conditions  (4.15), with respect to a  parameterization which is itself
defined by the corner cutting method. We conclude by showing that this
parameterization is regular in the case R, N > 1.

Theorem 4.5 (Regular parameterization) In the case of corner cutting in
RY, N>1, the C' limit curvef of Theorem 4.3 is regular, i.e.

f(t) = dt) # 0Vt [a,b], except for the singular cases, where, for

some 1,
. 0 0
(i) fi = fitl >
or

(i) pig = 1-0)g) + 0p, for some 0 > 0.

Proof  Let
4.31) I = {dk M e RN : (e [a,b]}
be the image set of d“t). Then, following an earlier argument, we have

Jk © Jo V k, for a process of the form (4.1). Thus d(t) = 0 for some

t e [a,b] implies that d%t) = O for some t e [a,b] and this can only

occur if (i)dio = 0 for some i or (ii) for dio =—-0 d?—l some 1 and 6 > 0.
As a final comment, it should be noted that, because of the Ilocal
nature of the corner cutting process (2.1), the convergence arguments

presented here also apply to the case of closed polygons in RN, N > 1.

This case can be treated as periodic date, where fg = fg 41 = f? and

. k k k k
in the process dyk = a0 Bok = Bo -
n n
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