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 1 
Abstract—This paper presents a short-term electric load forecasting model based on deep autoen-2 

coder with localized stochastic sensitivity (D-LiSSA). D-LiSSA can learn informative hidden represen-3 
tations from unseen samples by minimizing the perturbed error (including the training error and sto-4 
chastic sensitivity) from historical load data. Specifically, this general deep autoencoder network as a 5 
deep learning model improves prediction accuracy and reliability. Moreover, a nonlinear fully con-6 
nected feedforward neural network as a regression layer is applied to forecast the short-term load, 7 
with the generalization capability of the proposed model using hidden representations learned by D-8 
LiSSA. The performance of D-LiSSA is evaluated using real-world public electric load markets of 9 
France (FR), Germany (GR), Romania (RO), and Spain (ES) from ENTSO-E. Extensive experimental 10 
results and comparisons with the classical and state-of-the-art models show that D-LiSSA yields accu-11 
rate load forecasting results and achieves desired reliable capability. For instance, with the French 12 
case, D-LiSSA yields the lowest mean absolute error, mean absolute percentage error, root mean 13 
squared error; providing up to 61.89%, 63.20%, and 56.40% forecasting accuracy improvements as 14 
compared to the benchmark model for forecasting hourly horizon, respectively. 15 
 16 

Index Terms—Short-term load forecasting, deep autoencoder, deep learning, stochastic sensitivity 17 
 18 

1. INTRODUCTION 19 

With the rapid development of social economy and increasing of global warming [1][2], the electric load 20 
demand shows a trend of increasing year by year in industry, commercial activities, offices, communication, 21 
and transportation sectors [3]. Whether an electric power system can ensure a continuous supply of electricity 22 
without a blackout for these events is vitally important. Therefore, an accurate and stable load forecasting 23 
model has the potential to avoid blackout incidents in the city's operations [4]. Moreover, the accuracy of 24 
electric load forecasting accounts for the financial performance of electric utility companies, as well as the 25 
resilience of power grids [5]. Electric load forecasting has been widely researched in the past several years. 26 
However, there are prediction challenges due to the variability of the load as a consequence of seasonality 27 
and holidays. Other factors such as weather, population characteristics, electricity prices, geographical con-28 
ditions, the natural environment also complicate forecasting task because of their non-linear relationships. 29 
Nowadays, short-term load forecasting (STLF) mainly focuses on predicting the loads in the next few minutes 30 
to a week-ahead [6]. Considering the significance of load forecasting, various forecasting methods have been 31 
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explored and generally classified as: 1) classical statistical methods, 2) artificial intelligence methods, and 3) 32 
hybrid forecasting methods [7].  33 

Classical statistical methods based on mathematical statistics approximate the relationship between expli-34 
cable variables, such as online measured data and future load values. Usually, these approaches treat histor-35 
ical data as an input to make the short-term forecasting. Various conventional statistical methods are acces-36 
sible, including autoregressive (AR) [8], auto regressive moving average (ARMA) [9], autoregressive inte-37 
grated moving average (ARIMA) [10] [11], the regression analysis methods [12][13]. The nonlinear auto-38 
regressive model (NARM) [14] has been successfully used for the time series prediction patterns, where it 39 
works as a time series algorithm which is a kind of progressive neural interfaces. The random forest and 40 
nonlinear autoregressive approach [15] is introduced to forecasting electric load for utility energy manage-41 
ment systems. Based on actual environmental and energy consumption data, this model uses NARM, step-42 
wise regression, and least square boosting to estimate the energy. However, these methods are based on the 43 
linear analysis and are not suitable for the non-linear load series forecasting [16].  44 

In the past decades, artificial intelligence methods including artificial neural network (ANN) [17][18][19], 45 
support vector regression (SVR) [20], fuzzy logic method [21], have been applied in electric load forecasting.  46 
Artificial intelligence methods utilize the historical load data to complete model training and can nonlinearly 47 
map the inputs to the target set. ANN in deep learning can comprehensively consider various factors to im-48 
prove forecasting results for developing STLF models. ANN has gained recognition in smart grids, with 49 
model varieties including radial basis function (RBF) neural networks [22], deep belief network (DBN) [23], 50 
causal Markov Elman network (CMEN) [24], and long-short term memory (LSTM) [25]. Restricted Boltz-51 
mann machines (RBM) as a classical neural network has been applied to load forecasting [26]. Researchers 52 
have been using deep residual networks (ResNet) [27] for STLF. To improve the robustness of prediction 53 
model in commercial buildings with deep learning, the authors in [19] propose a recurrent neural network 54 
(RNN) and a convolutional neural network (CNN) for building-level day-ahead multi-step load forecasting 55 
model. Reference [22] presents a review of some earlier known ANN approaches for load forecasting and 56 
designs an algorithm using typical radial basis function (RBF) networks for a 24-hour electric load forecast-57 
ing. With the increasing complexity of forecasting environment, traditional forecasting methods difficult to 58 
meet management's need for forecasting accuracy. An improved deep belief network [23] is used to solve the 59 
short-term load forecasting which considers input data, model, and performance in demand-side management. 60 
Load forecasting is becoming increasingly complex, and uncertain, a data-driven deep learning framework 61 
based on deep belief network (DBN) method [28] has been proposed to forecast the hourly load of the power 62 
system. Causal Markov Elman network (CMEN) characterizes the various interdependence among hetero-63 
geneous time series for load forecasting in multi-network systems [23]. This approach analyzes the joint 64 
information between electricity and transportation networks. A novel two-layer architecture ensemble neural 65 
network framework is developed, called enhanced ELITE (E-ELITE) for STLF [29]. The neural network 66 
framework of the E-ELITE is designed based on each neural network forecaster with different optimal 67 
weights and structures. The memristor-based echo state network (MESN) adopts Newman and Watts small-68 
world network and uses the online least mean square (LMS) algorithm to train the output weights [30] for 69 
STLF. Due to the high uncertainty, residents’ activities and volatility, the individual residential short-term 70 
load forecasting is facing a serious challenging. Long short-term memory (LSTM) and recurrent neural net-71 
work (RNN) are the most popular techniques in deep learning. A LSTM-based framework [25] is proposed 72 
to address such short-term residential load forecasting problem. It employs a clustering technique for density 73 
estimation to evaluate the inconsistency of the residential load distribution. The paper presents an extended 74 
deep residual networks (ResNet) model [27] for STLF. This model utilizes domain knowledge and adopts 75 
the ensemble strategy by combining multiple individual networks. However, recent research has showed that 76 
some representative load forecasting models like SVR and ANN easily fail under data integrity attacks. To 77 
address this challenge, two variants of the re-weighted least squares regression models and a L1-normregres-78 
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sion model are proposed to enhance the robustness of load forecasting models [6]. Although artificial intel-79 
ligence methods have better predict ability, but they need the optimal parameters when establishing them so 80 
that the process of optimizing is time-consuming or easily over-fitting on the training set. 81 

Most of the above-mentioned works focus only on either reducing load forecasting error or improving 82 
prediction accuracy and stability for load forecasting. However, load patterns have complex behavior, which 83 
brings challenges to optimize both independent objectives simultaneously within the same period. Also, ac-84 
cording to the former literatures, each forecasting method has its strength or weakness, and they cannot al-85 
ways satisfy all requirements of forecasting accuracy and stability. Thus, hybrid methods combine the 86 
strengths of different methods to improve the traditional methods. In a hybrid model for load forecasting, it 87 
usually has original data pre-processing, forecasting, and optimization phases [7][31][32][33]. For original 88 
pre-processing phase, data decomposition algorithms such as empirical mode decomposition (EMD) [34] are 89 
usually used to decompose original load sequence to several subsets. The forecasting methods in this frame-90 
work are the ANN or SVR models. Some hybrid methods [35][36][37] consider short-term load forecasting 91 
with stochasticity by combining various regression and ANN models such as ARIMA, bi-square kernel 92 
(BSK) regression, wavelet neural network (WNN), and RNNs to improve the forecasting accuracy. To obtain 93 
high accuracy and stability in load forecasting simultaneously, multiple objective optimization algorithms 94 
are applied to load forecasting so that the model guarantees accuracy and stability at the same time. Optimi-95 
zation is a key technique in dealing with renewable energy forecasting fields. An accurate (i.e. small error) 96 
and reliable (i.e. consistently small error) multi-objective method [38] is presented for daily STLF in Euro-97 
pean countries. In this model, several parameters are optimally tuned according to a multi-objective strategy 98 
that minimized both the prediction error and the variance of the error. In general, load variations may impact 99 
the control parameters in power systems. Load-Oriented control parameters are optimized using adaptive 100 
particle swarm optimization strategy [39] based on ANNs to forecast loads on a day-ahead time horizon. The 101 
optimization process of static synchronous compensator using particle swarm optimization algorithm can 102 
effectively mitigate the low-frequency oscillation damping (LFOD) of the power system and improve the 103 
robustness of the power system under external disturbances. For load-serving entities, an accurate load fore-104 
casting generally requires high computational cost and is a tradeoff to determine an accurate cost for power 105 
purchase. Beneficial correlated regularization (BCR) term for day-ahead load forecasting based on a neural 106 
network (NN) is presented [40]. This work includes studies for both accuracies on load forecasting and cost-107 
benefit for electricity in the training of NN. Although the accurate short-term load and price forecasting are 108 
important for obtaining maximum profits in competitive electricity markets, however, most of the existing 109 
literature in short-term load or price forecasting focus on the prediction and lack of simultaneously consider-110 
ing the nonlinearities and interacting features in the forecast processes. A novel ensemble framework [41] is 111 
proposed to treat each NN as the individual predictor, including Elman neural network (ELM), feedforward 112 
neural network (FNN), and radial basis function neural network (RBFNN) to improve the accuracy load 113 
forecasting. The three predictors are trained by global particle swarm optimization (GPSO) and then used a 114 
trim aggregation step to combine the outputs of individual predictors. In [42], an ensemble of RBFNN is 115 
trained by minimizing the localized generalization error (LGE) for short-term and mid-term load forecasting. 116 
This ensemble method uses weighted fusion technique to enhance the generalization capability of the model. 117 
An ensemble approach based on information theory and causality [43] merges with an individual network, 118 
which can simultaneously characterize the interrelationship between electricity and traffic network patterns 119 
for short-term load forecasting. A hybrid neural network forecasting model based on deep belief network 120 
(DBN) and bidirectional recurrent neural network (Bi-RNN) is proposed [44]. The method adopts unsuper-121 
vised pre-training and supervised adjustment training methods which is verified on two different datasets. A 122 
hybrid model [45] is proposed by combining multiple LSTM and back-propagation neural network (BPNN) 123 
for hour-ahead load forecasting on a building-level. To capture the nonlinear and complex pattern in yearly 124 
peak load, a hybrid long term forecasting method based on data mining technique and time series is proposed 125 
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[41]. In the model, the SVR as a forecasting algorithm and the parameters of the SVR are optimized using a 126 
particle swarm optimization (PSO) method. A novel hybrid electric load forecasting model based on modified 127 
mutual information and restricted Boltzmann machine is developed for the decision making of a smart grid 128 
[46]. The hybrid ensemble deep learning (HEDL) [47] approach uses deep belief network (DBN) for deter-129 
ministic and probabilistic low-voltage load forecasting. Actually, if a forecasting model can solve both inde-130 
pendent accuracy and stability at the same time, which increases the complex of the load pattern. So that 131 
most of the previous research focused only on either increasing load forecast accuracy or enhancing the 132 
stability, very few studies focused on these two issues simultaneously. Thus, a hybrid model [48] achieves 133 
two objectives simultaneously by combing ANN and multi-objective optimization algorithm (MOFTL). The 134 
MOFTL is based on follow the leader algorithm. However, multi-objective optimization strategies require a 135 
lot of computing resources and time consuming in practical applications due to generating a series of optimal 136 
pareto-optimal solutions in each iteration. 137 

To guarantee the reliability and economic benefits of power grid, stability also plays a vital role in electric 138 
load or price forecasting models. The most above aforementioned literatures only consider either the accuracy 139 
or stability, with difficulty achieving the accuracy and stability simultaneously except for some hybrid meth-140 
ods. However, social and external natural factors like seasonality, weather, electricity prices, geographical 141 
conditions, industrial manufacture, and human activities can influence the susceptibility of model to STLF, 142 
which makes load forecasting more difficult. The recent work based on autoencoder [49] mainly considers 143 
the input with small perturbations that effectively improve the performance of the model. But it is an unsu-144 
pervised learning method with a single hidden layer for image classification which limits its extraction of 145 
informative learned features. Generally, with more hidden layers, a deep neural network will produce a better 146 
performance [50]. The above various factors motivate us to build an ANN model for STLF by adopting a 147 
deep localized stochastic sensitivity autoencoder (D-LiSSA): to reduce load forecasting error and produce 148 
reliable prediction on real world load data in European countries. The following summarizes the main con-149 
tributions of this paper: 150 

1) The social and external natural factors such as calendar, holidays, electricity prices, weather, and sea-151 
sonality have a significant impact on future electric load forecasting. The nonlinear, nonstationary, and vari-152 
able behaviors of these factors pose a big challenge to load forecasting model. We consider minor disturb-153 
ances in these factors by theoretical model analysis. The proposed predictive model promoting the forecast 154 
accuracy and stability can potentially contribute to power system operation and management. Thus, an accu-155 
rate and stable forecasting model is key aspect for ensuring maximum benefit in the grid market. 156 

2) Modeling the deep neural network structure using a stacked autoencoders with stochastic sensitivity to 157 
extract informative hidden representations. It is a supervised learning model which considers unseen samples 158 
in a Q-neighborhood surrounding historical training samples. This is the key strategy that enhances the in-159 
formative of learned features and making effective predictions for STLF. 160 

3) Specifically, the model trained by the minimization of perturbation error (PE) is insusceptible to small 161 
perturbations of inputs, and the generalization ability of D-LiSSA is enhanced. The PE represents the sensi-162 
tivity of the model to unseen samples that are similar to training samples so that the model is still sensitive 163 
to large perturbations. Thus, the proposed model attains a high accuracy in STLF. Additionally, D-LiSSA 164 
can as a general framework, be applied to other energy forecasting tasks such as wind speed forecasting and 165 
solar irradiance forecasting. These various applications demonstrate D-LiSSA has a good generalization abil-166 
ity in the energy forecasting. 167 
    4) Furthermore, the proposed forecasting method has been evaluated based on well-known and reliable 168 
electricity market from the ENTSO-E [51] dataset. The proposed method yields state-of-the-art performance 169 
compared with other five forecasting models including ARIMA [11], LSTM [25], ResNet [27], DBN [28], 170 
and binary decision tree (BDT) [52] on four real-world electricity markets of France (FR), Germany (GR), 171 
Romania (RO), and Spain (ES) in Europe.  172 



 

5 
 

The remainder of the paper is organized as follows. Section 2 formulates the proposed model. The results 173 
and discussions of STLF by the proposed model are presented in Section 3. Conclusions and future work for 174 
this paper are provided in Section 4. 175 

2. D-LISSA BASED-STLF 176 

2.1. Model Input Data 177 

The time series data 𝑉 ∈ ℝ!×# is a matrix that includes load and temperature characteristics across 𝑇 time 178 
stamps, where 𝑣$ is the measurement of the load and temperature recorded at the 𝑡 time stamp. To fully ex-179 
plore the temporal characteristics of the data, we resample the whole time series into a series of samples using 180 
sliding windows according to a time window size 𝑤. The sliding window resamples the load and temperature 181 
time-series data with a sliding the step size of 1 until finishing the whole time-series data. Therefore, these 182 

windows have different data from time segment. The 𝑏$%(𝑏 = 1,2,⋯ ,𝑀) segment being denoted as 𝑋& =183 
(𝑣& , 𝑣&'(, … , 𝑣&')*() ∈ 𝑅(×+, where 𝑀 denotes the total number of segments and 𝑛 = 𝑤 × 2. The subset 184 
of a timescale is then reformulated as 𝐷 = [𝑋(; 𝑋#;⋯ ; 𝑋,]. The samples are fed into D-LiSSA as the inputs 185 
to make a predicted value for a further load.  186 

 187 

2.2. Deep Localized Stochastic Sensitivity Autoencoder (D-LiSSA) 188 

  Autoencoder (AE), as an ANN aims to find a set of optimal connection weights by minimizing the re-189 
construct error between original inputs and outputs of AE. For AE training problem, a training dataset D with 190 
M samples {Xb} is given from the problem domain where Xb denotes the n-dimensional input vector of the 191 
𝑏$% training sample. Generally, an AE consists of an input layer, an encoding layer, and a decoding layer as 192 
shown in Fig. 1. The encoding layer first maps 𝑋& onto a hidden representation H through a deterministic 193 
mapping as in Eq. (1). Then, decoding layer maps H onto a reconstruction 𝑋:& as in Eq. (2). 194 
 𝐻 = 𝑓(𝑊𝑋& + 𝑏() (1) 
 𝑋:& = 𝜌(𝑊@𝐻 + 𝑏#) (2) 
where 𝑊, 𝑊@ , f, 𝜌, 𝑏(, and 𝑏# denote the weight matrices, the activation functions, and the biases of the en-195 
coding layer and the decoding layer, respectively.  196 

Traditional AE considers the training error as objective function, which is prone to overfitting. In contrast, 197 
the LiSSA [49] does not only focus on the training error but also the sensitivity with respect to unseen samples 198 
with small differences (perturbations) from training samples, to learn more informative features and enhance 199 
the generalization capability of the AE model. The detailed description of LiSSA can be found in Appendix 200 
A. In addition, deep architecture ANN could better capture the characteristics of the load. Thus, we use the 201 
trained encoders of several LiSSAs via layer-by-layer stacking to initialize D-LiSSA. Let LiSSA-  be the 202 
𝑙$%	(𝑙 = 1,2,⋯ , 𝐿) LiSSA, where 𝐿 and  𝐻- 	denote the total number of hidden layers and the hidden repre-203 
sentations, respectively. The LiSSA-  is trained independently using 𝐻-*(  as inputs and outputs the corre-204 
sponding reconstructed data 𝐻@-*(, where H0=Xb. Eventually, a nonlinear fully connected feedforward neural 205 
network as regression layer is appended on top of 𝐻.. This layer takes the hidden representation 𝐻. of the 206 

 
Fig. 1. Illustration of AE training. 
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last LiSSA. as inputs and outputs a single value representing the predicted load in a future time stamp. Fig. 2 207 
shows the structure of D-LiSSA for STLF. 208 

 209 

2.3 Training of D-LiSSA 210 

The training of D-LiSSA consists of the initialization and fine-tuning phases. The D-LiSSA follows the 211 
standard layer-by-layer training rule to train each LiSSA via minimization of the PE between the previous 212 
hidden layer outputs 𝐻-*(	as inputs and the corresponding reconstruction 𝐻@-*(. For the 𝑙$% individual LiSSA-, 213 
connection weights of both input to hidden layers and hidden to output layers are optimized by using error 214 
backpropagation algorithm. Detailed derivations of the connection weights of each individual LiSSA can be 215 
found in [49]. 216 

In the fine-tuning phase, the initialized D-LiSSA is further trained. Firstly, a nonlinear fully connected 217 
feedforward neural network as a regression layer is appended after the Lth stacking 𝐻.. Parameters of this 218 
layer are randomly initialized from [-1,1] as prior knowledge about their values is unavailable. Then, the 219 
whole D-LiSSA is trained with historical load data. The backpropagation algorithm is applied to fine tune 220 
weights and biases of all layers in D-LiSSA. The objective function is as follows: 221 

 argmin
/

1
2𝑀NO(𝛽(𝑋&) − 𝑦&)# + 𝐸 TU𝛽(𝑋& + Δ𝑋) − 𝛽(𝑋&)W

#XY
,

&0(

 
  

 
 (3) 

 = argmin
/

1
2𝑀N((𝛽(𝑋&) − 𝑦&)#

,

&0(

+
1
𝐶NU𝛽(𝑋& + Δ𝑋1) − 𝛽(𝑋&)W

#
2

10(

[  

 
Fig. 2.  Overview of D-LiSSA for load forecasting. 
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where 𝑦& and 𝛽(∙) denote the target output value of the 𝑏$% sample and the output of D-LiSSA, respectively. 222 
𝐶 denotes the number of generated uniformly distributed random points ∆𝑋1 ∈ ℝ+	(𝑐 = 1,… , 𝐶) with each 223 
coordinate range from[−𝑄, 𝑄], where 𝑄 is a given value like 0.01. The detailed introduction of 𝑄 can be 224 
found in literature [49]. Let {𝐻(, 𝐻#, … , 𝐻-} and {𝑊(,𝑊#, … ,𝑊-} (𝑙 = 1,2,⋯ , 𝐿) be outputs and connection 225 
weights of each layer, respectively. Let 𝑓- be the activation function of the 𝑙$%	layer. Thus, the output of the 226 
𝑙$% layer is as follows: 227 
 𝐻- = 𝑓-(𝑊-*(𝐻-*()   (4) 

The objective function adopts a second-order normal form for mean square error and sensitivity terms, as 228 
follows: 229 

 𝐿(𝑊) =
1
𝑀
(𝛽(𝑋&) − 𝑦&)!(𝛽(𝑋&) − 𝑦&) (5) 

and 230 

 𝑅(𝑊) =
1
2𝑀

1
𝐶 U𝛽

(𝑋& + Δ𝑋1) − 𝛽(𝑋&)W
!U𝛽(𝑋& + Δ𝑋1) − 𝛽(𝑋&)W (6) 

Then, the objective function can be written as  231 
 𝐽(𝑊) = 𝐿(𝑊) + 𝑅(𝑊)  (7) 

To learn the optimal parameters of the neural network model, the gradient descent method is used to obtain 232 
the partial derivatives of the weights 𝑊- of the 𝑙$% layer. 233 

  34(/)
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(8) 

Then, terms in Eq. (8) can be further expanded as follows: 234 

 
𝜕𝐿(𝑊)
𝜕𝛽(𝑋&)

= 2(𝛽(𝑋&) − 𝑦&) −
2
𝐶NU𝛽(𝑋& + Δ𝑋1) − 𝛽(𝑋&)W

2

10(

 (9) 

 
𝜕𝛽(𝑋&)
𝜕𝐻-

=
𝜕𝛽(𝑋&)
𝜕𝐻.

𝜕𝐻.
𝜕𝐻.*(

⋯
𝜕𝐻-'(
𝜕𝐻-

 (10) 

 
𝜕𝐻-'(
𝜕𝐻-

= 𝑊-𝑓-′(𝑊-𝐻-) (11) 
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𝜕𝑊-

= 𝐻-*(𝑓-′(𝑊-𝐻-*() (12) 
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(13) 
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                                              235 
where 𝑓-′ denotes the partial derivative of 𝑓-.  236 
 237 
 238 
 239 
 240 
 241 
 242 



 

8 
 

 243 
 244 

Finally, the weight update formula for the 𝑙$% layer is as follows: 245 

 𝑊- = 𝑊- − 𝛼
34(/)
3/!

    

 

= 𝑊-

− 𝛼 g
1
2𝑀Ng
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𝜕𝐻.
𝜕𝐻.*(

⋯
𝜕𝐻-'(
𝜕𝐻-

𝜕𝐻-
𝜕𝑊-

,

&0(

+
1
𝐶Nc

𝜕𝑅(𝑊)
𝜕𝛽(𝑋& + Δ𝑋1)

𝜕𝛽(𝑋& + Δ𝑋1)
𝜕𝐻.

𝜕𝐻.
𝜕𝐻.*(

⋯
𝜕𝐻-'(
𝜕𝐻-

𝜕𝐻-
𝜕𝑊-

e
2

10(

[[ 

(15) 

where 𝛼 denotes the learning rate. Algorithm 1 shows the detailed steps of the features learning and the pre-246 
diction by D-LiSSA.  247 
 248 

2.4 Computational and Space Complexity of the D-LiSSA 249 

In case of a sigmoid nonlinearity, computing the SS (or its gradient) has about the same cost as computing 250 
the reconstruction error (or its gradient). Computation of the SS can be found in Appendix A. Suppose the 251 
input dimension is 𝑛 for the input layer and 𝑚- hidden neurons for the 𝐿𝑖𝑆𝑆𝐴-. Using 𝐻 Halton points to 252 

compute the SS for the 𝐿𝑖𝑆𝑆𝐴-, the computational complexity is 𝑂O𝐻(𝑚-
#𝑚-*()Y. Thus, the overall compu-253 

tational complexity of the D-LiSSA is 𝑂O𝐻(∑ 𝑚-
#𝑚-'( +𝑚-

.*(
-0( )Y, where 𝑙 = 1,2,⋯ , 𝐿. For an individual 254 

𝐿𝑖𝑆𝑆𝐴- with 𝑚- hidden neuro nodes, there are 𝑛 × 𝑚- +𝑚- weight parameters. Let 𝑚; = 𝑛, the overall time 255 
space complexity of the D-LiSSA with 𝐿  hidden layers is (𝑛 × 𝑚( +𝑚() + (𝑚( ×𝑚# +𝑚#) + ⋯+256 
(𝑚.*( ×𝑚. +𝑚.) + 𝑚. × 1 = ∑ (𝑚- + 1)𝑚-'( +𝑚.

.*(
-0; . In addition, it is found that the run time of D-257 

LiSSA is acceptable for the current computers, not to mention future computers for future practical applica-258 
tion from Subsection 3.5. 259 

 260 

Algorithm 1 Feature learning and predicting of D-LiSSA 
Input: 𝑀 × 𝑛 input data 𝐷, where 𝑤 and 𝑀	denote the window size and the number of sam-
ples, respectively. 𝑚- denotes the number of hidden neurons on the encoding layer of 
LiSSA-, 𝑙 = 1, 2, ⋯ , 𝐿. 
Output: Target output value 𝛽(𝑋&). 
Feature learning: 
1: Scale each input feature to the range of [0, 1]. 
2: Set 𝐻; = 𝐷. 
3: For 𝑙 = 1 to 𝐿 do 
     3.1: Train LiSSA- with 𝑚- neurons on the encoding layer using 𝐻-*( as the input. 
     3.2: Compute the outputs of the encoding layer for all training samples to form a 𝑀 ×𝑚- 

matrix 𝐻-. 
4: End for 
Predicting: 
1: Initializing the weights of D-LiSSA through L stacking 𝐻- and adding regression layer. 
2: Using BP algorithm to optimize the weights of each layer of D-LiSSA by Eq. (15). 
3: Output the predicted value 𝛽(𝑋&), where 𝑏 = 1,2,⋯ ,𝑀. 
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2.5 Performance Evaluation Criteria 261 
The accuracy of different models is assessed by comparing the predicted load with the actual load data. The 262 

root mean square error (RMSE):	RMSE = q (
,
∑ (𝑦& − 𝑦r&)#,
&0( 	MW, mean absolute error (MAE):	MAE =263 

(
,
∑ |𝑦& − 𝑦r&|,
&0( 	MW, mean absolute percentage error (MAPE):	MAPE = (

,
∑ |="*=>"|

="
,
&0( × 100%, R2 264 

score:	R# = 1 − ∑ (="*=>")$%
"&'
∑ (="*=@)$%
"&'

, and the explained variance (EV) score:	EV = 1 − ABC(D*=>)
ABC(D)

 are employed as 265 

five evaluation criteria for the precision of prediction, where 𝑦r&	is the predicted value of the 𝑏$%  sample, 𝑦& 266 

is the corresponding true value, and 𝑦y = (
,
∑ 𝑦&,
&0( . 𝑦r , y, and 𝑉𝑎𝑟 denote the predicted target output, the 267 

corresponding (correct) target output, and the variance, respectively.  268 
With ARIMA model [11] as the benchmark, the improvement of the models over the baseline is defined 269 

as follows: 270 

 Imp = O~1 − ECCFC
ECCFC"

~Y × 100			%      (16) 
where 𝑒𝑟𝑟𝑜𝑟 is one of the metrics RMSE, MAE, and MAPE, and 𝑒𝑟𝑟𝑜𝑟&  is the corresponding 𝑒𝑟𝑟𝑜𝑟 of 271 
ARIMA.  272 
 273 



 

10 
 

3. NUMERICAL RESULTS AND DISCUSSION 274 

3.1. Description of Datasets 275 

In our experiments, we show the performance of D-LiSSA with two hidden layers to forecast 1 hour-276 
ahead load consumption data using 24 hours window size historical load data. In the first part, we test the 277 
model on the real-world electricity markets of France (FR), Germany (GR), Romania (RO), and Spain (ES) 278 
in Europe. All the load consumption data are obtained from the electricity market, i.e., the ENTSO-E da-279 
taset [51]. Moreover, the corresponding temperature of the countries obtained from the Renewables dataset 280 
[53] is also included in our experiment. Nationally aggregated temperature output data with hourly intervals 281 
were acquired from system operators in the four countries. These data series were converted to Greenwich 282 
Mean Time and aggregated hourly resolution for compatibility with MERRA-2 [53]. Load and temperature 283 
data with one-hour interval of the two characteristics are used in the study to cover the period from 1st 284 
January to 31st December for 2014 and 2015. For simplicity and without loss of generality, the load fore-285 
casting strategy is applied to the 2015 period that recorded the latest load in the given ENTSO-E dataset. 286 

 
(a) ENTSO-E Transmission System Map [45] 

         
(b) France 

Fig. 3. (a) ENTSO-E Transmission System Map [45]; (b) data description for France.  
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In our case experiments, 90% of the historical data are used for model training, 10% are reserved for the 287 
model validation in 2014, and the hourly load of the year 2015 in the ENSTO-E data is used for testing 288 
data. Fig. 3 shows the ENTSO-E and the decomposition electric load for France market in four seasons 289 
(2015). 290 

3.2. D-LiSSA Architecture Selection 291 
To identify the optimal architecture of D-LiSSA, a grid search is performed. Fig. 4 shows the RMSE of 292 

different D-LiSSA in four countries. The window size and number of hidden layers to establish D-LiSSA is 293 
chosen from {12h, 24h, 36h, 48h} and {1,2,3,4}, respectively. Experimental results reveal that as predictive 294 
horizon increases D-LiSSA with larger window size obtains lower RMSE in four countries. Moreover, aug-295 
mented window size needs to be combined with more hidden layers to capture the characteristic of the load 296 
data.  297 

However, both larger window and more layers will lead to more intricate structures that are prone to over-298 

fitting. Besides, the vanishing gradient problem triggered by deep architecture also hampers the fine-tuning 299 
process of D-LiSSA. Thus, for short horizon forecasting, the simplification of training could relieve the 300 

 
(a) France 

 
(b) Germany 

 
(c) Romania 

 
(d) Spain 

Fig. 4. RMSE of D-LiSSA with different window size and hidden layers in four countries. 
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shortcoming of decreasing input size and depth and promote the predictive accuracy. Consequently, optimiz-301 
ing the architecture of D-LiSSA with different window and hidden layers is significant and indispensable. 302 
The optimal structure yields the least validation error compared to various structures as shown in Fig. 4. In 303 
this paper, D-LiSSA with window sizes and hidden layers of (48h,4), (36h, 3), (36h, 4), and (36h,3) are used 304 
for prediction in France, Germany, Romania, and Spain, respectively. 305 

 306 

3.3. Case Study 1: Comparison with Other Algorithms in the Four European Countries 307 

1) Comparison with other Methods: In this section, we compare D-LiSSA with other methods in different 308 
European countries. As a generic prediction model, D-LiSSA has good generalization ability and stability as 309 
its main advantages. The model can be directly applied to other countries or regions as well. The temperature 310 
affects the load consumption of the residents’ activities and different countries have various changing patterns 311 
of temperature. In addition, the past nonlinear behavior of electricity price has a significant impact on the 312 
future electric load forecasting. Thus, researchers can consider a variety of effective factors on electric load. 313 
A load forecasting model should recognize the important features of this signal’s behavior in the past and 314 
consider them as inputs to further improve accuracy of electric load forecasting. For several reasons, there 315 
are some relevant differences in electric loads between the four countries we selected, as follows: 316 
• The countries are in different latitudes and longitudes. Obviously, for countries that are far from the 317 

Atlantic Ocean and in the interior of Europe, the weather can be very hot and cold in summer and winter, 318 
respectively. Romania’s electricity demand is quite large by the usage of electric fans, air conditioners, and 319 

Table 1. Comparisons of 1 hour-ahead forecasting performance based on different metrics in four coun-
tries. 

Nations Methods EV Imp MAE Imp MAPE Imp R2 Imp RMSE Imp 

FR 

ARIMA 0.969 - 1540 - 2.91 - 0.969 - 2065 - 
LSTM 0.971 0.2 1469 5 2.78 4.6 0.972 0.2 2007 3 
ResNet 0.975 0.7 1331 14 2.40 17.6 0.975 0.7 1834 11 
DBN 0.990 2.3 820 47 1.56 46.4 0.990 2.3 1140 45 
BDT 0.985 1.7 854 45 1.52 47.9 0.985 1.7 1418 31 

D-LiSSA 0.995 2.9 587 62 1.07 63.2 0.995 2.7 900 56 

GR 

ARIMA 0.978 - 1078 - 1.90 - 0.978 - 1511 - 
LSTM 0.982 0.4 1018 6 1.82 4.2 0.982 0.4 1385 8 
ResNet 0.986 0.8 864 20 1.51 20.2 0.986 0.8 1202 20 
DBN 0.991 1.3 660 39 1.20 36.5 0.991 1.3 974 36 
BDT 0.993 1.5 606 44 1.08 42.9 0.993 1.5 854 43 

D-LiSSA 0.998 2.0 523 51 0.94 50.3 0.997 2.0 688 54 

RO 

ARIMA 0.954 - 139 - 2.33 - 0.954 - 189 - 
LSTM 0.961 0.79 127 9 2.10 9.6 0.961 0.8 173 8 
ResNet 0.967 1.39 130 6 2.17 6.5 0.962 0.9 170 10 
DBN 0.979 2.77 92 34 1.56 32.9 0.979 2.7 127 33 
BDT 0.976 2.39 96 31 1.63 29.8 0.976 2.4 135 28 

D-LiSSA 0.989 3.75 80 42 1.34 42.2 0.990 3.8 109 42 

ES 

ARIMA 0.960 - 696 - 2.49 - 0.960 - 932 - 
LSTM 0.984 2.53 631 9 2.24 10.2 0.965 0.5 874 6 
ResNet 0.984 2.53 439 37 1.54 37.9 0.984 2.5 596 36 
DBN 0.988 2.94 351 50 1.29 48.3 0.988 3.0 508 45 
BDT 0.982 2.32 421 39 1.47 40.9 0.982 2.3 624 33 

D-LiSSA 0.995  3.71 304 56.33 1.07 57.20 0.990  3.60 435 53 
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refrigerators. Especially, there are several days that are extremely hot in August. To ensure the daily electric-320 
ity demand for residents is met, the government asks for closing most commercial activities, offices, and 321 
heavy or light industries during these periods [38]. France has a similar weather pattern as well.  322 
• France has a particularly heavy load consumption in winter from the cold winds of the western Atlantic, 323 

where the electricity is used for heating as an alternative to conventional fuels such as natural gas.  324 
• Unlike other countries, Germany was one of the countries with rapid development of heavy industry in 325 

the world in the 20th century. The industrial load is the main factor of heavy load consumption and largely 326 
unaffected by seasonal patterns. Thus, the annual fluctuation of electric load in Germany tends to be stable. 327 
• The annual gross domestic product growth of the four countries from recent years (from 2012 to 2015) 328 

are continuing to grow, and the corresponding total consumption electric load for four countries from 2012 329 
to 2015 is growing at a corresponding rate. These real data are obtained from the World Bank [54]. 330 

The proposed D-LiSSA model and other comparative models, including the one benchmark method such 331 
as auto-regressive integrated moving average (ARIMA) [11], long-short term memory (LSTM) [25], residual 332 
neural network (ResNet) [27], deep belief network (DBN) [28], and binary decision tree (BDT) [52] are 333 
applied to the study for the four countries. Our model is trained using computationally efficient Adam opti-334 
mizer [55] with 300 epochs. The Adam has not only little memory requirements but also is well suited for 335 
problems that are large in terms of parameters in deep learning. As for computation of the SS can be found 336 
in Appendix A, Q and H are set to 0.01 and 50, respectively. For reference, the deep structures of LSTM, 337 
ResNet, and DBN adopt the same optimizer and with default parameters as given in [25, 27, 28] for training 338 
models. In the ARIMA model, the parameters p, d, and q are set to 1, 1, and 2, respectively. In this way, 339 
representative results for the whole year of 2015 can be obtained. Similar procedures have been used in 340 
previous works in this area. The various evaluation criteria computed by these models are reported in Table 341 
1. Since ARIMA as the benchmark model, the improvement (i.e., Imp) of the model in Table 1 is neglected 342 
in our experiments. As seen from this table, there are some differences in the results for different countries 343 
as measured by evaluation criteria. Despite such differences, it is worth noting that the performance of D-344 
LiSSA in different European countries (the average EV, MAPE, R2 in the year 2015) are similar. Further-345 
more, as the temperature data are considered, the average criteria of the obtained results in these criteria are 346 
also similar to those reported in Table 3 and Table 4 by other models for different countries. But D-LiSSA 347 
yields the best results in all evaluated criteria. This demonstrates the effectiveness of D-LiSSA. Other artifi-348 
cial neural networks including ResNet and DBN obtained the second-best results. ResNet model first uses 349 
basic deep residual networks structure with several fully connected layers to produce preliminary forecast of 350 
the two hours. The deep residual network integrates domain knowledge and builds different neural network 351 
blocks. This ensemble of strategy could enhance the prediction capability of the deep residual network by 352 
combining multiple individual networks. Although using the individual CNN and LSTM for building differ-353 
ent blocks make the deep neural networks to have high flexibility and effectiveness, as the number of layers 354 
increases, the depth model becomes more and more difficult to train. Thus, the number of hidden layers is 355 
often considered small so that it reduces the effectiveness of ResNet. In [28], raw data sources are normalized 356 
using Box-Cox transformation. The deep belief network (DBN) adopts less hidden neurons to overcome the 357 
limitations of overfitting of the traditional neural networks. It can learn to the feature pattern of the input data 358 
owing to the use of multiple layers of nonlinear transformation. Thus, DBN produces exceptional results. 359 
Binary decision tree (BDT) obtains the similar results because it is a supervised machine learning method. 360 
However, LSTM is sensitive to data scale and has more hyper-parameters that needs to be tuned effectively, 361 
which limits the performance of the model. In addition, parameter tuning can be affected on the load data 362 
with extremely high volatility. But LSTM is also superior to ARIMA which demonstrates the artificial neural 363 
network models significantly outperform the traditional statistical models. Because the ANN models can 364 
better learn the nonlinear forecasting relationship of load signal. 365 
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2) Application to Holiday Prediction: The load during special holidays remains to be predicted with the 366 
greatest difficulties as discussed by other authors in the literature review. Thus, actual load and forecast error 367 
in the winter test day, i.e., Christmas one-day test data is taken from the retained data to demonstrate the 368 
performance of D-LiSSA and the other selected load forecasting models. We provide the results for France 369 
(upper row) and Romania (lower row). Figs. 5 (a) and (c) left column provide the load forecasting curve 370 
results and Figs. 5 (b) and (d) right column demonstrate the prediction error for the same period. When 371 
considering the challenging testing period, D-LiSSA produces results that match the real data better in both 372 
figures. Only small deviations are seen in Fig. 5 (a). In Fig. 5 (b), the upper and lower bounds of the error are 373 
within the minimum interval and smaller than other comparative methods. 374 

3) Week-ahead Peak Load Forecasting: In both 1 hour-ahead and holiday forecasting cases, the proposed 375 
D-LiSSA proves to be more effective than the other models. To further validate the capacity of D-LiSSA, 376 
the forecasting results in the peak loads are examined. On the other hand, the peak load is considered as an 377 
important factor for the grid reliability in week-ahead load forecasting practices [28]. Even with high fore-378 
casting accuracy, an underestimation of the peak load may result in a power outage. In certain instances, the 379 
forecasting of the weekly peak load is the objective of short-term forecasting as the peak load is the most 380 
important one in a certain time interval [28]. Based on the domain knowledge, the majority of the peak loads 381 

 
(a) Predicted load for France 

 
(b) Predicted error for France 

 
(c) Predicted load for Romania 

      

 
(d) Predicted error for Romania 

Fig. 5. Christmas one-day load forecasting result for France (upper row), and Romania (lower row). 
Christmas one-day predicted load (left column); Christmas one-day predicted error (right column) by 

ARIMA, LSTM, ResNet, BDT, DBN, and D-LiSSA, respectively. 
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occur at different time periods in spring, summer, fall, and winter. Hence, it is necessary to evaluate the week-382 
ahead peak load forecasting using D-LiSSA and other comparative models in this subsection. The computa-383 
tional results for week-ahead peak load forecasting cases are presented in Table 2. It is observed that D-384 
LiSSA outperforms the other five models in the most cases. The values of MAPE and RMSE indicate signif-385 
icant differences between D-LiSSA and the other models. The comparative analysis confirms the effective-386 
ness of the proposed D-LiSSA in improving the peak load forecasting performances.  387 

 388 

3.4 Case Study 2: Electric Load for Different Seasons 389 

Validating the efficiency and effectiveness of the proposed forecasting model requires comparisons with 390 
comparative models in solving the same problem. In this work, four countries corresponding to four seasonal 391 
electric load and weather data of year 2015 are considered in the season test case. Statistical method and 392 
several based-ANN forecasting models including ARIMA [11], LSTM [25], ResNet [27], DBN [28], and 393 
tree-based BDT [52] have used these cases because the electric loads have a significant seasonal variation in 394 
the whole year and especially have a maximum peak value in summer. Thus, they are considered here so that 395 
the proposed D-LiSSA model can be compared with the state-of-the-art methods. For the fair comparisons, 396 
D-LiSSA also considers the same evaluation criteria for the comparative models. To analyze the results from 397 
different perspectives of the same prediction model, Tables 3 and Table 4 provide the statistical error metrics 398 
results of the four seasons. Meanwhile, Fig. 6 only shows the short-term load forecasting performance of the 399 

Table 2. Performance evaluation of week-ahead load forecasting on ENTSO-E data in 2015. 
Seasons  Winter Spring Summer Fall 
Nations Methods MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE 

FR 

ARIMA 8.8 7900 6.9 5092 5.7 4224 8.8 6099 
LSTM 7.5 7210 5.7 4468 4.4 2926 7.5 5403 
ResNet 8.2 8105 6.9 5181 3.7 2440 8.2 6113 
DBN 7.5 7013 6.1 4489 4.3 2627 7.5 4991 
BDT 9.0 8218 8.9 6545 5.9 4578 9.0 5772 

D-LiSSA 6.7 6049 5.5 4140 4.3 2640 6.7 4920 

GR 

ARIMA 7.6 7389 9.3 8163 9.3 8121 7.6 7454 
LSTM 5.0 4666 5.3 5442 3.2 3064 2.5 2177 
ResNet 9.2 9055 5.4 5439 2.0 1737 3.4 2730 
DBN 6.1 6970 4.7 4723 2.6 2273 2.3 2031 
BDT 6.8 4938 6.0 6148 2.6 2476 3.2 4092 

D-LiSSA 5.2 5622 4.4 4527 2.4 2035 2.3 2028 

RO 

ARIMA 5.9 590 6.6 611 6.4 553 6.2 5328 
LSTM 4.9 508 4.3 425 3.9 325 3.2 272 
ResNet 5.3 542 5.5 484 4.2 336 5.0 478 
DBN 5.3 500 4.1 406 3.3 284 3.1 260 
BDT 5.5 539 5.3 570 5.9 508 6.2 563 

D-LiSSA 4.8 470 3.4 371 3.3 281 2.5 217 

ES 

ARIMA 6.6 2945 6.9 2955 8.4 3809 6.7 2774 
LSTM 5.3 2542 4.6 2115 5.2 2225 3.5 1413 
ResNet 6.7 2946 4.9 2044 8.0 3480 4.0 1777 
DBN 6.2 2728 4.5 1954 5.5 2334 3.6 1465 
BDT 7.0 3272 6.0 2701 7.5 3687 5.1 2232 

D-LiSSA 5.9 2623 4.3 1950 5.5 2331 3.6 1446 
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proposed method and the other comparative methods for four seasons in France, based on the MAPE error 400 
measures. Because D-LiSSA uses historical data as well as the unseen samples surrounding in the Q-neigh-401 

Table 3. EV results for 1 hour-ahead forecasting of the four countries on ENTSO-E data in 2015. 
Nations Methods Winter Spring Summer Fall Mean 

FR 

ARIMA 0.936  0.952  0.926  0.939 0.938  
LSTM 0.927 0.956 0.937 0.952 0.943 
ResNet 0.927 0.966 0.971 0.971 0.959 
DBN 0.977 0.985 0.978 0.985 0.981 
BDT 0.945 0.984 0.985 0.983 0.974 

D-LiSSA 0.981 0.095 0.994 0.995 0.991 

GR 

ARIMA 0.978 0.979 0.980 0.972 0.977 
LSTM 0.979 0.979 0.985 0.982 0.981 
ResNet 0.977 0.988 0.94 0.991 0.988 
DBN 0.990 0.990 0.993 0.990 0.991 
BDT 0.990 0.990 0.985 0.993 0.993 

D-LiSSA 0.997 0.997 0.998 0.998 0.998 

RO 

ARIMA 0.951 0.950 0.947 0.937 0.946 
LSTM 0.961 0.957 0.947 0.954 0.955 
ResNet 0.961 0.962 0.970 0.959 0.963 
DBN 0.980 0.977 0.973 0.977 0.977 
BDT 0.974 0.975 0.969 0.972 0.972 

D-LiSSA 0.989 0.979 0.976 0.983 0.982 

ES 

ARIMA 0.956 0.949 0.970 0.950 0.956 
LSTM 0.956 0.965 0.978 0.950 0.962 
ResNet 0.980 0.981 0.986 0.986 0.983 
DBN 0.984 0.986 0.992 0.987 0.987 
BDT 0.980 0.987 0.974 0.985 0.981 

D-LiSSA 0.990 0.993 0.988 0.994 0.991 
 

  

        
Fig. 6.  Short-term load forecasting performance of the proposed method and the other comparative meth-

ods based on France. 
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borhood. With the more powerful forecast engine of D-LiSSA, D-LiSSA achieves higher EV as compared 402 
to five models. The EV with best possible value 1.0, measure how well the model could learn and represent 403 
the variance of load data, indicating the goodness of fit and the ability of the model to forecast future samples. 404 
The results of Tables 3 illustrate the effectiveness for different models, including seasonal variations. Ac-405 
cording to Table 4 results, the mean MAPE and each MAPE value of the proposed model are better than in 406 
the other forecasting models for each country. For different seasons, the average MAPE of the proposed 407 
model changes from 1.04% for France to 1.01% for Spain. Concurrently, the average MAPE of ARIMA, 408 
LSTM, ResNet, DBN, and BDT change from 2.91% to 2.49%, 3.83% to 2.84%, 2.40% to 1.55%, 1.56% to 409 
1.29%, 1.52% to 1.47%, respectively. It is obvious that the proposed D-LiSSA has the highest forecast accu-410 
racy because the MAPE of the proposed method changes least. That implies that the seasonal changes do 411 
impact he performance of electric load forecasting, however, the proposed model is more stable, and the 412 
prediction ability shows a minor fluctuation.  413 

 414 

3.5.Computational Efficiency 415 

A good model must have a high efficiency with accuracy and stability. Since the model efficiency is related 416 
to the computational time and a short run time corresponds to a high efficiency, we apply the run time to 417 
represent the computational efficiency. Furthermore, we carry out the all experiments on the deep learning 418 
platform PyCharm with a GeForce RTX 2080Ti graphics processing unit, Window10 operator system with 419 
8GB inner memory and Intel Core i5-9500 3.00GHz central processing unit. Considering the run time, the 420 
individual models spend less time for their oversimplified construction. For example, the run time of ARIMA 421 
is about 1s, LSTM is about158s, ResNet is about 241s, BDT is about 2s, and DBN is about 80s in France. 422 
Table 5 indicates that single models like ARIMA and BDT obtain shorter run time and the model efficiency 423 

Table 4. MAPE results for 1 hour-ahead forecasting of the four countries on ENTSO-E data in 2015. 
Nations Methods Winter Spring Summer Fall Mean 

FR 

ARIMA 2.66 2.86 3.03 3.08 2.91 
LSTM 2.75 2.81 2.76 2.78 2.78 
ResNet 3.03 2.42 1.88 2.27 2.408 
DBN 1.49 1.59 1.65 1.50 1.56 
BDT 1.99 1.44 1.25 1.40 1.52 

D-LiSSA 1.07 1.04 1.03 1.03 1.04 

GR 

ARIMA 1.83 1.87 1.81 2.07 1.90 
LSTM 1.96 1.98 1.65 1.68 1.82 
ResNet 2.29 1.41 1.08 1.29 1.52 
DBN 1.29 1.25 1.08 1.20 1.20 
BDT 1.26 1.09 0.94 1.05 1.08 

D-LiSSA 0.78 0.77 0.66 0.65 0.71 

RO 

ARIMA 2.28 2.33 2.226 2.47 2.33 
LSTM 2.06 2.11 2.19 2.04 2.10 
ResNet 2.09 2.44 1.94 2.23 2.14 
DBN 1.38 1.61 1.74 1.51 1.56 
BDT 1.56 1.63 1.70 1.64 1.63 

D-LiSSA 1.13 1.48 1.47 1.28 1.34 

ES 

ARIMA 2.80 2.52 2.09 2.56 2.49 
LSTM 2.70 2.06 1.76 2.44 2.24 
ResNet 1.81 1.50 1.51 1.37 1.55 
DBN 1.55 1.28 1.13 1.19 1.29 
BDT 1.75 1.27 1.59 1.27 1.47 

D-LiSSA 1.04 0.95 1.14 0.89 1.01 
 



 

18 
 

reduces with increase in model complexity. Similarly, with the increasing model complexity, the artificial 424 
neural network models spend more time. The proposed model attains high computational efficiency in arti-425 
ficial neural network models because of using H Halton points; to compute the stochastic sensitivity (SS) for 426 
the 𝑙$% individual	LiSSA- significantly increasing the run time. Although the proposed D-LiSSA has the long-427 
est run time, it improves the forecast accuracy and achieving the significant advancement of the reliability 428 
and validity. In fact, the run time of D-LiSSA is acceptable for the current computers with good enough 429 
graphics processing unit and central processing unit performance. The detail computation of SS can be found 430 
in Appendix A.   431 

Moreover, Fig. 7 shows the forecasting load with D-LiSSA, LSTM, ResNet, DBN, BDT, and ARIMA as 432 
the benchmark model. The figures present the results for summer (from a1 to f1) and winter (from a2 to f2) 433 
in Germany. The solid straight black line indicates that the actual and forecasting load demands match ex-434 
actly, i.e., the actual load equals the predicted load. For instance, the blue dots are the predicted load data, 435 
and they are close to the solid black line, and indicate accurate load forecasting results. The high intensity of 436 
blue/green/purple/red dot marks concentrate around the solid black line shows small differences between the 437 
actual and forecasted load values. Simple observation shows that D-LiSSA is remarkably close to the perfect-438 
match line in different seasons. Besides, the R2 values are R2 =0.9963 in summer and R2=0.9945 in winter, 439 
which indicates a good prediction ability of the D-LiSSA for forecasting short-term load data points.   440 

 441 

3.6. Generalization Capability of D-LiSSA 442 

To further verify the generalization performance of D-LiSSA, D-AE is built by replacing LiSSA in D-443 
LiSSA with basic autoencoders (with the same architecture) but trained via a minimization of mean squared 444 
error. The RMSE and MAPE yielded by D-LiSSA and D-AE are shown in Fig. 8. D-LiSSA yields the lowest 445 

 
(a) RMSE 

 

 

Table 5. The run time of different methods for four countries. 
Run Time (s) FR GR RO ES Average 

ARIMA 1 1 1 1 1 
LSTM 158 198 149 146 163 
ResNet 241 225 242 222 232 
BDT 2 1 1 1 1 
DBN 80 80 78 76 78 

D-LiSSA 715 819 749 723 751 
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values in comparison with D-AE on four countries. This experiment verifies D-LiSSA learns more informa-446 
tive hidden representations for SLFT. Moreover, we utilize D-LiSSA in other application situations to 447 
demonstrate the generalization performance of the D-LiSSA, including wind speed and solar irradiance fore-448 
casting. We conduct 30 min-ahead solar irradiance forecasting on the National Solar Radiation Data Base 449 
(NSRDB) [56] and 10 min-ahead wind speed forecasting on wind farm Golden in Colorado, USA [57]. Table 450 
6 gives the RMSE and MAE for two models and shows that D-LiSSA yields the least testing error. These 451 
results demonstrate that D-LiSSA has a good generalization ability for the short-term forecasting tasks. 452 
 453 

4. CONCLUSIONS 454 

This work presents a novel model based on deep autoencoder with localized stochastic sensitivity (D-455 
LiSSA) for short-term load forecasting. D-LiSSA can learn informative hidden representations by adding the 456 
perturbations strategy in the Q- neighborhood surrounding in the training samples. Thus, the proposed model 457 
is sensitive to similar unseen samples and is effective for features extraction from the historical load data. A 458 
nonlinear feedforward neural network as a regression model utilizes the last hidden layer representations by 459 
D-LiSSA for load forecasting was developed. To verify the performance of the proposed model, four real-460 
world public electricity datasets from ENTSO-E are used. The results demonstrate that D-LiSSA outperforms 461 
other methods due to the reduction of sensitivity and the enhancement of generalization ability. 462 

In smart grids, accurate load forecasting with prediction interval, and short/long-term load forecasting al-463 
ways play an important role. Thus, we aim to further explore the load prediction intervals, the load pricing 464 
prediction, and long-term forecasting approach based on D-LiSSA. Moreover, an unreliable short-term load 465 
forecasting gives challenges to the full utilization of renewable energies in the increasingly complex power 466 
market pricing strategies in smart grids. Considering that lower electricity costs require the design of efficient 467 

Table 6. Comparison of RMSE, MAE on solar and wind datasets. 
Dataset Model RMSE MAE 

Solar D-AE 26.7 MW 13.3 MW 
D-LiSSA 26.0 MW 12.8 MW 

Wind D-AE 0.218 m/s 0.359 m/s 
D-LiSSA 0.191 m/s 0.346 m/s 

 

 
(b) MAPE 

 

Fig. 8.  RMSE and MAPE of D-LiSSA and D-AE. 
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energy management systems and dispatch strategies, we will also apply our method to the household level 468 
load forecasting in future work. Since D-LiSSA has a good generalization ability, it is an interesting future 469 
work to research on how D-LiSSA can be generalized to provide multi-step ahead predictions. 470 

 
                        (a1) ARIMA 

 
                         (b1) LSTM 

 
                       (c1) ResNet 

 
                           (d1) BDT 

 
                         (e1) DBN 

 
                       (f1) D-LiSSA 
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 471 

 
                        (a2) ARIMA 

 
                         (b2) LSTM 

 
                       (c2) ResNet 

 
                         (d2) BDT 

 
                         (e2) DBN 

 
                        (f2) D-LiSSA 

Fig. 7.  Actual and predicted load data by D-LiSSA and other comparison methods for Germany in Sum-
mer (from a1 to f1), Winter (from a2 to f2): (a1 and a2) ARIMA; (b1 and b2) LSTM; (c1 and c2) ResNet; 

(d1 and d2) BDT; (e1 and e2) DBN; (f1 and f2) D-LiSSA, respectively. 
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 627 
Appendix A: Description of localized stochastic sensitivity autoencoder (LiSSA). 628 

 629 
For training an autoencoder (AE), a training dataset D with M samples {𝑋& ∈ 𝑅(×+},  is given from the 630 

problem domain where  𝑋& denotes a n-dimensional input vector of the 𝑏$% training sample. The aim of AE 631 
is to learn a better hidden representation (learned feature) to minimize reconstruction error between input  𝑋& 632 
and output  𝑋:& ∈ 𝑅(×+, as shown in Fig. 1. Usually, an AE is trained by minimizing the mean square error 633 
(MSE) between inputs and outputs of the AE as follows: 634 

   𝑅EGH =
(
,
∑ �𝑋& − 𝑋:&�
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where 	𝛼I(∙)	 and 𝑋&I denote the output of the	𝑗$%  hidden neuron and the 𝑗$% input feature of the 𝑏$% training 635 
sample, respectively. 636 

The training dataset is expected to be representative, therefore in general unseen samples should not deviate 637 
too much from training samples. And LiSSA is an AE that optimizes weight matrices and bias vectors via 638 
minimization of localized perturbation error (LPE) for a given training dataset. Thus, the LPE measures the 639 
sensitivity of the model to unseen samples that are similar to training samples. The difference of between an 640 
unseen sample 𝑋 and its corresponding training sample 𝑋& is defined as ∆𝑋 = (∆𝑥(, ∆𝑥#, ⋯ , ∆𝑥+	)! = 𝑋 −641 
𝑋&, where 𝑛 denotes the number of input features, ∆𝑥J denotes the perturbations to the 𝑖$% input feature, the 642 
output vector of an AE consists of n outputs 𝑥&K, and |∆𝑥J| ≤ 𝑄, 𝑖 = 1, 2,⋯ , 𝑛. When 𝑄 value is given, we 643 
define the 𝑄 neighborhood of 𝑋&  is 𝑆L(𝑋&) = {𝑋|𝑋 = 𝑋& + ∆𝑋}. Then, the LPE of the 𝑘$%  𝑆L(𝑋&) is de-644 
fined as follows: 645 

   𝑅(𝑥&K , 𝑄) = ∫M((9")U𝑥&K − 𝛼K(𝑋&)W
#𝑃(𝑋)𝑑𝑋    (A.2) 

where 𝛼K(∙) and 𝑃(𝑋) denote the 𝑘$% output unit of LiSSA and the unknown probability density function of 646 
𝑋 in 𝑆L(𝑋&), respectively. The LPE of all outputs of the AE for a given training dataset of M samples is as 647 
follows: 648 

    	𝑅.NO(𝑋, 𝑄) =
(
,+
∑ ∑ 𝑅(	𝑥&K , 𝑄)+

K0(
,
&0(    (A.3) 

The Hoeffdings inequality is applied to Eq. (A.3), with a probability of 1 − 𝜂, the LPE is given as: 649 

    	𝑅.NO(𝑋, 𝑄) ≤ O𝑅EGH(𝑘) + 𝐸((∆𝛼K)#)Y
#
+ 𝜀 (A.4) 

where 𝑅EGH(𝑘), 𝐸((∆𝛼K)#), and ε = 𝐵U�ln 𝜂 −2𝑀⁄ W denote the empirical error, the stochastic sensitivity 650 
(SS), and the confidence of the upper bound, respectively. Therefore, the LPE includes three parts namely, 651 
1) the training error; 2) the SS; and 3) constants defined by the training dataset. 652 

The training error is the reconstruction error between inputs and outputs of the LiSSA, namely training 653 
mean square error (MSE) 654 

    𝑅EGH =
(
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∑ ∑ (𝛼K(𝑋&) − 𝑥&K)#+

K0(
,
&0(  (A.5) 

where 𝑥&K denotes the  𝑘$% output feature of the  𝑏$% training sample. 655 
The expectation of squared differences between the outputs of the training samples and their corresponding 656 

perturbed samples (i.e., 𝑋& + ∆𝑋) is defined as the SS, the SS is given as follows: 657 

    𝐸((∆𝛼K)#) =
(
,+
∑ ∑ 𝐸 TU𝛼K(𝑋& + ∆𝑋) − 𝛼K(𝑋&)W
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,
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By adopting the concept of the Monte Carlo method to compute the SS. The Algorithm A.1 shows the 658 
computation process of the SS by using a uniform random sampling. 659 
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If we neglect constant term in Eq. (A.4), the major components affecting	𝑅.NO(𝑋, 𝑄) are 𝑅EGH(𝑘) and 660 
𝐸((∆𝛼K)#). Therefore, the final objective function of LiSSA is: 661 
    𝑅.NO = 𝑅EGH + 𝐸((∆𝛼K)#) (A.7) 
 662 

Algorithm A.1 Computation of SS 
Input: 𝑄, 𝐻 and 𝛼(∙) 
Output: The SS value 
1: Generate 𝐻 uniformly distributed random points ∆𝑥% ∈ ℝ+, ℎ = 1,… ,𝐻 with each coordi-
nate range from[−𝑄, 𝑄]; 
2: For each training sample 𝑋&, compute each outputs SS: 

δ(𝑋J) =
1
𝐻𝑛NNU𝛼K(𝑋& + ∆𝑋%) − 𝛼K(𝑋&)W

#
+

K0(

P

%0(

 

3: Compute the SS of the whole LiSSA: 

𝐸((∆𝛼K)#) =
1
𝑀Nδ(𝑋&)
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&0(

 

 


